WorldWideScience

Sample records for wavelength-swept pulses delivered

  1. Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm.

    Science.gov (United States)

    Eigenwillig, Christoph M; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert

    2011-08-01

    The wavelength swept amplified spontaneous emission (ASE) source presented in this paper is an alternative approach to realize a light source for high speed swept source optical coherence tomography (OCT). ASE alternately passes a cascade of different optical gain elements and tunable optical bandpass filters. In this work we show for the first time a wavelength swept ASE source in the 1060 nm wavelength range, enabling high speed retinal OCT imaging. We demonstrate ultra-rapid retinal OCT at a line rate of 170 kHz, a record sweep rate at 1060 nm of 340 kHz with 70 nm full sweep width, enabling an axial resolution of 11 μm. Two different implementations of the source are characterized and compared to each other. The last gain element is either a semiconductor optical amplifier or an Ytterbium-doped fibre amplifier enabling high average output power of >40 mW. Various biophotonic imaging examples provide a wide range of quality benchmarks achievable with such sources. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  3. High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs.

    Science.gov (United States)

    Jeon, Min Yong; Zhang, Jun; Wang, Qiang; Chen, Zhongping

    2008-02-18

    We report on the development of a high-speed, wide bandwidth Fourier domain mode-locked (FDML) wavelength swept laser of around 1300 nm using two gain media for high-resolution and high-speed Fourier domain optical coherence tomography. The wavelength swept laser is capable of FWHM scanning range of more than 135 nm at 45.6 kHz sweeping rate. The measured axial resolution of the forward scan is 6.6 microm in air and 4.7 microm in tissue. The peak power is 11.4 mW for both the forward and backward scans. The measured system sensitivity is achieved up to 100.7 dB. We also demonstrate OCT imaging using the FDML wavelength swept laser with two semiconductor optical amplifiers.

  4. Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages.

    Science.gov (United States)

    Tokurakawa, M; Daniel, J M O; Chenug, C S; Liang, H; Clarkson, W A

    2015-01-12

    A wavelength-swept thulium-doped fiber laser system employing two parallel cavities with two different fiber gain stages is reported. The fiber gain stages were tailored to provide emission in complementary bands with external wavelength-dependent feedback cavities sharing a common rotating polygon mirror for wavelength scanning. The wavelength-swept laser outputs from the fiber gain elements were spectrally combined by means of a dichroic mirror and yielded over 500 mW of output with a scanning range from ~1740 nm to ~2070 nm for a scanning frequency of ~340 Hz.

  5. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    Directory of Open Access Journals (Sweden)

    Kyung Hyun Park

    2013-07-01

    Full Text Available We report a high-speed (~2 kHz dynamic multiplexed fiber Bragg grating (FBG sensor interrogation using a wavelength-swept laser (WSL with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.

  6. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers.

    Science.gov (United States)

    Jirauschek, Christian; Huber, Robert

    2015-07-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell's equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth.

  7. Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers.

    Science.gov (United States)

    Biedermann, Benjamin R; Wieser, Wolfgang; Eigenwillig, Christoph M; Klein, Thomas; Huber, Robert

    2010-11-15

    The instantaneous linewidth of rapidly wavelength-swept laser sources as used for optical coherence tomography (OCT) is of crucial interest for a deeper understanding of physical effects involved in their operation. Swept lasers for OCT, typically sweeping over ~15 THz in ~10 μs, have linewidths of several gigahertz. The high optical-frequency sweep speed makes it impossible to measure the instantaneous spectrum with standard methods. Hence, up to now, experimental access to the instantaneous linewidth was rather indirect by the inverse Fourier transform of the coherence decay. In this Letter, we present a method by fast synchronous time gating and extraction of a "snapshot" of the instantaneous spectrum with an electro-optic modulator, which can subsequently be measured with an optical spectrum analyzer. This new method is analyzed in detail, and systematic artifacts, such as sideband generation due to the modulation and residual wavelength uncertainty due to the sweeping operation, are quantified. The method is checked for consistency with results from the common, more indirect measurement via coherence properties.

  8. Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter.

    Science.gov (United States)

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-07-29

    We report a high-speed (~2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.

  9. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Directory of Open Access Journals (Sweden)

    Hyung-Seok Lee

    2014-08-01

    Full Text Available A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system.

  10. Stable wavelength-swept light source designed for industrial applications using KTN beam-scanning technology

    Science.gov (United States)

    Fujimoto, Masatoshi; Yamada, Mahiro; Yamamoto, Koei; Sasaki, Yuzo; Toyoda, Seiji; Sakamoto, Takashi; Yamaguchi, Joji; Sakamoto, Tadashi; Ueno, Masahiro; Imai, Tadayuki; Sugai, Eiichi; Yagi, Shogo

    2017-02-01

    Using light-beam scanning technology based on a potassium tantalate niobate (KTa1-xNbxO3, KTN) single crystal, we constructed a wavelength-swept light source for industrial applications. The KTN crystal is placed in an external cavity as an electro-optic deflector for wavelength scanning without any mechanical operation. Cavity arrangement and mechanism elements are specially designed for long-term stability and environmental robustness. In addition, we updated the handling of the KTN crystal. We used a pair of thermistors for accurate temperature monitoring, and weakly irradiated the crystal with a 405-nm light during operation to achieve drift suppression. We selected a moderate repetition rate of 20 kHz to suit the practical application. The output of the light source was 6.2 mW in average power, 1314.5 nm in central wavelength, and 83.3 nm in bandwidth. The interference fringes of the light enable us to specify the thickness of a wafer sample by the peak positions of the point spread functions. We measured the thickness of a silicon wafer as 3651 μm in the optical path length using a reference quartz plate. The distribution of the obtained values is about 0.1 μm (standard deviation). We experimentally confirmed that this property persists continuously at least over 153 days. Our light source has a remarkable feature: extremely low timing jitter of the sweep. Thus, we can easily reduce the noise level by averaging several fringes, if necessary.

  11. High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography.

    Science.gov (United States)

    Leung, Michael K K; Mariampillai, Adrian; Standish, Beau A; Lee, Kenneth K C; Munce, Nigel R; Vitkin, I Alex; Yang, Victor X D

    2009-09-15

    We report a high-power wavelength-swept laser source for multichannel optical coherence tomography (OCT) imaging. Wavelength tuning is performed by a compact telescope-less polygon-based filter in Littman arrangement. High output power is achieved by incorporating two serial semiconductor optical amplifiers in the laser cavity in Fourier domain mode-locked configuration. The measured wavelength tuning range of the laser is 111 nm centered at 1329 nm, coherence length of 5.5 mm, and total average output power of 131 mW at 43 kHz sweeping rate. Multichannel simultaneous OCT imaging at an equivalent A-scan rate of 258 kHz is demonstrated.

  12. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    Science.gov (United States)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse.

  13. Improved sonothrombolysis from a modified diagnostic transducer delivering impulses containing a longer pulse duration.

    Science.gov (United States)

    Wu, Juefei; Xie, Feng; Kumar, Tanmay; Liu, Jinjin; Lof, John; Shi, William; Everbach, E Carr; Porter, Thomas R

    2014-07-01

    Although guided high-mechanical-index (MI) impulses from a diagnostic ultrasound transducer have been used in preclinical studies to dissolve coronary arterial and microvascular thrombi in the presence of intravenously infused microbubbles, it is possible that pulse durations (PDs) longer than that used for diagnostic imaging may further improve the effectiveness of this approach. By use of an established in vitro model flow system, a total of 90 occlusive porcine arterial thrombi (thrombus age: 3-4 h) within a vascular mimicking system were randomized to 10-min treatments with two different PDs (5 and 20 μs) using a Philips S5-1 transducer (1.6-MHz center frequency) at a range of MIs (from 0.2 to 1.4). All impulses were delivered in an intermittent fashion to permit microbubble replenishment within the thrombosed vessel. Diluted lipid-encapsulated microbubbles (0.5% Definity) were infused during the entire treatment period. A tissue-mimicking phantom 5 cm thick was placed between the transducer and thrombosed vessel to mimic transthoracic attenuation. Two 20-MHz passive cavitation detection systems were placed confocal to the insonified vessel to assess for inertial cavitational activity. Percentage thrombus dissolution was calculated by weighing the thrombi before and after each treatment. Percentage thrombus dissolution was significantly higher with a 20-μs PD already at the 0.2 and 0.4 MI therapeutic impulses (54 ± 12% vs. 33 ± 17% and 54 ± 22% vs. 34 ± 17%, p dissolution decreased most likely from high-intensity cavitation shielding of the thrombus. Slightly prolonging the PD on a diagnostic transducer improves the degree of sonothrombolysis that can be achieved without fibrinolytic agents at a lower mechanical index. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Three types of pulses delivered from a nanotube-mode-locked fiber laser

    Science.gov (United States)

    Yao, X. K.

    2015-07-01

    Three types of pulses are experimentally investigated in a switchable normal-dispersion nanotube-mode-locked fiber laser by adjusting polarizer controller and pump power. They are a standard dissipative-soliton (DS), conventional soliton (CS)-like pulse, and noiselike pulse, which correspond to three mode-locking states. The standard DS with a rectangular spectrum possesses a Gaussian-shape pulse. The CS-like operation has a Lorenz shape, and the spectrum involves several sidebands similar to the CS case. For the noiselike pulse with a bell-shaped spectrum, a 317 fs peak rides upon the 132.5 ps pedestal in the autocorrelation trace. The spectra of these three pulse operations are centered at three close wavelengths. The generation of three such different types of pulses in one identical normal- dispersion laser cavity may find an important application for the future of mode-locked laser research.

  15. Dependence of diode sensitivity on the pulse rate of delivered radiation.

    Science.gov (United States)

    Jursinic, Paul A

    2013-02-01

    It has been reported that diode sensitivity decreases by as much as 2% when the average dose rate set at the accelerator console was decreased from 600 to 40 MU∕min. No explanation was given for this effect in earlier publications. This work is a detailed investigation of this phenomenon: the change of diode sensitivity versus the rate of delivery of dose pulses in the milliseconds and seconds range. X-ray beams used in this work had nominal energies of 6 and 15 MV and were generated by linear accelerators. The average dose rate was varied from 25 to 600 MU∕min, which corresponded to time between microsecond-long dose pulses of 60-2.7 ms, respectively. The dose-per-pulse, dpp, was changed by positioning the detector at different source-to-detector distance. A variety of diodes fabricated by a number of manufacturers were tested in this work. Also, diodes in three different MapCHECKs (Sun Nuclear, Melbourne, FL) were tested. For all diodes tested, the diode sensitivity decreases as the average dose rate is decreased, which corresponds to an increase in the pulse period, the time between radiation pulses. A sensitivity decrease as large as 5% is observed for a 60-ms pulse period. The diode sensitivity versus the pulse period is modeled by an empirical exponential function. This function has a fitting parameter, t(eff), defined as the effective lifetime. The values of t(eff) were found to be 1.0-14 s, among the various diodes. For all diodes tested, t(eff) decreases as the dpp decreases and is greater for 15 MV than for 6 MV x rays. The decrease in diode sensitivity after 20 s without radiation can be reversed by as few as 60 radiation pulses. A decrease in diode sensitivity occurs with a decrease in the average dose rate, which corresponds to an increase in the pulse period of radiation. The sensitivity decrease is modeled by an empirical exponential function that decreases with an effective lifetime, t(eff), of 1.0-14 s. t(eff) varies widely for different diodes

  16. Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.

    Science.gov (United States)

    Tawfik, Mena E; Diez, Francisco J

    2017-03-01

    In generating high electroosmotic (EO) flows for use in microfluidic pumps, a limiting factor is faradaic reactions that are more pronounced at high electric fields. These reactions lead to bubble generation at the electrodes and pump efficiency reduction. The onset of gas generation for high current density EO pumping depends on many parameters including applied voltage, working fluid, and pulse duration. The onset of gas generation can be delayed and optimized for maximum volume pumped in the minimum time possible. This has been achieved through the use of a novel numerical model that predicts the onset of gas generation during EO pumping using an optimized pulse voltage waveform. This method allows applying current densities higher than previously reported. Optimal pulse voltage waveforms are calculated based on the previous theories for different current densities and electrolyte molarity. The electroosmotic pump performance is investigated by experimentally measuring the fluid volume displaced and flow rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of the pulsed fiber-optic-delivered Nd:YAG laser on dentin bonding

    Science.gov (United States)

    White, Joel M.; Goodis, Harold E.; Khosrovi, Paul; Rose, Chris M.

    1996-04-01

    Laser modification of the dentin may increase the mechanical retention of composite resin restorations. The purpose of this study was to evaluate the effect of the Nd:YAG laser on dentin bonding. 170 dentin specimens were prepared by horizontal sectioning through the middle coronal third of molars. A 5 mm area of 140 samples were treated at powers of 0.3 to 3.0 W, pulse frequencies of 10 to 30 Hz, and energies of 30 to 150 mJ/pulse. The remaining 30 were untreated dentin sections. Samples were pumiced and bonded with Scotchbond 2 and Silux Plus composite, then light cured and stored at 100% humidity for 24 hours prior to debonding. Shear bond strength was measured and the type of failure was determined. Laser modification of the dentin improved bond strength by 68% compared with the controls. Microscopic examination of the lased samples after debonding showed that 5% failed adhesively at the dentin-resin interface, while 95% failed cohesively within the resin. Therefore, lasers increased dentin bond strengths by improving micromechanical retention.

  18. [The effect of low-intensity pulsed sound waves delivered by the Exogen device on Staphylococcus aureus morphology and genetics].

    Science.gov (United States)

    Ayan, Irfan; Aslan, Gönül; Cömelekoğlu, Ulkü; Yilmaz, Nejat; Colak, Mehmet

    2008-01-01

    We investigated the effect of low-intensity pulsed sound waves delivered by the Exogen device, which is recommended for the treatment of delayed union and nonunion in orthopedic surgery, on the colony number, antimicrobial susceptibility, bacterial morphology, and genetics of Staphylococcus aureus, which is a frequent pathogen in orthopedic infections. Thirty tubes containing 0.5 McFarland suspensions of S. aureus (ATCC 25923) were used. Fifteen tubes forming the test group were subjected to low-intensity sound waves by the Exogen device for 20 minutes. The remaining 15 tubes were untreated as controls. The two groups were then compared with respect to colony number, antibiotic susceptibility, and genotypic properties. The tubes were examined histologically by electron microscopy. The test tubes treated with sound waves showed a significantly lower number of bacteria colonies compared to the control tubes (psound waves may be beneficial as a prophylactic measure to prevent infections in primary orthopedic operations and as an adjuvant therapy for infected nonunions.

  19. Shape analysis of current pulses delivered by semiconductor detectors: A new tool for fragmentation studies of high velocity atomic clusters and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chabot, M. E-mail: chabot@ipno.in2p3.fr; Della Negra, S.; Lavergne, L.; Martinet, G.; Wohrer-Beroff, K. E-mail: wohrer@gps.jussieu.fr; Sellem, R.; Daniel, R.; Le Bris, J.; Lalu, G.; Gardes, D.; Scarpaci, J.A.; Desesquelle, P.; Lima, V

    2002-11-01

    Shape analyses of current pulses delivered by semiconductor detectors under impact of high velocity atomic clusters have been performed for the first time. We show in this paper that the shape of the current pulse depends sensitively on the cluster size. When the cluster is fragmented, the obtained signal is found to result from the sum of signals associated with individual fragment impacts so that recognition of the fragmentation pathway is made possible in an unambiguous way. Application to the extraction of the 29 fragmentation channels of neutral C{sub 9} clusters is presented.

  20. Shape analysis of current pulses delivered by semiconductor detectors: A new tool for fragmentation studies of high velocity atomic clusters and molecules

    CERN Document Server

    Chabot, M; Lavergne, L; Martinet, G; Wohrer-Beroff, K; Sellem, R; Daniel, R; Le Bris, J; Lalu, G; Gardes, D; Scarpaci, J A; Désesquelles, P; Lima, V

    2002-01-01

    Shape analyses of current pulses delivered by semiconductor detectors under impact of high velocity atomic clusters have been performed for the first time. We show in this paper that the shape of the current pulse depends sensitively on the cluster size. When the cluster is fragmented, the obtained signal is found to result from the sum of signals associated with individual fragment impacts so that recognition of the fragmentation pathway is made possible in an unambiguous way. Application to the extraction of the 29 fragmentation channels of neutral C sub 9 clusters is presented.

  1. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  2. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  3. A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system.

    Science.gov (United States)

    Figueiro, Mariana G; Bierman, Andrew; Rea, Mark S

    2013-01-01

    A model of circadian phototransduction was published in 2005 to predict the spectral sensitivity of the human circadian system to narrow-band and polychromatic light sources by combining responses to light from the spectral-opponent "blue" versus "yellow" cone bipolar pathway with direct responses to light by the intrinsically photosensitive retinal ganglion cells. In the model, depolarizing "blue" responses, but not hyperpolarizing "yellow" responses, from the "blue" versus "yellow" pathway are combined with the intrinsically photosensitive retinal ganglion cell responses. Intrinsically photosensitive retinal ganglion cell neurons are known to be much slower to respond to light than the cone pathway, so an implication of the model is that periodic flashes of "blue" light, but not "yellow" light, would be effective for stimulating the circadian system. A within-subjects study was designed to test the implications of the model regarding retinal exposures to brief flashes of light. The study was also aimed at broadening the foundation for clinical treatment of circadian sleep disorders by delivering flashing light through closed eyelids while people were asleep. In addition to a dark control night, the eyelids of 16 subjects were exposed to three light-stimulus conditions in the phase delay portion of the phase response curve while they were asleep: (1) 2-second flashes of 111 W/m(2) of blue (λmax ≈ 480 nm) light once every minute for 1 hour, (2) 131 W/m(2) of green (λmax ≈ 527 nm) light, continuously on for 1 hour, and (3) 2-second flashes of the same green light once every minute for 1 hour. Inferential statistics showed that the blue flash light-stimulus condition significantly delayed circadian phase and significantly suppressed nocturnal melatonin. The results of this study further our basic understanding of circadian phototransduction and broaden the technical foundations for delivering light through closed eyelids during sleep for treating circadian

  4. A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system

    Directory of Open Access Journals (Sweden)

    Figueiro MG

    2013-10-01

    Full Text Available Mariana G Figueiro, Andrew Bierman, Mark S ReaLighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USAAbstract: A model of circadian phototransduction was published in 2005 to predict the spectral sensitivity of the human circadian system to narrow-band and polychromatic light sources by combining responses to light from the spectral-opponent “blue” versus “yellow” cone bipolar pathway with direct responses to light by the intrinsically photosensitive retinal ganglion cells. In the model, depolarizing “blue” responses, but not hyperpolarizing “yellow” responses, from the “blue” versus “yellow” pathway are combined with the intrinsically photosensitive retinal ganglion cell responses. Intrinsically photosensitive retinal ganglion cell neurons are known to be much slower to respond to light than the cone pathway, so an implication of the model is that periodic flashes of “blue” light, but not “yellow” light, would be effective for stimulating the circadian system. A within-subjects study was designed to test the implications of the model regarding retinal exposures to brief flashes of light. The study was also aimed at broadening the foundation for clinical treatment of circadian sleep disorders by delivering flashing light through closed eyelids while people were asleep. In addition to a dark control night, the eyelids of 16 subjects were exposed to three light-stimulus conditions in the phase delay portion of the phase response curve while they were asleep: (1 2-second flashes of 111 W/m2 of blue (λmax ≈ 480 nm light once every minute for 1 hour, (2 131 W/m2 of green (λmax ≈ 527 nm light, continuously on for 1 hour, and (3 2-second flashes of the same green light once every minute for 1 hour. Inferential statistics showed that the blue flash light-stimulus condition significantly delayed circadian phase and significantly suppressed nocturnal melatonin. The results of this study further our

  5. Influence of nonlinearities in wavelength-swept absolute distance interferometry

    Science.gov (United States)

    Perret, Luc; Pfeiffer, Pierre; Chakari, Ayoub

    2007-06-01

    This paper reports the optimization possibilities of some non-linear sources of limitations in the resolution and accuracy of an Absolute Distance Interferometry setup using an External Cavity Laser Diode for wavelength scanning and a fibered Mach-Zehnder interferometer as a reference. The system is able to measure one or two simultaneous targets with a relative uncertainty of some 10 -6 for distances of 1 to 20m. In order to achieve better performances, the experimental non-linearities in the wavelength sweep are isolated and compared to different simulated sweeping models. This study leads to the conclusion that accuracy and resolution could be improved by an optimal modulation of the wavelength sweep. Another sensible point is the drift of the reference Optical Path Difference of the Mach-Zehnder with temperature variations. This drift can be minimized by using an acrylate-coated fiber and a copper-coated fiber of different lengths, adjusted by experimental measurements in a climatic chamber for a 10 to 40°C range.

  6. Fast heating of fuel assembled in a spherical deuterated polystyrene shell target by counter-irradiating tailored laser pulses delivered by a HAMA 1 Hz ICF driver

    Science.gov (United States)

    Mori, Y.; Nishimura, Y.; Hanayama, R.; Nakayama, S.; Ishii, K.; Kitagawa, Y.; Sekine, T.; Takeuchi, Y.; Kurita, T.; Satoh, N.; Kawashima, T.; Komeda, O.; Nishi, T.; Azuma, H.; Hioki, T.; Motohiro, T.; Sunahara, A.; Sentoku, Y.; Miura, E.

    2017-11-01

    Fast heating is a method of heating an assembled high-density plasma into a hot state by irradiating it with short-duration (sub-picosecond), high-intensity (> 1018 W cm-2 ) laser pulses before the plasma expands and dissolves hydrodynamically. In this paper, we present detailed experimental results of fast heating fuel assembled in a spherical deuterated polystyrene shell target of 500 μ m diameter and 7 μm thickness with counterbeam illumination by using a HAMA 1 Hz, 5.9 J inertial confinement fusion laser driver with pulse tailoring. These tailored pulses contain three pulses in sequence: a ‘foot’ pulse of 2.4 J/25 ns, a ‘spike’ pulse of 0.5 J/300 ps and a ‘heater’ pulse of 0.4 J/110 fs; these pulses are designed to assemble the fuel and heat it. By varying the energy of the foot pulse, we find that fast heating the fuel is achieved only if the fuel is weakly ablated by the foot pulse and then shock-assembled by the spike pulse into the target centre so that the heater pulse can access the fuel with a focal intensity greater than 1018 W cm-2 . Without a foot pulse, the heater pulse contributes to assembling the fuel. For higher foot-pulse energies, the heater pulse drives a hydrodynamic motion with speeds of the order 107 cm s-1 with intensities of the order 1017 W cm-2 , resulting in re-assembling and additional heating of the pre-assembled fuel. Once a shock-assembled core is achieved at the target centre, we succeed qualitatively in fast heating the core for shots in sequence with variations of laser energy within 18%. The coupling efficiency from the heating laser to the core is inferred to be (10 +/- 2) % in total: (8 +/- 1.6) % for the ionized bulk electrons and (2 +/- 0.4) % for the bulk ions. The fusion neutron spectrum detected on the laser axis exhibits peaks at 1.0 MeV, 1.7 MeV and 3.8 MeV. These peaks are attributed to the C(d, n){\\hspace{0pt}}13 N and d(d, n){\\hspace{0pt}}3 He reactions induced by counterpropagating fast deuterons

  7. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate.

    Science.gov (United States)

    Budriūnas, Rimantas; Stanislauskas, Tomas; Adamonis, Jonas; Aleknavičius, Aidas; Veitas, Gediminas; Gadonas, Darius; Balickas, Stanislovas; Michailovas, Andrejus; Varanavičius, Arūnas

    2017-03-06

    We present a high peak and average power optical parametric chirped pulse amplification system driven by diode-pumped Yb:KGW and Nd:YAG lasers running at 1 kHz repetition rate. The advanced architecture of the system allows us to achieve >53 W average power combined with 5.5 TW peak power, along with sub-220 mrad CEP stability and sub-9 fs pulse duration at a center wavelength around 880 nm. Broadband, background-free, passively CEP stabilized seed pulses are produced in a series of cascaded optical parametric amplifiers pumped by the Yb:KGW laser, while a diode-pumped Nd:YAG laser system provides multi-mJ pump pulses for power amplification stages. Excellent stability of output parameters over 16 hours of continuous operation is demonstrated.

  8. Ho:YLF & Ho:LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses

    CSIR Research Space (South Africa)

    Strauss, HJ

    2011-07-01

    Full Text Available A single-frequency single-pass amplifier based on Ho:YLF and Ho:LuLF in a scalable slab architecture delivering up to 210 mJ at 2064 nm is demonstrated. The amplifier was end-pumped by a 1890 nm Tm:YLF slab laser and was seeded with a 69 mJ single...

  9. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.

    Science.gov (United States)

    Miller, Joe; Yu, Xiao-Bo; Yu, Paula K; Cringle, Stephen J; Yu, Dao-Yi

    2011-02-20

    Ultraviolet (UV) lasers have the capability to precisely remove tissue via ablation; however, due to strong absorption of the applicable portion the UV spectrum, their surgical use is currently limited to extraocular applications at the air/tissue boundary. Here we report the development and characterization of a fiber-optic laser delivery system capable of outputting high-fluence UV laser pulses to internal tissue surfaces. The system has been developed with a view to intraocular surgical applications and has been demonstrated to ablate ocular tissue at the fluid/tissue boundary. The fifth (213 nm) and fourth(266 nm) harmonics of a Nd:YAG laser were launched into optical fibers using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibers were used, all commercially available. The available energy and fluence as a function of optical fiber length was evaluated and maximized. The maximum fluence available to ablate tissue was affected by the wavelength dependence of the fiber transmission; this maximum fluence was greater for 266 nm pulses (8.4 J/cm2) than for 213 nm pulses (1.4 J/cm2). The type of silica/silica optical fiber used did not affect the transmission efficiency of 266 nm pulses, but transmission of 213 nm pulses was significantly greater through modified silica/silica optical fiber. The optical fiber transmission efficiency of 213 nm pulses decreased as a function of number of pulses transmitted, whereas the transmission efficiency of 266 nm radiation was unchanged. Single pulses have been used to ablate fresh porcine ocular tissue. In summary, we report a method for delivering the fifth (213 nm) and fourth (266 nm) harmonics of a Nd:YAG laser to the surface of immersed tissue, the reliability and stability of the system has been characterized, and proof of concept via tissue ablation of porcine ocular tissue demonstrates the potential for the intraocular surgical application of this

  10. Inductive Pulse Generation

    OpenAIRE

    Lindblom, Adam

    2006-01-01

    Pulsed power generators are a key component in compact systems for generation of high-power microwaves (HPM). HPM generation by virtual cathode devices such as Vircators put high demands on the source. The rise time and the pulse length of the source voltage are two key issues in the generation of HPM radiation. This thesis describes the construction and tests of several inductive high power pulse generators. The pulse generators were designed with the intent to deliver a pulse with fast rise...

  11. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  12. Can solar power deliver?

    Science.gov (United States)

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  13. Efficient delivery of 60 J pulse energy of long pulse Nd: YAG laser ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... In this work, we have put efforts to efficiently deliver the laser output of 'ceramic reflector'-based long pulse Nd:YAG laser through a 200 m core diameter optical fibre and successfully delivered up to 60 J of pulse energy with 90% transmission efficiency, using a GRADIUM (axial gradient) plano-convex ...

  14. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... (flickering light bulbs; polyrhythmic layers). Taking our point of departure in a discussion of Gilles Deleuze’s concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces...

  15. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  16. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35 tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which finished its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. "The production is proceeding well and we expect to be complete in October as previously foreseen," said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have been delivered.

  17. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35-tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which completed its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. 'The production is proceeding well and we expect to be complete in October as foreseen,' said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have already been delivered.

  18. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  19. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  20. Intense pulsed light therapy.

    Science.gov (United States)

    Soltes, Barbara

    2010-12-01

    Intense Pulsed Light (IPL) is an FDA-approved photo therapy for the treatment of a variety of conditions such as acne and hirsutism. It utilizes the principle of selective photothermolysis. Photothermolysis allows a specific wavelength to be delivered to a chromophore of a designated tissue while leaving the surrounding tissue unaffected. The results of IPL are similar to that of laser treatments but it offers the advantage of a relative low cost. It is a safe and rapid treatment with minimal discomfort to the patient. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Analysis of folded pulse forming line operation

    Science.gov (United States)

    Domonkos, M. T.; Watrous, J.; Parker, J. V.; Cavazos, T.; Slenes, K.; Heidger, S.; Brown, D.; Wilson, D.

    2014-09-01

    A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.

  2. Pulse Oximetry

    Science.gov (United States)

    ... people need more oxygen when asleep than when awake. Some need more oxygen with activity than when ... oxygen saturation levels (below 80%) or with very dark skin. When should I use a pulse oximeter? ...

  3. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  4. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  5. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  6. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  7. Square pulse linear transformer driver

    Directory of Open Access Journals (Sweden)

    A. A. Kim

    2012-04-01

    Full Text Available The linear transformer driver (LTD technological approach can result in relatively compact devices that can deliver fast, high current, and high-voltage pulses straight out of the LTD cavity without any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The usual LTD architecture [A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, B. M. Kovalchuk, V. A. Vizir, S. N Volkov, F. Bayol, A. N. Bastrikov, V. G. Durakov, S. V. Frolov, V. M. Alexeenko, D. H. McDaniel, W. E. Fowler, K. LeCheen, C. Olson, W. A. Stygar, K. W. Struve, J. Porter, and R. M. Gilgenbach, Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402; M. G. Mazarakis, W. E. Fowler, A. A. Kim, V. A. Sinebryukhov, S. T. Rogowski, R. A. Sharpe, D. H. McDaniel, C. L. Olson, J. L. Porter, K. W. Struve, W. A. Stygar, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 12, 050401 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050401] provides sine shaped output pulses that may not be well suited for some applications like z-pinch drivers, flash radiography, high power microwaves, etc. A more suitable power pulse would have a flat or trapezoidal (rising or falling top. In this paper, we present the design and first test results of an LTD cavity that generates such a type of output pulse by including within its circular array a number of third harmonic bricks in addition to the main bricks. A voltage adder made out of a square pulse cavity linear array will produce the same shape output pulses provided that the timing of each cavity is synchronized with the propagation of the electromagnetic pulse.

  8. Delivering Science from Big Data

    Science.gov (United States)

    Quinn, Peter Joseph

    2015-08-01

    The SKA will be capable of producing a stream of science data products that are Exa-scale in terms of their storage and processing requirements. This Google-scale enterprise is attracting considerable international interest and excitement from within the industrial and academic communities. In this paper we examine the data flow, storage and processing requirements of a number of key SKA survey science projects to be executed on the baseline SKA1 configuration. Based on a set of conservative assumptions about trends for HPC and storage costs, and the data flow process within the SKA Observatory, it is apparent that survey projects of the scale proposed will potentially drive construction and operations costs beyond the current anticipated SKA1 budget. This implies a sharing of the resources and costs to deliver SKA science between the community and what is contained within the SKA Observatory. A similar situation was apparent to the designers of the LHC more than 10 years ago. We propose that it is time for the SKA project and broader community to consider the effort and process needed to design and implement a distributed science data system that leans on the lessons of other projects and looks to recent developments in Cloud technologies to ensure an affordable, effective and global achievement of science goals.

  9. High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography.

    Science.gov (United States)

    Motaghian Nezam, S M R

    2008-08-01

    A compact high-speed tuning laser source is demonstrated in two different configurations using a polygonal mirror scanner without a telescope. It is shown that the filter configuration finesse increases by utilizing multiple reflections from the polygon facet(s) and grating illumination(s). Theoretically, the free spectral range (FSR), the instantaneous linewidth, and the finesse of each filter configuration are derived. For single grating illumination, the measured coherence length, FSR, and power were 2.8 mm, 184 nm, and 40 mW at the scanning frequency of 50 kHz, respectively. Coherence length, FSR, and power of the second laser configuration were 6.2 mm, 117 nm, and 35 mW, respectively. Finally, images of a human finger were acquired in vivo using two proposed swept-source configurations.

  10. Efficient delivery of 60 J pulse energy of long pulse Nd:YAG laser ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... optical fibre and successfully delivered up to 60 J of pulse energy with 90% transmission efficiency, using a GRADIUM (axial gradient) plano-convex lens to sharply focus down the beam on the end face of the optical fibre and fibre end faces have been cleaved to achieve higher surface damage thresholds.

  11. Properties of water surface discharge at different pulse repetition rates

    Science.gov (United States)

    Ruma, Hosseini, S. H. R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, P.; Akiyama, H.

    2014-09-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H2O2) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H2O2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  12. Inductive-storage pulse-circuit device

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, W.M.; Honig, E.M.

    1982-01-21

    Inductive storage pulse circuit device is disclosed which is capable of delivering a series of electrical pulses to a load in a sequential manner. Silicon controlled rectifiers as well as spark gap switches can be utilized in accordance with the present invention. A commutation switching array is utilized to produce a reverse current to turn-off the main opening switch. A commutation capacitor produces the reverse current and is initially charged to a predetermined voltage and subsequently charged in alternating directions by the inductive storage current.

  13. Laser Pulses Characterization with Pyroelectric Sensors

    OpenAIRE

    Malka, V.; J. Faure; Y. Gauduel

    2010-01-01

    There are many industrial and medical applications of CO2 (λ=10.6 μm) and Nd:YAG (λ=1.06 μm) infrared lasers for which the quality of the process are tightly connected to the characteristic of the laser pulse. These two types of lasers deliver pulses with duration, repetition frequency and power that can be controlled by means of a programmable electronic control unit. An open-loop control generally optimize the process performances by availing of a laser system model. How...

