WorldWideScience

Sample records for wavelet-based multivariable approach

  1. Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach

    Science.gov (United States)

    Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun

    2016-04-01

    The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.

  2. A Wavelet-Based Approach to Fall Detection

    Directory of Open Access Journals (Sweden)

    Luca Palmerini

    2015-05-01

    Full Text Available Falls among older people are a widely documented public health problem. Automatic fall detection has recently gained huge importance because it could allow for the immediate communication of falls to medical assistance. The aim of this work is to present a novel wavelet-based approach to fall detection, focusing on the impact phase and using a dataset of real-world falls. Since recorded falls result in a non-stationary signal, a wavelet transform was chosen to examine fall patterns. The idea is to consider the average fall pattern as the “prototype fall”.In order to detect falls, every acceleration signal can be compared to this prototype through wavelet analysis. The similarity of the recorded signal with the prototype fall is a feature that can be used in order to determine the difference between falls and daily activities. The discriminative ability of this feature is evaluated on real-world data. It outperforms other features that are commonly used in fall detection studies, with an Area Under the Curve of 0.918. This result suggests that the proposed wavelet-based feature is promising and future studies could use this feature (in combination with others considering different fall phases in order to improve the performance of fall detection algorithms.

  3. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    Science.gov (United States)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  4. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Directory of Open Access Journals (Sweden)

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  5. Comparison of wavelet based denoising schemes for gear condition monitoring: An Artificial Neural Network based Approach

    Science.gov (United States)

    Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva

    2018-02-01

    Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.

  6. A new approach to pre-processing digital image for wavelet-based watermark

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido

    2008-11-01

    The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.

  7. A data-driven wavelet-based approach for generating jumping loads

    Science.gov (United States)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  8. Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscale entropy approach.

    Science.gov (United States)

    Roushangar, Kiyoumars; Alizadeh, Farhad; Adamowski, Jan

    2018-08-01

    Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1-2, 3-8, and 9-13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and

  9. Multivariate Approaches to Classification in Extragalactic Astronomy

    Directory of Open Access Journals (Sweden)

    Didier eFraix-Burnet

    2015-08-01

    Full Text Available Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono- or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.

  10. Wavelet-Based Bayesian Methods for Image Analysis and Automatic Target Recognition

    National Research Council Canada - National Science Library

    Nowak, Robert

    2001-01-01

    .... We have developed two new techniques. First, we have develop a wavelet-based approach to image restoration and deconvolution problems using Bayesian image models and an alternating-maximation method...

  11. Wavelet-based prediction of oil prices

    International Nuclear Information System (INIS)

    Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik

    2005-01-01

    This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced

  12. Construction of a class of Daubechies type wavelet bases

    International Nuclear Information System (INIS)

    Li Dengfeng; Wu Guochang

    2009-01-01

    Extensive work has been done in the theory and the construction of compactly supported orthonormal wavelet bases of L 2 (R). Some of the most distinguished work was done by Daubechies, who constructed a whole family of such wavelet bases. In this paper, we construct a class of orthonormal wavelet bases by using the principle of Daubechies, and investigate the length of support and the regularity of these wavelet bases.

  13. Complex Wavelet Based Modulation Analysis

    DEFF Research Database (Denmark)

    Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt

    2008-01-01

    Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...

  14. Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches

    Science.gov (United States)

    Safieddine, Doha; Kachenoura, Amar; Albera, Laurent; Birot, Gwénaël; Karfoul, Ahmad; Pasnicu, Anca; Biraben, Arnaud; Wendling, Fabrice; Senhadji, Lotfi; Merlet, Isabelle

    2012-12-01

    Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artifact, as EEG is a key diagnosis tool for this pathology. In this context, our aim was to compare the ability of two stochastic approaches of blind source separation, namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to remove muscle artifacts from EEG signals. To quantitatively compare the performance of these four algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency of CCA, ICA, EMD, and WT to correct the muscular artifact was evaluated both by calculating the normalized mean-squared error between denoised and original signals and by comparing the results of source localization obtained from artifact-free as well as noisy signals, before and after artifact correction. Tests on real data recorded in an epileptic patient are also presented. The results obtained in the context of simulations and real data show that EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity. For less noisy data, and when spikes arose from a single cortical source, the myogenic artifact was best corrected with CCA and ICA. Otherwise when spikes originated from two distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while WT offered the better denoising result for less noisy data. These results suggest that

  15. Multivariate approach to matrimonial mobility in Catalonia.

    Science.gov (United States)

    Calafell, F; Hernández, M

    1993-10-01

    Matrimonial mobility in Catalonia was studied using 1986 census data. Comarca (a geographic division) of birth was used as the population unit, and a measure of affinity (a statistical distance) between comarques in spouse geographic origin was defined. This distance was analyzed with multivariate methods drawn from numerical taxonomy to detect any discontinuities in matrimonial mobility and gene flow between comarques. Results show a three-level pattern of gene flow in Catalonia: (1) a strong endogamy within comarques; (2) a 100-km matrimonial circle around every comarca; and (3) the capital, Barcelona, which attracts migrants from all over Catalonia. The regionalization in matrimonial mobility follows the geographically clear-cut groups of comarques almost exactly.

  16. Orthonormal Wavelet Bases for Quantum Molecular Dynamics

    International Nuclear Information System (INIS)

    Tymczak, C.; Wang, X.

    1997-01-01

    We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society

  17. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  18. Research on Wavelet-Based Algorithm for Image Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    Wu Ying-qian; Du Pei-jun; Shi Peng-fei

    2004-01-01

    A novel wavelet-based algorithm for image enhancement is proposed in the paper. On the basis of multiscale analysis, the proposed algorithm solves efficiently the problem of noise over-enhancement, which commonly occurs in the traditional methods for contrast enhancement. The decomposed coefficients at same scales are processed by a nonlinear method, and the coefficients at different scales are enhanced in different degree. During the procedure, the method takes full advantage of the properties of Human visual system so as to achieve better performance. The simulations demonstrate that these characters of the proposed approach enable it to fully enhance the content in images, to efficiently alleviate the enhancement of noise and to achieve much better enhancement effect than the traditional approaches.

  19. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  20. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  1. Multivariate analysis of 2-DE protein patterns - Practical approaches

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Jacobsen, Susanne; Grove, H.

    2007-01-01

    Practical approaches to the use of multivariate data analysis of 2-DE protein patterns are demonstrated by three independent strategies for the image analysis and the multivariate analysis on the same set of 2-DE data. Four wheat varieties were selected on the basis of their baking quality. Two...... of the varieties were of strong baking quality and hard wheat kernel and two were of weak baking quality and soft kernel. Gliadins at different stages of grain development were analyzed by the application of multivariate data analysis on images of 2-DEs. Patterns related to the wheat varieties, harvest times...

  2. DTW-APPROACH FOR UNCORRELATED MULTIVARIATE TIME SERIES IMPUTATION

    OpenAIRE

    Phan , Thi-Thu-Hong; Poisson Caillault , Emilie; Bigand , André; Lefebvre , Alain

    2017-01-01

    International audience; Missing data are inevitable in almost domains of applied sciences. Data analysis with missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Some well-known methods for multivariate time series imputation require high correlations between series or their features. In this paper , we propose an approach based on the shape-behaviour relation in low/un-correlated multivariate time series under an assumption of...

  3. Construction of Orthonormal Piecewise Polynomial Scaling and Wavelet Bases on Non-Equally Spaced Knots

    Directory of Open Access Journals (Sweden)

    Jean Pierre Astruc

    2007-01-01

    Full Text Available This paper investigates the mathematical framework of multiresolution analysis based on irregularly spaced knots sequence. Our presentation is based on the construction of nested nonuniform spline multiresolution spaces. From these spaces, we present the construction of orthonormal scaling and wavelet basis functions on bounded intervals. For any arbitrary degree of the spline function, we provide an explicit generalization allowing the construction of the scaling and wavelet bases on the nontraditional sequences. We show that the orthogonal decomposition is implemented using filter banks where the coefficients depend on the location of the knots on the sequence. Examples of orthonormal spline scaling and wavelet bases are provided. This approach can be used to interpolate irregularly sampled signals in an efficient way, by keeping the multiresolution approach.

  4. Mulch materials in processing tomato: a multivariate approach

    Directory of Open Access Journals (Sweden)

    Marta María Moreno

    2013-08-01

    Full Text Available Mulch materials of different origins have been introduced into the agricultural sector in recent years alternatively to the standard polyethylene due to its environmental impact. This study aimed to evaluate the multivariate response of mulch materials over three consecutive years in a processing tomato (Solanum lycopersicon L. crop in Central Spain. Two biodegradable plastic mulches (BD1, BD2, one oxo-biodegradable material (OB, two types of paper (PP1, PP2, and one barley straw cover (BS were compared using two control treatments (standard black polyethylene [PE] and manual weed control [MW]. A total of 17 variables relating to yield, fruit quality, and weed control were investigated. Several multivariate statistical techniques were applied, including principal component analysis, cluster analysis, and discriminant analysis. A group of mulch materials comprised of OB and BD2 was found to be comparable to black polyethylene regarding all the variables considered. The weed control variables were found to be an important source of discrimination. The two paper mulches tested did not share the same treatment group membership in any case: PP2 presented a multivariate response more similar to the biodegradable plastics, while PP1 was more similar to BS and MW. Based on our multivariate approach, the materials OB and BD2 can be used as an effective, more environmentally friendly alternative to polyethylene mulches.

  5. Wavelet-based compression of pathological images for telemedicine applications

    Science.gov (United States)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  6. Data classification and MTBF prediction with a multivariate analysis approach

    International Nuclear Information System (INIS)

    Braglia, Marcello; Carmignani, Gionata; Frosolini, Marco; Zammori, Francesco

    2012-01-01

    The paper presents a multivariate statistical approach that supports the classification of mechanical components, subjected to specific operating conditions, in terms of the Mean Time Between Failure (MTBF). Assessing the influence of working conditions and/or environmental factors on the MTBF is a prerequisite for the development of an effective preventive maintenance plan. However, this task may be demanding and it is generally performed with ad-hoc experimental methods, lacking of statistical rigor. To solve this common problem, a step by step multivariate data classification technique is proposed. Specifically, a set of structured failure data are classified in a meaningful way by means of: (i) cluster analysis, (ii) multivariate analysis of variance, (iii) feature extraction and (iv) predictive discriminant analysis. This makes it possible not only to define the MTBF of the analyzed components, but also to identify the working parameters that explain most of the variability of the observed data. The approach is finally demonstrated on 126 centrifugal pumps installed in an oil refinery plant; obtained results demonstrate the quality of the final discrimination, in terms of data classification and failure prediction.

  7. Wavelet-based characterization of gait signal for neurological abnormalities.

    Science.gov (United States)

    Baratin, E; Sugavaneswaran, L; Umapathy, K; Ioana, C; Krishnan, S

    2015-02-01

    Studies conducted by the World Health Organization (WHO) indicate that over one billion suffer from neurological disorders worldwide, and lack of efficient diagnosis procedures affects their therapeutic interventions. Characterizing certain pathologies of motor control for facilitating their diagnosis can be useful in quantitatively monitoring disease progression and efficient treatment planning. As a suitable directive, we introduce a wavelet-based scheme for effective characterization of gait associated with certain neurological disorders. In addition, since the data were recorded from a dynamic process, this work also investigates the need for gait signal re-sampling prior to identification of signal markers in the presence of pathologies. To benefit automated discrimination of gait data, certain characteristic features are extracted from the wavelet-transformed signals. The performance of the proposed approach was evaluated using a database consisting of 15 Parkinson's disease (PD), 20 Huntington's disease (HD), 13 Amyotrophic lateral sclerosis (ALS) and 16 healthy control subjects, and an average classification accuracy of 85% is achieved using an unbiased cross-validation strategy. The obtained results demonstrate the potential of the proposed methodology for computer-aided diagnosis and automatic characterization of certain neurological disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Wavelet Based Diagnosis and Protection of Electric Motors

    OpenAIRE

    Khan, M. Abdesh Shafiel Kafiey; Rahman, M. Azizur

    2010-01-01

    In this chapter, a short review of conventional Fourier transforms and new wavelet based faults diagnostic and protection techniques for electric motors is presented. The new hybrid wavelet packet transform (WPT) and neural network (NN) based faults diagnostic algorithm is developed and implemented for electric motors. The proposed WPT and NN

  9. 3D Wavelet-Based Filter and Method

    Science.gov (United States)

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  10. Evaluation of droplet size distributions using univariate and multivariate approaches.

    Science.gov (United States)

    Gaunø, Mette Høg; Larsen, Crilles Casper; Vilhelmsen, Thomas; Møller-Sonnergaard, Jørn; Wittendorff, Jørgen; Rantanen, Jukka

    2013-01-01

    Pharmaceutically relevant material characteristics are often analyzed based on univariate descriptors instead of utilizing the whole information available in the full distribution. One example is droplet size distribution, which is often described by the median droplet size and the width of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution. Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions. The multivariate data analysis was proven to be an efficient tool for evaluating the full information contained in a distribution.

  11. Embedded wavelet-based face recognition under variable position

    Science.gov (United States)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  12. Evaluation of droplet size distributions using univariate and multivariate approaches

    DEFF Research Database (Denmark)

    Gauno, M.H.; Larsen, C.C.; Vilhelmsen, T.

    2013-01-01

    of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose...... in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution....... Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions...

  13. TOURISM SEGMENTATION BASED ON TOURISTS PREFERENCES: A MULTIVARIATE APPROACH

    Directory of Open Access Journals (Sweden)

    Sérgio Dominique Ferreira

    2010-11-01

    Full Text Available Over the last decades, tourism became one of the most important sectors of the international economy. Specifically in Portugal and Brazil, its contribution to Gross Domestic Product (GDP and job creation is quite relevant. In this sense, to follow a strong marketing approach on the management of tourism resources of a country comes to be paramount. Such an approach should be based on innovations which help unveil the preferences of tourists with accuracy, turning it into a competitive advantage. In this context, the main objective of the present study is to illustrate the importance and benefits associated with the use of multivariate methodologies for market segmentation. Another objective of this work is to illustrate on the importance of a post hoc segmentation. In this work, the authors applied a Cluster Analysis, with a hierarchical method followed by an  optimization method. The main results of this study allow the identification of five clusters that are distinguished by assigning special importance to certain tourism attributes at the moment of choosing a specific destination. Thus, the authors present the advantages of post hoc segmentation based on tourists’ preferences, in opposition to an a priori segmentation based on socio-demographic characteristics.

  14. Wavelet-based audio embedding and audio/video compression

    Science.gov (United States)

    Mendenhall, Michael J.; Claypoole, Roger L., Jr.

    2001-12-01

    Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit-plane coding, index coding, and Huffman coding. To demonstrate the potential of this audio embedding and audio/video compression algorithm, we embed an audio signal into a video signal and then compress. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33 dB. Finally, the audio signal is extracted from the compressed audio/video signal without error.

  15. Sparse data structure design for wavelet-based methods

    Directory of Open Access Journals (Sweden)

    Latu Guillaume

    2011-12-01

    Full Text Available This course gives an introduction to the design of efficient datatypes for adaptive wavelet-based applications. It presents some code fragments and benchmark technics useful to learn about the design of sparse data structures and adaptive algorithms. Material and practical examples are given, and they provide good introduction for anyone involved in the development of adaptive applications. An answer will be given to the question: how to implement and efficiently use the discrete wavelet transform in computer applications? A focus will be made on time-evolution problems, and use of wavelet-based scheme for adaptively solving partial differential equations (PDE. One crucial issue is that the benefits of the adaptive method in term of algorithmic cost reduction can not be wasted by overheads associated to sparse data management.

  16. Enhanced ATM Security using Biometric Authentication and Wavelet Based AES

    Directory of Open Access Journals (Sweden)

    Sreedharan Ajish

    2016-01-01

    Full Text Available The traditional ATM terminal customer recognition systems rely only on bank cards, passwords and such identity verification methods are not perfect and functions are too single. Biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. This paper presents a highly secured ATM banking system using biometric authentication and wavelet based Advanced Encryption Standard (AES algorithm. Two levels of security are provided in this proposed design. Firstly we consider the security level at the client side by providing biometric authentication scheme along with a password of 4-digit long. Biometric authentication is achieved by considering the fingerprint image of the client. Secondly we ensure a secured communication link between the client machine to the bank server using an optimized energy efficient and wavelet based AES processor. The fingerprint image is the data for encryption process and 4-digit long password is the symmetric key for the encryption process. The performance of ATM machine depends on ultra-high-speed encryption, very low power consumption, and algorithmic integrity. To get a low power consuming and ultra-high speed encryption at the ATM machine, an optimized and wavelet based AES algorithm is proposed. In this system biometric and cryptography techniques are used together for personal identity authentication to improve the security level. The design of the wavelet based AES processor is simulated and the design of the energy efficient AES processor is simulated in Quartus-II software. Simulation results ensure its proper functionality. A comparison among other research works proves its superiority.

  17. Synthetic environmental indicators: A conceptual approach from the multivariate statistics

    International Nuclear Information System (INIS)

    Escobar J, Luis A

    2008-01-01

    This paper presents a general description of multivariate statistical analysis and shows two methodologies: analysis of principal components and analysis of distance, DP2. Both methods use techniques of multivariate analysis to define the true dimension of data, which is useful to estimate indicators of environmental quality.

  18. Wavelet-based verification of the quantitative precipitation forecast

    Science.gov (United States)

    Yano, Jun-Ichi; Jakubiak, Bogumil

    2016-06-01

    This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.

  19. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  20. Fast wavelet based sparse approximate inverse preconditioner

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W.L. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  1. A Wavelet-Based Finite Element Method for the Self-Shielding Issue in Neutron Transport

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    This paper describes a new approach for treating the energy variable of the neutron transport equation in the resolved resonance energy range. The aim is to avoid recourse to a case-specific spatially dependent self-shielding calculation when considering a broad group structure. This method consists of a discontinuous Galerkin discretization of the energy using wavelet-based elements. A Σ t -orthogonalization of the element basis is presented in order to make the approach tractable for spatially dependent problems. First numerical tests of this method are carried out in a limited framework under the Livolant-Jeanpierre hypotheses in an infinite homogeneous medium. They are mainly focused on the way to construct the wavelet-based element basis. Indeed, the prior selection of these wavelet functions by a thresholding strategy applied to the discrete wavelet transform of a given quantity is a key issue for the convergence rate of the method. The Canuto thresholding approach applied to an approximate flux is found to yield a nearly optimal convergence in many cases. In these tests, the capability of such a finite element discretization to represent the flux depression in a resonant region is demonstrated; a relative accuracy of 10 -3 on the flux (in L 2 -norm) is reached with less than 100 wavelet coefficients per group. (authors)

  2. multivariate approach to the study of aquatic species diversity

    African Journals Online (AJOL)

    User

    2016-12-02

    Dec 2, 2016 ... Eigen value of the three variables namely; Temperature, pH and Electrical Conductivity ... affect the stream macroinvertebrates (Fornaroli et al., 2016). ... relation to stream land use activities (Tinotenda et al., ... to rotate the multivariate data cloud and extract the ..... community modeling of species distribution.

  3. Creating wavelet-based models for real-time synthesis of perceptually convincing environmental sounds

    Science.gov (United States)

    Miner, Nadine Elizabeth

    1998-09-01

    This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.

  4. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    Science.gov (United States)

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  5. Use of wavelet based iterative filtering to improve denoising of spectral information for in-vivo gamma spectrometry

    International Nuclear Information System (INIS)

    Paul, Sabyasachi; Sarkar, P.K.

    2012-05-01

    The characterization of radionuclide in the in-vivo monitoring analysis using gamma spectrometry poses difficulty due to very low activity level in biological systems. The large statistical fluctuations often make identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet based noise filtering methodology has been developed for better detection of gamma peaks while analyzing noisy spectrometric data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for the noise rejection and inverse transform after soft thresholding over the generated coefficients. Analyses of in-vivo monitoring data of 235 U and 238 U have been carried out using this method without disturbing the peak position and amplitude while achieving a threefold improvement in the signal to noise ratio, compared to the original measured spectrum. When compared with other data filtering techniques, the wavelet based method shows better results. (author)

  6. Multivariate statistical analysis a high-dimensional approach

    CERN Document Server

    Serdobolskii, V

    2000-01-01

    In the last few decades the accumulation of large amounts of in­ formation in numerous applications. has stimtllated an increased in­ terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de­ ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat­ ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari­ ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen­ ...

  7. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  8. Risk assessment of transitional economies by multivariate and multicriteria approaches

    Directory of Open Access Journals (Sweden)

    Tomić-Plazibat Neli

    2010-01-01

    Full Text Available This article assesses country-risk of sixteen Central, Baltic and South-East European transition countries, for 2005 and 2007, using multivariate cluster analysis. It was aided by the appropriate ANOVA (analysis of variance testing and the multicriteria PROMETHEE method. The combination of methods makes for more accurate and efficient country-risk assessment. Country risk classifications and ratings involve evaluating the performance of countries while considering their economic and socio-political characteristics. The purpose of the article is to classify, and then find the comparative position of each individual country in the group of analyzed countries, in order to find out to which extent development of market economy and democratic society has been achieved.

  9. Energy and economic growth in the USA: a multivariate approach

    International Nuclear Information System (INIS)

    Stern, D.I.

    1993-01-01

    This paper examines the casual relationship between Gross Domestic Product and energy use for the period 1947-90 in the United States of America. The relationship between energy use and economic growth has been examined by both biophysical and neoclassical economists. In particular, several studies have tested for the presence of a causal relationships (in the Granger sense) between energy use and economic growth. However, these tests do not allow a direct test of the relative explanatory powers of the neoclassical and biophysical models. A multivariate adaptation of the test-vector autoregression (VAR) does allow such a test. A VAR of GDP, energy use, capital stock and employment is estimated and Granger tests for causal relationships between the variables are carried out. Although there is no evidence that gross energy use Granger causes GDP, a measure of final energy use adjusted for changing fuel composition does Granger cause GDP. (author)

  10. A Wavelet-Based Approach to Pattern Discovery in Melodies

    DEFF Research Database (Denmark)

    Velarde, Gissel; Meredith, David; Weyde, Tillman

    2016-01-01

    We present a computational method for pattern discovery based on the application of the wavelet transform to symbolic representations of melodies or monophonic voices. We model the importance of a discovered pattern in terms of the compression ratio that can be achieved by using it to describe...

  11. From cardinal spline wavelet bases to highly coherent dictionaries

    International Nuclear Information System (INIS)

    Andrle, Miroslav; Rebollo-Neira, Laura

    2008-01-01

    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)

  12. Adaptive Image Transmission Scheme over Wavelet-Based OFDM System

    Institute of Scientific and Technical Information of China (English)

    GAOXinying; YUANDongfeng; ZHANGHaixia

    2005-01-01

    In this paper an adaptive image transmission scheme is proposed over Wavelet-based OFDM (WOFDM) system with Unequal error protection (UEP) by the design of non-uniform signal constellation in MLC. Two different data division schemes: byte-based and bitbased, are analyzed and compared. Different bits are protected unequally according to their different contribution to the image quality in bit-based data division scheme, which causes UEP combined with this scheme more powerful than that with byte-based scheme. Simulation results demonstrate that image transmission by UEP with bit-based data division scheme presents much higher PSNR values and surprisingly better image quality. Furthermore, by considering the tradeoff of complexity and BER performance, Haar wavelet with the shortest compactly supported filter length is the most suitable one among orthogonal Daubechies wavelet series in our proposed system.

  13. Wavelet based free-form deformations for nonrigid registration

    Science.gov (United States)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  14. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    Science.gov (United States)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  15. Helicopter Gas Turbine Engine Performance Analysis : A Multivariable Approach

    NARCIS (Netherlands)

    Arush, Ilan; Pavel, M.D.

    2017-01-01

    Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test data in order to predict the available output power under different atmospheric

  16. Antioxidant activity of Costa Rican propolis: a multivariate analysis approach

    International Nuclear Information System (INIS)

    Umana Rojas, Eduardo; Solado, Godofredo; Tamayo-Castillo, Giselle

    2013-01-01

    Propolis is produced by Apis mellifera bees from resins of plants that are found around the apiary. The chemical composition is highly variable and Costa Rica has reported without studies of characterization to define the types of propolis in the country. 119 samples were collected from beekeeping areas of the country. The spectrum of 1 H-NMR and its antioxidant activity against DPPH radical were measured. The spectra have been divided into 243 blocks of 0,04 ppm and processed with the Minitab software for multivariate analysis. 99 of the samples collected were used for construction of models for the valuation of the predictive ability of the model have been used coefficients of determination (R 2 ) of prediction by the software and the remaining 20 samples. The existence of three types of propolis with chemically different metabolomes were determined by principal component analysis (PCA). A prediction model was constructed by analysis of partial least squares (PLS). The prediction model has allowed to classify a propolis according to the level of antioxidant activity (AAO), high (type I and II) or low (type III) from the spectrum of 1 H-NMR. The R 2 has been 0.88 and R 2 prediction of 0, 718 for new samples. The nconiferyl benzoate of group I and nemorosone of the group II as two discriminated antioxidants among the groups I and II were isolated and high concentration levels of these compounds have been differentiated with respect to type III. This has allowed the construction of a linear discriminant model with a success rate of 100% for the samples used for formulation and 92,9 for the prediction of different samples. The classification systems could be applied to the standardization of the quality of propolis from Costa Rica for future medicinal or cosmetic applications that take advantage of its antioxidant properties. Also, the methylated derivative has isolated and identified of the nconiferyl benzoate thereof propolis than was obtained his counterpart

  17. A multivariate-utility approach for selection of energy sources

    International Nuclear Information System (INIS)

    Ahmed, S; Husseiny, A.A.

    1978-01-01

    A deterministic approach is devised to compare the safety features of various energy sources. The approach is based on multiattribute utility theory. The method is used in evaluating the safety aspects of alternative energy sources used for the production of electrical energy. Four alternative energy sources are chosen which could be considered for the production of electricity to meet the national energy demand. These are nuclear, coal, solar, and geothermal energy. For simplicity, a total electrical system is considered in each case. A computer code is developed to evaluate the overall utility function for each alternative from the utility patterns corresponding to 23 energy attributes, mostly related to safety. The model can accommodate other attributes assuming that these are independent. The technique is kept flexible so that virtually any decision problem with various attributes can be attacked and optimal decisions can be reached. The selected data resulted in preference of geothermal and nuclear energy over other sources, and the method is found viable in making decisions on energy uses based on quantified and subjective attributes. (author)

  18. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  19. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  20. An image adaptive, wavelet-based watermarking of digital images

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  1. High Order Wavelet-Based Multiresolution Technology for Airframe Noise Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel, high-accuracy, high-fidelity, multiresolution (MRES), wavelet-based framework for efficient prediction of airframe noise sources and...

  2. Hyperspectral image compressing using wavelet-based method

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  3. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  4. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Angel D. Sappa

    2016-06-01

    Full Text Available This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR and Long Wave InfraRed (LWIR.

  5. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    Science.gov (United States)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  6. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  7. Quality by design case study: an integrated multivariate approach to drug product and process development.

    Science.gov (United States)

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  8. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    Science.gov (United States)

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics

    Science.gov (United States)

    Do, Seongju; Li, Haojun; Kang, Myungjoo

    2017-06-01

    In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.

  10. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    Science.gov (United States)

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Structural analysis and design of multivariable control systems: An algebraic approach

    Science.gov (United States)

    Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen

    1988-01-01

    The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.

  12. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  13. The effect of image enhancement on the statistical analysis of functional neuroimages : Wavelet-based denoising and Gaussian smoothing

    NARCIS (Netherlands)

    Wink, AM; Roerdink, JBTM; Sonka, M; Fitzpatrick, JM

    2003-01-01

    The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising

  14. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    Directory of Open Access Journals (Sweden)

    Jordi Marcé-Nogué

    2017-10-01

    Full Text Available Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.

  15. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    Science.gov (United States)

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  16. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    Directory of Open Access Journals (Sweden)

    Charmaine eDemanuele

    2015-10-01

    Full Text Available Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from fMRI blood oxygenation level dependent (BOLD time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC, but not in the primary visual cortex (V1. Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel

  17. A New Wavelet-Based ECG Delineator for the Evaluation of the Ventricular Innervation

    DEFF Research Database (Denmark)

    Cesari, Matteo; Mehlsen, Jesper; Mehlsen, Anne-Birgitte

    2017-01-01

    T-wave amplitude (TWA) has been proposed as a marker of the innervation of the myocardium. Until now, TWA has been calculated manually or with poor algorithms, thus making its use not efficient in a clinical environment. We introduce a new wavelet-based algorithm for the delineation QRS complexes...

  18. A wavelet-based evaluation of time-varying long memory of equity markets: A paradigm in crisis

    Science.gov (United States)

    Tan, Pei P.; Chin, Cheong W.; Galagedera, Don U. A.

    2014-09-01

    This study, using wavelet-based method investigates the dynamics of long memory in the returns and volatility of equity markets. In the sample of five developed and five emerging markets we find that the daily return series from January 1988 to June 2013 may be considered as a mix of weak long memory and mean-reverting processes. In the case of volatility in the returns, there is evidence of long memory, which is stronger in emerging markets than in developed markets. We find that although the long memory parameter may vary during crisis periods (1997 Asian financial crisis, 2001 US recession and 2008 subprime crisis) the direction of change may not be consistent across all equity markets. The degree of return predictability is likely to diminish during crisis periods. Robustness of the results is checked with de-trended fluctuation analysis approach.

  19. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms

    Science.gov (United States)

    Schaffrin, Burkhard; Felus, Yaron A.

    2008-06-01

    The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model ( Y- E Y = ( X- E X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler-Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335-342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.

  20. A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction.

    Science.gov (United States)

    Haider, Saad; Rahman, Raziur; Ghosh, Souparno; Pal, Ranadip

    2015-01-01

    Modeling sensitivity to drugs based on genetic characterizations is a significant challenge in the area of systems medicine. Ensemble based approaches such as Random Forests have been shown to perform well in both individual sensitivity prediction studies and team science based prediction challenges. However, Random Forests generate a deterministic predictive model for each drug based on the genetic characterization of the cell lines and ignores the relationship between different drug sensitivities during model generation. This application motivates the need for generation of multivariate ensemble learning techniques that can increase prediction accuracy and improve variable importance ranking by incorporating the relationships between different output responses. In this article, we propose a novel cost criterion that captures the dissimilarity in the output response structure between the training data and node samples as the difference in the two empirical copulas. We illustrate that copulas are suitable for capturing the multivariate structure of output responses independent of the marginal distributions and the copula based multivariate random forest framework can provide higher accuracy prediction and improved variable selection. The proposed framework has been validated on genomics of drug sensitivity for cancer and cancer cell line encyclopedia database.

  1. Approach to determine measurement uncertainty in complex nanosystems with multiparametric dependencies and multivariate output quantities

    Science.gov (United States)

    Hampel, B.; Liu, B.; Nording, F.; Ostermann, J.; Struszewski, P.; Langfahl-Klabes, J.; Bieler, M.; Bosse, H.; Güttler, B.; Lemmens, P.; Schilling, M.; Tutsch, R.

    2018-03-01

    In many cases, the determination of the measurement uncertainty of complex nanosystems provides unexpected challenges. This is in particular true for complex systems with many degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate output quantities. The aim of this paper is to address specific questions arising during the uncertainty calculation of such systems. This includes the division of the measurement system into subsystems and the distinction between systematic and statistical influences. We demonstrate that, even if the physical systems under investigation are very different, the corresponding uncertainty calculation can always be realized in a similar manner. This is exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast electro-optical sampling of complex time-domain signals. For these examples the approach for uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) is explained, in which correlations between multivariate output quantities are captured. To illustate the versatility of the proposed approach, its application to other experiments, namely nanometrological instruments for terahertz microscopy, dimensional scanning probe microscopy, and measurement of concentration of molecules using surface enhanced Raman scattering, is shortly discussed in the appendix. We believe that the proposed approach provides a simple but comprehensive orientation for uncertainty calculation in the discussed measurement scenarios and can also be applied to similar or related situations.

  2. A proposal for a multivariate quantitative approach to infer karyological relationships among taxa

    Directory of Open Access Journals (Sweden)

    Lorenzo Peruzzi

    2014-12-01

    Full Text Available Until now, basic karyological parameters have been used in different ways by researchers to infer karyological relationships among organisms. In the present study, we propose a standardized approach to this aim, integrating six different, not redundant, parameters in a multivariate PCoA analysis. These parameters are chromosome number, basic chromosome number, total haploid chromosome length, MCA (Mean Centromeric Asymmetry, CVCL (Coefficient of Variation of Chromosome Length and CVCI (Coefficient of Variation of Centromeric Index. The method is exemplified with the application to several plant taxa, and its significance and limits are discussed in the light of current phylogenetic knowledge of these groups.

  3. Estimating petroleum products demand elasticities in Nigeria. A multivariate cointegration approach

    International Nuclear Information System (INIS)

    Iwayemi, Akin; Adenikinju, Adeola; Babatunde, M. Adetunji

    2010-01-01

    This paper formulates and estimates petroleum products demand functions in Nigeria at both aggregative and product level for the period 1977 to 2006 using multivariate cointegration approach. The estimated short and long-run price and income elasticities confirm conventional wisdom that energy consumption responds positively to changes in GDP and negatively to changes in energy price. However, the price and income elasticities of demand varied according to product type. Kerosene and gasoline have relatively high short-run income and price elasticities compared to diesel. Overall, the results show petroleum products to be price and income inelastic. (author)

  4. Estimating petroleum products demand elasticities in Nigeria. A multivariate cointegration approach

    Energy Technology Data Exchange (ETDEWEB)

    Iwayemi, Akin; Adenikinju, Adeola; Babatunde, M. Adetunji [Department of Economics, University of Ibadan, Ibadan (Nigeria)

    2010-01-15

    This paper formulates and estimates petroleum products demand functions in Nigeria at both aggregative and product level for the period 1977 to 2006 using multivariate cointegration approach. The estimated short and long-run price and income elasticities confirm conventional wisdom that energy consumption responds positively to changes in GDP and negatively to changes in energy price. However, the price and income elasticities of demand varied according to product type. Kerosene and gasoline have relatively high short-run income and price elasticities compared to diesel. Overall, the results show petroleum products to be price and income inelastic. (author)

  5. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    Science.gov (United States)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared

  6. Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach

    Directory of Open Access Journals (Sweden)

    Sanzidur Rahman

    2016-04-01

    Full Text Available The present study jointly determines the factors influencing decisions to diversify into multiple food crops (i.e., rice, yam and cassava vis-à-vis profitability of 400 farmers from Ebonyi and Anambra states of Southeastern Nigeria using a multivariate Tobit model. Model diagnostic reveals that the decisions to diversify into multiple crops and profits generated therefrom are significantly correlated, thereby justifying use of a multivariate approach. Results reveal that 68% of the farmers grew at least two food crops and profitability is highest for only rice producers followed by joint rice and yam producers, which are mainly for sale. Farm size is the most dominant determinant of crop diversity vis-à-vis profitability. A rise in the relative price of plowing significantly reduces profitability of yam and rice. High yield is the main motive for growing yam and cassava whereas ready market is for rice. Other determinants with varying level of influences are proximity to market and/or extension office, extension contact, training, agricultural credit, subsistence pressure and location. Policy recommendations include investments in market infrastructure and credit services, land and/or tenurial reform and input price stabilization to promote food crop diversity vis-à-vis profitability in Southeastern Nigeria.

  7. A Multivariate Approach to Dilepton Analyses in the Upgraded ALICE Detector at CERN-LHC

    CERN Document Server

    AUTHOR|(CDS)2242451; Weber, Michael

    ALICE, the dedicated heavy-ion experiment at CERN-LHC, will undergo a major upgrade in 2019/20. This work aims to assess the feasibility of conventional and multivariate analysis techniques for low-mass dielectron measurements in Pb-Pb collisions in a scenario involving the upgraded ALICE detector with a low magnetic field ($B=0.2~\\text{T}$). These electron-positron pairs are promising probes for the hot and dense medium, which is created in collisions of ultra-relativistic heavy nuclei, as they traverse the medium without significant final-state modifications. Due to their small signal-to-background ratio, high-purity dielectron samples are required. They can be provided by conventional analysis methods, which are based on sequential cuts, however at the price of low signal efficiency. This work shows that existing methods can be improved by employing multivariate approaches to reject different background sources of the dielectron invariant mass spectrum. The major background components are dielectrons from ...

