Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Shannon entropy in time domain is a measure of signal or system uncertainty. When based on spectrum entropy, Shannon entropy can be taken as a measure of signal or system complexity.Therefore, wavelet analysis based on wavelet entropy measure can signify the complexity of non-steady signal or system in both time and frequency domain. In this paper, in order to meet the requirements of post-analysis on abundant wavelet transform result data and the need of information mergence, the basic definition of wavelet entropy measure is proposed, corresponding algorithms of several wavelet entropies, such as wavelet average entropy, wavelet time-frequency entropy, wavelet distance entropy,etc. are put forward, and the physical meanings of these entropies are analyzed as well. The application principle of wavelet entropy measure in ElectroEncephaloGraphy (EEG) signal analysis, mechanical fault diagnosis, fault detection and classification in power system are analyzed. Finally, take the transmission line fault detection in power system for example, simulations in two different systems, a 10kV automatic blocking and continuous power transmission line and a 500kV Extra High Voltage (EHV) transmission line, are carried out, and the two methods, wavelet entropy and wavelet modulus maxima, are compared, the results show feasibility and application prospect of the six wavelet entropies.
Wavelet Statistical Analysis of Low-Latitude Geomagnetic Measurements
Papa, A. R.; Akel, A. F.
2009-05-01
Following previous works by our group (Papa et al., JASTP, 2006), where we analyzed a series of records acquired at the Vassouras National Geomagnetic Observatory in Brazil for the month of October 2000, we introduced a wavelet analysis for the same type of data and for other periods. It is well known that wavelets allow a more detailed study in several senses: the time window for analysis can be drastically reduced if compared to other traditional methods (Fourier, for example) and at the same time allow an almost continuous accompaniment of both amplitude and frequency of signals as time goes by. This advantage brings some possibilities for potentially useful forecasting methods of the type also advanced by our group in previous works (see for example, Papa and Sosman, JASTP, 2008). However, the simultaneous statistical analysis of both time series (in our case amplitude and frequency) is a challenging matter and is in this sense that we have found what we consider our main goal. Some possible trends for future works are advanced.
Evaluation of Wavelet-based Core Inflation Measures: Evidence from Peru
Erick Lahura; Marco Vega
2011-01-01
Under inflation targeting and other related monetary policy regimes, the identication of non-transitory inflation and forecasts about future inflation constitute key ingredients for monetary policy decisions. In practice, central banks perform these tasks using so-called "core inflation measures". In this paper we construct alternative core inflation measures using wavelet functions and multiresolution analysis (MRA), and then evaluate their relevance for monetary policy. The construction of ...
A wavelet filtering method for cumulative gamma spectroscopy used in wear measurements
International Nuclear Information System (INIS)
Bianchi, Davide; Lenauer, Claudia; Betz, Gerhard; Vernes, András
2017-01-01
Continuous ultra-mild wear quantification using radioactive isotopes involves measuring very low amounts of activity in limited time intervals. This results in gamma spectra with poor signal-to-noise ratio and hence very scattered wear data, especially during running-in, where wear is intrinsically low. Therefore, advanced filtering methods reducing the wear data scattering and making the calculation of the main peak area more accurate are mandatory. An energy-time dependent threshold for wavelet detail coefficients based on Poisson statistics and using a combined Barwell law for the estimation of the average photon counting rate is then introduced. In this manner, it was shown that the accuracy of running-in wear quantification is enhanced. - Highlights: • Time-dependent Poisson statistics. • Wavelet-based filtering of cumulative gamma spectra. • Improvement of low wear analysis.
Data analysis in Raman measurements of biological tissues using wavelet techniques
Gaeta, Giovanni M.; Zenone, Flora; Camerlingo, Carlo; Riccio, Roberto; Moro, Gianfranco; Lepore, Maria; Indovina, Pietro L.
2005-03-01
Raman spectroscopy of oral tissues is a promising tool for in vivo diagnosis of oral pathologies, due to the high chemical and structural information content of Raman spectra. However, measurements on biological tissues are usually hindered by low level signals and by the presence of interfering noise and background components due to light diffusion or fluorescence processes. Numerical methods can be used in data analysis, in order to overcome these problems. In this work the wavelet multicomponent decomposition approach has been tested in a series of micro-Raman measurements performed on "in vitro" animal tissue samples. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a liquid nitrogen cooled CCD equipped with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a 50 X optical objective. The resulting spectra were analysed using a wavelet software package and the contribution of different vibration modes have been singled out. In particular, the C=C stretching mode, and the CH2 bending mode of amide I and amide III and tyrosine contributions were present. The validity of wavelet approach in the data treatment has been also successfully tested on aspirin.
[De-noising and measurement of pulse wave velocity of the wavelet].
Liu, Baohua; Zhu, Honglian; Ren, Xiaohua
2011-02-01
Pulse wave velocity (PWV) is a vital index of the cardiovascular pathology, so that the accurate measurement of PWV can be of benefit for prevention and treatment of cardiovascular diseases. The noise in the measure system of pulse wave signal, rounding error and selection of the recording site all cause errors in the measure result. In this paper, with wavelet transformation to eliminate the noise and to raise the precision, and with the choice of the point whose slope was maximum as the recording site of the reconstructing pulse wave, the measuring system accuracy was improved.
Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2018-04-01
Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.
Aboufadel, Edward
1999-01-01
An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets
Postmortem magnetic resonance imaging: Reproducing typical autopsy heart measurements.
Ampanozi, Garyfalia; Hatch, Gary M; Flach, Patricia M; Thali, Michael J; Ruder, Thomas D
2015-11-01
The aim of this study was to evaluate the utility of cardiac postmortem magnetic resonance (PMMR) to perform routine measurements of the ventricular wall thicknesses and the heart valves and to assess if imaging measurements are consistent with traditional autopsy measurements. In this retrospective study, 25 cases with cardiac PMMR and subsequent autopsy were included. The thicknesses of the myocardial walls as well as the circumferences of all heart valves were measured on cardiac PMMR and compared to autopsy measurements. Paired samples T-test and the Wilcoxon-Signed rank test, were used to compare autopsy and cardiac PMMR measurements. For exploring correlations, the Pearson's Correlation coefficient and the Spearman's Rho test were used. Cardiac PMMR measurements of the aortic and pulmonary valve circumferences showed no significant differences from autopsy measurements. The mitral and tricuspid valves circumferences differed significantly from autopsy measurements. Left myocardial and right myocardial wall thickness also differed significantly from autopsy measurements. Left and right myocardial wall thickness, and tricuspid valve circumference measurements on cardiac PMMR and autopsy, correlated strongly and significantly. Several PMMR measurements of cardiac parameters differ significantly from corresponding autopsy measurements. However, there is a strong correlation between cardiac PMMR measurements and autopsy measurements in the majority of these parameters. It is important to note that myocardial walls are thicker when measured in situ on cardiac PMMR than when measured at autopsy. Investigators using post-mortem MR should be aware of these differences in order to avoid false diagnoses of cardiac pathology based on cardiac PMMR. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Li, Xiaoli; Li, Duan; Voss, Logan J; Sleigh, Jamie W
2009-11-15
Brain functions are related to neuronal networks of different sizes and distribution, and neuronal networks of different sizes oscillate at different frequencies. Thus the synchronization of neuronal networks is often reflected by cross-frequency interaction. The description of this cross-frequency interaction is therefore a crucial issue in understanding the modulation mechanisms between neuronal populations. A number of different kinds of interaction between frequencies have been reported. In this paper, we develop a general harmonic wavelet transform based bicoherence using a phase randomization method. This allows us to measure the comodulation of oscillations between different frequency bands in neuronal populations. The performance of the method is evaluated by a simulation study. The results show that the improved wavelet bicoherence method can detect a reliable phase coupling value, and also identify zero bicoherence for waves that are not phase-coupled. Spurious bicoherences can be effectively eliminated through the phase randomization method. Finally, this method is applied to electrocorticogram data recorded from rats during transitions between slow-wave sleep, rapid-eye movement sleep and waking. The phase coupling in rapid-eye movement sleep is statistically lower than that during slow-wave sleep, and slightly less than those in the wakeful state. The degree of phase coupling in rapid-eye movement sleep after slow-wave sleep is greater than in rapid-eye movement sleep prior to waking. This method could be applied to investigate the cross-frequency interactions in other physiological signals.
Directory of Open Access Journals (Sweden)
Rogelio Ramos
2017-01-01
Full Text Available The present work discusses the problem of induced external electrical noise as well as its removal from the electrical potential obtained from Scanning Vibrating Electrode Technique (SVET in the pitting corrosion process of aluminum alloy A96061 in 3.5% NaCl. An accessible and efficient solution of this problem is presented with the use of virtual instrumentation (VI, embedded systems, and the discrete wavelet transform (DWT. The DWT is a computational algorithm for digital processing that allows obtaining electrical noise with Signal to Noise Ratio (SNR superior to those obtained with Lock-In Amplifier equipment. The results show that DWT and the threshold method are efficient and powerful alternatives to carry out electrical measurements of potential signals from localized corrosion processes measured by SVET.
Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation
International Nuclear Information System (INIS)
Liu, C-M; Chen, L-W; Wang, C-C
2006-01-01
A digital nano-moire method with wavelet transformation is explored to measure nanoscale in-plane displacement fields. By applying e-beam lithography, a periodic PMMA nanostructure array is fabricated directly on the specimen and used as the specimen grating. Moire patterns are generated by overlapping the images of the PMMA specimen grating obtained from AFM scanning and the virtual reference grating produced by a digital image generating process. Then, the overlapped images are filtered by the 2D wavelet transformation (WT) to capture the target moire patterns. Existing methods, by overlapping the monitor-generated scanning lines with the image of the specimen grating, cause a mismatch problem. Previously, the carrier moire method was explored with the aim of curing the mismatch problem. Unfortunately, the carrier moire method, in addition to suffering from increased complexity of mathematical calculations, is incapable of directly obtaining the displacement field. Thus, the mismatch problem will result in inconveniences and restrictions in the practical application. Instead of using monitor-generated scanning lines, the proposed method applies the virtual reference grating, and thus puts the mismatch problem to rest. Nevertheless, the resultant moire image suffers from low contrast which, if left untreated, might distort the measurement result. Therefore, the WT, known for its sharpened abilities of characteristic and edge detection, is used to capture the target moire patterns and improve the measurement accuracy. The proposed method has been carried out in the laboratory. Experimental results have shown that the proposed method is convenient and efficient for nanoscale displacement measurement
Measurements of radon progeny activity on typical indoor surfaces
International Nuclear Information System (INIS)
Knutson, E.O.; Gogolak, C.V.; Klemic, G.
1992-01-01
A number of studies aimed at defining how well radon progeny on surfaces can be measured, information that is needed in order to test physical/mathematical models governing indoor radon progeny behaviour, are described. One experiment compared the decomposition on to different surfaces. Only relatively small differences were found among metal, filter paper, broadcloth, corduroy fabric, vinyl wallpaper, glass, and latex paint, but polyethylene film collected two to four times as much as the others, due most likely to electrostatic charge on the plastic surface. Another experiment compared the gamma and gross alpha count methods of measuring surface activity for metal, filter paper, broadcloth and corduroy surfaces. No difference for the surfaces tested was found from which it is concluded that, even for rougher surfaces, progeny atoms deposit mainly on the outer layers. A final experiment compared in situ and surrogate-surface methods for measuring surface deposition. For most tests, the two methods agreed within 30%, and the average ratio was not significantly different from unity. 210 Po is a complication in the in situ method. An unexpected location effect was found in the experiments conducted in houses with high radon concentrations: the deposition on the ceiling was higher than on the surfaces. (author)
Directory of Open Access Journals (Sweden)
Mahin K. Atiq
2013-09-01
Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.
Cheng, Lizhi; Luo, Yong; Chen, Bo
2014-01-01
This book could be divided into two parts i.e. fundamental wavelet transform theory and method and some important applications of wavelet transform. In the first part, as preliminary knowledge, the Fourier analysis, inner product space, the characteristics of Haar functions, and concepts of multi-resolution analysis, are introduced followed by a description on how to construct wavelet functions both multi-band and multi wavelets, and finally introduces the design of integer wavelets via lifting schemes and its application to integer transform algorithm. In the second part, many applications are discussed in the field of image and signal processing by introducing other wavelet variants such as complex wavelets, ridgelets, and curvelets. Important application examples include image compression, image denoising/restoration, image enhancement, digital watermarking, numerical solution of partial differential equations, and solving ill-conditioned Toeplitz system. The book is intended for senior undergraduate stude...
Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network
Directory of Open Access Journals (Sweden)
Rui Li
2016-01-01
Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.
Directory of Open Access Journals (Sweden)
Giuseppa Sciortino
2016-04-01
Full Text Available We propose a methodology to support the physician in the automatic identification of mid-sagittal sections of the fetus in ultrasound videos acquired during the first trimester of pregnancy. A good mid-sagittal section is a key requirement to make the correct measurement of nuchal translucency which is one of the main marker for screening of chromosomal defects such as trisomy 13, 18 and 21. NT measurement is beyond the scope of this article. The proposed methodology is mainly based on wavelet analysis and neural network classifiers to detect the jawbone and on radial symmetry analysis to detect the choroid plexus. Those steps allow to identify the frames which represent correct mid-sagittal sections to be processed. The performance of the proposed methodology was analyzed on 3000 random frames uniformly extracted from 10 real clinical ultrasound videos. With respect to a ground-truth provided by an expert physician, we obtained a true positive, a true negative and a balanced accuracy equal to 87.26%, 94.98% and 91.12% respectively.
International Nuclear Information System (INIS)
Torres, Y M; Amezquita, R; Monroy, F
2011-01-01
In this paper, the size and axial position of micrometric particles is obtained for an in-line Fraunhofer holography setup. The hologram reconstruction was realized using the wavelet transform. By digital image processing tools, the size distribution histogram for the particles in the sample was obtained. The contrast measurement in the amplitude reconstruction presents a peak when the axial coordinate and the register distance are equal. This fact lets the axial position in the sample be determined.
Mooij, Anne H; Frauscher, Birgit; Amiri, Mina; Otte, Willem M; Gotman, Jean
2016-12-01
To assess whether there is a difference in the background activity in the ripple band (80-200Hz) between epileptic and non-epileptic channels, and to assess whether this difference is sufficient for their reliable separation. We calculated mean and standard deviation of wavelet entropy in 303 non-epileptic and 334 epileptic channels from 50 patients with intracerebral depth electrodes and used these measures as predictors in a multivariable logistic regression model. We assessed sensitivity, positive predictive value (PPV) and negative predictive value (NPV) based on a probability threshold corresponding to 90% specificity. The probability of a channel being epileptic increased with higher mean (p=0.004) and particularly with higher standard deviation (pentropy is likely to be epileptic; with a threshold corresponding to 90% specificity our model can reliably select a subset of epileptic channels. Most studies have concentrated on brief ripple events. We showed that background activity in the ripple band also has some ability to discriminate epileptic channels. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Fast retinal vessel detection and measurement using wavelets and edge location refinement.
Directory of Open Access Journals (Sweden)
Peter Bankhead
Full Text Available The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.
Chan, Y T
1995-01-01
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...
Signal Analysis by New Mother Wavelets
International Nuclear Information System (INIS)
Niu Jinbo; Qi Kaiguo; Fan Hongyi
2009-01-01
Based on the general formula for finding qualified mother wavelets [Opt. Lett. 31 (2006) 407] we make wavelet transforms computed with the newly found mother wavelets (characteristic of the power 2n) for some optical Gaussian pulses, which exhibit the ability to measure frequency of the pulse more precisely and clearly. We also work with complex mother wavelets composed of new real mother wavelets, which offer the ability of obtaining phase information of the pulse as well as amplitude information. The analogy between the behavior of Hermite-Gauss beams and that of new wavelet transforms is noticed. (general)
Xiong, Zhi; Zhu, J. G.; Xue, B.; Ye, Sh. H.; Xiong, Y.
2013-10-01
As a novel network coordinate measurement system based on multi-directional positioning, workspace Measurement and Positioning System (wMPS) has outstanding advantages of good parallelism, wide measurement range and high measurement accuracy, which makes it to be the research hotspots and important development direction in the field of large-scale measurement. Since station deployment has a significant impact on the measurement range and accuracy, and also restricts the use-cost, the optimization method of station deployment was researched in this paper. Firstly, positioning error model was established. Then focusing on the small network consisted of three stations, the typical deployments and error distribution characteristics were studied. Finally, through measuring the simulated fuselage using typical deployments at the industrial spot and comparing the results with Laser Tracker, some conclusions are obtained. The comparison results show that under existing prototype conditions, I_3 typical deployment of which three stations are distributed in a straight line has an average error of 0.30 mm and the maximum error is 0.50 mm in the range of 12 m. Meanwhile, C_3 typical deployment of which three stations are uniformly distributed in the half-circumference of an circle has an average error of 0.17 mm and the maximum error is 0.28 mm. Obviously, C_3 typical deployment has a higher control effect on precision than I_3 type. The research work provides effective theoretical support for global measurement network optimization in the future work.
FPGAs and wavelets on circuit testing based on current signal measurements
International Nuclear Information System (INIS)
Pouros, Sotirios; Vassios, Vassilios; Manolakis, Dimitrios; Bamnios, Georgios; Papakostas, Dimitrios K.; Hatzopoulos, Alkis A.; Hristov, Valentin
2015-01-01
The research team designed and implemented a prototype testing system using FPGAs, where test methods for analog and digital (mixed) electronics using wavelets can be incorporated. The prototype has been evaluated and the results are promising. Moreover, the usability and verification of the system’s functionality are presented. The current sensing unit is described in detail. The new automated fault testing system incorporates reconfigurability and parallel processing capabilities.
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2015-10-01
Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.
Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.
2010-12-01
Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.
Yoon, Yeomin; Noh, Suwoo; Jeong, Jiseong; Park, Kyihwan
2018-05-01
The topology image is constructed from the 2D matrix (XY directions) of heights Z captured from the force-feedback loop controller. For small height variations, nonlinear effects such as hysteresis or creep of the PZT-driven Z nano scanner can be neglected and its calibration is quite straightforward. For large height variations, the linear approximation of the PZT-driven Z nano scanner fail and nonlinear behaviors must be considered because this would cause inaccuracies in the measurement image. In order to avoid such inaccuracies, an additional strain gauge sensor is used to directly measure displacement of the PZT-driven Z nano scanner. However, this approach also has a disadvantage in its relatively low precision. In order to obtain high precision data with good linearity, we propose a method of overcoming the low precision problem of the strain gauge while its feature of good linearity is maintained. We expect that the topology image obtained from the strain gauge sensor showing significant noise at high frequencies. On the other hand, the topology image obtained from the controller output showing low noise at high frequencies. If the low and high frequency signals are separable from both topology images, the image can be constructed so that it is represented with high accuracy and low noise. In order to separate the low frequencies from high frequencies, a 2D Haar wavelet transform is used. Our proposed method use the 2D wavelet transform for obtaining good linearity from strain gauge sensor and good precision from controller output. The advantages of the proposed method are experimentally validated by using topology images. Copyright © 2018 Elsevier B.V. All rights reserved.
Cross wavelet analysis: significance testing and pitfalls
Directory of Open Access Journals (Sweden)
D. Maraun
2004-01-01
Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.
Certain problems concerning wavelets and wavelets packets
International Nuclear Information System (INIS)
Siddiqi, A.H.
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs
Certain problems concerning wavelets and wavelets packets
Energy Technology Data Exchange (ETDEWEB)
Siddiqi, A H
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs.
Wavelet Enhanced Appearance Modelling
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Forchhammer, Søren; Cootes, Timothy F.
2004-01-01
Generative segmentation methods such as the Active Appearance Models (AAM) establish dense correspondences by modelling variation of shape and pixel intensities. Alas, for 3D and high-resolution 2D images typical in medical imaging, this approach is rendered infeasible due to excessive storage......-7 wavelets on face images have shown that segmentation accuracy degrades gracefully with increasing compression ratio. Further, a proposed weighting scheme emphasizing edges was shown to be significantly more accurate at compression ratio 1:1, than a conventional AAM. At higher compression ratios the scheme...
The Bicycle Drawing Test: What Does It Measure in Developmentally Typical Children?
Cannoni, Eleonora; Di Norcia, Anna; Bombi, Anna Silvia; Di Giunta, Laura
2015-10-01
To verify the dimensionality of Bicycle Drawing Test (BDT), we applied the coding system of Greenberg, Rodriguez, and Sesta to bicycle drawings made by 295 boys and 320 girls (6-10 years old) with typical development, and submitted the data to item analysis, exploratory factor analysis, and confirmatory factor analysis. These analyses confirmed only two of the original four dimensions of the BDT: spatial reasoning and visual-motor control. The scores in these two factors were correlated with the Colored Progressive Matrices, the Rey Complex Figure (Copy and Memory) and with the teachers' ratings in mathematics, language, and drawing. The correlations, albeit moderate in magnitude, were consistent with the hypothesized convergent and discriminant validity. After checking for measurement invariance across gender and age, we conducted two analyses of variance, the first of which showed a significant difference between younger children (6-8 years old) and older children (9-10 years old); the analysis of variance by gender did not yield significant differences. These data enhance the usefulness of the BDT as a measure of separate cognitive components, but do not support its use as a measure of mechanical reasoning. © The Author(s) 2014.
Faedda, Gianni L; Ohashi, Kyoko; Hernandez, Mariely; McGreenery, Cynthia E; Grant, Marie C; Baroni, Argelinda; Polcari, Ann; Teicher, Martin H
2016-06-01
Distinguishing pediatric bipolar disorder (BD) from attention-deficit hyperactivity disorder (ADHD) can be challenging. Hyperactivity is a core feature of both disorders, but severely disturbed sleep and circadian dysregulation are more characteristic of BD, at least in adults. We tested the hypothesis that objective measures of activity, sleep, and circadian rhythms would help differentiate pediatric subjects with BD from ADHD and typically developing controls. Unmedicated youths (N = 155, 97 males, age 5-18) were diagnosed using DSM-IV criteria with Kiddie-SADS PL/E. BD youths (n = 48) were compared to typically developing controls (n = 42) and children with ADHD (n = 44) or ADHD plus comorbid depressive disorders (n = 21). Three-to-five days of minute-to-minute belt-worn actigraph data (Ambulatory Monitoring Inc.), collected during the school week, were processed to yield 28 metrics per subject, and assessed for group differences with analysis of covariance. Cross-validated machine learning algorithms were used to determine the predictive accuracy of a four-parameter model, with measures reflecting sleep, hyperactivity, and circadian dysregulation, plus Indic's bipolar vulnerability index (VI). There were prominent group differences in several activity measures, notably mean 5 lowest hours of activity, skewness of diurnal activity, relative circadian amplitude, and VI. A predictive support vector machine model discriminated bipolar from non-bipolar with mean accuracy of 83.1 ± 5.4%, ROC area of 0.781 ± 0.071, kappa of 0.587 ± 0.136, specificity of 91.7 ± 5.3%, and sensitivity of 64.4 ± 13.6%. Objective measures of sleep, circadian rhythmicity, and hyperactivity were abnormal in BD. Wearable sensor technology may provide bio-behavioral markers that can help differentiate children with BD from ADHD and healthy controls. © 2016 Association for Child and Adolescent Mental Health.
Measurements of VOC adsorption/desorption characteristics of typical interior building materials
Energy Technology Data Exchange (ETDEWEB)
An, Y.; Zhang, J.S.; Shaw, C.Y.
2000-07-01
The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.
Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel
2016-11-01
A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.
[Acoustic conditions in open plan office - Application of technical measures in a typical room].
Mikulski, Witold
2018-03-09
Noise in open plan offices should not exceed acceptable levels for the hearing protection. Its major negative effects on employees are nuisance and impediment in execution of work. Specific technical solutions should be introduced to provide proper acoustic conditions for work performance. Acoustic evaluation of a typical open plan office was presented in the article published in "Medycyna Pracy" 5/2016. None of the rooms meets all the criteria, therefore, in this article one of the rooms was chosen to apply different technical solutions to check the possibility of reaching proper acoustic conditions. Acoustic effectiveness of those solutions was verified by means of digital simulation. The model was checked by comparing the results of measurements and calculations before using simulation. The analyzis revealed that open plan offices supplemented with signals for masking speech signals can meet all the required criteria. It is relatively easy to reach proper reverberation time (i.e., sound absorption). It is more difficult to reach proper values of evaluation parameters determined from A-weighted sound pressure level (SPLA) of speech. The most difficult is to provide proper values of evaluation parameters determined from speech transmission index (STI). Finally, it is necessary (besides acoustic treatment) to use devices for speech masking. The study proved that it is technically possible to reach proper acoustic condition. Main causes of employees complaints in open plan office are inadequate acoustic work conditions. Therefore, it is necessary to apply specific technical solutions - not only sound absorbing suspended ceiling and high acoustic barriers, but also devices for speech masking. Med Pr 2018;69(2):153-165. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Energy Technology Data Exchange (ETDEWEB)
Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)
1996-12-31
Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.
Wavelet library for constrained devices
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
Digital transceiver implementation for wavelet packet modulation
Lindsey, Alan R.; Dill, Jeffrey C.
1998-03-01
Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.
Multifractal Cross Wavelet Analysis
Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.
Significance tests for the wavelet cross spectrum and wavelet linear coherence
Directory of Open Access Journals (Sweden)
Z. Ge
2008-12-01
Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As
Typical Werner states satisfying all linear Bell inequalities with dichotomic measurements
Luo, Ming-Xing
2018-04-01
Quantum entanglement as a special resource inspires various distinct applications in quantum information processing. Unfortunately, it is NP-hard to detect general quantum entanglement using Bell testing. Our goal is to investigate quantum entanglement with white noises that appear frequently in experiment and quantum simulations. Surprisingly, for almost all multipartite generalized Greenberger-Horne-Zeilinger states there are entangled noisy states that satisfy all linear Bell inequalities consisting of full correlations with dichotomic inputs and outputs of each local observer. This result shows generic undetectability of mixed entangled states in contrast to Gisin's theorem of pure bipartite entangled states in terms of Bell nonlocality. We further provide an accessible method to show a nontrivial set of noisy entanglement with small number of parties satisfying all general linear Bell inequalities. These results imply typical incompleteness of special Bell theory in explaining entanglement.
Visibility of wavelet quantization noise
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Energy Technology Data Exchange (ETDEWEB)
Huang, Chen; Zou, Zhijun; Li, Meiling; Wang, Xin; Huang, Wugang; Yang, Jiangang [University of Shanghai for Science and Technology, Shanghai (China); Li, Wei; Xiao, Xueqin [Shanghai International Gymnastics Stadium, Shanghai (China)
2007-05-15
Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15{sup o}C in winter. The second largest one is 12{sup o}C in summer, and less than 2{sup o}C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building. (author)
Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia
2015-01-01
This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...
Skopina, Maria; Protasov, Vladimir
2016-01-01
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...
Wavelets, vibrations and scalings
Meyer, Yves
1997-01-01
Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...
Wavelets in scientific computing
DEFF Research Database (Denmark)
Nielsen, Ole Møller
1998-01-01
the FWT can be used as a front-end for efficient image compression schemes. Part II deals with vector-parallel implementations of several variants of the Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm for the FWT and derive a model for its performance. Part III...... supported wavelets in the context of multiresolution analysis. These wavelets are particularly attractive because they lead to a stable and very efficient algorithm, namely the fast wavelet transform (FWT). We give estimates for the approximation characteristics of wavelets and demonstrate how and why...... is an investigation of the potential for using the special properties of wavelets for solving partial differential equations numerically. Several approaches are identified and two of them are described in detail. The algorithms developed are applied to the nonlinear Schrödinger equation and Burgers' equation...
International Nuclear Information System (INIS)
Dremin, Igor M; Ivanov, Oleg V; Nechitailo, Vladimir A
2001-01-01
This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract. (reviews of topical problems)
Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms
National Research Council Canada - National Science Library
Ardolino, Richard S
2007-01-01
This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...
Applications of a fast, continuous wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Dress, W.B.
1997-02-01
A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.
Rabi, R.; Oufni, L.
2017-10-01
Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.
Complex Wavelet transform for MRI
International Nuclear Information System (INIS)
Junor, P.; Janney, P.