  14. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high-pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  15. Square pulse emission with ultra-low repetition rate utilising non-linear polarisation rotation technique

    Directory of Open Access Journals (Sweden)

    Sin Jin Tan

    2014-09-01

    Full Text Available The generation of nanosecond square pulse and microsecond harmonic pulse in a passively mode-locked fibre ring laser is demonstrated by inserting a 20 km long single mode fibre in the cavity. The laser operates in anomalous region based on the non-linear polarisation rotation process. The square pulse generation is because of the dissipative soliton resonance effect, which clamps the peak intensity of the laser and broadens the pulse width. The pulse width can be tuned from 28.2 to 167.7 ns. It was found that the square pulse can deliver higher pulse energy compared with the harmonic pulse. The highest recorded pulse energy is 249.8 nJ under the maximum available pump power of 125 mW without pulse breaking.

  16. Pulsed power accelerator for material physics experiments

    Directory of Open Access Journals (Sweden)

    D. B. Reisman

    2015-09-01

    Full Text Available We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM, circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  17. Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power

    Directory of Open Access Journals (Sweden)

    Benjamin Woolley

    2017-10-01

    Full Text Available New developments relating to compact X-band, SLED-I type pulse compressors being developed at CERN for testing high gradient structures are described. Pulse compressors of interest take rf pulses from one or more high power klystrons with duration typically >1.5  μs and deliver up to 5 times the input power for a shorter duration <250  ns. Time domain models for pulse compressor operation with low level rf (LLRF control have been developed. Input drive amplitude and phase for each pulse is evolved with a control algorithm from the pulse compressor output for previous pulses. The goal is to deliver precise amplitude for pulses to test stands and precise amplitude and phase for pulses to accelerator systems. Control algorithms have been developed and validated experimentally.

  18. Modified Blumlein pulse-forming networks for bioelectrical applications.

    Science.gov (United States)

    Romeo, Stefania; Sarti, Maurizio; Scarfì, Maria Rosaria; Zeni, Luigi

    2010-07-01

    Intense nanosecond pulsed electric fields (nsPEFs) have been shown to induce, on intracellular structures, interesting effects dependent on electrical exposure conditions (pulse length and amplitude, repetition frequency and number of pulses), which are known in the literature as "bioelectrical effects" (Schoenbach et al., IEEE Trans Plasma Sci 30:293-300, 2002). In particular, pulses with a shorter width than the plasma membrane charging time constant (about 100 ns for mammalian cells) can penetrate the cell and trigger effects such as permeabilization of intracellular membranes, release of Ca(2+) and apoptosis induction. Moreover, the observed effects have led to exploration of medical applications, like the treatment of melanoma tumors (Nuccitelli et al., Biochem Biophys Res Commun 343:351-360, 2006). Pulsed electric fields allowing such effects usually range from several tens to a few hundred nanoseconds in duration and from a few to several tens of megavolts per meter in amplitude (Schoenbach et al., IEEE Trans Diel Elec Insul 14:1088-1109, 2007); however, the biological effects of subnanosecond pulses have been also investigated (Schoenbach et al., IEEE Trans Plasma Sci 36:414-422, 2008). The use of such a large variety of pulse parameters suggests that highly flexible pulse-generating systems, able to deliver wide ranges of pulse durations and amplitudes, are strongly required in order to explore effects and applications related to different exposure conditions. The Blumlein pulse-forming network is an often-employed circuit topology for the generation of high-voltage electric pulses with fixed pulse duration. An innovative modification to the Blumlein circuit has been recently devised which allows generation of pulses with variable amplitude, duration and polarity. Two different modified Blumlein pulse-generating systems are presented in this article, the first based on a coaxial cable configuration, matching microscopic slides as a pulse-delivery system

  19. Delay Efficient Method for Delivering IPTV Services

    National Research Council Canada - National Science Library

    Sangamesh; Shilpa. K. Gowda

    2014-01-01

    Internet Protocol Television (IPTV) is a system through which Internet television services are delivered using the architecture and networking methods of the Internet Protocol Suite over a packet-switched network infrastructure, e.g...

  20. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  1. Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation

    CSIR Research Space (South Africa)

    Mthunzi, P

    2011-08-01

    Full Text Available . Femtosecond (fs) laser pulses have been reported to non-invasively deliver exogenous materials, including foreign genetic species into both multipotent and pluripotent stem cells successfully. Through this multi-photon facilitated technique, directly...

  2. Development of fiber-delivered laser peening system to prevent stress corrosion cracking of reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Y.; Kimura, M.; Yoda, M.; Mukai, N.; Sato, K.; Uehara, T.; Ito, T.; Shimamura, M.; Sudo, A.; Suezono, N. [Toshiba Corp., Yokohama (Japan)

    2001-07-01

    The authors have developed a system to deliver water-penetrable intense laser pulses of frequency-doubled Nd:YAG laser through optical fiber. The system is capable of improving a residual stress on water immersed metal material remotely, which is effective to prevent the initiation of stress corrosion cracking (SCC) of reactor components. Experimental results showed that a compressive residual stress with enough amplitude and depth was built in the surface layer of type 304 stainless steel (SUS304) by irradiating laser pulses through optical fiber with diameter of 1 mm. A prototype peening head with miniaturized dimensions of 88 mm x 46 mm x 25 mm was assembled to con-firm the accessibility to the heat affected zone (HAZ) along weld lines of a reactor core shroud. The accessibility was significantly improved owing to the flexible optical fiber and the miniaturized peening head. The fiber delivered system opens up the possibility of new applications of laser peening. (author)

  3. Zeptosecond precision pulse shaping.

    Science.gov (United States)

    Köhler, Jens; Wollenhaupt, Matthias; Bayer, Tim; Sarpe, Cristian; Baumert, Thomas

    2011-06-06

    We investigate the temporal precision in the generation of ultrashort laser pulse pairs by pulse shaping techniques. To this end, we combine a femtosecond polarization pulse shaper with a polarizer and employ two linear spectral phase masks to mimic an ultrastable common-path interferometer. In an all-optical experiment we study the interference signal resulting from two temporally delayed pulses. Our results show a 2σ-precision of 300 zs = 300 × 10(-21) s in pulse-to-pulse delay. The standard deviation of the mean is 11 zs. The obtained precision corresponds to a variation of the arm's length in conventional delay stage based interferometers of 0.45 Å. We apply these precisely generated pulse pairs to a strong-field quantum control experiment. Coherent control of ultrafast electron dynamics via photon locking by temporal phase discontinuities on a few attosecond timescale is demonstrated.

  4. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yalin, Azer [Seaforth, LLC

    2014-03-30

    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  5. Photoacoustic drug delivery: the effect of laser parameters on the spatial distribution of delivered drug

    Science.gov (United States)

    Shangguan, HanQun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1995-05-01

    Photoacoustic drug delivery is a technique for delivering drugs to localized areas by timing laser-induced pressure transients to coincide with a bolus of drug. This study explores the effects of target material, laser energy, absorption coefficient, fiber size, repetition rate, and number of pulses on the spatial distribution of delivered drug. A microsecond flash-lamp pumped dye laser delivered 30-100 mJ pulses through optical fibers with diameters of 300-1000 micrometers . Vapor bubbles were created 1-5 mm above clear gelatin targets submerged in mineral oil containing a hydrophobic dye (D&C Red#17). The absorption coefficient of the oil-dye solution was varied from 50-300 cm-1. Spatially unconfined geometry was investigated. We have found that while the dye can be driven a few millimeters into the gels in both the axial and radial directions, the penetration was less than 500 micrometers when the gel surface remained macroscopically undamaged. Increasing the distance between the fiber tip and target, or decreasing the pulse energy reduced the extend of the delivery.

  6. Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power

    Science.gov (United States)

    Woolley, Benjamin; Syratchev, Igor; Dexter, Amos

    2017-10-01

    New developments relating to compact X-band, SLED-I type pulse compressors being developed at CERN for testing high gradient structures are described. Pulse compressors of interest take rf pulses from one or more high power klystrons with duration typically >1.5 μ s and deliver up to 5 times the input power for a shorter duration operation with low level rf (LLRF) control have been developed. Input drive amplitude and phase for each pulse is evolved with a control algorithm from the pulse compressor output for previous pulses. The goal is to deliver precise amplitude for pulses to test stands and precise amplitude and phase for pulses to accelerator systems. Control algorithms have been developed and validated experimentally.

  7. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  8. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  9. Is International Accounting Education Delivering Pedagogical Value?

    Science.gov (United States)

    Patel, Chris; Millanta, Brian; Tweedie, Dale

    2016-01-01

    This paper examines whether universities are delivering pedagogical value to international accounting students commensurate with the costs of studying abroad. The paper uses survey and interview methods to explore the extent to which Chinese Learners (CLs) in an Australian postgraduate accounting subject have distinct learning needs. The paper…

  10. Delivering best care in war and peace.

    Science.gov (United States)

    Moore, Alison

    2014-06-24

    Col Alan Finnegan, the fi rst Ministry of Defence professor of nursing, is driving forward research into preparing nurses for deployment and ensuring they deliver the best care possible in war and peace. Research topics range from the role of autonomous practitioners to the effects on soldiers of injuries to their genitalia.

  11. Delivering Online Examinations: A Case Study

    Directory of Open Access Journals (Sweden)

    John MESSING

    2004-07-01

    Full Text Available Delivering Online Examinations: A Case Study Jason HOWARTH John MESSING Irfan ALTAS Charles Sturt University Wagga Wagga-AUSTRALIA ABSTRACT This paper represents a brief case study of delivering online examinations to a worldwide audience. These examinations are delivered in partnership with a commercial online testing company as part of the Industry Master’s degree at Charles Sturt University (CSU. The Industry Master’s degree is an academic program for students currently employed in the IT industry. Using Internet Based Testing (IBT, these students are examined in test centres throughout the world. This offers many benefits. For example, students have the freedom of sitting exams at any time during a designated interval. Computer-based testing also provides instructors with valuable feedback through test statistics and student comments. In this paper, we document CSU’s use of the IBT system, including how tests are built and delivered, and how both human and statistical feedback is used to evaluate and enhance the testing process.

  12. Simulation of FEL pulse length calculation with THz streaking method

    Energy Technology Data Exchange (ETDEWEB)

    Gorgisyan, I., E-mail: ishkhan.gorgisyan@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne (Switzerland); Ischebeck, R.; Prat, E.; Reiche, S. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rivkin, L. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne (Switzerland); Juranić, P., E-mail: ishkhan.gorgisyan@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2016-04-02

    Simulation of THz streaking of photoelectrons created by X-ray pulses from a free-electron laser and reconstruction of the free-electron laser pulse lengths. Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump–probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision.

  13. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  14. Chaotic Pulse Trains

    CERN Document Server

    Balmforth, N J; Spiegel, E A

    1993-01-01

    Abstract: We study a third-order nonlinear ordinary differential equation whose solutions, under certain specific conditions, are individual pulses. These correspond to homoclinic orbits in the phase space of the equation and we study the possible pulse types in some detail. Sufficiently close to the conditions under which a homoclinic orbit exists, the solutions take the form of trains of well-separated pulses. A measure of closeness to homoclinic conditions provides a small parameter for the development of an asymptotic solution consisting of superposed, isolated pulses. The solvability condition in the resulting singular perturbation theory is a {\\its timing map} relating successive pulse spacings. This map of the real line onto itself, together with the known form of the homoclinic orbit, provides a concise and accurate solution of the equation.

  15. Compact pulsed electron beam system for microwave generation

    Science.gov (United States)

    Sharma, S. K.; Deb, P.; Shukla, R.; Banerjee, P.; Prabaharan, T.; Adhikary, B.; Verma, R.; Sharma, A.; Shyam, A.

    2012-11-01

    A compact 180 kV electron beam system is designed for high power microwave generation. The electron beam system is consists of a secondary energy storage device, which can deliver energy to the load at faster rate than usual primary energy storage system such as tesla transformers or marx generator. The short duration, high voltage pulse with fast rise time and good flattop is applied to vacuum diode for high power microwave generation. The compact electron beam system is made up of single turn primary tesla transformer which charges a helical pulse forming line and transfers its energy to vacuum diode through a high voltage pressurized spark gap switch. We have used helical pulse forming line which has higher inductance as compared to coaxial pulse forming line, which in turns increases, the pulse width and reduce the length of the pulse forming line. Water dielectric medium is used because of its high dielectric constant, high dielectric strength and efficient energy storage capability. The time dependent breakdown property and high relative permittivity of water makes it an ideal choice for this system. The high voltage flat-top pulse of 90 kV, 260 ns is measured across the matched load. In this article we have reported the design details, simulation and initial experimental results of 180 kV pulsed electron beam system for high power microwave generation.

  16. High-average power 4 GW pulses with sub-8 optical cycles from a Tm-doped fiber laser driven nonlinear pulse compression stage

    Science.gov (United States)

    Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Hädrich, Steffen; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2017-02-01

    Thulium-doped fiber lasers are an attractive concept for the generation of mid-infrared (mid-IR) ultrashort pulses around 2 μm wavelength with an unprecedented average power. To date, these systems deliver >150 W of average power and GW-class pulse peak powers with output pulse durations of a few hundreds of fs. As some applications can greatly benefit from even shorter pulse durations, the spectral broadening and subsequent temporal pulse compression can be a key enabling technology for high average power few-cycle laser sources around 2 μm wavelength. In this contribution we demonstrate the nonlinear compression of ultrashort pulses from a high repetition rate Tm-doped fiber laser using a nitrogen gas-filled hollow capillary. Pulses with 4 GW peak power, 46 fs FWHM duration at an average power of 15.4 W have been achieved. This is, to the best of our knowledge, the first 2 μm laser delivering intense, GW-pulses with sub 50-fs pulse duration and an average power of >10 W. Based on this result, we discuss the next steps towards a 100 W-level, GW-class few-cycle mid-IR laser.

  17. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  18. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  19. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2017-09-26

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  20. SHORT PULSE STRETCHER

    Science.gov (United States)

    Branum, D.R.; Cummins, W.F.

    1962-12-01

    >A short pulse stretching circuit capable of stretching a short puise to enable it to be displayed on a relatively slow sweeping oscilloscope is described. Moreover, the duration of the pulse is increased by charging a capacitor through a diode and thereafter discharging the capacitor at such time as is desired. In the circuit the trigger pulse alone passes through a delay line, whereas the main signal passes through the diode only, and results in over-all circuit losses which are proportional to the low losses of the diode only. (AEC)

  1. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  2. Determination of pulse profile characteristics of multi spot retinal photocoagulation lasers.

    Science.gov (United States)

    Clarkson, Douglas McG; Makhzoum, Osama; Blackburn, John

    2015-10-01

    A system is described for determination of discrete pulse train characteristics of multi spot laser delivery systems for retinal photocoagulation. While photodiodes provide an ideal detection mechanism, measurement artifacts can potentially be introduced by the spatial pattern of the delivered beam relative to a discrete photodiode element. This problem was overcome by use of an integrating sphere to produce a uniform light field at the site of the photodiode detector. A basic current driven photodiode detection circuit incorporating an operational amplifier was used to generate a signal captured by a commercially available USB interface device at a rate of 10 kHz. Studies were undertaken of a Topcon Pascal Streamline laser system with output at a wavelength of 577 nm (yellow). This laser features the proprietary feature of 'Endpoint Management' ™ where pulses can be delivered as 100% of set energy levels with visible reaction on the retina and also at a reduced energy level to create potentially non visible but clinically effective lesions. Using the pulse train measurement device it was identified that the 'Endpoint Management' ™ delivery mode of pulses of lower energy was achieved by reducing the pulse duration of pulses for non-visible effect pulses while maintaining consistent beam power levels within the delivered pulse profile. The effect of eye geometry in determining safety and effectiveness of multi spot laser delivery for retinal photocoagulation is discussed. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Delivering IT and eBusiness value

    CERN Document Server

    Willcocks, Leslie

    2001-01-01

    Delivering Business Value from IT' is focused on the evaluation issue in IT and how IT evaluation can proceed across the life-cycle of any IT investment and be linked positively to improving business performance. .Chapters 1,2 and 3 detail an approach to IT evaluation whilst chapters 4 and 5 build on these by showing two distinctive approaches to linking IT to business performance. The remaining three chapters deal with a range of evaluation issues emerging as important - specifically Internet evaluation, Y2K and beyond, EMU, quality outsourcing, infrastructure, role of benchmarking, and cost

  4. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  5. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.

    Science.gov (United States)

    Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G

    2014-10-21

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  6. DESIGNS MATTER: Delivering Information Sources for Tourism

    Directory of Open Access Journals (Sweden)

    Margie A. Nolasco

    2016-11-01

    Full Text Available Tourism has benefits not just for travelers, but also to the local economy. Since, Bicol Region has natural and cultural attractions; it is a potential travel destination in the country. Technology in delivering information sources played vital role for the success of the tourism industry in the Region. This allows travel enthusiasts to get more information about various tourist attractions. This paper analyzes the effectiveness of delivering information sources such as web advertisement and desktop publishing for tourist promotion in the Bicol Region. Specifically, it determined the status of tourism, and identified common forms of promotions for tourism development. The study adopted mixed method of research. This method was utilized to confirm and validate findings. Interviews and focus group discussions were used to gather data from the respondents of the selected Local Government Units, Department of Tourism, Travel Agencies and Hotel Agents in the Region. Based on the findings, of the total foreign visitors in the country, only 9.14% visited Bicol Region in 2014. That is why, domestic tourist showed high percentage against foreign visitors with 25.7%. Brochures with EZ maps as most commonly used desktop publishing materials and websites and social media for web advertisement. Thus, there is a need to reevaluate promotional activities by the DOT and other agencies. Adoption suggestive features for creative desktop publishing materials and web services should be considered to increase tourist visitors in the Region.

  7. A Computer Controlled Pulse Programmer for Pulsed NQR Experiments

    OpenAIRE

    Horiuchi, Keizo; 堀内, 敬三

    1987-01-01

    We constructed a computer controlled pulse programmer for the measurement of nuclear quadrupole resonance relaxation times. Programmable interval timer 8253 was used as device for pulse programming. The circuit is very simple and construction is also easy in comparison with the usual pulse programmer. This programmer is sufficiently useful concerning the pulse programming of slimple pulse sequences such as π-τ-π/2 and π/2-τ-π, which are usually used in the measurement of relaxation times. We ...

  8. Pulse shaping with transmission lines

    Science.gov (United States)

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  9. Beamlet pulsed-power system

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.

    1996-06-01

    The 13-MJ Beamlet pulsed-power system provides power to the 512 flash lamps in the cavity and booster amplifiers. Since the flash lamps pump all of the apertures in the 2 x 2 amplifier array, the capacitor bank provides roughly four times the energy required to pump the single active beam line. During the 40 s prior to the shot, the capacitors are charged by constant-current power supplies. Ignitron switches transfer the capacitor energy to the flash lamps via coaxial cables. A preionization system triggers the flash lamps and delivers roughly 1 % of the capacitor energy 200 {mu}s prior to the main discharge. This is the first time flash-lamp preionization has been used in a large facility. Preionization improves the amplifier efficiency by roughly 5% and increases the lifetime of the flash lamps. LabVIEW control panels provide an operator interface with the modular controls and diagnostics. To improve the reliability of the system, high-energy-density, self-healing, metallized dielectric capacitors are used. High-frequency, voltage-regulated switching power supplies are integrated into each module on Beamlet, allowing greater independence among the modules and improved charge voltage accuracy, flexibility, and repeatability.

  10. [Pulse oximetry in pediatric practice].

    Science.gov (United States)

    Brackel, H J; van Essen-Zandvliet, E E; de Jongste, J C; Kerrebijn, K F

    1990-02-01

    Pulse oximetry is a reliable technique for continuous, transcutaneous measurement of oxygen saturation and pulse frequency. Common indications for pulse oximetry in general pediatrics include: monitoring of oxygenation during an asthma attack, detection of apnea or hypoventilation, diagnosis of hypoxemia in patients with chronic respiratory insufficiency and monitoring of oxygen suppletion. In this article we discuss the various applications and limitations of pulse oximetry in clinical practice and describe a method to store, analyse and present pulse oximeter-results.

  11. Progress in developing repetitive pulse systems utilizing inductive energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1983-01-01

    High-power, fast-recovery vacuum switches were used in a new repetitive counterpulse and transfer circuit to deliver a 5-kHz pulse train with a peak power of 75 MW (at 8.6 kA) to a 1-..cap omega.. load, resulting in the first demonstration of fully controlled, high-power, high-repetition-rate operation of an inductive energy-storage and transfer system with nondestructive switches. New circuits, analytical and experimental results, and feasibility of 100-kV repetitive pulse generation are discussed. A new switching concept for railgun loads is presented.

  12. Combining Technologies to Deliver Distance Education

    Directory of Open Access Journals (Sweden)

    Vicki Freeman

    1999-01-01

    Full Text Available In 1997 a Health Resources and Services Administration (HRSA grant was awarded to the Department of Clinical Laboratory Sciences (CLS at The University of Texas Medical Branch - Galveston (UTMB for support of the Laboratory Education and Advancement Project (LEAP. The project entailed three primary objectives, targeting laboratory practitioners in rural and medically underserved areas of Texas for delivering a bachelor's degree, laboratory-intensive course of study via distance education. Several delivery mechanisms were utilized and evaluated for their effectiveness and friendliness to both the faculty and students. The authors discuss and describe the mechanisms utilized for delivery of courses, the advantages and disadvantages encountered with each mechanism, and subjective evaluation of the effectiveness of the courses. Also discussed are the lessons learned and plans for future development.

  13. Intranasal formulations: promising strategy to deliver vaccines.

    Science.gov (United States)

    Riese, Peggy; Sakthivel, Priya; Trittel, Stephanie; Guzmán, Carlos A

    2014-10-01

    The emergence of new diseases and the lack of efficient vaccines against numerous non-treatable pathogens require the development of novel vaccination strategies. To date, only a few mucosal vaccines have been approved for humans. This was in part due to i) the use of live attenuated vaccines, which are not suitable for certain groups of individuals, ii) safety concerns derived from implementation in humans of some mucosal vaccines, iii) the poor stability, absorption and immunogenicity of antigens delivered by the mucosal route and iv) the limited number of available technologies to overcome the bottlenecks associated with mucosal antigen delivery. Recent advances make feasible the development of efficacious mucosal vaccines with adequate safety profile. Thus, currently intranasal vaccines represent an attractive and valid alternative to conventional vaccines. The present review is focused on the potentials and limitations of market-approved intranasal vaccines and promising candidates undergoing clinical investigations. Furthermore, emerging strategies to overcome main bottlenecks including efficient breaching of the mucosal barrier and safety concerns by implementation of new adjuvants and delivery systems are discussed. The rational design of intranasal vaccines requires an in-depth understanding of the anatomic, physicochemical and barrier properties of the nasal mucosa, as well as the molecular mechanisms governing the activation of the local innate and adaptive immune system. This would provide the critical knowledge to establish effective approaches to deliver vaccine antigens across the mucosal barrier, supporting the stimulation of a long-lasting protective response at both mucosal and systemic levels. Current developments in the area of adjuvants, nanotechnologies and mucosal immunology, together with the identification of surface receptors that can be exploited for cell targeting and manipulating their physiological properties, will become instrumental

  14. Determining transthoracic impedance, delivered energy, and peak current during defibrillation episodes.

    Science.gov (United States)

    Jones, V C; Charbonnier, F M; Long, P

    1981-01-01

    A simplified method has been developed to determine peak current, transthoracic impedance, and delivered energy during a damped sinusoidal defibrillation pulse. The discharge waveform information is generated from sampling the peak discharge current through a current transformer and measuring the voltage stored on the energy storage capacitor. For a given defibrillator circuit a unique relationship exists between the peak discharge current IM and the unknown external impedance Rext presented to the defibrillator by the patient; hence, measurement of IM allows calculation of Rext. A microprocessor-controlled algorithm provides delivered energy information using known internal resistance, capacitance, and inductance parameters. The benefit of this method of delivered energy calculation is that the current and voltage waveforms need not be digitized and then integrated to provide the desired information. This method also keeps defibrillation circuitry ground isolated and simplifies operation through the high electromagnetic fields generated during the discharge. The delivered energy information, along with time, date, and other patient parameters, is documented automatically with an annotation strip-chart recorder.

  15. Pulsed welding plasma source

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  16. Discharge pulse phenomenology

    Science.gov (United States)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  17. Standard Test Method for Measuring Dose for Use in Linear Accelerator Pulsed Radiation Effects Tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers a calorimetric measurement of the total dose delivered in a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode) used as an ionizing source in radiation-effects testing. The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are“thin” compared to the range of these electrons in the materials of which they are constructed. 1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy (matl) (500 rd (matl)) or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. Matl refers to the material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity...

  18. Two pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  19. Millimicrosecond pulse techniques

    CERN Document Server

    Lewis, Ian A D

    1959-01-01

    Millimicrosecond Pulse Techniques, Second Edition focuses on millimicrosecond pulse techniques and the development of devices of large bandwidth, extending down to comparatively low frequencies (1 Mc/s). Emphasis is on basic circuit elements and pieces of equipment of universal application. Specific applications, mostly in the field of nuclear physics instrumentation, are considered. This book consists of eight chapters and opens with an introduction to some of the terminology employed by circuit engineers as well as theoretical concepts, including the laws of circuit analysis, Fourier analysi

  20. Pulsed ESP handles AFBC

    Energy Technology Data Exchange (ETDEWEB)

    Larva, J.; Wilkomm, T.; Lugar, T.; Follett, R.E.

    1988-08-01

    The Black Dog 2 retrofit AFBC at Burnsville, Minnesota started coal firing in June 1986 using the units' existing precipitators for particulate control. The effects of various fuel blends, bed material, pulse power supplies and air atomized water injection flue gas conditioning were studied. The plant has been used for tests in the following areas: fired clay bed material, higher sulfur coal blends, ash recycle optimization, improved boiler operation, improved air heater thermal performance, improved rapper effectiveness, barbed wire electrodes, intermittent energization controls, pulse energization, and water injection. 4 refs., 4 figs., 1 tab.

  1. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  2. Design Environment for Novel Vertical Lift Vehicles: DELIVER

    Science.gov (United States)

    Theodore, Colin

    2016-01-01

    This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.

  3. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  4. Delivering flavonoids into solid tumors using nanotechnologies.

    Science.gov (United States)

    Wang, Shengpeng; Zhang, Jinming; Chen, Meiwan; Wang, Yitao

    2013-10-01

    Long-term epidemiological studies have demonstrated that regular ingestion of flavonoids contained in dietary sources is associated with a reduced risk for many chronic diseases including cancer. However, although flavonoids are largely consumed in the diet and high concentrations may exist in the intestine after oral administration, the plasma/tissue concentrations of flavonoids are lower than their effective therapeutic doses due to poor bioavailability, resulting in the limited efficacy of flavonoids in various clinical studies. Therefore, the application of nanotechnology to deliver flavonoids to tumor sites has received considerable attention in recent years. In this review, after a general review of the potential benefits of flavonoids in cancer therapy and several key factors affecting their bioavailability, the current efforts in improving the delivery efficacy of promising candidates that are particularly important in the human diet, namely quercetin, epigallocatechin-3-gallate (EGCG) and genistein were focused on. Finally, the challenges of developing flavonoid delivery systems that improve flavonoid bioavailability and their anticancer therapy potentials were summarized. The design of suitable molecular carriers for flavonoids is an area of research that is in rapid progress. A large number of unheeded promising favonoids are suffering from poor in vivo parameters, their potential benefits deserves further research. Furthermore, more effort should be placed on developing active targeting systems, evaluating the efficacy and toxicity of novel flavonoid delivery systems through small and large scale clinical trials.

  5. Delivering new physics at impressive speed

    CERN Multimedia

    2010-01-01

    The speed with which the heavy ion run at the LHC is delivering new physics is impressive not only for the insights it is bringing to the early Universe, but also for the clear demonstration it gives of the value of competition and complementarity between the experiments.   ALICE was the first off the mark to publish papers from the ion run, as you’d expect from the LHC’s dedicated ion experiment, but results emerging from ATLAS and CMS are bringing new understanding in their own right. Each collaboration’s result plays to the strengths of its detector, and it is by taking all the results together that our knowledge advances. The creation, observation and understanding of the hot dense matter that would have existed in the early Universe, normally known as Quark Gluon Plasma (QGP), is complex science and one of the ion programme’s key goals. Many signals for QGP exist, and like pieces of a puzzle, we must assemble all of them to get the full picture. At th...

  6. Polymers for delivering peptides and proteins.

    Science.gov (United States)

    Burnham, N L

    1994-01-15

    The use of polymers for delivering peptide and protein drugs is described. Soluble-polymer technology attempts to bind a polymer to all sites on therapeutic protein molecules that cause the body to recognize the molecules as foreign. Goals include a stable linkage, water solubility, low immunogenicity, prolonged half-life, and intact biological activity. Polyethylene glycol (PEG)-adenosine deaminase (ADA), or pegademase bovine, has FDA-approved labeling as replacement therapy for ADA deficiency in patients with severe combined immunodeficiency disease who are not suitable candidates for bone marrow transplantation. Pegademase bovine reverses the toxic accumulation of adenosine and deoxyadenosine in adenosine deaminase-deficient cells, restoring the immune system. PEG-asparaginase (pegaspargase) has shown promise in patients with acute lymphocytic leukemia; allergic reactions have been minimal. Animal studies suggest that superoxide dismutase has potential use in conditions in which the body's ability to remove oxygen free radicals is reduced, such as burns and myocardial infarction; coupling with PEG may greatly increase the protein's half-life. Other PEG-conjugated proteins under investigation include PEG-catalase, PEG-uricase, PEG-honeybee venom, PEG-hemoglobin, and PEG-modified ragweed pollen extract. Dextran, albumin, DL-amino acids, and polyvinyl pyrrolidone have also been studied as protein carriers; most of the products created thus far have not shown much promise. The coupling of polymers to proteins has yielded protein drugs with intact biological activity and reduced immunogenicity, but much remains to be learned about this technology.

  7. Where should noninvasive ventilation be delivered?

    Science.gov (United States)

    Hill, Nicholas S

    2009-01-01

    Noninvasive ventilation (NIV) has assumed an important role in the management of certain types of respiratory failure in acute-care hospitals. However, the optimal location for NIV has been a matter of debate. Some have argued that all patients begun on NIV in the acute-care setting should go to an intensive care unit (ICU), but this is impractical because ICU beds are often unavailable, and it may not be a sensible use of resources. Also, relatively few studies have examined the question of location for NIV. One problem is that various units' capabilities to deliver NIV differ substantially, even in the same hospital. Choosing the appropriate environment for NIV requires consideration of the patient's need for monitoring, the monitoring capabilities of the unit, including both technical and personnel resources (nursing and respiratory therapy), and the staff's skill and experience. In some hospitals NIV is begun most often in the emergency department, but is most often managed in an ICU. Step-down units are often good locations for NIV, but many institutions do not have step-down units. With ICU beds at a premium, many hospitals are forced to manage some NIV patients on general wards, which can be safely done with more stable patients if the ward is suitably monitored and experienced. When deciding where to locate the patient, clinicians must be familiar with the capabilities of the units in their facility and try to match the patient's need for monitoring and the unit's capabilities.

  8. Optogenetic light pulses generator

    Science.gov (United States)

    Erofeev, A. I.; Matveev, M. V.; Zakharova, O. A.; Terekhin, S. G.; Kilimnik, V. A.; Bezprozvanny, I. B.; Vlasova, O. L.

    2017-11-01

    To date, optogenetics is one of the most popular methods in the world in neuroscience. There are new equipment and devices created to keep the progress of this method. This article describes a light pulse generator developed at the Laboratory of Molecular Neurodegeneration, designed for optogenetic experiments.

  9. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  10. Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses.

    Science.gov (United States)

    Genc, Suzanne L; Ma, Huan; Venugopalan, Vasan

    2014-08-11

    We demonstrate the formation of low- and high-density plasmas in aqueous media using sub-nanosecond laser pulses delivered at low numerical aperture (NA = 0.25). We observe two distinct regimes of plasma formation in deionized water, phosphate buffered saline, Minimum Essential Medium (MEM), and MEM supplemented with phenol red. Optical breakdown is first initiated in a low-energy regime and characterized by bubble formation without plasma luminescence with threshold pulse energies in the range of Ep ≈ 4-5 μJ, depending on media formulation. The onset of this regime occurs over a very narrow interval of pulse energies and produces small bubbles (Rmax = 2-20 μm) due to a tiny conversion (η media formulations without FBS can provide for cellular manipulation at high throughput with precision approaching that of femtosecond pulses delivered at high NA.

  11. A capacitor discharge, quasi-trapezoidal pulse generator for particle extraction

    CERN Document Server

    Bonthond, J

    1995-01-01

    In the CERN SPS Accelerator two methods for particle extraction are used. One of these methods, called Slow Extraction, delivers extracted beams with a duration of up to several seconds to the majority of experiments. The other one, the Fast Resonant Extraction, providing particle bursts with a duration of a few milliseconds, is used for neutrino experiments. For the latter kind of extraction a quadrupole magnet is installed, which is connected to a high voltage pulse generator delivering quasi-trapezoïdal current pulses. The pulse generator is a capacitor discharge system generating current pulses, with a rising slope having 2 different gradients, of which the second one is approximately zero. The falling slope is obtained through natural decay in a freewheel circuit. The use of modern GTO (Gate Turn Off) power switches resulted in a much simpler circuit than the use of standard thyristors would have permitted.