  8. Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach

    Directory of Open Access Journals (Sweden)

    Kin Keung Lai

    2012-04-01

    Full Text Available In the increasingly globalized economy these days, the major crude oil markets worldwide are seeing higher level of integration, which results in higher level of dependency and transmission of risks among different markets. Thus the risk of the typical multi-asset crude oil portfolio is influenced by dynamic correlation among different assets, which has both normal and transient behaviors. This paper proposes a novel multivariate wavelet denoising based approach for estimating Portfolio Value at Risk (PVaR. The multivariate wavelet analysis is introduced to analyze the multi-scale behaviors of the correlation among different markets and the portfolio volatility behavior in the higher dimensional time scale domain. The heterogeneous data and noise behavior are addressed in the proposed multi-scale denoising based PVaR estimation algorithm, which also incorporatesthe mainstream time series to address other well known data features such as autocorrelation and volatility clustering. Empirical studies suggest that the proposed algorithm outperforms the benchmark ExponentialWeighted Moving Average (EWMA and DCC-GARCH model, in terms of conventional performance evaluation criteria for the model reliability.

  9. On exploiting wavelet bases in statistical region-based segmentation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Forchhammer, Søren

    2002-01-01

    Statistical region-based segmentation methods such as the Active Appearance Models establish dense correspondences by modelling variation of shape and pixel intensities in low-resolution 2D images. Unfortunately, for high-resolution 2D and 3D images, this approach is rendered infeasible due to ex...... 9-7 wavelet on cardiac MRIs and human faces show that the segmentation accuracy is minimally degraded at compression ratios of 1:10 and 1:20, respectively....

  10. Fusion of Thresholding Rules During Wavelet-Based Noisy Image Compression

    Directory of Open Access Journals (Sweden)

    Bekhtin Yury

    2016-01-01

    Full Text Available The new method for combining semisoft thresholding rules during wavelet-based data compression of images with multiplicative noise is suggested. The method chooses the best thresholding rule and the threshold value using the proposed criteria which provide the best nonlinear approximations and take into consideration errors of quantization. The results of computer modeling have shown that the suggested method provides relatively good image quality after restoration in the sense of some criteria such as PSNR, SSIM, etc.

  11. Wavelet based Image Registration Technique for Matching Dental x-rays

    OpenAIRE

    P. Ramprasad; H. C. Nagaraj; M. K. Parasuram

    2008-01-01

    Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two l...

  12. A Novel Error Resilient Scheme for Wavelet-based Image Coding Over Packet Networks

    OpenAIRE

    WenZhu Sun; HongYu Wang; DaXing Qian

    2012-01-01

    this paper presents a robust transmission strategy for wavelet based scalable bit stream over packet erasure channel. By taking the advantage of the bit plane coding and the multiple description coding, the proposed strategy adopts layered multiple description coding (LMDC) for the embedded wavelet coders to improve the error resistant capability of the important bit planes in the meaning of D(R) function. Then, the post-compression rate-distortion (PCRD) optimization process is used to impro...

  13. Wavelet-based partial volume effect correction for simultaneous MR/PET of the carotid arteries

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Jason; Eldib, Mootaz [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, NY (United States); Department of Biomedical Engineering, The City College of New York, NY, NY (United States); Robson, Philip M; Fayad, Zahi A [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, NY (United States)

    2014-07-29

    Simultaneous MR/PET scanners allow for the exploration and development of novel PVE correction techniques without the challenges of coregistration of MR and PET. The development of a wavelet-based PVE correction method, to improve PET quantification, has proven successful in brain PET.{sup 2} We report here the first attempt to apply these methods to simultaneous MR/PET imaging of the carotid arteries.

  14. Model-free stochastic processes studied with q-wavelet-based informational tools

    International Nuclear Information System (INIS)

    Perez, D.G.; Zunino, L.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2007-01-01

    We undertake a model-free investigation of stochastic processes employing q-wavelet based quantifiers, that constitute a generalization of their Shannon counterparts. It is shown that (i) interesting physical information becomes accessible in such a way (ii) for special q values the quantifiers are more sensitive than the Shannon ones and (iii) there exist an implicit relationship between the Hurst parameter H and q within this wavelet framework

  15. Performance Analysis of Wavelet Based MC-CDMA System with Implementation of Various Antenna Diversity Schemes

    OpenAIRE

    Islam, Md. Matiqul; Kabir, M. Hasnat; Ullah, Sk. Enayet

    2012-01-01

    The impact of using wavelet based technique on the performance of a MC-CDMA wireless communication system has been investigated. The system under proposed study incorporates Walsh Hadamard codes to discriminate the message signal for individual user. A computer program written in Mathlab source code is developed and this simulation study is made with implementation of various antenna diversity schemes and fading (Rayleigh and Rician) channel. Computer simulation results demonstrate that the p...

  16. Wavelet-based partial volume effect correction for simultaneous MR/PET of the carotid arteries

    International Nuclear Information System (INIS)

    Bini, Jason; Eldib, Mootaz; Robson, Philip M; Fayad, Zahi A

    2014-01-01

    Simultaneous MR/PET scanners allow for the exploration and development of novel PVE correction techniques without the challenges of coregistration of MR and PET. The development of a wavelet-based PVE correction method, to improve PET quantification, has proven successful in brain PET. 2 We report here the first attempt to apply these methods to simultaneous MR/PET imaging of the carotid arteries.

  17. Multivariate Location Estimation Using Extension of $R$-Estimates Through $U$-Statistics Type Approach

    OpenAIRE

    Chaudhuri, Probal

    1992-01-01

    We consider a class of $U$-statistics type estimates for multivariate location. The estimates extend some $R$-estimates to multivariate data. In particular, the class of estimates includes the multivariate median considered by Gini and Galvani (1929) and Haldane (1948) and a multivariate extension of the well-known Hodges-Lehmann (1963) estimate. We explore large sample behavior of these estimates by deriving a Bahadur type representation for them. In the process of developing these asymptoti...

  18. A trust region approach with multivariate Padé model for optimal circuit design

    Science.gov (United States)

    Abdel-Malek, Hany L.; Ebid, Shaimaa E. K.; Mohamed, Ahmed S. A.

    2017-11-01

    Since the optimization process requires a significant number of consecutive function evaluations, it is recommended to replace the function by an easily evaluated approximation model during the optimization process. The model suggested in this article is based on a multivariate Padé approximation. This model is constructed using data points of ?, where ? is the number of parameters. The model is updated over a sequence of trust regions. This model avoids the slow convergence of linear models of ? and has features of quadratic models that need interpolation data points of ?. The proposed approach is tested by applying it to several benchmark problems. Yield optimization using such a direct method is applied to some practical circuit examples. Minimax solution leads to a suitable initial point to carry out the yield optimization process. The yield is optimized by the proposed derivative-free method for active and passive filter examples.

  19. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach

    Science.gov (United States)

    Gu, Huaying; Liu, Zhixue; Weng, Yingliang

    2017-04-01

    The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.

  20. Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach.

    Science.gov (United States)

    Boente, C; Matanzas, N; García-González, N; Rodríguez-Valdés, E; Gallego, J R

    2017-09-01

    The urban and peri-urban soils used for agriculture could be contaminated by atmospheric deposition or industrial releases, thus raising concerns about the potential risk to public health. Here we propose a method to evaluate potential soil pollution based on multivariate statistics, geostatistics (kriging), a novel soil pollution index, and bioavailability assessments. This approach was tested in two districts of a highly populated and industrialized city (Gijón, Spain). The soils showed anomalous content of several trace elements, such as As and Pb (up to 80 and 585 mg kg -1 respectively). In addition, factor analyses associated these elements with anthropogenic activity, whereas other elements were attributed to natural sources. Subsequent clustering also facilitated the differentiation between the northern area studied (only limited Pb pollution found) and the southern area (pattern of coal combustion, including simultaneous anomalies of trace elements and benzo(a)pyrene). A normalized soil pollution index (SPI) was calculated by kriging, using only the elements falling above threshold levels; therefore point-source polluted zones in the northern area and diffuse contamination in the south were identified. In addition, in the six mapping units with the highest SPIs of the fifty studied, we observed low bioavailability for most of the elements that surpassed the threshold levels. However, some anomalies of Pb contents and the pollution fingerprint in the central area of the southern grid call for further site-specific studies. On the whole, the combination of a multivariate (geo) statistic approach and a bioavailability assessment allowed us to efficiently identify sources of contamination and potential risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Inference of reactive transport model parameters using a Bayesian multivariate approach

    Science.gov (United States)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  2. Image superresolution of cytology images using wavelet based patch search

    Science.gov (United States)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  3. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    Science.gov (United States)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  4. Bias correction in the hierarchical likelihood approach to the analysis of multivariate survival data.

    Science.gov (United States)

    Jeon, Jihyoun; Hsu, Li; Gorfine, Malka

    2012-07-01

    Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.

  5. A Bayesian approach to estimating variance components within a multivariate generalizability theory framework.

    Science.gov (United States)

    Jiang, Zhehan; Skorupski, William

    2017-12-12

    In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.

  6. Understanding the whole city as landscape. A multivariate approach to urban landscape morphology

    Directory of Open Access Journals (Sweden)

    Richard Stiles

    2014-05-01

    Full Text Available The European Landscape Convention implies a requirement for signatory states to identify their urban landscapes which goes beyond the traditional focus on individual parks and green spaces and the links between them. Landscape ecological approaches can provide a useful model for identifying urban landscape types across a whole territory, but the variables relevant for urban landscapes are very different to those usually addressing rural areas. This paper presents an approach to classifying the urban landscape of Vienna that was developed in a research project funded by the Austrian Ministry for Transport, Innovation and Technology: ‘Urban Fabric and Microclimate Response’. Nine landscape types and a number of sub-types were defined, using a multivariate statistical approach which takes account of both morphological and urban climate related variables. Although the variables were selected to objectively reflect the factors that could best represent the urban climatic characteristics of the urban landscape, the results also provided a widely plausible representation of the structure of the city’s landscapes. Selected examples of the landscape types that were defined in this way were used both to simulate current microclimatic conditions and also to model the effects of possible climatic amelioration measures. Finally the paper looks forward to developing a more general-purpose urban landscape typology that allows investigating a much broader complex of urban landscape functions.

  7. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    Science.gov (United States)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

  8. Wavelet based mobile video watermarking: spread spectrum vs. informed embedding

    Science.gov (United States)

    Mitrea, M.; Prêteux, F.; Duţă, S.; Petrescu, M.

    2005-11-01

    The cell phone expansion provides an additional direction for digital video content distribution: music clips, news, sport events are more and more transmitted toward mobile users. Consequently, from the watermarking point of view, a new challenge should be taken: very low bitrate contents (e.g. as low as 64 kbit/s) are now to be protected. Within this framework, the paper approaches for the first time the mathematical models for two random processes, namely the original video to be protected and a very harmful attack any watermarking method should face the StirMark attack. By applying an advanced statistical investigation (combining the Chi square, Ro, Fisher and Student tests) in the discrete wavelet domain, it is established that the popular Gaussian assumption can be very restrictively used when describing the former process and has nothing to do with the latter. As these results can a priori determine the performances of several watermarking methods, both of spread spectrum and informed embedding types, they should be considered in the design stage.

  9. A Multivariate Quality Loss Function Approach for Optimization of Spinning Processes

    Science.gov (United States)

    Chakraborty, Shankar; Mitra, Ankan

    2018-05-01

    Recent advancements in textile industry have given rise to several spinning techniques, such as ring spinning, rotor spinning etc., which can be used to produce a wide variety of textile apparels so as to fulfil the end requirements of the customers. To achieve the best out of these processes, they should be utilized at their optimal parametric settings. However, in presence of multiple yarn characteristics which are often conflicting in nature, it becomes a challenging task for the spinning industry personnel to identify the best parametric mix which would simultaneously optimize all the responses. Hence, in this paper, the applicability of a new systematic approach in the form of multivariate quality loss function technique is explored for optimizing multiple quality characteristics of yarns while identifying the ideal settings of two spinning processes. It is observed that this approach performs well against the other multi-objective optimization techniques, such as desirability function, distance function and mean squared error methods. With slight modifications in the upper and lower specification limits of the considered quality characteristics, and constraints of the non-linear optimization problem, it can be successfully applied to other processes in textile industry to determine their optimal parametric settings.

  10. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-01-01

    Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.

  11. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    Science.gov (United States)

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  12. A multiresolution approach for the convergence acceleration of multivariate curve resolution methods.

    Science.gov (United States)

    Sawall, Mathias; Kubis, Christoph; Börner, Armin; Selent, Detlef; Neymeyr, Klaus

    2015-09-03

    Modern computerized spectroscopic instrumentation can result in high volumes of spectroscopic data. Such accurate measurements rise special computational challenges for multivariate curve resolution techniques since pure component factorizations are often solved via constrained minimization problems. The computational costs for these calculations rapidly grow with an increased time or frequency resolution of the spectral measurements. The key idea of this paper is to define for the given high-dimensional spectroscopic data a sequence of coarsened subproblems with reduced resolutions. The multiresolution algorithm first computes a pure component factorization for the coarsest problem with the lowest resolution. Then the factorization results are used as initial values for the next problem with a higher resolution. Good initial values result in a fast solution on the next refined level. This procedure is repeated and finally a factorization is determined for the highest level of resolution. The described multiresolution approach allows a considerable convergence acceleration. The computational procedure is analyzed and is tested for experimental spectroscopic data from the rhodium-catalyzed hydroformylation together with various soft and hard models. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach

    International Nuclear Information System (INIS)

    Ghosh, Sajal

    2010-01-01

    The study probes cointegration and causality between carbon emissions and economic growth for India using ARDL bounds testing approach complemented by Johansen-Juselius maximum likelihood procedure in a multivariate framework by incorporating energy supply, investment and employment for time span 1971-2006. The study fails to establish long-run equilibrium relationship and long term causality between carbon emissions and economic growth; however, there exists a bi-directional short-run causality between the two. Hence, in the short-run, any effort to reduce carbon emissions could lead to a fall in the national income. This study also establishes unidirectional short-run causality running from economic growth to energy supply and energy supply to carbon emissions. The absence of causality running from energy supply to economic growth implies that in India, energy conservation and energy efficiency measures can be implemented to minimize the wastage of energy across value chain. Such measures would narrow energy demand-supply gap. Absence of long-run causality between carbon emissions and economic growth implies that in the long-run, focus should be given on harnessing energy from clean sources to curb carbon emissions, which would not affect the country's economic growth.

  14. WAVELET-BASED ALGORITHM FOR DETECTION OF BEARING FAULTS IN A GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    Sergiy Enchev

    2014-07-01

    Full Text Available Presented is a gas turbine engine bearing diagnostic system that integrates information from various advanced vibration analysis techniques to achieve robust bearing health state awareness. This paper presents a computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based transform. The continuous wavelet transform with  the complex Morlet wavelet is adopted to detect the harmonics presented in a power signal. The algorithm based on the discrete stationary wavelet transform is adopted to denoise the wavelet ridges.

  15. Evaluating the Performance of Wavelet-based Data-driven Models for Multistep-ahead Flood Forecasting in an Urbanized Watershed

    Science.gov (United States)

    Kasaee Roodsari, B.; Chandler, D. G.

    2015-12-01

    A real-time flood forecast system is presented to provide emergency management authorities sufficient lead time to execute plans for evacuation and asset protection in urban watersheds. This study investigates the performance of two hybrid models for real-time flood forecasting at different subcatchments of Ley Creek watershed, a heavily urbanized watershed in the vicinity of Syracuse, New York. Hybrid models include Wavelet-Based Artificial Neural Network (WANN) and Wavelet-Based Adaptive Neuro-Fuzzy Inference System (WANFIS). Both models are developed on the basis of real time stream network sensing. The wavelet approach is applied to decompose the collected water depth timeseries to Approximation and Detail components. The Approximation component is then used as an input to ANN and ANFIS models to forecast water level at lead times of 1 to 10 hours. The performance of WANN and WANFIS models are compared to ANN and ANFIS models for different lead times. Initial results demonstrated greater predictive power of hybrid models.

  16. Interdependence of environmental parameters and sand dwelling benthic species abundance: a multivariate approach

    Digital Repository Service at National Institute of Oceanography (India)

    Harkantra, S.N.; Parulekar, A.H.

    Multivariate analysis showed dependence of distribution and abundance of sand dwelling fauna on more than one ecologically significant environmental parameters rather than one ecological master factor. Salinity, grain size, beach gradient, dissolved...

  17. A public perspective on the adoption of microgeneration technologies in New Zealand: A multivariate probit approach

    International Nuclear Information System (INIS)

    Baskaran, Ramesh; Managi, Shunsuke; Bendig, Mirko

    2013-01-01

    The growing demand for electricity in New Zealand has led to the construction of new hydro-dams or power stations that have had environmental, social and cultural effects. These effects may drive increases in electricity prices, as such prices reflect the cost of running existing power stations as well as building new ones. This study uses Canterbury and Central Otago as case studies because both regions face similar issues in building new hydro-dams and ever-increasing electricity prices that will eventually prompt households to buy power at higher prices. One way for households to respond to these price changes is to generate their own electricity through microgeneration technologies (MGT). The objective of this study is to investigate public perception and preferences regarding MGT and to analyze the factors that influence people’s decision to adopt such new technologies in New Zealand. The study uses a multivariate probit approach to examine households’ willingness to adopt any one MGT system or a combination of the MGT systems. Our findings provide valuable information for policy makers and marketers who wish to promote effective microgeneration technologies. - Highlights: ► We examine New Zealand households’ awareness level for microgeneration technologies (MGT) and empirically explore the factors that determine people’s willingness to adopt for MGT. ► The households are interested and willing to adopt the MGT systems. ► Noticeable heterogeneity exists between groups of households in adopting the MGT. ► No significant regional difference exists in promoting solar hot water policies. ► Public and private sectors incentives are important in promoting the MGT

  18. Canopy structure and topography effects on snow distribution at a catchment scale: Application of multivariate approaches

    Directory of Open Access Journals (Sweden)

    Jenicek Michal

    2018-03-01

    Full Text Available The knowledge of snowpack distribution at a catchment scale is important to predict the snowmelt runoff. The objective of this study is to select and quantify the most important factors governing the snowpack distribution, with special interest in the role of different canopy structure. We applied a simple distributed sampling design with measurement of snow depth and snow water equivalent (SWE at a catchment scale. We selected eleven predictors related to character of specific localities (such as elevation, slope orientation and leaf area index and to winter meteorological conditions (such as irradiance, sum of positive air temperature and sum of new snow depth. The forest canopy structure was described using parameters calculated from hemispherical photographs. A degree-day approach was used to calculate melt factors. Principal component analysis, cluster analysis and Spearman rank correlation were applied to reduce the number of predictors and to analyze measured data. The SWE in forest sites was by 40% lower than in open areas, but this value depended on the canopy structure. The snow ablation in large openings was on average almost two times faster compared to forest sites. The snow ablation in the forest was by 18% faster after forest defoliation (due to the bark beetle. The results from multivariate analyses showed that the leaf area index was a better predictor to explain the SWE distribution during accumulation period, while irradiance was better predictor during snowmelt period. Despite some uncertainty, parameters derived from hemispherical photographs may replace measured incoming solar radiation if this meteorological variable is not available.

  19. Fabrication of lipidic nanocarriers of loratadine for facilitated intestinal permeation using multivariate design approach.

    Science.gov (United States)

    Verma, Samridhi; Singh, Sandeep Kumar; Verma, Priya Ranjan Prasad

    2016-01-01

    In this investigation, multivariate design approach was employed to develop self-nanoemulsifying drug delivery system (SNEDDS) of loratadine and to exploit its potential for intestinal permeability. Drug solubility was determined in various vehicles and existence of self-nanoemulsifying region was evaluated by phase diagram studies. The influence of formulation variables X1 (Capmul MCM C8) and X2 (Solutol HS15) on SNEDDS was assessed for mean globule sizes in different media (Y1-Y3), emulsification time (Y4) and drug-release parameters (Y5-Y6), to improve quality attributes of SNEDDS. Significant models were generated, statistically analyzed by analysis of variance and validated using the residual and leverage plots. The interaction, contour and response plots explicitly demonstrated the influence of one factor on the other and displayed trend of factor-effect on responses. The pH-independent optimized formulation was obtained with appreciable global desirability (0.9266). The strenuous act of determining emulsification time is innovatively replaced by the use of oil-soluble dye to produce visibly distinct globules that otherwise may be deceiving. TEM images displayed non-aggregated state of spherical globules (size < 25 nm) and also revealed the structural transitions occurring during emulsification. Optimized formulation exhibited non-Newtonian flow justified by the model-fit and also presented the stability to dilution effects and thermodynamic stress testing. The ex vivo permeation study using confocal laser scanning microscopy indicate strong potential of rhodamine 123-loaded loratadine-SNEDDS to inhibit P-gp efflux and facilitate intestinal permeation. To conclude, the effectiveness of design yields a stable optimized SNEDDS with enhanced permeation potential, which is expected to improve oral bioavailability of loratadine.

  20. Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-06-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding of tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the centre and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted six-layer densities from 0 to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 to 110 km depth can also be observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  1. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.

    Science.gov (United States)

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-06-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.

  2. Multilayer Densities Using a Wavelet-based Gravity Method and Their Tectonic Implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-03-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the center and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted 6-layer densities from 0 km to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 km to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 km to 110 km depth can be also observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  3. Traffic characterization and modeling of wavelet-based VBR encoded video

    Energy Technology Data Exchange (ETDEWEB)

    Yu Kuo; Jabbari, B. [George Mason Univ., Fairfax, VA (United States); Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    Wavelet-based video codecs provide a hierarchical structure for the encoded data, which can cater to a wide variety of applications such as multimedia systems. The characteristics of such an encoder and its output, however, have not been well examined. In this paper, the authors investigate the output characteristics of a wavelet-based video codec and develop a composite model to capture the traffic behavior of its output video data. Wavelet decomposition transforms the input video in a hierarchical structure with a number of subimages at different resolutions and scales. the top-level wavelet in this structure contains most of the signal energy. They first describe the characteristics of traffic generated by each subimage and the effect of dropping various subimages at the encoder on the signal-to-noise ratio at the receiver. They then develop an N-state Markov model to describe the traffic behavior of the top wavelet. The behavior of the remaining wavelets are then obtained through estimation, based on the correlations between these subimages at the same level of resolution and those wavelets located at an immediate higher level. In this paper, a three-state Markov model is developed. The resulting traffic behavior described by various statistical properties, such as moments and correlations, etc., is then utilized to validate their model.

  4. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Directory of Open Access Journals (Sweden)

    Suyi Li

    2017-01-01

    Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  5. Evaluation of Effectiveness of Wavelet Based Denoising Schemes Using ANN and SVM for Bearing Condition Classification

    Directory of Open Access Journals (Sweden)

    Vijay G. S.

    2012-01-01

    Full Text Available The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR and reducing the root-mean-square error (RMSE. In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN and the Support Vector Machine (SVM, for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher’s Criterion (FC. Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

  6. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-01-01

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting

  7. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    Science.gov (United States)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  8. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    Science.gov (United States)

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  9. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Science.gov (United States)

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  10. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study

    Directory of Open Access Journals (Sweden)

    Tania Dehesh

    2015-01-01

    Full Text Available Background. Univariate meta-analysis (UM procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS method as a multivariate meta-analysis approach. Methods. We evaluated the efficiency of four new approaches including zero correlation (ZC, common correlation (CC, estimated correlation (EC, and multivariate multilevel correlation (MMC on the estimation bias, mean square error (MSE, and 95% probability coverage of the confidence interval (CI in the synthesis of Cox proportional hazard models coefficients in a simulation study. Result. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. Conclusion. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  11. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    Science.gov (United States)

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  12. Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure.

    Science.gov (United States)

    D'Amico, E J; Neilands, T B; Zambarano, R

    2001-11-01

    Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.

  13. A K-means multivariate approach for clustering independent components from magnetoencephalographic data.

    Science.gov (United States)

    Spadone, Sara; de Pasquale, Francesco; Mantini, Dante; Della Penna, Stefania

    2012-09-01

    Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for interpreting and assigning a statistical significance at the group level. Here a novel strategy for analyzing MEG independent components (ICs) is presented, Multivariate Algorithm for Grouping MEG Independent Components K-means based (MAGMICK). The proposed approach is able to capture spatio-temporal dynamics of brain activity in MEG studies by running ICA at subject level and then clustering the ICs across sessions and subjects. Distinctive features of MAGMICK are: i) the implementation of an efficient set of "MEG fingerprints" designed to summarize properties of MEG ICs as they are built on spatial, temporal and spectral parameters; ii) the implementation of a modified version of the standard K-means procedure to improve its data-driven character. This algorithm groups the obtained ICs automatically estimating the number of clusters through an adaptive weighting of the parameters and a constraint on the ICs independence, i.e. components coming from the same session (at subject level) or subject (at group level) cannot be grouped together. The performances of MAGMICK are illustrated by analyzing two sets of MEG data obtained during a finger tapping task and median nerve stimulation. The results demonstrate that the method can extract consistent patterns of spatial topography and spectral properties across sessions and subjects that are in good agreement with the literature. In addition, these results are compared to those from a modified version of affinity propagation clustering method. The comparison, evaluated in terms of different clustering validity indices, shows that our methodology often outperforms the clustering algorithm. Eventually, these results are

  14. The mass transfer approach to multivariate discrete first order stochastic dominance

    DEFF Research Database (Denmark)

    Østerdal, Lars Peter Raahave

    2010-01-01

    A fundamental result in the theory of stochastic dominance tells that first order dominance between two finite multivariate distributions is equivalent to the property that the one can be obtained from the other by shifting probability mass from one outcome to another that is worse a finite numbe...

  15. Multivariate Analysis Approach to the Serum Peptide Profile of Morbidly Obese Patients

    Directory of Open Access Journals (Sweden)

    M. Agostini

    2013-01-01

    Full Text Available Background: Obesity is currently epidemic in many countries worldwide and is strongly related to diabetes and cardiovascular disease. Mass spectrometry, in particular matrix-assisted laser desorption/ionization time of flight (MALDI-TOF is currently used for detecting different pattern of expressed protein. This study investigated the differences in low molecular weight (LMW peptide profiles between obese and normal-weight subjects in combination with multivariate statistical analysis.

  16. A Hierarchical Multivariate Bayesian Approach to Ensemble Model output Statistics in Atmospheric Prediction

    Science.gov (United States)

    2017-09-01

    application of statistical inference. Even when human forecasters leverage their professional experience, which is often gained through long periods of... application throughout statistics and Bayesian data analysis. The multivariate form of 2( , )  (e.g., Figure 12) is similarly analytically...data (i.e., no systematic manipulations with analytical functions), it is common in the statistical literature to apply mathematical transformations

  17. Quality Variation Control for Three-Dimensional Wavelet-Based Video Coders

    Directory of Open Access Journals (Sweden)

    Vidhya Seran

    2007-02-01

    Full Text Available The fluctuation of quality in time is a problem that exists in motion-compensated-temporal-filtering (MCTF- based video coding. The goal of this paper is to design a solution for overcoming the distortion fluctuation challenges faced by wavelet-based video coders. We propose a new technique for determining the number of bits to be allocated to each temporal subband in order to minimize the fluctuation in the quality of the reconstructed video. Also, the wavelet filter properties are explored to design suitable scaling coefficients with the objective of smoothening the temporal PSNR. The biorthogonal 5/3 wavelet filter is considered in this paper and experimental results are presented for 2D+t and t+2D MCTF wavelet coders.

  18. Quality Variation Control for Three-Dimensional Wavelet-Based Video Coders

    Directory of Open Access Journals (Sweden)

    Seran Vidhya

    2007-01-01

    Full Text Available The fluctuation of quality in time is a problem that exists in motion-compensated-temporal-filtering (MCTF- based video coding. The goal of this paper is to design a solution for overcoming the distortion fluctuation challenges faced by wavelet-based video coders. We propose a new technique for determining the number of bits to be allocated to each temporal subband in order to minimize the fluctuation in the quality of the reconstructed video. Also, the wavelet filter properties are explored to design suitable scaling coefficients with the objective of smoothening the temporal PSNR. The biorthogonal 5/3 wavelet filter is considered in this paper and experimental results are presented for 2D+t and t+2D MCTF wavelet coders.

  19. Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Syed Zulqadar Hassan

    2017-03-01

    Full Text Available An intelligent control of photovoltaics is necessary to ensure fast response and high efficiency under different weather conditions. This is often arduous to accomplish using traditional linear controllers, as photovoltaic systems are nonlinear and contain several uncertainties. Based on the analysis of the existing literature of Maximum Power Point Tracking (MPPT techniques, a high performance neuro-fuzzy indirect wavelet-based adaptive MPPT control is developed in this work. The proposed controller combines the reasoning capability of fuzzy logic, the learning capability of neural networks and the localization properties of wavelets. In the proposed system, the Hermite Wavelet-embedded Neural Fuzzy (HWNF-based gradient estimator is adopted to estimate the gradient term and makes the controller indirect. The performance of the proposed controller is compared with different conventional and intelligent MPPT control techniques. MATLAB results show the superiority over other existing techniques in terms of fast response, power quality and efficiency.

  20. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    Thomas André

    2007-03-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  1. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    Science.gov (United States)

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    André Thomas

    2007-01-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  3. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  4. Wavelet-Based Poisson Solver for Use in Particle-in-Cell Simulations

    CERN Document Server

    Terzic, Balsa; Mihalcea, Daniel; Pogorelov, Ilya V

    2005-01-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in 3D particle-in-cell simulations. One new aspect of our algorithm is its ability to treat the general (inhomogeneous) Dirichlet boundary conditions. The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modelling of the Fermilab/NICADD and AES/JLab photoinjectors.

  5. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum

    Directory of Open Access Journals (Sweden)

    Pan Liu

    2017-05-01

    Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  6. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  7. Wavelet-based Poisson Solver for use in Particle-In-Cell Simulations

    International Nuclear Information System (INIS)

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-01-01

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors

  8. SpotCaliper: fast wavelet-based spot detection with accurate size estimation.

    Science.gov (United States)

    Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael

    2016-04-15

    SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Wavelet-based linear-response time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.

    2012-01-01

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  10. A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process

    Directory of Open Access Journals (Sweden)

    Yuehjen E. Shao

    2012-01-01

    Full Text Available The monitoring of a multivariate process with the use of multivariate statistical process control (MSPC charts has received considerable attention. However, in practice, the use of MSPC chart typically encounters a difficulty. This difficult involves which quality variable or which set of the quality variables is responsible for the generation of the signal. This study proposes a hybrid scheme which is composed of independent component analysis (ICA and support vector machine (SVM to determine the fault quality variables when a step-change disturbance existed in a multivariate process. The proposed hybrid ICA-SVM scheme initially applies ICA to the Hotelling T2 MSPC chart to generate independent components (ICs. The hidden information of the fault quality variables can be identified in these ICs. The ICs are then served as the input variables of the classifier SVM for performing the classification process. The performance of various process designs is investigated and compared with the typical classification method. Using the proposed approach, the fault quality variables for a multivariate process can be accurately and reliably determined.

  11. Oxidative stability of frozen mackerel batches ― A multivariate data analysis approach

    DEFF Research Database (Denmark)

    Helbo Ekgreen, M.; Frosch, Stina; Baron, Caroline Pascale

    2011-01-01

    deterioration and texture changes. The aim was to investigate the correlation between the raw material history and the quality loss observed during frozen storage using relevant multivariate data analysis such as Principal Component Analysis (PCA) and Partial Least Square Analysis (PLS). Preliminary results...... showed that it was possible to differentiate between the different batches depending on their history and that some batches were more oxidised than others. Furthermore, based on the results from the data analysis, critical control points in the entire production chain will be identified and strategies...

  12. Factors controlling physico-chemical characteristics in the coastal waters off Mangalore - A multivariate approach

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Mesquita, A.; Pradhan, U.K.; Verlekar, X.N.; Babu, M.T.; Vethamony, P.

    in the south; Fig.1) using the RCM – 9 MK II current meters, manufactured by Aanderaa Co., Norway. The two locations (13 m and 15 m water depths respectively) were separated by a distance of approximately 10km. Current measurements were carried out for one... and salinity were obtained from different locations using a portable SBE 19 SEACAT Profiler, manufactured by Sea-Bird Electronic, Inc., USA. Vertical profiles were continued for the period 14 -19 April 2007. 2.4. Multivariate statistical analysis a...

  13. Multivariate data analysis approach to understand magnetic properties of perovskite manganese oxides

    International Nuclear Information System (INIS)

    Imamura, N.; Mizoguchi, T.; Yamauchi, H.; Karppinen, M.

    2008-01-01

    Here we apply statistical multivariate data analysis techniques to obtain some insights into the complex structure-property relations in antiferromagnetic (AFM) and ferromagnetic (FM) manganese perovskite systems, AMnO 3 . The 131 samples included in the present analyses are described by 21 crystal-structure or crystal-chemical (CS/CC) parameters. Principal component analysis (PCA), carried out separately for the AFM and FM compounds, is used to model and evaluate the various relationships among the magnetic properties and the various CS/CC parameters. Moreover, for the AFM compounds, PLS (partial least squares projections to latent structures) analysis is performed so as to predict the magnitude of the Neel temperature on the bases of the CS/CC parameters. Finally, so-called PLS-DA (PLS discriminant analysis) method is employed to find out the most influential/characteristic CS/CC parameters that differentiate the two classes of compounds from each other. - Graphical abstract: Statistical multivariate data analysis techniques are applied to detect structure-property relations in antiferromagnetic (AFM) and ferromagnetic (FM) manganese perovskites. For AFM compounds, partial least squares projections to latent structures analysis predict the magnitude of the Neel temperature on the bases of structural parameters only. Moreover, AFM and FM compounds are well separated by means of so-called partial least squares discriminant analysis method

  14. Online Semiparametric Identification of Lithium-Ion Batteries Using the Wavelet-Based Partially Linear Battery Model

    Directory of Open Access Journals (Sweden)

    Caiping Zhang

    2013-05-01

    Full Text Available Battery model identification is very important for reliable battery management as well as for battery system design process. The common problem in identifying battery models is how to determine the most appropriate mathematical model structure and parameterized coefficients based on the measured terminal voltage and current. This paper proposes a novel semiparametric approach using the wavelet-based partially linear battery model (PLBM and a recursive penalized wavelet estimator for online battery model identification. Three main contributions are presented. First, the semiparametric PLBM is proposed to simulate the battery dynamics. Compared with conventional electrical models of a battery, the proposed PLBM is equipped with a semiparametric partially linear structure, which includes a parametric part (involving the linear equivalent circuit parameters and a nonparametric part [involving the open-circuit voltage (OCV]. Thus, even with little prior knowledge about the OCV, the PLBM can be identified using a semiparametric identification framework. Second, we model the nonparametric part of the PLBM using the truncated wavelet multiresolution analysis (MRA expansion, which leads to a parsimonious model structure that is highly desirable for model identification; using this model, the PLBM could be represented in a linear-in-parameter manner. Finally, to exploit the sparsity of the wavelet MRA representation and allow for online implementation, a penalized wavelet estimator that uses a modified online cyclic coordinate descent algorithm is proposed to identify the PLBM in a recursive fashion. The simulation and experimental results demonstrate that the proposed PLBM with the corresponding identification algorithm can accurately simulate the dynamic behavior of a lithium-ion battery in the Federal Urban Driving Schedule tests.

  15. Search for Heavy Stable Charged Particles at $\\sqrt{s}$ = 13 TeV Utilizing a Multivariate Approach

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00375809

    Heavy stable charged particles (HSCPs) have been searched for at the Large Hadron Collider since its initial data taking in 2010. The search for heavy stable charged particles provide a means of directly probing the new physics realm, as they produce a detector signature unlike any particle discovered to date. The goal of this research is to investigate an idea that was introduced in the later stages of 2010-2012 data taking period. Rather than utilizing the current tight selection on the calculated particle mass the hypothesis is that by incorporating a multivariate approach, specif- ically an artificial neural network, the remaining selection criteria could be loosened allowing for a greater signal acceptance while maintaining acceptable background rejection via the multivariate discriminator from the artificial neural network. The increase in signal acceptance and retention or increase in background rejection increases the discovery potential for HSCPs and as a secondary objective calculates improved limit...