2004-01-01
Full text: There is a perpetual compromise encountered in magnetic resonance (MRl) image reconstruction, between the traditional elements of image quality (noise, spatial resolution and contrast). Additional factors exacerbating this trade-off include various artifacts, computational (and hence time-dependent) overhead, and financial expense. This paper outlines a new approach to the problem of minimizing MRI image acquisition and reconstruction time without compromising resolution and noise reduction. The standard approaches for reconstructing magnetic resonance (MRI) images from raw data (which rely on relatively conventional signal processing) have matured but there are a number of challenges which limit their use. A major one is the 'intrinsic' signal-to-noise ratio (SNR) of the reconstructed image that depends on the strength of the main field. A typical clinical MRI almost invariably uses a super-cooled magnet in order to achieve a high field strength. The ongoing running cost of these super-cooled magnets prompts consideration of alternative magnet systems for use in MRIs for developing countries and in some remote regional installations. The decrease in image quality from using lower field strength magnets can be addressed by improvements in signal processing strategies. Conversely, improved signal processing will obviously benefit the current conventional field strength MRI machines. Moreover, the 'waiting time' experienced in many MR sequences (due to the relaxation time delays) can be exploited by more rigorous processing of the MR signals. Acquisition often needs to be repeated so that coherent averaging may partially redress the shortfall in SNR, at the expense of further delay. Wavelet transforms have been used in MRI as an alternative for encoding and denoising for over a decade. These have not supplanted the traditional Fourier transform methods that have long been the mainstay of MRI reconstruction, but have some inflexibility. The dual
Pando, Jesus; Fang, Li-Zhi
1995-01-01
A method for measuring the spectrum of a density field by a discrete wavelet space-scale decomposition (SSD) has been studied. We show how the power spectrum can effectively be described by the father function coefficients (FFC) of the wavelet SSD. We demonstrate that the features of the spectrum, such as the magnitude, the index of a power law, and the typical scales, can be determined with high precision by the FFC reconstructed spectrum. This method does not require the mean density, which...
Fractional Calculus and Shannon Wavelet
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.
Denoising in Wavelet Packet Domain via Approximation Coefficients
Directory of Open Access Journals (Sweden)
Zahra Vahabi
2012-01-01
Full Text Available In this paper we propose a new approach in the wavelet domain for image denoising. In recent researches wavelet transform has introduced a time-Frequency transform for computing wavelet coefficient and eliminating noise. Some coefficients have effected smaller than the other's from noise, so they can be use reconstruct images with other subbands. We have developed Approximation image to estimate better denoised image. Naturally noiseless subimage introduced image with lower noise. Beside denoising we obtain a bigger compression rate. Increasing image contrast is another advantage of this method. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.100 images of LIVE Dataset were tested, comparing signal to noise ratios (SNR,soft thresholding was %1.12 better than hard thresholding, POAC was %1.94 better than soft thresholding and POAC with wavelet packet was %1.48 better than POAC.
From cardinal spline wavelet bases to highly coherent dictionaries
International Nuclear Information System (INIS)
Andrle, Miroslav; Rebollo-Neira, Laura
2008-01-01
Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)
Wavelet analysis in neurodynamics
International Nuclear Information System (INIS)
Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A
2012-01-01
Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)
Fang, Li-Zhi
1998-01-01
Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.
Castro, Liliana Raquel; Castro, Silvia Mabel
1995-01-01
Se presenta una introducción a la teorfa de wavelets. Ademas, se da una revisión histórica de cómo fueron introducidas las wavelets para la representación de funciones. Se efectúa una comparación entre la transformada wavelet y la transformada de Fourier. Por último, se presentan también algunas de los múltiples aplicaciones de esta nueva herramienta de análisis armónico.
Jiang, M.; Cui, B.-Y.; Schmid, N. A.; McLaughlin, M. A.; Cao, Z.-C.
2017-09-01
Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation of their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.
Energy Technology Data Exchange (ETDEWEB)
Jiang, M.; Schmid, N. A.; Cao, Z.-C. [Lane Department of Computer Science and Electrical Engineering West Virginia University Morgantown, WV 26506 (United States); Cui, B.-Y.; McLaughlin, M. A. [Department of Physics and Astronomy West Virginia University Morgantown, WV 26506 (United States)
2017-09-20
Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation of their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.
Directory of Open Access Journals (Sweden)
Aasif Shah
2015-06-01
Full Text Available Multi-scale representations are effective in characterising the time-frequency characteristics of financial return series. They have the capability to reveal the properties not evident with typical time domain analysis. Given the aforesaid, this study derives crucial insights from multi scale analysis to investigate the co- movements between Indian and emerging Asian equity markets using wavelet correlation and wavelet coherence measures. It is reported that the Indian equity market is strongly integrated with Asian equity markets at lower frequency scales and relatively less blended at higher frequencies. On the other hand the results from cross correlations suggest that the lead-lag relationship becomes substantial as we turn to lower frequency scales and finally, wavelet coherence demonstrates that this correlation eventually grows strong in the interim of the crises period at lower frequency scales. Overall the findings are relevant and have strong policy and practical implications.
Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.
Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan
2012-01-01
Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.
Blatter, Christian
1998-01-01
The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.
Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform
International Nuclear Information System (INIS)
Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo
2005-01-01
This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple
Sauli, P.; Abry, P.; Boska, J.
2004-05-01
The aim of the present work is to study the ionospheric response induced by the solar eclipse of August, the 11th, 1999. We provide Fourier and wavelet based characterisations of the propagation of the acoustic-gravity waves induced by the solar eclipse. The analysed data consist of profiles of electron concentration. They are derived from 1-minute vertical incidence ionospheric sounding measurements, performed at the Pruhonice observatory (Czech republic, 49.9N, 14.5E). The chosen 1-minute high sampling rate aims at enabling us to specifically see modes below acoustic cut-off period. The August period was characterized by Solar Flux F10.7 = 128, steady solar wind, quiet magnetospheric conditions, a low geomagnetic activity (Dst index varies from -10 nT to -20 nT, Σ Kp index reached value of 12+). The eclipse was notably exceptional in uniform solar disk. These conditions and fact that the culmination of the solar eclipse over central Europe occurred at local noon are such that the observed ionospheric response is mainly that of the solar eclipse. We provide a full characterization of the propagation of the waves in terms of times of occurrence, group and phase velocities, propagation direction, characteristic period and lifetime of the particular wave structure. However, ionospheric vertical sounding technique enables us to deal with vertical components of each characteristic. Parameters are estimated combining Fourier and wavelet analysis. Our conclusions confirm earlier theoretical and experimental findings, reported in [Altadill et al., 2001; Farges et al., 2001; Muller-Wodarg et al.,1998] regarding the generation and propagation of gravity waves and provide complementary characterisation using wavelet approaches. We also report a new evidence for the generation and propagation of acoustic waves induced by the solar eclipse through the ionospheric F region. Up to our knowledge, this is the first time that acoustic waves can be demonstrated based on ionospheric
Crowell, Sheila E.; Baucom, Brian R.; Yaptangco, Mona; Bride, Daniel; Hsiao, Ray; McCauley, Elizabeth; Beauchaine, Theodore P.
2014-01-01
Many depressed adolescents experience difficulty regulating their emotions. These emotion regulation difficulties appear to emerge in part from socialization processes within families and then generalize to other contexts. However, emotion dysregulation is typically assessed within the individual, rather than in the social relationships that shape and maintain dysregulation. In this study, we evaluated concordance of physiological and observational measures of emotion dysregulation during interpersonal conflict, using a multilevel actor-partner interdependence model (APIM). Participants were 75 mother-daughter dyads, including 50 depressed adolescents with or without a history of self-injury, and 25 typically developing controls. Behavior dysregulation was operationalized as observed aversiveness during a conflict discussion, and physiological dysregulation was indexed by respiratory sinus arrhythmia (RSA). Results revealed different patterns of concordance for control versus depressed participants. Controls evidenced a concordant partner (between-person) effect, and showed increased physiological regulation during minutes when their partner was more aversive. In contrast, clinical dyad members displayed a concordant actor (within-person) effect, becoming simultaneously physiologically and behaviorally dysregulated. Results inform current understanding of emotion dysregulation across multiple levels of analysis. PMID:24607894
Crowell, Sheila E; Baucom, Brian R; Yaptangco, Mona; Bride, Daniel; Hsiao, Ray; McCauley, Elizabeth; Beauchaine, Theodore P
2014-04-01
Many depressed adolescents experience difficulty in regulating their emotions. These emotion regulation difficulties appear to emerge in part from socialization processes within families and then generalize to other contexts. However, emotion dysregulation is typically assessed within the individual, rather than in the social relationships that shape and maintain dysregulation. In this study, we evaluated concordance of physiological and observational measures of emotion dysregulation during interpersonal conflict, using a multilevel actor-partner interdependence model (APIM). Participants were 75 mother-daughter dyads, including 50 depressed adolescents with or without a history of self-injury, and 25 typically developing controls. Behavior dysregulation was operationalized as observed aversiveness during a conflict discussion, and physiological dysregulation was indexed by respiratory sinus arrhythmia (RSA). Results revealed different patterns of concordance for control versus depressed participants. Controls evidenced a concordant partner (between-person) effect, and showed increased physiological regulation during minutes when their partner was more aversive. In contrast, clinical dyad members displayed a concordant actor (within-person) effect, becoming simultaneously physiologically and behaviorally dysregulated. Results inform current understanding of emotion dysregulation across multiple levels of analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Research on fault diagnosis for RCP rotor based on wavelet analysis
International Nuclear Information System (INIS)
Chen Zhihui; Xia Hong; Wang Taotao
2008-01-01
Wavelet analysis is with the characteristics of noise reduction and multiscale resolution, and can be used to effectively extract the fault features of the typical failures of the main pumps. Simulink is used to simulate the typical faults: Misalignment Fault, Crackle Fault of rotor, and Initial Bending Fault, then the Wavelet method is used to analyze the vibration signal. The result shows that the extracted fault feature from wavelet analysis can effectively identify the fault signals. The Wavelet analysis is a practical method for the diagnosis of main coolant pump failure, and is with certain value for application and significance. (authors)
Detecting microcalcifications in digital mammogram using wavelets
International Nuclear Information System (INIS)
Yang Jucheng; Park Dongsun
2004-01-01
Breast cancer is still one of main mortality causes in women, but the early detection can increase the chance of cure. Microcalcifications are small size structures, which can indicate the presence of cancer since they are often associated to the most different types of breast tumors. However, they very small size and the X-ray systems limitations lead to constraints to the adequate visualization of such structures, which means that the microcalcifications can be missed many times in mammogram visual examination. In addition, the human eyes are not able to distinguish minimal tonality differences, which can be another constraint when mammogram image presents poor contrast between microcalcifications and the tissues around them. Computer-aided diagnosis (CAD) schemes are being developed in order to increase the probabilities of early detection. To enhance and detect the microcalcifications in the mammograms we use the wavelets transform. From a signal processing point of view, microcalcifications are high frequency components in mammograms. Due to the multi-resolution decomposition capacity of the wavelet transform, we can decompose the image into different resolution levels which sensitive to different frequency bands. By choosing an appropriate wavelet and a right resolution level, we can effectively enhance and detect the microcalcifications in digital mammogram. In this work, we describe a new four-step method for the detection of microcalcifications: segmentation, wavelets transform processing, labeling and post-processing. The segmentation step is to split the breast area into 256x256 segments. For each segmented sub-image, wavelet transform is operated on it. For comparing study wavelet transform method, 4 typical family wavelets and 4 decomposing levels is discussed. We choose four family wavelets for detecting microcalcifications, that is, Daubechies, Biothgonai, Coieflets and Symlets wavelets, for simply, bd4, bior3.7, coif3, sym2 are chosen as the
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2013-05-01
Let a pure state | ψ> be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρ A of an N-dimensional subsystem. The bipartite entanglement properties of | ψ> are encoded in the spectrum of ρ A . By means of a saddle point method and using a "Coulomb gas" model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.
Lecture notes on wavelet transforms
Debnath, Lokenath
2017-01-01
This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor. These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...
Target recognition by wavelet transform
International Nuclear Information System (INIS)
Li Zhengdong; He Wuliang; Zheng Xiaodong; Cheng Jiayuan; Peng Wen; Pei Chunlan; Song Chen
2002-01-01
Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Electromagnetic spatial coherence wavelets
International Nuclear Information System (INIS)
Castaneda, R.; Garcia-Sucerquia, J.
2005-10-01
The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)
Improvement of electrocardiogram by empirical wavelet transform
Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya
2017-09-01
Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.
Directory of Open Access Journals (Sweden)
Jiahong Zhang
2015-05-01
Full Text Available This paper provides a novel and effective compensation method by improving the hardware design and software algorithm to achieve optimization of piezoresistive pressure sensors and corresponding measurement systems in order to measure pressure more accurately and stably, as well as to meet the application requirements of the meteorological industry. Specifically, GE NovaSensor MEMS piezoresistive pressure sensors within a thousandth of accuracy are selected to constitute an array. In the versatile compensation method, the hardware utilizes the array of MEMS pressure sensors to reduce random error caused by sensor creep, and the software adopts the data fusion technique based on the wavelet neural network (WNN which is improved by genetic algorithm (GA to analyze the data of sensors for the sake of obtaining accurate and complete information over the wide temperature and pressure ranges. The GA-WNN model is implemented in hardware by using the 32-bit STMicroelectronics (STM32 microcontroller combined with an embedded real-time operating system µC/OS-II to make the output of the array of MEMS sensors be a direct digital readout. The results of calibration and test experiments clearly show that the GA-WNN technique can be effectively applied to minimize the sensor errors due to the temperature drift, the hysteresis effect and the long-term drift because of aging and environmental changes. The maximum error of the low cost piezoresistive MEMS-array pressure transmitter proposed by us is within 0.04% of its full-scale value, and it can satisfy the meteorological pressure measurement.
Wavelets in functional data analysis
Morettin, Pedro A; Vidakovic, Brani
2017-01-01
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
WAVELET ANALYSIS OF ABNORMAL ECGS
Directory of Open Access Journals (Sweden)
Vasudha Nannaparaju
2014-02-01
Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.
Søgaard, Andreas
For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...
monthly energy consumption forecasting using wavelet analysis
African Journals Online (AJOL)
User
ABSTRACT. Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electric- ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet ...
International Nuclear Information System (INIS)
Sritongkul, N.
1989-03-01
Presently available in vivo methods for assessing iron absorption in human subjects, although physiologically acceptable and accurate, are not practical for screening large numbers of food and diet samples. A simple in vitro method for determining the amount of iron available for absorption was therefore investigated. It is based on the common pool concept of food iron absorption using radioactive Fe-59 as a marker of the iron present in the bioavailable iron pool. The ionizable iron was measured after an initial peptic digestion by using pepsin/HCl at pH 1.35 followed by an increase of the pH to 6.0 to simulate duodenal alkalinity. The method was proved to be simple, reproducible and applicable either to single food items or whole meals of varying composition. It is able to detect known enhancers or inhibitors of food iron absorption. The percent ionizable iron among 5 different meals with the inclusion of inhibitor or enhancer was shown to correlate closely with the percentage of iron absorbed in human subjects (r=0.9197, p<0.001). A high correlation between the in vivo and in vitro methods was also observed when the results were expressed as absorption ratios and ionizable ratios (r=0.9192, p<0.001). The method is expected to be useful for improving diet composition to increase the iron availability of some typical meals in developing countries, including those which are known to contain considerable amounts of inhibitors of iron absorption. 39 refs, 1 fig., 13 tabs
International Nuclear Information System (INIS)
Itagaki, Masayuki; Ueno, Masaki; Hoshi, Yoshinao; Shitanda, Isao
2017-01-01
Highlights: • Wavelet transformation (WT) was used to obtain electrochemical impedance (EI) from time domain data. • Complex Morlet mother wavelet was employed to transform current and voltage time series from time domain to frequency domain. • An analytical method to determine EI of LIRB at arbitrary state of charge was proposed. • EI of LIRB was determined at arbitrary state of charge without stopping galvanostatic polarization for charge and discharge. - Abstract: A new analytical method was developed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) at an arbitrary state of charge (SOC). Wavelet transformation (WT) is one of the waveform analysis methods, which allows the determination of frequency domain data as a function of time. The frequency domain data are obtained by convolution integral of a mother wavelet and original time domain data via the WT. A complex Morlet mother wavelet is used to obtain the complex number data in the frequency domain. The time series data of input current and output voltage signals are recorded by superimposing the double pulse current as an input signal to constant charge current for the charge of LIRB without stopping galvanostatic polarization. The double pulse current is composed of symmetrical positive and negative square waves. In this case, the SOC of LIRB is not affected by the input signal because the total amount of charge calculated from double pulse current is 0C. The impedance spectrum of LIRB at SOC 25% is determined in the frequency range from 0.1 to 100 Hz during charge/discharge cycles without stopping galvanostatic polarization for the charge/discharge.
Digital Correlation based on Wavelet Transform for Image Detection
International Nuclear Information System (INIS)
Barba, L; Vargas, L; Torres, C; Mattos, L
2011-01-01
In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.
Energy Technology Data Exchange (ETDEWEB)
Leach, R.R.; Schultz, C.; Dowla, F.
1997-07-15
Development of a worldwide network to monitor seismic activity requires deployment of seismic sensors in areas which have not been well studied or may have from available recordings. Development and testing of detection and discrimination algorithms requires a robust representative set of calibrated seismic events for a given region. Utilizing events with poor signal-to-noise (SNR) can add significant numbers to usable data sets, but these events must first be adequately filtered. Source and path effects can make this a difficult task as filtering demands are highly varied as a function of distance, event magnitude, bearing, depth etc. For a given region, conventional methods of filter selection can be quite subjective and may require intensive analysis of many events. In addition, filter parameters are often overly generalized or contain complicated switching. We have developed a method to provide an optimized filter for any regional or teleseismically recorded event. Recorded seismic signals contain arrival energy which is localized in frequency and time. Localized temporal signals whose frequency content is different from the frequency content of the pre-arrival record are identified using rms power measurements. The method is based on the decomposition of a time series into a set of time series signals or scales. Each scale represents a time-frequency band with a constant Q. SNR is calculated for a pre-event noise window and for a window estimated to contain the arrival. Scales with high SNR are used to indicate the band pass limits for the optimized filter.The results offer a significant improvement in SNR particularly for low SNR events. Our method provides a straightforward, optimized filter which can be immediately applied to unknown regions as knowledge of the geophysical characteristics is not required. The filtered signals can be used to map the seismic frequency response of a region and may provide improvements in travel-time picking, bearing estimation
International Nuclear Information System (INIS)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-01-01
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Energy Technology Data Exchange (ETDEWEB)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)
2012-07-17
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Characterization and Simulation of Gunfire with Wavelets
Directory of Open Access Journals (Sweden)
David O. Smallwood
1999-01-01
Full Text Available Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of these records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.
International Nuclear Information System (INIS)
Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El
2011-01-01
This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.
Directory of Open Access Journals (Sweden)
Muriel eBoucart
2014-07-01
Full Text Available Though atrophy of the medial temporal lobe, including structures (hippocampus and parahippocampal cortex that support scene perception and the binding of an object to its context, appears early in Alzheimer disease (AD few studies have investigated scene perception in people with AD. We assessed the ability to find a target object within a natural scene in people with typical AD and in people with atypical AD (posterior cortical atrophy. Pairs of colored photographs were displayed left and right of fixation for one second. Participants were asked to categorize the target (an animal either in moving their eyes toward the photograph containing the target (saccadic choice task or in pressing a key corresponding to the location of the target (manual choice task in separate blocks of trials. For both tasks performance was compared in two conditions: with isolated objects and with objects in scenes. Patients with atypical AD were more impaired to detect a target within a scene than people with typical AD who exhibited a pattern of performance more similar to that of age-matched controls in terms of accuracy, saccade latencies and benefit from contextual information. People with atypical AD benefited less from contextual information in both the saccade and the manual choice tasks suggesting a higher sensitivity to crowding and deficits in figure/ground segregation in people with lesions in posterior areas of the brain.
Noise reduction by wavelet thresholding
National Research Council Canada - National Science Library
Jansen, Maarten
2001-01-01
.... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...
Directory of Open Access Journals (Sweden)
Jing Xu
2016-07-01
Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.
A generalized wavelet extrema representation
Energy Technology Data Exchange (ETDEWEB)
Lu, Jian; Lades, M.
1995-10-01
The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.
Wavelet frames and their duals
DEFF Research Database (Denmark)
Lemvig, Jakob
2008-01-01
frames with good time localization and other attractive properties. Furthermore, the dual wavelet frames are constructed in such a way that we are guaranteed that both frames will have the same desirable features. The construction procedure works for any real, expansive dilation. A quasi-affine system....... The signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...
Luyster, Rhiannon J; Powell, Christine; Tager-Flusberg, Helen; Nelson, Charles A
2014-04-01
Few studies employing event-related potentials (ERPs) to examine infant perception/cognition have systematically characterized age-related changes over the first few years of life. Establishing a 'normative' template of development is important in its own right, and doing so may also better highlight points of divergence for high-risk populations of infants, such as those at elevated genetic risk for autism spectrum disorder (ASD). The present investigation explores the developmental progression of the P1, N290, P400 and Nc components for a large sample of young children between 6 and 36 months of age, addressing age-related changes in amplitude, sensitivity to familiar and unfamiliar stimuli and hemispheric lateralization. Two samples of infants are included: those at low- and high-risk for ASD. The four components of interest show differential patterns of change over time and hemispheric lateralization; however, infants at low- and high-risk for ASD do not show significant differences in patterns of neural response to faces. These results will provide a useful point of reference for future developmental cognitive neuroscience research targeting both typical development and vulnerable populations. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
Sangaline, E; Lauret, J
2014-01-01
The quantity of information produced in Nuclear and Particle Physics (NPP) experiments necessitates the transmission and storage of data across diverse collections of computing resources. Robust solutions such as XRootD have been used in NPP, but as the usage of cloud resources grows, the difficulties in the dynamic configuration of these systems become a concern. Hadoop File System (HDFS) exists as a possible cloud storage solution with a proven track record in dynamic environments. Though currently not extensively used in NPP, HDFS is an attractive solution offering both elastic storage and rapid deployment. We will present the performance of HDFS in both canonical I/O tests and for a typical data analysis pattern within the RHIC/STAR experimental framework. These tests explore the scaling with different levels of redundancy and numbers of clients. Additionally, the performance of FUSE and NFS interfaces to HDFS were evaluated as a way to allow existing software to function without modification. Unfortunately, the complicated data structures in NPP are non-trivial to integrate with Hadoop and so many of the benefits of the MapReduce paradigm could not be directly realized. Despite this, our results indicate that using HDFS as a distributed filesystem offers reasonable performance and scalability and that it excels in its ease of configuration and deployment in a cloud environment
An Introduction to Wavelet Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
Wang, Jianhua; Yang, Yanxi
2018-05-01
We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.
Efficient hemodynamic event detection utilizing relational databases and wavelet analysis
Saeed, M.; Mark, R. G.
2001-01-01
Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.
International Nuclear Information System (INIS)
Zhang Fugen; Wu Jilan
2002-01-01
γ irradiated rutin-, catechin-and baicalin-HCOONa aqueous solutions saturated with N 2 O:O 2 = 4:1 were eluted through alumina columns and the G values of hydrogen peroxide generated in the solutions were measured. Different results from former works were obtained and the reasons of the difference were discussed. A precise method was established as follows: hydrogen peroxide should be separated from flavonoids by passing the flavonoids solution through alumina columns before the measurement and the amount of hydrogen peroxide generated from self-oxidation of the flavonoids should be deducted. The G values of hydrogen peroxide in γ irradiated rutin-, catechin- and baicalin- aqueous solution saturated with N 2 O:O 2 = 4:1 were determined to be 8.3 +- 0.2, 5.6 +- 0.2, and 7.8 +- 0.2, separately
International Nuclear Information System (INIS)
Tsabaris, Christos; Prospathopoulos, Aristides
2011-01-01
An algorithm for automated analysis of in-situ NaI γ-ray spectra in the marine environment is presented. A standard wavelet denoising technique is implemented for obtaining a smoothed spectrum, while the stability of the energy spectrum is achieved by taking advantage of the permanent presence of two energy lines in the marine environment. The automated analysis provides peak detection, net area calculation, energy autocalibration, radionuclide identification and activity calculation. The results of the algorithm performance, presented for two different cases, show that analysis of short-term spectra with poor statistical information is considerably improved and that incorporation of further advancements could allow the use of the algorithm in early-warning marine radioactivity systems. - Highlights: → Algorithm for automated analysis of in-situ NaI γ-ray marine spectra. → Wavelet denoising technique provides smoothed spectra even at parts of the energy spectrum that exhibits strong statistical fluctuations. → Automated analysis provides peak detection, net area calculation, energy autocalibration, radionuclide identification and activity calculation. → Analysis of short-term spectra with poor statistical information is considerably improved.
Energy Technology Data Exchange (ETDEWEB)
Du, Zhimin; Jin, Xinqiao; Yang, Yunyu [School of Mechanical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai (China)
2009-09-15
Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (VAV) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault. (author)
Joint multifractal analysis based on wavelet leaders
Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing
2017-12-01
Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
Wavelet spectra of JACEE events
International Nuclear Information System (INIS)
Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.
1995-01-01
Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)
International Nuclear Information System (INIS)
Chapple, C.-L.; Broadhead, D.A.
1995-01-01
One of the chief sources of uncertainty in the comparison of patient dosimetry data is the influence of patient size on dose. Dose has been shown to relate closely to the equivalent diameter of the patient. This concept has been used to derive a prospective, phantom based method for determining size correction factors for measurements of dose-area product. The derivation of the size correction factor has been demonstrated mathematically, and the appropriate factor determined for a number of different X-ray sets. The use of phantom measurements enables the effect of patient size to be isolated from other factors influencing patient dose. The derived factors agree well with those determined retrospectively from patient dose survey data. Size correction factors have been applied to the results of a large scale patient dose survey, and this approach has been compared with the method of selecting patients according to their weight. For large samples of data, mean dose-area product values are independent of the analysis method used. The chief advantage of using size correction factors is that it allows all patient data to be included in a survey, whereas patient selection has been shown to exclude approximately half of all patients. (author)
International Nuclear Information System (INIS)
Gurzadyan, V.G.
1988-01-01
The problem of typicalness of the Universe - as a dynamical system possessing both regular and chaotic regions of positive measure of phase space, is raised and discussed. Two dynamical systems are considered: 1) The observed Universe as a hierarchy of systems of N graviting bodies; 2) (3+1)-manifold with matter evolving to Wheeler-DeWitt equation in superspace with Hawking boundary condition of compact metrics. It is shown that the observed Universe is typical. There is no unambiguous answer for the second system yet. If it is typical too then the same present state of the Universe could have been originated from an infinite number of different initial conditions the restoration of which is practically impossible at present. 35 refs.; 2 refs
Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.
2017-12-01
Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.
Iris Recognition Using Wavelet
Directory of Open Access Journals (Sweden)
Khaliq Masood
2013-08-01
Full Text Available Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational time and to increase the efficiency of the system. Wavelet transform is used for feature vector generation. Rotation of iris is compensated without shifts in the iris code. System is tested on Multimedia University Iris Database and results show that proposed system has encouraging performance.
Directory of Open Access Journals (Sweden)
Hannu Olkkonen
2013-01-01
Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.
Wavelet theory and its applications
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.
Wavelets and multiscale signal processing
Cohen, Albert
1995-01-01
Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...
From Fourier analysis to wavelets
Gomes, Jonas
2015-01-01
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Wavelet analysis for nonstationary signals
International Nuclear Information System (INIS)
Penha, Rosani Maria Libardi da
1999-01-01
Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect
A wavelet phase filter for emission tomography
International Nuclear Information System (INIS)
Olsen, E.T.; Lin, B.
1995-01-01
The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods
Denoising solar radiation data using coiflet wavelets
Energy Technology Data Exchange (ETDEWEB)
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)
2014-10-24
Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.
Wavelets: Applications to Image Compression-II
Indian Academy of Sciences (India)
Wavelets: Applications to Image Compression-II. Sachin P ... successful application of wavelets in image com- ... b) Soft threshold: In this case, all the coefficients x ..... [8] http://www.jpeg.org} Official site of the Joint Photographic Experts Group.
Wavelet Transforms using VTK-m
Energy Technology Data Exchange (ETDEWEB)
Li, Shaomeng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-27
These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.
From Calculus to Wavelets: ANew Mathematical Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...
Texture analysis using Gabor wavelets
Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.
1996-04-01
Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.
receive signal strength prediction in the gsm band using wavelet
African Journals Online (AJOL)
user
strength was measured on a Mobile Equipment (ME). One-dimensional ... used to predict the fading phenomenon of the GSM receive signal strength measured. Wavelet ... radio wavelength. The prediction is ... realized by reusing frequency in a dense or complex .... NETWORK SIGNAL PRO software, down loaded from.