  12. A compact nanosecond pulse modulator

    Science.gov (United States)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  13. Wide spectrum microwave pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    King, R.J.

    1986-01-01

    Various techniques are postulated as diagnostics for wide band microwave pulses. The diagnostics include determinations of both the instantaneous amplitude and the frequency content of one-shot pulses. 6 refs., 11 figs. (WRF)

  14. Effect of force on ablation depth for a XeCl excimer laser beam delivered by an optical fiber in contact with arterial tissue under saline

    NARCIS (Netherlands)

    Gijsbers, G. H.; van den Broecke, D. G.; Sprangers, R. L.; van Gemert, M. J.

    1992-01-01

    The effect of force applied to a 430 micron single fiber, delivering 60 pulses of 308 nm XeCl laser radiation at 20 Hz, on the ablation depth in porcine aortic tissue under saline has been investigated. Energy densities of 8, 15, 25, 28, 31, 37, and 45 mJ/mm2 were used. Force was applied by adding

  15. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  16. Bacterial inactivation using pulsed light

    OpenAIRE

    Elmnasser, Noura; Ritz, Magali; Leroi, Francoise; Orange, Nicole; Bakhrouf, Amina; Federighi, Michel

    2007-01-01

    Pulsed light is a new method intended for the decontamination of food surfaces using short, high frequency pulses of an intense broad spectrum. The effects of broad spectrum pulsed light on the survival of Listeria monocytogenes Scott A, Listeria monocytogenes CNL, Pseudomonas fluorescens MF37 and Photobacterium phosphoreum SF680 populations on agar and in a liquid medium were investigated during this study. The sterilisation system generated 1.5 J cm(-2) per pulse with eight lamps for 300 mu...

  17. Development of the LPT9510 1 W Concentric Pulse Tube

    Science.gov (United States)

    Mullié, J. C.; Bruins, P. C.; Benschop, T.; Charles, I.; Coynel, A.; Duband, L.

    2006-04-01

    In order to provide cryogenic cooling for applications that are extremely sensitive to mechanical vibration, Thales Cryogenics has been delivering U-shape pulse tube cryocoolers since 2001. The disadvantage of the U-shape design is that the available regenerator volume is too limited if the application puts constrains on the overall diameter of the cold finger, thus limiting the coolers efficiency. As presented at CEC/ICMC 2003, Thales Cryogenics and CEA/SBT have achieved very good results with a large concentric pulse tube delivering 4W @ 77K driven by a flexure bearing compressor. Furthermore, the same team, together with Air Liquide DTA, developed a very efficient 1W pulse tube cooler for the ESA MPTC project. Based on the experiences obtained with those programs, Thales Cryogenics and CEA/SBT have now developed a small concentric pulse tube that is driven by a flexure bearing compressor. The result is a very compact and reliable cooler, with an efficiency that is nearly doubled compared to the U-shape version with the same overall external diameter dimensions. This paper describes the trade-offs that have been considered in the design phase, and gives a detailed overview of the test results, the status of the qualification program and a comparison with a comparable Stirling cold finger.

  18. Massively parallel delivery of large cargo into mammalian cells with light pulses

    OpenAIRE

    Wu, YC; Wu, TH.; Clemens, DL; Lee, BY; Wen, X.; Horwitz, MA; Teitell, MA; Chiou, PY

    2015-01-01

    © 2015 Nature America, Inc. We report a high-throughput platform for delivering large cargo elements into 100,000 cells in 1 min. Our biophotonic laser-assisted surgery tool (BLAST) generates an array of microcavitation bubbles that explode in response to laser pulsing, forming pores in adjacent cell membranes through which cargo is gently driven by pressurized flow. The platform delivers large items including bacteria, enzymes, antibodies and nanoparticles into diverse cell types with high e...

  19. Massively Parallel Delivery of Large-Sized Cargo into Mammalian Cells with Light Pulses

    OpenAIRE

    Wu, Yi-Chien; Wu, Ting-Hsiang; Clemens, Daniel L.; Lee, Bai-Yu; Wen, Ximiao; Horwitz, Marcus A.; Teitell, Michael A.; Chiou, Pei-Yu

    2015-01-01

    We report a high-throughput platform for delivering large cargo into 100,000 cells in 1 min. An array of micro-cavitation bubbles explode in response to laser pulsing, forming pores in adjacent cell membranes, and immediately thereafter, pressurized flows drive slow diffusing cargo through these pores into cells. The platform delivers large cargo including bacteria, enzymes, antibodies, and nanoparticles into diverse cell types with high efficiency and cell viability. We used this platform to...

  20. Effect of pulse width on object movement in vitro using holmium:YAG laser.

    Science.gov (United States)

    Kalra, Pankaj; Le, Ngoc-Bich; Bagley, Demetrius

    2007-02-01

    The holmium:YAG laser is an effective modality for intracorporeal lithotripsy. The fiber tip needs to be in contact with the calculus for maximal effect. Laser energy can cause stone retropulsion, necessitating cumbersome repositioning of the fiber. We examined the effect of varying the laser pulse width on object movement in vitro. Two experiments were conducted using a holmium:YAG laser at the 350-microsec and 700-microsec pulse-width settings. In the first experiment, one pulse was delivered to a non-fragmentable ball bearing at increasing energy settings, and object displacement was measured. In the second experiment, a train of pulses was delivered to a fragmentable soda lime phantom at increasing energy settings, and the total energy delivered before movement from the tip of the fiber was determined. The mean ball bearing movement was significantly greater at the 350-microsec setting with a 200-microm fiber (P waves from Ho:YAG lithotripsy are less than with other modalities, yet some retropulsion occurs. The duration of the laser pulse can influence shockwave generation and object migration. Longer pulse width results in less object movement after one shock and more energy delivery during repetitive shocks. Clinically, this regimen may reduce the need for fiber readjustment and lead to more efficient stone fragmentation.

  1. International magnetic pulse compression

    Science.gov (United States)

    Kirbie, H. C.; Newton, M. A.; Siemens, P. D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12-14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card - its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  2. PULSE Pilot Certification Results

    Directory of Open Access Journals (Sweden)

    Pamela Pape-Lindstrom

    2015-08-01

    Full Text Available The pilot certification process is an ambitious, nationwide endeavor designed to motivate important changes in life sciences education that are in line with the recommendations of the 2011 Vision and Change Report: A Call to Action (American Association for the Advancement of Science [AAAS], 2011.  It is the goal of the certification process to acknowledge departments that have progressed towards full implementation of the tenets of Vision and Change and to motivate departments that have not begun to adopt the recommendations to consider doing so.  More than 70 life science departments applied to be part of the pilot certification process, funded by a National Science Foundation grant, and eight were selected based on initial evidence of transformed and innovative educational practices.  The programs chosen represent a wide variety of schools, including two-year colleges, liberal-arts institutions, regional comprehensive colleges, research universities and minority serving institutions.  Outcomes from this pilot were released June 1, 2015 (www.pulsecommunity.org, with all eight programs being recognized as having progressed along a continuum of change.  Five levels of achievement were defined as PULSE Pilot Progression Levels.  Of the eight departments in the pilot, one achieved “PULSE Progression Level III: Accomplished”.  Six departments achieved “PULSE Progression Level II: Developing” and one pilot department achieved “PULSE Progression Level I: Beginning”.  All of the schools have made significant movement towards the recommendations of Vision and Change relative to a traditional life sciences curriculum.  Overall, the response from the eight pilot schools has been positive. 

  3. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  4. Modeling Pilot Pulse Control

    Science.gov (United States)

    Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal

    2017-01-01

    In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).

  5. High precision laser direct microstructuring system based on bursts of picosecond pulses

    Science.gov (United States)

    Mur, Jaka; Petelin, Jaka; Osterman, Natan; Petkovšek, Rok

    2017-08-01

    We have developed an efficient, high precision system for direct laser microstructuring using fiber laser generated bursts of picosecond pulses. An advanced opto-mechanical system for beam deflection and sample movement, precise pulse energy control, and a custom built fiber laser with the pulse duration of 65 ps have been combined in a compact setup. The setup allows structuring of single-micrometer sized objects with a nanometer resolution of the laser beam positioning due to a combination of acousto-optical laser beam deflection and tight focusing. The precise synchronization of the fiber laser with the pulse burst repetition frequency of up to 100 kHz allowed a wide range of working parameters, including a tuneable number of pulses in each burst with the intra-burst repetition frequency of 40 MHz and delivering exactly one burst of pulses to every chosen position. We have demonstrated that tightly focused bursts of pulses significantly increase the ablation efficiency during the microstructuring of a copper layer and shorten the typical processing time compared to the single pulse per spot regime. We have used a simple short-pulse ablation model to describe our single pulse ablation data and developed an upgrade to the model to describe the ablation with bursts. Bursts of pulses also contribute to a high quality definition of structure edges and sides. The increased ablation efficiency at lower pulse energies compared to the single pulse per spot regime opens a window to utilize compact fiber lasers designed to operate at lower pulse energies, reducing the overall system complexity and size.

  6. Fault-Protected Laser Diode Drivers for Improving the Performance and Lifetime of Multiple-Millisecond, Long-Pulse LDAs for NASA LIDAR Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project will develop and deliver revolutionary driver technology with intelligent fault protection for driving long-pulse (> 2msec), quasi-CW laser...

  7. Thermal detection thresholds of Aδ- and C-fibre afferents activated by brief CO2 laser pulses applied onto the human hairy skin

    National Research Council Canada - National Science Library

    Churyukanov, Maxim; Plaghki, Léon; Legrain, Valéry; Mouraux, André

    2012-01-01

    .... Here, using a novel CO(2) laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive...

  8. Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element.

    Science.gov (United States)

    Chin, Sanghooon; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2009-11-23

    We experimentally demonstrate complete compensation of pulse broadening in an amplifier-based slow light system. The configuration of the delay line basically consists of two stages: a conventional Brillouin slow light system and a nonlinear regeneration element. Signal pulses experienced both time delay and temporal broadening through the Brillouin delay line and then the delayed pulses were delivered into a nonlinear optical loop mirror. Due to the nonlinear response of the transmission of the fiber loop, the inevitably broadened pulses were moderately compressed in the output of the loop, without loss in the capacity to delay the pulses. The overall result is that, for the maximum delay, the width of the pulse could be kept below the input width while the time delays introduced by the slow light element were preserved. Using this delay line, a signal pulse with duration of 27 ns at full width at half maximum was delayed up to 1.3-bits without suffering from signal distortion.

  9. Petawatt pulsed-power accelerator

    Science.gov (United States)

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  10. Foundations of pulsed power technology

    CERN Document Server

    Lehr, Janet

    2018-01-01

    Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interferen...

  11. Spatially resolved small-angle noncollinear interferometric autocorrelation of ultrashort pulses with microaxicon arrays.

    Science.gov (United States)

    Grunwald, R; Griebner, U; Nibbering, E T; Kummrow, A; Rini, M; Elsaesser, T; Kebbel, V; Hartmann, H J; Jüptner, W

    2001-11-01

    Small-angle, noncollinear, first- and second-order interferometric autocorrelation experiments with Ti:sapphire laser pulses of 9-80-fs duration have been performed with microaxicon arrays. Predictions of short-pulse spatial frequency effects were verified by comparison of interference patterns of single elements and matrices. An angular spectrum of Gaussian-shaped axicons was analyzed on the basis of linear refraction. Experimental data indicate contributions to autocorrelation by nonlinear refraction and travel-time differences. The influence of the spectral bandwidth was separated from the pulse-duration-dependent effects. Spatially resolved information about the coherence time was delivered by the multichannel structure.

  12. Radio-Frequency Pulse Compression for Linear Accelerators.

    Science.gov (United States)

    Nantista, Christopher Dennis

    Recent efforts to develop plans for an electron -positron linear collider with center-of-mass energy approaching a TeV have highlighted the need for sources capable of delivering hundreds of megawatts of peak rf drive power at X-band frequencies. This need has driven work in the area of rf pulse compression, which enhances the peak power available from pulsed rf tubes by compressing their output pulses in time, accumulating the available energy into shorter pulses. The classic means of rf pulse compression for linear accelerators is SLED. This technique is described, and the problem it presents for multibunch acceleration explained. Other pulse compression schemes, capable of producing suitable output pulses are explored, both theoretically and experimentally, in particular Binary Pulse Compression and SLED-II. The merits of each are considered with regard to gain, efficiency, complexity, size and cost. The development of some novel system components, along with the theory behind their design, is also discussed. The need to minimize copper losses in long waveguide runs led to the use of the circular TE_{01} propagation mode in over-moded guide, requiring much attention to mechanisms of coupling power between modes. The construction and commissioning of complete, high-power pulse compression systems is reported on, as well as their use in the testing of X-band accelerating structures, which, along with the X-band klystrons used, were developed at SLAC in parallel with the pulse compression work. The focus of the dissertation is on SLED-II, the favored scheme in some current linear accelerator designs. In addition to our experimental results, practical implementation considerations and design improvements are presented. The work to date has led to detailed plans for SLED-II systems to be used in the Next Linear Collider Test Accelerator, now under construction at SLAC. The prototype of the upgraded system is near completion. Descriptions of various rf pulse

  13. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  14. Microwave and Pulsed Power

    Energy Technology Data Exchange (ETDEWEB)

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  15. Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord.

    Science.gov (United States)

    Sayenko, Dimitry G; Atkinson, Darryn A; Floyd, Terrance C; Gorodnichev, Ruslan M; Moshonkina, Tatiana R; Harkema, Susan J; Edgerton, V Reggie; Gerasimenko, Yury P

    2015-11-16

    It was demonstrated previously that transcutaneous electrical stimulation of multiple sites over the spinal cord is more effective in inducing robust locomotor behavior as compared to the stimulation of single sites alone in both animal and human models. To explore the effects and mechanisms of interactions during multi-site spinal cord stimulation we delivered transcutaneous electrical stimulation to the single or dual locations over the spinal cord corresponding to approximately L2 and S1 segments. Spinally evoked motor potentials in the leg muscles were investigated using single and paired pulses of 1ms duration with conditioning-test intervals (CTIs) of 5 and 50ms. We observed considerable post-stimulation modulatory effects which depended on CTIs, as well as on whether the paired stimuli were delivered at a single or dual locations, the rostro-caudal relation between the conditioning and test stimuli, and on the muscle studied. At CTI-5, the paired stimulation delivered at single locations (L2 or S1) provided strong inhibitory effects, evidenced by the attenuation of the compound responses as compared with responses from either single site. In contrast, during L2-S1 paradigm, the compound responses were potentiated. At CTI-50, the magnitude of inhibition did not differ among paired stimulation paradigms. Our results suggest that electrical stimuli delivered to dual sites over the lumbosacral enlargement in rostral-to-caudal order, may recruit different populations of motor neurons initially through projecting sensory and intraspinal connections and then directly, resulting in potentiation of the compound spinally evoked motor potentials. The interactive and synergistic effects indicate multi-segmental convergence of descending and ascending influences on the neuronal circuitries during electrical spinal cord stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Fiber optic picosecond laser pulse transmission line for hydrogen ion beam longitudinal profile measurement.

    Science.gov (United States)

    Huang, Chunning; Liu, Yun; Aleksandrov, Alexander

    2013-07-01

    We present a fiber optic laser pulse transmission line for nonintrusive longitudinal profile measurement of the hydrogen ion (H(-)) beam at the front-end of the Spallation Neutron Source accelerator. The 80.5 MHz, 2.5 ps, multikilowatt optical pulses are delivered to the accelerator beam line through a large-mode-area polarization-maintaining optical fiber to ensure high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter, and pulse width broadening over a 30 m long fiber line are experimentally investigated. A successful measurement of the H(-) beam microbunch (~130 ps) profile is obtained. The experiment is the first demonstration to our knowledge of particle beam profile diagnostics using a fiber optic laser pulse transmission line.

  17. A Pulsed Sphere Tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Dermott E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-30

    Here I attempt to explain what physically happens when we pulse an object with neutrons, specifically what we expect the time dependent behavior of the neutron population to look like. Emphasis is on the time dependent emission of both prompt and delayed neutrons. I also describe how the TART Monte Carlo transport code models this situation; see the appendix for a complete description of the model used by TART. I will also show that, as we expect, MCNP and MERCURY, produce similar results using the same delayed neutron model (again, see the appendix).

  18. Africa's Pulse, October 2014

    OpenAIRE

    Punam, Chuhan-Pole; Ferreira, Francisco H. G.

    2014-01-01

    Africa’s Pulse is a biannual publication containing an analysis of the near-term macro-economic outlook for the region. It also includes a section focusing on a topic that represents a particular development challenges for the continent. It is produced by the Office of the Chief Economist for the Africa Region.This issue is an analysis of issues shaping Africa's economic future. Growth remains stable in Sub-Saharan Africa. Some countries are seeing a slowdown, but the region's economic pros...

  19. Oral microflora in infants delivered vaginally and by caesarean section

    DEFF Research Database (Denmark)

    Nelun Barfod, Mette; Magnusson, Kerstin; Lexner, Michala Oron

    2011-01-01

    International Journal of Paediatric Dentistry 2011 Background. Early in life, vaginally delivered infants exhibit a different composition of the gut flora compared with infants delivered by caesarean section (C-section); however, it is unclear whether this also applies to the oral cavity. Aim...

  20. The Use of Freshmen Seminar Programs to Deliver Personalized Feedback

    Science.gov (United States)

    Henslee, Amber M.; Correia, Christopher J.

    2009-01-01

    The current study tested the effectiveness of delivering personalized feedback to first-semester college freshmen in a group lecture format. Participants enrolled in semester-long courses were randomly assigned to receive either personalized feedback or general information about alcohol. Both lecture conditions were delivered during a standard…

  1. A Randomized Trial of Contingency Management Delivered by Community Therapists

    Science.gov (United States)

    Petry, Nancy M.; Alessi, Sheila M.; Ledgerwood, David M.

    2012-01-01

    Objective: Contingency management (CM) is an evidence-based treatment, but few clinicians deliver this intervention in community-based settings. Method: Twenty-three clinicians from 3 methadone maintenance clinics received training in CM. Following a didactics seminar and a training and supervision period in which clinicians delivered CM to pilot…

  2. Measuring changes in consumer resource availability to riverine pulsing in Breton Sound, Louisiana, USA.

    Science.gov (United States)

    Piazza, Bryan P; La Peyre, Megan K

    2012-01-01

    Resource pulses are thought to structure communities and food webs through the assembly of consumers. Aggregated consumers represent a high quality resource subsidy that becomes available for trophic transfer during and after the pulse. In estuarine systems, riverine flood pulses deliver large quantities of basal resources and make high quality habitat available for exploitation by consumers. These consumers represent a change in resources that may be available for trophic transfer. We quantified this increased consumer resource availability (nekton density, biomass, energy density) provided by riverine flood pulsing in Breton Sound, Louisiana, USA. We used water level differences between an area subject to two experimental riverine flood pulses (inflow) and a reference area not receiving inflow to identify the percentage of nekton standing stock and energy density that may be attributable solely to riverine pulsing and may represent a consumer resource subsidy. Riverine pulsing accounted for more than 60% of resident nekton density (ind m(-2)), biomass (g m(-2)), and energy density (cal m(-2)) on the flooded marsh surface during two experimental pulse events in 2005. Our results document the potential subsidy of resident nekton standing stock from a riverine flood pulse available for export to subtidal habitats. Given predicted large scale changes in river discharge globally, this approach could provide a useful tool for quantifying the effects of changes in riverine discharge on consumer resource availability.

  3. Measuring changes in consumer resource availability to riverine pulsing in Breton Sound, Louisiana, USA.

    Directory of Open Access Journals (Sweden)

    Bryan P Piazza

    Full Text Available Resource pulses are thought to structure communities and food webs through the assembly of consumers. Aggregated consumers represent a high quality resource subsidy that becomes available for trophic transfer during and after the pulse. In estuarine systems, riverine flood pulses deliver large quantities of basal resources and make high quality habitat available for exploitation by consumers. These consumers represent a change in resources that may be available for trophic transfer. We quantified this increased consumer resource availability (nekton density, biomass, energy density provided by riverine flood pulsing in Breton Sound, Louisiana, USA. We used water level differences between an area subject to two experimental riverine flood pulses (inflow and a reference area not receiving inflow to identify the percentage of nekton standing stock and energy density that may be attributable solely to riverine pulsing and may represent a consumer resource subsidy. Riverine pulsing accounted for more than 60% of resident nekton density (ind m(-2, biomass (g m(-2, and energy density (cal m(-2 on the flooded marsh surface during two experimental pulse events in 2005. Our results document the potential subsidy of resident nekton standing stock from a riverine flood pulse available for export to subtidal habitats. Given predicted large scale changes in river discharge globally, this approach could provide a useful tool for quantifying the effects of changes in riverine discharge on consumer resource availability.

  4. Bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  5. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  6. Assembly delay line pulse generators

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  7. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  8. Observations of Infrared Radiation During Disruptions in Textor - Heat Pulses and Runaway Electrons

    NARCIS (Netherlands)

    R. Jaspers,; Grewe, T.; Finken, K.H.; KramerFlecken, A.; Cardozo, N. J. L.; Mank, G.; Waidmann, G.

    1995-01-01

    Disruptions are studied in TEXTOR using two infrared cameras. In the thermal quench phase, fast changing heat fluxes are observed, each delivering energies larger than 1 kJ/m(2) to the limiter. These bursts are correlated with an electron temperature pulse near the limiter and an increased release

  9. Effect of the Bit Rate on the Pulses of the Laser Diodes | Ayadi ...

    African Journals Online (AJOL)

    The qualities required for Laser Diodes are their spatial and temporal coherence, and their performance in terms modulation. This paper presents the effect data rate of optical pulses delivered by diode laser using software COMSIS. Two types of modulation have been considered: direct modulation and external modulation.

  10. Pulse Dispersion in Phased Arrays

    Directory of Open Access Journals (Sweden)

    Randy L. Haupt

    2017-01-01

    Full Text Available Phased array antennas cause pulse dispersion when receiving or transmitting wideband signals, because phase shifting the signals does not align the pulse envelopes from the elements. This paper presents two forms of pulse dispersion that occur in a phased array antenna. The first results from the separation distance between the transmit and receive antennas and impacts the definition of far field in the time domain. The second is a function of beam scanning and array size. Time delay units placed at the element and/or subarrays limit the pulse dispersion.

  11. Analysis of Pulse Modulated Control Systems (Ⅲ) Stability of Systems with Pulse Frequency Modulation and Systems with Combined Pulse Frequency and Pulse Width Modulation

    OpenAIRE

    OI,Shigemitsu

    1993-01-01

    Sufficient conditions for finite pulse stability of interconnected systems with combined pulse frequency and pulse width modulation are developed in this paper using a direct method. The stability criteria established provide upper bounds on the number of pulses emitted by each modulator. The results are also applicable to those systems which contain a finite number of pulse frequency modulators and a finite number of combined pulse frequency and pulse width modulators

  12. Pulsed depressed collector

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  13. Nanofabrication with Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    Kabashin AV

    2010-01-01

    Full Text Available Abstract An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3, is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  14. Capacitor discharge pulse analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  15. Design, characterization and experimental validation of a compact, flexible pulsed power architecture for ex vivo platelet activation.

    Directory of Open Access Journals (Sweden)

    Allen L Garner

    Full Text Available Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation.

  16. Design, characterization and experimental validation of a compact, flexible pulsed power architecture for ex vivo platelet activation.

    Science.gov (United States)

    Garner, Allen L; Caiafa, Antonio; Jiang, Yan; Klopman, Steve; Morton, Christine; Torres, Andrew S; Loveless, Amanda M; Neculaes, V Bogdan

    2017-01-01

    Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation.

  17. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  18. Electrode cartridge for pulse welding

    Energy Technology Data Exchange (ETDEWEB)

    Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas

    2017-06-14

    A cartridge assembly for a tool includes a cartridge body or casing that contains a conductor. A conductor is connected to a pulse generator or source of stored charge that is discharged to vaporize the conductor and create an electro-hydraulic or electro-magnetic shockwave that is used to impact or pulse weld two parts together.

  19. Pulse Characteristic Curves of Vidicons,

    Science.gov (United States)

    microamps, and in vidicons with heterotransition screens, up to 10 microamps. The use of static modulation characteristic curves of vidicons for the...determination of the pulse beam current can lead to an error > 100%. With the help of pulse-modulation characteristic curves, it is possible to obtain the

  20. Ultrafast Manipulation of Magnetic Order with Electrical Pulses

    Science.gov (United States)

    Yang, Yang

    During the last 30 years spintronics has been a very rapidly expanding field leading to lots of new interesting physics and applications. As with most technology-oriented fields, spintronics strives to control devices with very low energy consumption and high speed. The combination of spin and electronics inherent to spintronics directly tackles energy efficiency, due to the non-volatility of magnetism. However, speed of operation of spintronic devices is still rather limited ( nanoseconds), due to slow magnetization precessional frequencies. Ultrafast magnetism (or opto-magnetism) is a relatively new field that has been very active in the last 20 years. The main idea is that intense femtosecond laser pulses can be used in order to manipulate the magnetization at very fast time-scales ( 100 femtoseconds). However, the use of femtosecond lasers poses great application challenges such as diffraction limited optical spot sizes which hinders device density, and bulky and expensive integration of femtosecond lasers into devices. In this thesis, our efforts to combine ultrafast magnetism and spintronics are presented. First, we show that the magnetization of ferrimagnetic GdFeCo films can be switched by picosecond electronic heat current pulses. This result shows that a non-thermal distribution of electrons directly excited by laser is not necessary for inducing ultrafast magnetic dynamics. Then, we fabricate photoconductive switch devices on a LT-GaAs substrate, to generate picosecond electrical pulses. Intense electrical pulses with 10ps (FWHM) duration and peak current up to 3A can be generated and delivered into magnetic films. Distinct magnetic dynamics in CoPt films are found between direct optical heating and electrical heating. More importantly, by delivering picosecond electrical pulses into GdFeCo films, we are able to deterministically reverse the magnetization of GdFeCo within 10ps. This is more than one order of magnitude faster than any other electrically

  1. Application of femtosecond-pulsed lasers for direct optical manipulation of biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jonghee; Park, Junseong; Jong Choi, Won [Department of Bio and Brain Engineering, KAIST, Daejeon (Korea, Republic of); Choi, Myunghwan [Graduate School of Nanoscience and Technology, KAIST, Daejeon (Korea, Republic of); Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA (United States); Choi, Chulhee [Department of Bio and Brain Engineering, KAIST, Daejeon (Korea, Republic of); KAIST Institute for the BioCentury, KAIST, Daejeon (Korea, Republic of)

    2013-03-15

    Absorption of photon energy by cells or tissue can evoke photothermal, photomechanical, and photochemical effects, depending on the density of the deposited energy. Photochemical effects require a low energy density and can be used for reversible modulation of biological functions. Ultrashort-pulsed lasers have a high intensity due to the short pulse duration, despite its low average energy. Through nonlinear absorption, these lasers can deliver very high peak energy into the submicrometer focus area without causing collateral damage. Absorbed energy delivered by ultrashort-pulsed laser irradiation induces free electrons, which can be readily converted to reactive oxygen species (ROS) and related free radicals in the localized region. Free radicals are best known to induce irreversible biological effects via oxidative modification; however, they have also been proposed to modulate biological functions by releasing calcium ions from intracellular organelles. Calcium can evoke variable biological effects in both excitable and nonexcitable cell types. Controlled stimulation by ultrashort laser pulses generate intracellular calcium waves that can modulate many biological functions, such as cardiomyocyte beat rate, muscle contractility, and blood-brain barrier (BBB) permeability. This article presents optical methods that are useful therapeutic and research tools in the biomedical field and discuss the possible mechanisms responsible for biological modulation by ultrashort-pulsed lasers, especially femtosecond-pulsed lasers. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Contractor firm strategies in delivering green project: A review

    Science.gov (United States)

    Powmya, Ayisha; Abidin, Nazirah Zainul; Azizi, Nurul Sakina Mokhtar

    2017-10-01

    Building green requires effort from various parties, from those who plan, design, manage and construct the building. Contractors are responsible for converting the design on paper into a real building and their role at the construction site support environmental sustainability by implementing responsible construction practices. Inefficient or inexperienced contractor in green construction project may find that delivering this type of project is not an easy task due to added requirement in design, stringent practices at site and the use of green technology and materials. Adopting suitable strategies at firm level will assist in preparatory process and readiness of delivering the green project. This paper reviews the strategies at firm level to deliver green construction project. From extensive literature review, it was discovered that there are six strategies to be adopted by the contractor. Understanding these strategies is expected to promote more contractors to be proactive in delivering green projects.

  3. Expert assessment concludes negative emissions scenarios may not deliver

    OpenAIRE

    Vaughan, Naomi E; Gough, Clair

    2016-01-01

    Many integrated assessment models (IAMs) rely on the availability and extensive use of biomass energy with carbon capture and storage (BECCS) to deliver emissions scenarios consistent with limiting climate change to below 2 °C average temperature rise. BECCS has the potential to remove carbon dioxide (CO2) from the atmosphere, delivering ‘negative emissions’. The deployment ofBECCS at the scale assumed in IAM scenarios is highly uncertain: biomass energy is commonly used but not at such a sca...

  4. Alginate-Based Edible Films Delivering Probiotic Bacteria to Sliced Ham Pretreated with High Pressure Processing

    Directory of Open Access Journals (Sweden)

    Foteini Pavli

    2017-08-01

    Full Text Available The aim of the present work was to evaluate the efficacy of Na-alginate edible films as vehicles for delivering probiotic bacteria to sliced ham with or without pretreatment using high pressure processing (HPP. Three strains of probiotic bacteria were incorporated in Na-alginate forming solution. Ham slices (with or without pretreatment using HPP at 500 MPa for 2 min were packed under vacuum in contact with the films and then stored at 4, 8 and 12 °C for 66, 47 and 40 days, respectively. Microbiological analysis was performed in parallel with pH and color measurements. Sensory characteristics were assessed, while the presence and the relative abundance of each probiotic strain during storage was evaluated using pulsed field gel electrophoresis. In ham slices without HPP treatment, probiotic bacteria were enumerated above 106 CFU/g during storage at all temperatures. Same results were obtained in cases of HPP treated samples, but pH measurements showed differences with the latter ones exhibiting higher values. Sensory evaluation revealed that probiotic samples had a more acidic taste and odor than the control ones, however these characteristics were markedly compromised in samples treated with HPP. Overall, the results of the study are promising since probiotic bacteria were successfully delivered in the products by edible films regardless of the HPP treatment.

  5. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  6. Three Multiple-Pulse Operation States of an All-Normal-Dispersion Dissipative Soliton Fiber Laser

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-01-01

    Full Text Available Multiple-pulse operation states of an all-normal-dispersion Yb-doped double-clad dissipative soliton fiber laser are investigated in this paper. The proposed laser can deliver harmonic mode-locked pulses, bound states of dissipative solitons, and dual-wavelength dual-pulses. Stable second-harmonic and third-harmonic mode-locked pulse trains are obtained with the output power of 1.39 W and 1.46 W, respectively, and the corresponding single pulse energies are 12.1 nJ and 8.5 nJ. With the adjustment of pump power and the wave plates, the fiber laser generates bound states of two or three dissipative solitons. Moreover, a dual-wavelength dual-pulse state is presented, where the output pulses from the nonlinear polarization rotation rejection port consists of the leading and trailing edges of the pulses circulating in the cavity.

  7. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  8. Commissioning Status of the 3 MeV RFQ for the Compact Pulsed Hadron Source (CPHS) at Tsinghua University

    CERN Document Server

    Xing, QZ; Stovall, J; He, Y; Guan, WQ; Du, L; Cheng, C; Cai, JC; Bin, DT; Bai, YJ; Wang, XW; Wang, D; Jiang, C; Du, Q; Billen, JH; Li, J; Xiong, ZF; Xing, QZ; Zheng, SX; Zhang, HY; Yang, SY; Qiang, Q; Guan, XL; Du, TB

    2012-01-01

    The 3 MeV Radio Frequency Quadrupole (RFQ) accelerator for the Compact Pulsed Hadron Source (CPHS) is in its initial stage for the commissioning at Tsinghua University. Braze of the flanges was completed in January, 2012. The RFQ cavity has been delivered to Tsinghua University after the final field tuning. In 2012 the 3-meter-long RFQ is expected to deliver 3 MeV protons to the downstream High Energy Beam Transport (HEBT) with the peak current of 50 mA, pulse length of 0.5 ms and beam duty factor of 2.5%. The initial commissioning is now underway.

  9. Pulse source requirements for OTDM systems

    DEFF Research Database (Denmark)

    Clausen, Anders; Poulsen, Henrik Nørskov; Oxenløwe, Leif Katsuo

    2003-01-01

    A simulation model for investigating the impact of incoherent crosstalk due to pulse tail overlapping is proposed. Requirements to pulse width and pulse tail extinction ratio introducing a maximum of 1 dB penalty is extracted.......A simulation model for investigating the impact of incoherent crosstalk due to pulse tail overlapping is proposed. Requirements to pulse width and pulse tail extinction ratio introducing a maximum of 1 dB penalty is extracted....