  16. CAUSAL RELATIONSHIP BETWEEN FOSSIL FUEL CONSUMPTION AND ECONOMIC GROWTH IN JAPAN: A MULTIVARIATE APPROACH

    Directory of Open Access Journals (Sweden)

    Hazuki Ishida

    2013-01-01

    Full Text Available This paper explores whether Japanese economy can continue to grow without extensive dependence on fossil fuels. The paper conducts time series analysis using a multivariate model of fossil fuels, non-fossil energy, labor, stock and GDP to investigate the relationship between fossil fuel consumption and economic growth in Japan. The results of cointegration tests indicate long-run relationships among the variables. Using a vector error-correction model, the study reveals bidirectional causality between fossil fuels and GDP. The results also show that there is no causal relationship between non-fossil energy and GDP. The results of cointegration analysis, Granger causality tests, and variance decomposition analysis imply that non-fossil energy may not necessarily be able to play the role of fossil fuels. Japan cannot seem to realize both continuous economic growth and the departure from dependence on fossil fuels. Hence, growth-oriented macroeconomic policies should be re-examined.

  17. Behavioral event occurrence differs between behavioral states in Sotalia guianensis (Cetarctiodactyla: Delphinidae dolphins: a multivariate approach

    Directory of Open Access Journals (Sweden)

    Rodrigo H. Tardin

    2014-02-01

    Full Text Available Difficulties in quantifying behavioral events can cause loss of information about cetacean behavior, especially behaviors whose functions are still debated. The lack of knowledge is greater for South American species such as Sotalia guianensis (Van Benédén, 1864. Our objective was to contextualize the behavioral events inside behavioral states using a Permutational Multivariate Analysis of Variance (MANOVA. Three events occurred in the Feeding, Socio-Sexual and Travelling states (Porpoising, Side flop, Tail out dive, and five events occurred in the Feeding and Travelling states (Back flop, Horizontal jump, Lobtail, Spy-hop, Partial flop ahead. Three events (Belly exposure, Club, and Heading occurred exclusively in the Socio-sexual state. Partial Back flop and Head flop occurred exclusively in the Feeding state. For the events that occurred in multiple states, we observed that some events occurred more frequently in one of the states (p < 0.001, such as Lobtail, Tail out dive horizontal Jump, Partial flop ahead and Side flop. Our multivariate analysis, which separated Socio-sexual behavior from Feeding and Travelling, showed that the abundance of behavioral events differs between states. This differentiation indicates that some events are associated with specific behavioral states. Almost 40% of the events observed were exclusively performed in one state, which indicates a high specialization for some events. Proper discrimination and contextualization of behavioral events may be efficient tools to better understand dolphin behaviors. Similar studies in other habitats and with other species, will help build a broader scenario to aid our understanding of the functions of dolphin behavioral events.

  18. Estimation of age in forensic medicine using multivariate approach to image analysis

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey V.; Belyaev, Ivan; Fominykh, Sergey

    2009-01-01

    approach based on statistical analysis of grey-level co-occurrence matrix, fractal analysis, wavelet transformation and Angle Measure Technique. Projection on latent structures regression was chosen for calibration and prediction. The method has been applied to 70 male and 63 female individuals aged from...... 21 to 93 and results were compared with traditional approach. Some important questions and problems have been raised....

  19. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    Science.gov (United States)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the

  20. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  1. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    Science.gov (United States)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    -structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.

  2. BioIMAX: A Web 2.0 approach for easy exploratory and collaborative access to multivariate bioimage data

    Directory of Open Access Journals (Sweden)

    Khan Michael

    2011-07-01

    Full Text Available Abstract Background Innovations in biological and biomedical imaging produce complex high-content and multivariate image data. For decision-making and generation of hypotheses, scientists need novel information technology tools that enable them to visually explore and analyze the data and to discuss and communicate results or findings with collaborating experts from various places. Results In this paper, we present a novel Web2.0 approach, BioIMAX, for the collaborative exploration and analysis of multivariate image data by combining the webs collaboration and distribution architecture with the interface interactivity and computation power of desktop applications, recently called rich internet application. Conclusions BioIMAX allows scientists to discuss and share data or results with collaborating experts and to visualize, annotate, and explore multivariate image data within one web-based platform from any location via a standard web browser requiring only a username and a password. BioIMAX can be accessed at http://ani.cebitec.uni-bielefeld.de/BioIMAX with the username "test" and the password "test1" for testing purposes.

  3. Multivariate approaches for stability control of the olive oil reference materials for sensory analysis - part II: applications.

    Science.gov (United States)

    Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis

    2018-02-09

    The organoleptic quality of virgin olive oil depends on positive and negative sensory attributes. These attributes are related to volatile organic compounds and phenolic compounds that represent the aroma and taste (flavour) of the virgin olive oil. The flavour is the characteristic that can be measured by a taster panel. However, as for any analytical measuring device, the tasters, individually, and the panel, as a whole, should be harmonized and validated and proper olive oil standards are needed. In the present study, multivariate approaches are put into practice in addition to the rules to build a multivariate control chart from chromatographic volatile fingerprinting and chemometrics. Fingerprinting techniques provide analytical information without identify and quantify the analytes. This methodology is used to monitor the stability of sensory reference materials. The similarity indices have been calculated to build multivariate control chart with two olive oils certified reference materials that have been used as examples to monitor their stabilities. This methodology with chromatographic data could be applied in parallel with the 'panel test' sensory method to reduce the work of sensory analysis. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2013-02-01

    Full Text Available A robotic tool can enable a surgeon to conduct off-pump coronary artery graft bypass surgery on a beating heart. The robotic tool actively alleviates the relative motion between the point of interest (POI on the heart surface and the surgical tool and allows the surgeon to operate as if the heart were stationary. Since the beating heart's motion is relatively high-band, with nonlinear and nonstationary characteristics, it is difficult to follow. Thus, precise beating heart motion prediction is necessary for the tracking control procedure during the surgery. In the research presented here, we first observe that Electrocardiography (ECG signal contains the causal phase information on heart motion and non-stationary heart rate dynamic variations. Then, we investigate the relationship between ECG signal and beating heart motion using Granger Causality Analysis, which describes the feasibility of the improved prediction of heart motion. Next, we propose a nonlinear time-varying multivariate vector autoregressive (MVAR model based adaptive prediction method. In this model, the significant correlation between ECG and heart motion enables the improvement of the prediction of sharp changes in heart motion and the approximation of the motion with sufficient detail. Dual Kalman Filters (DKF estimate the states and parameters of the model, respectively. Last, we evaluate the proposed algorithm through comparative experiments using the two sets of collected vivo data.

  5. Taking a comparative approach: analysing personality as a multivariate behavioural response across species.

    Directory of Open Access Journals (Sweden)

    Alecia J Carter

    Full Text Available Animal personality, repeatable behaviour through time and across contexts, is ecologically and evolutionarily important as it can account for the exhibition of sub-optimal behaviours. Interspecific comparisons have been suggested as important for understanding the evolution of animal personality; however, these are seldom accomplished due, in part, to the lack of statistical tools for quantifying differences and similarities in behaviour between groups of individuals. We used nine species of closely-related coral reef fishes to investigate the usefulness of ecological community analyses for the analysis of between-species behavioural differences and behavioural heterogeneity. We first documented behavioural carryover across species by observing the fishes' behaviour and measuring their response to a threatening stimulus to quantify boldness. Bold fish spent more time away from the reef and fed more than shy fish. We then used ecological community analysis tools (canonical variate analysis, multi-response permutation procedure, and permutational analysis of multivariate dispersion and identified four 'clusters' of behaviourally similar fishes, and found that the species differ in the behavioural variation expressed; some species are more behaviourally heterogeneous than others. We found that ecological community analysis tools are easily and fruitfully applied to comparative studies of personality and encourage their use by future studies.

  6. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis.

    Science.gov (United States)

    da Silva, Fernando Bruno Vieira; do Nascimento, Clístenes Williams Araújo; Araújo, Paula Renata Muniz; da Silva, Luiz Henrique Vieira; da Silva, Roberto Felipe

    2016-08-01

    Brazil is the world's largest sugarcane producer and soils in the northeastern part of the country have been cultivated with the crop for over 450 years. However, so far, there has been no study on the status of heavy metal accumulation in these long-history cultivated soils. To fill the gap, we collect soil samples from 60 sugarcane fields in order to determine the contents of Cd, Cr, Cu, Ni, Pb, and Zn. We used multivariate analysis to distinguish between natural and anthropogenic sources of these metals in soils. Analytical determinations were performed in ICP-OES after microwave acid solution digestion. Mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 1.9, 18.8, 6.4, 4.9, 11.2, and 16.2 mg kg(-1), respectively. The principal component one was associated with lithogenic origin and comprised the metals Cr, Cu, Ni, and Zn. Cluster analysis confirmed that 68 % of the evaluated sites have soil heavy metal concentrations close to the natural background. The Cd concentration (principal component two) was clearly associated with anthropogenic sources with P fertilization being the most likely source of Cd to soils. On the other hand, the third component (Pb concentration) indicates a mixed origin for this metal (natural and anthropogenic); hence, Pb concentrations are probably related not only to the soil parent material but also to industrial emissions and urbanization in the vicinity of the agricultural areas.

  7. A Multivariant Stream Analysis Approach to Detect and Mitigate DDoS Attacks in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Raenu Kolandaisamy

    2018-01-01

    Full Text Available Vehicular Ad Hoc Networks (VANETs are rapidly gaining attention due to the diversity of services that they can potentially offer. However, VANET communication is vulnerable to numerous security threats such as Distributed Denial of Service (DDoS attacks. Dealing with these attacks in VANET is a challenging problem. Most of the existing DDoS detection techniques suffer from poor accuracy and high computational overhead. To cope with these problems, we present a novel Multivariant Stream Analysis (MVSA approach. The proposed MVSA approach maintains the multiple stages for detection DDoS attack in network. The Multivariant Stream Analysis gives unique result based on the Vehicle-to-Vehicle communication through Road Side Unit. The approach observes the traffic in different situations and time frames and maintains different rules for various traffic classes in various time windows. The performance of the MVSA is evaluated using an NS2 simulator. Simulation results demonstrate the effectiveness and efficiency of the MVSA regarding detection accuracy and reducing the impact on VANET communication.

  8. A multivariate approach for the study of the environmental drivers of wine production structure

    Science.gov (United States)

    Lorenzetti, Romina; Costantini, Edoardo A. C.; Malorgio, Giulio

    2015-04-01

    Vitivinicultural "terroir" is a concept referring to an area in which the collective knowledge of the interactions between environment and vitivinicultural practices develops, providing distinctive characteristics to the products. The effect of the environment components over the terroir has been already widely demonstrated. What it has not been studied yet is their possible effect on the structure of wine production. Therefore, the aim of this work was to find if environmental drivers influence the wine production structure. This kind of investigation necessarily involves a change of scale towards wide territories. We used the Italian Denomination of Origin territories, which were grouped in Macro-areas (reference scale 1:500,000) with respect of geographic proximity, environmental features, viticultural affinity and tradition. The characterization of the structure of the wine transformation industry was based on the official data reported in the wine production declarations related to the year 2008. Statistics were taken into account about general quantitative variables of wine farms, presence of associative forms, degree of vertical integration of wineries, quality orientation of wine producers, and acreage of vineyard. The environmental variables climate, soil, and vegetation vigour were selected for their direct influence on the vine growing. A second set of variables was chosen to express the effect of land morphology on viticultural management. The third one was intended to discover the possible relationships between viticultural structures and land quality, such as the indexes of sensitivity to desertification, the soil resistance to water erosion, and land vulnerability. A PCA was carried out separately for the environmental and economic data to reduce the database dimensions. The new economic and environmental synthetic descriptors were involved in three multivariate analyses: i) the correlation between economic and environmental descriptors through the

  9. Risk management and statistical multivariate analysis approach for design and optimization of satranidazole nanoparticles.

    Science.gov (United States)

    Dhat, Shalaka; Pund, Swati; Kokare, Chandrakant; Sharma, Pankaj; Shrivastava, Birendra

    2017-01-01

    Rapidly evolving technical and regulatory landscapes of the pharmaceutical product development necessitates risk management with application of multivariate analysis using Process Analytical Technology (PAT) and Quality by Design (QbD). Poorly soluble, high dose drug, Satranidazole was optimally nanoprecipitated (SAT-NP) employing principles of Formulation by Design (FbD). The potential risk factors influencing the critical quality attributes (CQA) of SAT-NP were identified using Ishikawa diagram. Plackett-Burman screening design was adopted to screen the eight critical formulation and process parameters influencing the mean particle size, zeta potential and dissolution efficiency at 30min in pH7.4 dissolution medium. Pareto charts (individual and cumulative) revealed three most critical factors influencing CQA of SAT-NP viz. aqueous stabilizer (Polyvinyl alcohol), release modifier (Eudragit® S 100) and volume of aqueous phase. The levels of these three critical formulation attributes were optimized by FbD within established design space to minimize mean particle size, poly dispersity index, and maximize encapsulation efficiency of SAT-NP. Lenth's and Bayesian analysis along with mathematical modeling of results allowed identification and quantification of critical formulation attributes significantly active on the selected CQAs. The optimized SAT-NP exhibited mean particle size; 216nm, polydispersity index; 0.250, zeta potential; -3.75mV and encapsulation efficiency; 78.3%. The product was lyophilized using mannitol to form readily redispersible powder. X-ray diffraction analysis confirmed the conversion of crystalline SAT to amorphous form. In vitro release of SAT-NP in gradually pH changing media showed 95%) in pH7.4 in next 3h, indicative of burst release after a lag time. This investigation demonstrated effective application of risk management and QbD tools in developing site-specific release SAT-NP by nanoprecipitation. Copyright © 2016 Elsevier B.V. All

  10. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach.

    Science.gov (United States)

    Granda, Víctor; Delatorre, Carolina; Cuesta, Candela; Centeno, María L; Fernández, Belén; Rodríguez, Ana; Feito, Isabel

    2014-07-01

    Seasonal drought, typical of temperate and Mediterranean environments, creates problems in establishing plantations and affects development and yield, and it has been widely studied in numerous species. Forestry fast-growing species such as Eucalyptus spp. are an important resource in such environments, selected clones being generally used for production purposes in plantations in these areas. However, use of mono-specific plantations increases risk of plant loss due to abiotic stresses, making it essential to understand differences in an individual clone's physiological responses to drought stress. In order to study clonal differences in drought responses, nine Eucalyptus globulus (Labill.) clones (C14, C46, C97, C120, C222, C371, C405, C491 and C601) were gradually subjected to severe drought stress (<14% of field capacity). A total of 31 parameters, physiological (e.g., photosynthesis, gas exchange), biochemical (e.g., chlorophyll content) and hormonal (abscisic acid [ABA] content), were analysed by classic and multivariate techniques. Relationships between parameters were established, allowing related measurements to be grouped into functional units (pigment, growth, water and ABA). Differences in these units showed that there were two distinct groups of E. globulus clones on the basis of their different strategies when faced with drought stress. The C14 group (C14, C120, C405, C491 and C601) clones behave as water savers, maintaining high water content and showing high stomatal adjustment, and reducing their aerial growth to a great extent. The C46 group (C46, C97, C222 and C371) clones behave as water spenders, reducing their water content drastically and presenting osmotic adjustment. The latter maintains the highest growth rate under the conditions tested. The method presented here can be used to identify appropriate E. globulus clones for drought environments, facilitating the selection of material for production and repopulation environments. © The

  11. A Wavelet-based Energetic Approach for the Analysis of Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Abul Hasan Siddiqi

    2012-12-01

    Full Text Available Electroencephalography (EEG is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy, as epileptic activity can create clear abnormalities on a standard EEG study. EEG signals, like many biomedical signals, are highly non-stationary by their nature. Wavelet analysis has found a prominent position in the investigation of biomedical signals for its ability to analyze such signals, in particular EEG signals. Wavelet transform is capable of separating the signal energy among different frequency bands (i.e., different scales, achieving a good compromise between temporal and frequency resolution. The present study is an attempt at better understanding of the mechanism causing the epileptic disorder and accurate prediction of the occurrence of seizures. In the present paper we identify typical patterns of energy redistribution before and during a seizure using multi-resolution wavelet analysis.

  12. A wavelet-based approach to the discovery of themes and sections in monophonic melodies

    DEFF Research Database (Denmark)

    Velarde, Gissel; Meredith, David

    We present the computational method submitted to the MIREX 2014 Discovery of Repeated Themes & Sections task, and the results on the monophonic version of the JKU Patterns Development Database. In the context of pattern discovery in monophonic music, the idea behind our method is that, with a good...

  13. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction

    Science.gov (United States)

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer

    2016-04-01

    In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.

  14. Fetal QRS detection and heart rate estimation: a wavelet-based approach

    International Nuclear Information System (INIS)

    Almeida, Rute; Rocha, Ana Paula; Gonçalves, Hernâni; Bernardes, João

    2014-01-01

    Fetal heart rate monitoring is used for pregnancy surveillance in obstetric units all over the world but in spite of recent advances in analysis methods, there are still inherent technical limitations that bound its contribution to the improvement of perinatal indicators. In this work, a previously published wavelet transform based QRS detector, validated over standard electrocardiogram (ECG) databases, is adapted to fetal QRS detection over abdominal fetal ECG. Maternal ECG waves were first located using the original detector and afterwards a version with parameters adapted for fetal physiology was applied to detect fetal QRS, excluding signal singularities associated with maternal heartbeats. Single lead (SL) based marks were combined in a single annotator with post processing rules (SLR) from which fetal RR and fetal heart rate (FHR) measures can be computed. Data from PhysioNet with reference fetal QRS locations was considered for validation, with SLR outperforming SL including ICA based detections. The error in estimated FHR using SLR was lower than 20 bpm for more than 80% of the processed files. The median error in 1 min based FHR estimation was 0.13 bpm, with a correlation between reference and estimated FHR of 0.48, which increased to 0.73 when considering only records for which estimated FHR > 110 bpm. This allows us to conclude that the proposed methodology is able to provide a clinically useful estimation of the FHR. (paper)

  15. A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver

    KAUST Repository

    Liu, Yang

    2015-10-26

    © 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT)-based surface integral equation (SIE) solvers, it reduces the computational and memory costs of transient analysis from equation and equation to equation and equation, respectively, where Nt and Ns denote the number of temporal and spatial unknowns (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). In the past, PWTD-accelerated MOT-SIE solvers have been applied to transient problems involving half million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). Recently, a scalable parallel PWTD-accelerated MOT-SIE solver that leverages a hiearchical parallelization strategy has been developed and successfully applied to the transient problems involving ten million spatial unknowns (Liu et. al., in URSI Digest, 2013). We further enhanced the capabilities of this solver by implementing a compression scheme based on local cosine wavelet bases (LCBs) that exploits the sparsity in the temporal dimension (Liu et. al., in URSI Digest, 2014). Specifically, the LCB compression scheme was used to reduce the memory requirement of the PWTD ray data and computational cost of operations in the PWTD translation stage.

  16. Wavelet-based linear-response time-dependent density-functional theory

    Science.gov (United States)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.

    2012-06-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  17. Wavelet-based blind identification of the UCLA Factor building using ambient and earthquake responses

    International Nuclear Information System (INIS)

    Hazra, B; Narasimhan, S

    2010-01-01

    Blind source separation using second-order blind identification (SOBI) has been successfully applied to the problem of output-only identification, popularly known as ambient system identification. In this paper, the basic principles of SOBI for the static mixtures case is extended using the stationary wavelet transform (SWT) in order to improve the separability of sources, thereby improving the quality of identification. Whereas SOBI operates on the covariance matrices constructed directly from measurements, the method presented in this paper, known as the wavelet-based modified cross-correlation method, operates on multiple covariance matrices constructed from the correlation of the responses. The SWT is selected because of its time-invariance property, which means that the transform of a time-shifted signal can be obtained as a shifted version of the transform of the original signal. This important property is exploited in the construction of several time-lagged covariance matrices. The issue of non-stationary sources is addressed through the formation of several time-shifted, windowed covariance matrices. Modal identification results are presented for the UCLA Factor building using ambient vibration data and for recorded responses from the Parkfield earthquake, and compared with published results for this building. Additionally, the effect of sensor density on the identification results is also investigated

  18. Wavelet Based Hilbert Transform with Digital Design and Application to QCM-SS Watermarking

    Directory of Open Access Journals (Sweden)

    S. P. Maity

    2008-04-01

    Full Text Available In recent time, wavelet transforms are used extensively for efficient storage, transmission and representation of multimedia signals. Hilbert transform pairs of wavelets is the basic unit of many wavelet theories such as complex filter banks, complex wavelet and phaselet etc. Moreover, Hilbert transform finds various applications in communications and signal processing such as generation of single sideband (SSB modulation, quadrature carrier multiplexing (QCM and bandpass representation of a signal. Thus wavelet based discrete Hilbert transform design draws much attention of researchers for couple of years. This paper proposes an (i algorithm for generation of low computation cost Hilbert transform pairs of symmetric filter coefficients using biorthogonal wavelets, (ii approximation to its rational coefficients form for its efficient hardware realization and without much loss in signal representation, and finally (iii development of QCM-SS (spread spectrum image watermarking scheme for doubling the payload capacity. Simulation results show novelty of the proposed Hilbert transform design and its application to watermarking compared to existing algorithms.

  19. Online Epileptic Seizure Prediction Using Wavelet-Based Bi-Phase Correlation of Electrical Signals Tomography.

    Science.gov (United States)

    Vahabi, Zahra; Amirfattahi, Rasoul; Shayegh, Farzaneh; Ghassemi, Fahimeh

    2015-09-01

    Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients.

  20. A Wavelet-based method for processing signal of fog in strap-down inertial systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Xiong, C.; Liu, H. [Huazhong University of Science & Technology, Wuhan (China)

    2009-07-01

    Fibre optical gyroscopes (FOGs) have been applied widely in many fields in contrast, with their counterparts such as mechanical gyroscopes and ring laser gyroscopes. The precision of FOG is affected significantly by bias drift, angle random walk temperature effects and noises. Especially, uncertain disturbances resulting from road irregularities often affect accuracy of strap-down inertial system (SINS). Hence, eliminating, uncertain disturbances from outputs of it FOG plays a crucial role to improve accuracy of SINS. This paper presents a wavelet-based method for denoising signals of FOGs in SINS used for exploring and rescuing robots in coal mines. Property of road irregularities in mines is taken into account as a key factor resulting in uncertain disturbances in this research. Both frequency band and amplitude of uncertain disturbances are introduced to choose filtering thresholds. Experimental results have demonstrated that the proposed method can efficiently eliminate uncertain disturbances due to road irregularities from outputs of FOGs and improve accuracy of surrogate data. It indicates that the proposed method has a significant potential in FOG-related applications.

  1. Application of wavelet based MFDFA on Mueller matrix images for cervical pre-cancer detection

    Science.gov (United States)

    Zaffar, Mohammad; Pradhan, Asima

    2018-02-01

    A systematic study has been conducted on application of wavelet based multifractal de-trended fluctuation analysis (MFDFA) on Mueller matrix (MM) images of cervical tissue sections for early cancer detection. Changes in multiple scattering and orientation of fibers are observed by utilizing a discrete wavelet transform (Daubechies) which identifies fluctuations over polynomial trends. Fluctuation profiles, after 9th level decomposition, for all elements of MM qualitatively establish a demarcation of different grades of cancer from normal tissue. Moreover, applying MFDFA on MM images, Hurst exponent profiles for images of MM qualitatively are seen to display differences. In addition, the values of Hurst exponent increase for the diagonal elements of MM with increasing grades of the cervical cancer, while the value for the elements which correspond to linear polarizance decrease. However, for circular polarizance the value increases with increasing grades. These fluctuation profiles reveal the trend of local variation of refractive -indices and along with Hurst exponent profile, may serve as a useful biological metric in the early detection of cervical cancer. The quantitative measurements of Hurst exponent for diagonal and first column (polarizance governing elements) elements which reflect changes in multiple scattering and structural anisotropy in stroma, may be sensitive indicators of pre-cancer.

  2. Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.

    Science.gov (United States)

    Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan

    2016-05-01

    The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016. © 2016 American Institute of Chemical Engineers.

  3. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NARCIS (Netherlands)

    Carniato, L.; Schoups, G.H.W.; Van de Giesen, N.C.

    2014-01-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least

  4. Regional trends in short-duration precipitation extremes: a flexible multivariate monotone quantile regression approach

    Science.gov (United States)

    Cannon, Alex

    2017-04-01

    univariate technique, and cannot incorporate information from additional covariates, for example ENSO state or physiographic controls on extreme rainfall within a region. Here, the univariate MQR model is extended to allow the use of multiple covariates. Multivariate monotone quantile regression (MMQR) is based on a single hidden-layer feedforward network with the quantile regression error function and partial monotonicity constraints. The MMQR model is demonstrated via Monte Carlo simulations and the estimation and visualization of regional trends in moderate rainfall extremes based on homogenized sub-daily precipitation data at stations in Canada.

  5. Recent trends in application of multivariate curve resolution approaches for improving gas chromatography-mass spectrometry analysis of essential oils.

    Science.gov (United States)

    Jalali-Heravi, Mehdi; Parastar, Hadi

    2011-08-15

    Essential oils (EOs) are valuable natural products that are popular nowadays in the world due to their effects on the health conditions of human beings and their role in preventing and curing diseases. In addition, EOs have a broad range of applications in foods, perfumes, cosmetics and human nutrition. Among different techniques for analysis of EOs, gas chromatography-mass spectrometry (GC-MS) is the most important one in recent years. However, there are some fundamental problems in GC-MS analysis including baseline drift, spectral background, noise, low S/N (signal to noise) ratio, changes in the peak shapes and co-elution. Multivariate curve resolution (MCR) approaches cope with ongoing challenges and are able to handle these problems. This review focuses on the application of MCR techniques for improving GC-MS analysis of EOs published between January 2000 and December 2010. In the first part, the importance of EOs in human life and their relevance in analytical chemistry is discussed. In the second part, an insight into some basics needed to understand prospects and limitations of the MCR techniques are given. In the third part, the significance of the combination of the MCR approaches with GC-MS analysis of EOs is highlighted. Furthermore, the commonly used algorithms for preprocessing, chemical rank determination, local rank analysis and multivariate resolution in the field of EOs analysis are reviewed. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A multivariate time series approach to forecasting daily attendances at hospital emergency department

    KAUST Repository

    Kadri, Farid

    2018-02-07

    Efficient management of patient demands in emergency departments (EDs) has recently received increasing attention by most healthcare administrations. Forecasting ED demands greatly helps ED\\'s managers to make suitable decisions by optimally allocating the available limited resources to efficiently handle patient attendances. Furthermore, it permits pre-emptive action(s) to mitigate and/or prevent overcrowding situations and to enhance the quality of care. In this work, we present a statistical approach based on a vector autoregressive moving average (VARMA) model for a short term forecasting of daily attendances at an ED. The VARMA model has been validated using an experimental data from the paediatric emergency department (PED) at Lille regional hospital centre, France. The results obtained indicate the effectiveness of the proposed approach in forecasting patient demands.

  7. Multivariate GARCH models and Black-Litterman approach for tracking error constrained portfolios: an empirical analysis

    OpenAIRE

    Giulio PALOMBA

    2006-01-01

    In a typical tactical asset allocation set up managers generally make their investment decisions by inserting private information in an optimisation mechanism used to beat a benchmark portfolio; in this context the sole approach a' la Markowitz (1959) does not use all the available information about expected excess return and especially it does not take two main factors into account: first, asset returns often show changes in volatility, and second, the manager's private information plays no ...

  8. Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches.

    Science.gov (United States)

    Varekar, Vikas; Karmakar, Subhankar; Jha, Ramakar

    2016-02-01

    The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders

  9. Assessment of Near-Bottom Water Quality of Southwestern Coast of Sarawak, Borneo, Malaysia: A Multivariate Statistical Approach

    Directory of Open Access Journals (Sweden)

    Chen-Lin Soo

    2017-01-01

    Full Text Available The study on Sarawak coastal water quality is scarce, not to mention the application of the multivariate statistical approach to investigate the spatial variation of water quality and to identify the pollution source in Sarawak coastal water. Hence, the present study aimed to evaluate the spatial variation of water quality along the coastline of the southwestern region of Sarawak using multivariate statistical techniques. Seventeen physicochemical parameters were measured at 11 stations along the coastline with approximately 225 km length. The coastal water quality showed spatial heterogeneity where the cluster analysis grouped the 11 stations into four different clusters. Deterioration in coastal water quality has been observed in different regions of Sarawak corresponding to land use patterns in the region. Nevertheless, nitrate-nitrogen exceeded the guideline value at all sampling stations along the coastline. The principal component analysis (PCA has determined a reduced number of five principal components that explained 89.0% of the data set variance. The first PC indicated that the nutrients were the dominant polluting factors, which is attributed to the domestic, agricultural, and aquaculture activities, followed by the suspended solids in the second PC which are related to the logging activities.

  10. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach.

    Science.gov (United States)

    Taylor, S E; Cheung, K T; Patel, I I; Trevisan, J; Stringfellow, H F; Ashton, K M; Wood, N J; Keating, P J; Martin-Hirsch, P L; Martin, F L

    2011-03-01

    Endometrial cancer is the most common gynaecological malignancy in the United Kingdom. Diagnosis currently involves subjective expert interpretation of highly processed tissue, primarily using microscopy. Previous work has shown that infrared (IR) spectroscopy can be used to distinguish between benign and malignant cells in a variety of tissue types. Tissue was obtained from 76 patients undergoing hysterectomy, 36 had endometrial cancer. Slivers of endometrial tissue (tumour and tumour-adjacent tissue if present) were dissected and placed in fixative solution. Before analysis, tissues were thinly sliced, washed, mounted on low-E slides and desiccated; 10 IR spectra were obtained per slice by attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. Derived data was subjected to principal component analysis followed by linear discriminant analysis. Post-spectroscopy analyses, tissue sections were haematoxylin and eosin-stained to provide histological verification. Using this approach, it is possible to distinguish benign from malignant endometrial tissue, and various subtypes of both. Cluster vector plots of benign (verified post-spectroscopy to be free of identifiable pathology) vs malignant tissue indicate the importance of the lipid and secondary protein structure (Amide I and Amide II) regions of the spectrum. These findings point towards the possibility of a simple objective test for endometrial cancer using ATR-FTIR spectroscopy. This would facilitate earlier diagnosis and so reduce the morbidity and mortality associated with this disease.

  11. A wavelet-based intermittency detection technique from PIV investigations in transitional boundary layers

    Science.gov (United States)

    Simoni, Daniele; Lengani, Davide; Guida, Roberto

    2016-09-01

    The transition process of the boundary layer growing over a flat plate with pressure gradient simulating the suction side of a low-pressure turbine blade and elevated free-stream turbulence intensity level has been analyzed by means of PIV and hot-wire measurements. A detailed view of the instantaneous flow field in the wall-normal plane highlights the physics characterizing the complex process leading to the formation of large-scale coherent structures during breaking down of the ordered motion of the flow, thus generating randomized oscillations (i.e., turbulent spots). This analysis gives the basis for the development of a new procedure aimed at determining the intermittency function describing (statistically) the transition process. To this end, a wavelet-based method has been employed for the identification of the large-scale structures created during the transition process. Successively, a probability density function of these events has been defined so that an intermittency function is deduced. This latter strictly corresponds to the intermittency function of the transitional flow computed trough a classic procedure based on hot-wire data. The agreement between the two procedures in the intermittency shape and spot production rate proves the capability of the method in providing the statistical representation of the transition process. The main advantages of the procedure here proposed concern with its applicability to PIV data; it does not require a threshold level to discriminate first- and/or second-order time-derivative of hot-wire time traces (that makes the method not influenced by the operator); and it provides a clear evidence of the connection between the flow physics and the statistical representation of transition based on theory of turbulent spot propagation.

  12. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering

    KAUST Repository

    Liu, Zhi

    2012-02-10

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. The Author(s) 2012. Published by Oxford University Press.

  13. A multivariate and stochastic approach to identify key variables to rank dairy farms on profitability.

    Science.gov (United States)

    Atzori, A S; Tedeschi, L O; Cannas, A

    2013-05-01

    The economic efficiency of dairy farms is the main goal of farmers. The objective of this work was to use routinely available information at the dairy farm level to develop an index of profitability to rank dairy farms and to assist the decision-making process of farmers to increase the economic efficiency of the entire system. A stochastic modeling approach was used to study the relationships between inputs and profitability (i.e., income over feed cost; IOFC) of dairy cattle farms. The IOFC was calculated as: milk revenue + value of male calves + culling revenue - herd feed costs. Two databases were created. The first one was a development database, which was created from technical and economic variables collected in 135 dairy farms. The second one was a synthetic database (sDB) created from 5,000 synthetic dairy farms using the Monte Carlo technique and based on the characteristics of the development database data. The sDB was used to develop a ranking index as follows: (1) principal component analysis (PCA), excluding IOFC, was used to identify principal components (sPC); and (2) coefficient estimates of a multiple regression of the IOFC on the sPC were obtained. Then, the eigenvectors of the sPC were used to compute the principal component values for the original 135 dairy farms that were used with the multiple regression coefficient estimates to predict IOFC (dRI; ranking index from development database). The dRI was used to rank the original 135 dairy farms. The PCA explained 77.6% of the sDB variability and 4 sPC were selected. The sPC were associated with herd profile, milk quality and payment, poor management, and reproduction based on the significant variables of the sPC. The mean IOFC in the sDB was 0.1377 ± 0.0162 euros per liter of milk (€/L). The dRI explained 81% of the variability of the IOFC calculated for the 135 original farms. When the number of farms below and above 1 standard deviation (SD) of the dRI were calculated, we found that 21

  14. Optimisation of Oil Spill Dispersants on Weathered Oils. A New Approach Using Experimental Design and Multivariate Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brandvik, Per Johan

    1997-12-31

    This thesis describes how laboratory experiments combined with numerical modelling were used to predict weathering of an oil slick at different environmental conditions (temperature, wind etc.). It also applies laboratory test methods to screen dispersant effectiveness under different temperatures and salinities. A new approach is developed for dispersant optimization based on statistical design and multivariate analysis; this resulted in a new dispersant with low toxicity and high effectiveness on a broad selection of oil types. The thesis illustrates the potential of dispersant used as an operational response method on oil spills by discussing three different oil spill scenarios and compares the effect of using dispersants to using mechanical recovery and to doing nothing. Some recommendations that may increase the effectiveness of the Norwegian oil spill contingency are also given. 172 refs., 65 figs., 9 tabs.

  15. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    Science.gov (United States)

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the

  16. Wavelet-based multiscale window transform and energy and vorticity analysis

    Science.gov (United States)

    Liang, Xiang San

    A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), is developed to investigate sub-mesoscale, meso-scale, and large-scale dynamical interactions in geophysical fluid flows which are intermittent in space and time. The development begins with the construction of a wavelet-based functional analysis tool, the multiscale window transform (MWT), which is local, orthonormal, self-similar, and windowed on scale. The MWT is first built over the real line then modified onto a finite domain. Properties are explored, the most important one being the property of marginalization which brings together a quadratic quantity in physical space with its phase space representation. Based on MWT the MS-EVA is developed. Energy and enstrophy equations for the large-, meso-, and sub-meso-scale windows are derived and their terms interpreted. The processes thus represented are classified into four categories: transport; transfer, conversion, and dissipation/diffusion. The separation of transport from transfer is made possible with the introduction of the concept of perfect transfer. By the property of marginalization, the classical energetic analysis proves to be a particular case of the MS-EVA. The MS-EVA developed is validated with classical instability problems. The validation is carried out through two steps. First, it is established that the barotropic and baroclinic instabilities are indicated by the spatial averages of certain transfer term interaction analyses. Then calculations of these indicators are made with an Eady model and a Kuo model. The results agree precisely with what is expected from their analytical solutions, and the energetics reproduced reveal a consistent and important aspect of the unknown dynamic structures of instability processes. As an application, the MS-EVA is used to investigate the Iceland-Faeroe frontal (IFF) variability. A MS-EVA-ready dataset is first generated, through a forecasting study with the Harvard Ocean Prediction System

  17. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  18. A Combined Approach of Sensor Data Fusion and Multivariate Geostatistics for Delineation of Homogeneous Zones in an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Annamaria Castrignanò

    2017-12-01

    Full Text Available To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0–1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion is not at all a naive problem and novel and powerful methods need to be developed.