Analysis of transient signals by Wavelet transform
International Nuclear Information System (INIS)
Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de
2000-01-01
The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)
Haar wavelets, fluctuations and structure functions: convenient choices for geophysics
Directory of Open Access Journals (Sweden)
S. Lovejoy
2012-09-01
Full Text Available Geophysical processes are typically variable over huge ranges of space-time scales. This has lead to the development of many techniques for decomposing series and fields into fluctuations Δv at well-defined scales. Classically, one defines fluctuations as differences: (Δv_{diff} = v(x+Δx-v(x and this is adequate for many applications (Δx is the "lag". However, if over a range one has scaling Δv ∝ Δx^{H}, these difference fluctuations are only adequate when 0 < H < 1. Hence, there is the need for other types of fluctuations. In particular, atmospheric processes in the "macroweather" range ≈10 days to 10–30 yr generally have −1 < H < 0, so that a definition valid over the range −1 < H < 1 would be very useful for atmospheric applications. A general framework for defining fluctuations is wavelets. However, the generality of wavelets often leads to fairly arbitrary choices of "mother wavelet" and the resulting wavelet coefficients may be difficult to interpret. In this paper we argue that a good choice is provided by the (historically first wavelet, the Haar wavelet (Haar, 1910, which is easy to interpret and – if needed – to generalize, yet has rarely been used in geophysics. It is also easy to implement numerically: the Haar fluctuation (Δv_{Haar} at lag Δx is simply equal to the difference of the mean from x to x+ Δx/2 and from x+Δx/2 to x+Δx. Indeed, we shall see that the interest of the Haar wavelet is this relation to the integrated process rather than its wavelet nature per se.
Using numerical multifractal simulations, we show that it is quite accurate, and we compare and contrast it with another similar technique, detrended fluctuation analysis. We find that, for estimating scaling exponents, the two methods are very similar, yet
Wavelet-based compression of pathological images for telemedicine applications
Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun
2000-05-01
In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.
Applications of wavelets in morphometric analysis of medical images
Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang
2003-11-01
Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.
Energy Technology Data Exchange (ETDEWEB)
Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)
1997-10-22
A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.
Filtering Performance Comparison of Kernel and Wavelet Filters for Reactivity Signal Noise
International Nuclear Information System (INIS)
Park, Moon Ghu; Shin, Ho Cheol; Lee, Yong Kwan; You, Skin
2006-01-01
Nuclear reactor power deviation from the critical state is a parameter of specific interest defined by the reactivity measuring neutron population. Reactivity is an extremely important quantity used to define many of the reactor startup physics parameters. The time dependent reactivity is normally determined by solving the using inverse neutron kinetics equation. The reactivity computer is a device to provide an on-line solution of the inverse kinetics equation. The measurement signal of the neutron density is normally noise corrupted and the control rods movement typically gives reactivity variation with edge signals like saw teeth. Those edge regions should be precisely preserved since the measured signal is used to estimate the reactivity wroth which is a crucial parameter to assure the safety of the nuclear reactors. In this paper, three kind of edge preserving noise filters are proposed and their performance is demonstrated using stepwise signals. The tested filters are based on the unilateral, bilateral kernel and wavelet filters which are known to be effective in edge preservation. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters
WAVELET TRANSFORM AND LIP MODEL
Directory of Open Access Journals (Sweden)
Guy Courbebaisse
2011-05-01
Full Text Available The Fourier transform is well suited to the study of stationary functions. Yet, it is superseded by the Wavelet transform for the powerful characterizations of function features such as singularities. On the other hand, the LIP (Logarithmic Image Processing model is a mathematical framework developed by Jourlin and Pinoli, dedicated to the representation and processing of gray tones images called hereafter logarithmic images. This mathematically well defined model, comprising a Fourier Transform "of its own", provides an effective tool for the representation of images obtained by transmitted light, such as microscope images. This paper presents a Wavelet transform within the LIP framework, with preservation of the classical Wavelet Transform properties. We show that the fast computation algorithm due to Mallat can be easily used. An application is given for the detection of crests.
Fast reversible wavelet image compressor
Kim, HyungJun; Li, Ching-Chung
1996-10-01
We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.
Fundamental papers in wavelet theory
Walnut, David F
2006-01-01
This book traces the prehistory and initial development of wavelet theory, a discipline that has had a profound impact on mathematics, physics, and engineering. Interchanges between these fields during the last fifteen years have led to a number of advances in applications such as image compression, turbulence, machine vision, radar, and earthquake prediction. This book contains the seminal papers that presented the ideas from which wavelet theory evolved, as well as those major papers that developed the theory into its current form. These papers originated in a variety of journals from differ
A CMOS Morlet Wavelet Generator
Directory of Open Access Journals (Sweden)
A. I. Bautista-Castillo
2017-04-01
Full Text Available The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.
Diagnostics of detector tube impacting with wavelet techniques
Energy Technology Data Exchange (ETDEWEB)
Racz, A. [KFKI-AEKI Applied Reactor Physics, Budapest (Hungary); Pazsit, I. [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Reactor Physics
1997-12-08
A neutron noise based method is proposed for the detection of impacting of detector tubes in BWRs. The basic idea relies on the assumption that non-stationary transients (e.g. fuel box vibrations) may be induced at impacting. Such short-lived transients are difficult to detect by spectral analysis methods. However, their presence in the detector signal can be detected by wavelet analysis. A simple wavelet technique, the so-called Haar transform, is suggested for the detection of impacting. Tests of the proposed method have been performed with success on both simulated data with controlled impacting as well as with real measurement data. The simulation model as well as the results of the wavelet analysis are reported in this paper. The source code written in MATLAB are available at a public ftp site. The necessary information to reproduce the simulation results is also reported. (author).
Diagnostics of detector tube impacting with wavelet techniques
Energy Technology Data Exchange (ETDEWEB)
Racz, A.; Pazsit, I
1998-04-01
A neutron noise based method is proposed for the detection of impacting of detector tubes in BWRs. The basic idea relies on the assumption that non-stationary transients (e.g. fuel box vibrations) may be induced at impacting. Such short-lived transients are difficult to detect by spectral analysis methods. However, their presence in the detector signal can be detected by wavelet analysis. A simple wavelet technique, the so-called Haar transform, is suggested for the detection of impacting. Tests of the proposed method have been performed with success on both simulated data with controlled impacting as well as with real measurement data. The simulation model as well as the results of the wavelet analysis are reported in this paper. The source codes written in MATLAB[reg] are available at a public ftp site. The necessary information to reproduce the simulation results is also reported.
Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Wavelet series approximation using wavelet function with compactly ...
African Journals Online (AJOL)
The Wavelets generated by Scaling Function with Compactly Support are useful in various applications especially for reconstruction of functions. Generally, the computational process will be faster if Scaling Function support descends, so computational errors are summarized from one level to another level. In this article, the ...
Wavelet-transform-based time–frequency domain reflectometry for reduction of blind spot
International Nuclear Information System (INIS)
Lee, Sin Ho; Park, Jin Bae; Choi, Yoon Ho
2012-01-01
In this paper, wavelet-transform-based time–frequency domain reflectometry (WTFDR) is proposed to reduce the blind spot in reflectometry. TFDR has a blind spot problem when the time delay between the reference signal and the reflected signal is short enough compared with the time duration of the reference signal. To solve the blind spot problem, the wavelet transform (WT) is used because the WT has linearity. Using the characteristics of the WT, the overlapped reference signal at the measured signal can be separated and the blind spot is reduced by obtaining the difference of the wavelet coefficients for the reference and reflected signals. In the proposed method, the complex wavelet is utilized as a mother wavelet because the reference signal in WTFDR has a complex form. Finally, the computer simulations and the real experiments are carried out to confirm the effectiveness and accuracy of the proposed method. (paper)
Generalized Wavelet Fisher’s Information of 1/fα Signals
Directory of Open Access Journals (Sweden)
Julio Ramírez-Pacheco
2015-01-01
Full Text Available This paper defines the generalized wavelet Fisher information of parameter q. This information measure is obtained by generalizing the time-domain definition of Fisher’s information of Furuichi to the wavelet domain and allows to quantify smoothness and correlation, among other signals characteristics. Closed-form expressions of generalized wavelet Fisher information for 1/fα signals are determined and a detailed discussion of their properties, characteristics and their relationship with wavelet q-Fisher information are given. Information planes of 1/f signals Fisher information are obtained and, based on these, potential applications are highlighted. Finally, generalized wavelet Fisher information is applied to the problem of detecting and locating weak structural breaks in stationary 1/f signals, particularly for fractional Gaussian noise series. It is shown that by using a joint Fisher/F-Statistic procedure, significant improvements in time and accuracy are achieved in comparison with the sole application of the F-statistic.
A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum
Directory of Open Access Journals (Sweden)
Pan Liu
2017-05-01
Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.
Wavelets a tutorial in theory and applications
1992-01-01
Wavelets: A Tutorial in Theory and Applications is the second volume in the new series WAVELET ANALYSIS AND ITS APPLICATIONS. As a companion to the first volume in this series, this volume covers several of the most important areas in wavelets, ranging from the development of the basic theory such as construction and analysis of wavelet bases to an introduction of some of the key applications, including Mallat's local wavelet maxima technique in second generation image coding. A fairly extensive bibliography is also included in this volume.Key Features* Covers several of the
Wavelet data processing of micro-Raman spectra of biological samples
Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.
2006-02-01
A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.
Wavelet entropy characterization of elevated intracranial pressure.
Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao
2008-01-01
Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.
International Nuclear Information System (INIS)
Ali, A.; Zeb, J.; Iqbal, S.; Orfi, S.D.
1998-01-01
Potential radiation doses likely to be received by the radiologists and para medical staff in a typical hospital in Pakistan have been measured using a very sensitive radiation survey meter (FAG FH40F2) employing a Geiger Muller counter (FHZ120) as a probe which is a probe extend able up to 4 meters in length. These measurements have been compared with internationally accepted Maximum Permissible Radiation Dose Level (MPDL). Radiation dose rates measured on the hands of two radiologists during fluoroscopy examination of the patient were of the order of 1mSv.h/sup -1/ and 540 mu Sv.h/sup -1/ which were 400% to 216% times higher than the MPDL (250 mu Sv.h/sup -1/). Radiation dose rates measured on the chest and neck were 300 and 50 mu Sv.h/sup -1/, which were 3000% to 500% times higher than those of MPDL (10 mu Sv.h/sup -1/. Such high dose rates present a serious situation and deserve attention of the hospital management and of national regulatory authority so as to minimize the potential radiation doses to the radiologists and para medical staff. As Low As Reasonably Achievable (ALARA) concept should be implemented in the health sector. (author)
Online Wavelet Complementary velocity Estimator.
Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin
2018-02-01
In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.
2012-04-01
Urmia Lake (salt lake in northwest of Iran) plays a valuable role in environment, wildlife and economy of Iran and the region, and now faces great challenges for survival. The Lake is in immediate and great danger and rapidly going to become salty desert. During the recent years and new heat wave, Iran, like many other countries are experiencing, is faced with relativity reduced rain fall. From a few years ago environment activists warned about potential dangers. Geodetic measurements, e.g., repeated leveling measurements of first order leveling network of Iran and continuous GPS measurements of Iranian Permanent GPS network of Iran (IPGN) showed that there is subsidence in surrounding areas of the lake. This paper investigates the relation between subsidence and climate changing in the area, using the wavelet coherence of the data of permanent GPS stations and daily methodological data. The results show that there is strong coherence between the subsidence phenomena induced by GPS data and climate warming from January 2009 up to end of August 2009. However, relative lake height variations computed from altimetry observations (TOPEX/POSEIDON (T/P), Jason-1 and Jason-2/OSTM) confirms maximum evaporation rates of the lake in this period.
Saraga, Dikaia E; Maggos, Thomas; Helmis, Constantinos G; Michopoulos, John; Bartzis, John G; Vasilakos, Christos
2010-08-01
During the last decades, the air quality of the city of Athens has been quite aggravated. Scientific interest has been focused on health effects caused by both outdoor and indoor air pollution. The purpose of this study was the presentation of results from air quality measurements in two similar typical Athenian apartments in the same suburban area. In addition, smoking contribution is investigated, as it is the main factor which differentiates the two apartments. The results showed that it is the outdoor environment that mainly contributes to the air quality of the non-smokers' house. In the second apartment, PM2.5, PM1, and benzene concentrations were found significantly higher due to smoking activity. In contrast, no clear difference in particulate matter ionic composition between the two areas was observed, although in the smoker's house, ion concentrations were found elevated. This observation amplifies the assumption that in the smoker's apartment, significant outdoor sources' contribution cannot be excluded.
International Nuclear Information System (INIS)
Goodenow, T.C.; Shipman, R.L.; Holland, H.M.
1995-06-01
Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies
International Nuclear Information System (INIS)
Goodenow, T.C.; Shipman, R.L.; Holland, H.M.
1995-06-01
Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report
An improved adaptive wavelet shrinkage for ultrasound despeckling
Indian Academy of Sciences (India)
Preservation Index (EPI). A comparison of the results shows that the proposed fil- ter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images. Keywords. Wavelet; translation invariance; inter and intra scale dependency; speckle; adaptive thresholding; ultrasound images. ∗.
Discrete wavelet transform: a tool in smoothing kinematic data.
Ismail, A R; Asfour, S S
1999-03-01
Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.
Experimental study on the crack detection with optimized spatial wavelet analysis and windowing
Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine
2018-05-01
In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.
A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
Sang, Yan-Fang; Sun, Fubao; Singh, Vijay P.; Xie, Ping; Sun, Jian
2018-01-01
The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961-2013 and found that the DWS approach detected both the warming and the warming hiatus in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined climate timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann-Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
Directory of Open Access Journals (Sweden)
Y.-F. Sang
2018-01-01
Full Text Available The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the warming and the warming hiatus in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined climate timescale. The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
Directory of Open Access Journals (Sweden)
LU Yongle
2014-07-01
Full Text Available This paper demonstrates a method and system for north finding with a low-cost piezoelectricity accelerometer based on the Coriolis acceleration principle. The proposed setup is based on the choice of an accelerometer with residual noise of 35 ng•Hz-1/2. The plane of the north finding system is aligned parallel to the local level, which helps to eliminate the effect of plane error. The Coriolis acceleration caused by the earth’s rotation and the acceleration’s instantaneous velocity is much weaker than the g-sensitivity acceleration. To get a high accuracy and a shorter time for north finding system, in this paper, the Filtering Circuit and the wavelet packet de-nosing algorithm are used as the following. First, the hardware is designed as the alternating currents across by filtering circuit, so the DC will be isolated and the weak AC signal will be amplified. The DC is interfering signal generated by the earth's gravity. Then, we have used a wavelet packet to filter the signal which has been done through the filtering circuit. Finally, compare the north finding results measured by wavelet packet filtering with those measured by a low-pass filter. Wavelet filter de-noise data shows that wavelet packet filtering and wavelet filter measurement have high accuracy. Wavelet Packet filtering has stronger ability to remove burst noise and higher engineering environment adaptability than that of Wavelet filtering. Experimental results prove the effectiveness and project implementation of the accelerometer north finding method based on wavelet packet de-noising algorithm.
Visualization of a Turbulent Jet Using Wavelets
Institute of Scientific and Technical Information of China (English)
Hui LI
2001-01-01
An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N＜10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
International Nuclear Information System (INIS)
Kingsbury, J Ng and N G
2004-01-01
wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies' wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author's own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The
Multidimensional signaling via wavelet packets
Lindsey, Alan R.
1995-04-01
This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.
Wavelet analysis of epileptic spikes
Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-05-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Wavelet analysis of epileptic spikes
Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-01-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Wavelet Analysis for Molecular Dynamics
2015-06-01
Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the
Wavelet analysis in two-dimensional tomography
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Wavelet Radiosity on Arbitrary Planar Surfaces
Holzschuch , Nicolas; Cuny , François; Alonso , Laurent
2000-01-01
Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...
Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.
Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H
2017-12-01
To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic
Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.
Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities
Directory of Open Access Journals (Sweden)
Rakowski Waldemar
2015-12-01
Full Text Available In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian or the quadratic box spline are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box spline wavelets in the analysis of signal singularities.
Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation
International Nuclear Information System (INIS)
Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won
2000-01-01
Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch
Wavelet analysis and its applications an introduction
Yajnik, Archit
2013-01-01
"Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.
Wavelets for Sparse Representation of Music
DEFF Research Database (Denmark)
Endelt, Line Ørtoft; Harbo, Anders La-Cour
2004-01-01
We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...
Wavelet-based prediction of oil prices
International Nuclear Information System (INIS)
Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik
2005-01-01
This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced
Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising
International Nuclear Information System (INIS)
Fan, W J; Lu, Y
2006-01-01
Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting
Energy Technology Data Exchange (ETDEWEB)
Kingsbury, J Ng and N G [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2004-02-06
wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies' wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author's own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals
Cao, Suzhen; Duan, Xiaoli; Ma, Yingqun; Zhao, Xiuge; Qin, Yanwen; Liu, Yan; Li, Sai; Zheng, Binghui; Wei, Fusheng
2017-10-01
The metal(loid) pollution still is a great concern due to the effects from urbanization and industrialization. While, the health risks from the toxic metal(loid)s could decrease if strict pollution control measures were adopted. However, few studies to date investigate the health risks of heavy metal(loid)s in a systematic river basin for the dependent residents, after taking pollution control measures. Thus, the contents of metal(loid)s (Cu, Pb, Zn, Cd, Mn, As) in surface water along a typical river basin were investigated in this study, and the potential non-carcinogenic and carcinogenic health risks posed to the residents were assessed. Although the soluble contents of Cu, Pb, Zn and Cd exceeded the respective thresholds in two sites located downstream the mine area, they were greatly decreased in comparison with previous contamination levels, and the soluble concentrations of all the metal(loid)s were within the relevant thresholds in the sites far away from the mining area. Moreover, the closer to the mining area, the higher the pollution levels of metal(loid)s. The total hazard index for non-carcinogenic risks of metal(loid)s were basically lower than the threshold (1) for the local population. Whereas, although the content of metal(loid)s were low (such as As), they could pose relative higher non-carcinogenic health risks. The result illustrated that pollution levels, toxicity of the contaminants and exposure behavior patterns all could contribute to the potential detrimental health risks. Additionally, the non-carcinogenic and carcinogenic risks from ingestion exposure were ∼2-∼4 orders of magnitude higher than those from dermal contact. The total carcinogenic risks were basically lower than the maximum tolerable levels (1.0 × 10 -4 ), indicating carcinogenic risks from most areas of the river could also be accepted. Among different population groups, heavy metal(loid)s posed relative higher non-carcinogenic and carcinogenic risks to the children in
Adaptive wavelet tight frame construction for accelerating MRI reconstruction
Directory of Open Access Journals (Sweden)
Genjiao Zhou
2017-09-01
Full Text Available The sparsity regularization approach, which assumes that the image of interest is likely to have sparse representation in some transform domain, has been an active research area in image processing and medical image reconstruction. Although various sparsifying transforms have been used in medical image reconstruction such as wavelet, contourlet, and total variation (TV etc., the efficiency of these transforms typically rely on the special structure of the underlying image. A better way to address this issue is to develop an overcomplete dictionary from the input data in order to get a better sparsifying transform for the underlying image. However, the general overcomplete dictionaries do not satisfy the so-called perfect reconstruction property which ensures that the given signal can be perfectly represented by its canonical coefficients in a manner similar to orthonormal bases, resulting in time consuming in the iterative image reconstruction. This work is to develop an adaptive wavelet tight frame method for magnetic resonance image reconstruction. The proposed scheme incorporates the adaptive wavelet tight frame approach into the magnetic resonance image reconstruction by solving a l0-regularized minimization problem. Numerical results show that the proposed approach provides significant time savings as compared to the over-complete dictionary based methods with comparable performance in terms of both peak signal-to-noise ratio and subjective visual quality.
Wavelet network controller for nuclear steam generators
International Nuclear Information System (INIS)
Habibiyan, H; Sayadian, A; Ghafoori-Fard, H
2005-01-01
Poor control of steam generator water level is the main cause of unexpected shutdowns in nuclear power plants. Particularly at low powers, it is a difficult task due to shrink and swell phenomena and flow measurement errors. In addition, the steam generator is a highly complex, nonlinear and time-varying system and its parameters vary with operating conditions. Therefore, it seems that design of a suitable controller is a necessary step to enhance plant availability factor. The purpose of this paper is to design, analyze and evaluate a water level controller for U-tube steam generators using wavelet neural networks. Computer simulations show that the proposed controller improves transient response of steam generator water level and demonstrate its superiority to existing controllers
Application of wavelets in speech processing
Farouk, Mohamed Hesham
2014-01-01
This book provides a survey on wide-spread of employing wavelets analysis in different applications of speech processing. The author examines development and research in different application of speech processing. The book also summarizes the state of the art research on wavelet in speech processing.
Construction of wavelets with composite dilations
International Nuclear Information System (INIS)
Wu Guochang; Li Zhiqiang; Cheng Zhengxing
2009-01-01
In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.
Parsimonious Wavelet Kernel Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Wang Qin
2015-11-01
Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.
Some applications of wavelets to physics
International Nuclear Information System (INIS)
Thompson, C.R.
1992-01-01
A thorough description of a fast wavelet transform algorithm (FWT) and its inverse (IFWT) are given. The effects of noise in the wavelet transform are studied, in particular the effects on signal reconstruction. A model for additive white noise on the coefficients is presented along with two methods that can help to suppress the effects of noise corruption of the signal. Problems of improper sampling are studied, including the propagation of uncertainty through the FWT and IFWT. Interpolation techniques and data compression are also studied. The FWT and IFWT are generalized for analysis of two dimensional images. Methods for edge detection are discussed as well as contrast improvement and data compression. Finally, wavelets are applied to electromagnetic wave propagation problems. Formulas relating the wavelet and Fourier transforms are given, and expansions of time-dependent electromagnetic fields using both fixed and moving wavelet bases are studied
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Complex Wavelet Based Modulation Analysis
DEFF Research Database (Denmark)
Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt
2008-01-01
Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...
Wavelets and the Lifting Scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2012-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2009-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
DEFF Research Database (Denmark)
Sørensen, Stefan; Nielsen, Hans Ove
2002-01-01
that the transient sequence of currents and voltages not exceed a bandwidth of approximately 10 kHz, for which signal measurements on conventional current transformers (CT's) and voltage transformers (VT's) is sufficient. Further analysis with the Prony signal processing tool will show the connexion of the earth...... fault transients and the Prony estimated exponential damped sinusoids....
Fourier and wavelet analysis of skin laser doppler flowmetry signals
Qi, Wei
2011-01-01
ObjectiveThis thesis examines the measurement of skin microvascular blood flows from Laser Doppler Flowmetry (LDF) signals. Both healthy subjects and those with features of the metabolic syndrome are studied using signal processing techniques such as the Fourier and Wavelet transforms. An aim of this study is to investigate whether change in blood flow at rest can be detected from the spectral content of the processed signals in the diferent subject groups. Additionally the effect of insulin ...
Curie temperature determination via thermogravimetric and continuous wavelet transformation analysis
Energy Technology Data Exchange (ETDEWEB)
Hasier, John; Nash, Philip [Thermal Processing Technology Center, IIT, Chicago, IL (United States); Riolo, Maria Annichia [University of Michigan, Center for the Study of Complex Systems, Ann Arbor, MI (United States)
2017-12-15
A cost effective method for conversion of a vertical tube thermogravimetric analysis system into a magnetic balance capable of measuring Curie Temperatures is presented. Reference and preliminary experimental data generated using this system is analyzed via a general-purpose wavelet based Curie point edge detection technique allowing for enhanced speed, ease and repeatability of magnetic balance data analysis. The Curie temperatures for a number of Heusler compounds are reported. (orig.)
Mammography image compression using Wavelet
International Nuclear Information System (INIS)
Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa
2004-01-01
Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)
Kapalková, Svetlana; Slančová, Daniela
2017-01-01
This study compared a sample of children with primary language impairment (PLI) and typically developing age-matched children using the crosslinguistic lexical tasks (CLT-SK). We also compared the PLI children with typically developing language-matched younger children who were matched on the basis of receptive vocabulary. Overall, statistical testing showed that the vocabulary of the PLI children was significantly different from the vocabulary of the age-matched children, but not statistically different from the younger children who were matched on the basis of their receptive vocabulary size. Qualitative analysis of the correct answers revealed that the PLI children showed higher rigidity compared to the younger language-matched children who are able to use more synonyms or derivations across word class in naming tasks. Similarly, an examination of the children's naming errors indicated that the language-matched children exhibited more semantic errors, whereas PLI children showed more associative errors.
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Typical Complexity Numbers. Say. 1000 tones,; 100 Users,; Transmission every 10 msec. Full Crosstalk cancellation would require. Full cancellation requires a matrix multiplication of order 100*100 for all the tones. 1000*100*100*100 operations every second for the ...
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
A Wavelet-based Energetic Approach for the Analysis of Electroencephalogram
Directory of Open Access Journals (Sweden)
Abul Hasan Siddiqi
2012-12-01
Full Text Available Electroencephalography (EEG is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy, as epileptic activity can create clear abnormalities on a standard EEG study. EEG signals, like many biomedical signals, are highly non-stationary by their nature. Wavelet analysis has found a prominent position in the investigation of biomedical signals for its ability to analyze such signals, in particular EEG signals. Wavelet transform is capable of separating the signal energy among different frequency bands (i.e., different scales, achieving a good compromise between temporal and frequency resolution. The present study is an attempt at better understanding of the mechanism causing the epileptic disorder and accurate prediction of the occurrence of seizures. In the present paper we identify typical patterns of energy redistribution before and during a seizure using multi-resolution wavelet analysis.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; De La Mota, V.
1997-01-01
The description of complex systems requires to select and to compact the relevant information. The wavelet theory constitutes an appropriate framework for defining adapted representation bases obtained from a controlled hierarchy of approximations. The optimization of the wavelet analysis depend mainly on the chosen analysis method and wavelet family. Here the analysis of the harmonic oscillator wave function was carried out by considering a Spline bi-orthogonal wavelet base which satisfy the symmetry requirements and can be approximated by simple analytical functions. The goal of this study was to determine a selection criterion allowing to minimize the number of elements considered for an optimal description of the analysed functions. An essential point consists in utilization of the wavelet complementarity and of the scale functions in order to reproduce the oscillating and peripheral parts of the wave functions. The wavelet base representation allows defining a sequence of approximations of the density matrix. Thus, this wavelet representation of the density matrix offers an optimal base for describing both the static nuclear configurations and their time evolution. This information compacting procedure is performed in a controlled manner and preserves the structure of the system wave functions and consequently some of its quantum properties
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant.
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
International Nuclear Information System (INIS)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant
Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain
Nougarou, François; Massicotte, Daniel; Descarreaux, Martin
2012-12-01
The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.
Grating geophone signal processing based on wavelet transform
Li, Shuqing; Zhang, Huan; Tao, Zhifei
2008-12-01
Grating digital geophone is designed based on grating measurement technique benefiting averaging-error effect and wide dynamic range to improve weak signal detected precision. This paper introduced the principle of grating digital geophone and its post signal processing system. The signal acquisition circuit use Atmega 32 chip as core part and display the waveform on the Labwindows through the RS232 data link. Wavelet transform is adopted this paper to filter the grating digital geophone' output signal since the signal is unstable. This data processing method is compared with the FIR filter that widespread use in current domestic. The result indicates that the wavelet algorithm has more advantages and the SNR of seismic signal improve obviously.
Towards discrete wavelet transform-based human activity recognition
Khare, Manish; Jeon, Moongu
2017-06-01
Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.
Wavelet denoising of multiframe optical coherence tomography data.
Mayer, Markus A; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P
2012-03-01
We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.
Adapted wavelet analysis from theory to software
Wickerhauser, Mladen Victor
1994-01-01
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Typicality and reasoning fallacies.
Shafir, E B; Smith, E E; Osherson, D N
1990-05-01
The work of Tversky and Kahneman on intuitive probability judgment leads to the following prediction: The judged probability that an instance belongs to a category is an increasing function of the typicality of the instance in the category. To test this prediction, subjects in Experiment 1 read a description of a person (e.g., "Linda is 31, bright, ... outspoken") followed by a category. Some subjects rated how typical the person was of the category, while others rated the probability that the person belonged to that category. For categories like bank teller and feminist bank teller: (1) subjects rated the person as more typical of the conjunctive category (a conjunction effect); (2) subjects rated it more probable that the person belonged to the conjunctive category (a conjunction fallacy); and (3) the magnitudes of the conjunction effect and fallacy were highly correlated. Experiment 2 documents an inclusion fallacy, wherein subjects judge, for example, "All bank tellers are conservative" to be more probable than "All feminist bank tellers are conservative." In Experiment 3, results parallel to those of Experiment 1 were obtained with respect to the inclusion fallacy.
Directory of Open Access Journals (Sweden)
Silvia Vélez
2004-01-01
Full Text Available Typicals is a series of 12 colour photographs digitally created from photojournalistic images from Colombia combined with "typical" craft textiles and text from guest writers. Typicals was first exhibited as photographs 50cm x 75cm in size, each with their own magnifying glass, at the Contemporary Art Space at Gorman House in Canberra, Australia, in 2000. It was then exhibited in "Feedback: Art Social Consciousness and Resistance" at Monash University Museum of Art in Melbourne, Australia, from March to May 2003. From May to June 2003 it was exhibited at the Museo de Arte de la Universidad Nacional de Colombia Santa Fé Bogotá, Colombia. In its current manifestation the artwork has been adapted from the catalogue of the museum exhibitions. It is broken up into eight pieces corresponding to the contributions of the writers. The introduction by Sylvia Vélez is the PDF file accessible via a link below this abstract. The other seven PDF files are accessible via the 'Supplementary Files' section to the left of your screen. Please note that these files are around 4 megabytes each, so it may be difficult to access them from a dial-up connection.
RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM
Directory of Open Access Journals (Sweden)
Celso A. G. Santos
2016-01-01
Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.
Energy Technology Data Exchange (ETDEWEB)
Prieto G, A.; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico)
2008-07-01
A wavelet ridges application is proposed as a simple method to determine the evolution of the linear stability parameters of a BWR NPP using neutronic noise signals. The wavelets ridges are used to track the instantaneous frequencies contained in a signal and to estimate the Decay Ratio (DR). The first step of the method consists of de noising the analyzed signals by Discrete Wavelet Transform (DWT) to reduce the interference of high-frequency noise and concentrate the analysis in the band where crucial frequencies are presented. Next, is computation of the wavelet ridges by Continuous Wavelet Transform (CWT) to obtain the modulus maxima from the normalized scalogram of the signal. In general, associations with these wavelets ridges can be used to compute instantaneous frequency contained in the signal and the DR evolution with the measurement. To study the performance of the wavelet ridges method, by computing the evolution of the linear stability parameters, both simulated and real neutronic signals were considered. The simulated signal is used to validate methodically and to study some features of the wavelet ridges method. To demonstrate the method applicability a real neutronic signal from the instability event in Laguna Verde was analyzed. The investigations show that most of the local energies of the signal are concentrated in the wavelet ridges and DR variations of the signals were observed along the measurements. (Author)
Numerical shaping of the ultrasonic wavelet
International Nuclear Information System (INIS)
Bonis, M.
1991-01-01
Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test
Building nonredundant adaptive wavelets by update lifting
H.J.A.M. Heijmans (Henk); B. Pesquet-Popescu; G. Piella (Gema)
2002-01-01
textabstractAdaptive wavelet decompositions appear useful in various applications in image and video processing, such as image analysis, compression, feature extraction, denoising and deconvolution, or optic flow estimation. For such tasks it may be important that the multiresolution representations
Scalets, wavelets and (complex) turning point quantization
Handy, C. R.; Brooks, H. A.
2001-05-01
Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.
Using wavelet features for analyzing gamma lines
International Nuclear Information System (INIS)
Medhat, M.E.; Abdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Uzhinskii, V.V.
2004-01-01
Data processing methods for analyzing gamma ray spectra with symmetric bell-shaped peaks form are considered. In many cases the peak form is symmetrical bell shaped in particular a Gaussian case is the most often used due to many physical reasons. The problem is how to evaluate parameters of such peaks, i.e. their positions, amplitudes and also their half-widths, that is for a single peak and overlapped peaks. Through wavelet features by using Marr wavelet (Mexican Hat) as a correlation method, it could be to estimate the optimal wavelet parameters and to locate peaks in the spectrum. The performance of the proposed method and others shows a better quality of wavelet transform method
Effective implementation of wavelet Galerkin method
Finěk, Václav; Šimunková, Martina
2012-11-01
It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.
Framelets and wavelets algorithms, analysis, and applications
Han, Bin
2017-01-01
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected spe...
Image Registration Using Redundant Wavelet Transforms
National Research Council Canada - National Science Library
Brown, Richard
2001-01-01
.... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...
Energy Technology Data Exchange (ETDEWEB)
Reddy, N.; Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States); Elbaz, D.; Daddi, E.; Magdis, G.; Aussel, H.; Dannerbauer, H.; Dasyra, K.; Hwang, H. S. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CE-Saclay, F-91191, Gif-sur-Yvette (France); Morrison, G. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, Amherst, MA 01003 (United States); Ivison, R. [UK Astronomy Technology Centre, Science and Technology Facilities Council, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Papovich, C. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Buat, V.; Burgarella, D. [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-Marseille, CNRS, 38 Rue Frederic Joliot-Curie, 13388 Marseille Cedex 13 (France); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Murphy, E. [Spitzer Science Center, MC 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, 28691 Madrid (Spain); and others
2012-01-10
We take advantage of the sensitivity and resolution of the Herschel Space Observatory at 100 and 160 {mu}m to directly image the thermal dust emission and investigate the infrared luminosities (L{sub IR}) and dust obscuration of typical star-forming (L*) galaxies at high redshift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5 {<=} z{sub spec} < 2.6 in the GOODS-North field. Supplemented with deep Very Large Array and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 {mu}m, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L{sub UV} {approx}> 10{sup 10} L{sub Sun} at z {approx} 2 are luminous infrared galaxies with a median L{sub IR} = (2.2 {+-} 0.3) Multiplication-Sign 10{sup 11} L{sub Sun }. Their median ratio of L{sub IR} to rest-frame 8 {mu}m luminosity (L{sub 8}) is L{sub IR}/L{sub 8} = 8.9 {+-} 1.3 and is Almost-Equal-To 80% larger than that found for most star-forming galaxies at z {approx}< 2. This apparent redshift evolution in the L{sub IR}/L{sub 8} ratio may be tied to the trend of larger infrared luminosity surface density for z {approx}> 2 galaxies relative to those at lower redshift. Typical galaxies at 1.5 {<=} z < 2.6 have a median dust obscuration L{sub IR}/L{sub UV} = 7.1 {+-} 1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2 {+-} 0.6. This result is similar to that inferred from previous investigations of the UV, H{alpha}, 24 {mu}m, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope ({beta}) implies that L* galaxies with redder spectral slopes are also dustier and that the correlation between {beta} and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame {approx_equal} 30 and
Thin film description by wavelet coefficients statistics
Czech Academy of Sciences Publication Activity Database
Boldyš, Jiří; Hrach, R.
2005-01-01
Roč. 55, č. 1 (2005), s. 55-64 ISSN 0011-4626 Grant - others:GA UK(CZ) 173/2003 Institutional research plan: CEZ:AV0Z10750506 Keywords : thin films * wavelet transform * descriptors * histogram model Subject RIV: BD - Theory of Information Impact factor: 0.360, year: 2005 http://library.utia.cas.cz/separaty/2009/ZOI/boldys-thin film description by wavelet coefficients statistics .pdf
Wavelet and Blend maps for texture synthesis
Du Jin-Lian; Wang Song; Meng Xianhai
2011-01-01
blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...
Wavelet brain angiography suggests arteriovenous pulse wave phase locking.
Directory of Open Access Journals (Sweden)
William E Butler
Full Text Available When a stroke volume of arterial blood arrives to the brain, the total blood volume in the bony cranium must remain constant as the proportions of arterial and venous blood vary, and by the end of the cardiac cycle an equivalent volume of venous blood must have been ejected. I hypothesize the brain to support this process by an extraluminally mediated exchange of information between its arterial and venous circulations. To test this I introduce wavelet angiography methods to resolve single moving vascular pulse waves (PWs in the brain while simultaneously measuring brain pulse motion. The wavelet methods require angiographic data acquired at significantly faster rate than cardiac frequency. I obtained these data in humans from brain surface optical angiograms at craniotomy and in piglets from ultrasound angiograms via cranial window. I exploit angiographic time of flight to resolve arterial from venous circulation. Initial wavelet reconstruction proved unsatisfactory because of angiographic motion alias from brain pulse motion. Testing with numerically simulated cerebral angiograms enabled the development of a vascular PW cine imaging method based on cross-correlated wavelets of mixed high frequency and high temporal resolution respectively to attenuate frequency and motion alias. Applied to the human and piglet data, the method resolves individual arterial and venous PWs and finds them to be phase locked each with separate phase relations to brain pulse motion. This is consistent with arterial and venous PW coordination mediated by pulse motion and points to a testable hypothesis of a function of cerebrospinal fluid in the ventricles of the brain.
Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis
Directory of Open Access Journals (Sweden)
Rodríguez-Ascariz José M
2011-05-01
Full Text Available Abstract Background Glaucoma is the second-leading cause of blindness worldwide and early diagnosis is essential to its treatment. Current clinical methods based on multifocal electroretinography (mfERG essentially involve measurement of amplitudes and latencies and assume standard signal morphology. This paper presents a new method based on wavelet packet analysis of global-flash multifocal electroretinogram signals. Methods This study comprised twenty-five patients diagnosed with OAG and twenty-five control subjects. Their mfERG recordings data were used to develop the algorithm method based on wavelet packet analysis. By reconstructing the third wavelet packet contained in the fourth decomposition level (ADAA4 of the mfERG recording, it is possible to obtain a signal from which to extract a marker in the 60-80 ms time interval. Results The marker found comprises oscillatory potentials with a negative-slope basal line in the case of glaucomatous recordings and a positive-slope basal line in the case of normal signals. Application of the optimal threshold calculated in the validation cases showed that the technique proposed achieved a sensitivity of 0.81 and validation specificity of 0.73. Conclusions This new method based on mfERG analysis may be reliable enough to detect functional deficits that are not apparent using current automated perimetry tests. As new stimulation and analysis protocols develop, mfERG has the potential to become a useful tool in early detection of glaucoma-related functional deficits.
A feasibility study on wavelet transform for reactivity coefficient estimation
International Nuclear Information System (INIS)
Shimazu, Yoichiro
2000-01-01
Recently, a new method using Fourier transform has been introduced in place of the conventional method in order to reduce the time required for the measurement of moderator temperature coefficient in domestic PWRs. The basic concept of these methods is to eliminate noise in the reactivity signal. From this point of view, wavelet analysis is also known as an effective method. In this paper, we tried to apply this method to estimate reactivity coefficients of a nuclear reactor. The basic idea of the reactivity coefficient estimation is to analyze the ratios themselves of the corresponding expansion coefficients of the wavelet transform of the signals of reactivity and the relevant parameter. The concept requires no inverse wavelet transform. Based on numerical simulations, it is found that the method can reasonably estimate reactivity coefficient, for example moderator temperature coefficient, with less length of time sequence data than those required for Fourier transform method. We will continue this study to examine the validity of the estimation procedure for the actual reactor data and further to estimate the other reactivity coefficients. (author)
Application of the wavelet image analysis technique to monitor cell concentration in bioprocesses
Directory of Open Access Journals (Sweden)
G. J. R. Garófano
2005-12-01
Full Text Available The growth of cells of great practical interest, such as, the filamentous cells of bacterium Streptomyces clavuligerus, the yeast Saccharomyces cerevisiae and the insect Spodoptera frugiperda (Sf9 cell, cultivated in shaking flasks with complex media at appropriate temperatures and pHs, was quantified by the new wavelet transform technique. This image analysis tool was implemented using Matlab 5.2 software to process digital images acquired of samples taken of these three types of cells throughoot their cultivation. The values of the average wavelet coefficients (AWCs of simplified images were compared with experimental measurements of cell concentration and with computer-based densitometric measurements. AWCs were shown to be directly proportional to measurements of cell concentration and to densitometric measurements, making evident the great potential of the wavelet transform technique to quantitatively estimate the growth of several types of cells.
Ng, J.; Kingsbury, N. G.
2004-02-01
wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The
Application of Improved Wavelet Thresholding Function in Image Denoising Processing
Directory of Open Access Journals (Sweden)
Hong Qi Zhang
2014-07-01
Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.
Detection of short-term anomaly using parasitic discrete wavelet transform
International Nuclear Information System (INIS)
Nagamatsu, Takashi; Gofuku, Akio
2013-01-01
A parasitic discrete wavelet transform (P-DWT) that has a large flexibility in design of the mother wavelet (MW) and a high processing speed was applied for simulation and measured anomalies. First, we applied the P-DWT to detection of the short-term anomalies. Second, we applied the P-DWT to detection of the collision of pump using the pump diagnostic experiment equipment that was designed taking into consideration the structure of the pump used for the water-steam system of the fast breeder reactor 'Monju'. The vibration signals were measured by the vibration sensor attached to the pump when injecting four types of small objects (sphere, small sphere, cube, and rectangular parallelepiped). Anomaly detection was performed by calculating the fast wavelet instantaneous correlation using the parasitic filter that was constructed on the basis of the measured signals. The results suggested that the anomalies could be detected for all types of the supposed anomalies. (author)
van Noort, Thomas; Achten, Peter; Plasmeijer, Rinus
We present a typical synergy between dynamic types (dynamics) and generalised algebraic datatypes (GADTs). The former provides a clean approach to integrating dynamic typing in a statically typed language. It allows values to be wrapped together with their type in a uniform package, deferring type unification until run time using a pattern match annotated with the desired type. The latter allows for the explicit specification of constructor types, as to enforce their structural validity. In contrast to ADTs, GADTs are heterogeneous structures since each constructor type is implicitly universally quantified. Unfortunately, pattern matching only enforces structural validity and does not provide instantiation information on polymorphic types. Consequently, functions that manipulate such values, such as a type-safe update function, are cumbersome due to boilerplate type representation administration. In this paper we focus on improving such functions by providing a new GADT annotation via a natural synergy with dynamics. We formally define the semantics of the annotation and touch on novel other applications of this technique such as type dispatching and enforcing type equality invariants on GADT values.
Wavelet and receiver operating characteristic analysis of heart rate variability
McCaffery, G.; Griffith, T. M.; Naka, K.; Frennaux, M. P.; Matthai, C. C.
2002-02-01
Multiresolution wavelet analysis has been used to study the heart rate variability in two classes of patients with different pathological conditions. The scale dependent measure of Thurner et al. was found to be statistically significant in discriminating patients suffering from hypercardiomyopathy from a control set of normal subjects. We have performed Receiver Operating Characteristc (ROC) analysis and found the ROC area to be a useful measure by which to label the significance of the discrimination, as well as to describe the severity of heart dysfunction.
Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies
Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.
2014-11-01
Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.
1998-02-01
We applied multiresolution wavelet analysis to the sequence of times between human heartbeats ( R-R intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as belonging either to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart failure from the R-R intervals alone. Comparison is made with previous approaches, which have provided only statistically significant measures.
Value at risk estimation with entropy-based wavelet analysis in exchange markets
He, Kaijian; Wang, Lijun; Zou, Yingchao; Lai, Kin Keung
2014-08-01
In recent years, exchange markets are increasingly integrated together. Fluctuations and risks across different exchange markets exhibit co-moving and complex dynamics. In this paper we propose the entropy-based multivariate wavelet based approaches to analyze the multiscale characteristic in the multidimensional domain and improve further the Value at Risk estimation reliability. Wavelet analysis has been introduced to construct the entropy-based Multiscale Portfolio Value at Risk estimation algorithm to account for the multiscale dynamic correlation. The entropy measure has been proposed as the more effective measure with the error minimization principle to select the best basis when determining the wavelet families and the decomposition level to use. The empirical studies conducted in this paper have provided positive evidence as to the superior performance of the proposed approach, using the closely related Chinese Renminbi and European Euro exchange market.
A New Wavelet-Based Document Image Segmentation Scheme
Institute of Scientific and Technical Information of China (English)
赵健; 李道京; 俞卞章; 耿军平
2002-01-01
The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogram distribution pattern of different image classes. The important attribute of the algorithm is using wavelet correlation image to enhance raw image's pattern, so the classification accuracy is improved. In this paper document image is divided into four types: background, photo, text and graph. Firstly, the document image background has been distingusished easily by former normally method; secondly, three image types will be distinguished by their typical histograms, in order to make histograms feature clearer, each resolution' s HH wavelet subimage is used to add to the raw image at their resolution. At last, the photo, text and praph have been devided according to how the feature fit to the Laplacian distrbution by -X2 and L. Simulations show that classification accuracy is significantly improved. The comparison with related shows that our algorithm provides both lower classification error rates and better visual results.
Multiresolution wavelet-ANN model for significant wave height forecasting.
Digital Repository Service at National Institute of Oceanography (India)
Deka, P.C.; Mandal, S.; Prahlada, R.
Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...
A New Formula for the Inverse Wavelet Transform
Sun, Wenchang
2010-01-01
Finding a computationally efficient algorithm for the inverse continuous wavelet transform is a fundamental topic in applications. In this paper, we show the convergence of the inverse wavelet transform.
Wavelet transforms as solutions of partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Zweig, G.
1997-10-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.
Wavelet Transforms: Application to Data Analysis - I -10 ...
Indian Academy of Sciences (India)
from 0 to 00, whereas translation index k takes values from -00 .... scaling function in any wavelet basis set. ..... sets derived from diverse sources like stock market, cos- ... [4] G B Folland, From Calculus to Wavelets: A New Mathematical Tech-.
Wavelet processing techniques for digital mammography
Laine, Andrew F.; Song, Shuwu
1992-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria
2008-01-01
A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has...
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Construction of a class of Daubechies type wavelet bases
International Nuclear Information System (INIS)
Li Dengfeng; Wu Guochang
2009-01-01
Extensive work has been done in the theory and the construction of compactly supported orthonormal wavelet bases of L 2 (R). Some of the most distinguished work was done by Daubechies, who constructed a whole family of such wavelet bases. In this paper, we construct a class of orthonormal wavelet bases by using the principle of Daubechies, and investigate the length of support and the regularity of these wavelet bases.
A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals
Directory of Open Access Journals (Sweden)
Suyi Li
2017-01-01
Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.
A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction
Directory of Open Access Journals (Sweden)
Fang Su
2013-01-01
Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.
Exploring an optimal wavelet-based filter for cryo-ET imaging.
Huang, Xinrui; Li, Sha; Gao, Song
2018-02-07
Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.
A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.
Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu
2017-01-01
The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.
A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals
Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji
2017-01-01
The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135
Horwood, Anna M; Riddell, Patricia M
2009-01-01
Binocular disparity, blur, and proximal cues drive convergence and accommodation. Disparity is considered to be the main vergence cue and blur the main accommodation cue. We have developed a remote haploscopic photorefractor to measure simultaneous vergence and accommodation objectively in a wide range of participants of all ages while fixating targets at between 0.3 and 2 m. By separating the three main near cues, we can explore their relative weighting in three-, two-, one-, and zero-cue conditions. Disparity can be manipulated by remote occlusion; blur cues manipulated by using either a Gabor patch or a detailed picture target; looming cues by either scaling or not scaling target size with distance. In normal orthophoric, emmetropic, symptom-free, naive visually mature participants, disparity was by far the most significant cue to both vergence and accommodation. Accommodation responses dropped dramatically if disparity was not available. Blur only had a clinically significant effect when disparity was absent. Proximity had very little effect. There was considerable interparticipant variation. We predict that relative weighting of near cue use is likely to vary between clinical groups and present some individual cases as examples. We are using this naturalistic tool to research strabismus, vergence and accommodation development, and emmetropization.
International Nuclear Information System (INIS)
Tafurt, C.A.; Estrada, R. de
1978-01-01
Assuming that the binding forces between steroid hormones and their binding proteins are similar to those between antigens and their antibodies, the authors describe how to determine SHBP activity by a dilution method analogous to that used for titration of antisera in radioimmunoassay. The method consists of the following stages: (1) plasma dilution; (2) incubation of the dilution with 20,000dis/min of 1,2- 3 H-testosterone; (3) separation of the fraction of tracer bound to the SHBP by precipitation with ammonium sulphate; (4) centrifugation and measurement of the supernatant; and (5) plotting of the results on a graph where the axis of ordinates represents the quotient given by bound steroid over free steroid (U/L) and the abscissa represents the plasma dilutions. The values are expressed as the 50% bound titre. An advantage of the method is the higher sensitivity of the dilution curves in the steepest part where the 50% bound is encountered; it is thus not necessary to use the saturation part of the curves where sensitivity is lost owing to the steeper slope. A further advantage of the method is that there is no need for costly processes such as dialysis. The SHBP values obtained for healthy subjects were as follows: 1/5 for men, 1/93 for women, and 1/360 in pregnant women. These physiological values showed no overlapping. (author)
A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions
Directory of Open Access Journals (Sweden)
Seyed Hossein Mahdavi
2015-01-01
Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.
On extensions of wavelet systems to dual pairs of frames
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2015-01-01
It is an open problem whether any pair of Bessel sequences with wavelet structure can be extended to a pair of dual frames by adding a pair of singly generated wavelet systems. We consider the particular case where the given wavelet systems are generated by the multiscale setup with trigonometric...
Fast generation of computer-generated holograms using wavelet shrinkage.
Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2017-01-09
Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.
Directory of Open Access Journals (Sweden)
Krzysztof Klejnowski
2013-01-01
Full Text Available This work presents results from the long-term measurements of particle number carried out at an urban background station in Zabrze, Poland. Ambient particles with aerodynamic diameters of between 28 nm and 10 μm were investigated by means of a DEKATI thirteen-stage electrical low pressure impactor (ELPI. The particle number-size distribution was bimodal, whilst its density function had the local maxima in the aerodynamic diameter intervals 0.056–0.095 μm and 0.157–0.263 μm. The average particle number in winter was nearly twice as high as in summer. The greatest number concentrations in winter were those of the particles with diameters of between 0.617 and 2.41 μm, that is, the anthropogenic particles from fossil fuel combustion. Approximately 99% of the particles observed in Zabrze had aerodynamic diameters ≤1 μm—they may have originated from the combustion of biomass, liquid, and gaseous fuels in domestic stoves or in car engines. The daily variation of particle number was similar for both seasons—the highest values were observed in the morning (traffic rush hour and in the afternoon/late evening (traffic and house heating emissions. An additional maximum (0.028–0.056 μm observed in the early afternoon in summer was due to the intensive formation of new PM particles from gas precursors.
Image encryption using the fractional wavelet transform
International Nuclear Information System (INIS)
Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L
2011-01-01
In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.
Partially coherent imaging and spatial coherence wavelets
International Nuclear Information System (INIS)
Castaneda, Roman
2003-03-01
A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)
Motion compensation via redundant-wavelet multihypothesis.
Fowler, James E; Cui, Suxia; Wang, Yonghui
2006-10-01
Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.
ECG denoising with adaptive bionic wavelet transform.
Sayadi, Omid; Shamsollahi, Mohammad Bagher
2006-01-01
In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.
Orthonormal Wavelet Bases for Quantum Molecular Dynamics
International Nuclear Information System (INIS)
Tymczak, C.; Wang, X.
1997-01-01
We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society
Wavelet methods in mathematical analysis and engineering
Damlamian, Alain
2010-01-01
This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.
Multiresolution signal decomposition transforms, subbands, and wavelets
Akansu, Ali N; Haddad, Paul R
2001-01-01
The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course
Energy Technology Data Exchange (ETDEWEB)
Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)
2013-10-16
Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.
A wavelet analysis of co-movements in Asian gold markets
Das, Debojyoti; Kannadhasan, M.; Al-Yahyaee, Khamis Hamed; Yoon, Seong-Min
2018-02-01
This study assesses the cross-country co-movements of gold spot returns among the major gold consuming countries in Asia using wavelet-based analysis for a dataset spanning over 26 years. Wavelet-based analysis is used since it allows measuring co-movements in a time-frequency space. The results suggest intense and positive co-movements in Asia after the Asian financial crisis of 1997 at all frequencies. In addition, the Asian gold spot markets depict a state of impending perfect market integration. Finally, Thailand emerges as the potential market leader in all wavelet scales except one, which is led by India. The study has important implications for international diversification of a single-asset (gold) portfolio.
DEFF Research Database (Denmark)
Nielsen, Morten Ø.; Frederiksen, Per Houmann
2005-01-01
In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The es...... the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.......In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods....... The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all...
Denoising of Mechanical Vibration Signals Using Quantum-Inspired Adaptive Wavelet Shrinkage
Directory of Open Access Journals (Sweden)
Yan-long Chen
2014-01-01
Full Text Available The potential application of a quantum-inspired adaptive wavelet shrinkage (QAWS technique to mechanical vibration signals with a focus on noise reduction is studied in this paper. This quantum-inspired shrinkage algorithm combines three elements: an adaptive non-Gaussian statistical model of dual-tree complex wavelet transform (DTCWT coefficients proposed to improve practicability of prior information, the quantum superposition introduced to describe the interscale dependencies of DTCWT coefficients, and the quantum-inspired probability of noise defined to shrink wavelet coefficients in a Bayesian framework. By combining all these elements, this signal processing scheme incorporating the DTCWT with quantum theory can both reduce noise and preserve signal details. A practical vibration signal measured from a power-shift steering transmission is utilized to evaluate the denoising ability of QAWS. Application results demonstrate the effectiveness of the proposed method. Moreover, it achieves better performance than hard and soft thresholding.
Wavelet Co-movement Significance Testing with Respect to Gaussian White Noise Background
Directory of Open Access Journals (Sweden)
Poměnková Jitka
2018-01-01
Full Text Available The paper deals with significance testing of time series co-movement measured via wavelet analysis, namely via the wavelet cross-spectra. This technique is very popular for its better time resolution compare to other techniques. Such approach put in evidence the existence of both long-run and short-run co-movement. In order to have better predictive power it is suitable to support and validate obtained results via some testing approach. We investigate the test of wavelet power cross-spectrum with respect to the Gaussian white noise background with the use of the Bessel function. Our experiment is performed on real data, i.e. seasonally adjusted quarterly data of gross domestic product of the United Kingdom, Korea and G7 countries. To validate the test results we perform Monte Carlo simulation. We describe the advantages and disadvantages of both approaches and formulate recommendations for its using.
Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques
Directory of Open Access Journals (Sweden)
E. Castillo
2013-01-01
Full Text Available This paper illustrates the application of the discrete wavelet transform (DWT for wandering and noise suppression in electrocardiographic (ECG signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.
Removal of EMG and ECG artifacts from EEG based on wavelet transform and ICA.
Zhou, Weidong; Gotman, Jean
2004-01-01
In this study, the methods of wavelet threshold de-noising and independent component analysis (ICA) are introduced. ICA is a novel signal processing technique based on high order statistics, and is used to separate independent components from measurements. The extended ICA algorithm does not need to calculate the higher order statistics, converges fast, and can be used to separate subGaussian and superGaussian sources. A pre-whitening procedure is performed to de-correlate the mixed signals before extracting sources. The experimental results indicate the electromyogram (EMG) and electrocardiograph (ECG) artifacts in electroencephalograph (EEG) can be removed by a combination of wavelet threshold de-noising and ICA.
Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.
1997-01-01
We applied multiresolution wavelet analysis to the sequence of times between human heartbeats (R-R intervals) and have found a scale window, between 16 and 32 heartbeats, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as either belonging to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of...
A study of biorthogonal multiple vector-valued wavelets
International Nuclear Information System (INIS)
Han Jincang; Cheng Zhengxing; Chen Qingjiang
2009-01-01
The notion of vector-valued multiresolution analysis is introduced and the concept of biorthogonal multiple vector-valued wavelets which are wavelets for vector fields, is introduced. It is proved that, like in the scalar and multiwavelet case, the existence of a pair of biorthogonal multiple vector-valued scaling functions guarantees the existence of a pair of biorthogonal multiple vector-valued wavelet functions. An algorithm for constructing a class of compactly supported biorthogonal multiple vector-valued wavelets is presented. Their properties are investigated by means of operator theory and algebra theory and time-frequency analysis method. Several biorthogonality formulas regarding these wavelet packets are obtained.
Solution of wave-like equation based on Haar wavelet
Directory of Open Access Journals (Sweden)
Naresh Berwal
2012-11-01
Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.
Arvind, Pratul
2012-11-01
The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.
Optimization of wavelet decomposition for image compression and feature preservation.
Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T
2003-09-01
A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.
Quantum dynamics and electronic spectroscopy within the framework of wavelets
International Nuclear Information System (INIS)
Toutounji, Mohamad
2013-01-01
This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)
Directory of Open Access Journals (Sweden)
Andrzej Katunin
2015-01-01
Full Text Available The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.
Application of wavelet transform to seismic data; Wavelet henkan no jishin tansa eno tekiyo
Energy Technology Data Exchange (ETDEWEB)
Nakagami, K; Murayama, R; Matsuoka, T [Japan National Oil Corp., Tokyo (Japan)
1996-05-01
Introduced herein is the use of the wavelet transform in the field of seismic exploration. Among applications so far made, there are signal filtering, break point detection, data compression, and the solution of finite differential equations in the wavelet domain. In the field of data compression in particular, some examples of practical application have been introduced already. In seismic exploration, it is expected that the wavelet transform will separate signals and noises in data in a way different from the Fourier transform. The continuous wavelet transform displays time change in frequency easy to read, but is not suitable for the analysis and processing large quantities of data. On the other hand, the discrete wavelet transform, being an orthogonal transform, can handle large quantities of data. As compared with the conventional Fourier transform that handles only the frequency domain, the wavelet transform handles the time domain as well as the frequency domain, and therefore is more convenient in handling unsteady signals. 9 ref., 8 figs.
Information retrieval system utilizing wavelet transform
Brewster, Mary E.; Miller, Nancy E.