  10. Bomb pulse biology

    Energy Technology Data Exchange (ETDEWEB)

    Falso, Miranda J. Sarachine [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Buchholz, Bruce A., E-mail: buchholz2@llnl.gov [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2013-01-15

    The past decade has seen an explosion in use of the {sup 14}C bomb pulse to do fundamental cell biology. Studies in the 1960s used decay counting to measure tissue turnover when the atmospheric {sup 14}C/C concentration was changing rapidly. Today bulk tissue measurements are of marginal interest since most of the carbon in the tissue resides in proteins, lipids and carbohydrates that turn over rapidly. Specific cell types with specialized functions are the focus of cell turnover investigations. Tissue samples need to be fresh or frozen. Fixed or preserved samples contain petroleum-derived carbon that has not been successfully removed. Cell or nuclear surface markers are used to sort specific cell types, typically by fluorescence-activated cell sorting (FACS). Specific biomolecules need to be isolated with high purity and accelerator mass spectrometry (AMS) measurements must accommodate samples that generally contain less than 40 {mu}g of carbon. Furthermore, all separations must not add carbon to the sample. Independent means such as UV absorbance must be used to confirm molecule purity. Approaches for separating specific proteins and DNA and combating contamination of undesired molecules are described.

  11. [Dynamic pulse signal acquisition and processing].

    Science.gov (United States)

    Zhang, Aihua; Chou, Yongxin

    2012-03-01

    In order to obtain and process pulse signal in real-time, the integer coefficients notch, low-pass filters and an envelope filtering method were designed in consideration of the characteristics of disturbances in pulse signal and then were verified by MATLAB. The pulse signal was processed on DSP in time domain and frequency domain after simplifying the programming. The pulse wave height and pulse rate were calculated in real-time, and the pulse signal's spectrum was illustrated by FFT. The results show that the filters can effectively suppress the interference in pulse signal, and the system can detect and analyze the dynamic pulse signal in real-time.

  12. Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact.

    Science.gov (United States)

    Tomasevic, Leo; Takemi, Mitsuaki; Siebner, Hartwig Roman

    2017-01-01

    Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge. We delivered monophasic and biphasic TMS to a melon as head phantom and to four healthy participants and recorded the pulse artefact at 5 kHz with a TMS-compatible EEG system. Pulse delivery was either synchronized or non-synchronized to the clock of the EEG recording system. The effects of synchronization were tested at 10 and 20 kHz using the head phantom. We also tested the effect of a soft sheet placed between the stimulation coil and recording electrodes in both human and melon. Synchronizing TMS and data acquisition markedly reduced trial-to-trial variability of the pulse artefact in recordings from the phantom or from the scalp. Reduced trial-to-trial variability was also observed at high sampling frequencies. The use of a soft sheet reduced the variability in recordings on the head phantom, but not in human participants. Effective reduction of the trial-to-trial variability renders it possible to create an artefact template for off-line filtering. Template-based subtraction of the artefact from the EEG signals is a prerequisite to effectively recover the immediate physiological response in the stimulated cortex and inter-connected areas.

  13. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics

    Science.gov (United States)

    Abeysekera, Chamara; Zack, Lindsay N.; Park, G. Barratt; Joalland, Baptiste; Oldham, James M.; Prozument, Kirill; Ariyasingha, Nuwandi M.; Sims, Ian R.; Field, Robert W.; Suits, Arthur G.

    2014-12-01

    This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new Ka-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

  14. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  15. Pulsed light and pulsed electric field for foods and eggs.

    Science.gov (United States)

    Dunn, J

    1996-09-01

    Two new technologies for use in the food industry are described. The first method discussed uses intense pulse of light. This pulsed light (PureBright) process uses short duration flashes of broad spectrum "white" light to kill all exposed microorganisms, including vegetative bacteria, microbial and fungal spores, viruses, and protozoan oocysts. Each pulse, or flash, of light lasts only a few hundred millionths of a second (i.e., a few hundred microseconds). The intensity of each flash of light is about 20,000 times the intensity of sunlight at the earth's surface. The flashes are typically applied at a rate of about one to tens of flashes per second. For most applications, a few flashes applied in a fraction of a second provide an effective treatment. High microbial kill can be achieved, for example, on the surfaces of packaging materials, on packaging and processing equipment, foods, and medical devices as well as on many other surfaces. In addition, some bulk materials such as water and air that allow penetration of the light can be sterilized. The results of tests to measure the effects of pulsed light on Salmonella enteritiditis on eggs are presented. The second method discussed uses multiple, short duration, high intensity electric field pulses to kill vegetative microorganisms in pumpable products. This pulsed electric field (or CoolPure) process can be applied at modest temperatures at which no appreciable thermal damage occurs and the original taste, color, texture, and functionality of products can be retained.

  16. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses

    Directory of Open Access Journals (Sweden)

    A. K. Sharma

    2009-03-01

    Full Text Available We report the results of theoretical and experimental studies on passive spatiotemporal shaping of cw mode-locked picosecond laser pulses for driving the photocathode of a high-brightness, high-current energy recovery linear accelerator. The temporal pulse shape is modified using birefringent crystals, while a refractive optical system is used to generate a flattop spatial beam profile. An optical transport system is designed and implemented to deliver the flattop pulse onto a photocathode sited 9 m away from the shapers. The alignment tolerances on the beam shaper and the temporal pulse stacker have been studied both theoretically and experimentally. The experimental results agree well with theoretical simulations.

  17. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    Science.gov (United States)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.; Edwards, R. D.; Gales, S.; Girling, M. T.; Hoarty, D. J.; Hopps, N. W.; James, S. F.; Kopec, M. F.; Nolan, J. R.; Ryder, K.

    2006-10-01

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60J on target in a 500fs pulse, around 100TW, at the fundamental laser wavelength of 1.054μm. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibrated radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 1019Wcm-2 and to underwrite the facility radiological safety system.

  18. Localized wave pulses in the keyport experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.H.; Lewis, D.K.

    1998-02-17

    Localized wave (LW) pulses were produced using a standard Navy array in the anechoic tank at Navy Underwater Weapons Center (NUWC) Keyport. The LW pulses used were the MPS pulse first derived by Ziolkowski, and a new type of pulse based on a superposition of Gaussian beam modes. This new type is motivated by a desire to make a comparison of the MPS pulse with another broad band pulse built from solutions to the wave equation. The superposed Gaussian pulse can be described by parameters which are analogous to those describing the MPS pulse. We compare the directivity patternsand the axial energy decay between the pulses. We find the behavior of the pulses to be similar so that the superposed Gaussian could be another candidate in the class of low diffractive pulses known as localized waves.

  19. Prefire identification for pulse power systems

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, Jerry L. (Los Alamos, NM); Thuot, Michael E. (Espanola, NM); Warren, David S. (Los Alamos, NM)

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  20. Prefire identification for pulse power systems

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, J. L.; Thuot, M. E.; Warren, D. S.

    1985-04-09

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  1. Prefire identification for pulse-power systems

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  2. Luminal pulse velocity in a superluminal medium

    Science.gov (United States)

    Amano, Heisuke; Tomita, Makoto

    2015-12-01

    To investigate the physical meaning of pulse peak in fast and slow light media, we investigated propagation of differently shaped pulses experimentally, controlling the sharpness of the pulse peak. Symmetric behavior with respect to fast and slow light was observed in traditional Gaussian pulses; that is, propagated pulses were advanced or delayed, respectively, whereas the pulse shape remained unchanged. This symmetry broke down when the pulse peak was sharpened; in the fast light medium, the sharp pulse peak propagated with luminal velocity, and the transmitted pulse deformed into a characteristic asymmetric profile. In contrast, in the slow light medium, a time-delayed smooth peak appeared with a bending point at t =0 . This symmetry breaking with respect to fast and slow light is a universal characteristic of pulse propagation in causal dispersive systems. The sharp pulse peak can be recognized as a bending nonanalytical point and may be capable of transferring information.

  3. A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system

    OpenAIRE

    Figueiro MG; Bierman A; Rea MS

    2013-01-01

    Mariana G Figueiro, Andrew Bierman, Mark S ReaLighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USAAbstract: A model of circadian phototransduction was published in 2005 to predict the spectral sensitivity of the human circadian system to narrow-band and polychromatic light sources by combining responses to light from the spectral-opponent “blue” versus “yellow” cone bipolar pathway with direct responses to light by the intrinsically...

  4. Pulse oximetry for perioperative monitoring

    DEFF Research Database (Denmark)

    Pedersen, Tom; Nicholson, Amanda; Hovhannisyan, Karen

    2014-01-01

    of hypoxaemia reduce morbidity and mortality in the perioperative period.3. Use of pulse oximetry per se reduces morbidity and mortality in the perioperative period.4. Use of pulse oximetry reduces unplanned respiratory admissions to the intensive care unit (ICU), decreases the length of ICU readmission or both....... SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 5), MEDLINE (1966 to June 2013), EMBASE (1980 to June 2013), CINAHL (1982 to June 2013), ISI Web of Science (1956 to June 2013), LILACS (1982 to June 2013) and databases of ongoing trials; we also....... Results indicated that hypoxaemia was reduced in the pulse oximetry group, both in the operating theatre and in the recovery room. During observation in the recovery room, the incidence of hypoxaemia in the pulse oximetry group was 1.5 to three times less. Postoperative cognitive function was independent...

  5. All about Heart Rate (Pulse)

    Science.gov (United States)

    ... result of taking a drug such as a beta blocker . A lower heart rate is also common for ... 100. Medication use: Meds that block your adrenaline (beta blockers) tend to slow your pulse, while too much ...

  6. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  7. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  8. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  9. Artistic Representation with Pulsed Holography

    Science.gov (United States)

    Ishii, S.

    2013-02-01

    This thesis describes artistic representation through pulsed holography. One of the prevalent practical problems in making holograms is object movement. Any movement of the object or film, including movement caused by acoustic vibration, has the same fatal results. One way of reducing the chance of movement is by ensuring that the exposure is very quick; using a pulsed laser can fulfill this objective. The attractiveness of using pulsed laser is based on the variety of materials or objects that can be recorded (e.g., liquid material or instantaneous scene of a moving object). One of the most interesting points about pulsed holograms is that some reconstructed images present us with completely different views of the real world. For example, the holographic image of liquid material does not appear fluid; it looks like a piece of hard glass that would produce a sharp sound upon tapping. In everyday life, we are unfamiliar with such an instantaneous scene. On the other hand, soft-textured materials such as a feather or wool differ from liquids when observed through holography. Using a pulsed hologram, we can sense the soft touch of the object or material with the help of realistic three-dimensional (3-D) images. The images allow us to realize the sense of touch in a way that resembles touching real objects. I had the opportunity to use a pulsed ruby laser soon after I started to work in the field of holography in 1979. Since then, I have made pulsed holograms of activities, including pouring water, breaking eggs, blowing soap bubbles, and scattering feathers and popcorn. I have also created holographic art with materials and objects, such as silk fiber, fabric, balloons, glass, flowers, and even the human body. Whenever I create art, I like to present the spectator with a new experience in perception. Therefore, I would like to introduce my experimental artwork through those pulsed holograms.

  10. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  11. Pulsed laser ablation of copper

    Science.gov (United States)

    Jordan, R.; Cole, D.; Lunney, J. G.; Mackay, K.; Givord, D.

    1995-02-01

    The laser ablation of copper with a 532 nm, 6 ns laser has been investigated in the regime normally used for pulsed laser deposition. The ablation depth per pulse and the flux and energy distribution of the ions in the plume were measured and compared to the deposition rate as measured by a quartz microbalance. These measurements were compared with an analytic model of ablation via a laser sustained plasma. It is shown that self-sputtering of the growing film is significant.

  12. Delivering Faster Congestion Feedback with the Mark-Front Strategy

    Science.gov (United States)

    Liu, Chunlei; Jain, Raj

    2001-01-01

    Computer networks use congestion feedback from the routers and destinations to control the transmission load. Delivering timely congestion feedback is essential to the performance of networks. Reaction to the congestion can be more effective if faster feedback is provided. Current TCP/IP networks use timeout, duplicate Acknowledgement Packets (ACKs) and explicit congestion notification (ECN) to deliver the congestion feedback, each provides a faster feedback than the previous method. In this paper, we propose a markfront strategy that delivers an even faster congestion feedback. With analytical and simulation results, we show that mark-front strategy reduces buffer size requirement, improves link efficiency and provides better fairness among users. Keywords: Explicit Congestion Notification, mark-front, congestion control, buffer size requirement, fairness.

  13. Meeting the challenges: delivering interactive stoma care education.

    Science.gov (United States)

    Lee, Janice; Moore, Hazel; Asbury, Nicky

    2008-04-01

    This article illustrates how the authors used the following frameworks: audit cycle, clinical governance, essence of care and evaluations to create a fun, interactive and transferable method of delivering an education programme in the workplace environment. The article demonstrates the benefits of using action planning, benchmarking and overcoming difficulties in delivering education across two organizational boundaries (primary and secondary care). 'Today's 6 x 30 minute Stoma Challenges are...' a full and fun afternoon of interactive stoma education for primary and secondary care staff delivered in an innovative and creative way. The main objective is to enhance qualified and unqualified nurses existing knowledge and skills in relation to stoma care. Also encouraging staff development therefore enhancing the patients' experiences regardless of whether they are in a primary or secondary care setting.

  14. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  15. Delivering supplemental oxygen during sedation via a saliva ejector.

    Science.gov (United States)

    Milnes, Alan R

    2002-01-01

    Intraoperative oxygen supplementation to sedated children has been shown to prevent hemoglobin desaturations even in the presence of apnea during pediatric conscious sedation. Although many practitioners deliver supplemental oxygen via a nasal hood, this method is impractical and often unsuccessful if the child is a mouth breather, has moderate adenotonsillar hypertrophy or occasionally cries during treatment (at which time there will be mouth breathing). This paper describes a method in which the saliva ejector is used to deliver supplemental oxygen to sedated children while they are receiving dental treatment. The advantages of this method and suggestions for its successful application are also included.

  16. Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier.

    Science.gov (United States)

    Malevich, Pavel; Kanai, Tsuneto; Hoogland, Heinar; Holzwarth, Ronald; Baltuška, Andrius; Pugžlys, Audrius

    2016-03-01

    We present a concept of a white-light-seeded-cascaded mid-infrared (mid-IR) optical parametric amplifier (OPA) based on potassium titanyl arsenate and zinc germanium phosphate nonlinear optical crystals and producing 100-μJ level pulses centered at 5300 nm, with the spectrum supporting four-optical-cycle pulse duration. The OPA is pumped by 2090-nm master oscillator/power amplifier based on a Tm,Ho-fiber laser seeder and a Ho:YAG regenerative amplifier delivering 3.8-mJ sub-ps pulses at a repetition rate of 1 kHz. We validate that output parameters of the OPA are scalable by means of increasing the pulse energy, decreasing the pulse duration and redshifting the central wavelength.

  17. Short infrared laser pulses block action potentials in neurons

    Science.gov (United States)

    Walsh, Alex J.; Tolstykh, Gleb P.; Martens, Stacey L.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Short infrared laser pulses have many physiological effects on cells including the ability to stimulate action potentials in neurons. Here we show that short infrared laser pulses can also reversibly block action potentials. Primary rat hippocampal neurons were transfected with the Optopatch2 plasmid, which contains both a blue-light activated channel rhodopsin (CheRiff) and a red-light fluorescent membrane voltage reporter (QuasAr2). This optogenetic platform allows robust stimulation and recording of action potential activity in neurons in a non-contact, low noise manner. For all experiments, QuasAr2 was imaged continuously on a wide-field fluorescent microscope using a Krypton laser (647 nm) as the excitation source and an EMCCD camera operating at 1000 Hz to collect emitted fluorescence. A co-aligned Argon laser (488 nm, 5 ms at 10Hz) provided activation light for CheRiff. A 200 mm fiber delivered infrared light locally to the target neuron. Reversible action potential block in neurons was observed following a short infrared laser pulse (0.26-0.96 J/cm2; 1.37-5.01 ms; 1869 nm), with the block persisting for more than 1 s with exposures greater than 0.69 J/cm2. Action potential block was sustained for 30 s with the short infrared laser pulsed at 1-7 Hz. Full recovery of neuronal activity was observed 5-30s post-infrared exposure. These results indicate that optogenetics provides a robust platform for the study of action potential block and that short infrared laser pulses can be used for non-contact, reversible action potential block.

  18. Variable pulsewidth erbium:YAG laser ablation of the ureter and urethra in vitro and in vivo: optimization of the laser fluence, pulse duration, and pulse repetition rate

    Science.gov (United States)

    Fried, Nathaniel M.; Tesfaye, Zelalem; Ong, Albert M.; Rha, Koon H.; Hejazi, Pooya

    2004-07-01

    Stricture recurrence frequently occurs due to mechanical or thermal insult during endourologic treatment of ureteral and urethral strictures. Optimization of the Er:YAG laser for precise incision of strictures was conducted using ureteral and urethral tisssue samples, ex vivo, and a laparoscopic porcine ureteral model with exposed ureter, in vivo. Erbium:YAG laser radiation with a wavelength of 2.94 microns, pulse lengths of 8, 70, and 220 microseconds, output energies of 2 - 35 mJ, fluences of 1 - 25 J/cm2, and pulse repetition rates of 5 - 30 Hz, was delivered through germanium oxide optical fibers in contact with the tissue. Incision of the ureteral wall was achieved in vivo with less than 20 pulses at a laser fluence of 4 J/cm2. Thermal damage was reduced from 30 - 60 microns to 10 - 20 microns by shortening the laser pulse duration from 220 to 70 microseconds. Pulse repetition rates above 20 Hz resulted in larger thermal damage zones ranging from 60 - 120 microns. The Er:YAG laser, operating at a pulse duration of approximately 70 microseconds, a fluence of 4 J/cm2 or greater, and a repetition rate less than 20 Hz, is capable of rapidly incising urethral and ureteral tissues, in vivo, with minimal thermal and mechanical side-effects.

  19. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  20. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    Science.gov (United States)

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  1. Nano- and femtosecond UV laser pulses to immobilize biomolecules onto surfaces with preferential orientation

    Science.gov (United States)

    Lettieri, S.; Avitabile, A.; Della Ventura, B.; Funari, R.; Ambrosio, A.; Maddalena, P.; Valadan, M.; Velotta, R.; Altucci, C.

    2014-10-01

    By relying on the photonic immobilization technique of antibodies onto surfaces, we realized portable biosensors for light molecules based on the use of quartz crystal microbalances, given the linear dependence of the method on the laser pulse intensity. Here, we compare the quality of the anchoring method when using nanosecond (260 nm, 25 mJ/pulse, 5 ns, 10 Hz rep. rate) and femtosecond (258 nm, 25 μJ/pulse, 150 fs, 10 kHz rep. rate) laser source, delivering the same energy to the sample with the same average power. As a reference, we also tethered untreated antibodies by means of the passive adsorption. The results are striking: When the antibodies are irradiated with the femtosecond pulses, the deposition on the gold plate is much more ordered than in the other two cases. The effects of UV pulses irradiation onto the antibodies are also analyzed by measuring absorption and fluorescence and suggest the occurrence of remarkable degradation when nanosecond pulses are used likely induced by a larger thermal coupling. In view of the high average power required to activate the antibodies for the achievement of the photonic immobilization technique, we conclude that femtosecond rather than nanosecond laser pulses have to be used.

  2. Effects of high-level pulse train stimulation on retinal function

    Science.gov (United States)

    Cohen, Ethan D.

    2009-06-01

    We examined how stimulation of the local retina by high-level current pulse trains affected the light-evoked responses of the retinal ganglion cells. The spikes of retinal ganglion cell axons were recorded extracellularly using an in vitro eyecup preparation of the rabbit retina. Epiretinal electrical stimulation was delivered via a 500 µm inner diameter saline-filled, transparent tube positioned over the retinal surface forming the receptive field center. Spot stimuli were presented periodically to the receptive field center during the experiment. Trains of biphasic 1 ms current pulses were delivered to the retina at 50 Hz for 1 min. Pulse train charge densities of 1.3-442 µC/cm2/phase were examined. After pulse train stimulation with currents >=300 µA (133 µC/cm2/phase), the ganglion cell's ability to respond to light was depressed and a significant time was required for recovery of the light-evoked response. During train stimulation, the ganglion cell's ability to spike following each current pulse fatigued. The current levels evoking train-evoked depression were suprathreshold to those evoking action potentials. Train-evoked depression was stronger touching the retinal surface, and in some cases impaired ganglion cell function for up to 30 min. This overstimulation could cause a transient refractory period for electrically stimulated perception in the retinal region below the electrode.

  3. Behavioral studies of the auditory discrimination of paired pulses with identical pulse spacings by a dolphin

    Science.gov (United States)

    Sukhoruchenko, M. N.

    2008-11-01

    For a bottlenose dolphin, the thresholds of discrimination of paired pulses with pulse spacings of 50 1000 μs and different peak values of the second pulse in the test pair are investigated. It is shown that the pair discrimination thresholds depend on both the absolute level of pulses and the ratio between the pulse levels in the standard pair. As the pulse delay in a pair increases, the thresholds monotonically decrease. A possibility of the paired pulse discrimination by the total energy of pulses in a pair is considered for the case of pulse delays both within the critical interval (300 μs) and beyond it.

  4. The Role of Universities in Supporting and Delivering Enterprise Education

    Science.gov (United States)

    Edwards, Louise-Jayne; Muir, Elizabeth J.

    2007-01-01

    While the academic debate has moved beyond the question of whether or not entrepreneurship can be taught and whether or not there is a need or demand for it, there is still considerable debate as to the most appropriate methods of delivering entrepreneurship education. This paper provides an overview of teaching strategies, pedagogies and methods…

  5. Essential medical laboratory services: their role in delivering ...

    African Journals Online (AJOL)

    This paper examines the establishment of Essential Medical Laboratory Services (EMLS) and their crucial role for delivering equitable health care to the poor population of Malawi as part of the Essential Health Package. We examine each of the major areas identified for intervention (maternal health, malaria, tuberculosis ...

  6. The Role of the Postgraduate Student in Delivering Bioscience Teaching

    Science.gov (United States)

    Scott, Jon; Maw, Stephen J.

    2009-01-01

    There has been much recent interest in the extent to which the teaching in higher education delivered by non-academic staff has increased in the recent past. Within the Biosciences there has always been a tradition of engaging postgraduate students to support the delivery of some forms of teaching. In this paper we report on the findings of a…

  7. Hepatitis B virus infection among pregnant women delivering at ...

    African Journals Online (AJOL)

    Objective: To determine the prevalence of hepatitis B virus (HBV) carrier and infectivity status among women delivering at Harare Maternity Hospital. Design: A serological survey study of pregnant women admitted for labour and delivery. Setting: Harare Maternity Hospital, Harare, Zimbabwe between June 1996 and June ...

  8. School Nurse-Delivered Adolescent Relationship Abuse Prevention

    Science.gov (United States)

    Raible, Claire A.; Dick, Rebecca; Gilkerson, Fern; Mattern, Cheryl S.; James, Lisa; Miller, Elizabeth

    2017-01-01

    Background: Project Connect is a national program to build partnerships among public health agencies and domestic violence services to improve the health care sector response to partner and sexual violence. Pennsylvania piloted the first school nurse-delivered adolescent relationship abuse intervention in the certified school nurses' office…

  9. Term tubal ectopic pregnancy delivered by laparotomy with a viable ...

    African Journals Online (AJOL)

    We describe an extremely rare medical phenomenon in a 28 year old who presented with undiagnosed tubal ectopic pregnancy at 41 weeks gestation and was delivered by laparotomy with linear salpingostomy at the Kenyatta National Hospital, Nairobi, Kenya. Key words: Term ectopic pregnancy, Ultrasound ...

  10. Health facility and health worker readiness to deliver new national ...

    African Journals Online (AJOL)

    Health facility and health worker readiness to deliver new national treatment policy for malaria in Kenya. ... Design: Cross-sectional survey. ... on the survey day, stock-outs in past six months, presence of AL wall charts, health worker\\'s exposure to in-service training on AL and access to new national malaria guidelines.

  11. Capacity to deliver pharmaceutical care by community pharmacies ...

    African Journals Online (AJOL)

    Pharmacy practice has transcended from largely a dispensary practice to pharmaceutical care practice. The capacity of community pharmacies to deliver pharmaceutical care was studied using pretested self survey methods. Ninety five percent (95%) of the respondents always educated customers on drug related needs, ...

  12. Pregnancy outcome among women who delivered in a secondary ...

    African Journals Online (AJOL)

    Pregnancy outcome among women who delivered in a secondary care hospital in ... 11(0.4%) maternal deaths with a maternal mortality ratio of 427 per 100,000 live births. ... There should be an improvement in the quality of care for obstetric ...

  13. Using technology to deliver quality education in Asia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-08

    Jun 8, 2016 ... An IDRC-funded project in Asia found that distance education can be as effective as traditional face-to-face education in delivering quality teaching and a good learning experience. This finding is particularly significant for remote and resource-poor regions in countries such as Mongolia and Cambodia.

  14. Foresight begins with FMEA. Delivering accurate risk assessments.

    Science.gov (United States)

    Passey, R D

    1999-03-01

    If sufficient factors are taken into account and two- or three-stage analysis is employed, failure mode and effect analysis represents an excellent technique for delivering accurate risk assessments for products and processes, and for relating them to legal liability. This article describes a format that facilitates easy interpretation.

  15. Unexplained massive subdural haematoma in a newborn delivered ...

    African Journals Online (AJOL)

    Emergency Caesarean Section (EmC/S) carried out after failed attempts at vaginal delivery may also be complicated by symptomatic SDH but spontaneous symptomatic SDH complicating Elective Caesarean Section (ElC/S) is a rarity. We describe a case of massive SDH in a term baby delivered by Elective C/S in the ...

  16. Hepatitis C virus seroprevalence among mothers delivering at the ...

    African Journals Online (AJOL)

    Hepatitis C virus seroprevalence among mothers delivering at the Korle-Bu Teaching Hospital, Ghana. ... AT Lassey, NK Damale, V Bekoe, CA Klufio ... To determine the Hepatitis C virus (HCV) carrier rate among mothers, and to determine if selected sociodemographic characteristics are associated with HCV seropositivity.

  17. Delivering Physical Education in selected schools in Soweto, South ...

    African Journals Online (AJOL)

    The programme utilizes Physical Education (PE) during schooltime, while building the capacity of PE teachers to teach PE and Extra School Support Programme (ESSP) coaches (a programme of the National Department of Education) to deliver school sport. The aim of the study was to evaluate the Soweto Active Schools ...

  18. VET Providers Planning to Deliver Degrees: Good Practice Guide

    Science.gov (United States)

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    This good practice guide is intended to assist public and private registered training organisations (RTOs) planning to commence higher education (HE) delivery. The guide is based on research undertaken by Victor Callan and Kaye Bowman, who completed case studies with six providers currently delivering higher education qualifications in addition to…

  19. A Review of Physical Activity Interventions Delivered via Facebook.

    Science.gov (United States)

    Ferrer, David A; Ellis, Rebecca

    2017-10-01

    The use of social networking sites to deliver behavioral interventions is becoming more prevalent. The purpose of this review was to systematically evaluate the published research to determine the effectiveness of Facebook-delivered interventions for promoting physical activity behavior change. A search of interventions delivered via Facebook (as the primary delivery method or part of a multifaceted intervention) in which physical activity was the primary or secondary outcome resulted in 8 studies for review. Overall, 87.5% of the Facebook interventions reported some type of significant physical activity behavior change (ie, interactions, main effects for time, differences between conditions); however, only 2 of these interventions found this change to be significantly better for the treatment group than the control group. Future researchers are encouraged to test the effectiveness of Facebook-delivered physical activity interventions with additional control groups that receive no aspects of the intervention within experimental study designs, more diverse samples, theory-based content with assessment of mediators of behavior change, direct observations of physical activity, and long-term follow-ups. Although based on a small sample of studies, Facebook appears to be a promising delivery method for physical activity interventions.

  20. Portable devices for delivering imagery and modelling interventions ...

    African Journals Online (AJOL)

    The main objective of this study was to investigate the effectiveness of portable devices (MP4) and a stationary device (DVD and fixed point stationary computer) in delivering imagery and modelling training among female netball players, examining the effect on imagery adherence, performance, self-efficacy, and the relative ...

  1. Inefficient charging for delivered gas by local gas distributors

    Directory of Open Access Journals (Sweden)

    Siniša Bikić

    2005-10-01

    Full Text Available In this region, especially in Serbia, common belief is that local distributors of gas used by households don’t charge for gas properly. It is suspected that there are two sources for improper ways of gas charging. Local distributors charge for delivered gas only, according to flow rat but not according to gas quality. It is usual that local distributors deliver gas of different quality than one signed in contract. In this work will be considered only one of aspects inefficient charging for delivered gas by local gas distributors, which is connected to variable atmospheric pressure. There is doubt, that local distributors make mistakes during accounting for delivered gas to costumers in regard atmospheric pressure. At the beginning of every investigation, problem has to be located and recognized. Authors are going to collect as much as possible available data, to elaborate and analyze data by scientific methods and to represent conclusions. So, the aim of this work is to diagnose current state and to approve or disapprove above mentioned suspicions. In our region this theme is very interesting, both because of energy efficiency and air pollution control. In this way both consumer and distributor will know, how mush energy they have really spent.

  2. Glucose 6 phosphate dehydrogenase levels in babies delivered at ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase deficiency, an X-linked recessive disorder, is the most common enzymopathy producing disease in humans.It is known to cause severe neonatal hyperbilirubinaemia. Aims and Objectives: To determine G6PD levels in babies delivered at the University of Ilorin Teaching ...

  3. Delivering Advanced Technical Education Using Online, Immersive Classroom Technology

    Science.gov (United States)

    Smith, Delmer; Louwagie, Nancy

    2017-01-01

    Vacuum and thin film technologies are critical to advanced manufacturing industries. With a grant from the National Science Foundation (DUE #14004080), Normandale Community College has developed courses that are delivered online and via telepresence to provide a formal education to vacuum technician students around the country. Telepresence…

  4. The Challenges of Globalisation: Delivering an MBA Programme in Eritrea.

    Science.gov (United States)

    Dence, Roger; O'Toole, John

    1999-01-01

    Describes the experiences of delivering an MBA (Master in Business Administration) program in Eritrea (North East Africa) through the United Kingdom's Open University. Discusses tutoring teams that travel to Eritrea, localizing case examples and assignments, sensitivity to local cultural contexts, writing assignments, student assessment, and…

  5. Dealing with Learner Resistance to Technology-Delivered Training.

    Science.gov (United States)

    McCormick, Patricia

    2001-01-01

    Discussion of student resistance to technology-delivered training focuses on strategies at the IRS (Internal Revenue Service) that overcame learner resistance by maintaining a personal relationship with each student and flexibly addressing each student's personal style and concerns. Considers reasons for student resistance and the continued need…

  6. The knowledge and skills gap of medical practitioners delivering ...

    African Journals Online (AJOL)

    The knowledge and skills gap of medical practitioners delivering district hospital services in the Western Cape, South Africa. ... Rural family practice requires that doctors have the knowledge and skills to practise in settings where high technology and specialist resources are not available, while at the same time requiring ...

  7. Massively parallel delivery of large cargo into mammalian cells with light pulses.

    Science.gov (United States)

    Wu, Yi-Chien; Wu, Ting-Hsiang; Clemens, Daniel L; Lee, Bai-Yu; Wen, Ximiao; Horwitz, Marcus A; Teitell, Michael A; Chiou, Pei-Yu

    2015-05-01

    We report a high-throughput platform for delivering large cargo elements into 100,000 cells in 1 min. Our biophotonic laser-assisted surgery tool (BLAST) generates an array of microcavitation bubbles that explode in response to laser pulsing, forming pores in adjacent cell membranes through which cargo is gently driven by pressurized flow. The platform delivers large items including bacteria, enzymes, antibodies and nanoparticles into diverse cell types with high efficiency and cell viability. We used this platform to explore the intracellular lifestyle of Francisella novicida and discovered that the iglC gene is unexpectedly required for intracellular replication even after phagosome escape into the cell cytosol.

  8. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  9. A Novel Method of Two-channel Dual-Pulse Gastric Electrical Stimulation Improves Solid Gastric Emptying in Dogs

    Science.gov (United States)

    Song, Geng-Qing; Hou, Xiaohua; Yang, Bin; Sun, Yan; Qian, Wei; Chen, J D Z

    2009-01-01

    Background Gastric electrical stimulation (GES) is known to improve vomiting with short pulses, normalize dysrhythmia with long pulses, and accelerate gastric emptying with two-channels. The aim of this study was to assess the effects of a new method GES – two-channel GES with dual pulses on gastric emptying of solids as well as gastric dysrhythmia and emetic responses. Methods Seven beagle dogs implanted with 4 pairs of electrodes were studied. A novel method of GES was proposed: two-channel dual-pulse GES in which each stimulus was composed of a short pulse followed with a long pulse, and stimulation was delivered at two different locations. The study was performed to test the effects of this new method of GES on vasopressin-induced delayed gastric emptying of solids, gastric dysrhythmia, and emetic responses. Results 1) Vasopressin induced gastric dysrhythmia and emetic responses, as well as delayed gastric emptying of solids (pchannel, but not one-channel, dual-pulse GES was able to accelerate vasopressin-induced delayed gastric emptying of solids. 3) Both one- and two-channel dual-pulse GES was capable of improving dysrhythmia and emetic responses (pchannel dual-pulse GES is capable of accelerating gastric emptying of solids and improving dysrhythmia and emetic responses induced by vasopressin. This new method of GES may have a potential for gastroparesis. PMID:18154935

  10. A novel method of 2-channel dual-pulse gastric electrical stimulation improves solid gastric emptying in dogs.

    Science.gov (United States)

    Song, Geng-Qing; Hou, Xiaohua; Yang, Bin; Sun, Yan; Qian, Wei; Chen, J D Z

    2008-01-01

    Gastric electrical stimulation (GES) is known to improve vomiting with short pulses, normalize dysrhythmia with long pulses, and accelerate gastric emptying with 2 channels. The aim of this study was to assess the effects of a new method GES, namely, 2-channel GES with dual pulses on gastric emptying of solids as well as gastric dysrhythmia and emetic responses. Seven beagle dogs implanted with 4 pairs of electrodes were studied. A novel method of GES was proposed: 2-channel dual-pulse GES in which each stimulus was composed of a short pulse followed with a long pulse, and stimulation was delivered at 2 different locations. The study was performed to test the effects of this new method of GES on vasopressin-induced delayed gastric emptying of solids, gastric dysrhythmia, and emetic responses. (1) Vasopressin-induced gastric dysrhythmia and emetic responses, as well as delayed gastric emptying of solids (P channel, but not 1-channel, dual-pulse GES was able to accelerate vasopressin-induced delayed gastric emptying of solids. (3) Both 1- and 2-channel dual-pulse GES was capable of improving dysrhythmia and emetic responses (P channel dual-pulse GES is capable of accelerating gastric emptying of solids and improving dysrhythmia and emetic responses induced by vasopressin. This new method of GES may have a potential for gastroparesis.