  19. Path analysis and multi-criteria decision making: an approach for multivariate model selection and analysis in health.

    Science.gov (United States)

    Vasconcelos, A G; Almeida, R M; Nobre, F F

    2001-08-01

    This paper introduces an approach that includes non-quantitative factors for the selection and assessment of multivariate complex models in health. A goodness-of-fit based methodology combined with fuzzy multi-criteria decision-making approach is proposed for model selection. Models were obtained using the Path Analysis (PA) methodology in order to explain the interrelationship between health determinants and the post-neonatal component of infant mortality in 59 municipalities of Brazil in the year 1991. Socioeconomic and demographic factors were used as exogenous variables, and environmental, health service and agglomeration as endogenous variables. Five PA models were developed and accepted by statistical criteria of goodness-of fit. These models were then submitted to a group of experts, seeking to characterize their preferences, according to predefined criteria that tried to evaluate model relevance and plausibility. Fuzzy set techniques were used to rank the alternative models according to the number of times a model was superior to ("dominated") the others. The best-ranked model explained above 90% of the endogenous variables variation, and showed the favorable influences of income and education levels on post-neonatal mortality. It also showed the unfavorable effect on mortality of fast population growth, through precarious dwelling conditions and decreased access to sanitation. It was possible to aggregate expert opinions in model evaluation. The proposed procedure for model selection allowed the inclusion of subjective information in a clear and systematic manner.

  20. Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches.

    Science.gov (United States)

    Ormoli, Leonardo; Costa, Corrado; Negri, Stefano; Perenzin, Maurizio; Vaccino, Patrizia

    2015-02-25

    A collection of 157 Triticum aestivum accessions, representative of wheat breeding in Italy during the 20(th) century, was assembled to describe the evolutionary trends of cultivated varieties throughout this period. The lines were cultivated in Italy, in two locations, over two growing seasons, and evaluated for several agronomical, morphological and qualitative traits. Analyses were conducted using the most common univariate approach on individual plant traits coupled with a correspondance multivariate approach. ANOVA showed a clear trend from old to new varieties, leading towards earliness, plant height reduction and denser spikes with smaller seeds. The average protein content gradually decreased over time; however this trend did not affect bread-making quality, because it was counterbalanced by a gradual increase of SDS sedimentation volume, achieved by the incorporation of favourable alleles into recent cultivars. Correspondence analysis allowed an overall view of the breeding activity. A clear-cut separation was observed between ancient lines and all the others, matched with a two-step gradient, the first, corresponding roughly to the period 1920-1940, which can be ascribed mostly to genetics, the second, from the 40s onward, which can be ascribed also to the farming practice innovations, such as improvement of mechanical devices and optimised use of fertilizers.

  1. Estimating Potential GDP for the Romanian Economy and Assessing the Sustainability of Economic Growth: A Multivariate Filter Approach

    Directory of Open Access Journals (Sweden)

    Dan Armeanu

    2015-03-01

    Full Text Available In the current context of economic recovery and rebalancing, the necessity of modelling and estimating the potential output and output gap emerges in order to assess the quality and sustainability of economic growth, the monetary and fiscal policies, as well as the impact of business cycles. Despite the importance of potential GDP and the output gap, there are difficulties in reliably estimating them, as many of the models proposed in the economic literature are calibrated for developed economies and are based on complex macroeconomic relationships and a long history of robust data, while emerging economies exhibit high volatility. The object of this study is to develop a model in order to estimate the potential GDP and output gap and to assess the sustainability of projected growth using a multivariate filter approach. This trend estimation technique is the newest approach proposed by the economic literature and has gained wide acceptance with researchers and practitioners alike, while also being used by the IMF for Romania. The paper will be structured as follows. We first discuss the theoretical background of the model. The second section focuses on an analysis of the Romanian economy for the 1995–2013 time frame, while also providing a forecast for 2014–2017 and an assessment of the sustainability of Romania’s economic growth. The third section sums up the results and concludes.

  2. A Combined Approach of Sensor Data Fusion and Multivariate Geostatistics for Delineation of Homogeneous Zones in an Agricultural Field.

    Science.gov (United States)

    Castrignanò, Annamaria; Buttafuoco, Gabriele; Quarto, Ruggiero; Vitti, Carolina; Langella, Giuliano; Terribile, Fabio; Venezia, Accursio

    2017-12-03

    To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0-1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion) is not at all a naive problem and novel and powerful methods need to be developed.

  3. Modelling and short-term forecasting of daily peak power demand in Victoria using two-dimensional wavelet based SDP models

    International Nuclear Information System (INIS)

    Truong, Nguyen-Vu; Wang, Liuping; Wong, Peter K.C.

    2008-01-01

    Power demand forecasting is of vital importance to the management and planning of power system operations which include generation, transmission, distribution, as well as system's security analysis and economic pricing processes. This paper concerns the modeling and short-term forecast of daily peak power demand in the state of Victoria, Australia. In this study, a two-dimensional wavelet based state dependent parameter (SDP) modelling approach is used to produce a compact mathematical model for this complex nonlinear dynamic system. In this approach, a nonlinear system is expressed by a set of linear regressive input and output terms (state variables) multiplied by the respective state dependent parameters that carry the nonlinearities in the form of 2-D wavelet series expansions. This model is identified based on historical data, descriptively representing the relationship and interaction between various components which affect the peak power demand of a certain day. The identified model has been used to forecast daily peak power demand in the state of Victoria, Australia in the time period from the 9th of August 2007 to the 24th of August 2007. With a MAPE (mean absolute prediction error) of 1.9%, it has clearly implied the effectiveness of the identified model. (author)

  4. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    Science.gov (United States)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  5. Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption

    OpenAIRE

    Eynard , Julien; Grieu , Stéphane; Polit , Monique

    2011-01-01

    15 pages; International audience; As part of the OptiEnR research project, the present paper deals with outdoor temperature and thermal power consumption forecasting. This project focuses on optimizing the functioning of a multi-energy district boiler (La Rochelle, west coast of France), adding to the plant a thermal storage unit and implementing a model-based predictive controller. The proposed short-term forecast method is based on the concept of time series and uses both a wavelet-based mu...

  6. Real-time wavelet-based inline banknote-in-bundle counting for cut-and-bundle machines

    Science.gov (United States)

    Petker, Denis; Lohweg, Volker; Gillich, Eugen; Türke, Thomas; Willeke, Harald; Lochmüller, Jens; Schaede, Johannes

    2011-03-01

    Automatic banknote sheet cut-and-bundle machines are widely used within the scope of banknote production. Beside the cutting-and-bundling, which is a mature technology, image-processing-based quality inspection for this type of machine is attractive. We present in this work a new real-time Touchless Counting and perspective cutting blade quality insurance system, based on a Color-CCD-Camera and a dual-core Computer, for cut-and-bundle applications in banknote production. The system, which applies Wavelet-based multi-scale filtering is able to count banknotes inside a 100-bundle within 200-300 ms depending on the window size.

  7. Effect of Interleaved FEC Code on Wavelet Based MC-CDMA System with Alamouti STBC in Different Modulation Schemes

    OpenAIRE

    Shams, Rifat Ara; Kabir, M. Hasnat; Ullah, Sheikh Enayet

    2012-01-01

    In this paper, the impact of Forward Error Correction (FEC) code namely Trellis code with interleaver on the performance of wavelet based MC-CDMA wireless communication system with the implementation of Alamouti antenna diversity scheme has been investigated in terms of Bit Error Rate (BER) as a function of Signal-to-Noise Ratio (SNR) per bit. Simulation of the system under proposed study has been done in M-ary modulation schemes (MPSK, MQAM and DPSK) over AWGN and Rayleigh fading channel inc...

  8. AMBI indices and multivariate approach to assess the ecological health of Vellar-Coleroon estuarine system undergoing various human activities.

    Science.gov (United States)

    Sigamani, Sivaraj; Perumal, Murugesan; Arumugam, Silambarasan; Preetha Mini Jose, H M; Veeraiyan, Bharathidasan

    2015-11-15

    Estuaries receive a considerable amount of pollutants from various sources. Presently an attempt has been made to assess whether the aquaculture discharges and dredging activities alter the ecological conditions of Vellar-Coleroon estuarine complex. The European Water Framework Directive (WFD) established a framework for the protection of marine waters. In this commission, a variety of indices were used, among them, AMBI (AZTI Marine Biotic Index) indices along with multivariate statistical approach is unique, to assess the ecological status by using macrobenthic communities. Keeping this in view, stations VE-1 and VE-4 in Vellar; CE-6 and CE-7 in Coleroon estuaries showed moderately disturbed with the AMBI values ranging between 3.45 and 3.72. The above said stations were situated near the shrimp farm discharge point and sites of dredging activities. The present study proves that various statistical and biotic indices have great potential in assessing the nature of the ecosystem undergoing various human pressures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Relationships between botanical and chemical composition of forages: a multivariate approach to grasslands in the Western Italian Alps.

    Science.gov (United States)

    Ravetto Enri, Simone; Renna, Manuela; Probo, Massimiliano; Lussiana, Carola; Battaglini, Luca M; Lonati, Michele; Lombardi, Giampiero

    2017-03-01

    Plant composition of species-rich mountain grasslands can affect the sensorial and chemical attributes of dairy and meat products, with implications for human health. A multivariate approach was used to analyse the complex relationships between vegetation characteristics (botanical composition and plant community variables) and chemical composition (proximate constituents and fatty acid profile) in mesophilic and dry vegetation ecological groups, comprising six different semi-natural grassland types in the Western Italian Alps. Mesophilic and dry grasslands were comparable in terms of phenology, biodiversity indices and proportion of botanical families. The content of total fatty acids and that of the most abundant fatty acids (alpha-linolenic, linoleic and palmitic acids) were mainly associated to nutrient-rich plant species, belonging to the mesophilic grassland ecological group. Mesophilic grasslands showed also higher values of crude protein, lower values of fibre content and they were related to higher pastoral values of vegetation compared to dry grasslands. The proximate composition and fatty acid profile appeared mainly single species dependent rather than botanical family dependent. These findings highlight that forage from mesophilic grasslands can provide higher nutritive value for ruminants and may be associated to ruminant-derived food products with a healthier fatty acid profile. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Sediment contaminants and biological effects in southern California: Use of a multivariate statistical approach to assess biological impact

    International Nuclear Information System (INIS)

    Maxon, C.L.; Barnett, A.M.; Diener, D.R.

    1997-01-01

    This study attempts to predict biological toxicity and benthic community impact in sediments collected from two southern California sites. Contaminant concentrations and grain size were evaluated as predictors using a two-step multivariate approach. The first step used principal component analysis (PCA) to describe contamination type and magnitude present at each site. Four dominant PC vectors, explaining 88% of the total variance, each corresponded to a unique physical and/or chemical signature. The four PC vectors, in decreasing order of importance, were: (1) high molecular weight polynuclear aromatic hydrocarbons (PAH), most likely from combusted or weathered petroleum; (2) low molecular weight alkylated PAH, primarily from weathered fuel product; (3) low molecular weight nonalkylated PAH, indicating a fresh petroleum-related origin; and (4) fine-grained sediments and metals. The second step used stepwise regression analysis to predict individual biological effects (dependent) variables using the four PC vectors as independent variables. Results showed that sediment grain size alone was the best predictor of amphipod mortality. Contaminant vectors showed discrete depositional areas independent of grain size. Neither contaminant concentrations nor PCA vectors were good predictors of biological effects, most likely due to the low concentrations in sediments

  11. Potential shallow aquifers characterization through an integrated geophysical method: multivariate approach by means of k-means algorithms

    Directory of Open Access Journals (Sweden)

    Stefano Bernardinetti

    2017-06-01

    Full Text Available The need to obtain a detailed hydrogeological characterization of the subsurface and its interpretation for the groundwater resources management, often requires to apply several and complementary geophysical methods. The goal of the approach in this paper is to provide a unique model of the aquifer by synthesizing and optimizing the information provided by several geophysical methods. This approach greatly reduces the degree of uncertainty and subjectivity of the interpretation by exploiting the different physical and mechanic characteristics of the aquifer. The studied area, into the municipality of Laterina (Arezzo, Italy, is a shallow basin filled by lacustrine and alluvial deposits (Pleistocene and Olocene epochs, Quaternary period, with alternated silt, sand with variable content of gravel and clay where the bottom is represented by arenaceous-pelitic rocks (Mt. Cervarola Unit, Tuscan Domain, Miocene epoch. This shallow basin constitutes the unconfined superficial aquifer to be exploited in the nearly future. To improve the geological model obtained from a detailed geological survey we performed electrical resistivity and P wave refraction tomographies along the same line in order to obtain different, independent and integrable data sets. For the seismic data also the reflected events have been processed, a remarkable contribution to draw the geologic setting. Through the k-means algorithm, we perform a cluster analysis for the bivariate data set to individuate relationships between the two sets of variables. This algorithm allows to individuate clusters with the aim of minimizing the dissimilarity within each cluster and maximizing it among different clusters of the bivariate data set. The optimal number of clusters “K”, corresponding to the individuated geophysical facies, depends to the multivariate data set distribution and in this work is estimated with the Silhouettes. The result is an integrated tomography that shows a finite

  12. Content Adaptive Lagrange Multiplier Selection for Rate-Distortion Optimization in 3-D Wavelet-Based Scalable Video Coding

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2018-03-01

    Full Text Available Rate-distortion optimization (RDO plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC. Among all the possible coding modes, it aims to select the one which has the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned through the choice of the Lagrange multiplier. Despite the prevalence of conventional method for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not available, with on consideration of the content features of input signal. In this paper, an efficient content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for 3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we introduce a novel weighting method, which takes account of the mutual information, gradient per pixel, and texture homogeneity to measure the temporal subband characteristics after applying the motion-compensated temporal filtering (MCTF technique. Second, based on the proposed subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results demonstrate that the proposed algorithm enables more satisfactory video quality with negligible additional computational complexity.

  13. Wavelet-based multiscale analysis of minimum toe clearance variability in the young and elderly during walking.

    Science.gov (United States)

    Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu

    2007-01-01

    As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (ppathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.

  14. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach.

    Directory of Open Access Journals (Sweden)

    Kristen Feher

    Full Text Available Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL. Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass, but also molecular phenotype (metabolite profiles. Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.

  15. Lasso and probabilistic inequalities for multivariate point processes

    DEFF Research Database (Denmark)

    Hansen, Niels Richard; Reynaud-Bouret, Patricia; Rivoirard, Vincent

    2015-01-01

    Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an unknown function parameter to be estimated by linear combinations of a fixed dictionary. To select...... for multivariate Hawkes processes are proven, which allows us to check these assumptions by considering general dictionaries based on histograms, Fourier or wavelet bases. Motivated by problems of neuronal activity inference, we finally carry out a simulation study for multivariate Hawkes processes and compare our...... methodology with the adaptive Lasso procedure proposed by Zou in (J. Amer. Statist. Assoc. 101 (2006) 1418–1429). We observe an excellent behavior of our procedure. We rely on theoretical aspects for the essential question of tuning our methodology. Unlike adaptive Lasso of (J. Amer. Statist. Assoc. 101 (2006...

  16. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach

    Science.gov (United States)

    Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo

    2009-01-01

    We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...

  17. Methods of Multivariate Analysis

    CERN Document Server

    Rencher, Alvin C

    2012-01-01

    Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere."-IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life sit

  18. Sensitivity equation for quantitative analysis with multivariate curve resolution-alternating least-squares: theoretical and experimental approach.

    Science.gov (United States)

    Bauza, María C; Ibañez, Gabriela A; Tauler, Romà; Olivieri, Alejandro C

    2012-10-16

    A new equation is derived for estimating the sensitivity when the multivariate curve resolution-alternating least-squares (MCR-ALS) method is applied to second-order multivariate calibration data. The validity of the expression is substantiated by extensive Monte Carlo noise addition simulations. The multivariate selectivity can be derived from the new sensitivity expression. Other important figures of merit, such as limit of detection, limit of quantitation, and concentration uncertainty of MCR-ALS quantitative estimations can be easily estimated from the proposed sensitivity expression and the instrumental noise. An experimental example involving the determination of an analyte in the presence of uncalibrated interfering agents is described in detail, involving second-order time-decaying sensitized lanthanide luminescence excitation spectra. The estimated figures of merit are reasonably correlated with the analytical features of the analyzed experimental system.

  19. Multivariate alteration detection (MAD) in multispectral, bi-temporal image data: A new approach to change detction studies

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut

    This paper introduces a new orthogonal transformation, the multivariate alteration detection (MAD) transformation, based on an established multivariate statistical technique canonical correlation analysis. The theory for canonical correlation analysis is sketched and a result necessary...... for the definition of the MAD transformation is proven. As opposed to traditional univariate change detection schemes our scheme transforms two sets of multivariate observations (e.g. two multispectral satellite images covering the same geographical area acquired at different points in time) into a difference...... between two linear combinations of the original variables explaining maximal change (i.e. the difference explaining maximal variance) in all variables simultaneously. The MAD transformation is invariant to linear scaling. The MAD transformation can be used iteratively. First, it can be used to detect...

  20. Heart Rate Variability and Wavelet-based Studies on ECG Signals from Smokers and Non-smokers

    Science.gov (United States)

    Pal, K.; Goel, R.; Champaty, B.; Samantray, S.; Tibarewala, D. N.

    2013-12-01

    The current study deals with the heart rate variability (HRV) and wavelet-based ECG signal analysis of smokers and non-smokers. The results of HRV indicated dominance towards the sympathetic nervous system activity in smokers. The heart rate was found to be higher in case of smokers as compared to non-smokers ( p smokers from the non-smokers. The results indicated that when RMSSD, SD1 and RR-mean features were used concurrently a classification efficiency of > 90 % was achieved. The wavelet decomposition of the ECG signal was done using the Daubechies (db 6) wavelet family. No difference was observed between the smokers and non-smokers which apparently suggested that smoking does not affect the conduction pathway of heart.

  1. A Sequential, Implicit, Wavelet-Based Solver for Multi-Scale Time-Dependent Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Donald A. McLaren

    2013-04-01

    Full Text Available This paper describes and tests a wavelet-based implicit numerical method for solving partial differential equations. Intended for problems with localized small-scale interactions, the method exploits the form of the wavelet decomposition to divide the implicit system created by the time-discretization into multiple smaller systems that can be solved sequentially. Included is a test on a basic non-linear problem, with both the results of the test, and the time required to calculate them, compared with control results based on a single system with fine resolution. The method is then tested on a non-trivial problem, its computational time and accuracy checked against control results. In both tests, it was found that the method requires less computational expense than the control. Furthermore, the method showed convergence towards the fine resolution control results.

  2. Wavelet-based compression with ROI coding support for mobile access to DICOM images over heterogeneous radio networks.

    Science.gov (United States)

    Maglogiannis, Ilias; Doukas, Charalampos; Kormentzas, George; Pliakas, Thomas

    2009-07-01

    Most of the commercial medical image viewers do not provide scalability in image compression and/or region of interest (ROI) encoding/decoding. Furthermore, these viewers do not take into consideration the special requirements and needs of a heterogeneous radio setting that is constituted by different access technologies [e.g., general packet radio services (GPRS)/ universal mobile telecommunications system (UMTS), wireless local area network (WLAN), and digital video broadcasting (DVB-H)]. This paper discusses a medical application that contains a viewer for digital imaging and communications in medicine (DICOM) images as a core module. The proposed application enables scalable wavelet-based compression, retrieval, and decompression of DICOM medical images and also supports ROI coding/decoding. Furthermore, the presented application is appropriate for use by mobile devices activating in heterogeneous radio settings. In this context, performance issues regarding the usage of the proposed application in the case of a prototype heterogeneous system setup are also discussed.

  3. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  4. Correlation of aqueous solubility of salts of benzylamine with experimentally and theoretically derived parameters. A multivariate data analysis approach

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla Andrea; Liljefors, Tommy

    2002-01-01

    Twenty two salts of benzylamine and p-substituted benzoic acids were prepared and characterized. The p-substituent was varied with regard to electronic, hydrophobic, and steric effects as well as hydrogen bonding potential. A multivariate data analysis was used to describe the relationship between...

  5. Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

    OpenAIRE

    Lina Wu; Wenyi Lu; Ye Li

    2016-01-01

    Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We fin...

  6. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task.

  7. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Detecting relationships between the interannual variability in climate records and ecological time series using a multivariate statistical approach - four case studies for the North Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, H. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    1998-12-31

    A multivariate statistical approach is presented that allows a systematic search for relationships between the interannual variability in climate records and ecological time series. Statistical models are built between climatological predictor fields and the variables of interest. Relationships are sought on different temporal scales and for different seasons and time lags. The possibilities and limitations of this approach are discussed in four case studies dealing with salinity in the German Bight, abundance of zooplankton at Helgoland Roads, macrofauna communities off Norderney and the arrival of migratory birds on Helgoland. (orig.) [Deutsch] Ein statistisches, multivariates Modell wird vorgestellt, das eine systematische Suche nach potentiellen Zusammenhaengen zwischen Variabilitaet in Klima- und oekologischen Zeitserien erlaubt. Anhand von vier Anwendungsbeispielen wird der Klimaeinfluss auf den Salzgehalt in der Deutschen Bucht, Zooplankton vor Helgoland, Makrofauna vor Norderney, und die Ankunft von Zugvoegeln auf Helgoland untersucht. (orig.)

  9. Multivariate Birkhoff interpolation

    CERN Document Server

    Lorentz, Rudolph A

    1992-01-01

    The subject of this book is Lagrange, Hermite and Birkhoff (lacunary Hermite) interpolation by multivariate algebraic polynomials. It unifies and extends a new algorithmic approach to this subject which was introduced and developed by G.G. Lorentz and the author. One particularly interesting feature of this algorithmic approach is that it obviates the necessity of finding a formula for the Vandermonde determinant of a multivariate interpolation in order to determine its regularity (which formulas are practically unknown anyways) by determining the regularity through simple geometric manipulations in the Euclidean space. Although interpolation is a classical problem, it is surprising how little is known about its basic properties in the multivariate case. The book therefore starts by exploring its fundamental properties and its limitations. The main part of the book is devoted to a complete and detailed elaboration of the new technique. A chapter with an extensive selection of finite elements follows as well a...

  10. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  11. Effect of Components in Water on the Extraction of Herbal Medicine—Advanced Approach Using Multivariate Analysis—

    Science.gov (United States)

    Kanzaki, Yasushi

    Many kinds of water products have been offered commercially suggesting some strange efficacy beyond our scientific knowledge even now at which various advanced scientific and technological research have been highly promoted. However, it seems quite obvious that such a strange efficacy must be nonexistent. If such efficacy were really existing, it must be solved by some suitable scientific procedure. In this study, the extraction of paeoniflorin from paeoniae radix was examined by varying the kind of extracting water. Then, the result was analyzed using multivariate analysis where the effect on the extraction was assumed to be ascribed to the ionic species dissolved in each water examined. The dissolved species were analyzed by chemical and instrumental analyses. According to the multivariate analysis, the amount of extracted paeoniflorin (Y) was presented by the following regression equation. The result shows that pH, [Ca2+], and [HCO3 -] were significant parameters and the combination of Ca2+ and HCO3 - affected negatively on the extraction of paeoniflorin. Y=28.11-0.71 pH-0.0034[Ca2+]-0.93[HCO3 -] where [Ca2+] is the concentration of calcium ion and [HCO3 -] is that of bicarbonate ion.

  12. Influence of microclimatic ammonia levels on productive performance of different broilers' breeds estimated with univariate and multivariate approaches.

    Science.gov (United States)

    Soliman, Essam S; Moawed, Sherif A; Hassan, Rania A

    2017-08-01

    Birds litter contains unutilized nitrogen in the form of uric acid that is converted into ammonia; a fact that does not only affect poultry performance but also has a negative effect on people's health around the farm and contributes in the environmental degradation. The influence of microclimatic ammonia emissions on Ross and Hubbard broilers reared in different housing systems at two consecutive seasons (fall and winter) was evaluated using a discriminant function analysis to differentiate between Ross and Hubbard breeds. A total number of 400 air samples were collected and analyzed for ammonia levels during the experimental period. Data were analyzed using univariate and multivariate statistical methods. Ammonia levels were significantly higher (p0.05) were found between the two farms in body weight, body weight gain, feed intake, feed conversion ratio, and performance index (PI) of broilers. Body weight; weight gain and PI had increased values (pbroiler breed. Ammonia emissions were positively (although weekly) correlated with the ambient relative humidity (r=0.383; p0.05). Test of significance of discriminant function analysis did not show a classification based on the studied traits suggesting that they cannot been used as predictor variables. The percentage of correct classification was 52% and it was improved after deletion of highly correlated traits to 57%. The study revealed that broiler's growth was negatively affected by increased microclimatic ammonia concentrations and recommended the analysis of broilers' growth performance parameters data using multivariate discriminant function analysis.

  13. Economical and technical optimization of site investigations - a multivariate approach based on Stripa F1 and F2 borehole information

    International Nuclear Information System (INIS)

    Schunnesson, H.; Lundholm, I.

    1992-01-01

    In this report multivariate analysis is presented and used as a tool to optimize site investigations. The technique is tested on earlier accumulated data from bore hole F1 and F2 in the Stripa mine, in an attempt to predict the hydraulic conductivity of the rock. Different investigation methods can be selected only on behalf of their correlation to the hydraulic conductivity and accurate predictions can be made with as high resolution as the core mapping data and the data from the geophysical logging allows. In the second part of the report the integration of this technique in the pre-investigation is discussed. The most important steps is to form a site analysis group, responsible for data collection, analysis and investigation, utilize all at the time available data to improve the investigation. This will also lead to a less rigid and more flexible pre-investigation that will improve the quality and reduce time consumption. (12 refs.)(au)

  14. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    Science.gov (United States)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  15. A cost-based empirical model of the aggregate price determination for the Turkish economy: A multivariate cointegration approach

    Directory of Open Access Journals (Sweden)

    Zeren Fatma

    2010-01-01

    Full Text Available This paper tries to examine the long run relationships between the aggregate consumer prices and some cost-based components for the Turkish economy. Based on a simple economic model of the macro-scaled price formation, multivariate cointegration techniques have been applied to test whether the real data support the a priori model construction. The results reveal that all of the factors, related to the price determination, have a positive impact on the consumer prices as expected. We find that the most significant component contributing to the price setting is the nominal exchange rate depreciation. We also cannot reject the linear homogeneity of the sum of all the price data as to the domestic inflation. The paper concludes that the Turkish consumer prices have in fact a strong cost-push component that contributes to the aggregate pricing.

  16. Influence of microclimatic ammonia levels on productive performance of different broilers’ breeds estimated with univariate and multivariate approaches

    Science.gov (United States)

    Soliman, Essam S.; Moawed, Sherif A.; Hassan, Rania A.

    2017-01-01

    Background and Aim: Birds litter contains unutilized nitrogen in the form of uric acid that is converted into ammonia; a fact that does not only affect poultry performance but also has a negative effect on people’s health around the farm and contributes in the environmental degradation. The influence of microclimatic ammonia emissions on Ross and Hubbard broilers reared in different housing systems at two consecutive seasons (fall and winter) was evaluated using a discriminant function analysis to differentiate between Ross and Hubbard breeds. Materials and Methods: A total number of 400 air samples were collected and analyzed for ammonia levels during the experimental period. Data were analyzed using univariate and multivariate statistical methods. Results: Ammonia levels were significantly higher (p0.05) were found between the two farms in body weight, body weight gain, feed intake, feed conversion ratio, and performance index (PI) of broilers. Body weight; weight gain and PI had increased values (pbroiler breed. Ammonia emissions were positively (although weekly) correlated with the ambient relative humidity (r=0.383; p0.05). Test of significance of discriminant function analysis did not show a classification based on the studied traits suggesting that they cannot been used as predictor variables. The percentage of correct classification was 52% and it was improved after deletion of highly correlated traits to 57%. Conclusion: The study revealed that broiler’s growth was negatively affected by increased microclimatic ammonia concentrations and recommended the analysis of broilers’ growth performance parameters data using multivariate discriminant function analysis. PMID:28919677

  17. Adaptive algorithms for a self-shielding wavelet-based Galerkin method

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.

    2009-01-01

    The treatment of the energy variable in deterministic neutron transport methods is based on a multigroup discretization, considering the flux and cross-sections to be constant within a group. In this case, a self-shielding calculation is mandatory to correct sections of resonant isotopes. In this paper, a different approach based on a finite element discretization on a wavelet basis is used. We propose adaptive algorithms constructed from error estimates. Such an approach is applied to within-group scattering source iterations. A first implementation is presented in the special case of the fine structure equation for an infinite homogeneous medium. Extension to spatially-dependent cases is discussed. (authors)

  18. Application of Wavelet-Based Tools to Study the Dynamics of Biological Processes

    DEFF Research Database (Denmark)

    Pavlov, A. N.; Makarov, V. A.; Mosekilde, Erik

    2006-01-01

    The article makes use of three different examples (sensory information processing in the rat trigeminal complex, intracellular interaction in snail neurons and multimodal dynamics in nephron autoregulation) to demonstrate how modern approaches to time-series analysis based on the wavelet-transfor...

  19. Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data

    Science.gov (United States)

    LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.

  20. Proposing Wavelet-Based Low-Pass Filter and Input Filter to Improve Transient Response of Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-08-01

    Full Text Available Available photovoltaic (PV systems show a prolonged transient response, when integrated into the power grid via active filters. On one hand, the conventional low-pass filter, employed within the integrated PV system, works with a large delay, particularly in the presence of system’s low-order harmonics. On the other hand, the switching of the DC (direct current–DC converters within PV units also prolongs the transient response of an integrated system, injecting harmonics and distortion through the PV-end current. This paper initially develops a wavelet-based low-pass filter to improve the transient response of the interconnected PV systems to grid lines. Further, a damped input filter is proposed within the PV system to address the raised converter’s switching issue. Finally, Matlab/Simulink simulations validate the effectiveness of the proposed wavelet-based low-pass filter and damped input filter within an integrated PV system.

  1. Evaluation of a wavelet-based compression algorithm applied to the silicon drift detectors data of the ALICE experiment at CERN

    International Nuclear Information System (INIS)

    Falchieri, Davide; Gandolfi, Enzo; Masotti, Matteo

    2004-01-01

    This paper evaluates the performances of a wavelet-based compression algorithm applied to the data produced by the silicon drift detectors of the ALICE experiment at CERN. This compression algorithm is a general purpose lossy technique, in other words, its application could prove useful even on a wide range of other data reduction's problems. In particular the design targets relevant for our wavelet-based compression algorithm are the following ones: a high-compression coefficient, a reconstruction error as small as possible and a very limited execution time. Interestingly, the results obtained are quite close to the ones achieved by the algorithm implemented in the first prototype of the chip CARLOS, the chip that will be used in the silicon drift detectors readout chain

  2. Theory of Wavelet-Based Coarse-Graining Hierarchies for Molecular Dynamics

    Science.gov (United States)

    2017-04-01

    Ismail25,26. In particular, the earlier work employed Monte Carlo and did not cap - ture dynamical information. The work here develops an approach suitable...assessed by the `1- norm of the correlation matrices, about 28 versus about 21 for water, and about 315 versus about 168 for alanine dipeptide. 18...indication of the appropriateness of the diffusion wavelet DoFs, is the `1- norm of structures and forces in a given representation basis. The `1- norm is

  3. The assessment of the HSR impacts on Spanish tourism: an approach based on multivariate panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guirao Abad, B.

    2016-07-01

    Literature review shows that little research has done so far to estimate how tourism indicators are affected by new HSR lines. In 2012, a multivariate panel analysis developed by Chen and Haynes was applied to the Chinese regions to quantify the HSR impact on tourism output. The Chinese experience confirmed that, during the period 1999-2010, emerging high speed rail services did have significant positive impacts on boosting tourism in China. Since them, no similar empirical tool has ever been tested in Europe. The aim of this paper is to analyze and validate the suitability of this tool to assess empirically the effects of HSR on Spanish tourism during the period 1999-2014, and to enhance the abovementioned model with a tourism database. With more than 20 years’ HSR experience, and operating the longest HSR network in Europe (2,900 km), Spain offers a good scenario for this model application because Spanish tourism sector represents 10.2% of its gross domestic product (GDP). Results clearly show that there is a direct linkage between the evolution of certain Spanish tourism outputs and the construction of the HSR network. However, authors´ recommendations include future new research on some variables limitations like the type of tourism output considered or the consideration. (Author)

  4. The assessment of the HSR impacts on Spanish tourism: an approach based on multivariate panel data analysis

    International Nuclear Information System (INIS)

    Guirao Abad, B.

    2016-01-01

    Literature review shows that little research has done so far to estimate how tourism indicators are affected by new HSR lines. In 2012, a multivariate panel analysis developed by Chen and Haynes was applied to the Chinese regions to quantify the HSR impact on tourism output. The Chinese experience confirmed that, during the period 1999-2010, emerging high speed rail services did have significant positive impacts on boosting tourism in China. Since them, no similar empirical tool has ever been tested in Europe. The aim of this paper is to analyze and validate the suitability of this tool to assess empirically the effects of HSR on Spanish tourism during the period 1999-2014, and to enhance the abovementioned model with a tourism database. With more than 20 years’ HSR experience, and operating the longest HSR network in Europe (2,900 km), Spain offers a good scenario for this model application because Spanish tourism sector represents 10.2% of its gross domestic product (GDP). Results clearly show that there is a direct linkage between the evolution of certain Spanish tourism outputs and the construction of the HSR network. However, authors´ recommendations include future new research on some variables limitations like the type of tourism output considered or the consideration. (Author)

  5. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia.

    Science.gov (United States)

    Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M

    2015-10-01

    To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Comparative study of different approaches for multivariate image analysis in HPTLC fingerprinting of natural products such as plant resin.

    Science.gov (United States)

    Ristivojević, Petar; Trifković, Jelena; Vovk, Irena; Milojković-Opsenica, Dušanka

    2017-01-01

    Considering the introduction of phytochemical fingerprint analysis, as a method of screening the complex natural products for the presence of most bioactive compounds, use of chemometric classification methods, application of powerful scanning and image capturing and processing devices and algorithms, advancement in development of novel stationary phases as well as various separation modalities, high-performance thin-layer chromatography (HPTLC) fingerprinting is becoming attractive and fruitful field of separation science. Multivariate image analysis is crucial in the light of proper data acquisition. In a current study, different image processing procedures were studied and compared in detail on the example of HPTLC chromatograms of plant resins. In that sense, obtained variables such as gray intensities of pixels along the solvent front, peak area and mean values of peak were used as input data and compared to obtained best classification models. Important steps in image analysis, baseline removal, denoising, target peak alignment and normalization were pointed out. Numerical data set based on mean value of selected bands and intensities of pixels along the solvent front proved to be the most convenient for planar-chromatographic profiling, although required at least the basic knowledge on image processing methodology, and could be proposed for further investigation in HPLTC fingerprinting. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    Science.gov (United States)

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  8. A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis

    Directory of Open Access Journals (Sweden)

    Jaison Bennet

    2014-01-01

    Full Text Available Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN, naive Bayes, and support vector machine (SVM. Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT and moving window technique (MWT is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  9. Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others

    2017-07-01

    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.

  10. Wavelet-Based Watermarking and Compression for ECG Signals with Verification Evaluation

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2014-02-01

    Full Text Available In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user’s data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER, signal-to-noise ratio (SNR, compression ratio (CR, and compressed-signal to noise ratio (CNR methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible.

  11. Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation

    Science.gov (United States)

    Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.

    2017-08-01

    A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.

  12. A novel application of wavelet based SVM to transient phenomena identification of power transformers

    International Nuclear Information System (INIS)

    Jazebi, S.; Vahidi, B.; Jannati, M.

    2011-01-01

    A novel differential protection approach is introduced in the present paper. The proposed scheme is a combination of Support Vector Machine (SVM) and wavelet transform theories. Two common transients such as magnetizing inrush current and internal fault are considered. A new wavelet feature is extracted which reduces the computational cost and enhances the discrimination accuracy of SVM. Particle swarm optimization technique (PSO) has been applied to tune SVM parameters. The suitable performance of this method is demonstrated by simulation of different faults and switching conditions on a power transformer in PSCAD/EMTDC software. The method has the advantages of high accuracy and low computational burden (less than a quarter of a cycle). The other advantage is that the method is not dependent on a specific threshold. Sympathetic and recovery inrush currents also have been simulated and investigated. Results show that the proposed method could remain stable even in noisy environments.