2000-01-01
A method for automatically partitioning an unstructured electronically formatted natural language document into its sub-topic structure. Specifically, the document is converted to an electronic signal and a wavelet transform is then performed on the signal. The resultant signal may then be used to graphically display and interact with the sub-topic structure of the document.
Multiscale wavelet representations for mammographic feature analysis
Laine, Andrew F.; Song, Shuwu
1992-12-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Wavelet based multicarrier code division multiple access ...
African Journals Online (AJOL)
This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...
Research of generalized wavelet transformations of Haar correctness in remote sensing of the Earth
Kazaryan, Maretta; Shakhramanyan, Mihail; Nedkov, Roumen; Richter, Andrey; Borisova, Denitsa; Stankova, Nataliya; Ivanova, Iva; Zaharinova, Mariana
2017-10-01
In this paper, Haar's generalized wavelet functions are applied to the problem of ecological monitoring by the method of remote sensing of the Earth. We study generalized Haar wavelet series and suggest the use of Tikhonov's regularization method for investigating them for correctness. In the solution of this problem, an important role is played by classes of functions that were introduced and described in detail by I.M. Sobol for studying multidimensional quadrature formulas and it contains functions with rapidly convergent series of wavelet Haar. A theorem on the stability and uniform convergence of the regularized summation function of the generalized wavelet-Haar series of a function from this class with approximate coefficients is proved. The article also examines the problem of using orthogonal transformations in Earth remote sensing technologies for environmental monitoring. Remote sensing of the Earth allows to receive from spacecrafts information of medium, high spatial resolution and to conduct hyperspectral measurements. Spacecrafts have tens or hundreds of spectral channels. To process the images, the device of discrete orthogonal transforms, and namely, wavelet transforms, was used. The aim of the work is to apply the regularization method in one of the problems associated with remote sensing of the Earth and subsequently to process the satellite images through discrete orthogonal transformations, in particular, generalized Haar wavelet transforms. General methods of research. In this paper, Tikhonov's regularization method, the elements of mathematical analysis, the theory of discrete orthogonal transformations, and methods for decoding of satellite images are used. Scientific novelty. The task of processing of archival satellite snapshots (images), in particular, signal filtering, was investigated from the point of view of an incorrectly posed problem. The regularization parameters for discrete orthogonal transformations were determined.
Directory of Open Access Journals (Sweden)
Jikai Chen
2016-12-01
Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.
International Nuclear Information System (INIS)
Zhou Yunlong; Zhang Xueqing; Gao Yunpeng; Cheng Yue
2009-01-01
For studying flow regimes of gas/liquid two-phase in a vertical upward pipe, the conductance fluctuation information of four typical flow regimes was collected by a measuring the system with self-made multiple conductivity probes. Owing to the non-stationarity of conductance fluctuation signals of gas-liquid two-phase flow, a kind of' flow regime identification method based on wavelet packet Multi-scale Information Entropy and Hidden Markov Model (HMM) was put forward. First of all, the collected conductance fluctuation signals were decomposed into eight different frequency bands signals. Secondly, the wavelet packet multi-scale information entropy of different frequency bands signals were regarded as the input characteristic vectors of all states HMM which had been trained. In the end the regime identification of' the gas-liquid two-phase flow could be performed. The study showed that the method that HMM was applied to identify the flow regime was superior to the one that BP neural network was used, and the results proved that the method was efficient and feasible. (authors)
International Nuclear Information System (INIS)
Qu, Jinxiu; Zhang, Zhousuo; Guo, Ting; Luo, Xue; Sun, Chuang; Li, Bing; Wen, Jinpeng
2014-01-01
The viscoelastic sandwich structure is widely used in mechanical equipment, yet the structure always suffers from damage during long-term service. Therefore, state recognition of the viscoelastic sandwich structure is very necessary for monitoring structural health states and keeping the equipment running with high reliability. Through the analysis of vibration response signals, this paper presents a novel method for this task based on the adaptive redundant second generation wavelet packet transform (ARSGWPT), permutation entropy (PE) and the wavelet support vector machine (WSVM). In order to tackle the non-linearity existing in the structure vibration response, the PE is introduced to reveal the state changes of the structure. In the case of complex non-stationary vibration response signals, in order to obtain more effective information regarding the structural health states, the ARSGWPT, which can adaptively match the characteristics of a given signal, is proposed to process the vibration response signals, and then multiple PE features are extracted from the resultant wavelet packet coefficients. The WSVM, which can benefit from the conventional SVM as well as wavelet theory, is applied to classify the various structural states automatically. In this study, to achieve accurate and automated state recognition, the ARSGWPT, PE and WSVM are combined for signal processing, feature extraction and state classification, respectively. To demonstrate the effectiveness of the proposed method, a typical viscoelastic sandwich structure is designed, and the different degrees of preload on the structure are used to characterize the various looseness states. The test results show that the proposed method can reliably recognize the different looseness states of the viscoelastic sandwich structure, and the WSVM can achieve a better classification performance than the conventional SVM. Moreover, the superiority of the proposed ARSGWPT in processing the complex vibration response
A prediction method based on wavelet transform and multiple models fusion for chaotic time series
International Nuclear Information System (INIS)
Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha
2017-01-01
In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.
Bhagavatula, Chandrasekhar; Venugopalan, Shreyas; Blue, Rebecca; Friedman, Robert; Griofa, Marc O; Savvides, Marios; Kumar, B V K Vijaya
2012-01-01
In this paper we explore how a Radio Frequency Impedance Interrogation (RFII) signal may be used as a biometric feature. This could allow the identification of subjects in operational and potentially hostile environments. Features extracted from the continuous and discrete wavelet decompositions of the signal are investigated for biometric identification. In the former case, the most discriminative features in the wavelet space were extracted using a Fisher ratio metric. Comparisons in the wavelet space were done using the Euclidean distance measure. In the latter case, the signal was decomposed at various levels using different wavelet bases, in order to extract both low frequency and high frequency components. Comparisons at each decomposition level were performed using the same distance measure as before. The data set used consists of four subjects, each with a 15 minute RFII recording. The various data samples for our experiments, corresponding to a single heart beat duration, were extracted from these recordings. We achieve identification rates of up to 99% using the CWT approach and rates of up to 100% using the DWT approach. While the small size of the dataset limits the interpretation of these results, further work with larger datasets is expected to develop better algorithms for subject identification.
Paul, Sabyasachi; Sarkar, P K
2013-04-01
Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.
Human Iris Recognition System using Wavelet Transform and LVQ
Energy Technology Data Exchange (ETDEWEB)
Lee, Kwan Yong; Lim, Shin Young [Electronics and Telecommunications Research Institute (Korea); Cho, Seong Won [Hongik University (Korea)
2000-07-01
The popular methods to check the identity of individuals include passwords and ID cards. These conventional methods for user identification and authentication are not altogether reliable because they can be stolen and forgotten. As an alternative of the existing methods, biometric technology has been paid much attention for the last few decades. In this paper, we propose an efficient system for recognizing the identity of a living person by analyzing iris patterns which have a high level of stability and distinctiveness than other biometric measurements. The proposed system is based on wavelet transform and a competitive neural network with the improved mechanisms. After preprocessing the iris data acquired through a CCD camera, feature vectors are extracted by using Haar wavelet transform. LVQ(Learning Vector Quantization) is exploited to classify these feature vectors. We improve the overall performance of the proposed system by optimizing the size of feature vectors and by introducing an efficient initialization of the weight vectors and a new method for determining the winner in order to increase the recognition accuracy of LVQ. From the experiments, we confirmed that the proposed system has a great potential of being applied to real applications in an efficient and effective way. (author). 14 refs., 13 figs., 7 tabs.
Wavelet neural network load frequency controller
International Nuclear Information System (INIS)
Hemeida, Ashraf Mohamed
2005-01-01
This paper presents the feasibility of applying a wavelet neural network (WNN) approach for the load frequency controller (LFC) to damp the frequency oscillations of two area power systems due to load disturbances. The present intelligent control system trained the wavelet neural network (WNN) controller on line with adaptive learning rates, which are derived in the sense of a discrete type Lyapunov stability theorem. The present WNN controller is designed individually for each area. The proposed technique is applied successfully for a wide range of operating conditions. The time simulation results indicate its superiority and effectiveness over the conventional approach. The effects of consideration of the governor dead zone on the system performance are studied using the proposed controller and the conventional one
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Wavelet analysis of the impedance cardiogram waveforms
International Nuclear Information System (INIS)
Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K
2012-01-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Gestures recognition based on wavelet and LLE
International Nuclear Information System (INIS)
Ai, Qingsong; Liu, Quan; Lu, Ying; Yuan, Tingting
2013-01-01
Wavelet analysis is a time–frequency, non-stationary method while the largest Lyapunov exponent (LLE) is used to judge the non-linear characteristic of systems. Because surface electromyography signal (SEMGS) is a complex signal that is characterized by non-stationary and non-linear properties. This paper combines wavelet coefficient and LLE together as the new feature of SEMGS. The proposed method not only reflects the non-stationary and non-linear characteristics of SEMGS, but also is suitable for its classification. Then, the BP (back propagation) neural network is employed to implement the identification of six gestures (fist clench, fist extension, wrist extension, wrist flexion, radial deviation, ulnar deviation). The experimental results indicate that based on the proposed method, the identification of these six gestures can reach an average rate of 97.71 %.
Wavelets and their applications past and future
Coifman, Ronald R.
2009-04-01
As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.
Oygur, Tunc; Unal, Gazanfer
Shocks, jumps, booms and busts are typical large fluctuation markers which appear in crisis. Models and leading indicators vary according to crisis type in spite of the fact that there are a lot of different models and leading indicators in literature to determine structure of crisis. In this paper, we investigate structure of dynamic correlation of stock return, interest rate, exchange rate and trade balance differences in crisis periods in Turkey over the period between October 1990 and March 2015 by applying wavelet coherency methodologies to determine nature of crises. The time period includes the Turkeys currency and banking crises; US sub-prime mortgage crisis and the European sovereign debt crisis occurred in 1994, 2001, 2008 and 2009, respectively. Empirical results showed that stock return, interest rate, exchange rate and trade balance differences are significantly linked during the financial crises in Turkey. The cross wavelet power, the wavelet coherency, the multiple wavelet coherency and the quadruple wavelet coherency methodologies have been used to examine structure of dynamic correlation. Moreover, in consequence of quadruple and multiple wavelet coherence, strongly correlated large scales indicate linear behavior and, hence VARMA (vector autoregressive moving average) gives better fitting and forecasting performance. In addition, increasing the dimensions of the model for strongly correlated scales leads to more accurate results compared to scalar counterparts.
Transformer Protection Using the Wavelet Transform
ÖZGÖNENEL, Okan; ÖNBİLGİN, Güven; KOCAMAN, Çağrı
2014-01-01
This paper introduces a novel approach for power transformer protection algorithm. Power system signals such as current and voltage have traditionally been analysed by the Fast Fourier Transform. This paper aims to prove that the Wavelet Transform is a reliable and computationally efficient tool for distinguishing between the inrush currents and fault currents. The simulated results presented clearly show that the proposed technique for power transformer protection facilitates the a...
Wavelet representation of the nuclear dynamics
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.
Wavelet Decomposition of the Financial Market
Czech Academy of Sciences Publication Activity Database
Vošvrda, Miloslav; Vácha, Lukáš
2007-01-01
Roč. 16, č. 1 (2007), s. 38-54 ISSN 1210-0455 R&D Projects: GA ČR GA402/04/1026; GA ČR(CZ) GA402/06/1417 Grant - others:GA UK(CZ) 454/2004/A-EK FSV Institutional research plan: CEZ:AV0Z10750506 Keywords : agents' trading strategies * heterogeneous agents model with stochastic memory * worst out algorithm * wavelet Subject RIV: AH - Economics
Wavelet representation of the nuclear dynamics
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)
Multiscale peak detection in wavelet space.
Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng
2015-12-07
Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .
On transforms between Gabor frames and wavelet frames
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2013-01-01
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....
An introduction to random vibrations, spectral & wavelet analysis
Newland, D E
2005-01-01
One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation
Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms
2004-08-06
wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus
Pedestrian detection based on redundant wavelet transform
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
Fringe pattern information retrieval using wavelets
Sciammarella, Cesar A.; Patimo, Caterina; Manicone, Pasquale D.; Lamberti, Luciano
2005-08-01
Two-dimensional phase modulation is currently the basic model used in the interpretation of fringe patterns that contain displacement information, moire, holographic interferometry, speckle techniques. Another way to look to these two-dimensional signals is to consider them as frequency modulated signals. This alternative interpretation has practical implications similar to those that exist in radio engineering for handling frequency modulated signals. Utilizing this model it is possible to obtain frequency information by using the energy approach introduced by Ville in 1944. A natural complementary tool of this process is the wavelet methodology. The use of wavelet makes it possible to obtain the local values of the frequency in a one or two dimensional domain without the need of previous phase retrieval and differentiation. Furthermore from the properties of wavelets it is also possible to obtain at the same time the phase of the signal with the advantage of a better noise removal capabilities and the possibility of developing simpler algorithms for phase unwrapping due to the availability of the derivative of the phase.
JPEG and wavelet compression of ophthalmic images
Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.
1999-05-01
This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.
Generalized exact holographic mapping with wavelets
Lee, Ching Hua
2017-12-01
The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.
Rate-distortion analysis of directional wavelets.
Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza
2012-02-01
The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE
Forced Ignition Study Based On Wavelet Method
Martelli, E.; Valorani, M.; Paolucci, S.; Zikoski, Z.
2011-05-01
The control of ignition in a rocket engine is a critical problem for combustion chamber design. Therefore it is essential to fully understand the mechanism of ignition during its earliest stages. In this paper the characteristics of flame kernel formation and initial propagation in a hydrogen-argon-oxygen mixing layer are studied using 2D direct numerical simulations with detailed chemistry and transport properties. The flame kernel is initiated by adding an energy deposition source term in the energy equation. The effect of unsteady strain rate is studied by imposing a 2D turbulence velocity field, which is initialized by means of a synthetic field. An adaptive wavelet method, based on interpolating wavelets is used in this study to solve the compressible reactive Navier- Stokes equations. This method provides an alternative means to refine the computational grid points according to local demands of the physical solution. The present simulations show that in the very early instants the kernel perturbed by the turbulent field is characterized by an increased burning area and a slightly increased rad- ical formation. In addition, the calculations show that the wavelet technique yields a significant reduction in the number of degrees of freedom necessary to achieve a pre- scribed solution accuracy.
Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting
Institute of Scientific and Technical Information of China (English)
WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng
2003-01-01
To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.
Coresident sensor fusion and compression using the wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Yocky, D.A.
1996-03-11
Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.
EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform
National Research Council Canada - National Science Library
Bhatti, Muhammad
2001-01-01
EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...
A study of non-binary discontinuity wavelet
International Nuclear Information System (INIS)
Lin Hai; Liu Lianshou
2006-01-01
This paper gives a study of non-binary discontinuity wavelet, put forward the theory and method of constituting basic wavelet functions, and has constituted concretely a wavelet function using λ=3.4 as an example. It also conducts a theoretical inference on the decomposition algorithm and reconstruction algorithm of non-binary wavelet, and gives a concrete study of the change of matrix in connection with λ=3.4. In the end, it shows the future of application of the result to the study of high energy collision. (authors)
Wavelets for the stimulation of turbulent incompressible flows
International Nuclear Information System (INIS)
Deriaz, E.
2006-02-01
This PhD thesis presents original wavelet methods aimed at simulating incompressible fluids. In order to construct 2D and 3D wavelets designed for incompressible flows, we resume P-G Lemarie-Rieussets and K. Urbans works on divergence free wavelets. We show the existence of associated fast algorithms. In the following, we use divergence-free wavelet construction to define the Helmholtz decomposition of 2D and 3D vector fields. All these algorithms provide a new method for the numerical resolution of the incompressible Navier-Stokes equations. (author)
Wavelet-based moment invariants for pattern recognition
Chen, Guangyi; Xie, Wenfang
2011-07-01
Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.
Wavelet Approach to Data Analysis, Manipulation, Compression, and Communication
National Research Council Canada - National Science Library
Chui, Charles K
2007-01-01
...; secondly, based on minimum-energy criteria, new data processing tools, particularly variational algorithms and optimal wavelet thresholding methods, with applications to image restoration, were introduced...
Watermarking on 3D mesh based on spherical wavelet transform.
Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng
2004-03-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
Wavelet-based verification of the quantitative precipitation forecast
Yano, Jun-Ichi; Jakubiak, Bogumil
2016-06-01
This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.
Abnormal traffic flow data detection based on wavelet analysis
Directory of Open Access Journals (Sweden)
Xiao Qian
2016-01-01
Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.
Optimal wavelet transform for the detection of microaneurysms in retina photographs.
Quellec, Gwénolé; Lamard, Mathieu; Josselin, Pierre Marie; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian
2008-09-01
In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in subbands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods.
A quality quantitative method of silicon direct bonding based on wavelet image analysis
Tan, Xiao; Tao, Zhi; Li, Haiwang; Xu, Tiantong; Yu, Mingxing
2018-04-01
The rapid development of MEMS (micro-electro-mechanical systems) has received significant attention from researchers in various fields and subjects. In particular, the MEMS fabrication process is elaborate and, as such, has been the focus of extensive research inquiries. However, in MEMS fabrication, component bonding is difficult to achieve and requires a complex approach. Thus, improvements in bonding quality are relatively important objectives. A higher quality bond can only be achieved with improved measurement and testing capabilities. In particular, the traditional testing methods mainly include infrared testing, tensile testing, and strength testing, despite the fact that using these methods to measure bond quality often results in low efficiency or destructive analysis. Therefore, this paper focuses on the development of a precise, nondestructive visual testing method based on wavelet image analysis that is shown to be highly effective in practice. The process of wavelet image analysis includes wavelet image denoising, wavelet image enhancement, and contrast enhancement, and as an end result, can display an image with low background noise. In addition, because the wavelet analysis software was developed with MATLAB, it can reveal the bonding boundaries and bonding rates to precisely indicate the bond quality at all locations on the wafer. This work also presents a set of orthogonal experiments that consist of three prebonding factors, the prebonding temperature, the positive pressure value and the prebonding time, which are used to analyze the prebonding quality. This method was used to quantify the quality of silicon-to-silicon wafer bonding, yielding standard treatment quantities that could be practical for large-scale use.
Testing typicality in multiverse cosmology
Azhar, Feraz
2015-05-01
In extracting predictions from theories that describe a multiverse, we face the difficulty that we must assess probability distributions over possible observations prescribed not just by an underlying theory, but by a theory together with a conditionalization scheme that allows for (anthropic) selection effects. This means we usually need to compare distributions that are consistent with a broad range of possible observations with actual experimental data. One controversial means of making this comparison is by invoking the "principle of mediocrity": that is, the principle that we are typical of the reference class implicit in the conjunction of the theory and the conditionalization scheme. In this paper, we quantitatively assess the principle of mediocrity in a range of cosmological settings, employing "xerographic distributions" to impose a variety of assumptions regarding typicality. We find that for a fixed theory, the assumption that we are typical gives rise to higher likelihoods for our observations. If, however, one allows both the underlying theory and the assumption of typicality to vary, then the assumption of typicality does not always provide the highest likelihoods. Interpreted from a Bayesian perspective, these results support the claim that when one has the freedom to consider different combinations of theories and xerographic distributions (or different "frameworks"), one should favor the framework that has the highest posterior probability; and then from this framework one can infer, in particular, how typical we are. In this way, the invocation of the principle of mediocrity is more questionable than has been recently claimed.
Construction of Time-Dependent Spectra Using Wavelet Analysis for Determination of Global Damage
DEFF Research Database (Denmark)
Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R.K.
A new method for computing Maximum Softening Damage Index (MSDI) is proposed. The MSDI, a measure of global damage, is based on the relative reduction of the first eigenfrequency (or equivalently, the relative increase in the fundamental period) of a structure over the course of a damage event. T....... The method proposed here makes use of wavelet transform coefficients of measured output response records to provide time-localized information on structural softening....
Wavelet based free-form deformations for nonrigid registration
Sun, Wei; Niessen, Wiro J.; Klein, Stefan
2014-03-01
In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.
Monthly sediment discharge changes and estimates in a typical karst catchment of southwest China
Li, Zhenwei; Xu, Xianli; Xu, Chaohao; Liu, Meixian; Wang, Kelin; Yi, Ruzhou
2017-12-01
As one of the largest karst regions in the world, southwest China is experiencing severe soil erosion due to its special geological conditions, inappropriate land use, and lower soil loss tolerance. Knowledge and accurate estimations of changes in sediment discharge rates is important for finding potential measures to effectively control sediment delivery. This study investigated temporal variation in monthly sediment discharge (SD), and developed sediment rating curves and state-space model to estimate SD. Monthly water discharge, SD, precipitation, potential evapotranspiration, and normalized differential vegetation index during 2003-2015 collected from a typical karst catchment of Yujiang River were analyzed in present study. A Mann-Kendal test and Morlet wavelet analysis were employed to detect the changes in SD. Results indicated that a decreasing trend was observed in sediment discharge at monthly and annual scale. The water and sediment discharge both had a significant 1-year period, implying that water discharge has substantial influence on SD. The best state-space model using water discharge was a simple but effective model, accounting for 99% of the variation in SD. The sediment rating curves, however, represented only 78% of the variation in SD. This study provides an insight into the possibility of accurate estimation of SD only using water discharge with state-space model approach. State-space model is recommended as an effective approach for quantifying the temporal relationships between SD and its driving factors in karst regions of southwest China.
International Nuclear Information System (INIS)
Delakis, Ioannis; Hammad, Omer; Kitney, Richard I
2007-01-01
Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting
End-point detection in potentiometric titration by continuous wavelet transform.
Jakubowska, Małgorzata; Baś, Bogusław; Kubiak, Władysław W
2009-10-15
The aim of this work was construction of the new wavelet function and verification that a continuous wavelet transform with a specially defined dedicated mother wavelet is a useful tool for precise detection of end-point in a potentiometric titration. The proposed algorithm does not require any initial information about the nature or the type of analyte and/or the shape of the titration curve. The signal imperfection, as well as random noise or spikes has no influence on the operation of the procedure. The optimization of the new algorithm was done using simulated curves and next experimental data were considered. In the case of well-shaped and noise-free titration data, the proposed method gives the same accuracy and precision as commonly used algorithms. But, in the case of noisy or badly shaped curves, the presented approach works good (relative error mainly below 2% and coefficients of variability below 5%) while traditional procedures fail. Therefore, the proposed algorithm may be useful in interpretation of the experimental data and also in automation of the typical titration analysis, specially in the case when random noise interfere with analytical signal.
Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam
2017-05-10
In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities.
Investigation of using wavelet analysis for classifying pattern of cyclic voltammetry signals
Jityen, Arthit; Juagwon, Teerasak; Jaisuthi, Rawat; Osotchan, Tanakorn
2017-09-01
Wavelet analysis is an excellent technique for data processing analysis based on linear vector algebra since it has an ability to perform local analysis and is able to analyze an unspecific localized area of a large signal. In this work, the wavelet analysis of cyclic waveform was investigated in order to find the distinguishable feature from the cyclic data. The analyzed wavelet coefficients were proposed to be used as selected cyclic feature parameters. The cyclic voltammogram (CV) of different electrodes consisting of carbon nanotube (CNT) and several types of metal phthalocyanine (MPc) including CoPc, FePc, ZnPc and MnPc powders was used as several sets of cyclic data for various types of coffee. The mixture powder was embedded in a hollow Teflon rod and used as working electrodes. Electrochemical response of the fabricated electrodes in Robusta, blend coffee I, blend coffee II, chocolate malt and cocoa at the same concentrations was measured with scanning rate of 0.05V/s from -1.5 to 1.5V respectively to Ag/AgCl electrode for five scanning loops. The CV of blended CNT electrode with some MPc electrodes indicated the ionic interaction which can be the effect of catalytic oxidation of saccharides and/or polyphenol on the sensor surface. The major information of CV response can be extracted by using several mother wavelet families viz. daubechies (dB1 to dB3), coiflets (coiflet1), biorthogonal (Bior1.1) and symlets (sym2) and then the discrimination of these wavelet coefficients of each data group can be separated by principal component analysis (PCA). The PCA results indicated the clearly separate groups with total contribution more than 62.37% representing from PC1 and PC2.
Automatic Modulation Recognition by Support Vector Machines Using Wavelet Kernel
Energy Technology Data Exchange (ETDEWEB)
Feng, X Z; Yang, J; Luo, F L; Chen, J Y; Zhong, X P [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha (China)
2006-10-15
Automatic modulation identification plays a significant role in electronic warfare, electronic surveillance systems and electronic counter measure. The task of modulation recognition of communication signals is to determine the modulation type and signal parameters. In fact, automatic modulation identification can be range to an application of pattern recognition in communication field. The support vector machines (SVM) is a new universal learning machine which is widely used in the fields of pattern recognition, regression estimation and probability density. In this paper, a new method using wavelet kernel function was proposed, which maps the input vector xi into a high dimensional feature space F. In this feature space F, we can construct the optimal hyperplane that realizes the maximal margin in this space. That is to say, we can use SVM to classify the communication signals into two groups, namely analogue modulated signals and digitally modulated signals. In addition, computer simulation results are given at last, which show good performance of the method.
Automatic Modulation Recognition by Support Vector Machines Using Wavelet Kernel
International Nuclear Information System (INIS)
Feng, X Z; Yang, J; Luo, F L; Chen, J Y; Zhong, X P
2006-01-01
Automatic modulation identification plays a significant role in electronic warfare, electronic surveillance systems and electronic counter measure. The task of modulation recognition of communication signals is to determine the modulation type and signal parameters. In fact, automatic modulation identification can be range to an application of pattern recognition in communication field. The support vector machines (SVM) is a new universal learning machine which is widely used in the fields of pattern recognition, regression estimation and probability density. In this paper, a new method using wavelet kernel function was proposed, which maps the input vector xi into a high dimensional feature space F. In this feature space F, we can construct the optimal hyperplane that realizes the maximal margin in this space. That is to say, we can use SVM to classify the communication signals into two groups, namely analogue modulated signals and digitally modulated signals. In addition, computer simulation results are given at last, which show good performance of the method
Prediction and typicality in multiverse cosmology
International Nuclear Information System (INIS)
Azhar, Feraz
2014-01-01
In the absence of a fundamental theory that precisely predicts values for observable parameters, anthropic reasoning attempts to constrain probability distributions over those parameters in order to facilitate the extraction of testable predictions. The utility of this approach has been vigorously debated of late, particularly in light of theories that claim we live in a multiverse, where parameters may take differing values in regions lying outside our observable horizon. Within this cosmological framework, we investigate the efficacy of top-down anthropic reasoning based on the weak anthropic principle. We argue contrary to recent claims that it is not clear one can either dispense with notions of typicality altogether or presume typicality, in comparing resulting probability distributions with observations. We show in a concrete, top-down setting related to dark matter, that assumptions about typicality can dramatically affect predictions, thereby providing a guide to how errors in reasoning regarding typicality translate to errors in the assessment of predictive power. We conjecture that this dependence on typicality is an integral feature of anthropic reasoning in broader cosmological contexts, and argue in favour of the explicit inclusion of measures of typicality in schemes invoking anthropic reasoning, with a view to extracting predictions from multiverse scenarios. (paper)
Prediction and typicality in multiverse cosmology
Azhar, Feraz
2014-02-01
In the absence of a fundamental theory that precisely predicts values for observable parameters, anthropic reasoning attempts to constrain probability distributions over those parameters in order to facilitate the extraction of testable predictions. The utility of this approach has been vigorously debated of late, particularly in light of theories that claim we live in a multiverse, where parameters may take differing values in regions lying outside our observable horizon. Within this cosmological framework, we investigate the efficacy of top-down anthropic reasoning based on the weak anthropic principle. We argue contrary to recent claims that it is not clear one can either dispense with notions of typicality altogether or presume typicality, in comparing resulting probability distributions with observations. We show in a concrete, top-down setting related to dark matter, that assumptions about typicality can dramatically affect predictions, thereby providing a guide to how errors in reasoning regarding typicality translate to errors in the assessment of predictive power. We conjecture that this dependence on typicality is an integral feature of anthropic reasoning in broader cosmological contexts, and argue in favour of the explicit inclusion of measures of typicality in schemes invoking anthropic reasoning, with a view to extracting predictions from multiverse scenarios.