  11. Root-flipped multiband refocusing pulses.

    Science.gov (United States)

    Sharma, Anuj; Lustig, Michael; Grissom, William A

    2016-01-01

    To design low peak power multiband refocusing radiofrequency pulses, with application to simultaneous multislice spin echo MRI. Multiband Shinnar-Le Roux β polynomials were designed using convex optimization. A Monte Carlo algorithm was used to determine patterns of β polynomial root flips that minimized the peak power of the resulting refocusing pulses. Phase-matched multiband excitation pulses were also designed to obtain linear-phase spin echoes. Simulations compared the performance of the root-flipped pulses with time-shifted and phase-optimized pulses. Phantom and in vivo experiments at 7T validated the function of the root-flipped pulses and compared them to time-shifted spin echo signal profiles. Averaged across number of slices, time-bandwidth product, and slice separation, the root-flipped pulses have 46% shorter durations than time-shifted pulses with the same peak radiofrequency amplitude. Unlike time-shifted and phase-optimized pulses, the root-flipped pulses' excitation errors do not increase with decreasing band separation. Experiments showed that the root-flipped pulses excited the desired slices at the target locations, and that for equivalent slice characteristics, the shorter root-flipped pulses allowed shorter echo times, resulting in higher signal than time-shifted pulses. The proposed root-flipped multiband radiofrequency pulse design method produces low peak power pulses for simultaneous multislice spin echo MRI. © 2015 Wiley Periodicals, Inc.

  12. Pulse oximetry in pediatric practice.

    Science.gov (United States)

    Fouzas, Sotirios; Priftis, Kostas N; Anthracopoulos, Michael B

    2011-10-01

    The introduction of pulse oximetry in clinical practice has allowed for simple, noninvasive, and reasonably accurate estimation of arterial oxygen saturation. Pulse oximetry is routinely used in the emergency department, the pediatric ward, and in pediatric intensive and perioperative care. However, clinically relevant principles and inherent limitations of the method are not always well understood by health care professionals caring for children. The calculation of the percentage of arterial oxyhemoglobin is based on the distinct characteristics of light absorption in the red and infrared spectra by oxygenated versus deoxygenated hemoglobin and takes advantage of the variation in light absorption caused by the pulsatility of arterial blood. Computation of oxygen saturation is achieved with the use of calibration algorithms. Safe use of pulse oximetry requires knowledge of its limitations, which include motion artifacts, poor perfusion at the site of measurement, irregular rhythms, ambient light or electromagnetic interference, skin pigmentation, nail polish, calibration assumptions, probe positioning, time lag in detecting hypoxic events, venous pulsation, intravenous dyes, and presence of abnormal hemoglobin molecules. In this review we describe the physiologic principles and limitations of pulse oximetry, discuss normal values, and highlight its importance in common pediatric diseases, in which the principle mechanism of hypoxemia is ventilation/perfusion mismatch (eg, asthma exacerbation, acute bronchiolitis, pneumonia) versus hypoventilation (eg, laryngotracheitis, vocal cord dysfunction, foreign-body aspiration in the larynx or trachea). Additional technologic advancements in pulse oximetry and its incorporation into evidence-based clinical algorithms will improve the efficiency of the method in daily pediatric practice.

  13. Heterologous mitochondrial targeting sequences can deliver functional proteins into mitochondria.

    Science.gov (United States)

    Marcus, Dana; Lichtenstein, Michal; Cohen, Natali; Hadad, Rita; Erlich-Hadad, Tal; Greif, Hagar; Lorberboum-Galski, Haya

    2016-12-01

    Mitochondrial Targeting Sequences (MTSs) are responsible for trafficking nuclear-encoded proteins into mitochondria. Once entering the mitochondria, the MTS is recognized and cleaved off. Some MTSs are long and undergo two-step processing, as in the case of the human frataxin (FXN) protein (80aa), implicated in Friedreich's ataxia (FA). Therefore, we chose the FXN protein to examine whether nuclear-encoded mitochondrial proteins can efficiently be targeted via a heterologous MTS (hMTS) and deliver a functional protein into mitochondria. We examined three hMTSs; that of citrate synthase (cs), lipoamide deydrogenase (LAD) and C6ORF66 (ORF), as classically MTS sequences, known to be removed by one-step processing, to deliver FXN into mitochondria, in the form of fusion proteins. We demonstrate that using hMTSs for delivering FXN results in the production of 4-5-fold larger amounts of the fusion proteins, and at 4-5-fold higher concentrations. Moreover, hMTSs delivered a functional FXN protein into the mitochondria even more efficiently than the native MTSfxn, as evidenced by the rescue of FA patients' cells from oxidative stress; demonstrating a 18%-54% increase in cell survival; and a 13%-33% increase in ATP levels, as compared to the fusion protein carrying the native MTS. One fusion protein with MTScs increased aconitase activity within patients' cells, by 400-fold. The implications form our studies are of vast importance for both basic and translational research of mitochondrial proteins as any mitochondrial protein can be delivered efficiently by an hMTS. Moreover, effective targeting of functional proteins is important for restoration of mitochondrial function and treatment of related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Acute and chronic effects of epicardial radiofrequency applications delivered on epicardial coronary arteries.

    Science.gov (United States)

    Viles-Gonzalez, Juan F; de Castro Miranda, Reynaldo; Scanavacca, Mauricio; Sosa, Eduardo; d'Avila, Andre

    2011-08-01

    Epicardial coronary injury is by far the most feared complication of epicardial ablation. Little information is available regarding the chronic effects of delivering radiofrequency in the vicinity of large coronary vessels, and the long-term impact of this approach for mapping and ablation on epicardial vessel integrity is poorly understood. Therefore, the aim of this study was to characterize the acute and chronic histopathologic changes produced by in vivo epicardial pulses of radiofrequency ablation on coronary artery of porcine hearts. Seven pigs underwent a left thoracotomy. The catheter was sutured adjacent to the left anterior descending artery and left circumflex artery, and 20 pulses of radiofrequency energy were applied. Radiofrequency lesions located no more than 1 mm of the vessel were used for this analysis. Three animals were euthanized 20 days (acute phase) after the procedure and 4 animals after 70 days (chronic phase). The following parameters were obtained in each vessel analyzed: (1) internal and external perimeter; (2) vessel wall thickness; (3) tunica media thickness, and (4) tunica intima thickness. The presence of adipose tissue around the coronary arteries, the distance between the artery and the epicardium, and the anatomic relationship of the artery with the coronary vein was also documented for each section. Sixteen of 20 (80%) sections analyzed, showed intimal thickening with a mean of 0.18 ± 0.14 mm compared with 0.13 ± 0.16 mm in the acute phase (P = 0.331). The mean tunica media thickness was 0.25 ± 0.10 mm in the chronic phase animals compared with 0.18 ± 0.03 mm in the acute phase animals (P = 0.021). A clear protective effect of pericardial fat and coronary veins was also present. A positive correlation between depth of radiofrequency lesion and the degree of vessel injury expressed as intimal and media thickening (P = 0.001) was present. A negative correlation was identified (r = -0.83; P = 0.002) between intimal thickening

  15. Radial flow pulse jet mixer

    Science.gov (United States)

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  16. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  17. High power ultrashort pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  18. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  19. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  20. 35 Volt, 180 Ampere Pulse Generator with Droop Control for Pulsing Xenon Arcs

    DEFF Research Database (Denmark)

    Hviid, T.; Nielsen, S. O.

    1972-01-01

    The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light.......The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light....

  1. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  2. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination.

    Science.gov (United States)

    Kotnik, T; Miklavcic, D; Mir, L M

    2001-08-01

    The paper presents a comparative study of the contamination of a cell suspension by ions released from aluminum cuvettes (Al(3+)) and stainless steel electrodes (Fe(2+)/Fe(3+)) during cell membrane electropermeabilization by unipolar and by symmetrical bipolar rectangular electric pulses. A single pulse and a train of eight pulses were delivered to electrodes at a 2-mm distance, with 100-micros and 1-ms pulse durations, and amplitudes ranging from 0 to 400 V for unipolar, and from 0 to 280 V for bipolar pulses. We found that the released concentrations of Al(3+) and Fe(2+)/Fe(3+) were always more than one order of magnitude lower with bipolar pulses than with unipolar pulses of the same amplitude and duration. We then investigated the viability of DC-3F cells after 1 h of incubation in the medium containing different concentrations of Al(3+) or Fe(2+)/Fe(3+) within the range of measured released concentrations (up to 2.5 mM for both ions), thus separating the effects of electrolytic contamination from the effects of electropermeabilization itself. For Fe(2+)/Fe(3+), loss of cell viability became significant at concentrations above 1.5 mM, while for Al(3+), no effect on cell survival was detected within the investigated range. Still, reports on the biochemical effects of released Al(3+) also suggest that with aluminum cuvettes, electrolytic contamination can be detrimental. Our study shows that electrolytic contamination and its detrimental effects can be largely reduced with no loss in efficiency of electropermeabilization, if bipolar rectangular pulses of the same amplitude and duration are used instead of the commonly applied unipolar pulses.

  3. Power Delivered to Mechanical Systems by Random Vibrations

    Directory of Open Access Journals (Sweden)

    Timothy S. Edwards

    2009-01-01

    Full Text Available This paper develops deformational response power descriptions of multiple degree-of-freedom systems due to stationary random vibration excitation. Two new concepts are developed. The deformational response power density (DRPD can be computed when a structure's natural frequencies and modal masses are available. The DRPD shows the spectral content of the deformational power delivered to a specific structure by the stationary, random excitation. This function can be found through a weighted windowing of the power spectrum of the input acceleration excitation. Deformational response input power spectra (DRIPS, similar to the input energy spectrum and shock response spectrum, give the power delivered to single-degree-of-freedom systems as a function of natural frequency. It is shown that the DRIPS is simply a smoothed version of the power spectrum of the input acceleration excitation. The DRIPS gives rise to a useful power-based data smoothing operation.

  4. Delivering phage therapy per os: benefits and barriers.

    Science.gov (United States)

    Zelasko, Susan; Gorski, Andrzej; Dabrowska, Krystyna

    2017-02-01

    Multidrug-resistant bacterial infections of the gastrointestinal tract pose a serious public health concern. High levels of antibiotic drug resistance, along with the potential for antibiotics to precipitate disease or alter the gut microbiome has prompted research into alternative treatment methods. Evidence suggests that bacteriophage therapy delivered per os may be well-suited to target such infections. Areas covered: Herein, we discuss the specific advantages and challenges of using orally administered phage therapy. Our literature review encompasses recent works using phages to target various clinically-relevant bacteria in vivo. We also provide insights into methods that aim to overcome the barriers to effective phage transit through the harsh gastrointestinal environment. Expert commentary: Evidence from a number of in vivo animal studies suggests that targeting bacterial infections using phages delivered orally holds potential. Efficacious oral phage therapy depends on the delivery of sufficient phage titers to the infection site, which may be hindered by the host's gastrointestinal tract and immune response.

  5. Femtosecond pulse shaping using the geometric phase.

    Science.gov (United States)

    Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan

    2014-03-15

    We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.

  6. Pulse image recognition using fuzzy neural network.

    Science.gov (United States)

    Xu, L S; Meng, Max Q -H; Wang, K Q

    2007-01-01

    The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.

  7. Teaching Trainees to Deliver Adolescent Reproductive Health Services.

    Science.gov (United States)

    Shah, Brandi; Chan, Serena H; Perriera, Lisa; Gold, Melanie A; Akers, Aletha Y

    2016-02-01

    Delivery of reproductive services to adolescents varies according to specialty and has been linked to differences in clinical training. Few studies have explored how different specialties' graduate medical education (GME) programs prepare providers to deliver adolescent reproductive services. We explored the perceptions of resident physicians regarding their training in delivering adolescent reproductive health services. Between November 2008 and February 2009, 9 focus groups were conducted with graduate medical trainees in 3 specialties that routinely care for adolescents. The semistructured discussions were audio-recorded, transcribed, and analyzed using an inductive approach to content analysis. Large, urban academic medical center in Pittsburgh, Pennsylvania. Fifty-four resident trainees in pediatrics, family medicine, and obstetrics/gynecology. None. Trainees' perspectives regarding the didactic teaching and clinical training in providing adolescent reproductive services. Five themes emerged, reflecting trainees' beliefs regarding the best practices in which GME programs can engage to ensure that trainees graduate with the belief that they are competent and will be comfortable delivering adolescent reproductive services. Trainees believed programs need to: (1) provide didactic lectures and diverse inpatient and outpatient clinical experiences; (2) have faculty preceptors skilled in providing and supervising adolescent reproductive services; (3) teach skills for engaging adolescents in clinical assessments and decision-making; (4) train providers to navigate confidentiality issues with adolescents and caregivers; and (5) provide infrastructure and resources for delivering adolescent reproductive services. The 3 specialties differed in how well each of the 5 best practices were reportedly addressed during GME training. Policy recommendations are provided. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc

  8. Examining the cost of delivering routine immunization in Honduras.

    Science.gov (United States)

    Janusz, Cara Bess; Castañeda-Orjuela, Carlos; Molina Aguilera, Ida Berenice; Felix Garcia, Ana Gabriela; Mendoza, Lourdes; Díaz, Iris Yolanda; Resch, Stephen C

    2015-05-07

    Many countries have introduced new vaccines and expanded their immunization programs to protect additional risk groups, thus raising the cost of routine immunization delivery. Honduras recently adopted two new vaccines, and the country continues to broaden the reach of its program to adolescents and adults. In this article, we estimate and examine the economic cost of the Honduran routine immunization program for the year 2011. The data were gathered from a probability sample of 71 health facilities delivering routine immunization, as well as 8 regional and 1 central office of the national immunization program. Data were collected on vaccinations delivered, staff time dedicated to the program, cold chain equipment and upkeep, vehicle use, infrastructure, and other recurrent and capital costs at each health facility and administrative office. Annualized economic costs were estimated from a modified societal perspective and reported in 2011 US dollars. With the addition of rotavirus and pneumococcal conjugate vaccines, the total cost for routine immunization delivery in Honduras for 2011 was US$ 32.5 million. Vaccines and related supplies accounted for 23% of the costs. Labor, cold chain, and vehicles represented 54%, 4%, and 1%, respectively. At the facility level, the non-vaccine system costs per dose ranged widely, from US$ 25.55 in facilities delivering fewer than 500 doses per year to US$ 2.84 in facilities with volume exceeding 10,000 doses per year. Cost per dose was higher in rural facilities despite somewhat lower wage rates for health workers in these settings; this appears to be driven by lower demand for services per health worker in sparsely populated areas, rather than increased cost of outreach. These more-precise estimates of the operational costs to deliver routine immunizations provide program managers with important information for mobilizing resources to help sustain the program and for improving annual planning and budgeting as well as longer

  9. THE SELLER'S OBLIGATION TO DELIVER THE GOODS ACCORDING TO CISG

    OpenAIRE

    Dan VELICU

    2017-01-01

    This article aims to analyze the seller's obligations under the Convention on International Sale of Goods (CISG) and in particular the obligation to deliver the goods showing the main issues that arise in an international sale. We also wish to point the major innovations or improvements brought by the CISG in comparison to the European civil codes regulation and to conclude if the CSIG managed to revolutionize the tradition view on this issue.

  10. Viability and Functionality of Cells Delivered from Peptide Conjugated Scaffolds

    OpenAIRE

    Vacharathit, Voranaddha; Silva, Eduardo A.; Mooney, David J.

    2011-01-01

    Many cell-based therapies aim to transplant functional cells to revascularize damaged tissues and ischemic areas. However, conventional cell therapy is not optimally efficient: massive cell death, damage, and non-localization of cells both spatially and temporally all likely contribute to poor tissue functionality. An alginate cell depot system has been proposed as an alternative means to deliver outgrowth endothelial cells (OECs) in a spatiotemporally controllable manner while protecting the...

  11. THE SELLER'S OBLIGATION TO DELIVER THE GOODS ACCORDING TO CISG

    Directory of Open Access Journals (Sweden)

    Dan VELICU

    2017-05-01

    Full Text Available This article aims to analyze the seller's obligations under the Convention on International Sale of Goods (CISG and in particular the obligation to deliver the goods showing the main issues that arise in an international sale. We also wish to point the major innovations or improvements brought by the CISG in comparison to the European civil codes regulation and to conclude if the CSIG managed to revolutionize the tradition view on this issue.

  12. Delivering Sustainability Through Supply Chain Distribution Network Redesign

    OpenAIRE

    Denise Ravet

    2013-01-01

    Purpose - Companies could gain (cost, service, green/sustainable) competitive advantage through the supply chain network. The goal of this article is to study how to deliver sustainability through the supply chain distribution network redesign.Design/methodology/approach - A literature review is conducted to examine research relating to sustainable supply chain strategies and supply chain distribution network redesign.Findings - A study of the supply chain literature reveals the importance to...

  13. Delivering business analytics practical guidelines for best practice

    CERN Document Server

    Stubbs, Evan

    2013-01-01

    AVOID THE MISTAKES THAT OTHERS MAKE - LEARN WHAT LEADS TO BEST PRACTICE AND KICKSTART SUCCESS This groundbreaking resource provides comprehensive coverage across all aspects of business analytics, presenting proven management guidelines to drive sustainable differentiation. Through a rich set of case studies, author Evan Stubbs reviews solutions and examples to over twenty common problems spanning managing analytics assets and information, leveraging technology, nurturing skills, and defining processes. Delivering Business Analytics also outlines the Data Scientist's Code, fifteen principle

  14. Wave equations for pulse propagation

    Science.gov (United States)

    Shore, B. W.

    1987-06-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.

  15. Anaesthetic Monitoring - the Pulse Oximeter

    African Journals Online (AJOL)

    the pulse oximeter: 1. It is a teaching tool showing the physiology of oxygen delivery. 2. It is especially useful to evaluate the efficacy of oxygen therapy during recovery from an- aesthesia and surgery and on the ward. 3. It shows when tracheal intubation is too slow. It shows when the tube is in the wrong place or blocked or ...

  16. Nonparametric estimation of ultrasound pulses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Leeman, Sidney

    1994-01-01

    An algorithm for nonparametric estimation of 1D ultrasound pulses in echo sequences from human tissues is derived. The technique is a variation of the homomorphic filtering technique using the real cepstrum, and the underlying basis of the method is explained. The algorithm exploits a priori...

  17. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  18. Pulses and waves of contractility.

    Science.gov (United States)

    Wu, Min

    2017-12-04

    The nature of signal transduction networks in the regulation of cell contractility is not entirely clear. In this study, Graessl et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201706052) visualized and characterized pulses and waves of Rho activation in adherent cells and proposed excitable Rho signaling networks underlying cell contractility. © 2017 Wu.

  19. Specific absorption rate benefits of including measured electric field interactions in parallel excitation pulse design.

    Science.gov (United States)

    Deniz, Cem Murat; Alon, Leeor; Brown, Ryan; Sodickson, Daniel K; Zhu, Yudong

    2012-01-01

    Specific absorption rate management and excitation fidelity are key aspects of radiofrequency pulse design for parallel transmission at ultra-high magnetic field strength. The design of radiofrequency pulses for multiple channels is often based on the solution of regularized least-squares optimization problems for which a regularization term is typically selected to control the integrated or peak pulse waveform amplitude. Unlike single-channel transmission, the specific absorption rate of parallel transmission is significantly influenced by interferences between the electric fields associated with the individual transmission elements, which a conventional regularization term does not take into account. This work explores the effects upon specific absorption rate of incorporating experimentally measurable electric field interactions into parallel transmission pulse design. Results of numerical simulations and phantom experiments show that the global specific absorption rate during parallel transmission decreases when electric field interactions are incorporated into pulse design optimization. The results also show that knowledge of electric field interactions enables robust prediction of the net power delivered to the sample or subject by parallel radiofrequency pulses before they are played out on a scanner. Copyright © 2011 Wiley-Liss, Inc.

  20. Wave equations for pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.

    1987-06-24

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.

  1. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    Science.gov (United States)

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  2. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  3. Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes.

    Science.gov (United States)

    Yu, Yun; Sundaresan, Vignesh; Bandyopadhyay, Sabyasachi; Zhang, Yulun; Edwards, Martin A; McKelvey, Kim; White, Henry S; Willets, Katherine A

    2017-10-24

    Controlled three-dimensional positioning of nanoparticles is achieved by delivering single fluorescent nanoparticles from a nanopipette and capturing them at well-defined regions of an electrified substrate. To control the position of single nanoparticles, the force of the pressure-driven flow from the pipette is balanced by the attractive electrostatic force at the substrate, providing a strategy by which nanoparticle trajectories can be manipulated in real time. To visualize nanoparticle motion, a resistive-pulse electrochemical setup is coupled with an optical microscope, and nanoparticle trajectories are tracked in three dimensions using super-resolution fluorescence imaging to obtain positional information with precision in the tens of nanometers. As the particles approach the substrate, the diffusion kinetics are analyzed and reveal either subdiffusive (hindered) or superdiffusive (directed) motion depending on the electric field at the substrate and the pressure-driven flow from the pipette. By balancing the effects of the forces exerted on the particle by the pressure and electric fields, controlled, real-time manipulation of single nanoparticle trajectories is achieved. The developed approach has implications for a variety of applications such as surface patterning and drug delivery using colloidal nanoparticles.

  4. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  5. Coherent combining pulse bursts in time domain

    Energy Technology Data Exchange (ETDEWEB)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  6. Treatment Pulse Application for Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Sun-Seob Choi

    2011-01-01

    Full Text Available Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.

  7. Peak holding circuit for extremely narrow pulses

    Science.gov (United States)

    Oneill, R. W. (Inventor)

    1975-01-01

    An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.

  8. Pulsed lasers in speckle photography: error owing to pulse width.

    Science.gov (United States)

    Joenathan, C; Blair, S M; Ganesan, A R

    1993-01-10

    The effect of the pulse width of a pulsed laser in the studies of speckle velocimetry and transient vibration analysis is discussed. Because of the motion of the object during an exposure, a sine function is obtained by using the pointwise filtering method. This function modulates the halo along with the Young's fringes. It is shown that for high object velocities the sinc function modifies the halo distribution; as a result, the error in calculating the fringe position increases. An aperture geometry for which the autocorrelation halo is made constant in certain regions is proposed in which the intensity variation in this region is the result of the modulating sinc function only. A closed-form solution for the shift in the position of the fringes in this region is obtained. Experimental results of the simulation are presented.

  9. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  10. Efficient, high-speed ablation of soft tissue with few-microjoule, femtosecond pulse bursts

    CERN Document Server

    Kerse, Can; Kalaycıoğlu, Hamit; Aşık, Mehmet D; Akçaalan, Önder; Ilday, F Ömer

    2014-01-01

    Femtosecond pulses hold great promise for high-precision tissue removal. However, ablation rates are severely limited by the need to keep average laser power low to avoid collateral damage due to heat accumulation. Furthermore, previously reported pulse energies preclude delivery in flexible fibers, hindering in vivo operation. Both of these problems can be addressed through use of groups of high-repetition-rate pulses, or bursts. Here, we report a novel fiber laser and demonstrate ultrafast burst-mode ablation of brain tissue at rates approaching 1 mm$^3$/min, an order of magnitude improvement over previous reports. Burst mode operation is shown to be superior in terms of energy required and avoidance of thermal effects, compared to uniform repetition rates. These results can pave the way to in vivo operation at medically relevant speeds, delivered via flexible fibers to surgically hard-to-reach targets, or with simultaneous magnetic resonance imaging.

  11. A 7MeV S-Band 2998MHz Variable Pulse Length Linear Accelerator System

    CERN Document Server

    Hernandez, Michael; Mishin, Andrey V; Saverskiy, Aleksandr J; Skowbo, Dave; Smith, Richard

    2005-01-01

    American Science and Engineering High Energy Systems Division (AS&E HESD) has designed and commissioned a variable pulse length 7 MeV electron accelerator system. The system is capable of delivering a 7 MeV electron beam with a pulse length of 10 nS FWHM and a peak current of 1 ampere. The system can also produce electron pulses with lengths of 20, 50, 100, 200, 400 nS and 3 uS FWHM with corresponding lower peak currents. The accelerator system consists of a gridded electron gun, focusing coil, an electrostatic deflector system, Helmholtz coils, a standing wave side coupled S-band linac, a 2.6 MW peak power magnetron, an RF circulator, a fast toroid, vacuum system and a PLC/PC control system. The system has been operated at repetition rates up to 250pps. The design, simulations and experimental results from the accelerator system are presented in this paper.

  12. Sensors and Methods for Electromagnetic Pulse Identification

    OpenAIRE

    Pavel FIALA; Drexler, Petr

    2006-01-01

    There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday...

  13. Design and Construction of a Microcontroller-Based Ventilator Synchronized with Pulse Oximeter.

    Science.gov (United States)

    Gölcük, Adem; Işık, Hakan; Güler, İnan

    2016-07-01

    This study aims to introduce a novel device with which mechanical ventilator and pulse oximeter work in synchronization. Serial communication technique was used to enable communication between the pulse oximeter and the ventilator. The SpO2 value and the pulse rate read on the pulse oximeter were transmitted to the mechanical ventilator through transmitter (Tx) and receiver (Rx) lines. The fuzzy-logic-based software developed for the mechanical ventilator interprets these values and calculates the percentage of oxygen (FiO2) and Positive End-Expiratory Pressure (PEEP) to be delivered to the patient. The fuzzy-logic-based software was developed to check the changing medical states of patients and to produce new results (FiO2 ve PEEP) according to each new state. FiO2 and PEEP values delivered from the ventilator to the patient can be calculated in this way without requiring any arterial blood gas analysis. Our experiments and the feedbacks from physicians show that this device makes it possible to obtain more successful results when compared to the current practices.

  14. Advanced concepts for high-power, short-pulse CO2 laser development

    Science.gov (United States)

    Gordon, Daniel F.; Hasson, Victor; von Bergmann, Hubertus; Chen, Yu-hsin; Schmitt-Sody, A.; Penano, Joseph R.

    2016-06-01

    Ultra-short pulse lasers are dominated by solid-state technology, which typically operates in the near-infrared. Efforts to extend this technology to longer wavelengths are meeting with some success, but the trend remains that longer wavelengths correlate with greatly reduced power. The carbon dioxide (CO2) laser is capable of delivering high energy, 10 micron wavelength pulses, but the gain structure makes operating in the ultra-short pulse regime difficult. The Naval Research Laboratory and Air Force Research Laboratory are developing a novel CO2 laser designed to deliver ~1 Joule, ~1 picosecond pulses, from a compact gain volume (~2x2x80 cm). The design is based on injection seeding an unstable resonator, in order to achieve high energy extraction efficiency, and to take advantage of power broadening. The unstable resonator is seeded by a solid state front end, pumped by a custom built titanium sapphire laser matched to the CO2 laser bandwidth. In order to access a broader range of mid infrared wavelengths using CO2 lasers, one must consider nonlinear frequency multiplication, which is non-trivial due to the bandwidth of the 10 micron radiation.

  15. Finite pulse effects in CPMG pulse trains on paramagnetic materials.

    Science.gov (United States)

    Leskes, Michal; Grey, Clare P

    2015-09-14

    The Carr-Purcell-Meiboom-Gill (CPMG) sequence is commonly used in high resolution NMR spectroscopy and in magnetic resonance imaging for the measurement of transverse relaxation in systems that are subject to diffusion in internal or external gradients and is superior to the Hahn echo measurement, which is more sensitive to diffusion effects. Similarly, it can potentially be used to study dynamic processes in electrode materials for lithium ion batteries. Here we compare the (7)Li signal decay curves obtained with the CPMG and Hahn echo sequences under static conditions (i.e., in the absence of magic angle spinning) in paramagnetic materials with varying transition metal ion concentrations. Our results indicate that under CPMG pulse trains the lifetime of the (7)Li signal is substantially extended and is correlated with the strength of the electron-nuclear interaction. Numerical simulations and analytical calculations using Floquet theory suggest that the combination of large interactions and a train of finite pulses, results in a spin locking effect which significantly slows the signal's decay. While these effects complicate the interpretation of CPMG-based investigations of diffusion and chemical exchange in paramagnetic materials, they may provide a useful approach to extend the signal's lifetime in these often fast relaxing systems, enabling the use of correlation experiments. Furthermore, these results highlight the importance of developing a deeper understanding of the effects of the large paramagnetic interactions during multiple pulse experiments in order to extend the experimental arsenal available for static and in situ NMR investigations of paramagnetic materials.

  16. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information?

    Directory of Open Access Journals (Sweden)

    Hatley RHM

    2017-02-01

    Full Text Available Ross HM Hatley, Sarah M Byrne Respironics Respiratory Drug Delivery (UK Ltd, a business of Philips Electronics UK Limited, Chichester, UK Background: To improve convenience to patients, there have been advances in the operation of nebulizers, resulting in fast treatment times and less drug lost to the environment. However, limited attention has been paid to the effects of these developments on the delivered dose (DD and respirable delivered dose (RDD. Published pharmacopoeia and ISO testing guidelines for adult-use testing utilize a single breathing pattern, which may not be sufficient to enable effective comparisons between the devices.Materials and methods: The DD of 5 mg of salbutamol sulfate into adult breathing patterns with inhalation:exhalation (I:E ratios between 1:1 and 1:4 was determined. Droplet size was determined by laser diffraction and RDD calculated. Nine different nebulizer brands with different modes of operation (conventional, venturi, breath-enhanced, mesh, and breath-activated were tested.Results: Between the non-breath-activated nebulizers, a 2.5-fold difference in DD (~750–1,900 µg salbutamol was found; with RDD, there was a more than fourfold difference (~210–980 µg. With increasing time spent on exhalation, there were progressive reductions in DD and RDD, with the RDD at an I:E ratio of 1:4 being as little as 40% of the dose with the 1:1 I:E ratio. The DD and RDD from the breath-activated mesh nebulizer were independent of the I:E ratio, and for the breath-activated jet nebulizer, there was less than 20% change in RDD between the I:E ratios of 1:1 and 1:4.Conclusion: Comparing nebulizers using the I:E ratio recommended in the guidelines does not predict relative performance between the devices at other ratios. There was significant variance in DD or RDD between different brands of non-breath-activated nebulizer. In future, consideration should be given to revision of the test protocols included in the guidelines

  17. <3> OMEGA pulse-forming network

    CERN Multimedia

    1974-01-01

    Adjustement of the 3 W pulse-forming network of the SPS beam dumping system. When charged at 60 kV, this PFN gives 10 kA, 25 ms current pulses, with oscillations, superimposed on the pulse flat top, of an amplitude of +/- 1 Ka.

  18. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  19. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  20. High speed, high current pulsed driver circuit

    Science.gov (United States)

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  1. Double pulse Thomson scattering system at RTP

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Chu, C.C.; Donne, A. J. H.; Herranz, J. A.; Cardozo, N. J. L.; van der Meiden, H. J.; Pijper, F.J.

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10-800 mu s, max. 2x12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator

  2. Numerical and experimental study of an annular pulse tube used in the pulse tube cooler

    Science.gov (United States)

    Pang, Xiaomin; Chen, Yanyan; Wang, Xiaotao; Dai, Wei; Luo, Ercang

    2017-12-01

    Multi-stage pulse tube coolers normally use a U-type configuration. For compactness, it is attractive to build a completely co-axial multi-stage pulse tube cooler. In this way, an annular shape pulse tube is inevitable. Although there are a few reports about previous annular pulse tubes, a detailed study and comparison with a circular pulse tube is lacking. In this paper, a numeric model based on CFD software is carried out to compare the annular pulse tube and circular pulse tube used in a single stage in-line type pulse tube cooler with about 10 W of cooling power at 77 K. The length and cross sectional area of the two pulse tubes are kept the same. Simulation results show that the enthalpy flow in the annular pulse tube is lower by 1.6 W (about 11% of the enthalpy flow) compared to that in circular pulse tube. Flow and temperature distribution characteristics are also analyzed in detail. Experiments are then conducted for comparison with an in-line type pulse tube cooler. With the same acoustic power input, the pulse tube cooler with a circular pulse tube obtains 7.88 W of cooling power at 77 K, while using an annular pulse tube leads to a cooling power of 7.01 W, a decrease of 0.9 W (11.4%) on the cooling performance. The study sets the basis for building a completely co-axial two-stage pulse tube cooler.