  13. Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting

    Institute of Scientific and Technical Information of China (English)

    WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng

    2003-01-01

    To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.

  14. Unintentional Interpersonal Synchronization Represented as a Reciprocal Visuo-Postural Feedback System: A Multivariate Autoregressive Modeling Approach.

    Directory of Open Access Journals (Sweden)

    Shuntaro Okazaki

    Full Text Available People's behaviors synchronize. It is difficult, however, to determine whether synchronized behaviors occur in a mutual direction--two individuals influencing one another--or in one direction--one individual leading the other, and what the underlying mechanism for synchronization is. To answer these questions, we hypothesized a non-leader-follower postural sway synchronization, caused by a reciprocal visuo-postural feedback system operating on pairs of individuals, and tested that hypothesis both experimentally and via simulation. In the behavioral experiment, 22 participant pairs stood face to face either 20 or 70 cm away from each other wearing glasses with or without vision blocking lenses. The existence and direction of visual information exchanged between pairs of participants were systematically manipulated. The time series data for the postural sway of these pairs were recorded and analyzed with cross correlation and causality. Results of cross correlation showed that postural sway of paired participants was synchronized, with a shorter time lag when participant pairs could see one another's head motion than when one of the participants was blindfolded. In addition, there was less of a time lag in the observed synchronization when the distance between participant pairs was smaller. As for the causality analysis, noise contribution ratio (NCR, the measure of influence using a multivariate autoregressive model, was also computed to identify the degree to which one's postural sway is explained by that of the other's and how visual information (sighted vs. blindfolded interacts with paired participants' postural sway. It was found that for synchronization to take place, it is crucial that paired participants be sighted and exert equal influence on one another by simultaneously exchanging visual information. Furthermore, a simulation for the proposed system with a wider range of visual input showed a pattern of results similar to the

  15. Requiring collaboration: Hippocampal-prefrontal networks needed in spatial working memory and ageing. A multivariate analysis approach.

    Science.gov (United States)

    Zancada-Menendez, C; Alvarez-Suarez, P; Sampedro-Piquero, P; Cuesta, M; Begega, A

    2017-04-01

    Ageing is characterized by a decline in the processes of retention and storage of spatial information. We have examined the behavioural performance of adult rats (3months old) and aged rats (18months old) in a spatial complex task (delayed match to sample). The spatial task was performed in the Morris water maze and consisted of three sessions per day over a period of three consecutive days. Each session consisted of two trials (one sample and retention) and inter-session intervals of 5min. Behavioural results showed that the spatial task was difficult for middle aged group. This worse execution could be associated with impairments of processing speed and spatial information retention. We examined the changes in the neuronal metabolic activity of different brain regions through cytochrome C oxidase histochemistry. Then, we performed MANOVA and Discriminant Function Analyses to determine the functional profile of the brain networks that are involved in the spatial learning of the adult and middle-aged groups. This multivariate analysis showed two principal functional networks that necessarily participate in this spatial learning. The first network was composed of the supramammillary nucleus, medial mammillary nucleus, CA3, and CA1. The second one included the anterior cingulate, prelimbic, and infralimbic areas of the prefrontal cortex, dentate gyrus, and amygdala complex (basolateral l and central subregions). There was a reduction in the hippocampal-supramammilar network in both learning groups, whilst there was an overactivation in the executive network, especially in the aged group. This response could be due to a higher requirement of the executive control in a complex spatial memory task in older animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate Statistical Analysis approach.

    Science.gov (United States)

    Rakotondrabe, Felaniaina; Ndam Ngoupayou, Jules Remy; Mfonka, Zakari; Rasolomanana, Eddy Harilala; Nyangono Abolo, Alexis Jacob; Ako Ako, Andrew

    2018-01-01

    The influence of gold mining activities on the water quality in the Mari catchment in Bétaré-Oya (East Cameroon) was assessed in this study. Sampling was performed within the period of one hydrological year (2015 to 2016), with 22 sampling sites consisting of groundwater (06) and surface water (16). In addition to measuring the physicochemical parameters, such as pH, electrical conductivity, alkalinity, turbidity, suspended solids and CN - , eleven major elements (Na + , K + , Ca 2+ , Mg 2+ , NH 4 + , Cl - , NO 3 - , HCO 3 - , SO 4 2- , PO 4 3- and F - ) and eight heavy metals (Pb, Zn, Cd, Fe, Cu, As, Mn and Cr) were also analyzed using conventional hydrochemical methods, Multivariate Statistical Analysis and the Heavy metal Pollution Index (HPI). The results showed that the water from Mari catchment and Lom River was acidic to basic (5.40water quality, except for nitrates in some wells, which was found at a concentration >50mg NO 3 - /L. This water was found as two main types: calcium magnesium bicarbonate (CaMg-HCO 3 ), which was the most represented, and sodium bicarbonate potassium (NaK-HCO 3 ). As for trace elements in surface water, the contents of Pb, Cd, Mn, Cr and Fe were higher than recommended by the WHO guidelines, and therefore, the surface water was unsuitable for human consumption. Three phenomena were responsible for controlling the quality of the water in the study area: hydrolysis of silicate minerals of plutono-metamorphic rocks, which constitute the geological basement of this area; vegetation and soil leaching; and mining activities. The high concentrations of TSS and trace elements found in this basin were mainly due to gold mining activities (exploration and exploitation) as well as digging of rivers beds, excavation and gold amalgamation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 3D Inversion of Magnetic Data through Wavelet based Regularization Method

    Directory of Open Access Journals (Sweden)

    Maysam Abedi

    2015-06-01

    Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.

  18. Wavelet-based multicomponent denoising on GPU to improve the classification of hyperspectral images

    Science.gov (United States)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco; Mouriño, J. C.

    2017-10-01

    Supervised classification allows handling a wide range of remote sensing hyperspectral applications. Enhancing the spatial organization of the pixels over the image has proven to be beneficial for the interpretation of the image content, thus increasing the classification accuracy. Denoising in the spatial domain of the image has been shown as a technique that enhances the structures in the image. This paper proposes a multi-component denoising approach in order to increase the classification accuracy when a classification method is applied. It is computed on multicore CPUs and NVIDIA GPUs. The method combines feature extraction based on a 1Ddiscrete wavelet transform (DWT) applied in the spectral dimension followed by an Extended Morphological Profile (EMP) and a classifier (SVM or ELM). The multi-component noise reduction is applied to the EMP just before the classification. The denoising recursively applies a separable 2D DWT after which the number of wavelet coefficients is reduced by using a threshold. Finally, inverse 2D-DWT filters are applied to reconstruct the noise free original component. The computational cost of the classifiers as well as the cost of the whole classification chain is high but it is reduced achieving real-time behavior for some applications through their computation on NVIDIA multi-GPU platforms.

  19. Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation.

    Directory of Open Access Journals (Sweden)

    Pradipta Maji

    Full Text Available Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.

  20. A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging

    International Nuclear Information System (INIS)

    Chaari, L.; Pesquet, J.Ch.; Chaari, L.; Ciuciu, Ph.; Benazza-Benyahia, A.

    2011-01-01

    To reduce scanning time and/or improve spatial/temporal resolution in some Magnetic Resonance Imaging (MRI) applications, parallel MRI acquisition techniques with multiple coils acquisition have emerged since the early 1990's as powerful imaging methods that allow a faster acquisition process. In these techniques, the full FOV image has to be reconstructed from the resulting acquired under sampled k-space data. To this end, several reconstruction techniques have been proposed such as the widely-used Sensitivity Encoding (SENSE) method. However, the reconstructed image generally presents artifacts when perturbations occur in both the measured data and the estimated coil sensitivity profiles. In this paper, we aim at achieving accurate image reconstruction under degraded experimental conditions (low magnetic field and high reduction factor), in which neither the SENSE method nor the Tikhonov regularization in the image domain give convincing results. To this end, we present a novel method for SENSE-based reconstruction which proceeds with regularization in the complex wavelet domain by promoting sparsity. The proposed approach relies on a fast algorithm that enables the minimization of regularized non-differentiable criteria including more general penalties than a classical l 1 term. To further enhance the reconstructed image quality, local convex constraints are added to the regularization process. In vivo human brain experiments carried out on Gradient-Echo (GRE) anatomical and Echo Planar Imaging (EPI) functional MRI data at 1.5 T indicate that our algorithm provides reconstructed images with reduced artifacts for high reduction factors. (authors)

  1. Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement

    Science.gov (United States)

    Shervani-Tabar, Navid; Vasilyev, Oleg V.

    2016-11-01

    This paper addresses one of the main challenges of the conservative level set method, namely the ill-conditioned behavior of the normal vector away from the interface. An alternative formulation for reconstruction of the interface is proposed. Unlike the commonly used methods which rely on the unit normal vector, Stabilized Conservative Level Set (SCLS) uses a modified renormalization vector with diminishing magnitude away from the interface. With the new formulation, in the vicinity of the interface the reinitialization procedure utilizes compressive flux and diffusive terms only in the normal direction to the interface, thus, preserving the conservative level set properties, while away from the interfaces the directional diffusion mechanism automatically switches to homogeneous diffusion. The proposed formulation is robust and general. It is especially well suited for use with adaptive mesh refinement (AMR) approaches due to need for a finer resolution in the vicinity of the interface in comparison with the rest of the domain. All of the results were obtained using the Adaptive Wavelet Collocation Method, a general AMR-type method, which utilizes wavelet decomposition to adapt on steep gradients in the solution while retaining a predetermined order of accuracy.

  2. Non-parametric identification of multivariable systems : a local rational modeling approach with application to a vibration isolation benchmark

    NARCIS (Netherlands)

    Voorhoeve, R.J.; van der Maas, A.; Oomen, T.A.J.

    2018-01-01

    Frequency response function (FRF) identification is often used as a basis for control systems design and as a starting point for subsequent parametric system identification. The aim of this paper is to develop a multiple-input multiple-output (MIMO) local parametric modeling approach for FRF

  3. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder

    Science.gov (United States)

    Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant’s treatment outcome may help during antidepressant’s selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant’s treatment outcome for the MDD patients. PMID:28152063

  4. A wavelet-based ECG delineation algorithm for 32-bit integer online processing.

    Science.gov (United States)

    Di Marco, Luigi Y; Chiari, Lorenzo

    2011-04-03

    Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.

  5. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    Science.gov (United States)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  6. Pigmented skin lesion detection using random forest and wavelet-based texture

    Science.gov (United States)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  7. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder.

    Science.gov (United States)

    Mumtaz, Wajid; Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad; Malik, Aamir Saeed

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant's treatment outcome may help during antidepressant's selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant's treatment outcome for the MDD patients.

  8. Multivariate pattern dependence.

    Directory of Open Access Journals (Sweden)

    Stefano Anzellotti

    2017-11-01

    Full Text Available When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD: a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS and to the fusiform face area (FFA, using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity.

  9. On the importance of local dynamics in statokinesigram: A multivariate approach for postural control evaluation in elderly.

    Science.gov (United States)

    Bargiotas, Ioannis; Audiffren, Julien; Vayatis, Nicolas; Vidal, Pierre-Paul; Buffat, Stephane; Yelnik, Alain P; Ricard, Damien

    2018-01-01

    The fact that almost one third of population >65 years-old has at least one fall per year, makes the risk-of-fall assessment through easy-to-use measurements an important issue in current clinical practice. A common way to evaluate posture is through the recording of the center-of-pressure (CoP) displacement (statokinesigram) with force platforms. Most of the previous studies, assuming homogeneous statokinesigrams in quiet standing, used global parameters in order to characterize the statokinesigrams. However the latter analysis provides little information about local characteristics of statokinesigrams. In this study, we propose a multidimensional scoring approach which locally characterizes statokinesigrams on small time-periods, or blocks, while highlighting those which are more indicative to the general individual's class (faller/non-faller). Moreover, this information can be used to provide a global score in order to evaluate the postural control and classify fallers/non-fallers. We evaluate our approach using the statokinesigram of 126 community-dwelling elderly (78.5 ± 7.7 years). Participants were recorded with eyes open and eyes closed (25 seconds each acquisition) and information about previous falls was collected. The performance of our findings are assessed using the receiver operating characteristics (ROC) analysis and the area under the curve (AUC). The results show that global scores provided by splitting statokinesigrams in smaller blocks and analyzing them locally, classify fallers/non-fallers more effectively (AUC = 0.77 ± 0.09 instead of AUC = 0.63 ± 0.12 for global analysis when splitting is not used). These promising results indicate that such methodology might provide supplementary information about the risk of fall of an individual and be of major usefulness in assessment of balance-related diseases such as Parkinson's disease.

  10. On the importance of local dynamics in statokinesigram: A multivariate approach for postural control evaluation in elderly.

    Directory of Open Access Journals (Sweden)

    Ioannis Bargiotas

    Full Text Available The fact that almost one third of population >65 years-old has at least one fall per year, makes the risk-of-fall assessment through easy-to-use measurements an important issue in current clinical practice. A common way to evaluate posture is through the recording of the center-of-pressure (CoP displacement (statokinesigram with force platforms. Most of the previous studies, assuming homogeneous statokinesigrams in quiet standing, used global parameters in order to characterize the statokinesigrams. However the latter analysis provides little information about local characteristics of statokinesigrams. In this study, we propose a multidimensional scoring approach which locally characterizes statokinesigrams on small time-periods, or blocks, while highlighting those which are more indicative to the general individual's class (faller/non-faller. Moreover, this information can be used to provide a global score in order to evaluate the postural control and classify fallers/non-fallers. We evaluate our approach using the statokinesigram of 126 community-dwelling elderly (78.5 ± 7.7 years. Participants were recorded with eyes open and eyes closed (25 seconds each acquisition and information about previous falls was collected. The performance of our findings are assessed using the receiver operating characteristics (ROC analysis and the area under the curve (AUC. The results show that global scores provided by splitting statokinesigrams in smaller blocks and analyzing them locally, classify fallers/non-fallers more effectively (AUC = 0.77 ± 0.09 instead of AUC = 0.63 ± 0.12 for global analysis when splitting is not used. These promising results indicate that such methodology might provide supplementary information about the risk of fall of an individual and be of major usefulness in assessment of balance-related diseases such as Parkinson's disease.

  11. Examining the Role of the Human Hippocampus in Approach-Avoidance Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    O'Neil, Edward B; Newsome, Rachel N; Li, Iris H N; Thavabalasingam, Sathesan; Ito, Rutsuko; Lee, Andy C H

    2015-11-11

    Rodent models of anxiety have implicated the ventral hippocampus in approach-avoidance conflict processing. Few studies have, however, examined whether the human hippocampus plays a similar role. We developed a novel decision-making paradigm to examine neural activity when participants made approach/avoidance decisions under conditions of high or absent approach-avoidance conflict. Critically, our task required participants to learn the associated reward/punishment values of previously neutral stimuli and controlled for mnemonic and spatial processing demands, both important issues given approach-avoidance behavior in humans is less tied to predation and foraging compared to rodents. Participants played a points-based game where they first attempted to maximize their score by determining which of a series of previously neutral image pairs should be approached or avoided. During functional magnetic resonance imaging, participants were then presented with novel pairings of these images. These pairings consisted of images of congruent or opposing learned valences, the latter creating conditions of high approach-avoidance conflict. A data-driven partial least squares multivariate analysis revealed two reliable patterns of activity, each revealing differential activity in the anterior hippocampus, the homolog of the rodent ventral hippocampus. The first was associated with greater hippocampal involvement during trials with high as opposed to no approach-avoidance conflict, regardless of approach or avoidance behavior. The second pattern encompassed greater hippocampal activity in a more anterior aspect during approach compared to avoid responses, for conflict and no-conflict conditions. Multivoxel pattern classification analyses yielded converging findings, underlining a role of the anterior hippocampus in approach-avoidance conflict decision making. Approach-avoidance conflict has been linked to anxiety and occurs when a stimulus or situation is associated with reward

  12. Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization.

    Science.gov (United States)

    Zhang, Yudong; Wang, Shuihua; Sui, Yuxiu; Yang, Ming; Liu, Bin; Cheng, Hong; Sun, Junding; Jia, Wenjuan; Phillips, Preetha; Gorriz, Juan Manuel

    2017-07-17

    The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system. In this study, we developed a novel machine learning system that can make diagnoses automatically from brain magnetic resonance images. First, the brain imaging was processed, including skull stripping and spatial normalization. Second, one axial slice was selected from the volumetric image, and stationary wavelet entropy (SWE) was done to extract the texture features. Third, a single-hidden-layer neural network was used as the classifier. Finally, a predator-prey particle swarm optimization was proposed to train the weights and biases of the classifier. Our method used 4-level decomposition and yielded 13 SWE features. The classification yielded an overall accuracy of 92.73±1.03%, a sensitivity of 92.69±1.29%, and a specificity of 92.78±1.51%. The area under the curve is 0.95±0.02. Additionally, this method only cost 0.88 s to identify a subject in online stage, after its volumetric image is preprocessed. In terms of classification performance, our method performs better than 10 state-of-the-art approaches and the performance of human observers. Therefore, this proposed method is effective in the detection of Alzheimer's disease.

  13. Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach

    Energy Technology Data Exchange (ETDEWEB)

    Dassi, Lassaad, E-mail: lassaad@geologist.com [Faculte des Sciences, Departement des Sciences de la Terre, Zrig, Gabes 6072 (Tunisia)

    2011-08-15

    Highlights: > We investigate the hydrodynamics and hydrochemistry of a multilayer aquifer system. > We examine the geochemical evolution, the origins and the circulation patterns of groundwater. > The mineralization is controlled by water-rock interaction and return flow process. > Groundwater derives from palaeoclimatic and modern end-members. > Mixing by upward and downward leakage occurs between these two end-members. - Abstract: A multi-tracer approach has been carried out in the Sbeitla multilayer aquifer system, central Tunisia, to investigate the geochemical evolution, the origin of groundwaters and their circulation patterns. It involves statistical data analysis coupled with the definition of the hydrochemical and isotopic features of the different groundwaters. Principal Components Analysis (PCA) of geochemical data used in conjunction with bivariate diagrams of major and trace elements indicate that groundwater mineralization is mainly controlled by water-rock interaction and anthropogenic processes in relation to return flow of irrigation waters. The PCA of isotopic data and bivariate conventional diagrams of stable and radiogenic isotopes i.e. {delta}{sup 18}O vs. {delta}{sup 2}H and {delta}{sup 18}O vs. {sup 14}C provide valuable information about the origin and the circulation patterns of the different groundwater groups. They permit classifying groundwaters into three groups. The first group is characterized by low {sup 3}H concentrations, low {sup 14}C activities and depleted stable isotope contents. It corresponds to an old end-member in relation with palaeoclimatic recharge which occurred during the Late Pleistocene and the Early Holocene humid periods. The second group is distinguished by high to moderate {sup 3}H concentrations, high {sup 14}C activities and enriched heavy isotope signatures. It corresponds to a modern end-member originating from a mixture of post-nuclear and present-day recharge in relation to return flow of irrigation waters

  14. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comparison to the Dst index

    Science.gov (United States)

    Xu, Zhonghua; Zhu, Lie; Sojka, Jan; Kokoszka, Piotr; Jach, Agnieszka

    2008-08-01

    A wavelet-based index of storm activity (WISA) has been recently developed [Jach, A., Kokoszka, P., Sojka, L., Zhu, L., 2006. Wavelet-based index of magnetic storm activity. Journal of Geophysical Research 111, A09215, doi:10.1029/2006JA011635] to complement the traditional Dst index. The new index can be computed automatically by using the wavelet-based statistical procedure without human intervention on the selection of quiet days and the removal of secular variations. In addition, the WISA is flexible on data stretch and has a higher temporal resolution (1 min), which can provide a better description of the dynamical variations of magnetic storms. In this work, we perform a systematic assessment study on the WISA index. First, we statistically compare the WISA to the Dst for various quiet and disturbed periods and analyze the differences of their spectral features. Then we quantitatively assess the flexibility of the WISA on data stretch and study the effects of varying number of stations on the index. In addition, the ability of the WISA for handling the missing data is also quantitatively assessed. The assessment results show that the hourly averaged WISA index can describe storm activities equally well as the Dst index, but its full automation, high flexibility on data stretch, easiness of using the data from varying number of stations, high temporal resolution, and high tolerance to missing data from individual station can be very valuable and essential for real-time monitoring of the dynamical variations of magnetic storm activities and space weather applications, thus significantly complementing the existing Dst index.

  15. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  16. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    Science.gov (United States)

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The interprocess NIR sampling as an alternative approach to multivariate statistical process control for identifying sources of product-quality variability.

    Science.gov (United States)

    Marković, Snežana; Kerč, Janez; Horvat, Matej

    2017-03-01

    We are presenting a new approach of identifying sources of variability within a manufacturing process by NIR measurements of samples of intermediate material after each consecutive unit operation (interprocess NIR sampling technique). In addition, we summarize the development of a multivariate statistical process control (MSPC) model for the production of enteric-coated pellet product of the proton-pump inhibitor class. By developing provisional NIR calibration models, the identification of critical process points yields comparable results to the established MSPC modeling procedure. Both approaches are shown to lead to the same conclusion, identifying parameters of extrusion/spheronization and characteristics of lactose that have the greatest influence on the end-product's enteric coating performance. The proposed approach enables quicker and easier identification of variability sources during manufacturing process, especially in cases when historical process data is not straightforwardly available. In the presented case the changes of lactose characteristics are influencing the performance of the extrusion/spheronization process step. The pellet cores produced by using one (considered as less suitable) lactose source were on average larger and more fragile, leading to consequent breakage of the cores during subsequent fluid bed operations. These results were confirmed by additional experimental analyses illuminating the underlying mechanism of fracture of oblong pellets during the pellet coating process leading to compromised film coating.

  18. Multivariate Bioclimatic Ecosystem Change Approaches

    Science.gov (United States)

    2015-02-06

    course the sandy soils of the Sandhills will not migrate. This observation suggests that a new nomenclature for ecosystems must be developed if...Coast Sandhills. At that time period, not only will the climate be similar, but the soil character will also be similar. Therefore about the year 2115...Disaggregation of global circulation model outputs decision and policy analysis. Working Paper No. 2. Cali, Colombia : International Centre for Tropical

  19. Multivariate approaches in plant science

    DEFF Research Database (Denmark)

    Gottlieb, D.M.; Schultz, j.; Bruun, Susanne Wrang

    2004-01-01

    The objective of proteomics is to get an overview of the proteins expressed at a given point in time in a given tissue and to identify the connection to the biochemical status of that tissue. Therefore sample throughput and analysis time are important issues in proteomics. The concept of proteomi...

  20. Multivariate innovative approaches to the treatment of the emission of LIBS plasmas. Application to chemical online analysis in a nuclear environment

    International Nuclear Information System (INIS)

    El-Rakwe, Maria

    2016-01-01

    , exploiting in addition to the usual spectral dimension, the temporal dimension of LIBS signal. In this part, the value of this approach over conventional methods of quantification (univariate and multivariate) and the contribution of this methodology to diagnose, understand and possibly compensate matrix effects observed in LIBS are discussed. (author) [fr

  1. A primer of multivariate statistics

    CERN Document Server

    Harris, Richard J

    2014-01-01

    Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why

  2. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae? Analysis of the available classifications using a multivariate approach

    Directory of Open Access Journals (Sweden)

    Lucía Castello

    2013-05-01

    Full Text Available Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: T. capillaris Ruiz & Pav. f. capillaris, T. capillaris f. incana (Mez L.B. Sm., T. capillaris f. cordobensis (Hieron. L.B. Sm., T. capillaris f. hieronymi (Mez L.B. Sm. and T. capillaris f. virescens (Ruiz & Pav. L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the T. capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: T. capillaris (=T. capillaris f. incana-hieronymi, T. virescens s. str. (=T. capillaris f. cordobensis and T. virescens s. l. (=T. capillaris f. virescens. While T. capillaris and T. virescens s. str. co-occur, T. virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex.

  3. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach.

    Science.gov (United States)

    Castello, Lucía V; Galetto, Leonardo

    2013-01-01

    Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex.

  4. Multivariate approaches for stability control of the olive oil reference materials for sensory analysis - part I: framework and fundamentals.

    Science.gov (United States)

    Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis

    2018-02-09

    Virgin olive oil is the only food product for which sensory analysis is regulated to classify it in different quality categories. To harmonize the results of the sensorial method, the use of standards or reference materials is crucial. The stability of sensory reference materials is required to enable their suitable control, aiming to confirm that their specific target values are maintained on an ongoing basis. Currently, such stability is monitored by means of sensory analysis and the sensory panels are in the paradoxical situation of controlling the standards that are devoted to controlling the panels. In the present study, several approaches based on similarity analysis are exploited. For each approach, the specific methodology to build a proper multivariate control chart to monitor the stability of the sensory properties is explained and discussed. The normalized Euclidean and Mahalanobis distances, the so-called nearness and hardiness indices respectively, have been defined as new similarity indices to range the values from 0 to 1. Also, the squared mean from Hotelling's T 2 -statistic and Q 2 -statistic has been proposed as another similarity index. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Fourier and Wavelet Based Characterisation of the Ionospheric Response to the Solar Eclipse of August, the 11th, 1999, Measured Through 1-minute Vertical Ionospheric Sounding

    Science.gov (United States)

    Sauli, P.; Abry, P.; Boska, J.

    2004-05-01

    The aim of the present work is to study the ionospheric response induced by the solar eclipse of August, the 11th, 1999. We provide Fourier and wavelet based characterisations of the propagation of the acoustic-gravity waves induced by the solar eclipse. The analysed data consist of profiles of electron concentration. They are derived from 1-minute vertical incidence ionospheric sounding measurements, performed at the Pruhonice observatory (Czech republic, 49.9N, 14.5E). The chosen 1-minute high sampling rate aims at enabling us to specifically see modes below acoustic cut-off period. The August period was characterized by Solar Flux F10.7 = 128, steady solar wind, quiet magnetospheric conditions, a low geomagnetic activity (Dst index varies from -10 nT to -20 nT, Σ Kp index reached value of 12+). The eclipse was notably exceptional in uniform solar disk. These conditions and fact that the culmination of the solar eclipse over central Europe occurred at local noon are such that the observed ionospheric response is mainly that of the solar eclipse. We provide a full characterization of the propagation of the waves in terms of times of occurrence, group and phase velocities, propagation direction, characteristic period and lifetime of the particular wave structure. However, ionospheric vertical sounding technique enables us to deal with vertical components of each characteristic. Parameters are estimated combining Fourier and wavelet analysis. Our conclusions confirm earlier theoretical and experimental findings, reported in [Altadill et al., 2001; Farges et al., 2001; Muller-Wodarg et al.,1998] regarding the generation and propagation of gravity waves and provide complementary characterisation using wavelet approaches. We also report a new evidence for the generation and propagation of acoustic waves induced by the solar eclipse through the ionospheric F region. Up to our knowledge, this is the first time that acoustic waves can be demonstrated based on ionospheric

  6. A novel multivariate STeady-state index during general ANesthesia (STAN).

    Science.gov (United States)

    Castro, Ana; de Almeida, Fernando Gomes; Amorim, Pedro; Nunes, Catarina S

    2017-08-01

    the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.

  7. Geochemistry of natural and anthropogenic fall-out (aerosol and precipitation) collected from the NW Mediterranean: two different multivariate statistical approaches

    International Nuclear Information System (INIS)

    Molinaroli, E.; Pistolato, M.; Rampazzo, G.; Guerzoni, S.

    1999-01-01

    The chemical characteristics of the mineral fractions of aerosol and precipitation collected in Sardinia (NW Mediterranean) are highlighted by means of two multivariate statistical approaches. Two different combinations of classification and statistical methods for geochemical data are presented. It is shown that the application of cluster analysis subsequent to Q-Factor analysis better distinguishes among Saharan dust, background pollution (Europe-Mediterranean) and local aerosol from various source regions (Sardinia). Conversely, the application of simple cluster analysis was able to distinguish only between aerosols and precipitation particles, without assigning the sources (local or distant) to the aerosol. This method also highlighted the fact that crust-enriched precipitation is similar to desert-derived aerosol. Major elements (Al, Na) and trace metal (Pb) turn out to be the most discriminating elements of the analysed data set. Independent use of mineralogical, granulometric and meteorological data confirmed the results derived from the statistical methods employed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Study of a Multivariate Approach for the Background Rejection in the Scattering of Two Like-Charge $W^{\\pm}$ Bosons with the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2100403; Kobel, Michael; Straessner, Arno

    This thesis presents the study of a multivariate approach for the background rejection in the scattering of two like-charge $W^{\\pm}$ bosons with the ATLAS detector at the Large Hadron Collider. The scattering process can be accessed through the measurement of purely electroweak production of two like-charge $W^{\\pm}$ bosons and two jets in the fully leptonic decay channel of the $W^{\\pm}$ bosons. Although the characteristic signature of the final state of this production process already reduces most Standard Model backgrounds, other processes exist that leave the same experimental signature in the detector. QCD-initiated production of a $W^{\\pm}$ boson and a $Z$ boson in association with two jets with leptonic decay of the $W^{\\pm}$ and the $Z$ boson accounts for the largest background contribution. Thus, the focus of this thesis is set on the rejection of this background. As a very promising technique for this classification problem, boosted decision trees are studied in this thesis. The variable ranking of...

  9. Measuring Burden of Unhealthy Behaviours Using a Multivariable Predictive Approach: Life Expectancy Lost in Canada Attributable to Smoking, Alcohol, Physical Inactivity, and Diet.

    Science.gov (United States)

    Manuel, Douglas G; Perez, Richard; Sanmartin, Claudia; Taljaard, Monica; Hennessy, Deirdre; Wilson, Kumanan; Tanuseputro, Peter; Manson, Heather; Bennett, Carol; Tuna, Meltem; Fisher, Stacey; Rosella, Laura C

    2016-08-01

    Behaviours such as smoking, poor diet, physical inactivity, and unhealthy alcohol consumption are leading risk factors for death. We assessed the Canadian burden attributable to these behaviours by developing, validating, and applying a multivariable predictive model for risk of all-cause death. A predictive algorithm for 5 y risk of death-the Mortality Population Risk Tool (MPoRT)-was developed and validated using the 2001 to 2008 Canadian Community Health Surveys. There were approximately 1 million person-years of follow-up and 9,900 deaths in the development and validation datasets. After validation, MPoRT was used to predict future mortality and estimate the burden of smoking, alcohol, physical inactivity, and poor diet in the presence of sociodemographic and other risk factors using the 2010 national survey (approximately 90,000 respondents). Canadian period life tables were generated using predicted risk of death from MPoRT. The burden of behavioural risk factors attributable to life expectancy was estimated using hazard ratios from the MPoRT risk model. The MPoRT 5 y mortality risk algorithms were discriminating (C-statistic: males 0.874 [95% CI: 0.867-0.881]; females 0.875 [0.868-0.882]) and well calibrated in all 58 predefined subgroups. Discrimination was maintained or improved in the validation cohorts. For the 2010 Canadian population, unhealthy behaviour attributable life expectancy lost was 6.0 years for both men and women (for men 95% CI: 5.8 to 6.3 for women 5.8 to 6.2). The Canadian life expectancy associated with health behaviour recommendations was 17.9 years (95% CI: 17.7 to 18.1) greater for people with the most favourable risk profile compared to those with the least favourable risk profile (88.2 years versus 70.3 years). Smoking, by itself, was associated with 32% to 39% of the difference in life expectancy across social groups (by education achieved or neighbourhood deprivation). Multivariable predictive algorithms such as MPoRT can be used

  10. Control Multivariable por Desacoplo

    Directory of Open Access Journals (Sweden)

    Fernando Morilla

    2013-01-01

    Full Text Available Resumen: La interacción entre variables es una característica inherente de los procesos multivariables, que dificulta su operación y el diseño de sus sistemas de control. Bajo el paradigma de Control por desacoplo se agrupan un conjunto de metodologías, que tradicionalmente han estado orientadas a eliminar o reducir la interacción, y que recientemente algunos investigadores han reorientado con objetivos de solucionar un problema tan complejo como es el control multivariable. Parte del material descrito en este artículo es bien conocido en el campo del control de procesos, pero la mayor parte de él son resultados de varios años de investigación de los autores en los que han primado la generalización del problema, la búsqueda de soluciones de fácil implementación y la combinación de bloques elementales de control PID. Esta conjunción de intereses provoca que no siempre se pueda conseguir un desacoplo perfecto, pero que sí se pueda conseguir una considerable reducción de la interacción en el nivel básico de la pirámide de control, en beneficio de otros sistemas de control que ocupan niveles jerárquicos superiores. El artículo resume todos los aspectos básicos del Control por desacoplo y su aplicación a dos procesos representativos: una planta experimental de cuatro tanques acoplados y un modelo 4×4 de un sistema experimental de calefacción, ventilación y aire acondicionado. Abstract: The interaction between variables is inherent in multivariable processes and this fact may complicate their operation and control system design. Under the paradigm of decoupling control, several methodologies that traditionally have been addressed to cancel or reduce the interactions are gathered. Recently, this approach has been reoriented by several researchers with the aim to solve such a complex problem as the multivariable control. Parts of the material in this work are well known in the process control field; however, most of them are

  11. Wavelet-based regularization and edge preservation for submillimetre 3D list-mode reconstruction data from a high resolution small animal PET system

    Energy Technology Data Exchange (ETDEWEB)

    Jesus Ochoa Dominguez, Humberto de, E-mail: hochoa@uacj.mx [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico); Ortega Maynez, Leticia; Osiris Vergara Villegas, Osslan; Gordillo Castillo, Nelly; Guadalupe Cruz Sanchez, Vianey; Gutierrez Casas, Efren David [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico)

    2011-10-01

    The data obtained from a PET system tend to be noisy because of the limitations of the current instrumentation and the detector efficiency. This problem is particularly severe in images of small animals as the noise contaminates areas of interest within small organs. Therefore, denoising becomes a challenging task. In this paper, a novel wavelet-based regularization and edge preservation method is proposed to reduce such noise. To demonstrate this method, image reconstruction using a small mouse {sup 18}F NEMA phantom and a {sup 18}F mouse was performed. Investigation on the effects of the image quality was addressed for each reconstruction case. Results show that the proposed method drastically reduces the noise and preserves the image details.

  12. Multivariate Approaches for Simultaneous Determination of Avanafil and Dapoxetine by UV Chemometrics and HPLC-QbD in Binary Mixtures and Pharmaceutical Product.

    Science.gov (United States)

    2016-04-07

    Multivariate UV-spectrophotometric methods and Quality by Design (QbD) HPLC are described for concurrent estimation of avanafil (AV) and dapoxetine (DP) in the binary mixture and in the dosage form. Chemometric methods have been developed, including classical least-squares, principal component regression, partial least-squares, and multiway partial least-squares. Analytical figures of merit, such as sensitivity, selectivity, analytical sensitivity, LOD, and LOQ were determined. QbD consists of three steps, starting with the screening approach to determine the critical process parameter and response variables. This is followed by understanding of factors and levels, and lastly the application of a Box-Behnken design containing four critical factors that affect the method. From an Ishikawa diagram and a risk assessment tool, four main factors were selected for optimization. Design optimization, statistical calculation, and final-condition optimization of all the reactions were Carried out. Twenty-five experiments were done, and a quadratic model was used for all response variables. Desirability plot, surface plot, design space, and three-dimensional plots were calculated. In the optimized condition, HPLC separation was achieved on Phenomenex Gemini C18 column (250 × 4.6 mm, 5 μm) using acetonitrile-buffer (ammonium acetate buffer at pH 3.7 with acetic acid) as a mobile phase at flow rate of 0.7 mL/min. Quantification was done at 239 nm, and temperature was set at 20°C. The developed methods were validated and successfully applied for simultaneous determination of AV and DP in the dosage form.

  13. Quality changes of pasteurised mango juice during storage. Part I: Selecting shelf-life markers by integration of a targeted and untargeted multivariate approach.