Wavelet Based Diagnosis and Protection of Electric Motors
Khan, M. Abdesh Shafiel Kafiey; Rahman, M. Azizur
2010-01-01
In this chapter, a short review of conventional Fourier transforms and new wavelet based faults diagnostic and protection techniques for electric motors is presented. The new hybrid wavelet packet transform (WPT) and neural network (NN) based faults diagnostic algorithm is developed and implemented for electric motors. The proposed WPT and NN
Early detection of rogue waves by the wavelet transforms
International Nuclear Information System (INIS)
Bayındır, Cihan
2016-01-01
Highlights: • The advantages of wavelet analysis over the Fourier analysis for the early detection of rogue waves are discussed. • The triangular wavelet spectra can be detected at early stages of the development of rogue waves. • The wavelet analysis is capable of detecting not only the emergence but also the location of a rogue wave. • Wavelet analysis is also capable of predicting the characteristic distances between successive rogue waves. - Abstract: We discuss the possible advantages of using the wavelet transform over the Fourier transform for the early detection of rogue waves. We show that the triangular wavelet spectra of the rogue waves can be detected at early stages of the development of rogue waves in a chaotic wave field. Compared to the Fourier spectra, the wavelet spectra are capable of detecting not only the emergence of a rogue wave but also its possible spatial (or temporal) location. Due to this fact, wavelet transform is also capable of predicting the characteristic distances between successive rogue waves. Therefore multiple simultaneous breaking of the successive rogue waves on ships or on the offshore structures can be predicted and avoided by smart designs and operations.
Optimization design of biorthogonal wavelets for embedded image coding
Lin, Z.; Zheng, N.; Liu, Y.; Wetering, van de H.M.M.
2007-01-01
We present here a simple technique for parametrization of popular biorthogonal wavelet filter banks (BWFBs) having vanishing moments (VMs) of arbitrary multiplicity. Given a prime wavelet filter with VMs of arbitrary multiplicity, after formulating it as a trigonometric polynomial depending on two
Multiresolution signal decomposition schemes. Part 2: Morphological wavelets
H.J.A.M. Heijmans (Henk); J. Goutsias (John)
1999-01-01
htmlabstractIn its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by Sweldens. The
Multidimensional filter banks and wavelets research developments and applications
Levy, Bernard
1997-01-01
Multidimensional Filter Banks and Wavelets: Reserach Developments and Applications brings together in one place important contributions and up-to-date research results in this important area. Multidimensional Filter Banks and Wavelets: Research Developments and Applications serves as an excellent reference, providing insight into some of the most important research issues in the field.
Evaluation of the wavelet image two-line coder
DEFF Research Database (Denmark)
Rein, Stephan Alexander; Fitzek, Frank Hanns Paul; Gühmann, Clemens
2015-01-01
This paper introduces the wavelet image two-line (Wi2l) coding algorithm for low complexity compression of images. The algorithm recursively encodes an image backwards reading only two lines of a wavelet subband, which are read in blocks of 512 bytes from flash memory. It thus only requires very ...
Polarized spectral features of human breast tissues through wavelet ...
Indian Academy of Sciences (India)
Abstract. Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polar- ized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.
Early detection of rogue waves by the wavelet transforms
Energy Technology Data Exchange (ETDEWEB)
Bayındır, Cihan, E-mail: cihan.bayindir@isikun.edu.tr
2016-01-08
Highlights: • The advantages of wavelet analysis over the Fourier analysis for the early detection of rogue waves are discussed. • The triangular wavelet spectra can be detected at early stages of the development of rogue waves. • The wavelet analysis is capable of detecting not only the emergence but also the location of a rogue wave. • Wavelet analysis is also capable of predicting the characteristic distances between successive rogue waves. - Abstract: We discuss the possible advantages of using the wavelet transform over the Fourier transform for the early detection of rogue waves. We show that the triangular wavelet spectra of the rogue waves can be detected at early stages of the development of rogue waves in a chaotic wave field. Compared to the Fourier spectra, the wavelet spectra are capable of detecting not only the emergence of a rogue wave but also its possible spatial (or temporal) location. Due to this fact, wavelet transform is also capable of predicting the characteristic distances between successive rogue waves. Therefore multiple simultaneous breaking of the successive rogue waves on ships or on the offshore structures can be predicted and avoided by smart designs and operations.
Wavelet-Coded OFDM for Next Generation Mobile Communications
DEFF Research Database (Denmark)
Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso
2016-01-01
In this work, we evaluate the performance of Wavelet-Coding into offering robustness for OFDM signals against the combined effects of varying fading and noise bursts. Wavelet-Code enables high diversity gains with a low complex receiver, and, most notably, without compromising the system’s spectr......-wave frequencies in future generation mobile communication due to its robustness against multipath fading....
Directory of Open Access Journals (Sweden)
A. Sreenivasa Murthy
2014-11-01
Full Text Available With the spurt in the amount of data (Image, video, audio, speech, & text available on the net, there is a huge demand for memory & bandwidth savings. One has to achieve this, by maintaining the quality & fidelity of the data acceptable to the end user. Wavelet transform is an important and practical tool for data compression. Set partitioning in hierarchal trees (SPIHT is a widely used compression algorithm for wavelet transformed images. Among all wavelet transform and zero-tree quantization based image compression algorithms SPIHT has become the benchmark state-of-the-art algorithm because it is simple to implement & yields good results. In this paper we present a comparative study of various wavelet families for image compression with SPIHT algorithm. We have conducted experiments with Daubechies, Coiflet, Symlet, Bi-orthogonal, Reverse Bi-orthogonal and Demeyer wavelet types. The resulting image quality is measured objectively, using peak signal-to-noise ratio (PSNR, and subjectively, using perceived image quality (human visual perception, HVP for short. The resulting reduction in the image size is quantified by compression ratio (CR.
International Conference and Workshop on Fractals and Wavelets
Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod
2014-01-01
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
Abstract harmonic analysis of continuous wavelet transforms
Führ, Hartmut
2005-01-01
This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the book can also be read as a problem-driven introduction to the Plancherel formula.
Seismic image watermarking using optimized wavelets
International Nuclear Information System (INIS)
Mufti, M.
2010-01-01
Geotechnical processes and technologies are becoming more and more sophisticated by the use of computer and information technology. This has made the availability, authenticity and security of geo technical data even more important. One of the most common methods of storing and sharing seismic data images is through standardized SEG- Y file format.. Geo technical industry is now primarily data centric. The analytic and detection capability of seismic processing tool is heavily dependent on the correctness of the contents of the SEG-Y data file. This paper describes a method through an optimized wavelet transform technique which prevents unauthorized alteration and/or use of seismic data. (author)
Coherent states versus De Broglie-Wavelets
International Nuclear Information System (INIS)
Barut, A.O.
1993-08-01
There are two types of nonspreading localized wave forms representing a stable, individual, indivisible, single quantum particle with interference properties endowed with classical (hidden) parameters, i.e. initial positions and velocity: coherent states and wavelets. The first is exactly known for oscillator, the second for free particles. Their relation and their construction is discussed from a new unified point of view. We then extend this contraction to the Coulomb problem, where with the introduction of a new time variable T, nonspreading states are obtained. (author). 10 refs
Image Mosaic Techniques OptimizationUsing Wavelet
Institute of Scientific and Technical Information of China (English)
ZHOUAn-qi; CUILi
2014-01-01
This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.
Wavelet analysis of the nuclear phase space
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author). 34 refs.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author)
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Conductance calculations with a wavelet basis set
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Energy Technology Data Exchange (ETDEWEB)
Kaneda, M.; Kawata, A.; Hayashi, S. [Kansai University, Osaka (Japan). Faculty of Engineering; Tokui, K. [Mitsubishi Electric Building Techno-Service Co. Ltd., Tokyo (Japan)
1998-10-31
Detecting strand breakage and local wear of elevator wire rope uses currently a method using a rope tester. This method magnetizes a rope with electric magnet and detects defected part as leakage flux. Pulsed signals are issued from the defected part, variation in magnetic flux leakage due to rope swinging produces noise, and both get mixed together. Therefore, the detection is performed finally by visual check and palpation. This paper discusses a method that analyzes measurement data derived by the rope tester by using wavelet conversion, and detects the defected part automatically without being confused by noise. The pulsed signals generated from the defected part can be detected from noise by decomposing multiplex resolution using the Haar basis. As a result of the experiment, cases that may be overlooked in visual check because of S/N ratio being too small or the pulsed signals being too weak were all detected. 11 refs., 14 figs.
OFDM Scheme Based on Wavelet Packet Transform-OrientedGraded Multi-Service
Institute of Scientific and Technical Information of China (English)
赵慧; 侯春萍
2003-01-01
In this paper, a concept of image grading transmission is put forward to enhance data rate and to improve the usage of subcarriers in orthogonal frequency division multiplexing (OFDM). The idea originates from the wavelet packets representative of an image in which information is graded in terms of different priorities. The graded image facilitates more efficient use of adaptive subcarriers and bits allocation. The results of simulation in typical mobile environment prove that the output signal noise ratio (SNR) of the graded image excels that of the ungraded image by 1-2 dB under the same channel condition.
Directory of Open Access Journals (Sweden)
Deyu Cui
2018-04-01
Full Text Available State of charge (SOC estimation is becoming increasingly important, along with electric vehicle (EV rapid development, while SOC is one of the most significant parameters for the battery management system, indicating remaining energy and ensuring the safety and reliability of EV. In this paper, a hybrid wavelet neural network (WNN model combining the discrete wavelet transform (DWT method and adaptive WNN is proposed to estimate the SOC of lithium-ion batteries. The WNN model is trained by Levenberg-Marquardt (L-M algorithm, whose inputs are processed by discrete wavelet decomposition and reconstitution. Compared with back-propagation neural network (BPNN, L-M based BPNN (LMBPNN, L-M based WNN (LMWNN, DWT with L-M based BPNN (DWTLMBPNN and extend Kalman filter (EKF, the proposed intelligent SOC estimation method is validated and proved to be effective. Under the New European Driving Cycle (NEDC, the mean absolute error and maximum error can be reduced to 0.59% and 3.13%, respectively. The characteristics of high accuracy and strong robustness of the proposed method are verified by comparison study and robustness evaluation results (e.g., measurement noise test and untrained driving cycle test.
International Nuclear Information System (INIS)
Paul, Sabyasachi; Sarkar, P.K.
2012-05-01
The characterization of radionuclide in the in-vivo monitoring analysis using gamma spectrometry poses difficulty due to very low activity level in biological systems. The large statistical fluctuations often make identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet based noise filtering methodology has been developed for better detection of gamma peaks while analyzing noisy spectrometric data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for the noise rejection and inverse transform after soft thresholding over the generated coefficients. Analyses of in-vivo monitoring data of 235 U and 238 U have been carried out using this method without disturbing the peak position and amplitude while achieving a threefold improvement in the signal to noise ratio, compared to the original measured spectrum. When compared with other data filtering techniques, the wavelet based method shows better results. (author)
Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua
2018-02-01
In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.
Sikora, Andrzej; Rodak, Aleksander; Unold, Olgierd; Klapetek, Petr
2016-12-01
In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimation of moderator temperature coefficient of actual PWRs using wavelet transform
International Nuclear Information System (INIS)
Katsumata, Ryosuke; Shimazu, Yoichiro
2001-01-01
Recently, an applicability of wavelet transform for estimation of moderator temperature coefficient was shown in numerical simulations. The basic concept of the wavelet transform is to eliminate noise in the measured signals. The concept is similar to that of Fourier transform method in which the analyzed reactivity component is divided by the analyzed component of relevant parameter. In order to apply the method to analyze measured data in actual PWRs, we carried out numerical simulations on the data that were more similar to actual data and proposed a method for estimation of moderator temperature coefficient using the wavelet transform. In the numerical simulations we obtained moderator temperature coefficients with the relative error of less than 4%. Based on this result we applied this method to analyze measured data in actual PWRs and the results have proved that the method is applicable for estimation of moderator temperature coefficients in the actual PWRs. It is expected that this method can reduce the required data length during the measurement. We expect to expand the applicability of this method to estimate the other reactivity coefficients with the data of short transient. (author)
Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin
2008-01-01
Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.
Wavelet compression algorithm applied to abdominal ultrasound images
International Nuclear Information System (INIS)
Lin, Cheng-Hsun; Pan, Su-Feng; LU, Chin-Yuan; Lee, Ming-Che
2006-01-01
We sought to investigate acceptable compression ratios of lossy wavelet compression on 640 x 480 x 8 abdominal ultrasound (US) images. We acquired 100 abdominal US images with normal and abnormal findings from the view station of a 932-bed teaching hospital. The US images were then compressed at quality factors (QFs) of 3, 10, 30, and 50 followed outcomes of a pilot study. This was equal to the average compression ratios of 4.3:1, 8.5:1, 20:1 and 36.6:1, respectively. Four objective measurements were carried out to examine and compare the image degradation between original and compressed images. Receiver operating characteristic (ROC) analysis was also introduced for subjective assessment. Five experienced and qualified radiologists as reviewers blinded to corresponding pathological findings, analysed paired 400 randomly ordered images with two 17-inch thin film transistor/liquid crystal display (TFT/LCD) monitors. At ROC analysis, the average area under curve (Az) for US abdominal image was 0.874 at the ratio of 36.6:1. The compressed image size was only 2.7% for US original at this ratio. The objective parameters showed the higher the mean squared error (MSE) or root mean squared error (RMSE) values, the poorer the image quality. The higher signal-to-noise ratio (SNR) or peak signal-to-noise ratio (PSNR) values indicated better image quality. The average RMSE, PSNR at 36.6:1 for US were 4.84 ± 0.14, 35.45 dB, respectively. This finding suggests that, on the basis of the patient sample, wavelet compression of abdominal US to a ratio of 36.6:1 did not adversely affect diagnostic performance or evaluation error for radiologists' interpretation so as to risk affecting diagnosis
Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform
Institute of Scientific and Technical Information of China (English)
WEN Fan
2000-01-01
A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland＇s. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot
Transient signal analysis in power reactors by means of the wavelet technique
International Nuclear Information System (INIS)
Wentzeis, Luis
1999-01-01
The application of the wavelet technique, had enabled to study the time evolution of the properties (amplitude and frequency content) of a signals set, measured in the Embalse nuclear power plant (CANDU 600 M we), in the low frequency range and for different operating conditions. Particularly, by means of this technique, we studied the time evolution of the signals in the non-stationary state of the reactor (during a raise in power), where the Fourier analysis results inadequate. (author)
Wavelet Denoising of Mobile Radiation Data
International Nuclear Information System (INIS)
Campbell, D.B.
2008-01-01
The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems
Cryptocurrency price drivers: Wavelet coherence analysis revisited.
Phillips, Ross C; Gorse, Denise
2018-01-01
Cryptocurrencies have experienced recent surges in interest and price. It has been discovered that there are time intervals where cryptocurrency prices and certain online and social media factors appear related. In addition it has been noted that cryptocurrencies are prone to experience intervals of bubble-like price growth. The hypothesis investigated here is that relationships between online factors and price are dependent on market regime. In this paper, wavelet coherence is used to study co-movement between a cryptocurrency price and its related factors, for a number of examples. This is used alongside a well-known test for financial asset bubbles to explore whether relationships change dependent on regime. The primary finding of this work is that medium-term positive correlations between online factors and price strengthen significantly during bubble-like regimes of the price series; this explains why these relationships have previously been seen to appear and disappear over time. A secondary finding is that short-term relationships between the chosen factors and price appear to be caused by particular market events (such as hacks / security breaches), and are not consistent from one time interval to another in the effect of the factor upon the price. In addition, for the first time, wavelet coherence is used to explore the relationships between different cryptocurrencies.
Wavelet representation of the nuclear dynamics
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; De La Mota, V.
1997-01-01
The study of the transport phenomena in nuclear matter is addressed in a new approach based on wavelet theory and the projection methods of statistical physics. The advantage of this framework is to optimize the representation spaces and the numerical treatment which gives the opportunity to enlarge the spectra of physical processes taken into account to preserve some important quantum information. At the same time this approach is more efficient than the usual solving schemes and mathematical formulations of the equations based on usual concepts. The application of this methodology to the the study of the physical phenomena related to the heavy ion collisions at intermediate energies has resulted in a model named DYWAN (DYnamical WAvelets in Nuclei). The results obtained with DYWAN for the central collisions in the system Ca + Ca at three different beam energies are reported. These are in agreement with the experimental results since a fusion process at 30 MeV is observed as well as a binary reaction at 50 MeV and kind of an explosion of the system at 90 MeV
Wavelet tree structure based speckle noise removal for optical coherence tomography
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform
Institute of Scientific and Technical Information of China (English)
LiaoYa-li; Yangyan; CaoYang
2003-01-01
Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.
Energy Technology Data Exchange (ETDEWEB)
Sikora, Andrzej, E-mail: sikora@iel.wroc.pl [Electrotechnical Institute, Division of Electrotechnology and Materials Science, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław (Poland); Rodak, Aleksander [Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Unold, Olgierd [Institute of Computer Engineering, Control and Robotics, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Klapetek, Petr [Czech Metrology Institute, Okružní 31, 638 00 Brno (Czech Republic)
2016-12-15
In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. - Highlights: • A novel approach to 2D wavelet-based filter for atomic force microscopy is shown. • The additional AFM measurement signal is used to adjust the filter. • Efficient removal of the local interference phenomena caused artifacts is presented.
International Nuclear Information System (INIS)
Sikora, Andrzej; Rodak, Aleksander; Unold, Olgierd; Klapetek, Petr
2016-01-01
In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. - Highlights: • A novel approach to 2D wavelet-based filter for atomic force microscopy is shown. • The additional AFM measurement signal is used to adjust the filter. • Efficient removal of the local interference phenomena caused artifacts is presented.
Joint Time-Frequency And Wavelet Analysis - An Introduction
Directory of Open Access Journals (Sweden)
Majkowski Andrzej
2014-12-01
Full Text Available A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency. The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.
Signal-dependent independent component analysis by tunable mother wavelets
International Nuclear Information System (INIS)
Seo, Kyung Ho
2006-02-01
The objective of this study is to improve the standard independent component analysis when applied to real-world signals. Independent component analysis starts from the assumption that signals from different physical sources are statistically independent. But real-world signals such as EEG, ECG, MEG, and fMRI signals are not statistically independent perfectly. By definition, standard independent component analysis algorithms are not able to estimate statistically dependent sources, that is, when the assumption of independence does not hold. Therefore before independent component analysis, some preprocessing stage is needed. This paper started from simple intuition that wavelet transformed source signals by 'well-tuned' mother wavelet will be simplified sufficiently, and then the source separation will show better results. By the correlation coefficient method, the tuning process between source signal and tunable mother wavelet was executed. Gamma component of raw EEG signal was set to target signal, and wavelet transform was executed by tuned mother wavelet and standard mother wavelets. Simulation results by these wavelets was shown
A note on the standard dual frame of a wavelet frame with three-scale
International Nuclear Information System (INIS)
Chen Qingjiang; Wei Zongtian; Feng Jinshun
2009-01-01
In this paper, it is shown that there exist wavelet frames generated by two functions which have good dual wavelet frames, but for which the standard dual wavelet frame does not consist of wavelets. That is to say, the standard dual wavelet frame cannot be generated by the translations and dilations of a single function. Relation to some physical theories such as entropy and E-infinity theory is also discussed.
Melodic pattern discovery by structural analysis via wavelets and clustering techniques
DEFF Research Database (Denmark)
Velarde, Gissel; Meredith, David
We present an automatic method to support melodic pattern discovery by structural analysis of symbolic representations by means of wavelet analysis and clustering techniques. In previous work, we used the method to recognize the parent works of melodic segments, or to classify tunes into tune......-means to cluster melodic segments into groups of measured similarity and obtain a raking of the most prototypical melodic segments or patterns and their occurrences. We test the method on the JKU Patterns Development Database and evaluate it based on the ground truth defined by the MIREX 2013 Discovery of Repeated...... Themes & Sections task. We compare the results of our method to the output of geometric approaches. Finally, we discuss about the relevance of our wavelet-based analysis in relation to structure, pattern discovery, similarity and variation, and comment about the considerations of the method when used...
Acharya, Rajendra; Tan, Peck Ha; Subramaniam, Tavintharan; Tamura, Toshiyo; Chua, Kuang Chua; Goh, Seach Chyr Ernest; Lim, Choo Min; Goh, Shu Yi Diana; Chung, Kang Rui Conrad; Law, Chelsea
2008-02-01
Diabetes is a disorder of metabolism-the way our bodies use digested food for growth and energy. The most common form of diabetes is Type 2 diabetes. Abnormal plantar pressures are considered to play a major role in the pathologies of neuropathic ulcers in the diabetic foot. The purpose of this study was to examine the plantar pressure distribution in normal, diabetic Type 2 with and without neuropathy subjects. Foot scans were obtained using the F-scan (Tekscan USA) pressure measurement system. Various discrete wavelet coefficients were evaluated from the foot images. These extracted parameters were extracted using the discrete wavelet transform (DWT) and presented to the Gaussian mixture model (GMM) and a four-layer feed forward neural network for classification. We demonstrated a sensitivity of 100% and a specificity of more than 85% for the classifiers.
International Nuclear Information System (INIS)
Furdea, A; Wilson, J D; Eswaran, H; Lowery, C L; Govindan, R B; Preissl, H
2009-01-01
We propose a multi-stage approach using Wavelet and Hilbert transforms to identify uterine contraction bursts in magnetomyogram (MMG) signals measured using a 151 magnetic sensor array. In the first stage, we decompose the MMG signals by wavelet analysis into multilevel approximate and detail coefficients. In each level, the signals are reconstructed using the detail coefficients followed by the computation of the Hilbert transform. The Hilbert amplitude of the reconstructed signals from different frequency bands (0.1–1 Hz) is summed up over all the sensors to increase the signal-to-noise ratio. Using a novel clustering technique, affinity propagation, the contractile bursts are distinguished from the noise level. The method is applied on simulated MMG data, using a simple stochastic model to determine its robustness and to seven MMG datasets
Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries
Directory of Open Access Journals (Sweden)
Xiao Wang
2018-05-01
Full Text Available In practical electric vehicle applications, the noise of original discharging/charging voltage (DCV signals are inevitable, which comes from electromagnetic interference and the measurement noise of the sensors. To solve such problems, the Discrete Wavelet Transform (DWT based state of charge (SOC estimation method is proposed in this paper. Through a multi-resolution analysis, the original DCV signals with noise are decomposed into different frequency sub-bands. The desired de-noised DCV signals are then reconstructed by utilizing the inverse discrete wavelet transform, based on the sure rule. With the de-noised DCV signal, the SOC and the parameters are obtained using the adaptive extended Kalman Filter algorithm, and the adaptive forgetting factor recursive least square method. Simulation and experimental results show that the SOC estimation error is less than 1%, which indicates an effective improvement in SOC estimation accuracy.
Development of Wavelet Based Tools for Improving the γ-ray Spectrometry
International Nuclear Information System (INIS)
Hamzaoui, E-M.; El Badri, L.; Laraki, K.; Cherkaoui-Elmorsli, R.
2013-06-01
In this article, we propose a wavelet transform based tool to improve the use of gamma ray spectrometry as a nuclear technique. First, we attempt to study the problem of filtering the preamplifier's output signals of HPGe detector used in the measurements chain. Thus, we developed a nonlinear method based on discrete Coiflet transform combined to principal component analysis, which allows a significant improvement of the signal to noise ratio (SNR) at the output of the HPGe preamplifier. In a second step, the continuous wavelet transform, based on the Mexican Hat mother function, is used to achieve an automatic processing of the spectrometric data. This method permits us to get an alternative representation of the gamma energy spectrum. The results of different tests, performed in both the presence and the absence of a gamma radiation source, are illustrated. (authors)
Mahrooghy, Majid; Ashraf, Ahmed B; Daye, Dania; Mies, Carolyn; Feldman, Michael; Rosen, Mark; Kontos, Despina
2013-01-01
Breast tumors are heterogeneous lesions. Intra-tumor heterogeneity presents a major challenge for cancer diagnosis and treatment. Few studies have worked on capturing tumor heterogeneity from imaging. Most studies to date consider aggregate measures for tumor characterization. In this work we capture tumor heterogeneity by partitioning tumor pixels into subregions and extracting heterogeneity wavelet kinetic (HetWave) features from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to obtain the spatiotemporal patterns of the wavelet coefficients and contrast agent uptake from each partition. Using a genetic algorithm for feature selection, and a logistic regression classifier with leave one-out cross validation, we tested our proposed HetWave features for the task of classifying breast cancer recurrence risk. The classifier based on our features gave an ROC AUC of 0.78, outperforming previously proposed kinetic, texture, and spatial enhancement variance features which give AUCs of 0.69, 0.64, and 0.65, respectively.
Study on SOC wavelet analysis for LiFePO4 battery
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.
Flow meter fault isolation in building central chilling systems using wavelet analysis
International Nuclear Information System (INIS)
Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei
2006-01-01
This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters
Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data
Henderson, R.D.; Day-Lewis, Frederick D.; Harvey, Charles F.
2009-01-01
Fiber-optic distributed temperature sensing (FODTS) provides sub-minute temporal and meter-scale spatial resolution over kilometer-long cables. Compared to conventional thermistor or thermocouple-based technologies, which measure temperature at discrete (and commonly sparse) locations, FODTS offers nearly continuous spatial coverage, thus providing hydrologic information at spatiotemporal scales previously impossible. Large and information-rich FODTS datasets, however, pose challenges for data exploration and analysis. To date, FODTS analyses have focused on time-series variance as the means to discriminate between hydrologic phenomena. Here, we demonstrate the continuous wavelet transform (CWT) and cross-wavelet transform (XWT) to analyze FODTS in the context of related hydrologic time series. We apply the CWT and XWT to data from Waquoit Bay, Massachusetts to identify the location and timing of tidal pumping of submarine groundwater.
Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets
International Nuclear Information System (INIS)
Sen, A.K.; Litak, G.; Finney, C.E.A.; Daw, C.S.; Wagner, R.M.
2010-01-01
In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel-air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel-air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel-air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.
Identification Method of Mud Shale Fractures Base on Wavelet Transform
Xia, Weixu; Lai, Fuqiang; Luo, Han
2018-01-01
In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.
Option pricing from wavelet-filtered financial series
de Almeida, V. T. X.; Moriconi, L.
2012-10-01
We perform wavelet decomposition of high frequency financial time series into large and small time scale components. Taking the FTSE100 index as a case study, and working with the Haar basis, it turns out that the small scale component defined by most (≃99.6%) of the wavelet coefficients can be neglected for the purpose of option premium evaluation. The relevance of the hugely compressed information provided by low-pass wavelet-filtering is related to the fact that the non-gaussian statistical structure of the original financial time series is essentially preserved for expiration times which are larger than just one trading day.
EEG Artifact Removal Using a Wavelet Neural Network
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
A hybrid video compression based on zerotree wavelet structure
International Nuclear Information System (INIS)
Kilic, Ilker; Yilmaz, Reyat
2009-01-01
A video compression algorithm comparable to the standard techniques at low bit rates is presented in this paper. The overlapping block motion compensation (OBMC) is combined with discrete wavelet transform which followed by Lloyd-Max quantization and zerotree wavelet (ZTW) structure. The novel feature of this coding scheme is the combination of hierarchical finite state vector quantization (HFSVQ) with the ZTW to encode the quantized wavelet coefficients. It is seen that the proposed video encoder (ZTW-HFSVQ) performs better than the MPEG-4 and Zerotree Entropy Coding (ZTE). (author)
Standard filter approximations for low power Continuous Wavelet Transforms.
Casson, Alexander J; Rodriguez-Villegas, Esther
2010-01-01
Analogue domain implementations of the Continuous Wavelet Transform (CWT) have proved popular in recent years as they can be implemented at very low power consumption levels. This is essential for use in wearable, long term physiological monitoring systems. Present analogue CWT implementations rely on taking mathematical a approximation of the wanted mother wavelet function to give a filter transfer function that is suitable for circuit implementation. This paper investigates the use of standard filter approximations (Butterworth, Chebyshev, Bessel) as an alternative wavelet approximation technique. This extends the number of approximation techniques available for generating analogue CWT filters. An example ECG analysis shows that signal information can be successfully extracted using these CWT approximations.
Pseudo-stochastic signal characterization in wavelet-domain
International Nuclear Information System (INIS)
Zaytsev, Kirill I; Zhirnov, Andrei A; Alekhnovich, Valentin I; Yurchenko, Stanislav O
2015-01-01
In this paper we present the method for fast and accurate characterization of pseudo-stochastic signals, which contain a large number of similar but randomly-located fragments. This method allows estimating the statistical characteristics of pseudo-stochastic signal, and it is based on digital signal processing in wavelet-domain. Continuous wavelet transform and the criterion for wavelet scale power density are utilized. We are experimentally implementing this method for the purpose of sand granulometry, and we are estimating the statistical parameters of test sand fractions
Evolutive Optimization of Wavelets and Shapelets for Bioelectrical Signal Analysis
Pinzón Morales, Rubén Dario
2011-01-01
análisis Wavelet es una poderosa herramienta para el procesamiento de señal digital. Ha sido ampliamente utilizado en señales bioeléctricas incluyendo evocar potenciales relacionados (ERP), señales de electromiografía (EMG), grabaciones de microelectrodos (MER), electrocardiograma (ECG), electroencefalogramas (EEG), entre otros. Algunas de las principales ventajas de la wavelet transform son el soporte compacto, y la concentración de la energía. Básicamente, la transformada wavelet es una con...