  3. Patterns of digital volume pulse waveform and pulse transit time in ...

    African Journals Online (AJOL)

    Introduction: Arterial wall changes underlie many disorders of aging and the complications of diseases like hypertension and diabetes mellitus. Analyzing the pulse wave is an easy, noninvasive method used to assess vessel wall stiffness and pulse changes. In this study the digital volume pulse wave and the pulse transit ...

  4. Solute clearance in CRRT: prescribed dose versus actual delivered dose.

    Science.gov (United States)

    Lyndon, William D; Wille, Keith M; Tolwani, Ashita J

    2012-03-01

    Substantial efforts have been made toward defining the dose threshold of continuous renal replacement therapy (CRRT) associated with improved survival in critically ill patients with acute kidney injury. Published studies have used prescribed effluent rates, expressed as total effluent volume (TEV) per weight and unit time (mL/kg/h), as a surrogate for dose. The purpose of this study was to compare differences in CRRT dose based on prescribed effluent rate, measured TEV and direct measurement of urea and creatinine clearance. We analyzed data that had been prospectively collected on 200 patients enrolled in a randomized trial comparing survival with a prescribed effluent rate of 20 mL/kg/h (standard dose) to 35 mL/kg/h (high dose) using pre-dilution continuous venovenous hemodiafiltration (CVVHDF). Filters were changed every 72 h. Blood urea nitrogen (BUN), serum creatinine (SCr), effluent urea nitrogen (EUN) and effluent creatinine (ECr) were collected daily. Actual delivered dose was calculated as: (EUN/BUN)*TEV for urea and (ECr/SCr)*TEV for creatinine. Data were available for 165 patients. In both groups, prescribed dose differed significantly from the measured TEV dose (P < 0.001). In the standard dose group, there was no difference between the measured TEV dose and actual delivered urea and creatinine clearances. However, in the high-dose group, measured TEV dose differed significantly from delivered urea clearance by 7.1% (P < 0.001) and creatinine clearance by 13.9% (P < 0.001). Dose based on prescribed effluent rate or measured TEV is a poor substitute for actual CVVHDF creatinine and urea clearance.

  5. Optimizing a Drone Network to Deliver Automated External Defibrillators.

    Science.gov (United States)

    Boutilier, Justin J; Brooks, Steven C; Janmohamed, Alyf; Byers, Adam; Buick, Jason E; Zhan, Cathy; Schoellig, Angela P; Cheskes, Sheldon; Morrison, Laurie J; Chan, Timothy C Y

    2017-06-20

    Public access defibrillation programs can improve survival after out-of-hospital cardiac arrest, but automated external defibrillators (AEDs) are rarely available for bystander use at the scene. Drones are an emerging technology that can deliver an AED to the scene of an out-of-hospital cardiac arrest for bystander use. We hypothesize that a drone network designed with the aid of a mathematical model combining both optimization and queuing can reduce the time to AED arrival. We applied our model to 53 702 out-of-hospital cardiac arrests that occurred in the 8 regions of the Toronto Regional RescuNET between January 1, 2006, and December 31, 2014. Our primary analysis quantified the drone network size required to deliver an AED 1, 2, or 3 minutes faster than historical median 911 response times for each region independently. A secondary analysis quantified the reduction in drone resources required if RescuNET was treated as a large coordinated region. The region-specific analysis determined that 81 bases and 100 drones would be required to deliver an AED ahead of median 911 response times by 3 minutes. In the most urban region, the 90th percentile of the AED arrival time was reduced by 6 minutes and 43 seconds relative to historical 911 response times in the region. In the most rural region, the 90th percentile was reduced by 10 minutes and 34 seconds. A single coordinated drone network across all regions required 39.5% fewer bases and 30.0% fewer drones to achieve similar AED delivery times. An optimized drone network designed with the aid of a novel mathematical model can substantially reduce the AED delivery time to an out-of-hospital cardiac arrest event. © 2017 American Heart Association, Inc.

  6. Capturing, Harmonizing and Delivering Data and Quality Provenance

    Science.gov (United States)

    Leptoukh, Gregory; Lynnes, Christopher

    2011-01-01

    Satellite remote sensing data have proven to be vital for various scientific and applications needs. However, the usability of these data depends not only on the data values but also on the ability of data users to assess and understand the quality of these data for various applications and for comparison or inter-usage of data from different sensors and models. In this paper, we describe some aspects of capturing, harmonizing and delivering this information to users in the framework of distributed web-based data tools.

  7. Delivering Sustainability Through Supply Chain Distribution Network Redesign

    Directory of Open Access Journals (Sweden)

    Denise Ravet

    2013-09-01

    Full Text Available Purpose - Companies could gain (cost, service, green/sustainable competitive advantage through the supply chain network. The goal of this article is to study how to deliver sustainability through the supply chain distribution network redesign.Design/methodology/approach - A literature review is conducted to examine research relating to sustainable supply chain strategies and supply chain distribution network redesign.Findings - A study of the supply chain literature reveals the importance to rethink the supply chain distribution network design and to treat sustainability as integral to operations.

  8. Pulse Propagation on close conductors

    CERN Document Server

    Dieckmann, A

    2001-01-01

    The propagation and reflection of arbitrarily shaped pulses on non-dispersive parallel conductors of finite length with user defined cross section is simulated employing the discretized telegraph equation. The geometry of the system of conductors and the presence of dielectric material determine the capacities and inductances that enter the calculation. The values of these parameters are found using an iterative Laplace equation solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The evolving pulses and the resulting crosstalk can be plotted at any instant and - in the Mathematica notebook version of this report - be looked at in an animation. As an example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.

  9. Unsplit bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A [Pleasanton, CA

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  10. Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields.

    Science.gov (United States)

    Khan, Saiqa I; Blumrosen, Gaddi; Vecchio, Daniela; Golberg, Alexander; McCormack, Michael C; Yarmush, Martin L; Hamblin, Michael R; Austen, William G

    2016-03-01

    Biofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500 V are applied through a central electrode, with pulse duration of 50 μs, and pulse delivery frequency of 2 Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100-80% of bacteria in the treated area was 121 ± 14 V/mm when 300 pulses were applied, and 235 ± 6.1 V/mm when 150 pulses were applied. The area at which 100-80% of bacteria were eradicated was 50.5 ± 9.9 mm(2) for 300 pulses, and 13.4 ± 0.65 mm(2) for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300 pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved

  11. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    Science.gov (United States)

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  12. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing.

    Science.gov (United States)

    Kida, Yuichiro; Liu, Jun; Teramoto, Takahiro; Kobayashi, Takayoshi

    2010-06-01

    We propose and demonstrate experimentally a novel way of generating sub-10fs deep-UV pulses. The technique is based on chirped-pulse four-wave mixing induced by a broadband near-IR (NIR) pulse and a near-UV pulse. The broadband IR pulse is prepared by preliminarily broadening the spectral width of an NIR pulse by self-phase modulation. The positively chirped broadband IR pulse is suitable for generating a negatively chirped deep-UV pulse, which can be compressed by normal group-velocity dispersion in a transparent medium. Self-compression of the generated deep-UV pulse in air has been demonstrated to produce sub-10fs deep-UV pulses with excellent temporal and spectral profiles for ultrafast spectroscopy in the deep UV.

  13. Pulsed Scophony laser projection system

    Science.gov (United States)

    Lowry, J. B.; Welford, W. T.; Humphries, M. R.

    1988-10-01

    A novel laser TV projection display has been developed by PA Technology employing the Scophony system with acousto-optic modulators and pulsed lasers. This results in a projection system with greater optical simplicity, higher reliability and reduced power and cooling requirements over similar laser projectors. The technique has been successfully implemented in British Aerospace's Microdome missile training simulator. This paper describes the underlying principles of the design, its operational features and its implementation in the Microdome.

  14. Metal silicides with energetic pulses

    Science.gov (United States)

    D'Anna, E.; Leggieri, G.; Luches, A.; Majni, G.; Nava, F.; Ottaviani, G.

    1986-07-01

    Samples formed of a thin metal film deposited on silicon single crystal were annealed with electron and laser (ruby and excimer) pulses over a wide range of fluences. From a comparison of the experimental results with the temperature profiles of the irradiated samples, it turns out that suicide formation starts when the metal/silicon interface reaches the lowest eutectic temperature of the binary metal/silicon system. The growth rate of reacted layers is of the order of 1 m/s.

  15. Pulse amplitude modulated chlorophyll fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  16. High Voltage Nanosecond Pulse Generator.

    Science.gov (United States)

    1978-11-01

    pulse to a laser load was desiqned , built , and tested . —- -~~~-~~~~----j ‘~ ~~ _)— ~ --. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CoIx ~r 1 I

  17. Generation of synchronized signal and pump pulses for an optical ...

    Indian Academy of Sciences (India)

    2015-11-27

    pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse ...

  18. Electromagnetic pulses bone healing booster

    Science.gov (United States)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  19. Experimental optimization of dissipative soliton resonance square pulses in all anomalous passively mode-locked fiber laser

    Science.gov (United States)

    Ben Braham, Fatma; Semaan, Georges; Bahloul, Faouzi; Salhi, Mohamed; Sanchez, François

    2017-10-01

    We investigate experimentally the operational boundaries of dissipative soliton resonance in a double-clad Er:Yb co-doped dual amplifier passively mode-locked figure-of-eight fiber laser. While mode-locking with a nonlinear amplifying loop mirror, we present an exhaustive series of experiments in order to optimize the pulse energy and pulse width tunability. In addition to the pumping power of the amplifiers, several key experimental parameters have been identified such as the net cavity dispersion, the coupling ratio between the two loops of the cavity and the exact position of the long fiber coils. Under optimized conditions, the laser delivers square pulses with an energy varying between 8.5 and 10.1 μJ while the pulse width ranges from 84-416 ns.

  20. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster

    Science.gov (United States)

    Guo, Dawei; Cheng, Mousen; Li, Xiaokang

    2017-10-01

    In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.

  1. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications.

    Science.gov (United States)

    Jaworski, Piotr; Yu, Fei; Maier, Robert R J; Wadsworth, William J; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2013-09-23

    We present high average power picosecond and nanosecond pulse delivery at 1030 nm and 1064 nm wavelengths respectively through a novel hollow-core Negative Curvature Fiber (NCF) for high-precision micro-machining applications. Picosecond pulses with an average power above 36 W and energies of 92 µJ, corresponding to a peak power density of 1.5 TWcm⁻² have been transmitted through the fiber without introducing any damage to the input and output fiber end-faces. High-energy nanosecond pulses (>1 mJ), which are ideal for micro-machining have been successfully delivered through the NCF with a coupling efficiency of 92%. Picosecond and nanosecond pulse delivery have been demonstrated in fiber-based laser micro-machining of fused silica, aluminum and titanium.

  2. Pulse growth dynamics in laser mode locking

    Science.gov (United States)

    Popov, Mark; Gat, Omri

    2018-01-01

    We analyze theoretically and numerically the nonlinear process of pulse formation in mode-locked lasers, starting from a perturbation of a continuous wave. Focusing on weak-to-moderate dispersion systems, we show that pulse growth is initially slow, dominated by a cascade of energy from low to high axial modes, followed by fast strongly nonlinear growth, and finally relaxation to the stable pulse wave form. The pulse grows initially by condensing a fixed amount of energy into a decreasing time interval, with peak power growing toward a finite-time singularity that is checked when the gain bandwidth is saturated by the pulse.

  3. Slow light pulse propagation in dispersive media

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Mørk, Jesper; Lavrinenko, Andrei

    2009-01-01

    We present a theoretical and numerical analysis of pulse propagation in a semiconductor photonic crystal waveguide with embedded quantum dots in a regime where the pulse is subjected to both waveguide and material dispersion. The group index and the transmission are investigated by finite...... broadening or break-up of the pulse may be observed. The transition from linear to nonlinear pulse propagation is quantified in terms of the spectral width of the pulse. To cite this article: T.R. Nielsen et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All...

  4. Few-cycle pulse characterization with an acousto-optic pulse shaper.

    Science.gov (United States)

    Cousin, S L; Forget, N; Grün, A; Bates, P K; Austin, Dane R; Biegert, J

    2011-08-01

    An acousto-optic pulse shaper has been used to characterize few-cycle pulses generated in a hollow-core fiber. A grism pair precompensates for the dispersion of the acousto-optic crystal, allowing the full pulse-shaping window to be used for replica generation rather than self-compensation. A 9.4 fs pulse was measured, the shortest ever measured with an acousto-optic pulse shaper, to our knowledge. © 2011 Optical Society of America

  5. Expert assessment concludes negative emissions scenarios may not deliver

    Science.gov (United States)

    Vaughan, Naomi E.; Gough, Clair

    2016-09-01

    Many integrated assessment models (IAMs) rely on the availability and extensive use of biomass energy with carbon capture and storage (BECCS) to deliver emissions scenarios consistent with limiting climate change to below 2 °C average temperature rise. BECCS has the potential to remove carbon dioxide (CO2) from the atmosphere, delivering ‘negative emissions’. The deployment of BECCS at the scale assumed in IAM scenarios is highly uncertain: biomass energy is commonly used but not at such a scale, and CCS technologies have been demonstrated but not commercially established. Here we present the results of an expert elicitation process that explores the explicit and implicit assumptions underpinning the feasibility of BECCS in IAM scenarios. Our results show that the assumptions are considered realistic regarding technical aspects of CCS but unrealistic regarding the extent of bioenergy deployment, and development of adequate societal support and governance structures for BECCS. The results highlight concerns about the assumed magnitude of carbon dioxide removal achieved across a full BECCS supply chain, with the greatest uncertainty in bioenergy production. Unrealistically optimistic assumptions regarding the future availability of BECCS in IAM scenarios could lead to the overshoot of critical warming limits and have significant impacts on near-term mitigation options.

  6. Pulsewidth optimisation for transformer-coupled transcutaneous current pulse generation.

    Science.gov (United States)

    Kolen, P T

    1998-07-01

    A general theoretical approach for the determination of the optimum pulsewidth used for TENS/EMS/FES is presented. Analysis based on the interaction between a step-up transformer-coupled nerve stimulator and an electrode-tissue load modelled as a simple lossy capacitive load results in excellent agreement between the predicted and measured performance. The analysis shows that, by adjusting the pulsewidth (PW) of a push-pull symmetric square waveform such that PW = 4.5 tau, the total charge delivered to the tissue load can be minimised without impacting the efficiency of the nerve stimulation. Additionally, by minimising the charge exchange supported portion of the current pulse, which is primarily responsible for the pH shift and subsequent tissue burning with long-term use, the latter can be reduced to an acceptable level.

  7. Drug delivery with microsecond laser pulses into gelatin

    Science.gov (United States)

    Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1996-07-01

    Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.

  8. Cardiac current density distribution by electrical pulses from TASER devices.

    Science.gov (United States)

    Stratbucker, Robert A; Kroll, Mark W; McDaniel, Wayne; Panescu, Dorin

    2006-01-01

    TASERs deliver electrical pulses that can temporarily incapacitate subjects. The goal of this paper is to analyze the distribution of TASER currents in the heart and understand their chances of triggering cardiac arrhythmias. The models analyzed herein describe strength-duration thresholds for myocyte excitation and ventricular fibrillation induction. Finite element modeling is used to compute current density in the heart for worst-case TASER electrode placement. The model predicts a maximum TASER current density of 0.27 mA/cm(2) in the heart. It is conclude that the numerically simulated TASER current density in the heart is about half the threshold for myocytes excitation and more than 500 times lower than the threshold required for inducing ventricular fibrillation. Showing a substantial cardiac safety margin, TASER devices do not generate currents in the heart that are high enough to excite myocytes or trigger VF.

  9. Design and application of pulse information acquisition and analysis ...

    African Journals Online (AJOL)

    Background: To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse.

  10. Intramuscular adrenaline does not reduce the incidence of respiratory distress and hypoglycaemia in neonates delivered by elective caesarean section at term

    DEFF Research Database (Denmark)

    Pedersen, Pernille; Avlund, O L; Pedersen, B L

    2008-01-01

    AIM: To test whether intramuscular injection of 30 microg adrenaline decreased the incidence of respiratory distress and hypoglycaemia in term infants delivered by elective caesarean section before active labour. METHOD: The study was randomised and double-blinded. A total of 270 neonates were...... assigned to intramuscular treatment with saline (0.30 ml) or 30 microg adrenaline (0.30 ml) immediately after birth. The primary endpoint was referral to the neonatal ward because of respiratory distress or a blood glucose level ... with pulse oximetry to disclose potential side effects. RESULTS: Pulse-oximetry recordings revealed a modest systemic effect by intramuscular adrenaline as the heart rate and the haemoglobin oxygen saturation were significantly higher in infants who received adrenaline. In contrast, the incidence...

  11. Advanced Uses of Pulse Oximetry for Monitoring Mechanically Ventilated Patients.

    Science.gov (United States)

    Tusman, Gerardo; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2017-01-01

    Pulse oximetry is an undisputable standard of care in clinical monitoring. It combines a spectrometer to detect hypoxemia with a plethysmograph for the diagnosis, monitoring, and follow-up of cardiovascular diseases. These pulse oximetry capabilities are extremely useful for assessing the respiratory and circulatory status and for monitoring of mechanically ventilated patients. On the one hand, the key spectrography-derived function of pulse oximetry is to evaluate a patient's gas exchange that results from a particular ventilatory treatment by continuously and noninvasively measuring arterial hemoglobin saturation (SpO2). This information helps to maintain patients above the hypoxemic levels, leading to appropriate ventilator settings and inspired oxygen fractions. However, whenever higher than normal oxygen fractions are used, SpO2 can mask existing oxygenation defects in ventilated patients. This limitation, resulting from the S shape of the oxyhemoglobin saturation curve, can be overcome by reducing the oxygen fraction delivered to the patient in a controlled and stepwise manner. This results in a SpO2/FIO2 diagram, which allows a rough characterization of a patient's gas exchange, shunt, and the amount of lung area with a low ventilation/perfusion ratio without the need of blood sampling. On the other hand, the photoplethysmography-derived oximeter function has barely been exploited for the purpose of monitoring hemodynamics in mechanically ventilated patients. The analysis of the photoplethysmography contour provides useful real-time and noninvasive information about the interaction of heart and lungs during positive pressure ventilation. These hemodynamic monitoring capabilities are related to both the assessment of preload dependency-mainly by analyzing the breath-by-breath variation of the photoplethysmographic signals-and the analysis of arterial impedance, which examines the changes in the plethysmographic amplitude, contour, and derived indexes. In this

  12. Assessment of pulse rate variability by the method of pulse frequency demodulation

    Science.gov (United States)

    Hayano, Junichiro; Barros, Allan Kardec; Kamiya, Atsunori; Ohte, Nobuyuki; Yasuma, Fumihiko

    2005-01-01

    Background Due to its easy applicability, pulse wave has been proposed as a surrogate of electrocardiogram (ECG) for the analysis of heart rate variability (HRV). However, its smoother waveform precludes accurate measurement of pulse-to-pulse interval by fiducial-point algorithms. Here we report a pulse frequency demodulation (PFDM) technique as a method for extracting instantaneous pulse rate function directly from pulse wave signal and its usefulness for assessing pulse rate variability (PRV). Methods Simulated pulse wave signals with known pulse interval functions and actual pulse wave signals obtained from 30 subjects with a trans-dermal pulse wave device were analyzed by PFDM. The results were compared with heart rate and HRV assessed from simultaneously recorded ECG. Results Analysis of simulated data revealed that the PFDM faithfully demodulates source interval function with preserving the frequency characteristics of the function, even when the intervals fluctuate rapidly over a wide range and when the signals include fluctuations in pulse height and baseline. Analysis of actual data revealed that individual means of low and high frequency components of PRV showed good agreement with those of HRV (intraclass correlation coefficient, 0.997 and 0.981, respectively). Conclusion The PFDM of pulse wave signal provides a reliable assessment of PRV. Given the popularity of pulse wave equipments, PFDM may open new ways to the studies of long-term assessment of cardiovascular variability and dynamics. PMID:16259639

  13. Single attosecond pulse production with an ellipticity-modulated driving IR pulse

    Energy Technology Data Exchange (ETDEWEB)

    Strelkov, V [CELIA, Universite Bordeaux 1, 351 Cours de la liberation, 33405 Talence (France); Zair, A [CELIA, Universite Bordeaux 1, 351 Cours de la liberation, 33405 Talence (France); Tcherbakoff, O [CELIA, Universite Bordeaux 1, 351 Cours de la liberation, 33405 Talence (France); Lopez-Martens, R [Department of Physics, Lund Institute of Technology, PO Box 118, S-22100, Lund (Sweden); Cormier, E [CELIA, Universite Bordeaux 1, 351 Cours de la liberation, 33405 Talence (France); Mevel, E [CELIA, Universite Bordeaux 1, 351 Cours de la liberation, 33405 Talence (France); Constant, E [CELIA, Universite Bordeaux 1, 351 Cours de la liberation, 33405 Talence (France)

    2005-05-28

    We theoretically study attosecond pulse production via high-harmonic generation using a driving laser pulse with a time-dependent ellipticity. The theoretical approach produces results that agree with our experimental data obtained using 35 fs driving laser pulses and is further used to study the generation of single attosecond pulses with shorter laser pulses. We find an equation for the duration of the temporal window created by the time-varying driving laser polarization in which high-harmonic emission can occur. We formulate the necessary requirements concerning the driving laser field in order to confine the high-harmonic emission in the form of a single attosecond pulse. Indeed, we show that using incident 12 fs laser pulses single attosecond pulses can be produced for certain carrier-envelope phase (CEP) values of the driving pulse. For 6 fs incident laser pulses, single attosecond pulses are produced for all values of the CEP (the intensity of the attosecond pulse still depends on the actual value of the CEP). If implemented with state-of-the-art 5 fs laser pulses, this technique can even lead to the production of sub-100 as pulses. (letter to the editor)

  14. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    Science.gov (United States)

    Moskalenko, Andrey S.; Zhu, Zhen-Gang; Berakdar, Jamal

    2017-02-01

    This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver

  15. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Andrey S., E-mail: andrey.moskalenko@uni-konstanz.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz (Germany); Zhu, Zhen-Gang, E-mail: zgzhu@ucas.ac.cn [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Berakdar, Jamal, E-mail: jamal.berakdar@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany)

    2017-02-17

    This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver

  16. Type VI secretion delivers bacteriolytic effectors to target cells.

    Science.gov (United States)

    Russell, Alistair B; Hood, Rachel D; Bui, Nhat Khai; LeRoux, Michele; Vollmer, Waldemar; Mougous, Joseph D

    2011-07-20

    Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.

  17. Adaptation finance: How can Durban deliver on past promises?

    Energy Technology Data Exchange (ETDEWEB)

    Ciplet, David; Roperts, J. Timmons; He, Linlang; Fields, Spencer [Brown University (United States); Khan, Mizan [North South University (Bangladesh)

    2011-11-15

    There is an ever-widening chasm between the support developing countries need to adapt to climate change, and the funding promised and delivered by wealthy nations. While UN climate meetings endlessly debate terms such as 'new and additional' or 'balanced allocation', even some basic commitments to adaptation funding are going unfulfilled. And as we approach the final year of the 'fast-start' phase for climate finance, there is no plan for the crucial 'scale-up' period of 2013–2019, when contributions must swell tenfold. At the Durban negotiations, countries should take three steps to ensure the developed world can meet its agreed responsibilities: establish funding sources based on international trade; define annual targets for the scale-up; and adopt a transparent, centralised accounting system.

  18. A Fetus with Iniencephaly Delivered at the Third Trimester

    Directory of Open Access Journals (Sweden)

    Esra Cinar Tanriverdi

    2015-01-01

    Full Text Available Iniencephaly is an uncommon neural tube defect, having retroflexion of the head without a neck and severe distortion of the spine. Iniencephaly is classified into two groups, iniencephaly apertus (with encephalocele and iniencephaly clausus (without encephalocele. Incidence ranges from 0.1 to 10 in 10.000 pregnancies and it is seen more frequently in girls. Most of the fetuses with this defect die before birth or soon after birth, while those with the milder forms may live through childhood. Recurrence risk is around 1–5%. Family should be offered termination to reduce maternal risks and counseled for folic acid supplementation before the next planned pregnancy. Here we present a rare case of iniencephaly clausus which was diagnosed at 18th week of gestation by ultrasonography and delivered in the third trimester of pregnancy due to rejection of termination.

  19. Competitive advantage of diferric transferrin in delivering iron to reticulocytes.

    Science.gov (United States)

    Huebers, H A; Csiba, E; Huebers, E; Finch, C A

    1983-01-01

    Radioiron- and radioiodine-labeled forms of human diferric and monoferric transferrin and apotransferrin, isolated by preparative isoelectric focusing, were used to define transferrin-iron uptake by human reticulocytes. In mixtures of human diferric and monoferric transferrin, the diferric molecule had a constant 7-fold advantage in delivering iron to reticulocytes, as compared with the 2-fold advantage when single solutions of mono- and diferric transferrins were compared. This was shown to be due to competitive interaction in iron delivery, probably at a common membrane-receptor binding site for transferrin. Apotransferrin did not interfere with the iron-donating process and its limited cellular uptake was inhibited in noncompetitive fashion by diferric transferrin. PMID:6572005

  20. Increasing capacity to deliver diabetes self-management education

    DEFF Research Database (Denmark)

    Carey, M. E.; Mandalia, P. K.; Daly, H.

    2014-01-01

    were referred for self-management education as part of routine care and attended either a control or intervention format DESMOND course. The primary outcome measure was change in illness coherence score (derived from the Diabetes Illness Perception Questionnaire-Revised) between baseline and 4 months......Aim: To develop and test a format of delivery of diabetes self-management education by paired professional and lay educators. Methods: We conducted an equivalence trial with non-randomized participant allocation to a Diabetes Education and Self Management for Ongoing and Newly Diagnosed Type 2...... diabetes (DESMOND) course, delivered in the standard format by two trained healthcare professional educators (to the control group) or by one trained lay educator and one professional educator (to the intervention group). A total of 260 people with Type 2 diabetes diagnosed within the previous 12 months...

  1. Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system

    Science.gov (United States)

    Gaida, C.; Gebhardt, M.; Stutzki, F.; Jauregui, C.; Limpert, J.; Tünnermann, A.

    2017-02-01

    Experimental demonstrations of Tm-doped fiber amplifiers (typically in CW- or narrow-band pulsed operation) span a wavelength range going from about 1700 nm to well beyond 2000 nm. Thus, it should be possible to obtain a bandwidth of more than 100 nm, which would enable sub-100 fs pulse duration in an efficient, linear amplification scheme. In fact, this would allow the emission of pulses with less than 20 optical cycles directly from a Tm-doped fiber system, something that seems to be extremely challenging for other dopants in a fused silica fiber. In this contribution, we summarize the current development of our Thulium-doped fiber CPA system, demonstrate preliminary experiments for further scaling and discuss important design factors for the next steps. The current single-channel laser system presented herein delivers a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. Special care has been taken to reduce the detrimental impact of water vapor absorption by placing the whole system in a dry atmosphere housing (Tm-doped fiber CPA with sub-100 fs pulse duration, multi-GW pulse peak power and >100 W average power can be expected in the near future.

  2. 50-mJ macro-pulses at 1064 nm from a diode-pumped picosecond laser system.

    Science.gov (United States)

    Agnesi, A; Carrà, L; Dallocchio, P; Pirzio, F; Reali, G; Lodo, S; Piccinno, G

    2011-10-10

    Pulse-picking from a 100-mW cw mode-locked seeder, a hybrid master-oscillator power-amplifier (MOPA) system, based on Nd:YVO4 and Nd:YAG amplifier modules, has been developed, delivering single-pulses of 8.6 ps at 455-MHz repetition-rate, bunched into ~1-μs trains of 50 mJ ("macro-pulses"). The output beam is linearly polarized and nearly diffraction limited up to the maximum macro-pulse repetition-rate of 50 Hz. The single-pulse peak power and the macro-pulse duration and energy are quite suitable for high-energy nonlinear optical applications such as low-threshold synchronously-pumped parametric converters in the mid infrared. The impact on the overall efficiency of saturation distortion of the macro-pulse envelope as well as of amplified spontaneous emission (ASE) is considered. The managing of the envelope distortion compensation and of the ASE suppression by means of fast saturable absorbers is reported.

  3. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    Science.gov (United States)

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  4. Prediction of bone density around orthopedic implants delivering bisphosphonate.

    Science.gov (United States)

    Stadelmann, Vincent A; Terrier, Alexandre; Gauthier, O; Bouler, J-M; Pioletti, Dominique P

    2009-06-19

    The fixation of an orthopedic implant depends strongly upon its initial stability. Peri-implant bone may resorb shortly after the surgery. This resorption is directly followed by new bone formation and implants fixation strengthening, the so-called secondary fixation. If the initial stability is not reached, the resorption continues and the implant fixation weakens, which leads to implant loosening. Studies with rats and dogs have shown that a solution to prevent peri-implant resorption is to deliver bisphosphonate from the implant surface. The aims of the study were, first, to develop a model of bone remodeling around an implant delivering bisphosphonate, second, to predict the bisphosphonate dose that would induce the maximal peri-implant bone density, and third to verify in vivo that peri-implant bone density is maximal with the calculated dose. The model consists of a bone remodeling equation and a drug diffusion equation. The change in bone density is driven by a mechanical stimulus and a drug stimulus. The drug stimulus function and the other numerical parameters were identified from experimental data. The model predicted that a dose of 0.3 microg of zoledronate on the implant would induce a maximal bone density. Implants with 0.3 microg of zoledronate were then implanted in rat femurs for 3, 6 and 9 weeks. We measured that peri-implant bone density was 4% greater with the calculated dose compared to the dose empirically described as best. The approach presented in this paper could be used in the design and analysis processes of experiments in local delivery of drug such as bisphosphonate.

  5. Engineering a plant community to deliver multiple ecosystem services.

    Science.gov (United States)

    Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine

    2015-06-01

    The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food

  6. Forest conservation delivers highly variable coral reef conservation outcomes.

    Science.gov (United States)

    Klein, Carissa J; Jupiter, Stacy D; Selig, Elizabeth R; Watts, Matthew E; Halpern, Benjamin S; Kamal, Muhammad; Roelfsema, Chris; Possingham, Hugh P

    2012-06-01

    Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land-sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land-sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8-58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land-sea planning.

  7. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Directory of Open Access Journals (Sweden)

    Michael Pujari-Palmer

    Full Text Available Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2 or prostaglandin E2 (PGE2, are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2, BMP-2 and vascular endothelial growth factor (VEGF, in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage. Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM, and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  8. Concentrated ERP Delivered in a Group Setting: A Replication Study.

    Science.gov (United States)

    Havnen, Audun; Hansen, Bjarne; Öst, Lars-Göran; Kvale, Gerd

    2017-09-01

    In a previous effectiveness study (Havnen et al., 2014), 35 obsessive compulsive disorder (OCD) patients underwent Concentrated Exposure Treatment (cET), which is a newly developed group treatment format delivered over four consecutive days. The primary aims of the present study were to evaluate the treatment results for a new sample of OCD patients receiving the cET treatment approach and to replicate the effectiveness study described in Havnen et al. (2014). Forty-two OCD patients underwent cET treatment. Treatment was delivered by different therapists than in Havnen et al. (2014), except for two groups led by the developers of the treatment. Assessments of OCD symptom severity, treatment satisfaction, and occupational impairment were included. The results showed a significant reduction in Yale-Brown Obsessive Compulsive Scale scores from pre-treatment to post-treatment, which was maintained at 6-month follow-up. At post-treatment, 74% of the sample was remitted; at 6-month follow-up, 60% were recovered. The sample showed a very high degree of overall treatment satisfaction. The results from the present study were statistically compared with those obtained in the previous study. The analyses showed that the study samples had comparable demographic data and equal application of treatment. The outcome of the present and original study did not differ significantly on primary and secondary outcome measures. This study shows that cET was successfully replicated in a new patient sample treated by different therapists than the original study. The results indicate that cET is well accepted by the patients, and the potential for dissemination is discussed.

  9. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  10. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    Science.gov (United States)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/Ilaser.

  11. Generation of Short X-Ray Pulses Using Crab Cavities at the Advanced Photon Source

    CERN Document Server

    Harkay, Katherine C; Chae, Yong-Chul; Decker, Glenn; Dejus, Roger J; Emery, Louis; Guo, Weiming; Horan, Douglas; Kim, Kwang-Je; Kustom, Robert; Mills, Dennis M; Milton, Stephen; Pile, Geoffery; Sajaev, Vadim; Shastri, Sarvjit D; Waldschmidt, Geoff J; White, Marion; Yang Bing Xin; Zholents, Alexander

    2005-01-01

    There is growing interest within the user community to utilize the pulsed nature of synchrotron radiation from storage ring sources. Conventional third-generation light sources can provide pulses on the order of 100 ps but typically cannot provide pulses of about 1 ps that some users now require to advance their research programs. However, it was recently proposed by A. Zholents et al. to use rf orbit deflection to generate subpicosecond X-ray pulses.* In this scheme, two crab cavities are used to deliver a longitudinally dependent vertical kick to the beam, thus exciting longitudinally correlated vertical motion of the electrons. This makes it possible to spatially separate the radiation coming from different longitudinal parts of the beam. An optical slit can then be used to slice out a short part of the radiation pulse, or an asymetrically cut crystal can be used to compress the radiation in time. In this paper, we present a feasibility study of this method applied to the Advanced Photon Source. We find th...