    Science.gov (United States)

    Wibowo, Scheling; Grauwet, Tara; Gedefa, Getnet Belete; Hendrickx, Marc; Van Loey, Ann

    2015-12-01

    For the first time, a multivariate approach combining targeted and untargeted data was used to obtain insight into quality changes in pasteurised mango juice (cv. 'Totapuri') as a function of storage (42°C for 8weeks). Mango juice samples were formulated with addition of different potential precursors for different quality-related chemical reactions: ascorbic acid, citric acid and sugars. Control (diluted mango puree with water), ascorbic acid-enriched (AA 250 and AA 500 ), citric acid-enriched (CA, CA+AA 250 and CA+AA 500 ) and sugar-enriched (S) samples were characterised for a range of targeted quality parameters as well as for a volatile fingerprint (untargeted). Selection of shelf-life markers or quality parameters significantly changing during shelf-life was performed over all formulations as well as per mango juice formulation. Our study showed that a common trend over all formulations was observed for colour values (VID>│0.90│), while specific shelf-life markers were selected for each formulation. In acidified mango juice samples (CA, CA+AA 250 , CA+AA 500 ), more terpene oxides were selected compared to other formulations. In ascorbic acid-enriched samples (AA 250 , AA 500 , CA+AA 250 , CA+AA 500 ), furfural and ascorbic acid were significantly changing during shelf-life. It seems that the reaction pathways for compounds being formed or degraded upon shelf-life are clearly affected by the acidity level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    Science.gov (United States)

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

  15. A Wavelet-Based Unified Power Quality Conditioner to Eliminate Wind Turbine Non-Ideality Consequences on Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-05-01

    Full Text Available The integration of renewable power sources with power grids presents many challenges, such as synchronization with the grid, power quality problems and so on. The shunt active power filter (SAPF can be a solution to address the issue while suppressing the grid-end current harmonics and distortions. Nonetheless, available SAPFs work somewhat unpredictably in practice. This is attributed to the dependency of the SAPF controller on nonlinear complicated equations and two distorted variables, such as load current and voltage, to produce the current reference. This condition will worsen when the plant includes wind turbines which inherently produce 3rd, 5th, 7th and 11th voltage harmonics. Moreover, the inability of the typical phase locked loop (PLL used to synchronize the SAPF reference with the power grid also disrupts SAPF operation. This paper proposes an improved synchronous reference frame (SRF which is equipped with a wavelet-based PLL to control the SAPF, using one variable such as load current. Firstly the fundamental positive sequence of the source voltage, obtained using a wavelet, is used as the input signal of the PLL through an orthogonal signal generator process. Then, the generated orthogonal signals are applied through the SRF-based compensation algorithm to synchronize the SAPF’s reference with power grid. To further force the remained uncompensated grid current harmonics to pass through the SAPF, an improved series filter (SF equipped with a current harmonic suppression loop is proposed. Concurrent operation of the improved SAPF and SF is coordinated through a unified power quality conditioner (UPQC. The DC-link capacitor of the proposed UPQC, used to interconnect a photovoltaic (PV system to the power grid, is regulated by an adaptive controller. Matlab/Simulink results confirm that the proposed wavelet-based UPQC results in purely sinusoidal grid-end currents with total harmonic distortion (THD = 1.29%, which leads to high

  16. A "Model" Multivariable Calculus Course.

    Science.gov (United States)

    Beckmann, Charlene E.; Schlicker, Steven J.

    1999-01-01

    Describes a rich, investigative approach to multivariable calculus. Introduces a project in which students construct physical models of surfaces that represent real-life applications of their choice. The models, along with student-selected datasets, serve as vehicles to study most of the concepts of the course from both continuous and discrete…

  17. ReOBS: a new approach to synthesize long-term multi-variable dataset and application to the SIRTA supersite

    Science.gov (United States)

    Chiriaco, Marjolaine; Dupont, Jean-Charles; Bastin, Sophie; Badosa, Jordi; Lopez, Julio; Haeffelin, Martial; Chepfer, Helene; Guzman, Rodrigo

    2018-05-01

    A scientific approach is presented to aggregate and harmonize a set of 60 geophysical variables at hourly timescale over a decade, and to allow multiannual and multi-variable studies combining atmospheric dynamics and thermodynamics, radiation, clouds and aerosols from ground-based observations. Many datasets from ground-based observations are currently in use worldwide. They are very valuable because they contain complete and precise information due to their spatio-temporal co-localization over more than a decade. These datasets, in particular the synergy between different type of observations, are under-used because of their complexity and diversity due to calibration, quality control, treatment, format, temporal averaging, metadata, etc. Two main results are presented in this article: (1) a set of methods available for the community to robustly and reliably process ground-based data at an hourly timescale over a decade is described and (2) a single netCDF file is provided based on the SIRTA supersite observations. This file contains approximately 60 geophysical variables (atmospheric and in ground) hourly averaged over a decade for the longest variables. The netCDF file is available and easy to use for the community. In this article, observations are re-analyzed. The prefix re refers to six main steps: calibration, quality control, treatment, hourly averaging, homogenization of the formats and associated metadata, as well as expertise on more than a decade of observations. In contrast, previous studies (i) took only some of these six steps into account for each variable, (ii) did not aggregate all variables together in a single file and (iii) did not offer an hourly resolution for about 60 variables over a decade (for the longest variables). The approach described in this article can be applied to different supersites and to additional variables. The main implication of this work is that complex atmospheric observations are made readily available for scientists

  18. Multivariate analysis with LISREL

    CERN Document Server

    Jöreskog, Karl G; Y Wallentin, Fan

    2016-01-01

    This book traces the theory and methodology of multivariate statistical analysis and shows how it can be conducted in practice using the LISREL computer program. It presents not only the typical uses of LISREL, such as confirmatory factor analysis and structural equation models, but also several other multivariate analysis topics, including regression (univariate, multivariate, censored, logistic, and probit), generalized linear models, multilevel analysis, and principal component analysis. It provides numerous examples from several disciplines and discusses and interprets the results, illustrated with sections of output from the LISREL program, in the context of the example. The book is intended for masters and PhD students and researchers in the social, behavioral, economic and many other sciences who require a basic understanding of multivariate statistical theory and methods for their analysis of multivariate data. It can also be used as a textbook on various topics of multivariate statistical analysis.

  19. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  20. Applied multivariate statistics with R

    CERN Document Server

    Zelterman, Daniel

    2015-01-01

    This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the B...

  1. Relations between the development of school investment, self-confidence, and language achievement in elementary education: A multivariate latent growth curve approach

    NARCIS (Netherlands)

    Stoel, R.D.; Peetsma, T.T.D.; Roeleveld, J.

    2001-01-01

    Latent growth curve (LGC) analysis of longitudinal data for pupils' school investment, self confidence and language ability is presented. A multivariate model is tested that relates the three developmental processes to each other and to intelligence. All processes show significant differences

  2. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    Science.gov (United States)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  3. Continuous multivariate exponential extension

    International Nuclear Information System (INIS)

    Block, H.W.

    1975-01-01

    The Freund-Weinman multivariate exponential extension is generalized to the case of nonidentically distributed marginal distributions. A fatal shock model is given for the resulting distribution. Results in the bivariate case and the concept of constant multivariate hazard rate lead to a continuous distribution related to the multivariate exponential distribution (MVE) of Marshall and Olkin. This distribution is shown to be a special case of the extended Freund-Weinman distribution. A generalization of the bivariate model of Proschan and Sullo leads to a distribution which contains both the extended Freund-Weinman distribution and the MVE

  4. Multivariate GARCH models

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    This article contains a review of multivariate GARCH models. Most common GARCH models are presented and their properties considered. This also includes nonparametric and semiparametric models. Existing specification and misspecification tests are discussed. Finally, there is an empirical example...

  5. Multivariate Time Series Search

    Data.gov (United States)

    National Aeronautics and Space Administration — Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical...

  6. Nondestructive Damage Assessment of Composite Structures Based on Wavelet Analysis of Modal Curvatures: State-of-the-Art Review and Description of Wavelet-Based Damage Assessment Benchmark

    Directory of Open Access Journals (Sweden)

    Andrzej Katunin

    2015-01-01

    Full Text Available The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.

  7. Wavelet-based peak detection and a new charge inference procedure for MS/MS implemented in ProteoWizard's msConvert.

    Science.gov (United States)

    French, William R; Zimmerman, Lisa J; Schilling, Birgit; Gibson, Bradford W; Miller, Christine A; Townsend, R Reid; Sherrod, Stacy D; Goodwin, Cody R; McLean, John A; Tabb, David L

    2015-02-06

    We report the implementation of high-quality signal processing algorithms into ProteoWizard, an efficient, open-source software package designed for analyzing proteomics tandem mass spectrometry data. Specifically, a new wavelet-based peak-picker (CantWaiT) and a precursor charge determination algorithm (Turbocharger) have been implemented. These additions into ProteoWizard provide universal tools that are independent of vendor platform for tandem mass spectrometry analyses and have particular utility for intralaboratory studies requiring the advantages of different platforms convergent on a particular workflow or for interlaboratory investigations spanning multiple platforms. We compared results from these tools to those obtained using vendor and commercial software, finding that in all cases our algorithms resulted in a comparable number of identified peptides for simple and complex samples measured on Waters, Agilent, and AB SCIEX quadrupole time-of-flight and Thermo Q-Exactive mass spectrometers. The mass accuracy of matched precursor ions also compared favorably with vendor and commercial tools. Additionally, typical analysis runtimes (∼1-100 ms per MS/MS spectrum) were short enough to enable the practical use of these high-quality signal processing tools for large clinical and research data sets.

  8. Wavelet-Based Peak Detection and a New Charge Inference Procedure for MS/MS Implemented in ProteoWizard’s msConvert

    Science.gov (United States)

    2015-01-01

    We report the implementation of high-quality signal processing algorithms into ProteoWizard, an efficient, open-source software package designed for analyzing proteomics tandem mass spectrometry data. Specifically, a new wavelet-based peak-picker (CantWaiT) and a precursor charge determination algorithm (Turbocharger) have been implemented. These additions into ProteoWizard provide universal tools that are independent of vendor platform for tandem mass spectrometry analyses and have particular utility for intralaboratory studies requiring the advantages of different platforms convergent on a particular workflow or for interlaboratory investigations spanning multiple platforms. We compared results from these tools to those obtained using vendor and commercial software, finding that in all cases our algorithms resulted in a comparable number of identified peptides for simple and complex samples measured on Waters, Agilent, and AB SCIEX quadrupole time-of-flight and Thermo Q-Exactive mass spectrometers. The mass accuracy of matched precursor ions also compared favorably with vendor and commercial tools. Additionally, typical analysis runtimes (∼1–100 ms per MS/MS spectrum) were short enough to enable the practical use of these high-quality signal processing tools for large clinical and research data sets. PMID:25411686

  9. The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH-BEKK model

    Science.gov (United States)

    Liu, Xueyong; An, Haizhong; Huang, Shupei; Wen, Shaobo

    2017-01-01

    Aiming to investigate the evolution of mean and volatility spillovers between oil and stock markets in the time and frequency dimensions, we employed WTI crude oil prices, the S&P 500 (USA) index and the MICEX index (Russia) for the period Jan. 2003-Dec. 2014 as sample data. We first applied a wavelet-based GARCH-BEKK method to examine the spillover features in frequency dimension. To consider the evolution of spillover effects in time dimension at multiple-scales, we then divided the full sample period into three sub-periods, pre-crisis period, crisis period, and post-crisis period. The results indicate that spillover effects vary across wavelet scales in terms of strength and direction. By analysis the time-varying linkage, we found the different evolution features of spillover effects between the Oil-US stock market and Oil-Russia stock market. The spillover relationship between oil and US stock market is shifting to short-term while the spillover relationship between oil and Russia stock market is changing to all time scales. That result implies that the linkage between oil and US stock market is weakening in the long-term, and the linkage between oil and Russia stock market is getting close in all time scales. This may explain the phenomenon that the US stock index and the Russia stock index showed the opposite trend with the falling of oil price in the post-crisis period.

  10. Improvement of Secret Image Invisibility in Circulation Image with Dyadic Wavelet Based Data Hiding with Run-Length Coded Secret Images of Which Location of Codes are Determined with Random Number

    OpenAIRE

    Kohei Arai; Yuji Yamada

    2011-01-01

    An attempt is made for improvement of secret image invisibility in circulation images with dyadic wavelet based data hiding with run-length coded secret images of which location of codes are determined by random number. Through experiments, it is confirmed that secret images are almost invisible in circulation images. Also robustness of the proposed data hiding method against data compression of circulation images is discussed. Data hiding performance in terms of invisibility of secret images...

  11. A novel wavelet-based feature extraction from common mode currents for fault location in a residential DC microgrid

    DEFF Research Database (Denmark)

    Beheshtaein, Siavash; Yu, Junyang; Cuzner, Rob

    2017-01-01

    approaches have been developed that enable construction of scalable microgrids based on PV and battery storage. However, as these systems proliferate, it will be necessary to develop safe and reliable methods for fault protection. Ground faults are of specific concern because, in many cases, cables...... are buried underground. At the same time, microgrids include current monitoring and processing capability wherever an energy resource interfaces to the microgrid through a power electronic converter. This paper discusses methods for identifying ground fault behavior within standard DC microgrid structures...

  12. Applied multivariate statistical analysis

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners.  It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added.  All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior.  All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...

  13. New and Simple Approach for Preventing Postoperative Peritoneal Adhesions: Do not Touch the Peritoneum without Viscous Liquid—A Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2012-01-01

    Full Text Available Background. Postoperative peritoneal adhesions (PPAs are an unsolved and serious problem in abdominal surgery. Method. Viscous liquids of soybean oil, octyl methoxycinnamate, flax oil, aloe vera gel, and glycerol were used in five experiments, using the same methodology for each. Liquids were applied in the peritoneal cavity before and after mechanical peritoneal trauma. Results were evaluated by multivariate analysis. Results. Compared with the control group, macroscopic and microscopic adhesion values before (P<.001 and after (P<.05 application of viscous liquids significantly reduced PPAs. Values were significantly lower when liquids were applied before rather than after peritoneal trauma (P<.0001. Discussion. Viscous liquids injected into the peritoneal cavity before or after mechanical peritoneal trauma decrease PPA. Injection before trauma was more effective than after trauma. In surgical practice, PPA formation may be prevented or decreased by covering the peritoneal cavity with an appropriate viscous liquid before abdominal surgery.

  14. Dissolution comparisons using a Multivariate Statistical Distance (MSD) test and a comparison of various approaches for calculating the measurements of dissolution profile comparison.

    Science.gov (United States)

    Cardot, J-M; Roudier, B; Schütz, H

    2017-07-01

    The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.

  15. Effect of aggregate size and superficial horizon differentiation on the friability index of soils cultivated with sugar cane: a multivariate approach

    Directory of Open Access Journals (Sweden)

    Edgar Alvaro Avila P.

    2015-04-01

    Full Text Available Soil friability is a physical property that provides valuable information for minimizing energy consumption during soil tillage and for preparing the edaphic medium for plant development. Its quantitative determination is generally carried out with aggregates obtained from soil blocks taken at fixed depths of profiles without considering the superficial horizons of the soil. The objective of the this study was to determine the effect of aggregate size and superficial horizon differentiation on the friability index (FI of some soils cultivated with sugar cane in the Geographic Valley of the Cauca River (Colombia, using univariate (CVu and multivariate (CVm coefficients of variation. The FI was evaluated using a compression test with four aggregate-size ranges taken from the Ap and A1 superficial horizons of 182 sampling sites located on 18 sugar cane farms. Of the five types of studied soils (Inceptisols, Mollisols, Vertisols, Alfisols and Ultisols, 7,280 aggregates were collected that were air dried and subsequently dried in a low-temperature oven before determining the tensile strength (TS, which was in turn used to calculate the FI using the coefficient of variation method. This study found that the FI varied with the aggregate size and the soil depth (first two horizons. Only three of the four size ranges initially selected were relevant. The CVm proved to be very useful for the selection of a more relevant value from the confidence interval of the TS from the CVu method for friability and established that the lower limit value (FIi of the TS CVu was the FI value that was closest to the multivariate measurement.

  16. A MULTIVARIATE WEIBULL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Cheng Lee

    2010-07-01

    Full Text Available A multivariate survival function of Weibull Distribution is developed by expanding the theorem by Lu and Bhattacharyya. From the survival function, the probability density function, the cumulative probability function, the determinant of the Jacobian Matrix, and the general moment are derived.

  17. Multivariate realised kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Hansen, Peter Reinhard; Lunde, Asger

    We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement noise of certain types and can also handle non-synchronous trading. It is the first estimator...

  18. Multivariate data analysis

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg

    Interest in statistical methodology is increasing so rapidly in the astronomical community that accessible introductory material in this area is long overdue. This book fills the gap by providing a presentation of the most useful techniques in multivariate statistics. A wide-ranging annotated set...

  19. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    International Nuclear Information System (INIS)

    Shidahara, M; Tamura, H; Tsoumpas, C; McGinnity, C J; Hammers, A; Turkheimer, F E; Kato, T; Watabe, H

    2012-01-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [ 11 C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from −30.1% and −26.2% to −17.6% and −15.1%, respectively, for the 60 min static image and from −51.4% and −38.3% to −27.6% and −20.3% for the binding potential (BP ND ) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [ 11 C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided. (paper)

  20. A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-05-01

    Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.

  1. A study of pH-dependent photodegradation of amiloride by a multivariate curve resolution approach to combined kinetic and acid-base titration UV data.

    Science.gov (United States)

    De Luca, Michele; Ioele, Giuseppina; Mas, Sílvia; Tauler, Romà; Ragno, Gaetano

    2012-11-21

    Amiloride photostability at different pH values was studied in depth by applying Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to the UV spectrophotometric data from drug solutions exposed to stressing irradiation. Resolution of all degradation photoproducts was possible by simultaneous spectrophotometric analysis of kinetic photodegradation and acid-base titration experiments. Amiloride photodegradation showed to be strongly dependent on pH. Two hard modelling constraints were sequentially used in MCR-ALS for the unambiguous resolution of all the species involved in the photodegradation process. An amiloride acid-base system was defined by using the equilibrium constraint, and the photodegradation pathway was modelled taking into account the kinetic constraint. The simultaneous analysis of photodegradation and titration experiments revealed the presence of eight different species, which were differently distributed according to pH and time. Concentration profiles of all the species as well as their pure spectra were resolved and kinetic rate constants were estimated. The values of rate constants changed with pH and under alkaline conditions the degradation pathway and photoproducts also changed. These results were compared to those obtained by LC-MS analysis from drug photodegradation experiments. MS analysis allowed the identification of up to five species and showed the simultaneous presence of more than one acid-base equilibrium.

  2. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties

    International Nuclear Information System (INIS)

    Zhang Changbo; Wu Longhua; Luo Yongming; Zhang Haibo; Christie, Peter

    2008-01-01

    Principal components analysis (PCA) and correlation analysis were used to estimate the contribution of four components related to pollutant sources on the total variation in concentrations of Cu, Zn, Pb, Cd, As, Se, Hg, Fe and Mn in surface soil samples from a valley in east China with numerous copper and zinc smelters. Results indicate that when carrying out source identification of inorganic pollutants their tendency to migrate in soils may result in differences between the pollutant composition of the source and the receptor soil, potentially leading to errors in the characterization of pollutants using multivariate statistics. The stability and potential migration or movement of pollutants in soils must therefore be taken into account. Soil physicochemical properties may offer additional useful information. Two different mechanisms have been hypothesized for correlations between soil heavy metal concentrations and soil organic matter content and these may be helpful in interpreting the statistical analysis. - Principal components analysis with Varimax rotation can help identify sources of soil inorganic pollutants but pollutant migration and soil properties can exert important effects

  3. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaë l; Davison, Anthony C.; Genton, Marc G.

    2015-01-01

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  4. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaël

    2015-11-17

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  5. Simulation of multivariate diffusion bridges

    DEFF Research Database (Denmark)

    Bladt, Mogens; Finch, Samuel; Sørensen, Michael

    We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges...

  6. Multivariate process monitoring of EAFs

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, E.; Lennox, B.; Marjanovic, O.; Smith, K.

    2005-06-01

    Improved knowledge of the effect of scrap grades on the electric steelmaking process and optimised scrap loading practices increase the potential for process automation. As part of an ongoing programme, process data from four Scandinavian EAFs have been analysed, using the multivariate process monitoring approach, to develop predictive models for end point conditions such as chemical composition, yield and energy consumption. The models developed generally predict final Cr, Ni and Mo and tramp element contents well, but electrical energy consumption, yield and content of oxidisable and impurity elements (C, Si, Mn, P, S) are at present more difficult to predict. Potential scrap management applications of the prediction models are also presented. (author)

  7. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - Using multivariate statistics and geochemical modeling approaches.

    Science.gov (United States)

    Liu, Pu; Hoth, Nils; Drebenstedt, Carsten; Sun, Yajun; Xu, Zhimin

    2017-12-01

    Groundwater is an important drinking water resource that requires protection in North China. Coal mining industry in the area may influence the water quality evolution. To provide primary characterization of the hydrogeochemical processes and paths that control the water quality evolution, a complex multi-layer groundwater system in a coal mining area is investigated. Multivariate statistical methods involving hierarchical cluster analysis (HCA) and principal component analysis (PCA) are applied, 6 zones and 3 new principal components are classified as major reaction zones and reaction factors. By integrating HCA and PCA with hydrogeochemical correlations analysis, potential phases, reactions and connections between various zones are presented. Carbonates minerals, gypsum, clay minerals as well as atmosphere gases - CO 2 , H 2 O and NH 3 are recognized as major reactants. Mixtures, evaporation, dissolution/precipitation of minerals and cation exchange are potential reactions. Inverse modeling is finally used, and it verifies the detailed processes and diverse paths. Consequently, 4 major paths are found controlling the variations of groundwater chemical properties. Shallow and deep groundwater is connected primarily by the flow of deep groundwater up through fractures and faults into the shallow aquifers. Mining does not impact the underlying aquifers that represent the most critical groundwater resource. But controls should be taken to block the mixing processes from highly polluted mine water. The paper highlights the complex hydrogeochemical evolution of a multi-layer groundwater system under mining impact, which could be applied to further groundwater quality management in the study area, as well as most of the other coalfields in North China. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Multivariate calculus and geometry

    CERN Document Server

    Dineen, Seán

    2014-01-01

    Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.

  9. Intelligent multivariate process supervision

    International Nuclear Information System (INIS)

    Visuri, Pertti.

    1986-01-01

    This thesis addresses the difficulties encountered in managing large amounts of data in supervisory control of complex systems. Some previous alarm and disturbance analysis concepts are reviewed and a method for improving the supervision of complex systems is presented. The method, called multivariate supervision, is based on adding low level intelligence to the process control system. By using several measured variables linked together by means of deductive logic, the system can take into account the overall state of the supervised system. Thus, it can present to the operators fewer messages with higher information content than the conventional control systems which are based on independent processing of each variable. In addition, the multivariate method contains a special information presentation concept for improving the man-machine interface. (author)

  10. Multivariate rational data fitting

    Science.gov (United States)

    Cuyt, Annie; Verdonk, Brigitte

    1992-12-01

    Sections 1 and 2 discuss the advantages of an object-oriented implementation combined with higher floating-point arithmetic, of the algorithms available for multivariate data fitting using rational functions. Section 1 will in particular explain what we mean by "higher arithmetic". Section 2 will concentrate on the concepts of "object orientation". In sections 3 and 4 we shall describe the generality of the data structure that can be dealt with: due to some new results virtually every data set is acceptable right now, with possible coalescence of coordinates or points. In order to solve the multivariate rational interpolation problem the data sets are fed to different algorithms depending on the structure of the interpolation points in then-variate space.

  11. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  12. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  13. Multivariate determinants of self-management in Health Care: assessing Health Empowerment Model by comparison between structural equation and graphical models approaches

    Directory of Open Access Journals (Sweden)

    Filippo Trentini

    2015-03-01

    Full Text Available Backgroung. In public health one debated issue is related to consequences of improper self-management in health care.  Some theoretical models have been proposed in Health Communication theory which highlight how components such general literacy and specific knowledge of the disease might be very important for effective actions in healthcare system.  Methods. This  paper aims at investigating the consistency of Health Empowerment Model by means of both graphical models approach, which is a “data driven” method and a Structural Equation Modeling (SEM approach, which is instead “theory driven”, showing the different information pattern that can be revealed in a health care research context.The analyzed dataset provides data on the relationship between the Health Empowerment Model constructs and the behavioral and health status in 263 chronic low back pain (cLBP patients. We used the graphical models approach to evaluate the dependence structure in a “blind” way, thus learning the structure from the data.Results. From the estimation results dependence structure confirms links design assumed in SEM approach directly from researchers, thus validating the hypotheses which generated the Health Empowerment Model constructs.Conclusions. This models comparison helps in avoiding confirmation bias. In Structural Equation Modeling, we used SPSS AMOS 21 software. Graphical modeling algorithms were implemented in a R software environment.

  14. The past, present, and future of the U.S. electric power sector: Examining regulatory changes using multivariate time series approaches

    Science.gov (United States)

    Binder, Kyle Edwin

    The U.S. energy sector has undergone continuous change in the regulatory, technological, and market environments. These developments show no signs of slowing. Accordingly, it is imperative that energy market regulators and participants develop a strong comprehension of market dynamics and the potential implications of their actions. This dissertation contributes to a better understanding of the past, present, and future of U.S. energy market dynamics and interactions with policy. Advancements in multivariate time series analysis are employed in three related studies of the electric power sector. Overall, results suggest that regulatory changes have had and will continue to have important implications for the electric power sector. The sector, however, has exhibited adaptability to past regulatory changes and is projected to remain resilient in the future. Tests for constancy of the long run parameters in a vector error correction model are applied to determine whether relationships among coal inventories in the electric power sector, input prices, output prices, and opportunity costs have remained constant over the past 38 years. Two periods of instability are found, the first following railroad deregulation in the U.S. and the second corresponding to a number of major regulatory changes in the electric power and natural gas sectors. Relationships among Renewable Energy Credit prices, electricity prices, and natural gas prices are estimated using a vector error correction model. Results suggest that Renewable Energy Credit prices do not completely behave as previously theorized in the literature. Potential reasons for the divergence between theory and empirical evidence are the relative immaturity of current markets and continuous institutional intervention. Potential impacts of future CO2 emissions reductions under the Clean Power Plan on economic and energy sector activity are estimated. Conditional forecasts based on an outlined path for CO2 emissions are

  15. SU-F-BRB-12: A Novel Haar Wavelet Based Approach to Deliver Non-Coplanar Intensity Modulated Radiotherapy Using Sparse Orthogonal Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D; Ruan, D; Low, D; Sheng, K [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States); O’Connor, D [Deparment of Mathematics, University of California Los Angeles, Los Angeles, CA (United States); Boucher, S [RadiaBeam Technologies, Santa Monica, CA (United States)

    2015-06-15

    Purpose: Existing efforts to replace complex multileaf collimator (MLC) by simple jaws for intensity modulated radiation therapy (IMRT) resulted in unacceptable compromise in plan quality and delivery efficiency. We introduce a novel fluence map segmentation method based on compressed sensing for plan delivery using a simplified sparse orthogonal collimator (SOC) on the 4π non-coplanar radiotherapy platform. Methods: 4π plans with varying prescription doses were first created by automatically selecting and optimizing 20 non-coplanar beams for 2 GBM, 2 head & neck, and 2 lung patients. To create deliverable 4π plans using SOC, which are two pairs of orthogonal collimators with 1 to 4 leaves in each collimator bank, a Haar Fluence Optimization (HFO) method was used to regulate the number of Haar wavelet coefficients while maximizing the dose fidelity to the ideal prescription. The plans were directly stratified utilizing the optimized Haar wavelet rectangular basis. A matching number of deliverable segments were stratified for the MLC-based plans. Results: Compared to the MLC-based 4π plans, the SOC-based 4π plans increased the average PTV dose homogeneity from 0.811 to 0.913. PTV D98 and D99 were improved by 3.53% and 5.60% of the corresponding prescription doses. The average mean and maximal OAR doses slightly increased by 0.57% and 2.57% of the prescription doses. The average number of segments ranged between 5 and 30 per beam. The collimator travel time to create the segments decreased with increasing leaf numbers in the SOC. The two and four leaf designs were 1.71 and 1.93 times more efficient, on average, than the single leaf design. Conclusion: The innovative dose domain optimization based on compressed sensing enables uncompromised 4π non-coplanar IMRT dose delivery using simple rectangular segments that are deliverable using a sparse orthogonal collimator, which only requires 8 to 16 leaves yet is unlimited in modulation resolution. This work is supported in part by Varian Medical Systems, Inc. and NIH R43 CA18339.

  16. A multivariate statistical approaches on physicochemical characteristics of ground water in and around Nagapattinam district, Cauvery deltaic region of Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Venkatramanan Senapathi

    2013-07-01

    Full Text Available Ground water samples collected at different locations in and around the Nagapattinam district were analyzed for their physicochemical characteristics. The ground water samples were collected from fifty two dug and deep wells during the monsoon and summer seasons in June and December, 2011. The present investigation is focused on the determination of physico-chemical parameters such as pH, EC, TDS, Ca, Mg, Na, K, HCO3, SO4 and Cl. Ground water suitability for drinking, domestic and agri- cultural purposes was examined by using WHO standards. Correlation, factor and cluster analyses were applied to classify the ground water qualities and to categorize the geochemical processes controlling ground water geochemistry. Factor analysis indicates that seawater intrusion and agriculture runoff are dominant factors controlling the hydrogeochemistry of ground water in the study area. Cluster analysis was helpful for the classification on the basis of contamination characteristics of ground water quality. This study also elucidates that multivariate statistical analyses can be used to improve the understanding of ground water status and assessment of ground water quality.  Resumen En este estudio se analizan las características fisicoquímicas de muestras de aguas subterráneas tomadas en diferentes locaciones en y alrededor del distrito de Nagapattinam. Las muestras se recolectaron en 52 pozos cavados y perforaciones profundas durante las subestaciones del monzón y el verano, en los meses de junio y diciembre (2011. La presente investigación está enfocada en la determinación de parametros fisicoquímicos como pH, EC, TDS, Ca, Mg, Na, K, HCO3, SO4 y Cl. Se examinó la pertinencia de estas aguas para consumo y para irrigación a la luz de los estándares de la Organización Mundial de la Salud. Se aplicaron análisis de correlación, factores y cúmulos para clasificar las muestras y categorizar los procesos geoquímicos que controlan las aguas subterr

  17. Introduction to multivariate discrimination

    Science.gov (United States)

    Kégl, Balázs

    2013-07-01

    Multivariate discrimination or classification is one of the best-studied problem in machine learning, with a plethora of well-tested and well-performing algorithms. There are also several good general textbooks [1-9] on the subject written to an average engineering, computer science, or statistics graduate student; most of them are also accessible for an average physics student with some background on computer science and statistics. Hence, instead of writing a generic introduction, we concentrate here on relating the subject to a practitioner experimental physicist. After a short introduction on the basic setup (Section 1) we delve into the practical issues of complexity regularization, model selection, and hyperparameter optimization (Section 2), since it is this step that makes high-complexity non-parametric fitting so different from low-dimensional parametric fitting. To emphasize that this issue is not restricted to classification, we illustrate the concept on a low-dimensional but non-parametric regression example (Section 2.1). Section 3 describes the common algorithmic-statistical formal framework that unifies the main families of multivariate classification algorithms. We explain here the large-margin principle that partly explains why these algorithms work. Section 4 is devoted to the description of the three main (families of) classification algorithms, neural networks, the support vector machine, and AdaBoost. We do not go into the algorithmic details; the goal is to give an overview on the form of the functions these methods learn and on the objective functions they optimize. Besides their technical description, we also make an attempt to put these algorithm into a socio-historical context. We then briefly describe some rather heterogeneous applications to illustrate the pattern recognition pipeline and to show how widespread the use of these methods is (Section 5). We conclude the chapter with three essentially open research problems that are either

  18. Introduction to multivariate discrimination

    International Nuclear Information System (INIS)

    Kegl, B.

    2013-01-01

    Multivariate discrimination or classification is one of the best-studied problem in machine learning, with a plethora of well-tested and well-performing algorithms. There are also several good general textbooks [1-9] on the subject written to an average engineering, computer science, or statistics graduate student; most of them are also accessible for an average physics student with some background on computer science and statistics. Hence, instead of writing a generic introduction, we concentrate here on relating the subject to a practitioner experimental physicist. After a short introduction on the basic setup (Section 1) we delve into the practical issues of complexity regularization, model selection, and hyper-parameter optimization (Section 2), since it is this step that makes high-complexity non-parametric fitting so different from low-dimensional parametric fitting. To emphasize that this issue is not restricted to classification, we illustrate the concept on a low-dimensional but non-parametric regression example (Section 2.1). Section 3 describes the common algorithmic-statistical formal framework that unifies the main families of multivariate classification algorithms. We explain here the large-margin principle that partly explains why these algorithms work. Section 4 is devoted to the description of the three main (families of) classification algorithms, neural networks, the support vector machine, and AdaBoost. We do not go into the algorithmic details; the goal is to give an overview on the form of the functions these methods learn and on the objective functions they optimize. Besides their technical description, we also make an attempt to put these algorithm into a socio-historical context. We then briefly describe some rather heterogeneous applications to illustrate the pattern recognition pipeline and to show how widespread the use of these methods is (Section 5). We conclude the chapter with three essentially open research problems that are either

  19. Multivariate realised kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Hansen, Peter Reinhard; Lunde, Asger

    2011-01-01

    We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement error of certain types and can also handle non-synchronous trading. It is the first estimator...... which has these three properties which are all essential for empirical work in this area. We derive the large sample asymptotics of this estimator and assess its accuracy using a Monte Carlo study. We implement the estimator on some US equity data, comparing our results to previous work which has used...

  20. Chemical modeling of groundwater in the Banat Plain, southwestern Romania, with elevated As content and co-occurring species by combining diagrams and unsupervised multivariate statistical approaches.

    Science.gov (United States)

    Butaciu, Sinziana; Senila, Marin; Sarbu, Costel; Ponta, Michaela; Tanaselia, Claudiu; Cadar, Oana; Roman, Marius; Radu, Emil; Sima, Mihaela; Frentiu, Tiberiu

    2017-04-01

    The study proposes a combined model based on diagrams (Gibbs, Piper, Stuyfzand Hydrogeochemical Classification System) and unsupervised statistical approaches (Cluster Analysis, Principal Component Analysis, Fuzzy Principal Component Analysis, Fuzzy Hierarchical Cross-Clustering) to describe natural enrichment of inorganic arsenic and co-occurring species in groundwater in the Banat Plain, southwestern Romania. Speciation of inorganic As (arsenite, arsenate), ion concentrations (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - , Cl - , F - , SO 4 2- , PO 4 3- , NO 3 - ), pH, redox potential, conductivity and total dissolved substances were performed. Classical diagrams provided the hydrochemical characterization, while statistical approaches were helpful to establish (i) the mechanism of naturally occurring of As and F - species and the anthropogenic one for NO 3 - , SO 4 2- , PO 4 3- and K + and (ii) classification of groundwater based on content of arsenic species. The HCO 3 - type of local groundwater and alkaline pH (8.31-8.49) were found to be responsible for the enrichment of arsenic species and occurrence of F - but by different paths. The PO 4 3- -AsO 4 3- ion exchange, water-rock interaction (silicates hydrolysis and desorption from clay) were associated to arsenate enrichment in the oxidizing aquifer. Fuzzy Hierarchical Cross-Clustering was the strongest tool for the rapid simultaneous classification of groundwaters as a function of arsenic content and hydrogeochemical characteristics. The approach indicated the Na + -F - -pH cluster as marker for groundwater with naturally elevated As and highlighted which parameters need to be monitored. A chemical conceptual model illustrating the natural and anthropogenic paths and enrichment of As and co-occurring species in the local groundwater supported by mineralogical analysis of rocks was established. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The value of multivariate model sophistication

    DEFF Research Database (Denmark)

    Rombouts, Jeroen; Stentoft, Lars; Violante, Francesco

    2014-01-01

    We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ in their spec....... In addition to investigating the value of model sophistication in terms of dollar losses directly, we also use the model confidence set approach to statistically infer the set of models that delivers the best pricing performances.......We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ...

  2. Direct analysis in real time mass spectrometry and multivariate data analysis: a novel approach to rapid identification of analytical markers for quality control of traditional Chinese medicine preparation.