Wavelets an elementary treatment of theory and applications
Koornwinder, T H
1993-01-01
Nowadays, some knowledge of wavelets is almost mandatory for mathematicians, physicists and electrical engineers. The emphasis in this volume, based on an intensive course on Wavelets given at CWI, Amsterdam, is on the affine case. The first part presents a concise introduction of the underlying theory to the uninitiated reader. The second part gives applications in various areas. Some of the contributions here are a fresh exposition of earlier work by others, while other papers contain new results by the authors. The areas are so diverse as seismic processing, quadrature formulae, and wavelet
Comparative study of wavelets of the first and second generation
International Nuclear Information System (INIS)
Ososkov, G.A.; Shitov, A.B.; Stadnik, A.V.
2001-01-01
In order to compare efficiency a comprehensive set of benchmarking tests is developed, which is used to compare abilities of continuous wavelet transform of the vanishing momenta type as well as the second generation wavelets constructed on the basis of the lifting scheme. It is based on processing of various types of pure and contaminated harmonic signals, delta-function, study of the signal phase dependence and the gain-frequency characteristics. The results of a comparative multiscale analysis allow one to reveal advantages and flaws of the considered types of wavelets
Aleksandrin, Valery V; Ivanov, Alexander V; Virus, Edward D; Bulgakova, Polina O; Kubatiev, Aslan A
2018-04-03
The purpose of the present study was to investigate the use of laser Doppler flowmetry (LDF) signals coupled with spectral wavelet analysis to detect endothelial link dysfunction in the autoregulation of cerebral blood flow in the setting of hyperhomocysteinaemia (HHcy). Fifty-one rats were assigned to three groups (intact, control, and HHcy) according to the results of biochemical assays of homocysteine level in blood plasma. LDF signals on the rat brain were recorded by LAKK-02 device to measure the microcirculatory blood flow. The laser operating wavelength and output power density were1064 nm and 0.051 W/mm 2 , respectively. A Morlet mother wavelet transform was applied to the measured 8-min LDF signals, and periodic oscillations with five frequency intervals were identified (0.01-0.04 Hz, 0.04-0.15 Hz, 0.15-0.4 Hz, 0.4-2 Hz, and 2-5 Hz) corresponding to endothelial, neurogenic, myogenic, respiratory, and cardiac origins, respectively. In initial state, the amplitude of the oscillations decreased by 38% (P wavelet analysis may be successfully applied to detect the dysfunction of the endothelial link in cerebral vessel tone and to reveal the pathological shift of lower limit of autoregulation.
PTL: A Propositional Typicality Logic
CSIR Research Space (South Africa)
Booth, R
2012-09-01
Full Text Available consequence relations first studied by Lehmann and col- leagues in the 90?s play a central role in nonmonotonic reasoning [13, 14]. This has been the case due to at least three main reasons. Firstly, they are based on semantic constructions that are elegant...) j ; 6j : ^ j PTL: A Propositional Typicality Logic 3 The semantics of (propositional) rational consequence is in terms of ranked models. These are partially ordered structures in which the ordering is modular. Definition 1. Given a set S...
The Typicality Ranking Task: A New Method to Derive Typicality Judgments from Children
Ameel, Eef; Storms, Gert
2016-01-01
An alternative method for deriving typicality judgments, applicable in young children that are not familiar with numerical values yet, is introduced, allowing researchers to study gradedness at younger ages in concept development. Contrary to the long tradition of using rating-based procedures to derive typicality judgments, we propose a method that is based on typicality ranking rather than rating, in which items are gradually sorted according to their typicality, and that requires a minimum of linguistic knowledge. The validity of the method is investigated and the method is compared to the traditional typicality rating measurement in a large empirical study with eight different semantic concepts. The results show that the typicality ranking task can be used to assess children’s category knowledge and to evaluate how this knowledge evolves over time. Contrary to earlier held assumptions in studies on typicality in young children, our results also show that preference is not so much a confounding variable to be avoided, but that both variables are often significantly correlated in older children and even in adults. PMID:27322371
Directory of Open Access Journals (Sweden)
Pratibha Sharma
2017-09-01
Full Text Available This research work is aimed at improving health care, reducing cost, and the occurrence of emergency hospitalization in patients with Congestive Heart Failure (CHF by analyzing heart and lung sounds to distinguish between the compensated and decompensated states. Compensated state defines stable state of the patient but with lack of retention of fluids in lungs, whereas decompensated state leads to unstable state of the patient with lots of fluid retention in the lungs, where the patient needs medication. Acoustic signals from the heart and the lung were analyzed using wavelet transforms to measure changes in the CHF patient’s status from the decompensated to compensated and vice versa. Measurements were taken on CHF patients diagnosed to be in compensated and decompensated states by using a digital stethoscope and electrocardiogram (ECG in order to monitor their progress in the management of their disease. Analysis of acoustic signals of the heart due to the opening and closing of heart valves as well as the acoustic signals of the lungs due to respiration and the ECG signals are presented. Fourier, short-time Fourier, and wavelet transforms are evaluated to determine the best method to detect shifts in the status of a CHF patient. The power spectra obtained through the Fourier transform produced results that differentiate the signals from healthy people and CHF patients, while the short-time Fourier transform (STFT technique did not provide the desired results. The most promising results were obtained by using wavelet analysis. Wavelet transforms provide better resolution, in time, for higher frequencies, and a better resolution, in frequency, for lower frequencies.
Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay
2017-11-01
Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-10-01
Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.
Network Anomaly Detection Based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Ali A. Ghorbani
2008-11-01
Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Harmonic analysis from Fourier to wavelets
Pereyra, Maria Cristina
2012-01-01
In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introd...
Hexagonal wavelet processing of digital mammography
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Network Anomaly Detection Based on Wavelet Analysis
Lu, Wei; Ghorbani, Ali A.
2008-12-01
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Study and analysis of wavelet based image compression techniques
African Journals Online (AJOL)
user
Discrete Wavelet Transform (DWT) is a recently developed compression ... serve emerging areas of mobile multimedia and internet communication, ..... In global thresholding the best trade-off between PSNR and compression is provided by.
Selection of the wavelet function for the frequencies estimation
International Nuclear Information System (INIS)
Garcia R, A.
2007-01-01
At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)
SYMMETRY, HAMILTONIAN PROBLEMS AND WAVELETS IN ACCELERATOR PHYSICS
International Nuclear Information System (INIS)
FEDOROVA, A.; ZEITLIN, M.; PARSA, Z.
2000-01-01
In this paper the authors consider applications of methods from wavelet analysis to nonlinear dynamical problems related to accelerator physics. In this approach they take into account underlying algebraical, geometrical and topological structures of corresponding problems
Directional dual-tree rational-dilation complex wavelet transform.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2014-01-01
Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.
Wavelet packet transform-based robust video watermarking technique
Indian Academy of Sciences (India)
If any conflict happens to the copyright identification and authentication, ... the present work is concentrated on the robust digital video watermarking. .... the wavelet decomposition, resulting in a new family of orthonormal bases for function ...
Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation
Directory of Open Access Journals (Sweden)
Schell Thomas
2003-01-01
Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.
Application of wavelets to singular integral scattering equations
International Nuclear Information System (INIS)
Kessler, B.M.; Payne, G.L.; Polyzou, W.N.
2004-01-01
The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems
Journal Afrika Statistika ISSN 0852-0305 Nonlinear wavelet ...
African Journals Online (AJOL)
mator; Nonparametric regression; Strong mixing condition. ... In this paper we consider the right censorship model and we introduce a new nonlinear ... provide excellent selective review article on nonlinear wavelet methods in nonparametric.
On-Line QRS Complex Detection Using Wavelet Filtering
National Research Council Canada - National Science Library
Szilagyi, L
2001-01-01
...: first a wavelet transform filtering is applied to the signal, then QRS complex localization is performed using a maximum detection and peak classification algorithm The algorithm has been tested...
Processing of pulse oximeter data using discrete wavelet analysis.
Lee, Seungjoon; Ibey, Bennett L; Xu, Weijian; Wilson, Mark A; Ericson, M Nance; Coté, Gerard L
2005-07-01
A wavelet-based signal processing technique was employed to improve an implantable blood perfusion monitoring system. Data was acquired from both in vitro and in vivo sources: a perfusion model and the proximal jejunum of an adult pig. Results showed that wavelet analysis could isolate perfusion signals from raw, periodic, in vitro data as well as fast Fourier transform (FFT) methods. However, for the quasi-periodic in vivo data segments, wavelet analysis provided more consistent results than the FFT analysis for data segments of 50, 10, and 5 s in length. Wavelet analysis has thus been shown to require less data points for quasi-periodic data than FFT analysis making it a good choice for an indwelling perfusion monitor where power consumption and reaction time are paramount.
Directory of Open Access Journals (Sweden)
Zhheng Ni
2016-01-01
Full Text Available At present, the fault signals of surface to air missile equipment are hard to collect and the accuracy of fault diagnosis is very low. To solve the above problems, based on the superiority of wavelet transformation on processing non-stationary signals and the advantage of SVM on pattern classification, this paper proposes a fault diagnosis model and takes the typical analog circuit diagnosis of one power distribution system as an example to verify the fault diagnosis model based on Wavelet Transformation and SVM. The simulation results show that the model is able to achieve fault diagnosis based on a small amount of training samples, which improves the accuracy of fault diagnosis.
Directory of Open Access Journals (Sweden)
Pengfei Li
2014-01-01
Full Text Available To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples.
Schrödinger like equation for wavelets
Directory of Open Access Journals (Sweden)
A. Zúñiga-Segundo
2016-01-01
Full Text Available An explicit phase space representation of the wave function is build based on a wavelet transformation. The wavelet transformation allows us to understand the relationship between s − ordered Wigner function, (or Wigner function when s = 0, and the Torres-Vega-Frederick’s wave functions. This relationship is necessary to find a general solution of the Schrödinger equation in phase-space.
Secured Data Transmission Using Wavelet Based Steganography and cryptography
K.Ravindra Reddy; Ms Shaik Taj Mahaboob
2014-01-01
Steganography and cryptographic methods are used together with wavelets to increase the security of the data while transmitting through networks. Another technology, the digital watermarking is the process of embedding information into a digital (image) signal. Before embedding the plain text into the image, the plain text is encrypted by using Data Encryption Standard (DES) algorithm. The encrypted text is embedded into the LL sub band of the wavelet decomposed image using Le...
Frame scaling function sets and frame wavelet sets in Rd
International Nuclear Information System (INIS)
Liu Zhanwei; Hu Guoen; Wu Guochang
2009-01-01
In this paper, we classify frame wavelet sets and frame scaling function sets in higher dimensions. Firstly, we obtain a necessary condition for a set to be the frame wavelet sets. Then, we present a necessary and sufficient condition for a set to be a frame scaling function set. We give a property of frame scaling function sets, too. Some corresponding examples are given to prove our theory in each section.
Big data extraction with adaptive wavelet analysis (Presentation Video)
Qu, Hongya; Chen, Genda; Ni, Yiqing
2015-04-01
Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.
A short introduction to frames, Gabor systems, and wavelet systems
DEFF Research Database (Denmark)
Christensen, Ole
2014-01-01
In this article we present a short survey of frame theory in Hilbert spaces. We discuss Gabor frames and wavelet frames, and a recent transform that allows to move results from one setting into the other and vice versa.......In this article we present a short survey of frame theory in Hilbert spaces. We discuss Gabor frames and wavelet frames, and a recent transform that allows to move results from one setting into the other and vice versa....
Fast, large-scale hologram calculation in wavelet domain
Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi
2018-04-01
We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.
Controlled wavelet domain sparsity for x-ray tomography
Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli
2018-01-01
Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \
Wavelet based methods for improved wind profiler signal processing
Directory of Open Access Journals (Sweden)
V. Lehmann
2001-08-01
Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
3D Inversion of Magnetic Data through Wavelet based Regularization Method
Directory of Open Access Journals (Sweden)
Maysam Abedi
2015-06-01
Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.
Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
International Nuclear Information System (INIS)
Chitsaz, Hamed; Amjady, Nima; Zareipour, Hamidreza
2015-01-01
Highlights: • Presenting a Morlet wavelet neural network for wind power forecasting. • Proposing improved Clonal selection algorithm for training the model. • Applying Maximum Correntropy Criterion to evaluate the training performance. • Extensive testing of the proposed wind power forecast method on real-world data. - Abstract: With the integration of wind farms into electric power grids, an accurate wind power prediction is becoming increasingly important for the operation of these power plants. In this paper, a new forecasting engine for wind power prediction is proposed. The proposed engine has the structure of Wavelet Neural Network (WNN) with the activation functions of the hidden neurons constructed based on multi-dimensional Morlet wavelets. This forecast engine is trained by a new improved Clonal selection algorithm, which optimizes the free parameters of the WNN for wind power prediction. Furthermore, Maximum Correntropy Criterion (MCC) has been utilized instead of Mean Squared Error as the error measure in training phase of the forecasting model. The proposed wind power forecaster is tested with real-world hourly data of system level wind power generation in Alberta, Canada. In order to demonstrate the efficiency of the proposed method, it is compared with several other wind power forecast techniques. The obtained results confirm the validity of the developed approach
Paul, Rimi; Sengupta, Anindita
2017-11-01
A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.
Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M
2013-01-01
Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.
Jiang, Hua; Lu, Wenke; Zhang, Guoan
2013-07-01
In this paper, we propose a low insertion loss and miniaturization wavelet transform and inverse transform processor using surface acoustic wave (SAW) devices. The new SAW wavelet transform devices (WTDs) use the structure with two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDT-SPUDT). This structure consists of the input withdrawal weighting interdigital transducer (IDT) and the output overlap weighting IDT. Three experimental devices for different scales 2(-1), 2(-2), and 2(-3) are designed and measured. The minimum insertion loss of the three devices reaches 5.49dB, 4.81dB, and 5.38dB respectively which are lower than the early results. Both the electrode width and the number of electrode pairs are reduced, thus making the three devices much smaller than the early devices. Therefore, the method described in this paper is suitable for implementing an arbitrary multi-scale low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices. Copyright © 2013 Elsevier B.V. All rights reserved.
Wavelet Spatial Energy Spectrums Studies on Drag Reduction by Micro-bubble Injection
International Nuclear Information System (INIS)
Ling Zhen; Yassin Hassan
2006-01-01
In this study, continuous wavelet transforms and spatial correlation techniques are employed to determine the space-localized wavenumber energy spectrum of the velocity signals in turbulent channel flow. The flow conditions correspond to single phase flow and micro-bubbles injected two phase flow. The wavelet energy spectrums demonstrate that the wavenumber (eddy size) content of the velocity signals is not only space-dependent but also micro-bubbles can impact the eddy size content. Visual observations of the wavelet energy spectrum spatial distribution was realized by using Particle Image Velocimetry (PIV) measurement technique. The two phase flow condition corresponds to a drag reduction of 38.4% with void fraction of 4.9%. The present results provide evidence that micro-bubbles in the boundary layer of a turbulent channel flow can help adjust the eddy size distributions near the wall. This can assist in explaining that micro-bubbles are performing as buffers to keep the energy of fluid particles going in stream-wise direction and reducing the energy of fluid particles going in normal direction. (authors)
Applications of wavelet transforms for nuclear power plant signal analysis
International Nuclear Information System (INIS)
Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.
1998-01-01
The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)
Analysis and removing noise from speech using wavelet transform
Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub
2013-05-01
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.
Application of wavelet transform in seismic signal processing
International Nuclear Information System (INIS)
Ghasemi, M. R.; Mohammadzadeh, A.; Salajeghe, E.
2005-01-01
Wavelet transform is a new tool for signal analysis which can perform a simultaneous signal time and frequency representations. Under Multi Resolution Analysis, one can quickly determine details for signals and their properties using Fast Wavelet Transform algorithms. In this paper, for a better physical understanding of a signal and its basic algorithms, Multi Resolution Analysis together with wavelet transforms in a form of Digital Signal Processing will be discussed. For a Seismic Signal Processing, sets of Orthonormal Daubechies Wavelets are suggested. when dealing with the application of wavelets in SSP, one may discuss about denoising from the signal and data compression existed in the signal, which is important in seismic signal data processing. Using this techniques, EL-Centro and Nagan signals were remodeled with a 25% of total points, resulted in a satisfactory results with an acceptable error drift. Thus a total of 1559 and 2500 points for EL-centro and Nagan seismic curves each, were reduced to 389 and 625 points respectively, with a very reasonable error drift, details of which are recorded in the paper. Finally, the future progress in signal processing, based on wavelet theory will be appointed
Wavelet-LMS algorithm-based echo cancellers
Seetharaman, Lalith K.; Rao, Sathyanarayana S.
2002-12-01
This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Bruna T.; Alvarez, Matheus; Souza, Rafael T.F.; Miranda, Jose R.A., E-mail: matheus@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Instituto de Biociencias. Departamento de Fisica e Biofisica; Romeiro, Fernando G. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac de Mediciana. Departamento de Clinica Medica; Pina, Diana R. de; Trindade, Andre Petean [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Medicina. Departamento de Doencas Tropicais e Diagnostico por Imagem
2012-12-15
This paper presents an original methodology of liver tumors segmentation, based on wavelet transform. A virtual phantom was constructed with the same mean and standard deviation of the intensity of gray presented by the measured liver tissue. The optimized algorithm had a sensitivity ranging from 0.81 to 0.83, with a specificity of 0.95 for differentiation of hepatic tumors from normal tissues. We obtained a 96% agreement between the pixels segmented by an experienced radiologist and the algorithm presented here. According to the results shown in this work, the algorithm is optimal for the beginning of the tests for quantification of liver tumors in retrospective surveys. (author)
Energy Technology Data Exchange (ETDEWEB)
Garcia R, A. [ININ, Carretera Mexico-Toluca S/N, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: ramador@nuclear.inin.mx
2007-07-01
At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)
Thirion N.; Mars J.; Volant P.; Mari J. L.
2006-01-01
The wavelet transform can be used to develop the process which allows group and phase velocity measurement of dispersive waves. The method has been applied to acoustic data to measure formation velocities. The behavior and the accuracy of the method have been checked on synthetic full waveform acoustic data. The method was applied to dispersive waves of the Stoneley type and to flexural modes whose low frequency components are propagated at the formation shear velocity. A raw measurement of t...
Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng
2017-07-01
Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.
On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2014-01-01
The unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP......-type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators and prove that this condition is also sufficient to ensure that an extension with just two generators is possible....
Information theoretical assessment of visual communication with wavelet coding
Rahman, Zia-ur
1995-06-01
A visual communication channel can be characterized by the efficiency with which it conveys information, and the quality of the images restored from the transmitted data. Efficient data representation requires the use of constraints of the visual communication channel. Our information theoretic analysis combines the design of the wavelet compression algorithm with the design of the visual communication channel. Shannon's communication theory, Wiener's restoration filter, and the critical design factors of image gathering and display are combined to provide metrics for measuring the efficiency of data transmission, and for quantitatively assessing the visual quality of the restored image. These metrics are: a) the mutual information (Eta) between the radiance the radiance field and the restored image, and b) the efficiency of the channel which can be roughly measured by as the ratio (Eta) /H, where H is the average number of bits being used to transmit the data. Huck, et al. (Journal of Visual Communication and Image Representation, Vol. 4, No. 2, 1993) have shown that channels desinged to maximize (Eta) , also maximize. Our assessment provides a framework for designing channels which provide the highest possible visual quality for a given amount of data under the critical design limitations of the image gathering and display devices. Results show that a trade-off exists between the maximum realizable information of the channel and its efficiency: an increase in one leads to a decrease in the other. The final selection of which of these quantities to maximize is, of course, application dependent.
Analysis of breast thermograms using Gabor wavelet anisotropy index.
Suganthi, S S; Ramakrishnan, S
2014-09-01
In this study, an attempt is made to distinguish the normal and abnormal tissues in breast thermal images using Gabor wavelet transform. Thermograms having normal, benign and malignant tissues are considered in this study and are obtained from public online database. Segmentation of breast tissues is performed by multiplying raw image and ground truth mask. Left and right breast regions are separated after removing the non-breast regions from the segmented image. Based on the pathological conditions, the separated breast regions are grouped as normal and abnormal tissues. Gabor features such as energy and amplitude in different scales and orientations are extracted. Anisotropy and orientation measures are calculated from the extracted features and analyzed. A distinctive variation is observed among different orientations of the extracted features. It is found that the anisotropy measure is capable of differentiating the structural changes due to varied metabolic conditions. Further, the Gabor features also showed relative variations among different pathological conditions. It appears that these features can be used efficiently to identify normal and abnormal tissues and hence, improve the relevance of breast thermography in early detection of breast cancer and content based image retrieval.
Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats
2000-05-01
Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.
Directory of Open Access Journals (Sweden)
H. L. Wei
2004-01-01
Full Text Available The geomagnetic activity of the Dst index is analyzed using wavelet transforms and it is shown that the Dst index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the Dst index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the Dst index, with a Hurst exponent H≈0.5 (power-law exponent β≈2 at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the Dst index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the Dst index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary.
Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu
2007-01-01
As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (ppathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.
Real-time wavelet-transform spectrum analyzer for the investigation of 1/fα noise
Brogioli, Doriano; Vailati, Alberto
2003-04-01
A wavelet-transform spectrum analyzer operating in real time within the frequency range 3×10-5-1.3×105Hz has been implemented on a low-cost digital signal processing (DSP) board operating at 150 MHz. The wavelet decomposition of the signal allows one to efficiently process nonstationary signals dominated by large amplitude events fairly well localized in time, thus providing the natural tool to analyze processes characterized by 1/fα power spectrum. The parallel architecture of the DSP allows the real-time processing of the wavelet transform of the signal sampled at 0.3 MHz. The bandwidth is about 220 dB, almost 10 decades. The power spectrum of the signal is processed in real time from the mean square value of the wavelet coefficients within each frequency band. The performances of the spectrum analyzer have been investigated by performing dynamic light scattering experiments on colloidal suspensions and by comparing the measured spectra with the correlation functions data obtained with a traditional multitau correlator. In order to assess the potentialities of the spectrum analyzer in the investigation of processes involving a wide range of time scales, we have performed measurements on a model system where fluctuations in the scattered intensities are generated by the number fluctuations in a dilute colloidal suspension illuminated by a wide beam. This system is characterized by a power-law spectrum with exponent -3/2 in the scattered intensity fluctuations. The spectrum analyzer allows one to recover the power spectrum with a dynamic range spanning about 8 decades. The advantages of wavelet analysis versus correlation analysis in the investigation of processes characterized by a wide distribution of time scales and nonstationary processes are briefly discussed.
Directory of Open Access Journals (Sweden)
Abazar Solgi
2017-06-01
Full Text Available Introduction: Chemical pollution of surface water is one of the serious issues that threaten the quality of water. This would be more important when the surface waters used for human drinking supply. One of the key parameters used to measure water pollution is BOD. Because many variables affect the water quality parameters and a complex nonlinear relationship between them is established conventional methods can not solve the problem of quality management of water resources. For years, the Artificial Intelligence methods were used for prediction of nonlinear time series and a good performance of them has been reported. Recently, the wavelet transform that is a signal processing method, has shown good performance in hydrological modeling and is widely used. Extensive research has been globally provided in use of Artificial Neural Network and Adaptive Neural Fuzzy Inference System models to forecast the BOD. But support vector machine has not yet been extensively studied. For this purpose, in this study the ability of support vector machine to predict the monthly BOD parameter based on the available data, temperature, river flow, DO and BOD was evaluated. Materials and Methods: SVM was introduced in 1992 by Vapnik that was a Russian mathematician. This method has been built based on the statistical learning theory. In recent years the use of SVM, is highly taken into consideration. SVM was used in applications such as handwriting recognition, face recognition and has good results. Linear SVM is simplest type of SVM, consists of a hyperplane that dataset of positive and negative is separated with maximum distance. The suitable separator has maximum distance from every one of two dataset. So about this machine that its output groups label (here -1 to +1, the aim is to obtain the maximum distance between categories. This is interpreted to have a maximum margin. Wavelet transform is one of methods in the mathematical science that its main idea was
Feng, Ziang; Gao, Zhan; Zhang, Xiaoqiong; Wang, Shengjia; Yang, Dong; Yuan, Hao; Qin, Jie
2015-09-01
Digital shearing speckle pattern interferometry (DSSPI) has been recognized as a practical tool in testing strain. The DSSPI system which is based on temporal analysis is attractive because of its ability to measure strain dynamically. In this paper, such a DSSPI system with Wollaston prism has been built. The principles and system arrangement are described and the preliminary experimental result of the displacement-derivative test of an aluminum plate is shown with the wavelet transformation method and the Fourier transformation method. The simulations have been conducted with the finite element method. The comparison of the results shows that quantitative measurement of displacement-derivative has been realized.
Smoke detection using GLCM, wavelet, and motion
Srisuwan, Teerasak; Ruchanurucks, Miti
2014-01-01
This paper presents a supervised smoke detection method that uses local and global features. This framework integrates and extends notions of many previous works to generate a new comprehensive method. First chrominance detection is used to screen areas that are suspected to be smoke. For these areas, local features are then extracted. The features are among homogeneity of GLCM and energy of wavelet. Then, global feature of motion of the smoke-color areas are extracted using a space-time analysis scheme. Finally these features are used to train an artificial intelligent. Here we use neural network, experiment compares importance of each feature. Hence, we can really know which features among those used by many previous works are really useful. The proposed method outperforms many of the current methods in the sense of correctness, and it does so in a reasonable computation time. It even has less limitation than conventional smoke sensors when used in open space. Best method for the experimental results is to use all the mentioned features as expected, to insure which is the best experiment result can be achieved. The achieved with high accuracy of result expected output is high value of true positive and low value of false positive. And show that our algorithm has good robustness for smoke detection.
Wavelet Coherence Analysis of Change Blindness
Directory of Open Access Journals (Sweden)
Irfan Ali Memon
2013-01-01
Full Text Available Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence function of ERPs (Event Related Potentials. The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory, the change in functional connectivity might be correlated to these cognitive processes during change blindness.
Wavelet coherence analysis of change blindness
International Nuclear Information System (INIS)
Memon, I.; Kalhoro, M.S.
2013-01-01
Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic) based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence) function of ERPs (Event Related Potentials). The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory), the change in functional connectivity might be correlated to these cognitive processes during change blindness. (author)
Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison
van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder
2000-04-01
similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.
Wavelet multiscale analysis for Hedge Funds: Scaling and strategies
Conlon, T.; Crane, M.; Ruskin, H. J.
2008-09-01
The wide acceptance of Hedge Funds by Institutional Investors and Pension Funds has led to an explosive growth in assets under management. These investors are drawn to Hedge Funds due to the seemingly low correlation with traditional investments and the attractive returns. The correlations and market risk (the Beta in the Capital Asset Pricing Model) of Hedge Funds are generally calculated using monthly returns data, which may produce misleading results as Hedge Funds often hold illiquid exchange-traded securities or difficult to price over-the-counter securities. In this paper, the Maximum Overlap Discrete Wavelet Transform (MODWT) is applied to measure the scaling properties of Hedge Fund correlation and market risk with respect to the S&P 500. It is found that the level of correlation and market risk varies greatly according to the strategy studied and the time scale examined. Finally, the effects of scaling properties on the risk profile of a portfolio made up of Hedge Funds is studied using correlation matrices calculated over different time horizons.
WAVELET COMOVEMENT ANALYSIS BETWEEN TENDENCYSURVEYS AND ECONOMIC ACTIVITY IN TURKEY
Directory of Open Access Journals (Sweden)
Sadullah Çelik
2011-01-01
Full Text Available It is now common practice to measure economy-wide expectations so thatadditional information on the future path of economic variables like growth,unemployment and inflation could be extracted. Thewell-known methodology isto use tendency surveys, which cover producers and/or consumers. FollowingYıldırım (2002, this paper is an attempt to assesswhether there is anyconsiderable pattern of comovement between selectedmacroeconomic variables(growth, unemployment and inflation and tendency surveys (the ConsumerTendency Survey-CTS and Business Tendency Survey-BTS in Turkey. Ouroriginality is that we employ the wavelet comovement analysis, developed by Rua(2010, which is a strong methodological improvement combining the measuresof comovement in time and frequency domain. We usemonthly data to examinethe period of January 2007 – March 2011 so that ouranalysis involves pre- andpost- global financial and economic crisis. Our findings show that businesstendency surveys exhibit significant comovement with industrial production andinflation in high and low frequency. On the other hand, consumer tendencysurveys follow similar patterns with the change ininflation in high frequencyespecially during the global crisis period of 2009.
Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies
Energy Technology Data Exchange (ETDEWEB)
Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others
2017-07-01
Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.
Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach
Directory of Open Access Journals (Sweden)
Kin Keung Lai
2012-04-01
Full Text Available In the increasingly globalized economy these days, the major crude oil markets worldwide are seeing higher level of integration, which results in higher level of dependency and transmission of risks among different markets. Thus the risk of the typical multi-asset crude oil portfolio is influenced by dynamic correlation among different assets, which has both normal and transient behaviors. This paper proposes a novel multivariate wavelet denoising based approach for estimating Portfolio Value at Risk (PVaR. The multivariate wavelet analysis is introduced to analyze the multi-scale behaviors of the correlation among different markets and the portfolio volatility behavior in the higher dimensional time scale domain. The heterogeneous data and noise behavior are addressed in the proposed multi-scale denoising based PVaR estimation algorithm, which also incorporatesthe mainstream time series to address other well known data features such as autocorrelation and volatility clustering. Empirical studies suggest that the proposed algorithm outperforms the benchmark ExponentialWeighted Moving Average (EWMA and DCC-GARCH model, in terms of conventional performance evaluation criteria for the model reliability.
Application of 3D wavelet transforms for crack detection in rotor ...
Indian Academy of Sciences (India)
Vijayawada 520 007. bAll India Council for Technical Education (AICTE), New Delhi 110 001 ... rotor system the transient analysis has been applied. ... In the present work a new wavelet plot called cross wavelet transform (XWT) has been.
Characterizations of p-Wavelets on Positive Half Line Using the Walsh-Fourier Transform
Directory of Open Access Journals (Sweden)
Abdullah Abdullah
2016-03-01
Full Text Available In this paper, we study the characterization of wavelets on positive half line by means of two basic equations in the Fourier domain. We also give another characterization of wavelets.
Conservative adaptivity and two-way self-nesting using discrete wavelets
Dubos, Thomas
2010-05-01
In simulating atmosphere and oceans, multiscale modelling is desirable to track high-intensity weather patterns, to investigate the interactions between the various spatio-temporal scales of the climate system, and to perform assessments of climate change at scales small enough to derive impacts on society and ecosystems. The mainstream approach to multiscale modelling is to nest a fine, limited-area model into a coarse, global model. These models are then coupled, either one-way or two-way, in order to combine the global coverage of the global model and the fine details of the fine model. In the long simulations typical of climate studies, initial conditions are unimportant, except for the few quantities like mass that are exactly conserved. In this context it is crucial that numerical models conserve at least mass exactly at the discrete level. However even with elaborate strategies like adaptive mesh refinement (AMR) conservation is not straightforwardly achieved. Although the continuous wavelet transform has become a standard tool of geophysical data analysis, it is less known that discrete wavelets and the associated transforms provide the basis for spatially adaptive numerical methods. Such methods are now well-developed in the fluid dynamics community. Since they allow spatial adaptivity, they can also be seen as two-way self-nesting methods. However since they are not specifically designed for geophysical purposes they are usually not exactly conservative. I present a fairly general framework in which a wavelet-based layer is added to an existing conservative scheme (finite-volume or finite-difference) to make it spatially adaptive without breaking the exact conservation of linear invariants. Discrete wavelet transforms involve an upscaling operation by which fields are transferred from a fine grid to a coarser grid with half the resolution. The method requires that mass fluxes be upscaled in a way that is consistent with the upscaling of mass. This
Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.
Directory of Open Access Journals (Sweden)
Andrew M Huettner
Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.
Time-localized wavelet multiple regression and correlation
Fernández-Macho, Javier
2018-02-01
This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.
Directory of Open Access Journals (Sweden)
D. Pancheva
Full Text Available On the basis of bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria it was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region. They contribute significantly to the short-term tidal variability and are apparently responsible for the observed complicated behavior of the tidal characteristics. A Morlet wavelet transform is proposed as a technique for studying nonstationary signals. By simulated data it was revealed that the Morlet wavelet transform is especially convenient for analyzing signals with: (1 a wide range of dominant frequencies which are localized in different time intervals; (2 amplitude and frequency modulated spectral components, and (3 singular, wave-like events, observed in the neutral wind of the MLT region and connected mainly with large-scale disturbances propagated from below. By applying a Morlet wavelet transform to the hourly values of the amplitudes of diurnal and semidiurnal tides the basic oscillations with periods of planetary waves (1.5-20 days, as well as their development in time, are obtained. A cross-wavelet analysis is used to clarify the relation between the tidal and mean neutral wind variability. The results of bispectral analysis indicate which planetary waves participated in the nonlinear coupling with the atmospheric tides, while the results of cross-wavelet analysis outline their time intervals if these interactions are local.
Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides - Radio science (nonlinear phenomena
Directory of Open Access Journals (Sweden)
Caiping Zhang
2013-05-01
Full Text Available Battery model identification is very important for reliable battery management as well as for battery system design process. The common problem in identifying battery models is how to determine the most appropriate mathematical model structure and parameterized coefficients based on the measured terminal voltage and current. This paper proposes a novel semiparametric approach using the wavelet-based partially linear battery model (PLBM and a recursive penalized wavelet estimator for online battery model identification. Three main contributions are presented. First, the semiparametric PLBM is proposed to simulate the battery dynamics. Compared with conventional electrical models of a battery, the proposed PLBM is equipped with a semiparametric partially linear structure, which includes a parametric part (involving the linear equivalent circuit parameters and a nonparametric part [involving the open-circuit voltage (OCV]. Thus, even with little prior knowledge about the OCV, the PLBM can be identified using a semiparametric identification framework. Second, we model the nonparametric part of the PLBM using the truncated wavelet multiresolution analysis (MRA expansion, which leads to a parsimonious model structure that is highly desirable for model identification; using this model, the PLBM could be represented in a linear-in-parameter manner. Finally, to exploit the sparsity of the wavelet MRA representation and allow for online implementation, a penalized wavelet estimator that uses a modified online cyclic coordinate descent algorithm is proposed to identify the PLBM in a recursive fashion. The simulation and experimental results demonstrate that the proposed PLBM with the corresponding identification algorithm can accurately simulate the dynamic behavior of a lithium-ion battery in the Federal Urban Driving Schedule tests.
Wavelet neural networks with applications in financial engineering, chaos, and classification
Alexandridis, Antonios K
2014-01-01
Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks. The acclaimed authors present a statistical model identification framework to successfully apply wavelet networks in various applications, specifically, providing the mathematical and statistical framework needed for model selection, variable selection, wavelet network construction, initialization, training, forecasting and prediction, confidence intervals, prediction intervals, and model adequacy testing. The text is ideal for
ACO-Initialized Wavelet Neural Network for Vibration Fault Diagnosis of Hydroturbine Generating Unit
Xiao, Zhihuai; He, Xinying; Fu, Xiangqian; Malik, O. P.
2015-01-01
Considering the drawbacks of traditional wavelet neural network, such as low convergence speed and high sensitivity to initial parameters, an ant colony optimization- (ACO-) initialized wavelet neural network is proposed in this paper for vibration fault diagnosis of a hydroturbine generating unit. In this method, parameters of the wavelet neural network are initialized by the ACO algorithm, and then the wavelet neural network is trained by the gradient descent algorithm. Amplitudes of the fr...
International Nuclear Information System (INIS)
Envair, J.H.; Ekstrom, P.
1995-11-01
Wavelets are elementary mathematical functions used to construct, transform, and analyze higher functions and observational data. This report describes the results of an exploratory research effort to evaluate wavelet applications for numerically integrating differential equations associated with air pollution transport and conversion models. It is intended to provide a primer on wavelets, and specifically outlines the use of wavelets in a model that addresses derivative-evaluation and boundary-condition problems. Several factors complicate the use of wavelets for integrating differential equations. First, an enormous range of different wavelet types exists, making the choice of wavelet family for a given application challenging. Moreover, in contrast to the Fourier series, the functional derivatives necessary for numerical approximation are difficult to evaluate and consolidate in terms of wavelet expansions, introducing appreciable complexity into any attempt at wavelet-based integration. On the positive side, wavelet techniques do hold promise for effectively interfacing plume and other subgrid-scale phenomena in grid models. Moreover, workable techniques for derivative evaluation and simulation of boundary features appear feasible. Wavelet use may provide a viable, advantageous option for numerically integrating model equations describing fields on all scales of time and distance, especially where inhomogeneous fields exist, and provide a computationally efficient method of focusing on high-variability regions. The potential for wavelets to conduct integrations totally in transform space contrasts with Fourier-based approaches, which essentially preclude such treatments whenever nonlinear chemical processes occur in the modeled system
Wavelet transform of generalized functions in K ′{Mp} spaces
Indian Academy of Sciences (India)
Using convolution theory in K{Mp} space we obtain bounded results for the wavelet transform. Calderón-type reproducing formula is derived in distribution sense as an application of the same. An inversion formula for the wavelet transform of generalized functions is established. Keywords. Continuous wavelet transform ...
An Extension of Fourier-Wavelet Volume Rendering by View Interpolation
Westenberg, Michel A.; Roerdink, Jos B.T.M.
2001-01-01
This paper describes an extension to Fourier-wavelet volume rendering (FWVR), which is a Fourier domain implementation of the wavelet X-ray transform. This transform combines integration along the line of sight with a simultaneous 2-D wavelet transform in the view plane perpendicular to this line.
The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra
Gill, S.; Maxted, P. F. L.; Smalley, B.
2018-05-01
Context. Atmospheric properties of F-, G- and K-type stars can be measured by spectral model fitting or with the analysis of equivalent width (EW) measurements. These methods require data with good signal-to-noise ratios (S/Ns) and reliable continuum normalisation. This is particularly challenging for the spectra we have obtained with the CORALIE échelle spectrograph for FGK stars with transiting M-dwarf companions. The spectra tend to have low S/Ns, which makes it difficult to analyse them using existing methods. Aims: Our aim is to create a reliable automated spectral analysis routine to determine Teff, [Fe/H], V sini from the CORALIE spectra of FGK stars. Methods: We use wavelet decomposition to distinguish between noise, continuum trends, and stellar spectral features in the CORALIE spectra. A subset of wavelet coefficients from the target spectrum are compared to those from a grid of models in a Bayesian framework to determine the posterior probability distributions of the atmospheric parameters. Results: By testing our method using synthetic spectra we found that our method converges on the best fitting atmospheric parameters. We test the wavelet method on 20 FGK exoplanet host stars for which higher-quality data have been independently analysed using EW measurements. We find that we can determine Teff to a precision of 85 K, [Fe/H] to a precision of 0.06 dex and V sini to a precision of 1.35 km s-1 for stars with V sini ≥ 5 km s-1. We find an offset in metallicity ≈- 0.18 dex relative to the EW fitting method. We can determine log g to a precision of 0.13 dex but find systematic trends with Teff. Measurements of log g are only reliable enough to confirm dwarf-like surface gravity (log g ≈ 4.5). Conclusions: The wavelet method can be used to determine Teff, [Fe/H], and V sini for FGK stars from CORALIE échelle spectra. Measurements of log g are unreliable but can confirm dwarf-like surface gravity. We find that our method is self consistent, and
Hortos, William S.
2008-04-01
Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at
Yi, Cancan; Lv, Yong; Xiao, Han; Huang, Tao; You, Guanghui
2018-04-01
Since it is difficult to obtain the accurate running status of mechanical equipment with only one sensor, multisensor measurement technology has attracted extensive attention. In the field of mechanical fault diagnosis and condition assessment based on vibration signal analysis, multisensor signal denoising has emerged as an important tool to improve the reliability of the measurement result. A reassignment technique termed the synchrosqueezing wavelet transform (SWT) has obvious superiority in slow time-varying signal representation and denoising for fault diagnosis applications. The SWT uses the time-frequency reassignment scheme, which can provide signal properties in 2D domains (time and frequency). However, when the measured signal contains strong noise components and fast varying instantaneous frequency, the performance of SWT-based analysis still depends on the accuracy of instantaneous frequency estimation. In this paper, a matching synchrosqueezing wavelet transform (MSWT) is investigated as a potential candidate to replace the conventional synchrosqueezing transform for the applications of denoising and fault feature extraction. The improved technology utilizes the comprehensive instantaneous frequency estimation by chirp rate estimation to achieve a highly concentrated time-frequency representation so that the signal resolution can be significantly improved. To exploit inter-channel dependencies, the multisensor denoising strategy is performed by using a modulated multivariate oscillation model to partition the time-frequency domain; then, the common characteristics of the multivariate data can be effectively identified. Furthermore, a modified universal threshold is utilized to remove noise components, while the signal components of interest can be retained. Thus, a novel MSWT-based multisensor signal denoising algorithm is proposed in this paper. The validity of this method is verified by numerical simulation, and experiments including a rolling
Wavelet optimization for content-based image retrieval in medical databases.
Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C
2010-04-01
We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.
Wavelet analysis of MR functional data from the cerebellum
International Nuclear Information System (INIS)
Karen, Romero Sánchez; Vásquez Reyes Marcos, A.; González Gómez Dulce, I.; Hernández López, Javier M.; Silvia, Hidalgo Tobón; Pilar, Dies Suarez; Eduardo, Barragán Pérez; Benito, De Celis Alonso
2014-01-01
The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD
Wavelet analysis of MR functional data from the cerebellum
Energy Technology Data Exchange (ETDEWEB)
Karen, Romero Sánchez, E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Vásquez Reyes Marcos, A., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; González Gómez Dulce, I., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Hernández López, Javier M., E-mail: javierh@fcfm.buap.mx [Faculty of Physics and Mathematics, BUAP, Puebla, Pue (Mexico); Silvia, Hidalgo Tobón, E-mail: shidbon@gmail.com [Infant Hospital of Mexico, Federico Gómez, Mexico DF. Mexico and Physics Department, Universidad Autónoma Metropolitana. Iztapalapa, Mexico DF. (Mexico); Pilar, Dies Suarez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx [Infant Hospital of Mexico, Federico Gómez, Mexico DF. (Mexico); Benito, De Celis Alonso, E-mail: benileon@yahoo.com [Faculty of Physics and Mathematics, BUAP, Puebla, Pue. Mexico and Foundation for Development Carlos Sigüenza. Puebla, Pue. (Mexico)
2014-11-07
The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD.
Wavelet Filtering to Reduce Conservatism in Aeroservoelastic Robust Stability Margins
Brenner, Marty; Lind, Rick
1998-01-01
Wavelet analysis for filtering and system identification was used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins was reduced with parametric and nonparametric time-frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data was used to reduce the effects of external desirableness and unmodeled dynamics. Parametric estimates of modal stability were also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. F-18 high Alpha Research Vehicle aeroservoelastic flight test data demonstrated improved robust stability prediction by extension of the stability boundary beyond the flight regime.
Wavelet regression model in forecasting crude oil price
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Image superresolution of cytology images using wavelet based patch search
Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo
2015-01-01
Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.
Wavelet Filter Banks for Super-Resolution SAR Imaging
Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess
2011-01-01
This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.
Adaptive Image Transmission Scheme over Wavelet-Based OFDM System
Institute of Scientific and Technical Information of China (English)
GAOXinying; YUANDongfeng; ZHANGHaixia
2005-01-01
In this paper an adaptive image transmission scheme is proposed over Wavelet-based OFDM (WOFDM) system with Unequal error protection (UEP) by the design of non-uniform signal constellation in MLC. Two different data division schemes: byte-based and bitbased, are analyzed and compared. Different bits are protected unequally according to their different contribution to the image quality in bit-based data division scheme, which causes UEP combined with this scheme more powerful than that with byte-based scheme. Simulation results demonstrate that image transmission by UEP with bit-based data division scheme presents much higher PSNR values and surprisingly better image quality. Furthermore, by considering the tradeoff of complexity and BER performance, Haar wavelet with the shortest compactly supported filter length is the most suitable one among orthogonal Daubechies wavelet series in our proposed system.
Long memory analysis by using maximal overlapping discrete wavelet transform
Shafie, Nur Amalina binti; Ismail, Mohd Tahir; Isa, Zaidi
2015-05-01
Long memory process is the asymptotic decay of the autocorrelation or spectral density around zero. The main objective of this paper is to do a long memory analysis by using the Maximal Overlapping Discrete Wavelet Transform (MODWT) based on wavelet variance. In doing so, stock market of Malaysia, China, Singapore, Japan and United States of America are used. The risk of long term and short term investment are also being looked into. MODWT can be analyzed with time domain and frequency domain simultaneously and decomposing wavelet variance to different scales without loss any information. All countries under studied show that they have long memory. Subprime mortgage crisis in 2007 is occurred in the United States of America are possible affect to the major trading countries. Short term investment is more risky than long term investment.
Sparse data structure design for wavelet-based methods
Directory of Open Access Journals (Sweden)
Latu Guillaume
2011-12-01
Full Text Available This course gives an introduction to the design of efficient datatypes for adaptive wavelet-based applications. It presents some code fragments and benchmark technics useful to learn about the design of sparse data structures and adaptive algorithms. Material and practical examples are given, and they provide good introduction for anyone involved in the development of adaptive applications. An answer will be given to the question: how to implement and efficiently use the discrete wavelet transform in computer applications? A focus will be made on time-evolution problems, and use of wavelet-based scheme for adaptively solving partial differential equations (PDE. One crucial issue is that the benefits of the adaptive method in term of algorithmic cost reduction can not be wasted by overheads associated to sparse data management.
Anisotropy in wavelet-based phase field models
Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara
2016-01-01
When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis.
Hirakawa; Kuhara
1997-01-01
Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.
Properties of wavelet discretization of Black-Scholes equation
Finěk, Václav
2017-07-01
Using wavelet methods, the continuous problem is transformed into a well-conditioned discrete problem. And once a non-symmetric problem is given, squaring yields a symmetric positive definite formulation. However squaring usually makes the condition number of discrete problems substantially worse. This note is concerned with a wavelet based numerical solution of the Black-Scholes equation for pricing European options. We show here that in wavelet coordinates a symmetric part of the discretized equation dominates over an unsymmetric part in the standard economic environment with low interest rates. It provides some justification for using a fractional step method with implicit treatment of the symmetric part of the weak form of the Black-Scholes operator and with explicit treatment of its unsymmetric part. Then a well-conditioned discrete problem is obtained.
Anisotropy in wavelet-based phase field models
Korzec, Maciek
2016-04-01
When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
Dual-tree complex wavelet for medical image watermarking
International Nuclear Information System (INIS)
Mavudila, K.R.; Ndaye, B.M.; Masmoudi, L.; Hassanain, N.; Cherkaoui, M.
2010-01-01
In order to transmit medical data between hospitals, we insert the information for each patient in the image and its diagnosis, the watermarking consist to insert a message in the image and try to find it with the maximum possible fidelity. This paper presents a blind watermarking scheme in wavelet transform domain dual tree (DTT), who increasing the robustness and preserves the image quality. This system is transparent to the user and allows image integrity control. In addition, it provides information on the location of potential alterations and an evaluation of image modifications which is of major importance in a medico-legal framework. An example using head magnetic resonance and mammography imaging illustrates the overall method. Wavelet techniques can be successfully applied in various image processing methods, namely in image de noising, segmentation, classification, watermarking and others. In this paper we discussed the application of dual tree complex wavelet transform (D T-CWT), which has significant advantages over classic discrete wavelet transform (DWT), for certain image processing problems. The D T-CWT is a form of discreet wavelet transform which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The main part of the paper is devoted to profit the exceptional quality for D T-CWT, compared to classical DWT, for a blind medical image watermarking, our schemes are using for the performance bivariate shrinkage with local variance estimation and are robust of attacks and favourably preserves the visual quality. Experimental results show that embedded watermarks using CWT give good image quality and are robust in comparison with the classical DWT.
Wavelet-based ground vehicle recognition using acoustic signals
Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.
1996-03-01
We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will
Wavelets in quantification of liver tumors in contrasted computed tomography images
International Nuclear Information System (INIS)
Rodrigues, Bruna T.; Alvarez, Matheus; Souza, Rafael T.F.; Miranda, Jose R.A.; Romeiro, Fernando G.; Pina, Diana R. de; Trindade, Andre Petean
2012-01-01
This paper presents an original methodology of liver tumors segmentation, based on wavelet transform. A virtual phantom was constructed with the same mean and standard deviation of the intensity of gray presented by the measured liver tissue. The optimized algorithm had a sensitivity ranging from 0.81 to 0.83, with a specificity of 0.95 for differentiation of hepatic tumors from normal tissues. We obtained a 96% agreement between the pixels segmented by an experienced radiologist and the algorithm presented here. According to the results shown in this work, the algorithm is optimal for the beginning of the tests for quantification of liver tumors in retrospective surveys. (author)
Short-term variability of Johor River discharge based on wavelet analysis
Ahmad, N.; Kamaruddin, S. A.; Heryansyah, A.
2015-02-01
River discharge provides a direct measure of water quantity and availability of water for specific uses. It also provides the basis for understanding river basin processes and is essential for interpreting and understanding river flow characteristics. This study investigates the temporal variability of river discharge records of Johor River. Wavelet analysis of discharge records for 30 years was carried out to characterize the river flow variability. Our results indicate that Johor River discharge data shows a significant short-term variability of between 0.6 to 2.5 years.
Application of wavelet analysis in determining the periodicity of global warming
Feng, Xiao
2018-04-01
In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.
Wavelets and Sentiment in the Heterogeneous Agents Model
Czech Academy of Sciences Publication Activity Database
Vácha, Lukáš; Vošvrda, Miloslav
2008-01-01
Roč. 15, č. 25 (2008), s. 41-56 ISSN 1212-074X R&D Projects: GA ČR GP402/08/P207; GA ČR GA402/07/1113; GA ČR(CZ) GA402/06/0990 Institutional research plan: CEZ:AV0Z10750506 Keywords : heterogeneous agents model * market sentiment * Hurst exponent * wavelets Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2008/E/vacha-wavelets and sentiment in the heterogeneous agents model.pdf
Wigner functions from the two-dimensional wavelet group.
Ali, S T; Krasowska, A E; Murenzi, R
2000-12-01
Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.
Modified signed-digit trinary addition using synthetic wavelet filter
Iftekharuddin, K. M.; Razzaque, M. A.
2000-09-01
The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.
Wavelet Transformation for Damage Identication in Wind Turbine Blades
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Skov, Jonas falk; Kirkegaard, Poul Henning
2014-01-01
The present paper documents a proposed modal and wavelet analysis-based structural health monitoring (SHM) method for damage identification in wind turbine blades. A finite element (FE) model of a full-scale wind turbine blade is developed and introduced to a transverse surface crack. Hereby, post......-damage mode shapes are derived through modal analysis and subsequently analyzed with continuous two-dimensional wavelet transformation for damage identification, namely detection, localization and assessment. It is found that valid damage identification is obtained even when utilizing the mode shape...
Object-Oriented Wavelet-Layered Digital Watermarking Technique
Institute of Scientific and Technical Information of China (English)
LIU Xiao-yun; YU Jue-bang; LI Ming-yu
2005-01-01
In this paper, an object-oriented digital watermarking technique is proposed in the wavelet domain for still images. According to the difference of recognition degree of the human eye to the different region of the image, the image is divided into the interested region and uninterested region of human eye vision in this scheme. Using the relativity of position and the difference to ocular sensitivity of the multiresolution wavelet among each subband, the image is processed with layered watermarking append technique. Experimental results show that the proposed technique successfully survives image processing operations, additive noise and JPEG compression.
Human Body Image Edge Detection Based on Wavelet Transform
Institute of Scientific and Technical Information of China (English)
李勇; 付小莉
2003-01-01
Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.
Wavelets in self-consistent electronic structure calculations
International Nuclear Information System (INIS)
Wei, S.; Chou, M.Y.
1996-01-01
We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society
Blind Component Separation in Wavelet Space: Application to CMB Analysis
Directory of Open Access Journals (Sweden)
J. Delabrouille
2005-09-01
Full Text Available It is a recurrent issue in astronomical data analysis that observations are incomplete maps with missing patches or intentionally masked parts. In addition, many astrophysical emissions are nonstationary processes over the sky. All these effects impair data processing techniques which work in the Fourier domain. Spectral matching ICA (SMICA is a source separation method based on spectral matching in Fourier space designed for the separation of diffuse astrophysical emissions in cosmic microwave background observations. This paper proposes an extension of SMICA to the wavelet domain and demonstrates the effectiveness of wavelet-based statistics for dealing with gaps in the data.
CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS
DEFF Research Database (Denmark)
Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik
2010-01-01
The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...
Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng
2017-07-12
As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.
Sun, Weifang; Yao, Bin; Zeng, Nianyin; He, Yuchao; Cao, Xincheng; He, Wangpeng
2017-01-01
As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault’s characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault’s characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal’s features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear’s weak fault features. PMID:28773148
Wavelet-OFDM Signal Transmission Characteristics with High-Speed PLC Modem
Nakagawa, Kenichi; Tokuda, Masamitsu; Igata, Yuji
In this paper, we measured the interference immunity characteristics of high-speed PLC system using Wavelet-OFDM when the narrowband conducted interference wave signal was injected. As the results, it was clear that (1) measured PHY rate at the all frequency band hardly decreased in C/I (Carrier to Interference ratio) of above 20dB, but began to decrease rapidly in C/I of below 0dB when the interference signal was injected in the frequency band of high-speed PLC signal, (2) when C/I became from 0dB to -20dB, the measured PHY rate at the frequency existing the notch band were improved around 10Mbps than that at the frequency not existing the notch band, (3) when the narrowband interference wave was injected outside of frequency band of high-speed PLC signal, the measured PHY rate did not decrease than that in each notch band. Therefore, it was revealed that high-speed PLC system using Wavelet-OFDM had good interference immunity characteristics.
Islanding detection technique using wavelet energy in grid-connected PV system
Kim, Il Song
2016-08-01
This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.
WAVELET-BASED ALGORITHM FOR DETECTION OF BEARING FAULTS IN A GAS TURBINE ENGINE
Directory of Open Access Journals (Sweden)
Sergiy Enchev
2014-07-01
Full Text Available Presented is a gas turbine engine bearing diagnostic system that integrates information from various advanced vibration analysis techniques to achieve robust bearing health state awareness. This paper presents a computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based transform. The continuous wavelet transform with the complex Morlet wavelet is adopted to detect the harmonics presented in a power signal. The algorithm based on the discrete stationary wavelet transform is adopted to denoise the wavelet ridges.
Lahmiri, Salim; Uddin, Gazi Salah; Bekiros, Stelios
2017-11-01
We propose a general framework for measuring short and long term dynamics in asset classes based on the wavelet presentation of clustering analysis. The empirical results show strong evidence of instability of the financial system aftermath of the global financial crisis. Indeed, both short and long-term dynamics have significantly changed after the global financial crisis. This study provides an interesting insights complex structure of global financial and economic system.
The use of wavelet transforms in the solution of two-phase flow problems
International Nuclear Information System (INIS)
Moridis, G.J.; Nikolaou, M.; You, Yong
1994-10-01
In this paper we present the use of wavelets to solve the nonlinear Partial Differential.Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt chance, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigational any spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. We determine that the Chui-Wang, wavelets and a collocation method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. Our results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts
Wavelet-domain de-noising of OCT images of human brain malignant glioma
Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.
2018-04-01
We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.
Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach
Aloui, Chaker; Jammazi, Rania
2015-10-01
In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.
ACO-Initialized Wavelet Neural Network for Vibration Fault Diagnosis of Hydroturbine Generating Unit
Directory of Open Access Journals (Sweden)
Zhihuai Xiao
2015-01-01
Full Text Available Considering the drawbacks of traditional wavelet neural network, such as low convergence speed and high sensitivity to initial parameters, an ant colony optimization- (ACO- initialized wavelet neural network is proposed in this paper for vibration fault diagnosis of a hydroturbine generating unit. In this method, parameters of the wavelet neural network are initialized by the ACO algorithm, and then the wavelet neural network is trained by the gradient descent algorithm. Amplitudes of the frequency components of the hydroturbine generating unit vibration signals are used as feature vectors for wavelet neural network training to realize mapping relationship from vibration features to fault types. A real vibration fault diagnosis case result of a hydroturbine generating unit shows that the proposed method has faster convergence speed and stronger generalization ability than the traditional wavelet neural network and ACO wavelet neural network. Thus it can provide an effective solution for online vibration fault diagnosis of a hydroturbine generating unit.
Energy Technology Data Exchange (ETDEWEB)
Saha Ray, S., E-mail: santanusaharay@yahoo.com; Patra, A.
2014-10-15
Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet collocation method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: In this paper the numerical solution for the fractional order stationary neutron transport equation is presented using Haar wavelet Collocation Method (HWCM). Haar wavelet collocation method is efficient and powerful in solving wide class of linear and nonlinear differential equations. This paper intends to provide an application of Haar wavelets to nuclear science problems. This paper describes the application of Haar wavelets for the numerical solution of fractional order stationary neutron transport equation in homogeneous medium with isotropic scattering. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency and applicability of the method, two test problems are discussed.