  12. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses

    Science.gov (United States)

    Silve, Aude; Leray, Isabelle; Poignard, Clair; Mir, Lluis M.

    2016-01-01

    The impact of external medium conductivity on the efficiency of the reversible permeabilisation caused by pulsed electric fields was investigated. Pulses of 12 ns, 102 ns or 100 μs were investigated. Whenever permeabilisation could be detected after the delivery of one single pulse, media of lower conductivity induced more efficient reversible permeabilisation and thus independently of the medium composition. Effect of medium conductivity can however be hidden by some saturation effects, for example when pulses are cumulated (use of trains of 8 pulses) or when the detection method is not sensitive enough. This explains the contradicting results that can be found in the literature. The new data are complementary to those of one of our previous study in which an opposite effect of the conductivity was highlighted. It stresses that the conductivity of the medium influences the reversible permeabilization by several ways. Moreover, these results clearly indicate that electropermeabilisation does not linearly depend on the energy delivered to the cells. PMID:26829153

  13. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    Science.gov (United States)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  14. Ablation of steel by microsecond pulse trains

    Science.gov (United States)

    Windeler, Matthew Karl Ross

    Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material

  15. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    Science.gov (United States)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration

  16. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N.N., E-mail: nnn_1900@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Imamova, S.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Obara, M. [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  17. Computer controlled MHD power consolidation and pulse generation system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  18. Pulse-Flow Microencapsulation System

    Science.gov (United States)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  19. Pulsed Terahertz Spectroscopy of Biomolecules

    Science.gov (United States)

    Markelz, A. G.; Heilweil, E. J.

    1998-03-01

    Measurements of the collective vibrational modes associated with the 3D tertiary structure of biomolecules were undertaken using pulse terahertz spectroscopy. Transmission measurements of calf thymus DNA (CT-DNA), bovine serum albumin (BSA), and collagen were made for 2 cm-1 to 45 cm-1. For all three biomolecules, low frequency absorption bands could be distinguished from a broadband absorption increasing with frequency. For lyophilized powder samples, features appear at 15 cm-1 and 22 cm-1 for CT-DNA, 10 cm-1 for BSA, and 8 cm-1 and 12 cm-1 for collagen. Measurements were performed as a function of hydration and conformation.

  20. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Science.gov (United States)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  1. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  2. Pulse-to-pulse intensity modulation and drifting subpulses in recycled pulsars

    OpenAIRE

    Edwards, R; Stappers, B. W.

    2003-01-01

    We report the detection of pulse-to-pulse periodic intensity modulations, in observations of recycled pulsars. Even though the detection of individual pulses was generally not possible due to their low flux density and short duration, through the accumulation of statistics over sequences of 10^5--10^6 pulses we were able to determine the presence and properties of the pulse-to-pulse intensity variations of six pulsars. In most cases we found that the modulation included a weak, broadly quasi-...

  3. Pulsed Ultrasound Enhances Nanoparticle Penetration into Breast Cancer Spheroids

    Science.gov (United States)

    Grainger, Stephanie J.; Serna, Juliana Valencia; Sunny, Steffi; Zhou, Yun; Deng, Cheri X.; El-Sayed, Mohamed E.H.

    2010-01-01

    Effective treatment of solid tumors requires homogenous distribution of anticancer drugs within the entire tumor volume to deliver lethal concentrations to resistant cancer cells and tumor-initiating cancer stem cells. However, penetration of small molecular weight chemotherapeutic agents and drug-loaded polymeric and lipid particles into the hypoxic and necrotic regions of solid tumors remains a significant challenge. This article reports the results of pulsed ultrasound enhanced penetration of nano-sized fluorescent particles into MCF-7 breast cancer spheroids (300-350 μm diameter) as a function of particle size and charge. With pulsed ultrasound application in the presence of microbubbles, small (20 nm) particles achieve 6-20 folds higher penetration and concentration in the spheroid's core compared to those not exposed to ultrasound. Increase in particle size to 40 nm and 100 nm results in their effective penetration into the spheroid's core to 9 and 3 folds, respectively. In addition, anionic carboxylate particles achieved higher penetration (2.3, 3.7, and 4.7 folds) into the core (0.25r) of MCF-7 breast cancer spheroids compared to neutral (2.2, 1.9, and 2.4 folds) and cationic particles (1.5, 1.4 and 1.9 folds) upon US exposure for 30, 60, and 90 seconds under the same experimental conditions. These results demonstrate the feasibility of utilizing pulsed ultrasound to increase the penetration of nano-sized particles into MCF-7 spheroids mimicking tumor tissue. The effects of particle properties on the penetration enhancement were also illustrated. PMID:20957996

  4. A new 40 MA ranchero explosive pulsed power system

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, James [Los Alamos National Laboratory; Herrera, Dennis [Los Alamos National Laboratory; Oona, Hank [Los Alamos National Laboratory; Torres, David [Los Alamos National Laboratory; Atchison, W L [Los Alamos National Laboratory; Colgate, S A [Los Alamos National Laboratory; Griego, J R [Los Alamos National Laboratory; Guzik, J [Los Alamos National Laboratory; Holtkamp, D B [Los Alamos National Laboratory; Idzorek, G [Los Alamos National Laboratory; Kaul, A [Los Alamos National Laboratory; Kirkpatrick, R C [Los Alamos National Laboratory; Menikoff, R [Los Alamos National Laboratory; Reardon, P T [Los Alamos National Laboratory; Reinovsky, R E [Los Alamos National Laboratory; Rousculp, C L [Los Alamos National Laboratory; Sgro, A G [Los Alamos National Laboratory; Tabaka, L J [Los Alamos National Laboratory; Tierney, T E [Los Alamos National Laboratory; Watt, R G [Los Alamos National Laboratory

    2009-01-01

    We are developing a new high explosive pulsed power (HEPP) system based on the 1.4 m long Ranchero generator which was developed in 1999 for driving solid density z-pinch loads. The new application requires approximately 40 MA to implode similar liners, but the liners cannot tolerate the 65 {micro}s, 3 MA current pulse associated with delivering the initial magnetic flux to the 200 nH generator. To circumvent this problem, we have designed a system with an internal start switch and four explosively formed fuse (EFF) opening switches. The integral start switch is installed between the output glide plane and the armature. It functions in the same manner as a standard input crowbar switch when armature motion begins, but initially isolates the load. The circuit is completed during the flux loading phase using post hole convolutes. Each convolute attaches the inner (coaxial) output transmission line to the outside of the outer coax through a penetration of the outer coaxial line. The attachment is made with the conductor of an EFF at each location. The EFFs conduct 0.75 MA each, and are actuated just after the internal start switch connects to the load. EFFs operating at these parameters have been tested in the past. The post hole convolutes must withstand as much as 80 kV at peak dl/dt during the Ranchero load current pulse. We describe the design of this new HEPP system in detail, and give the experimental results available at conference time. In addition, we discuss the work we are doing to test the upper current limits of a single standard size Ranchero module. Calculations have suggested that the generator could function at up to {approx}120 MA, the rule of thumb we follow (1 MA/cm) suggests 90 MA, and simple flux compression calculations, along with the {approx}4 MA seed current available from our capacitor bank, suggests 118 MA is the currently available upper limit.

  5. A 100-KV, 2-KA, 2.5-Microsecs Pulser for Developing and Calibrating Long-Pulse Diagnostics

    Science.gov (United States)

    1999-06-01

    measured properties at 10kHz: Type Step-up-ratio Magnetizing Inductance Leakage Inductance Secondary Capacitance Voltage Rating 2 winding dual...Mail Stop P939 Los Alamos, New Mexico 87545 Abstract The development of voltage and current probes [I] for measuring an electron beam’s current...Axis Radiographic Hydro- Test ( DARHT ) Facility will initially deliver a 2-J..Ls-long electron beam pulse at 2 kA and 20 MeV to a pulse kicker. In

  6. Conditions for effects of radiation pulsing

    CERN Document Server

    Trinkaus, H

    2002-01-01

    The possibility of pulsing effects on radiation damage is due to differences in the delay times of relevant defect reactions and/or to the non-linear dependence of such reactions on defect production rates. Thus, significant pulsing effects require (1) proper relationships of the internal time scales of defect production and reaction to the time scales of pulsing and (2) sufficiently large pulsing induced fluctuations in relevant microstructural variables. We show that the first condition, which we quantify by a 'relative dynamic bias', is indeed fulfilled in wide ranges of the main irradiation parameters. The second condition, quantified by an 'absolute dynamic bias', is, however, found to restrict the parameter ranges of possible pulsing effects substantially. For planned spallation neutron sources and similar accelerator driven systems facilities we find, for instance, that, in the temperature range of interest, the defect yield of one pulse (controlling the absolute dynamic bias) is much too small to allo...

  7. VCSEL based, wearable, continuously monitoring pulse oximeter.

    Science.gov (United States)

    Kollmann, Daniel; Hogan, William K; Steidl, Charles; Hibbs-Brenner, Mary K; Hedin, Daniel S; Lichter, Patrick A

    2013-01-01

    We present the development of a novel pulse oximeter based on low power, low cost, Vertical Cavity Surface Emitting Laser (VCSEL) technology. This new design will help address a need to perform regular measurements of pulse oximetry for patients with chronic obstructive pulmonary disease. VCSELs with wavelengths suitable for pulse oximetry were developed and packaged in a PLCC package for a low cost solution that is easy to integrate into a pulse oximeter design. The VCSELs were integrated into a prototype pulse oximeter that is unobtrusive and suitable for long term wearable use. The prototype achieved good performance compared the Nonin Onyx II pulse oximeter at less than one fifth the weight in a design that can be worn behind the ear like a hearing aid.

  8. Cryogenic pulsed inductive microwave magnetometer

    Science.gov (United States)

    Kos, A. B.; Nibarger, J. P.; Lopusnik, R.; Silva, T. J.; Celinski, Z.

    2003-05-01

    A cryogenic pulsed inductive microwave magnetometer is used to characterize the switching dynamics in thin-film magnetic materials at low temperatures and microwave frequencies. The system is contained inside a 20-cm-diam ultrahigh vacuum chamber and cooled by a cryopump that allows measurements between 20 and 350 K. A temperature controller regulates the sample temperature using two silicon diodes as sensors. Applied magnetic fields of up to 36 kA/m (450 Oe) are generated by a four-pole, water-cooled electromagnet with independent control of each axis. Magnetic switching in the sample is driven by high-speed current step pulses in a coplanar waveguide structure with the sample placed in a flip-chip configuration. A 20 GHz sampling oscilloscope is used to record the dynamics of the magnetic reorientation. The switching dynamics are given for a 10-nm-thick Ni-Fe film at 30 K in response to a 1 kA/m field step.

  9. Pulsed Power Bibliography. Volume 2. Annotated Bibliography.

    Science.gov (United States)

    1983-08-01

    inoestigated at different pressures and generating signal nacimum peak pouer; One flow rote and sturate volume detereine amplitudes. 22 Refs. mauimumrunn...and Local Thermodyvasic Equilibrium INTERUPTION (LTE) of the arc planna. .srical solutions for the field variables T.E. Browne Jr. are obtained by...complete high current pulse amplifier were fabricated and teste forSwpplTss. Pulse Ognerater; S inductsr DiOedes; diode sturation charsctettcs and pulse

  10. New pulse modulator with low switching frequency

    Directory of Open Access Journals (Sweden)

    Golub V. S.

    2014-12-01

    Full Text Available The author presents an integrating pulse modulator (analog signal converter with the pulse frequency and duration modulation similar to sigma-delta modulation (with low switching frequency, without quantization. The modulator is characterized by the absence of the quantization noise inherent in sigma-delta modulator, and a low switching frequency, unlike the pulse-frequency modulator. The modulator is recommended, in particular, to convert signals at the input of the class D power amplifier.

  11. Femtosecond Laser Pulses Principles and Experiments

    CERN Document Server

    Rullière, Claude

    2005-01-01

    This smooth introduction for advanced undergraduates starts with the fundamentals of lasers and pulsed optics. Thus prepared, the student is introduced to short and ultrashort laser pulses, and learns how to generate, manipulate, and measure them. Spectroscopic implications are also discussed. The second edition has been completely revised and includes two new chapters on some of the most promising and fast-developing applications in ultrafast phenomena: coherent control and attosecond pulses.

  12. Pulsed-Power Burnout of Integrated Circuits

    Science.gov (United States)

    Results of pulsed-power burnout testing the Fairchild 9046 quad dual-input nand gate and the Amelco 6041 three-input nand gate showed the circuits to...be vulnerable to junction burnout for pulses of less than 100 V and pulse widths on the order of 100 nsec. Calculations based on Wunsch-Bell junction... burnout theory showed good agreement with the experimental results. Sample calculations applying Wunsch-Bell theory to integrated circuits are given.

  13. Dark pulse quantum dot diode laser.

    Science.gov (United States)

    Feng, Mingming; Silverman, Kevin L; Mirin, Richard P; Cundiff, Steven T

    2010-06-21

    We describe an operating regime for passively mode-locked quantum dot diode laser where the output consists of a train of dark pulses, i.e., intensity dips on a continuous background. We show that a dark pulse train is a solution to the master equation for mode-locked lasers. Using simulations, we study stability of the dark pulses and show they are consistent with the experimental results.

  14. Radiation spectroscopy by digital pulse height analysis

    Energy Technology Data Exchange (ETDEWEB)

    Los Arcos, J.M. (Metrologia de Radiaciones, Instituto de Investigacion Basica, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain)); Garcia-Torano, E. (Metrologia de Radiaciones, Instituto de Investigacion Basica, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain)); Olmos, P. (Tecnologias Avanzadas de Sensores, Direccion de Tecnologia, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain)); Marin, J. (Tecnologias Avanzadas de Sensores, Direccion de Tecnologia, CIEMAT, Avda. Complutense 22, Madrid 28040 (Spain))

    1994-12-30

    This paper presents a new version of the Digital Pulse-Height Analysis (DPHA) method described in a previous paper, which is based on data acquisition through a personal computer using a flash-ADC card followed by numerical processing of pulses in the same computer. Performance tests carried out with a pulse generator and gamma-ray spectra have been carried out and their results are discussed. ((orig.))

  15. Pulsed writing of solid state holograms.

    Science.gov (United States)

    Gaylord, T. K.; Rabson, T. A.; Tittel, F. K.; Quick, C. R.

    1973-01-01

    The pulsed writing of volume holograms in lithium niobate is reported, both with 200-nsec and 20-nsec duration pulses. This information is of particular interest in high capacity information storage applications since it indicates that writing times at least as short as 20-nsec are readily possible. A series of pulses was used in each case, and the diffraction efficiency was monitored using a He-Ne laser operating at 6328 A and aligned to its corresponding Bragg angle.

  16. Preference pulses induced by reinforcement.

    Science.gov (United States)

    Hachiga, Yosuke; Sakagami, Takayuki; Silberberg, Alan

    2014-11-01

    Eight rats responded on concurrent Variable-Ratio 20 Extinction schedules for food reinforcement. The assignment of variable-ratio reinforcement to a left or right lever varied randomly following each reinforcer, and was cued by illumination of a stimulus light above that lever. Postreinforcement preference levels decreased substantially and reliably over time when the lever that just delivered reinforcement was now in extinction; however, if that lever was once again associated with variable ratio, this decrease in same-lever preference tended to be small, and for some subjects, not in evidence. The changes in preference level to the extinction lever were well described by a modified version of Killeen, Hanson, and Osborne's (1978) induction model. Consistent with this model's attribution of preference change to induction, we attribute preference change in this report to a brief period of reinforcer-induced arousal that energizes responding to the lever that delivered the last reinforcer. After a few seconds, this induced responding diminishes, and the operant responding that remains comes under the control of the stimulus light cuing the lever providing variable-ratio reinforcement. © Society for the Experimental Analysis of Behavior.

  17. Pulsed Single Frequency MOPA Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Latest advances in semiconductor optoelectronics makes it possible to develop compact light weight robust sources of coherent optical pulses, demanded for numerous...

  18. Pulse reversal plating of nickel alloys

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    2007-01-01

    Pulse plating has previously been reported to improve the properties of nickel and nickel alloy deposits. Typically, focus has been on properties such as grain size, hardness and smoothness. When pulse plating is to be utilised for microtechnologies such as microelectromechanical systems (MEMS......), internal stress and material distribution are even more important. With baths based upon nickel chloride, and nickel and cobalt chlorides, pulse reversal plating of both pure nickel and nickel-cobalt alloys has been used to fabricate tools for microinjection moulding. Pulse reversal plating of ternary soft...

  19. MEDEA II two-pulse generator development

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Honig, J.; Theby, E.A. (McDonnell Douglas Research Laboratories, P. O. Box 516, St. Louis, Missouri 63166 (USA))

    1990-06-01

    This article discusses improvements in the efficiency, output power, and operational flexibility of MEDEA II, a double-pulse electron beam accelerator at McDonnell Douglas Research Laboratories. A modified charging circuit, based on the triple-resonance pulse transformer concept, was implemented on both of MEDEA II's two stages. The output switches were modified to increase maximum output voltages, and a new, second output switch with asymmetric breakdown characteristics was developed. To avoid degradation of the second-pulse output waveform at the diode, a keep-alive circuit was installed. The effects of diode closure on double-pulse operation are also discussed.

  20. MEDEA II two-pulse generator development

    Science.gov (United States)

    Bieniosek, F. M.; Honig, J.; Theby, E. A.

    1990-06-01

    This article discusses improvements in the efficiency, output power, and operational flexibility of MEDEA II, a double-pulse electron beam accelerator at McDonnell Douglas Research Laboratories. A modified charging circuit, based on the triple-resonance pulse transformer concept, was implemented on both of MEDEA II's two stages. The output switches were modified to increase maximum output voltages, and a new, second output switch with asymmetric breakdown characteristics was developed. To avoid degradation of the second-pulse output waveform at the diode, a keep-alive circuit was installed. The effects of diode closure on double-pulse operation are also discussed.

  1. Pulsed Laser Spectroscopy: An Inexpensive Approach

    Science.gov (United States)

    Daly, J. G.; Hastings, R.; Schmidt, J. A.

    1982-10-01

    The assembly of a pulsed laser spectroscopy laboratory is presented. The authors describe how they constructed pulsed lasers, fast photodetectors, a boxcar signal averager, and associated equipment. A molecular nitrogen laser operating up to 50 Hz with an ultraviolet (337.1 nm) 700 kW pulse was used to optically pump an organic dye laser. The resulting output could be tuned from 360.0 to 680.0 nm. This pulse was typically 30 kW and 8 nsec, which makes it ideally suited to selective excitation and fluorescence studies. By constructing this equipment, it is estimated that the investment was one-tenth the cost of commercial components.

  2. Ultrashort Laser Pulses in Biology and Medicine

    CERN Document Server

    Braun, Markus; Zinth, Wolfgang

    2008-01-01

    Sources of ultrashort laser pulses are nowadays commercially available and have entered many areas of research and development. This book gives an overview of biological and medical applications of these laser pulses. The briefness of these laser pulses permits the tracing of the fastest processes in photo-active bio-systems, which is one focus of the book. The other focus is applications that rely on the high peak intensity of ultrashort laser pulses. Examples covered span non-linear imaging techniques, optical tomography, and laser surgery.

  3. Synthesis of Nanosecond Ultrawideband Radiation Pulses

    Science.gov (United States)

    Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-12-01

    The synthesis of electromagnetic pulses with an extended spectrum by summing pulses of different duration in free space has been studied. The radiation spectrum has been estimated analytically for a 4-element array of combined antennas excited by bipolar voltage pulses of duration 0.5, 1, 2, and 3 ns. It has been shown experimentally that radiation with a spectral width of more than three octaves can be produced using a 2×2 array of combined antennas excited by bipolar pulses of duration 2 and 3 ns.

  4. A Chaotic Pulse-Time Modulation Method for Digital Communication

    OpenAIRE

    Nguyen Xuan Quyen; Vu Van Yem; Thang Manh Hoang

    2012-01-01

    We present and investigate a method of chaotic pulse-time modulation (PTM) named chaotic pulse-width-position modulation (CPWPM) which is the combination of pulse-position-modulation (PPM) and pulse-width modulation (PWM) with the inclusion of chaos technique for digital communications. CPWPM signal is in the pulse train format, in which binary information is modulated onto chaotically-varied intervals of position and width of pulses, and therefore two bits are encoded on a single pulse. The ...

  5. 77 FR 46632 - Closed Captioning of Internet Protocol-Delivered Video Programming: Implementation of the Twenty...

    Science.gov (United States)

    2012-08-06

    ... COMMISSION 47 CFR Part 79 Closed Captioning of Internet Protocol-Delivered Video Programming: Implementation... captioning of Internet protocol-delivered video programming and apparatus closed captioning requirements... Captioning of Video Programming Delivered Using Internet Protocol, and Apparatus Closed Caption Requirements...

  6. A novel programmable pulse generator with nanosecond resolution for pulsed electron paramagnetic resonance applications.

    Science.gov (United States)

    Devasahayam, N; Subramanian, S; Krishna, M C

    2008-02-01

    A pulse programmer with nanosecond time resolution needed for time-domain electron paramagnetic resonance (EPR) spectroscopic applications is described. This unit uses commercially available timing and input-output port modules and control software developed in our laboratory. The pulse programmer is operated through a personal computer front panel graphic user interface (GUI) inputs to control pulse widths, delays, and the associated acquisition trigger timings. Based on these parameters, all other associated gate and trigger timings are internally generated automatically without the need to enter them explicitly. The excitation pulse widths were of nanosecond resolution while all other gate pulses can be incremented in steps of 20 ns without compromising spectrometer performance. In the current configuration, the pulse programmer permits generation of a single pulse or multiple pulse sequences for EPR imaging with minimal data entry via the front panel GUI.

  7. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  8. Laser-induced retinal damage threshold for repetitive-pulse exposure to 100-microsecs pulses

    Science.gov (United States)

    2014-10-07

    and 1000 Hz (Fig. 3). In Fig. 4, PS model predictions based on the experimentally determined single pulse ED50 and probit slope are compared to the...pulse repetition frequencies. The variation of the ED50 with the number of pulses is described well by the probability summation model , in which each...summation (PS) model of Menendez et al.15–17 For this injury mechanism, the cumulative threshold is depen dent only on the number of pulses in the exposure

  9. Efficient chirped-pulse amplification of sub-20 fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Shinichi; Yamakawa, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We have developed a model for ultrabroadband and ultrashort pulse amplification including the effects of a pulse shaper for regenerative pulse shaping, gain narrowing and gain saturation in the amplifiers. Thin solid etalons are used to control both gain narrowing and gain saturation during amplification. This model has been used to design an optimized Ti:sapphire amplifier system for producing efficiently pulses of < 20-fs duration with approaching peak and average powers of 100 TW and 20 W. (author)

  10. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  11. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    2010-12-01

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  12. Delivering effective science communication: advice from a professional science communicator.

    Science.gov (United States)

    Illingworth, Sam

    2017-10-01

    Science communication is becoming ever more prevalent, with more and more scientists expected to not only communicate their research to a wider public, but to do so in an innovative and engaging manner. Given the other commitments that researchers and academics are required to fulfil as part of their workload models, it is unfair to be expect them to also instantly produce effective science communication events and activities. However, by thinking carefully about what it is that needs to be communicated, and why this is being done, it is possible to develop high-quality activities that are of benefit to both the audience and the communicator(s). In this paper, I present some practical advice for developing, delivering and evaluating effective science communication initiatives, based on over a decade of experience as being a professional science communicator. I provide advice regarding event logistics, suggestions on how to successfully market and advertise your science communication initiatives, and recommendations for establishing effective branding and legacy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Habitable Worlds: Delivering on the Promises of Online Education

    Science.gov (United States)

    Horodyskyj, Lev B.; Mead, Chris; Belinson, Zack; Buxner, Sanlyn; Semken, Steven; Anbar, Ariel D.

    2018-01-01

    Critical thinking and scientific reasoning are central to higher education in the United States, but many courses (in-person and online) teach students information about science much more than they teach the actual process of science and its associated knowledge and skills. In the online arena specifically, the tools available for course construction exacerbate this problem by making it difficult to build the types of active learning activities that research shows to be the most effective. Here, we present a report on Habitable Worlds, offered by Arizona State University for 12 semesters over the past 6 years. This is a unique online course that uses an array of novel technologies to deliver an active, inquiry-driven learning experience. Learning outcomes and quantitative data from more than 3000 students demonstrate the success of our approach but also identify several remaining challenges. The design and development of this course offers valuable lessons for instructional designers and educators who are interested in fully capitalizing on the capabilities of 21st-century technology to achieve educational goals.

  14. Can the capitalist economic system deliver environmental justice?

    Science.gov (United States)

    Bell, Karen

    2015-12-01

    Can a healthy environment for all social groups be delivered through capitalism via market mechanisms? Or is it the capitalist system, itself, that has been at the root of the environmental and social crises we now face? This letter engages with this ongoing debate by drawing on material from a wider study, ‘Achieving Environmental Justice’, which examined the extent, form and causes of environmental justice and injustice in a range of countries with varying depths of marketization—United States, South Korea, United Kingdom, Sweden, China, Bolivia and Cuba. The analysis described here focuses on the interview material from this mixed methods study, drawing on over 140 interviews with officials, policy makers, and civil society leaders. The letter argues that there is an apparent propensity for capitalist processes to exacerbate, rather than reduce, environmental problems and inequities though the pursuit of relentless economic growth and profit accumulation. Therefore, we should perhaps let go of efforts to resolve environmental injustice within the constraints of capitalism and, instead, build an alternative economic system that can meet human needs in the context of a harmonious and respectful relationship with nature.

  15. Delivering neurocritical care in resource-challenged environments.

    Science.gov (United States)

    Shrestha, Gentle S; Goffi, Alberto; Aryal, Diptesh

    2016-04-01

    Resource-challenged environments of low and middle-income countries face a significant burden of neurocritical illness. This review attempts to elaborate on the multiple barriers to delivering neurocritical care in these settings and the possible solutions to overcome such barriers. Epidemiology of neurocritical illness appears to have changed over time in low and middle-income countries. In addition to neuro-infection, noncommunicable neurological illnesses like stroke, traumatic brain injury, and traumatic spinal cord injury pose a significant neurocritical burden in resource-limited settings. Many barriers that exist hinder effective delivery of neurocritical care in resource-challenged environments. Very little information exists about the neurocritical care capacity. Research and publications are few. Intensive care unit beds and trained personnel are significantly lacking. Awareness about the risk factors of preventable conditions, including stroke, is lacking. Prehospital care and trauma systems are poorly developed. There should be attempts to leverage neurocritical care in these settings with focus on promoting research, local training, capacity building, preventive measures like vaccination, raising awareness, and developing prehospital care. Considering the disease burden and potentials to improve outcome, attempts should be made to develop neurocritical care in resource-challenged environments. http://links.lww.com/COCC/A11.

  16. Regulatory adaptations for delivering information: The case of confession.

    Science.gov (United States)

    Sznycer, Daniel; Schniter, Eric; Tooby, John; Cosmides, Leda

    2015-01-01

    Prior to, or concurrent with, the encoding of concepts into speech, the individual faces decisions about whether, what, when, how, and with whom to communicate. Compared to the existing wealth of linguistic knowledge however, we know little of the mechanisms that govern the delivery and accrual of information. Here we focus on a fundamental issue of communication: The decision whether to deliver information. Specifically, we study spontaneous confession to a victim. Given the costs of social devaluation, offenders are hypothesized to refrain from confessing unless the expected benefits of confession (e.g. enabling the victim to remedially modify their course of action) outweigh its marginal costs-the victim's reaction, discounted by the likelihood that information about the offense has not leaked. The logic of welfare tradeoffs indicates that the victim's reaction will be less severe and, therefore, less costly to the offender, with decreases in the cost of the offense to the victim and, counter-intuitively, with increases in the benefit of the offense to the offender. Data from naturalistic offenses and experimental studies supported these predictions. Offenders are more willing to confess when the benefit of the offense to them is high, the cost to the victim is low, and the probability of information leakage is high. This suggests a conflict of interests between senders and receivers: Often, offenders are more willing to confess when confessions are less beneficial to the victims. An evolutionary-computational framework is a fruitful approach to understanding the factors that regulate communication.

  17. Delivering a Multi-Functional and Resilient Urban Forest

    Directory of Open Access Journals (Sweden)

    James D. Hale

    2015-04-01

    Full Text Available Tree planting is widely advocated and applied in urban areas, with large-scale projects underway in cities globally. Numerous potential benefits are used to justify these planting campaigns. However, reports of poor tree survival raise questions about the ability of such projects to deliver on their promises over the long-term. Each potential benefit requires different supporting conditions—relating not only to the type and placement of the tree, but also to the broader urban system within which it is embedded. This set of supporting conditions may not always be mutually compatible and may not persist for the lifetime of the tree. Here, we demonstrate a systems-based approach that makes these dependencies, synergies, and tensions more explicit, allowing them to be used to test the decadal-scale resilience of urban street trees. Our analysis highlights social, environmental, and economic assumptions that are implicit within planting projects; notably that high levels of maintenance and public support for urban street trees will persist throughout their natural lifespan, and that the surrounding built form will remain largely unchanged. Whilst the vulnerability of each benefit may be highly context specific, we identify approaches that address some typical weaknesses, making a functional, resilient, urban forest more attainable.

  18. Novel drug delivering conduit for peripheral nerve regeneration

    Science.gov (United States)

    Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay

    2017-12-01

    Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1–10 ng ml‑1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p  injury. Significance. This integrated drug delivering nerve guide simplifies the design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial–drug conjugate each time.

  19. Development of oral microencapsulated forms for delivering viral vaccines.

    Science.gov (United States)

    Nechaeva, Elena

    2002-10-01

    Rapid development in biotechnology during the last decade has allowed novel ideas in the development of antiviral vaccines to be considered and provides interesting technological approaches to their realization. Designing of microencapsulated forms for delivering bacterial and viral antigens or antigenic complexes using biodegradable biopolymers is an important novel direction. This approach involves the production of polymeric spherical particles with a diameter of 1 microm to 3 mm, containing isolated viral antigens or whole viral particles. Microencapsulated antigens administered orally are protected from low pH values of the gastric juice, bile acids, their salts and proteolytic enzymes of the gastrointestinal tract. The ability to drastically potentiate the immune response to encapsulated antigens, together with the ability to penetrate into the intestinal and respiratory mucosae upon oral and tracheal administrations, respectively, with induction of local and systemic immune reactions are the special merits of such polymers. However, the majority of data on microencapsulated viral vaccines has so far been obtained in animal models, as well as a limited number of studies on the protective effect they elicit. Certain success in the development of vaccines against a number of human viral infections, such as hepatitis B, cytomegalovirus and rotavirus, gives hope to successful completion of this research. Presumably, such vaccines will be safe and innocuous, simple in administration and capable of inducing both the systemic and local immune responses at the primary portal of viral infection.

  20. Can natural polymers assist in delivering insulin orally?

    Science.gov (United States)

    Nur, Mokhamad; Vasiljevic, Todor

    2017-10-01

    Diabetes mellitus is one of the most grave and lethal non communicable diseases. Insulin is normally used to medicate diabetes. Due to bioavailability issues, the most regular route of administration is through injection, which may pose compliance problems to treatment. The oral administration thus appears as a suitable alternative, but with several important problems. Low stability of insulin in the gastrointestinal tract and low intestinal permeation are some of the issues. Encapsulation of insulin into polymer-based particles emerges as a plausible strategy. Different encapsulation approaches and polymers have been used in this regard. Polymers with different characteristics from natural or synthetic origin have been assessed to attain this goal, with natural polymers being preferable. Natural polymers studied so far include chitosan, alginate, carrageenan, starch, pectin, casein, tragacanth, dextran, carrageenan, gelatine and cyclodextrin. While some promising knowledge and results have been gained, a polymeric-based particle system to deliver insulin orally has not been introduced onto the market yet. In this review, effectiveness of different natural polymer materials developed so far along with fabrication techniques are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses.

    Science.gov (United States)

    Gibson, Emily A; Gaudiosi, David M; Kapteyn, Henry C; Jimenez, Ralph; Kane, Steve; Huff, Rachel; Durfee, Charles; Squier, Jeff

    2006-11-15

    Efficient reflection grisms for pulse-compression and material-dispersion compensation have been designed and demonstrated in a 40 fs, 300 microJ, 5 kHz downchirped pulse amplification system for the first time to our knowledge. A grism design for 800 nm femtosecond laser pulse dispersion compensation applications is realized by using standard, commercial diffraction gratings.

  2. Pulse consumption, satiety, and weight management.

    Science.gov (United States)

    McCrory, Megan A; Hamaker, Bruce R; Lovejoy, Jennifer C; Eichelsdoerfer, Petra E

    2010-11-01

    The prevalence of obesity has reached epidemic proportions, making finding effective solutions to reduce obesity a public health priority. One part of the solution could be for individuals to increase consumption of nonoilseed pulses (dry beans, peas, chickpeas, and lentils), because they have nutritional attributes thought to benefit weight control, including slowly digestible carbohydrates, high fiber and protein contents, and moderate energy density. Observational studies consistently show an inverse relationship between pulse consumption and BMI or risk for obesity, but many do not control for potentially confounding dietary and other lifestyle factors. Short-term (≤1 d) experimental studies using meals controlled for energy, but not those controlled for available carbohydrate, show that pulse consumption increases satiety over 2-4 h, suggesting that at least part of the effect of pulses on satiety is mediated by available carbohydrate amount or composition. Randomized controlled trials generally support a beneficial effect of pulses on weight loss when pulse consumption is coupled with energy restriction, but not without energy restriction. However, few randomized trials have been conducted and most were short term (3-8 wk for whole pulses and 4-12 wk for pulse extracts). Overall, there is some indication of a beneficial effect of pulses on short-term satiety and weight loss during intentional energy restriction, but more studies are needed in this area, particularly those that are longer term (≥1 y), investigate the optimal amount of pulses to consume for weight control, and include behavioral elements to help overcome barriers to pulse consumption.