    Science.gov (United States)

    Zeng, Shanshan; Wang, Lu; Chen, Teng; Wang, Yuefei; Mo, Huanbiao; Qu, Haibin

    2012-07-06

    The paper presents a novel strategy to identify analytical markers of traditional Chinese medicine preparation (TCMP) rapidly via direct analysis in real time mass spectrometry (DART-MS). A commonly used TCMP, Danshen injection, was employed as a model. The optimal analysis conditions were achieved by measuring the contribution of various experimental parameters to the mass spectra. Salvianolic acids and saccharides were simultaneously determined within a single 1-min DART-MS run. Furthermore, spectra of Danshen injections supplied by five manufacturers were processed with principal component analysis (PCA). Obvious clustering was observed in the PCA score plot, and candidate markers were recognized from the contribution plots of PCA. The suitability of potential markers was then confirmed by contrasting with the results of traditional analysis methods. Using this strategy, fructose, glucose, sucrose, protocatechuic aldehyde and salvianolic acid A were rapidly identified as the markers of Danshen injections. The combination of DART-MS with PCA provides a reliable approach to the identification of analytical markers for quality control of TCMP. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Multivariable calculus with applications

    CERN Document Server

    Lax, Peter D

    2017-01-01

    This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathemat...

  4. Multivariate Statistical Process Control

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2013-01-01

    As sensor and computer technology continues to improve, it becomes a normal occurrence that we confront with high dimensional data sets. As in many areas of industrial statistics, this brings forth various challenges in statistical process control (SPC) and monitoring for which the aim...... is to identify “out-of-control” state of a process using control charts in order to reduce the excessive variation caused by so-called assignable causes. In practice, the most common method of monitoring multivariate data is through a statistic akin to the Hotelling’s T2. For high dimensional data with excessive...... amount of cross correlation, practitioners are often recommended to use latent structures methods such as Principal Component Analysis to summarize the data in only a few linear combinations of the original variables that capture most of the variation in the data. Applications of these control charts...

  5. Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: The need for a multivariate approach in biomarker studies

    International Nuclear Information System (INIS)

    Yaromina, Ala; Zips, Daniel; Thames, Howard D.; Eicheler, Wolfgang; Krause, Mechthild; Rosner, Andrea; Haase, Michael; Petersen, Cordula; Raleigh, James A.; Quennet, Verena; Walenta, Stefan; Mueller-Klieser, Wolfgang; Baumann, Michael

    2006-01-01

    Objective: To investigate the influence on local control after fractionated radiotherapy of hypoxia measured in unirradiated tumours using the hypoxic marker Pimonidazole, using multivariate approaches. Material and methods: Five human squamous cell carcinoma lines (FaDu, UT-SCC-15, UT-SCC-14, XF354, and UT-SCC-5) were transplanted subcutaneously into the right hind-leg of NMRI nude mice. Histological material was collected from 60 unirradiated tumours after injection of Pimonidazole. The relative hypoxic area within the viable tumour area (Pimonidazole hypoxic fraction, pHF) was determined in seven serial 10 μm cross-sections per tumour by fluorescence microscopy and computerized image analysis. Local tumour control was evaluated in a total of 399 irradiated tumours at 120 days after 30 fractions given within 6 weeks with total doses between 30 and 115 Gy. Results: Tumour lines showed pronounced heterogeneity in both pHF and TCD 5 . Mean pHF values varied between 5% and 37%, TCD 5 values between 47 and 130 Gy. A Cox Proportional Hazards model of time to recurrence with two covariates, dose and pHF, yielded significant contributions of both parameters on local control (p < 0.005) but violated the proportional hazards assumption, suggesting that other factors also influence tumour control. Introduction of histological grade as an example of a confounding factor into the model improved the fit significantly. Local control rates decreased with increasing pHF and this effect was more pronounced at higher doses. Conclusions: This study confirms that tumour hypoxia measured using Pimonidazole in untreated tumours is a significant determinant of local control after fractionated irradiation. The data support the use of multivariate approaches for the evaluation of a single prognostic biomarker such as Pimonidazole, and more generally, suggest that they are required to establish accurate prognostic factors for tumour response

  6. Multivariate statistical methods a primer

    CERN Document Server

    Manly, Bryan FJ

    2004-01-01

    THE MATERIAL OF MULTIVARIATE ANALYSISExamples of Multivariate DataPreview of Multivariate MethodsThe Multivariate Normal DistributionComputer ProgramsGraphical MethodsChapter SummaryReferencesMATRIX ALGEBRAThe Need for Matrix AlgebraMatrices and VectorsOperations on MatricesMatrix InversionQuadratic FormsEigenvalues and EigenvectorsVectors of Means and Covariance MatricesFurther Reading Chapter SummaryReferencesDISPLAYING MULTIVARIATE DATAThe Problem of Displaying Many Variables in Two DimensionsPlotting index VariablesThe Draftsman's PlotThe Representation of Individual Data P:ointsProfiles o

  7. Fully conditional specification in multivariate imputation

    NARCIS (Netherlands)

    van Buuren, S.; Brand, J. P.L.; Groothuis-Oudshoorn, C. G.M.; Rubin, D. B.

    2006-01-01

    The use of the Gibbs sampler with fully conditionally specified models, where the distribution of each variable given the other variables is the starting point, has become a popular method to create imputations in incomplete multivariate data. The theoretical weakness of this approach is that the

  8. Multivariate Analysis of Schools and Educational Policy.

    Science.gov (United States)

    Kiesling, Herbert J.

    This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…

  9. A Multivariate Approach to Functional Neuro Modeling

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.

    1998-01-01

    by the application of linear and more flexible, nonlinear microscopic regression models to a real-world dataset. The dependency of model performance, as quantified by generalization error, on model flexibility and training set size is demonstrated, leading to the important realization that no uniformly optimal model......, provides the basis for a generalization theoretical framework relating model performance to model complexity and dataset size. Briefly summarized the major topics discussed in the thesis include: - An introduction of the representation of functional datasets by pairs of neuronal activity patterns...... exists. - Model visualization and interpretation techniques. The simplicity of this task for linear models contrasts the difficulties involved when dealing with nonlinear models. Finally, a visualization technique for nonlinear models is proposed. A single observation emerges from the thesis...

  10. Multilingualism and Creativity: A Multivariate Approach

    Science.gov (United States)

    Fürst, Guillaume; Grin, François

    2018-01-01

    This paper proposes a contribution to the investigation of the relation between multilingualism and creativity. Past evidence of a correlation between multilingualism and creativity is reviewed in a generalist perspective, that is, without focusing on a specific population such as migrants or highly proficient bilinguals. This review is also…

  11. Empirical Bayes Approaches to Multivariate Fuzzy Partitions.

    Science.gov (United States)

    Woodbury, Max A.; Manton, Kenneth G.

    1991-01-01

    An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)

  12. Multivariate statistics exercises and solutions

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    The authors present tools and concepts of multivariate data analysis by means of exercises and their solutions. The first part is devoted to graphical techniques. The second part deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The last part introduces a wide variety of exercises in applied multivariate data analysis. The book demonstrates the application of simple calculus and basic multivariate methods in real life situations. It contains altogether more than 250 solved exercises which can assist a university teacher in setting up a modern multivariate analysis course. All computer-based exercises are available in the R language. All R codes and data sets may be downloaded via the quantlet download center  www.quantlet.org or via the Springer webpage. For interactive display of low-dimensional projections of a multivariate data set, we recommend GGobi.

  13. Multivariate analysis: models and method

    International Nuclear Information System (INIS)

    Sanz Perucha, J.

    1990-01-01

    Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis

  14. Model Checking Multivariate State Rewards

    DEFF Research Database (Denmark)

    Nielsen, Bo Friis; Nielson, Flemming; Nielson, Hanne Riis

    2010-01-01

    We consider continuous stochastic logics with state rewards that are interpreted over continuous time Markov chains. We show how results from multivariate phase type distributions can be used to obtain higher-order moments for multivariate state rewards (including covariance). We also generalise...

  15. Multivariate analysis methods in physics

    International Nuclear Information System (INIS)

    Wolter, M.

    2007-01-01

    A review of multivariate methods based on statistical training is given. Several multivariate methods useful in high-energy physics analysis are discussed. Selected examples from current research in particle physics are discussed, both from the on-line trigger selection and from the off-line analysis. Also statistical training methods are presented and some new application are suggested [ru

  16. Optimal non-periodic inspection for a multivariate degradation model

    NARCIS (Netherlands)

    Barker, C.T.; Newby, M.J.

    2009-01-01

    We address the problem of determining inspection and maintenance strategy for a system whose state is described by a multivariate stochastic process. We relax and extend the usual approaches. The system state is a multivariate stochastic process, decisions are based on a performance measure defined

  17. Multivariate Bonferroni-type inequalities theory and applications

    CERN Document Server

    Chen, John

    2014-01-01

    Multivariate Bonferroni-Type Inequalities: Theory and Applications presents a systematic account of research discoveries on multivariate Bonferroni-type inequalities published in the past decade. The emergence of new bounding approaches pushes the conventional definitions of optimal inequalities and demands new insights into linear and Fréchet optimality. The book explores these advances in bounding techniques with corresponding innovative applications. It presents the method of linear programming for multivariate bounds, multivariate hybrid bounds, sub-Markovian bounds, and bounds using Hamil

  18. Multivariate and semiparametric kernel regression

    OpenAIRE

    Härdle, Wolfgang; Müller, Marlene

    1997-01-01

    The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...

  19. Multivariate Analysis and Machine Learning in Cerebral Palsy Research

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Cerebral palsy (CP, a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.

  20. Multivariate Analysis and Machine Learning in Cerebral Palsy Research.

    Science.gov (United States)

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.

  1. Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion

    International Nuclear Information System (INIS)

    Garcia-Cabrejo, Oscar; Valocchi, Albert

    2014-01-01

    Many mathematical and computational models used in engineering produce multivariate output that shows some degree of correlation. However, conventional approaches to Global Sensitivity Analysis (GSA) assume that the output variable is scalar. These approaches are applied on each output variable leading to a large number of sensitivity indices that shows a high degree of redundancy making the interpretation of the results difficult. Two approaches have been proposed for GSA in the case of multivariate output: output decomposition approach [9] and covariance decomposition approach [14] but they are computationally intensive for most practical problems. In this paper, Polynomial Chaos Expansion (PCE) is used for an efficient GSA with multivariate output. The results indicate that PCE allows efficient estimation of the covariance matrix and GSA on the coefficients in the approach defined by Campbell et al. [9], and the development of analytical expressions for the multivariate sensitivity indices defined by Gamboa et al. [14]. - Highlights: • PCE increases computational efficiency in 2 approaches of GSA of multivariate output. • Efficient estimation of covariance matrix of output from coefficients of PCE. • Efficient GSA on coefficients of orthogonal decomposition of the output using PCE. • Analytical expressions of multivariate sensitivity indices from coefficients of PCE

  2. Disturbance Error Reduction in Multivariable Optimal Control Systems

    Directory of Open Access Journals (Sweden)

    Ole A. Solheim

    1983-01-01

    Full Text Available The paper deals with the design of optimal multivariable controllers, using a modified LQR approach. All controllers discussed contain proportional feedback and, in addition, there may be feedforward, integral action or state estimation.

  3. Multivariate Statistical Process Control Charts: An Overview

    OpenAIRE

    Bersimis, Sotiris; Psarakis, Stelios; Panaretos, John

    2006-01-01

    In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as p...

  4. Multivariate Generalized Multiscale Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Anne Humeau-Heurtier

    2016-11-01

    Full Text Available Multiscale entropy (MSE was introduced in the 2000s to quantify systems’ complexity. MSE relies on (i a coarse-graining procedure to derive a set of time series representing the system dynamics on different time scales; (ii the computation of the sample entropy for each coarse-grained time series. A refined composite MSE (rcMSE—based on the same steps as MSE—also exists. Compared to MSE, rcMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy for short time series. The multivariate versions of MSE (MMSE and rcMSE (MrcMSE have also been introduced. In the coarse-graining step used in MSE, rcMSE, MMSE, and MrcMSE, the mean value is used to derive representations of the original data at different resolutions. A generalization of MSE was recently published, using the computation of different moments in the coarse-graining procedure. However, so far, this generalization only exists for univariate signals. We therefore herein propose an extension of this generalized MSE to multivariate data. The multivariate generalized algorithms of MMSE and MrcMSE presented herein (MGMSE and MGrcMSE, respectively are first analyzed through the processing of synthetic signals. We reveal that MGrcMSE shows better performance than MGMSE for short multivariate data. We then study the performance of MGrcMSE on two sets of short multivariate electroencephalograms (EEG available in the public domain. We report that MGrcMSE may show better performance than MrcMSE in distinguishing different types of multivariate EEG data. MGrcMSE could therefore supplement MMSE or MrcMSE in the processing of multivariate datasets.

  5. Multivariate missing data in hydrology - Review and applications

    Science.gov (United States)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  6. Multivariate stochastic simulation with subjective multivariate normal distributions

    Science.gov (United States)

    P. J. Ince; J. Buongiorno

    1991-01-01

    In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...

  7. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2010-01-01

    be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...

  8. Agricultural by-products with bioactive effects: A multivariate approach to evaluate microbial and physicochemical changes in a fresh pork sausage enriched with phenolic compounds from olive vegetation water.

    Science.gov (United States)

    Fasolato, Luca; Carraro, Lisa; Facco, Pierantonio; Cardazzo, Barbara; Balzan, Stefania; Taticchi, Agnese; Andreani, Nadia Andrea; Montemurro, Filomena; Martino, Maria Elena; Di Lecce, Giuseppe; Toschi, Tullia Gallina; Novelli, Enrico

    2016-07-02

    The use of phenolic compounds derived from agricultural by-products could be considered as an eco-friendly strategy for food preservation. In this study a purified phenol extract from olive vegetation water (PEOVW) was explored as a potential bioactive ingredient for meat products using Italian fresh sausage as food model. The research was developed in two steps: first, an in vitro delineation of the extract antimicrobial activities was performed, then, the PEOVW was tested in the food model to investigate the possible application in food manufacturing. The in vitro tests showed that PEOVW clearly inhibits the growth of food-borne pathogens such as Listeria monocytogenes and Staphylococcus aureus. The major part of Gram-positive strains was inhibited at the low concentrations (0.375-3mg/mL). In the production of raw sausages, two concentrates of PEOVW (L1: 0.075% and L2: 0.15%) were used taking into account both organoleptic traits and the bactericidal effects. A multivariate statistical approach allowed the definition of the microbial and physicochemical changes of sausages during the shelf life (14days). In general, the inclusion of the L2 concentration reduced the growth of several microbial targets, especially Staphylococcus spp. and LABs (2log10CFU/g reduction), while the increasing the growth of yeasts was observed. The reduction of microbial growth could be involved in the reduced lipolysis of raw sausages supplemented with PEOVW as highlighted by the lower amount of diacylglycerols. Moisture and aw had a significant effect on the variability of microbiological features, while food matrix (the sausages' environment) can mask the effects of PEOVW on other targets (e.g. Pseudomonas). Moreover, the molecular identification of the main representative taxa collected during the experimentation allowed the evaluation of the effects of phenols on the selection of bacteria. Genetic data suggested a possible strain selection based on storage time and the addition of

  9. The Multivariate Gaussian Probability Distribution

    DEFF Research Database (Denmark)

    Ahrendt, Peter

    2005-01-01

    This technical report intends to gather information about the multivariate gaussian distribution, that was previously not (at least to my knowledge) to be found in one place and written as a reference manual. Additionally, some useful tips and tricks are collected that may be useful in practical ...

  10. Fractional and multivariable calculus model building and optimization problems

    CERN Document Server

    Mathai, A M

    2017-01-01

    This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models. Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations. The first chapter begins with an introduction to fractional calculus moving on to discuss fractional integrals, fractional derivatives, fractional differential equations and their solutions. Multivariable calculus is covered in the second chapter and introduces the fundamentals of multivariable calculus (multivariable functions, limits and continuity, differentiability, directional derivatives and expansions of multivariable ...

  11. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  12. Estimating uncertainty in multivariate responses to selection.

    Science.gov (United States)

    Stinchcombe, John R; Simonsen, Anna K; Blows, Mark W

    2014-04-01

    Predicting the responses to natural selection is one of the key goals of evolutionary biology. Two of the challenges in fulfilling this goal have been the realization that many estimates of natural selection might be highly biased by environmentally induced covariances between traits and fitness, and that many estimated responses to selection do not incorporate or report uncertainty in the estimates. Here we describe the application of a framework that blends the merits of the Robertson-Price Identity approach and the multivariate breeder's equation to address these challenges. The approach allows genetic covariance matrices, selection differentials, selection gradients, and responses to selection to be estimated without environmentally induced bias, direct and indirect selection and responses to selection to be distinguished, and if implemented in a Bayesian-MCMC framework, statistically robust estimates of uncertainty on all of these parameters to be made. We illustrate our approach with a worked example of previously published data. More generally, we suggest that applying both the Robertson-Price Identity and the multivariate breeder's equation will facilitate hypothesis testing about natural selection, genetic constraints, and evolutionary responses. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  13. Forecasting multivariate volatility in larger dimensions: some practical issues

    OpenAIRE

    Adam E Clements; Ayesha Scott; Annastiina Silvennoinen

    2012-01-01

    The importance of covariance modelling has long been recognised in the field of portfolio management and large dimensional multivariate problems are increasingly becoming the focus of research. This paper provides a straightforward and commonsense approach toward investigating whether simpler moving average based correlation forecasting methods have equal predictive accuracy as their more complex multivariate GARCH counterparts for large dimensional problems. We find simpler forecasting techn...

  14. Nonparametric Bayes Modeling of Multivariate Categorical Data.

    Science.gov (United States)

    Dunson, David B; Xing, Chuanhua

    2012-01-01

    Modeling of multivariate unordered categorical (nominal) data is a challenging problem, particularly in high dimensions and cases in which one wishes to avoid strong assumptions about the dependence structure. Commonly used approaches rely on the incorporation of latent Gaussian random variables or parametric latent class models. The goal of this article is to develop a nonparametric Bayes approach, which defines a prior with full support on the space of distributions for multiple unordered categorical variables. This support condition ensures that we are not restricting the dependence structure a priori. We show this can be accomplished through a Dirichlet process mixture of product multinomial distributions, which is also a convenient form for posterior computation. Methods for nonparametric testing of violations of independence are proposed, and the methods are applied to model positional dependence within transcription factor binding motifs.

  15. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...

  16. Improved multivariate polynomial factoring algorithm

    International Nuclear Information System (INIS)

    Wang, P.S.

    1978-01-01

    A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included

  17. Essentials of multivariate data analysis

    CERN Document Server

    Spencer, Neil H

    2013-01-01

    ""… this text provides an overview at an introductory level of several methods in multivariate data analysis. It contains in-depth examples from one data set woven throughout the text, and a free [Excel] Add-In to perform the analyses in Excel, with step-by-step instructions provided for each technique. … could be used as a text (possibly supplemental) for courses in other fields where researchers wish to apply these methods without delving too deeply into the underlying statistics.""-The American Statistician, February 2015

  18. Aspects of multivariate statistical theory

    CERN Document Server

    Muirhead, Robb J

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . the wealth of material on statistics concerning the multivariate normal distribution is quite exceptional. As such it is a very useful source of information for the general statistician and a must for anyone wanting to pen

  19. Quasi-biennial (QBO), annual (AO), and semi-annual oscillation (SAO) in stratospheric SCIAMACHY O3, NO2, and BrO limb data using a multivariate least squares approach

    Science.gov (United States)

    Dikty, Sebastian; von Savigny, Christian; Sinnhuber, Bjoern-Martin; Rozanov, Alexej; Weber, Mark; Burrows, John P.

    We use SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartog-raphY) ozone, nitrogen dioxide and bromine oxide profiles (20-50 km altitude, 2003-2008) to quantify the amplitudes of QBO, AO, and SAO signals with the help of a simple multivariate regression model. The analysis is being carried out with SCIAMACHY data covering all lat-itudes with the exception of polar nights, when measurements are not available. The overall global yield is approximately 10,000 profiles per month, which are binned into 10-steps with one zonal mean profile being calculated per day and per latitude bin.

  20. Network structure of multivariate time series.

    Science.gov (United States)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  1. Boosted Multivariate Trees for Longitudinal Data

    Science.gov (United States)

    Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant

    2017-01-01

    Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866

  2. Non-fragile multivariable PID controller design via system augmentation

    Science.gov (United States)

    Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan

    2017-07-01

    In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.

  3. Multivariate methods for particle identification

    CERN Document Server

    Visan, Cosmin

    2013-01-01

    The purpose of this project was to evaluate several MultiVariate methods in order to determine which one, if any, offers better results in Particle Identification (PID) than a simple n$\\sigma$ cut on the response of the ALICE PID detectors. The particles considered in the analysis were Pions, Kaons and Protons and the detectors used were TPC and TOF. When used with the same input n$\\sigma$ variables, the results show similar perfoance between the Rectangular Cuts Optimization method and the simple n$\\sigma$ cuts. The method MLP and BDT show poor results for certain ranges of momentum. The KNN method is the best performing, showing similar results for Pions and Protons as the Cuts method, and better results for Kaons. The extension of the methods to include additional input variables leads to poor results, related to instabilities still to be investigated.

  4. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P E [Vestfold College, Maritime Dept., Toensberg (Norway)

    1998-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  5. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  6. Multivariate supOU processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Stelzer, Robert

    Univariate superpositions of Ornstein-Uhlenbeck (OU) type processes, called supOU processes, provide a class of continuous time processes capable of exhibiting long memory behaviour. This paper introduces multivariate supOU processes and gives conditions for their existence and finiteness...... of moments. Moreover, the second order moment structure is explicitly calculated, and examples exhibit the possibility of long range dependence. Our supOU processes are defined via homogeneous and factorisable Lévy bases. We show that the behaviour of supOU processes is particularly nice when the mean...... reversion parameter is restricted to normal matrices and especially to strictly negative definite ones.For finite variation Lévy bases we are able to give conditions for supOU processes to have locally bounded càdlàg paths of finite variation and to show an analogue of the stochastic differential equation...

  7. Multivariate supOU processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Stelzer, Robert

    2011-01-01

    Univariate superpositions of Ornstein–Uhlenbeck-type processes (OU), called supOU processes, provide a class of continuous time processes capable of exhibiting long memory behavior. This paper introduces multivariate supOU processes and gives conditions for their existence and finiteness of moments....... Moreover, the second-order moment structure is explicitly calculated, and examples exhibit the possibility of long-range dependence. Our supOU processes are defined via homogeneous and factorizable Lévy bases. We show that the behavior of supOU processes is particularly nice when the mean reversion...... parameter is restricted to normal matrices and especially to strictly negative definite ones. For finite variation Lévy bases we are able to give conditions for supOU processes to have locally bounded càdlàg paths of finite variation and to show an analogue of the stochastic differential equation of OU...

  8. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  9. A kernel version of multivariate alteration detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2013-01-01

    Based on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations.......Based on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations....

  10. Lectures in feedback design for multivariable systems

    CERN Document Server

    Isidori, Alberto

    2017-01-01

    This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “...

  11. FACT. Multivariate extraction of muon ring images

    Energy Technology Data Exchange (ETDEWEB)

    Noethe, Maximilian; Temme, Fabian; Buss, Jens [Experimentelle Physik 5b, TU Dortmund, Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    In ground-based gamma-ray astronomy, muon ring images are an important event class for instrument calibration and monitoring of its properties. In this talk, a multivariate approach will be presented, that is well suited for real time extraction of muons from data streams of Imaging Atmospheric Cherenkov Telescopes (IACT). FACT, the First G-APD Cherenkov Telescope is located on the Canary Island of La Palma and is the first IACT to use Silicon Photomultipliers for detecting the Cherenkov photons of extensive air showers. In case of FACT, the extracted muon events are used to calculate the time resolution of the camera. In addition, the effect of the mirror alignment in May 2014 on properties of detected muons is investigated. Muon candidates are identified with a random forest classification algorithm. The performance of the classifier is evaluated for different sets of image parameters in order to compare the gain in performance with the computational costs of their calculation.

  12. Multivariate strategies in functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2007-01-01

    We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a `mind reading' predictive multivariate fMRI model....

  13. Constructing ordinal partition transition networks from multivariate time series.

    Science.gov (United States)

    Zhang, Jiayang; Zhou, Jie; Tang, Ming; Guo, Heng; Small, Michael; Zou, Yong

    2017-08-10

    A growing number of algorithms have been proposed to map a scalar time series into ordinal partition transition networks. However, most observable phenomena in the empirical sciences are of a multivariate nature. We construct ordinal partition transition networks for multivariate time series. This approach yields weighted directed networks representing the pattern transition properties of time series in velocity space, which hence provides dynamic insights of the underling system. Furthermore, we propose a measure of entropy to characterize ordinal partition transition dynamics, which is sensitive to capturing the possible local geometric changes of phase space trajectories. We demonstrate the applicability of pattern transition networks to capture phase coherence to non-coherence transitions, and to characterize paths to phase synchronizations. Therefore, we conclude that the ordinal partition transition network approach provides complementary insight to the traditional symbolic analysis of nonlinear multivariate time series.

  14. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  15. Wavelet based multicarrier code division multiple access ...

    African Journals Online (AJOL)

    This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...

  16. Drunk driving detection based on classification of multivariate time series.

    Science.gov (United States)

    Li, Zhenlong; Jin, Xue; Zhao, Xiaohua

    2015-09-01

    This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  17. Multivariate Volatility Impulse Response Analysis of GFC News Events

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); R.J. Powell (Robert); A.K. Singh (Abhay)

    2015-01-01

    textabstractThis paper applies the Hafner and Herwartz (2006) (hereafter HH) approach to the analysis of multivariate GARCH models using volatility impulse response analysis. The data set features ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index from the

  18. Multivariate Volatility Impulse Response Analysis of GFC News Events

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); R.J. Powell (Robert)

    2015-01-01

    markdownabstract__Abstract__ This paper applies the Hafner and Herwartz (2006) (hereafter HH) approach to the analysis of multivariate GARCH models using volatility impulse response analysis. The data set features ten years of daily returns series for the New York Stock Exchange Index and the

  19. Multivariable feedback design: concepts for a classical/modern synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, J C; Stein, G

    1980-01-01

    A practical design perspective on multivariable feedback control problems is presented. The basic issue - feedback design in the face of uncertainites - is reviewed and known SISO statements and constraints of the design problem to MIMO cases are generalized. Two major MIMO design approaches are then evaluated in the context of these results.

  20. Multivariate time series modeling of selected childhood diseases in ...

    African Journals Online (AJOL)

    This paper is focused on modeling the five most prevalent childhood diseases in Akwa Ibom State using a multivariate approach to time series. An aggregate of 78,839 reported cases of malaria, upper respiratory tract infection (URTI), Pneumonia, anaemia and tetanus were extracted from five randomly selected hospitals in ...

  1. multivariate time series modeling of selected childhood diseases

    African Journals Online (AJOL)

    2016-06-17

    Jun 17, 2016 ... KEYWORDS: Multivariate Approach, Pre-whitening, Vector Time Series, .... Alternatively, the process may be written in mean adjusted form as .... The AIC criterion asymptotically over estimates the order with positive probability, whereas the BIC and HQC criteria ... has the same asymptotic distribution as Ǫ.

  2. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    Science.gov (United States)

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the

  3. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  4. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  5. Hierarchical multivariate covariance analysis of metabolic connectivity.

    Science.gov (United States)

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-12-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).

  6. Multivariate refined composite multiscale entropy analysis

    International Nuclear Information System (INIS)

    Humeau-Heurtier, Anne

    2016-01-01

    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  7. Multivariate performance reliability prediction in real-time

    International Nuclear Information System (INIS)

    Lu, S.; Lu, H.; Kolarik, W.J.

    2001-01-01

    This paper presents a technique for predicting system performance reliability in real-time considering multiple failure modes. The technique includes on-line multivariate monitoring and forecasting of selected performance measures and conditional performance reliability estimates. The performance measures across time are treated as a multivariate time series. A state-space approach is used to model the multivariate time series. Recursive forecasting is performed by adopting Kalman filtering. The predicted mean vectors and covariance matrix of performance measures are used for the assessment of system survival/reliability with respect to the conditional performance reliability. The technique and modeling protocol discussed in this paper provide a means to forecast and evaluate the performance of an individual system in a dynamic environment in real-time. The paper also presents an example to demonstrate the technique

  8. Generalized Enhanced Multivariance Product Representation for Data Partitioning: Constancy Level

    International Nuclear Information System (INIS)

    Tunga, M. Alper; Demiralp, Metin

    2011-01-01

    Enhanced Multivariance Product Representation (EMPR) method is used to represent multivariate functions in terms of less-variate structures. The EMPR method extends the HDMR expansion by inserting some additional support functions to increase the quality of the approximants obtained for dominantly or purely multiplicative analytical structures. This work aims to develop the generalized form of the EMPR method to be used in multivariate data partitioning approaches. For this purpose, the Generalized HDMR philosophy is taken into consideration to construct the details of the Generalized EMPR at constancy level as the introductory steps and encouraging results are obtained in data partitioning problems by using our new method. In addition, to examine this performance, a number of numerical implementations with concluding remarks are given at the end of this paper.

  9. Multivariate methods and forecasting with IBM SPSS statistics

    CERN Document Server

    Aljandali, Abdulkader

    2017-01-01

    This is the second of a two-part guide to quantitative analysis using the IBM SPSS Statistics software package; this volume focuses on multivariate statistical methods and advanced forecasting techniques. More often than not, regression models involve more than one independent variable. For example, forecasting methods are commonly applied to aggregates such as inflation rates, unemployment, exchange rates, etc., that have complex relationships with determining variables. This book introduces multivariate regression models and provides examples to help understand theory underpinning the model. The book presents the fundamentals of multivariate regression and then moves on to examine several related techniques that have application in business-orientated fields such as logistic and multinomial regression. Forecasting tools such as the Box-Jenkins approach to time series modeling are introduced, as well as exponential smoothing and naïve techniques. This part also covers hot topics such as Factor Analysis, Dis...

  10. Multivariate Regression Analysis and Slaughter Livestock,

    Science.gov (United States)

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  11. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    Science.gov (United States)

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  12. A High-Dimensional, Multivariate Copula Approach to Modeling Multivariate Agricultural Price Relationships and Tail Dependencies

    Science.gov (United States)

    Xuan Chi; Barry Goodwin

    2012-01-01

    Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...

  13. Multivariate Marshall and Olkin Exponential Minification Process ...

    African Journals Online (AJOL)

    A stationary bivariate minification process with bivariate Marshall-Olkin exponential distribution that was earlier studied by Miroslav et al [15]is in this paper extended to multivariate minification process with multivariate Marshall and Olkin exponential distribution as its stationary marginal distribution. The innovation and the ...

  14. Multivariate multiscale entropy of financial markets

    Science.gov (United States)

    Lu, Yunfan; Wang, Jun

    2017-11-01

    In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.

  15. Estimating the decomposition of predictive information in multivariate systems

    Science.gov (United States)

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.

  16. A joint model for multivariate hierarchical semicontinuous data with replications.

    Science.gov (United States)

    Kassahun-Yimer, Wondwosen; Albert, Paul S; Lipsky, Leah M; Nansel, Tonja R; Liu, Aiyi

    2017-01-01

    Longitudinal data are often collected in biomedical applications in such a way that measurements on more than one response are taken from a given subject repeatedly overtime. For some problems, these multiple profiles need to be modeled jointly to get insight on the joint evolution and/or association of these responses over time. In practice, such longitudinal outcomes may have many zeros that need to be accounted for in the analysis. For example, in dietary intake studies, as we focus on in this paper, some food components are eaten daily by almost all subjects, while others are consumed episodically, where individuals have time periods where they do not eat these components followed by periods where they do. These episodically consumed foods need to be adequately modeled to account for the many zeros that are encountered. In this paper, we propose a joint model to analyze multivariate hierarchical semicontinuous data characterized by many zeros and more than one replicate observations at each measurement occasion. This approach allows for different probability mechanisms for describing the zero behavior as compared with the mean intake given that the individual consumes the food. To deal with the potentially large number of multivariate profiles, we use a pairwise model fitting approach that was developed in the context of multivariate Gaussian random effects models with large number of multivariate components. The novelty of the proposed approach is that it incorporates: (1) multivariate, possibly correlated, response variables; (2) within subject correlation resulting from repeated measurements taken from each subject; (3) many zero observations; (4) overdispersion; and (5) replicate measurements at each visit time.

  17. Cross-covariance functions for multivariate geostatistics

    KAUST Repository

    Genton, Marc G.

    2015-05-01

    Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.

  18. Multivariate sensitivity to voice during auditory categorization.

    Science.gov (United States)

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex. Copyright © 2015 the American Physiological Society.

  19. Cross-covariance functions for multivariate geostatistics

    KAUST Repository

    Genton, Marc G.; Kleiber, William

    2015-01-01

    Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.

  20. Multivariate optimization of ILC parameters

    International Nuclear Information System (INIS)

    Bazarov, I.V.; Padamsee, H.S.

    2005-01-01

    We present results of multiobjective optimization of the International Linear Collider (ILC) which seeks to maximize luminosity at each given total cost of the linac (capital and operating costs of cryomodules, refrigeration and RF). Evolutionary algorithms allow quick exploration of optimal sets of parameters in a complicated system such as ILC in the presence of realistic constraints as well as investigation of various what-if scenarios in potential performance. Among the parameters we varied there were accelerating gradient and Q of the cavities (in a coupled manner following a realistic Q vs. E curve), the number of particles per bunch, the bunch length, number of bunches in the train, etc. We find an optimum which decreases (relative to TESLA TDR baseline) the total linac cost by 22%, capital cost by 25% at the same luminosity of 3 x 10 38 m -2 s -1 . For this optimum the gradient is 35 MV/m, the final spot size is 3.6 nm, and the beam power is 15.9 MV/m. Changing the luminosity by 10 38 m -2 s -1 results in 10% change in the total linac cost and 4% in the capital cost. We have also explored the optimal fronts of luminosity vs. cost for several other scenarios using the same approach. (orig.)

  1. Multivariate meta-analysis: Potential and promise

    Science.gov (United States)

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  2. Multivariate statistical methods a first course

    CERN Document Server

    Marcoulides, George A

    2014-01-01

    Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is poin

  3. Exploratory multivariate analysis by example using R

    CERN Document Server

    Husson, Francois; Pages, Jerome

    2010-01-01

    Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the prin

  4. Multivariable control in nuclear power stations

    International Nuclear Information System (INIS)

    Parent, M.; McMorran, P.D.

    1982-11-01

    Multivariable methods have the potential to improve the control of large systems such as nuclear power stations. Linear-quadratic optimal control is a multivariable method based on the minimization of a cost function. A related technique leads to the Kalman filter for estimation of plant state from noisy measurements. A design program for optimal control and Kalman filtering has been developed as part of a computer-aided design package for multivariable control systems. The method is demonstrated on a model of a nuclear steam generator, and simulated results are presented

  5. Multivariable controller for discrete stochastic amplitude-constrained systems

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1983-04-01

    Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.

  6. Directional outlyingness for multivariate functional data

    KAUST Repository

    Dai, Wenlin; Genton, Marc G.

    2018-01-01

    The direction of outlyingness is crucial to describing the centrality of multivariate functional data. Motivated by this idea, classical depth is generalized to directional outlyingness for functional data. Theoretical properties of functional

  7. Multivariate survival analysis and competing risks

    CERN Document Server

    Crowder, Martin J

    2012-01-01

    Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate data and distributions, copulas, continuous failure, parametric likelihood inference, and non- and semi-parametric methods. There are many books covering survival analysis, but very few that cover the multivariate case in any depth. Written for a graduate-level audience in statistics/biostatistics, this book includes practical exercises and R code for the examples. The author is renowned for his clear writing style, and this book continues that trend. It is an excellent reference for graduate students and researchers looking for grounding in this burgeoning field of research.

  8. Simplicial band depth for multivariate functional data

    KAUST Repository

    Ló pez-Pintado, Sara; Sun, Ying; Lin, Juan K.; Genton, Marc G.

    2014-01-01

    sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation

  9. Ellipsoidal prediction regions for multivariate uncertainty characterization

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Azizipanah-Abarghooee, Rasoul

    2018-01-01

    , for classes of decision-making problems based on robust, interval chance-constrained optimization, necessary inputs take the form of multivariate prediction regions rather than scenarios. The current literature is at very primitive stage of characterizing multivariate prediction regions to be employed...... in these classes of optimization problems. To address this issue, we introduce a new class of multivariate forecasts which form as multivariate ellipsoids for non-Gaussian variables. We propose a data-driven systematic framework to readily generate and evaluate ellipsoidal prediction regions, with predefined...... probability guarantees and minimum conservativeness. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for potential misspecification of ellipsoidal prediction regions...

  10. An Introduction to Applied Multivariate Analysis

    CERN Document Server

    Raykov, Tenko

    2008-01-01

    Focuses on the core multivariate statistics topics which are of fundamental relevance for its understanding. This book emphasis on the topics that are critical to those in the behavioral, social, and educational sciences.

  11. Application of multivariate splines to discrete mathematics

    OpenAIRE

    Xu, Zhiqiang

    2005-01-01

    Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...

  12. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  13. Advances in the analysis of energy commodities and of multivariate dependence structures

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Stephan

    2011-01-27

    In the first chapter of the dissertation a new stochastic long-term/short-term model for short-term electricity prices is introduced and applied to four major European indices. Evidence is given that all time series contain certain periodic patterns, and it is shown how to use the wavelet transform for filtering purpose. The wavelet transform is also applied to separate the long-term trend from the short-term oscillation in the seasonal-adjusted log-prices. Moreover, dynamic volatility is found in all time series, which is incorporated by using a bivariate GARCH model with constant correlation. The residuals are modeled using the normal-inverse Gaussian distribution. In the second chapter an overview over different wavelet based time series forecasting methods is given. The methods are tested on four data sets, each with its own characteristics. Eventually, it can be seen that using wavelets does improve the forecasting quality, especially for longer time horizons than one day ahead. However, there is no single superior method; the performance depends on the data set and the forecasting time horizon. In the third chapter a new formula for extreme Student t quantiles is derived. The derivation is based on the proof for the Gaussian quantile and on the fact that the Student t distribution arises as the limit of a variance-mixture of normals. In the fourth chapter a theoretical framework and a solved example for valuing a European gas storage facility is presented. For modeling the gas price a mean reverting process with GARCH volatility is chosen. Based on this process dynamic programming methods are applied to derive partial differential equations for valuing the storage facility. As an example a storage site in Epe, Germany, is chosen. In this context the effects of multiple contract types for renting a storage site are investigated and a sensitivity analysis is performed. In the fifth chapter multivariate copula models are discussed. Using three different four

  14. Preference learning with evolutionary Multivariate Adaptive Regression Spline model

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...

  15. Multivariate time series analysis with R and financial applications

    CERN Document Server

    Tsay, Ruey S

    2013-01-01

    Since the publication of his first book, Analysis of Financial Time Series, Ruey Tsay has become one of the most influential and prominent experts on the topic of time series. Different from the traditional and oftentimes complex approach to multivariate (MV) time series, this sequel book emphasizes structural specification, which results in simplified parsimonious VARMA modeling and, hence, eases comprehension. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-worl

  16. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    Science.gov (United States)

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  17. Modeling joint purchases with a multivariate MNL approach

    DEFF Research Database (Denmark)

    Boztug, Yasemin; Hildebrandt, Lutz

    2008-01-01

    implies a cross-category dependence of brand choice behavior. We hypothesize that the global utility function related to a product bundle is the result of the marketing-mix of the underlying brands. The structure of the chosen products allows us to uncover the impact of certain marketing-mix variables...

  18. A Multivariate Approach to Facebook Data for Marketing Communication

    OpenAIRE

    Arrigo, Elisa; Liberati, Caterina; Mariani, Paolo

    2016-01-01

    [EN] The aim of this paper is to propose a method to explore and synthesize social media data in order to aid businesses to make their communication decisions. The research was conducted at the end of 2014 on 5607 Italian Facebook subjects interested in drugs and health. In this study, we refer to the pharmaceutical market that is characterized by strict legal constraints, which prevent any promotional activities (such as advertising) of companies on prescription drugs. Thus...

  19. A multivariate approach to heavy flavour tagging with cascade training

    International Nuclear Information System (INIS)

    Bastos, J; Liu, Y

    2007-01-01

    This paper compares the performance of artificial neural networks and boosted decision trees, with and without cascade training, for tagging b-jets in a collider experiment. It is shown, using a Monte Carlo simulation of WH→lνq q-bar events, that for a b-tagging efficiency of 50%, the light jet rejection power given by boosted decision trees without cascade training is about 55% higher than that given by artificial neural networks. The cascade training technique can improve the performance of boosted decision trees and artificial neural networks at this b-tagging efficiency level by about 35% and 80% respectively. We conclude that the cascade trained boosted decision trees method is the most promising technique for tagging heavy flavours at collider experiments

  20. Oil price dynamics and speculation. A multivariate financial approach

    International Nuclear Information System (INIS)

    Cifarelli, Giulio; Paladino, Giovanna

    2010-01-01

    This paper assesses empirically whether speculation affects oil price dynamics. The growing presence of financial operators in the oil markets has led to the diffusion of trading techniques based on extrapolative expectations. Strategies of this kind foster feedback trading that may cause considerable departures of prices from their fundamental values. We investigate this hypothesis using a modified CAPM following Shiller (1984) and Sentana and Wadhwani (1992). First, a univariate GARCH(1,1)-M is estimated assuming the risk premium to be a function of the conditional oil price volatility. The single factor model, however, is outperformed by the multifactor ICAPM (Merton, 1973), which takes into account a larger investment opportunity set. Analysis is then carried out using a trivariate CCC GARCH-M model with complex nonlinear conditional mean equations where oil price dynamics are associated with both stock market and exchange rate behavior. We find strong evidence that oil price shifts are negatively related to stock price and exchange rate changes and that a complex web of time-varying first and second order conditional moment interactions affects both the CAPM and feedback trading components of the model. Despite the difficulties, we identify a significant role played by speculation in the oil market, which is consistent with the observed large daily upward and downward shifts in prices - a clear evidence that it is not a fundamental-driven market. Thus, from a policy point of view - given the impact of volatile oil prices on global inflation and growth - actions that monitor speculative activities on commodity markets more effectively are to be welcomed. (author)

  1. Oil price dynamics and speculation. A multivariate financial approach

    Energy Technology Data Exchange (ETDEWEB)

    Cifarelli, Giulio [University of Florence, Dipartimento di Scienze Economiche, via delle Pandette 9, 50127, Florence (Italy); Paladino, Giovanna [Economics Department, LUISS University (Italy); BIIS International Division (Italy)

    2010-03-15

    This paper assesses empirically whether speculation affects oil price dynamics. The growing presence of financial operators in the oil markets has led to the diffusion of trading techniques based on extrapolative expectations. Strategies of this kind foster feedback trading that may cause considerable departures of prices from their fundamental values. We investigate this hypothesis using a modified CAPM following Shiller (1984) and Sentana and Wadhwani (1992). First, a univariate GARCH(1,1)-M is estimated assuming the risk premium to be a function of the conditional oil price volatility. The single factor model, however, is outperformed by the multifactor ICAPM (Merton, 1973), which takes into account a larger investment opportunity set. Analysis is then carried out using a trivariate CCC GARCH-M model with complex nonlinear conditional mean equations where oil price dynamics are associated with both stock market and exchange rate behavior. We find strong evidence that oil price shifts are negatively related to stock price and exchange rate changes and that a complex web of time-varying first and second order conditional moment interactions affects both the CAPM and feedback trading components of the model. Despite the difficulties, we identify a significant role played by speculation in the oil market, which is consistent with the observed large daily upward and downward shifts in prices - a clear evidence that it is not a fundamental-driven market. Thus, from a policy point of view - given the impact of volatile oil prices on global inflation and growth - actions that monitor speculative activities on commodity markets more effectively are to be welcomed. (author)

  2. Leisure Activities and Change in Cognitive Stability: A Multivariate Approach

    Directory of Open Access Journals (Sweden)

    Nathalie Mella

    2017-03-01

    Full Text Available Aging is traditionally associated with cognitive decline, attested by slower reaction times and poorer performance in various cognitive tasks, but also by an increase in intraindividual variability (IIV in cognitive performance. Results concerning how lifestyle activities protect from cognitive decline are mixed in the literature and all focused on how it affects mean performance. However, IIV has been proven to be an index more sensitive to age differences, and very little is known about the relationships between lifestyle activities and change in IIV in aging. This longitudinal study explores the association between frequency of physical, social, intellectual, artistic, or cultural activities and age-related change in various cognitive abilities, considering both mean performance and IIV. Ninety-six participants, aged 64–93 years, underwent a battery of cognitive tasks at four measurements over a seven-year period, and filled out a lifestyle activity questionnaire. Linear multilevel models were used to analyze the associations between change in cognitive performance and five types of activities. Results showed that the practice of leisure activities was more strongly associated with IIV than with mean performance, both when considering overall level and change in performance. Relationships with IIV were dependent of the cognitive tasks considered and overall results showed protective effects of cultural, physical and intellectual activities on IIV. These results underline the need for considering IIV in the study of age-related cognitive change.

  3. Quantifying balance control during stance : a multivariate system identification approach

    NARCIS (Netherlands)

    Engelhart, Denise

    2015-01-01

    Balance control involves the contribution of neural, muscular and sensory systems, which work together via complex feedback pathways in a closed loop. With age or disease, the underlying systems in balance control can deteriorate; e.g. muscle strength decreases, the sensory systems become less

  4. A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS

    Directory of Open Access Journals (Sweden)

    Alessandro Dal Col Lúcio

    2006-03-01

    Full Text Available This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of theBrazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzedfrom January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot wereanalyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal componentanalysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis,Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presentedmore than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The clusteranalysis was efficient in the separation of the groups of all tested species, as well as the method of the main components.

  5. Seizure recurrence after a first febrile seizure: a multivariate approach

    NARCIS (Netherlands)

    Offringa, M.; Derksen-Lubsen, G.; Bossuyt, P. M.; Lubsen, J.

    1992-01-01

    The results are presented of a follow-up study of 155 Dutch children after the first febrile seizure. Of these initially untreated children 37 per cent had had at least one, 30 per cent at least two and 17 per cent at least three subsequent seizures. The vulnerable period for recurrent seizures

  6. Application of multivariate statistical techniques in microbial ecology.

    Science.gov (United States)

    Paliy, O; Shankar, V

    2016-03-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.

  7. Multivariate moment closure techniques for stochastic kinetic models

    International Nuclear Information System (INIS)

    Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2015-01-01

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

  8. Multivariate moment closure techniques for stochastic kinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

  9. Multivariate Max-Stable Spatial Processes

    KAUST Repository

    Genton, Marc G.

    2014-01-06

    Analysis of spatial extremes is currently based on univariate processes. Max-stable processes allow the spatial dependence of extremes to be modelled and explicitly quantified, they are therefore widely adopted in applications. For a better understanding of extreme events of real processes, such as environmental phenomena, it may be useful to study several spatial variables simultaneously. To this end, we extend some theoretical results and applications of max-stable processes to the multivariate setting to analyze extreme events of several variables observed across space. In particular, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. Then, we define a Poisson process construction in the multivariate setting and introduce multivariate versions of the Smith Gaussian extremevalue, the Schlather extremal-Gaussian and extremal-t, and the BrownResnick models. Inferential aspects of those models based on composite likelihoods are developed. We present results of various Monte Carlo simulations and of an application to a dataset of summer daily temperature maxima and minima in Oklahoma, U.S.A., highlighting the utility of working with multivariate models in contrast to the univariate case. Based on joint work with Simone Padoan and Huiyan Sang.

  10. Multivariate Max-Stable Spatial Processes

    KAUST Repository

    Genton, Marc G.

    2014-01-01

    Analysis of spatial extremes is currently based on univariate processes. Max-stable processes allow the spatial dependence of extremes to be modelled and explicitly quantified, they are therefore widely adopted in applications. For a better understanding of extreme events of real processes, such as environmental phenomena, it may be useful to study several spatial variables simultaneously. To this end, we extend some theoretical results and applications of max-stable processes to the multivariate setting to analyze extreme events of several variables observed across space. In particular, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. Then, we define a Poisson process construction in the multivariate setting and introduce multivariate versions of the Smith Gaussian extremevalue, the Schlather extremal-Gaussian and extremal-t, and the BrownResnick models. Inferential aspects of those models based on composite likelihoods are developed. We present results of various Monte Carlo simulations and of an application to a dataset of summer daily temperature maxima and minima in Oklahoma, U.S.A., highlighting the utility of working with multivariate models in contrast to the univariate case. Based on joint work with Simone Padoan and Huiyan Sang.

  11. Multivariate η-μ fading distribution with arbitrary correlation model

    Science.gov (United States)

    Ghareeb, Ibrahim; Atiani, Amani

    2018-03-01

    An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.

  12. A review of multivariate analyses in imaging genetics

    Directory of Open Access Journals (Sweden)

    Jingyu eLiu

    2014-03-01

    Full Text Available Recent advances in neuroimaging technology and molecular genetics provide the unique opportunity to investigate genetic influence on the variation of brain attributes. Since the year 2000, when the initial publication on brain imaging and genetics was released, imaging genetics has been a rapidly growing research approach with increasing publications every year. Several reviews have been offered to the research community focusing on various study designs. In addition to study design, analytic tools and their proper implementation are also critical to the success of a study. In this review, we survey recent publications using data from neuroimaging and genetics, focusing on methods capturing multivariate effects accommodating the large number of variables from both imaging data and genetic data. We group the analyses of genetic or genomic data into either a prior driven or data driven approach, including gene-set enrichment analysis, multifactor dimensionality reduction, principal component analysis, independent component analysis (ICA, and clustering. For the analyses of imaging data, ICA and extensions of ICA are the most widely used multivariate methods. Given detailed reviews of multivariate analyses of imaging data available elsewhere, we provide a brief summary here that includes a recently proposed method known as independent vector analysis. Finally, we review methods focused on bridging the imaging and genetic data by establishing multivariate and multiple genotype-phenotype associations, including sparse partial least squares, sparse canonical correlation analysis, sparse reduced rank regression and parallel ICA. These methods are designed to extract latent variables from both genetic and imaging data, which become new genotypes and phenotypes, and the links between the new genotype-phenotype pairs are maximized using different cost functions. The relationship between these methods along with their assumptions, advantages, and

  13. An architecture for implementation of multivariable controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    1999-01-01

    Browse > Conferences> American Control Conference, Prev | Back to Results | Next » An architecture for implementation of multivariable controllers 786292 searchabstract Niemann, H. ; Stoustrup, J. ; Dept. of Autom., Tech. Univ., Lyngby This paper appears in: American Control Conference, 1999....... Proceedings of the 1999 Issue Date : 1999 Volume : 6 On page(s): 4029 - 4033 vol.6 Location: San Diego, CA Meeting Date : 02 Jun 1999-04 Jun 1999 Print ISBN: 0-7803-4990-3 References Cited: 7 INSPEC Accession Number: 6403075 Digital Object Identifier : 10.1109/ACC.1999.786292 Date of Current Version : 06...... august 2002 Abstract An architecture for implementation of multivariable controllers is presented in this paper. The architecture is based on the Youla-Jabr-Bongiorno-Kucera parameterization of all stabilizing controllers. By using this architecture for implementation of multivariable controllers...

  14. A MULTIVARIATE ANALYSIS OF CROATIAN COUNTIES ENTREPRENEURSHIP

    Directory of Open Access Journals (Sweden)

    Elza Jurun

    2012-12-01

    Full Text Available In the focus of this paper is a multivariate analysis of Croatian Counties entrepreneurship. Complete data base available by official statistic institutions at national and regional level is used. Modern econometric methodology starting from a comparative analysis via multiple regression to multivariate cluster analysis is carried out as well as the analysis of successful or inefficacious entrepreneurship measured by indicators of efficiency, profitability and productivity. Time horizons of the comparative analysis are in 2004 and 2010. Accelerators of socio-economic development - number of entrepreneur investors, investment in fixed assets and current assets ratio in multiple regression model are analytically filtered between twenty-six independent variables as variables of the dominant influence on GDP per capita in 2010 as dependent variable. Results of multivariate cluster analysis of twentyone Croatian Counties are interpreted also in the sense of three Croatian NUTS 2 regions according to European nomenclature of regional territorial division of Croatia.

  15. Simplicial band depth for multivariate functional data

    KAUST Repository

    López-Pintado, Sara

    2014-03-05

    We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths. © 2014 Springer-Verlag Berlin Heidelberg.

  16. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  17. A MATLAB companion for multivariable calculus

    CERN Document Server

    Cooper, Jeffery

    2001-01-01

    Offering a concise collection of MatLab programs and exercises to accompany a third semester course in multivariable calculus, A MatLab Companion for Multivariable Calculus introduces simple numerical procedures such as numerical differentiation, numerical integration and Newton''s method in several variables, thereby allowing students to tackle realistic problems. The many examples show students how to use MatLab effectively and easily in many contexts. Numerous exercises in mathematics and applications areas are presented, graded from routine to more demanding projects requiring some programming. Matlab M-files are provided on the Harcourt/Academic Press web site at http://www.harcourt-ap.com/matlab.html.* Computer-oriented material that complements the essential topics in multivariable calculus* Main ideas presented with examples of computations and graphics displays using MATLAB * Numerous examples of short code in the text, which can be modified for use with the exercises* MATLAB files are used to implem...

  18. Multivariable nonlinear analysis of foreign exchange rates

    Science.gov (United States)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2003-05-01

    We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.

  19. Calculus of multivariate functions: it's application in business | Awen ...

    African Journals Online (AJOL)

    Multivariate functions can be applied to situations in business organizations like ... of capital invested in the plant, the size of the labour force and the cost of raw ... of multivariate functions and has considered types of multivariate differentiation ...

  20. Multivariate Analysis of Industrial Scale Fermentation Data

    DEFF Research Database (Denmark)

    Mears, Lisa; Nørregård, Rasmus; Stocks, Stuart M.

    2015-01-01

    Multivariate analysis allows process understanding to be gained from the vast and complex datasets recorded from fermentation processes, however the application of such techniques to this field can be limited by the data pre-processing requirements and data handling. In this work many iterations...

  1. Multivariate Option Pricing Using Dynamic Copula Models

    NARCIS (Netherlands)

    van den Goorbergh, R.W.J.; Genest, C.; Werker, B.J.M.

    2003-01-01

    This paper examines the behavior of multivariate option prices in the presence of association between the underlying assets.Parametric families of copulas offering various alternatives to the normal dependence structure are used to model this association, which is explicitly assumed to vary over

  2. Multivariate ordination statistics workshop with R slides

    OpenAIRE

    Strack, Michael

    2015-01-01

    2-hour workshop given at Macquarie University Department of Biological Sciences, 4 November 2015. Workshop was an introduction to the family of techniques falling under multivariate ordination, using the R language and drawing heavily from the book "Numerical Ecology with R" by Borcard et. al (2012).

  3. Multivariate Discrete First Order Stochastic Dominance

    DEFF Research Database (Denmark)

    Tarp, Finn; Østerdal, Lars Peter

    This paper characterizes the principle of first order stochastic dominance in a multivariate discrete setting. We show that a distribution  f first order stochastic dominates distribution g if and only if  f can be obtained from g by iteratively shifting density from one outcome to another...

  4. Multivariate Time Series Decomposition into Oscillation Components.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  5. Ranking multivariate GARCH models by problem dimension

    NARCIS (Netherlands)

    M. Caporin (Massimiliano); M.J. McAleer (Michael)

    2010-01-01

    textabstractIn the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. The two most widely known and used are the Scalar BEKK model of Engle and Kroner (1995) and Ding and Engle (2001), and the DCC model of Engle (2002). Some recent research has begun to

  6. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    Science.gov (United States)

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.

  7. A direct-gradient multivariate index of biotic condition

    Science.gov (United States)

    Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.

    2012-01-01

    Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.

  8. Optimal model-free prediction from multivariate time series

    Science.gov (United States)

    Runge, Jakob; Donner, Reik V.; Kurths, Jürgen

    2015-05-01

    Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.

  9. Aggregation-cokriging for highly multivariate spatial data

    KAUST Repository

    Furrer, R.; Genton, M. G.

    2011-01-01

    Best linear unbiased prediction of spatially correlated multivariate random processes, often called cokriging in geostatistics, requires the solution of a large linear system based on the covariance and cross-covariance matrix of the observations. For many problems of practical interest, it is impossible to solve the linear system with direct methods. We propose an efficient linear unbiased predictor based on a linear aggregation of the covariables. The primary variable together with this single meta-covariable is used to perform cokriging. We discuss the optimality of the approach under different covariance structures, and use it to create reanalysis type high-resolution historical temperature fields. © 2011 Biometrika Trust.

  10. Effect Sizes for Research Univariate and Multivariate Applications

    CERN Document Server

    Grissom, Robert J

    2011-01-01

    Noted for its comprehensive coverage, this greatly expanded new edition now covers the use of univariate and multivariate effect sizes. Many measures and estimators are reviewed along with their application, interpretation, and limitations. Noted for its practical approach, the book features numerous examples using real data for a variety of variables and designs, to help readers apply the material to their own data. Tips on the use of SPSS, SAS, R, and S-Plus are provided. The book's broad disciplinary appeal results from its inclusion of a variety of examples from psychology, medicine, educa

  11. Handbook of univariate and multivariate data analysis with IBM SPSS

    CERN Document Server

    Ho, Robert

    2013-01-01

    Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows.New to the Second EditionThree new chapters on multiple discriminant analysis, logistic regression, and canonical correlationNew section on how to deal with missing dataCoverage of te

  12. Aggregation-cokriging for highly multivariate spatial data

    KAUST Repository

    Furrer, R.

    2011-08-26

    Best linear unbiased prediction of spatially correlated multivariate random processes, often called cokriging in geostatistics, requires the solution of a large linear system based on the covariance and cross-covariance matrix of the observations. For many problems of practical interest, it is impossible to solve the linear system with direct methods. We propose an efficient linear unbiased predictor based on a linear aggregation of the covariables. The primary variable together with this single meta-covariable is used to perform cokriging. We discuss the optimality of the approach under different covariance structures, and use it to create reanalysis type high-resolution historical temperature fields. © 2011 Biometrika Trust.

  13. Training and evaluation of neural networks for multi-variate time series processing

    DEFF Research Database (Denmark)

    Fog, Torben L.; Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    We study the training and generalization for multi-variate time series processing. It is suggested to used a quasi-maximum likelihood approach rather than the standard sum of squared errors, thus taking dependencies among the errors of the individual time series into account. This may lead...... to improved generalization performance. Further, we extend the optimal brain damage pruning technique to the multi-variate case. A key ingredient is an algebraic expression for the generalization ability of a multi-variate model. The variability of the suggested techniques are successfully demonstrated...

  14. Power Estimation in Multivariate Analysis of Variance

    Directory of Open Access Journals (Sweden)

    Jean François Allaire

    2007-09-01

    Full Text Available Power is often overlooked in designing multivariate studies for the simple reason that it is believed to be too complicated. In this paper, it is shown that power estimation in multivariate analysis of variance (MANOVA can be approximated using a F distribution for the three popular statistics (Hotelling-Lawley trace, Pillai-Bartlett trace, Wilk`s likelihood ratio. Consequently, the same procedure, as in any statistical test, can be used: computation of the critical F value, computation of the noncentral parameter (as a function of the effect size and finally estimation of power using a noncentral F distribution. Various numerical examples are provided which help to understand and to apply the method. Problems related to post hoc power estimation are discussed.

  15. Directional outlyingness for multivariate functional data

    KAUST Repository

    Dai, Wenlin

    2018-04-07

    The direction of outlyingness is crucial to describing the centrality of multivariate functional data. Motivated by this idea, classical depth is generalized to directional outlyingness for functional data. Theoretical properties of functional directional outlyingness are investigated and the total outlyingness can be naturally decomposed into two parts: magnitude outlyingness and shape outlyingness which represent the centrality of a curve for magnitude and shape, respectively. This decomposition serves as a visualization tool for the centrality of curves. Furthermore, an outlier detection procedure is proposed based on functional directional outlyingness. This criterion applies to both univariate and multivariate curves and simulation studies show that it outperforms competing methods. Weather and electrocardiogram data demonstrate the practical application of our proposed framework.

  16. Multivariate max-stable spatial processes

    KAUST Repository

    Genton, Marc G.; Padoan, S. A.; Sang, H.

    2015-01-01

    Max-stable processes allow the spatial dependence of extremes to be modelled and quantified, so they are widely adopted in applications. For a better understanding of extremes, it may be useful to study several variables simultaneously. To this end, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. We define a Poisson process construction and introduce multivariate versions of the Smith Gaussian extreme-value, the Schlather extremal-Gaussian and extremal-t, and the Brown–Resnick models. We develop inference for the models based on composite likelihoods. We present results of Monte Carlo simulations and an application to daily maximum wind speed and wind gust.

  17. Multivariate Process Control with Autocorrelated Data

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2011-01-01

    As sensor and computer technology continues to improve, it becomes a normal occurrence that we confront with high dimensional data sets. As in many areas of industrial statistics, this brings forth various challenges in statistical process control and monitoring. This new high dimensional data...... often exhibit not only cross-­‐correlation among the quality characteristics of interest but also serial dependence as a consequence of high sampling frequency and system dynamics. In practice, the most common method of monitoring multivariate data is through what is called the Hotelling’s T2 statistic....... In this paper, we discuss the effect of autocorrelation (when it is ignored) on multivariate control charts based on these methods and provide some practical suggestions and remedies to overcome this problem....

  18. Prospective surveillance of multivariate spatial disease data

    Science.gov (United States)

    Corberán-Vallet, A

    2012-01-01

    Surveillance systems are often focused on more than one disease within a predefined area. On those occasions when outbreaks of disease are likely to be correlated, the use of multivariate surveillance techniques integrating information from multiple diseases allows us to improve the sensitivity and timeliness of outbreak detection. In this article, we present an extension of the surveillance conditional predictive ordinate to monitor multivariate spatial disease data. The proposed surveillance technique, which is defined for each small area and time period as the conditional predictive distribution of those counts of disease higher than expected given the data observed up to the previous time period, alerts us to both small areas of increased disease incidence and the diseases causing the alarm within each area. We investigate its performance within the framework of Bayesian hierarchical Poisson models using a simulation study. An application to diseases of the respiratory system in South Carolina is finally presented. PMID:22534429

  19. Multivariate max-stable spatial processes

    KAUST Repository

    Genton, Marc G.

    2015-02-11

    Max-stable processes allow the spatial dependence of extremes to be modelled and quantified, so they are widely adopted in applications. For a better understanding of extremes, it may be useful to study several variables simultaneously. To this end, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. We define a Poisson process construction and introduce multivariate versions of the Smith Gaussian extreme-value, the Schlather extremal-Gaussian and extremal-t, and the Brown–Resnick models. We develop inference for the models based on composite likelihoods. We present results of Monte Carlo simulations and an application to daily maximum wind speed and wind gust.

  20. Regression Models For Multivariate Count Data.

    Science.gov (United States)

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  1. A short note on multivariate dependence modeling

    Czech Academy of Sciences Publication Activity Database

    Bína, V.; Jiroušek, Radim

    2013-01-01

    Roč. 49, č. 3 (2013), s. 420-432 ISSN 0023-5954 Grant - others:GA ČR(CZ) GAP403/12/2175 Program:GA Institutional support: RVO:67985556 Keywords : multivariate distribution * dependence * copula Subject RIV: IN - Informatics, Computer Science Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2014/MTR/jirousek-0427848.pdf

  2. Multivariate Welch t-test on distances

    OpenAIRE

    Alekseyenko, Alexander V.

    2016-01-01

    Motivation: Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns visualized through dimension reduction. This method recognizes that pairwise distance matrix between observations is sufficient to compute within and between group sums of squares necessary to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used. This method...

  3. Multivariate fractional Poisson processes and compound sums

    OpenAIRE

    Beghin, Luisa; Macci, Claudio

    2015-01-01

    In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.

  4. On Multivariate Methods in Robust Econometrics

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 21, č. 1 (2012), s. 69-82 ISSN 1210-0455 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : least weighted squares * heteroscedasticity * multivariate statistics * model selection * diagnostics * computational aspects Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.561, year: 2012 http://www.vse.cz/pep/abstrakt.php?IDcl=411

  5. Precision Index in the Multivariate Context

    Czech Academy of Sciences Publication Activity Database

    Šiman, Miroslav

    2014-01-01

    Roč. 43, č. 2 (2014), s. 377-387 ISSN 0361-0926 R&D Projects: GA MŠk(CZ) 1M06047 Institutional support: RVO:67985556 Keywords : data depth * multivariate quantile * process capability index * precision index * regression quantile Subject RIV: BA - General Mathematics Impact factor: 0.274, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/siman-0425059.pdf

  6. The evolution of multivariate maternal effects.

    Directory of Open Access Journals (Sweden)

    Bram Kuijper

    2014-04-01

    Full Text Available There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.

  7. The evolution of multivariate maternal effects.

    Science.gov (United States)

    Kuijper, Bram; Johnstone, Rufus A; Townley, Stuart

    2014-04-01

    There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.

  8. Geometric noise reduction for multivariate time series.

    Science.gov (United States)

    Mera, M Eugenia; Morán, Manuel

    2006-03-01

    We propose an algorithm for the reduction of observational noise in chaotic multivariate time series. The algorithm is based on a maximum likelihood criterion, and its goal is to reduce the mean distance of the points of the cleaned time series to the attractor. We give evidence of the convergence of the empirical measure associated with the cleaned time series to the underlying invariant measure, implying the possibility to predict the long run behavior of the true dynamics.

  9. Multivariate statistical assessment of coal properties

    Czech Academy of Sciences Publication Activity Database

    Klika, Z.; Serenčíšová, J.; Kožušníková, Alena; Kolomazník, I.; Študentová, S.; Vontorová, J.

    2014-01-01

    Roč. 128, č. 128 (2014), s. 119-127 ISSN 0378-3820 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : coal properties * structural,chemical and petrographical properties * multivariate statistics Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 3.352, year: 2014 http://dx.doi.org/10.1016/j.fuproc.2014.06.029

  10. Preliminary Multivariable Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  11. Modeling Covariance Breakdowns in Multivariate GARCH

    OpenAIRE

    Jin, Xin; Maheu, John M

    2014-01-01

    This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation of the conditional covariance matrix from its implied MGARCH dynamics. This is captured through a flexible stochastic component that allows for changes in the conditional variances, covariances and impl...

  12. A unifying framework for k-statistics, polykays and their multivariate generalizations.

    OpenAIRE

    DI NARDO, Elvira; GUARINO G, G.; Senato, D.

    2008-01-01

    Through the classical umbral calculus, we provide a unifying syntax for single and multivariate $k$-statistics, polykays and multivariate polykays. From a combinatorial point of view, we revisit the theory as exposed by Stuart and Ord, taking into account the Doubilet approach to symmetric functions. Moreover, by using exponential polynomials rather than set partitions, we provide a new formula for $k$-statistics that results in a very fast algorithm to generate such estimators.

  13. Multivariate and multiscale data assimilation in terrestrial systems: a review.

    Science.gov (United States)

    Montzka, Carsten; Pauwels, Valentijn R N; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry

    2012-11-26

    More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a

  14. Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review

    Directory of Open Access Journals (Sweden)

    Harry Vereecken

    2012-11-01

    Full Text Available More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF, Particle Filter (PF and variational methods (3/4D-VAR. In this review, we distinguish between four major DA approaches: (1 univariate single-scale DA (UVSS, which is the approach used in the majority of published DA applications, (2 univariate multiscale DA (UVMS referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3 multivariate single-scale DA (MVSS dealing with the assimilation of at least two different data types, and (4 combined multivariate multiscale DA (MVMS. Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a

  15. An overview of multivariate gamma distributions as seen from a (multivariate) matrix exponential perspective

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2012-01-01

    Laplace transform. In a longer perspective stochastic and statistical analysis for MVME will in particular apply to any of the previously defined distributions. Multivariate gamma distributions have been used in a variety of fields like hydrology, [11], [10], [6], space (wind modeling) [9] reliability [3......Numerous definitions of multivariate exponential and gamma distributions can be retrieved from the literature [4]. These distribtuions belong to the class of Multivariate Matrix-- Exponetial Distributions (MVME) whenever their joint Laplace transform is a rational function. The majority...... of these distributions further belongs to an important subclass of MVME distributions [5, 1] where the multivariate random vector can be interpreted as a number of simultaneously collected rewards during sojourns in a the states of a Markov chain with one absorbing state, the rest of the states being transient. We...

  16. AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

    OpenAIRE

    Krzyśko, Mirosław; Smaga, Łukasz

    2017-01-01

    In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...

  17. Multivariate Drought Characterization in India for Monitoring and Prediction

    Science.gov (United States)

    Sreekumaran Unnithan, P.; Mondal, A.

    2016-12-01

    Droughts are one of the most important natural hazards that affect the society significantly in terms of mortality and productivity. The metric that is most widely used by the India Meteorological Department (IMD) to monitor and predict the occurrence, spread, intensification and termination of drought is based on the univariate Standardized Precipitation Index (SPI). However, droughts may be caused by the influence and interaction of many variables (such as precipitation, soil moisture, runoff, etc.), emphasizing the need for a multivariate approach for drought characterization. This study advocates and illustrates use of the recently proposed multivariate standardized drought index (MSDI) in monitoring and prediction of drought and assessing its concerned risk in the Indian region. MSDI combines information from multiple sources: precipitation and soil moisture, and has been deemed to be a more reliable drought index. All-India monthly rainfall and soil moisture data sets are analysed for the period 1980 to 2014 to characterize historical droughts using both the univariate indices, the precipitation-based SPI and the standardized soil moisture index (SSI), as well as the multivariate MSDI using parametric and non-parametric approaches. We confirm that MSDI can capture droughts of 1986 and 1990 that aren't detected by using SPI alone. Moreover, in 1987, MSDI indicated a higher severity of drought when a deficiency in both soil moisture and precipitation was encountered. Further, this study also explores the use of MSDI for drought forecasts and assesses its performance vis-à-vis existing predictions from the IMD. Future research efforts will be directed towards formulating a more robust standardized drought indicator that can take into account socio-economic aspects that also play a key role for water-stressed regions such as India.

  18. Clustering Multivariate Time Series Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Shima Ghassempour

    2014-03-01

    Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

  19. Time varying, multivariate volume data reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, James P [Los Alamos National Laboratory; Fout, Nathaniel [UC DAVIS; Ma, Kwan - Liu [UC DAVIS

    2010-01-01

    Large-scale supercomputing is revolutionizing the way science is conducted. A growing challenge, however, is understanding the massive quantities of data produced by large-scale simulations. The data, typically time-varying, multivariate, and volumetric, can occupy from hundreds of gigabytes to several terabytes of storage space. Transferring and processing volume data of such sizes is prohibitively expensive and resource intensive. Although it may not be possible to entirely alleviate these problems, data compression should be considered as part of a viable solution, especially when the primary means of data analysis is volume rendering. In this paper we present our study of multivariate compression, which exploits correlations among related variables, for volume rendering. Two configurations for multidimensional compression based on vector quantization are examined. We emphasize quality reconstruction and interactive rendering, which leads us to a solution using graphics hardware to perform on-the-fly decompression during rendering. In this paper we present a solution which addresses the need for data reduction in large supercomputing environments where data resulting from simulations occupies tremendous amounts of storage. Our solution employs a lossy encoding scheme to acrueve data reduction with several options in terms of rate-distortion behavior. We focus on encoding of multiple variables together, with optional compression in space and time. The compressed volumes can be rendered directly with commodity graphics cards at interactive frame rates and rendering quality similar to that of static volume renderers. Compression results using a multivariate time-varying data set indicate that encoding multiple variables results in acceptable performance in the case of spatial and temporal encoding as compared to independent compression of variables. The relative performance of spatial vs. temporal compression is data dependent, although temporal compression has the

  20. Multivariate linear models and repeated measurements revisited

    DEFF Research Database (Denmark)

    Dalgaard, Peter

    2009-01-01

    Methods for generalized analysis of variance based on multivariate normal theory have been known for many years. In a repeated measurements context, it is most often of interest to consider transformed responses, typically within-subject contrasts or averages. Efficiency considerations leads...... to sphericity assumptions, use of F tests and the Greenhouse-Geisser and Huynh-Feldt adjustments to compensate for deviations from sphericity. During a recent implementation of such methods in the R language, the general structure of such transformations was reconsidered, leading to a flexible specification...