  3. Pulse Consumption, Satiety, and Weight Management1

    Science.gov (United States)

    McCrory, Megan A.; Hamaker, Bruce R.; Lovejoy, Jennifer C.; Eichelsdoerfer, Petra E.

    2010-01-01

    The prevalence of obesity has reached epidemic proportions, making finding effective solutions to reduce obesity a public health priority. One part of the solution could be for individuals to increase consumption of nonoilseed pulses (dry beans, peas, chickpeas, and lentils), because they have nutritional attributes thought to benefit weight control, including slowly digestible carbohydrates, high fiber and protein contents, and moderate energy density. Observational studies consistently show an inverse relationship between pulse consumption and BMI or risk for obesity, but many do not control for potentially confounding dietary and other lifestyle factors. Short-term (≤1 d) experimental studies using meals controlled for energy, but not those controlled for available carbohydrate, show that pulse consumption increases satiety over 2–4 h, suggesting that at least part of the effect of pulses on satiety is mediated by available carbohydrate amount or composition. Randomized controlled trials generally support a beneficial effect of pulses on weight loss when pulse consumption is coupled with energy restriction, but not without energy restriction. However, few randomized trials have been conducted and most were short term (3–8 wk for whole pulses and 4–12 wk for pulse extracts). Overall, there is some indication of a beneficial effect of pulses on short-term satiety and weight loss during intentional energy restriction, but more studies are needed in this area, particularly those that are longer term (≥1 y), investigate the optimal amount of pulses to consume for weight control, and include behavioral elements to help overcome barriers to pulse consumption. PMID:22043448

  4. Standardization of Rocket Engine Pulse Time Parameters

    Science.gov (United States)

    Larin, Max E.; Lumpkin, Forrest E.; Rauer, Scott J.

    2001-01-01

    Plumes of bipropellant thrusters are a source of contamination. Small bipropellant thrusters are often used for spacecraft attitude control and orbit correction. Such thrusters typically operate in a pulse mode, at various pulse lengths. Quantifying their contamination effects onto spacecraft external surfaces is especially important for long-term complex-geometry vehicles, e.g. International Space Station. Plume contamination tests indicated the presence of liquid phase contaminant in the form of droplets. Their origin is attributed to incomplete combustion. Most of liquid-phase contaminant is generated during the startup and shutdown (unsteady) periods of thruster pulse. These periods are relatively short (typically 10-50 ms), and the amount of contaminant is determined by the thruster design (propellant valve response, combustion chamber size, thruster mass flow rate, film cooling percentage, dribble volume, etc.) and combustion process organization. Steady-state period of pulse is characterized by much lower contamination rates, but may be lengthy enough to significantly conh'ibute to the overall contamination effect. Because there was no standard methodology for thruster pulse time division, plume contamination tests were conducted at various pulse durations, and their results do not allow quantifying contaminant amounts from each portion of the pulse. At present, the ISS plume contamination model uses an assumption that all thrusters operate in a pulse mode with the pulse length being 100 ms. This assumption may lead to a large difference between the actual amounts of contaminant produced by the thruster and the model predictions. This paper suggests a way to standardize thruster startup and shutdown period definitions, and shows the usefulness of this approach to better quantify thruster plume contamination. Use of the suggested thruster pulse time-division technique will ensure methodological consistency of future thruster plume contamination test programs

  5. AMXP Pulse variability wih NICER

    Science.gov (United States)

    Bult, Peter

    2017-08-01

    Accreting millisecond X-ray pulsars show a diverse scope variability, including coherent pulsations from the stellar surface and quasi-periodic oscillations attributed to the accretion flow. Because the pulsations are ultimately powered by accreting material, it may be expected that these periodic and quasi-periodic signals show coupled behavior. Observing and characterizing such coupling then gives a unique view of the flow of matter in the closest vicinity of the neutron star surface. In this contribution I will present recently developed specialized methods that can detect such coupling, and discuss how high quality X-ray observations by NICER may enable pulse amplitude modulation studies, and their potential to constrain the physics of accretion.

  6. Academic Training - Pulsed SC Magnets

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 2, 3, June 29, 30, 31 May, 1, 2 June 11:00-12:00 - Auditorium, bldg 500 Pulsed SC Magnets by M. Wilson Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mech...

  7. The Body as a Pulse

    Directory of Open Access Journals (Sweden)

    Flavia Liberman

    2010-01-01

    Full Text Available The body is the focus of many studies and interventions. Some paradigms conceptualize the body only in relation to its motor-sensory characteristics, while others prioritize its psychological dimensions. With the aim of contributing towards formulating other perspectives within this field, some aspects of Stanley Keleman and Regina Favre's conceptualization of the body are presented here. Starting from clinical situations during seminar groups, we can take the body to be a multifaceted multimedia pulse that is continually [de]constructed through encounters. Together with the author's clinical experiences as an occupational therapist and teacher or undergraduates, these conceptualizations serve as a guide to clinical practice that is thought out, constructed and balanced by the body, using body approaches to promote encounters molded by affections and events, in an attempt to create bodies capable of sustaining the lived intensity of experiences, and which enable self-observation, closeness to other people and production of singularities.

  8. Ranchero Explosive Pulsed Power Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, J.H.; Atchison, W.L.; Deninger, W.J.; Fowler, C.M.; Herrera, D.H.; King, J.C.; Lopez, E.A.; Oona, H.; Reinovsky, R.E.; Stokes, J.L.; Sena, F.C.; Tabaka, L.J.; Tasker, D.G.; Torres, D.T.; Lindemuth, I.R.; Faehl, R.J.; Keinigs, R.K.; Taylor, A.J.; Rodriguez, G.; Oro, D.M.; Garcia, O.F.; parker, J.V.; Broste, W.B.

    1999-06-27

    The authors are developing the Ranchero high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. The near-term goal is to conduct experiments in the regime pertinent to the Atlas Capacitor bank. That is, they will attempt to implode liners of {approximately}50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. They have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long.

  9. RANCHERO explosive pulsed power experiments

    CERN Document Server

    Goforth, J H; Armijo, E V; Atchison, W L; Bartos, Yu; Clark, D A; Day, R D; Deninger, W J; Faehl, R J; Fowler, C M; García, F P; García, O F; Herrera, D H; Herrera, T J; Keinigs, R K; King, J C; Lindemuth, I R; López, E; Martínez, E C; Martínez, D; McGuire, J A; Morgan, D; Oona, H; Oro, D M; Parker, J V; Randolph, R B; Reinovsky, R E; Rodríguez, G; Stokes, J L; Sena, F C; Tabaka, L J; Tasker, D G; Taylor, A J; Torres, D T; Anderson, H D; Broste, W B; Johnson, J B; Kirbie, H C

    1999-01-01

    The authors are developing the RANCHERO high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. Their near-term goal is to conduct experiments in the regime pertinent to the Atlas capacitor bank. That is, they will attempt to implode liners of ~50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. The authors have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper, they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long. (6 refs).

  10. Aerospace applications of pulsed plasmas

    Science.gov (United States)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  11. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  12. Generation of synchronized signal and pump pulses for an optical ...

    Indian Academy of Sciences (India)

    Abstract. Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using. 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse ...

  13. High-Altitude Electromagnetic Pulse (HEMP) Testing

    Science.gov (United States)

    2015-07-09

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-2-620A High-Altitude Electromagnetic Pulse ( HEMP ...planning and execution of testing Army/DOD equipment to determine the effects of Horizontal Component High Altitude Electromagnetic Pulse ( HEMP ...5 2.3 HEMP Pre/Post Test Illuminations ..................................................... 7 3. REQUIRED TEST

  14. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  15. Field mapping of ballistic pressure pulse sources

    Directory of Open Access Journals (Sweden)

    Rad Abtin Jamshidi

    2015-09-01

    Full Text Available Ballistic pressure pulse sources are used since late 1990s for the extracorporeal treatment of chronic Enthesitis. Newly indications are found in trigger-point-therapy for the treatment of musculoskeletal disorders. In both applications excellent results without relevant side effects were found in clinical trials. The technical principle of pressure pulse source is based on the same techniques used in air guns. A projectile is accelerated by pressurized air and hits the applicator with high kinetic energy. By this a compression wave travels through the material and induces a fast (4..5μs, almost singular pressure pulse of 2..10 MPa, which is followed by an equally short rarefaction phase of about the same amplitude. It is assumed that the pressure pulse accounts for the biomedical effects of the device. The slower inertial motion of the waveguide is damped by elastic stoppers, but still can be measured several micro seconds after the initial pressure pulse. In order to characterize the pressure pulse devices, field mapping is performed on several radial pressure pulse sources using the fiber optic hydrophone and a polyvinylidenfluorid (PVDF piezoelectric hydrophone. It could be shown that the current standard (IEC 61846 is not appropriate for characterization of ballistic pressure pulse sources.

  16. Pulsed laser deposition: metal versus oxide ablation

    NARCIS (Netherlands)

    Doeswijk, L.M.; Rijnders, Augustinus J.H.M.; Blank, David H.A.

    2004-01-01

    We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets

  17. Nasal pulse oximetry overestimates oxygen saturation

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H

    1990-01-01

    Ten surgical patients were monitored with nasal and finger pulse oximetry (Nellcor N-200) for five study periods with alternating mouth and nasal breathing and switching of cables and sensors. Nasal pulse oximetry was found to overestimate arterial oxygen saturation by 4.7 (SD 1.4%) (bias...

  18. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  19. High reliability low jitter pulse generator

    Science.gov (United States)

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  20. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given ...

  1. Influence of pulse electrodeposition parameters on microhardness ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Influence of ... size rose. The optimum value for pulse frequency was about 25 Hz. Results showed that microhardness of nanocomposite coatings which were produced by pulse current method was higher than that of produced by direct currentmethod.

  2. Development of pulse diagnostic devices in Korea

    Directory of Open Access Journals (Sweden)

    Hyunho Kim

    2013-03-01

    Full Text Available In Korean medicine, pulse diagnosis is one of the important methods for determining the health status of a patient. For over 40 years, electromechanical pulse diagnostic devices have been developed to objectify and quantify pulse diagnoses. In this paper, we review previous research and development for pulse diagnostic devices according to various fields of study: demand analysis and current phase, literature studies, sensors, actuators, systems, physical quantity studies, clinical studies, and the U-health system. We point out some confusing issues that have been naively accepted without strict verification: original pressure pulse waveform and derivative pressure pulse waveform, pressure signals and other signal types, and minutely controlled pressure exertion issues. We then consider some technical and clinical issues to achieve the development of a pulse diagnostic device that is appropriate both technically and in terms of Korean medicine. We hope to show the history of pulse diagnostic device research in Korea and propose a proper method to research and develop these devices.

  3. Estimation of pulse heights and arrival times

    NARCIS (Netherlands)

    Kwakernaak, H.

    1980-01-01

    The problem is studied of estimating the arrival times and heights of pulses of known shape observed with white additive noise. The main difficulty is estimating the number of pulses. When a maximum likelihood formulation is employed for the estimation problem, difficulties similar to the problem of

  4. Evaluation of a community pharmacy delivered oral contraception service.

    Science.gov (United States)

    Parsons, Judith; Adams, Christine; Aziz, Najia; Holmes, Jo; Jawad, Ruhi; Whittlesea, Cate

    2013-04-01

    In the UK half of all pregnancies are unplanned and half of teenage pregnancies terminated. Southwark and Lambeth have the highest teenage conception rates in London. In 2009, many teenage pregnancies in Southwark led to terminations. A contraception service was established where qualified pharmacists supplied oral contraception (OC) using a patient group direction (PGD). This service evaluation aimed to assess this service delivered in five community pharmacies. Monthly data were submitted by each pharmacy to the Primary Care Trust on consultations, pills supplied, initial or subsequent supply and client referral. For specified periods consultation time was collected and a clinical notes audit undertaken. Client satisfaction was determined using a structured questionnaire returned to the pharmacy. Mystery shoppers were employed to assess the service. A total of 741 consultations were undertaken by seven pharmacists at five community pharmacies (October 2009-June 2011) with many (45.5%) occurring following emergency contraception supply. The mean consultation time was 19 minutes . Combined OC was most commonly supplied with nearly half (46.1%) of initial supplies to first-time pill users. Most consultations (92.2%) were with women aged under 30 years, with 22.5% aged under 20. Most consultations were with black or black British clients. Of the 99 women who completed the satisfaction questionnaires, most clients were very satisfied or satisfied with the service and felt comfortable talking to the pharmacist about contraception. Trained pharmacists were clinically competent and provided OC in community pharmacy according to a PGD. This service was accessed by the target population; young women using emergency hormonal contraception who had not previously used OC. Clients were largely very satisfied with the service.

  5. Data driven customer experience and the roadmap to deliver happiness

    Directory of Open Access Journals (Sweden)

    Ahmed Aly Shaban Abdelmoteleb

    2017-09-01

    Full Text Available Happiness is a choice, in which individuals have the ability to create lasting and genuine happiness for themselves. They make choices and take actions to be happy, choosing what to wear, what to eat, whom to love, and where to work. It is very subjective to delimit whether our choices are good while others are not but all based on individual profound desire to be happy. In some related work, researchers have found a strong correlation between customer satisfaction, happiness, and organization performance. Many organizations have spent money and effort in innovating and implementing initiatives, which were focusing on increasing customers’ satisfaction; however, customers are not happier today compared to what they were before. Therefore, the need for studying on mechanism of achieving customer happiness is crucial to ensure effectiveness and efficiency of customer service initiatives. In fact, it is important to identify factors that can elevate customer happiness and shift customers from comfort to happiness zone. This will motivate organizations to design products and services that can meet customer needs and exceed customer expectation in every touch point. In UAE, customers come from 202 countries with diverse cultures, religions, habits and ethnicity, which force government, semi-government and private sector to deliver services that not only meet but also exceed customer expectations. Accordingly, the paper will take you through the journey of UAE government for exceeding customer expectations starting from understanding drivers of happiness using a research framework that segment customers in different zones (Trust vs. Control & Stand out vs. Fit in until quantifying drivers to measure service happiness score.

  6. AN UPDATE ON NIF PULSED POWER

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, P A; James, G F; Petersen, D E; Pendleton, D L; McHale, G B; Barbosa, F; Runtal, A S; Stratton, P L

    2009-06-22

    The National Ignition Facility (NIF) is a 192-beam laser fusion driver operating at Lawrence Livermore National Laboratory. NIF relies on three large-scale pulsed power systems to achieve its goals: the Power Conditioning Unit (PCU), which provides flashlamp excitation for the laser's injection system; the Power Conditioning System (PCS), which provides the multi-megajoule pulsed excitation required to drive flashlamps in the laser's optical amplifiers; and the Plasma Electrode Pockels Cell (PEPC), which enables NIF to take advantage of a fourpass main amplifier. Years of production, installation, and commissioning of the three NIF pulsed power systems are now complete. Seven-day-per-week operation of the laser has commenced, with the three pulsed power systems providing routine support of laser operations. We present the details of the status and operational experience associated with the three systems along with a projection of the future for NIF pulsed power.

  7. The resonant multi-pulse ionization injection

    Science.gov (United States)

    Tomassini, Paolo; De Nicola, Sergio; Labate, Luca; Londrillo, Pasquale; Fedele, Renato; Terzani, Davide; Gizzi, Leonida A.

    2017-10-01

    The production of high-quality electron bunches in Laser Wake Field Acceleration relies on the possibility to inject ultra-low emittance bunches in the plasma wave. In this paper, we present a new bunch injection scheme in which electrons extracted by ionization are trapped by a large-amplitude plasma wave driven by a train of resonant ultrashort pulses. In the Resonant Multi-Pulse Ionization injection scheme, the main portion of a single ultrashort (e.g., Ti:Sa) laser system pulse is temporally shaped as a sequence of resonant sub-pulses, while a minor portion acts as an ionizing pulse. Simulations show that high-quality electron bunches with normalized emittance as low as 0.08 mm × mrad and 0.65% energy spread can be obtained with a single present-day 100TW-class Ti:Sa laser system.

  8. Digital gate pulse generator for cycloconverter control

    Science.gov (United States)

    Klein, Frederick F.; Mutone, Gioacchino A.

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  9. Pulse Shepherding in Nonlinear Fiber Optics

    Science.gov (United States)

    Yeh, C.; Bergman, L.

    1996-01-01

    In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.

  10. Exawatt-Zettawatt Pulse Generation and Applications

    CERN Document Server

    Mourou, G A; Malkin, V M; Toroker, Z; Khazanov, E A; Sergeev, A M; Tajima, T

    2011-01-01

    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the Laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics.

  11. Methods for High Power EM Pulse Measurement

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2006-12-01

    Full Text Available There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday's induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized.

  12. One laser pulse generates two photoacoustic signals

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent, signal amplitude which is caused by the concurrent heat accumulation and ...

  13. Description of pulse propagation in a dispersive medium by use of a pulse quality factor.

    Science.gov (United States)

    Rousseau, Guy; McCarthy, Nathalie; Pichãé, Michel

    2002-09-15

    We investigated how the duration of short laser pulses evolves in a dispersive material, using rms widths and a propagation law based on a pulse quality factor. Experiments were carried out with femtosecond pulses (10 to 25fs at the temporal waist) propagating in bulk fused silica. Excellent agreement was found between theory and experiment. This approach does not require complete characterization of laser pulses and eliminates the need for any assumption regarding the interpretation of autocorrelation traces. The method is of general validity, and it can be applied to pulses of arbitrary shape.

  14. In vitro destruction of anterior human lens capsule by submicrosecond pulses of Yb,Er:Glass laser

    Science.gov (United States)

    Belikov, Andrey V.; Gagarsky, Sergey V.; Sergeev, Andrey N.; Smirnov, Sergey N.

    2017-03-01

    The results of in vitro pilot study of anterior lens capsule destruction by submicrosecond pulses of Yb,Er:Glass laser as well as results of 2% agar gel damage threshold investigation are presented. It was established that the local destruction of anterior lens capsule is possible without any ruptures at energy densities up to 25 J/cm2 when exposed to 30 laser pulses, delivered via 200 μm optical quartz fiber. It was found that 2% agar gel damage threshold determined as minimal value of laser energy density required for appearance of the visually identifiable damage of agar gel decreases with the increase in the number of laser pulses. The 2% agar gel damage threshold on the air for a single laser pulse impact was about 2.3-3.3 J/cm2, for 5 pulses impact - about 1.8-2.5 J/cm2 and for 10 pulses impact - about 1.6-2.4 J/cm2.

  15. First experimental implementation of pulse shaping for neutron diffraction on pulsed sources

    Energy Technology Data Exchange (ETDEWEB)

    Russina, M. [Helmholtz-Zentrum-Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Kali, Gy.; Santa, Zs. [HAS Research Institute for Solid State Physics, Konkoly Thege ut. 29-33, 1121 Budapest (Hungary); Mezei, F., E-mail: f.mezei@esshungary.eu [HAS Research Institute for Solid State Physics, Konkoly Thege ut. 29-33, 1121 Budapest (Hungary); European Spallation Source ESS AB, P.O. Box 176, 22100 Lund (Sweden)

    2011-10-21

    One of the central issues in the design and the use of pulsed neutron sources is the control of pulse length in elastic scattering experiments, most significantly diffraction on crystalline matter. On the existing short pulse spallation sources the strongly wavelength dependent source pulse length that determines the resolution is permanently fixed on each beam line by the type of the moderator it faces. We have experimentally implemented for the first time the wavelength frame multiplication (WFM) multiplexing chopper method, an earlier proposed variant of the by now fully tested repetition rate multiplication technique for inelastic scattering spectroscopy on pulsed neutron sources. We have operated the time-of-flight diffractometer at the continuous reactor source at BNC in an unconventional multiplexing mode that emulates a pulsed source. As a full proof of principle of the WFM method we have experimentally demonstrated the extraction from each source pulse a series of polychromatic, chopper shaped neutron pulses, which can continuously cover any wavelength band. The achieved 25 {mu}s FWHM pulse length is shorter than that can be obtained at all at short pulse spallation sources for cold neutrons. The method allows us to build efficient, high and variable resolution diffractometers at long pulse spallation sources.

  16. Unstable and Multiple Pulsing Can Be Invisible to Ultrashort Pulse Measurement Techniques

    Directory of Open Access Journals (Sweden)

    Michelle Rhodes

    2016-12-01

    Full Text Available Multiple pulsing occurs in most ultrashort-pulse laser systems when pumped at excessively high powers, and small fluctuations in pump power in certain regimes can cause unusual variations in the temporal separations of sub-pulses. Unfortunately, the ability of modern intensity-and-phase pulse measurement techniques to measure such unstable multi-pulsing has not been studied. Here we report calculations and simulations finding that allowing variations in just the relative phase of a satellite pulse causes the second pulse to completely disappear from a spectral interferometry for direct electric field reconstruction (SPIDER measurement. We find that, although neither frequency-resolved optical gating (FROG nor autocorrelation can determine the precise properties of satellite pulses due to the presence of instability, they always succeed in, at least, seeing the satellite pulses. Also, additional post-processing of the measured FROG trace can determine the correct approximate relative height of the satellite pulse and definitively indicate the presence of unstable multiple-pulsing.

  17. New Assessment Model of Pulse Depth Based on Sensor Displacement in Pulse Diagnostic Devices

    Directory of Open Access Journals (Sweden)

    Jang-Han Bae

    2013-01-01

    Full Text Available An accurate assessment of the pulse depth in pulse diagnosis is vital to determine the floating and sunken pulse qualities (PQs, which are two of the four most basic PQs. In this work, we proposed a novel model of assessing the pulse depth based on sensor displacement (SD normal to the skin surface and compared this model with two previous models which assessed the pulse depth using contact pressure (CP. In contrast to conventional stepwise CP variation tonometry, we applied a continuously evolving tonometric mechanism at a constant velocity and defined the pulse depth index as the optimal SD where the largest pulse amplitude was observed. By calculating the pulse depth index for 18 volunteers, we showed that the pulse was deepest at Cheok (significance level: P<0.01, while no significant difference was found between Chon and Gwan. In contrast, the two CP-based models estimated that the pulse was shallowest at Gwan (P<0.05. For the repeated measures, the new SD-based model showed a smaller coefficient of variation (CV≈7.6% than the two CP-based models (CV≈13.5% and 12.3%, resp.. The SD-based pulse depth assessment is not sensitive to the complex geometry around the palpation locations and temperature variation of contact sensors, which allows cost-effective sensor technology.

  18. Synchronization of picosecond laser pulses to the target X-ray pulses at SPring-8

    CERN Document Server

    Tanaka, Y; Kitamura, H; Ishikawa, T

    2001-01-01

    Synchronization system between an intense picosecond laser and the target X-ray pulses has been developed at SPring-8. The intense laser pulses were obtained by amplification of the pulses picked up from a mode-locked Ti:sapphire laser synchronized with the radio frequency of the storage ring. The repetition rate of amplified laser pulses was controlled to be 1/n of the RF, where n is a multiple of the number of RF buckets in the ring, so that the laser pulses meet the SR pulses originated from a particular electron bunch in partial filling patterns. The temporal overlap of the laser and the target X-ray pulses was achieved as monitored with a streak camera in synchroscan and repetitive single shot operation modes, and was stable with a precision of a few ps for several hours.

  19. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current

    Energy Technology Data Exchange (ETDEWEB)

    Cai Zhipeng, E-mail: czpdme@gmail.com [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Huang Xinquan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2011-07-25

    Highlights: {yields} The combination of magnetic field and current releases stress significantly. {yields} Both magneto and electro-plasticity may exit in the combined treatment. {yields} Stress increase caused by current should be studied later. - Abstract: This paper reports a significant decrease on residual stress by combined treatment of a pulsed magnetic field and a pulse current on steel samples with pre-induced residual stress conditions, compared to a separately single treatment by either the pulsed magnetic field or the pulsed current. Briefly, 10% stress decrease by pulsed magnetic field treatment and 20% increase by pulsed current treatment were observed respectively. While 60% stress release is achieved by the combined treatments, in which the same magnetic field and current parameters were applied. It is supposed that the magnetic field facilitates dislocations depinning and pulsed current provides conduction electrons to drive dislocations to move further and faster. The combined effects lead to electro-magneto-plasticity and further residual stress release.

  20. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    Science.gov (United States)

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

  1. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin......, which make them promising alternatives to the commercially successful solar cell material copper indium gallium diselenide (CIGS). Complementing our group's work on pulsed laser deposition of CZTS, we collaborated with IMEM-CNR in Parma, Italy, to deposit CZTS by pulsed electron deposition for the first...... of using pulsed electron deposition was to make CZTS at a low processing temperature, avoiding the 570 °C annealing step used for our pulsed laser deposited solar cells. Preliminary solar cells had an efficiency of 0.2 % with a 300 °C deposition step without annealing. Further process control is needed...

  2. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beierholm, A.R., E-mail: anders.beierholm@risoe.d [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Andersen, C.E.; Lindvold, L.R. [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Aznar, M.C. [Department of Radiation Oncology, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark)

    2010-03-15

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator. This can be used in complex treatment procedures such as gated intensity-modulated radiotherapy (IMRT), where the advantage of dose rate measurements of high temporal resolution is highly emphasized. We report on development of a fast data acquisition scintillator-based system as well as measurements performed on Varian medical linear accelerators, delivering 6 MV X-ray beams. The dose delivery per radiation pulse was found to agree with expectations within roughly 1%, although minor discrepancies and transients were evident in the measurements.

  3. Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    Science.gov (United States)

    Karch, J.; Sobolev, Yu.; Beck, M.; Eberhardt, K.; Hampel, G.; Heil, W.; Kieser, R.; Reich, T.; Trautmann, N.; Ziegner, M.

    2014-04-01

    The performance of the solid deuterium ultra-cold neutron (UCN) source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10MJ is described. The solid deuterium converter with a volume of cm3 (8mol), which is exposed to a thermal neutron fluence of n/cm2, delivers up to 240000 UCN ( m/s) per pulse outside the biological shield at the experimental area. UCN densities of 10 cm3 are obtained in stainless-steel bottles of 10 L. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

  4. Cutaneous papilloma and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF.

    Directory of Open Access Journals (Sweden)

    Dong Yin

    Full Text Available Nanosecond pulsed electric fields (nsPEF induce apoptotic pathways in human cancer cells. The potential therapeutic effective of nsPEF has been reported in cell lines and in xenograft animal tumor model. The present study investigated the ability of nsPEF to cause cancer cell death in vivo using carcinogen-induced animal tumor model, and the pulse duration of nsPEF was only 7 and 14 nano second (ns. An nsPEF generator as a prototype medical device was used in our studies, which is capable of delivering 7-30 nanosecond pulses at various programmable amplitudes and frequencies. Seven cutaneous squamous cell carcinoma cell lines and five other types of cancer cell lines were used to detect the effect of nsPEF in vitro. Rate of cell death in these 12 different cancer cell lines was dependent on nsPEF voltage and pulse number. To examine the effect of nsPEF in vivo, carcinogen-induced cutaneous papillomas and squamous cell carcinomas in mice were exposed to nsPEF with three pulse numbers (50, 200, and 400 pulses, two nominal electric fields (40 KV/cm and 31 KV/cm, and two pulse durations (7 ns and 14 ns. Carcinogen-induced cutaneous papillomas and squamous carcinomas were eliminated efficiently using one treatment of nsPEF with 14 ns duration pulses (33/39 = 85%, and all remaining lesions were eliminated after a 2nd treatment (6/39 = 15%. 13.5% of carcinogen-induced tumors (5 of 37 were eliminated using 7 ns duration pulses after one treatment of nsPEF. Associated with tumor lysis, expression of the anti-apoptotic proteins Bcl-xl and Bcl-2 were markedly reduced and apoptosis increased (TUNEL assay after nsPEF treatment. nsPEF efficiently causes cell death in vitro and removes papillomas and squamous cell carcinoma in vivo from skin of mice. nsPEF has the therapeutic potential to remove human squamous carcinoma.

  5. Ventricular repolarization time, location of pacing stimulus and current pulse amplitude conspire to determine arrhythmogenicity in mice

    DEFF Research Database (Denmark)

    Speerschneider, T; Grubb, Søren Jahn; Olesen, S P

    2017-01-01

    the interrelationship between the dispersion of repolarization time and current pulse amplitude in provoking ventricular arrhythmia. METHODS: Intracardiac pacing in anesthetized mice determined refractory periods and proarrhythmia susceptibility. Regional activation time (AT), APD and repolarization time (=AT + APD...... of repolarization time, whereas hearts from KChIP2(-/-) mice had large left-to-right ventricular dispersion of repolarization time. Pacing from the right ventricle in KChIP2(-/-) mice in vivo revealed significant lower current pulse amplitudes needed to induce arrhythmias in these mice. CONCLUSION: Large...... heterogeneity of repolarization time is proarrhythmic when pacing is delivered from the location of earlier repolarization time. Ventricular repolarization time, location of the pacing stimulus and the amplitude of the stimulating current pulse are critical parameters underlying arrhythmia vulnerability....

  6. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining.

    Science.gov (United States)

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2015-04-06

    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

  7. Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma

    Directory of Open Access Journals (Sweden)

    Rutger K. Balvers

    2014-08-01

    Full Text Available Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs, which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007. Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.

  8. Synthesis of ZnO thin films by 40 ps rate at 532 nm laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ristoscu, C.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, Lasers Department, 409 Atomistilor, P.O. Box MG-54, Magurele, Ilfov (Romania); Socol, M. [National Institute for Materials Physics, P.O. Box MG-7, Magurele, Ilfov (Romania); Jafer, R.; Al-Hadeethi, Y.; Batani, D. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' ' G. Occhialini' ' , Milano (Italy)

    2011-09-15

    The synthesis by pulsed laser deposition of ZnO thin films with a Nd:YAG laser system delivering pulses of 40 ps rate at 532 nm is reported. The laser beam irradiated the target placed inside a vacuum chamber evacuated down to 1.33 x 10{sup -1} Pa. The incident laser fluence was of 28 J/cm{sup 2} in a spot of 0.1 mm{sup 2}. The ablated material was collected onto double face polished (111) Si or quartz wafers placed parallel at a separation distance of 7 mm. The AFM, SEM, UV-Vis, FT-IR and absorption ellipsometry results indicated that we obtained pure ZnO films with a rather uniform surface, having an average roughness of 37 nm. We observed by SEM that particulates are present on ZnO film surface or embedded into bulk. Their density and dimension were intermediary between particulates observed on similar structures deposited with fs or ns laser pulses. We noticed that the density of the particulates is increasing while their average size is decreasing when passing from ns to ps and fs laser pulses. The average transmission in the UV-Vis spectral region was found to be higher than 85%. (orig.)

  9. Femtosecond pulsed laser ablation to enhance drug delivery across the skin.

    Science.gov (United States)

    Garvie-Cook, Hazel; Stone, James M; Yu, Fei; Guy, Richard H; Gordeev, Sergey N

    2016-01-01

    Laser poration of the skin locally removes its outermost, barrier layer, and thereby provides a route for the diffusion of topically applied drugs. Ideally, no thermal damage would surround the pores created in the skin, as tissue coagulation would be expected to limit drug diffusion. Here, a femtosecond pulsed fiber laser is used to porate mammalian skin ex vivo. This first application of a hollow core negative curvature fiber (HC-NCF) to convey a femtosecond pulsed, visible laser beam results in reproducible skin poration. The effect of applying ink to the skin surface, prior to ultra-short pulsed ablation, has been examined and Raman spectroscopy reveals that the least, collateral thermal damage occurs in inked skin. Pre-application of ink reduces the laser power threshold for poration, an effect attributed to the initiation of plasma formation by thermionic electron emission from the dye in the ink. Poration under these conditions significantly increases the percutaneous permeation of caffeine in vitro. Dye-enhanced, plasma-mediated ablation of the skin is therefore a potentially advantageous approach to enhance topical/transdermal drug absorption. The combination of a fiber laser and a HC-NCF, capable of emitting and delivering femtosecond pulsed, visible light, may permit a compact poration device to be developed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A short-pulse X-ray beamline for spectroscopy and scattering.

    Science.gov (United States)

    Reininger, R; Dufresne, E M; Borland, M; Beno, M A; Young, L; Evans, P G

    2014-09-01

    Experimental facilities for picosecond X-ray spectroscopy and scattering based on RF deflection of stored electron beams face a series of optical design challenges. Beamlines designed around such a source enable time-resolved diffraction, spectroscopy and imaging studies in chemical, condensed matter and nanoscale materials science using few-picosecond-duration pulses possessing the stability, high repetition rate and spectral range of synchrotron light sources. The RF-deflected chirped electron beam produces a vertical fan of undulator radiation with a correlation between angle and time. The duration of the X-ray pulses delivered to experiments is selected by a vertical aperture. In addition to the radiation at the fundamental photon energy in the central cone, the undulator also emits the same photon energy in concentric rings around the central cone, which can potentially compromise the time resolution of experiments. A detailed analysis of this issue is presented for the proposed SPXSS beamline for the Advanced Photon Source. An optical design that minimizes the effects of off-axis radiation in lengthening the duration of pulses and provides variable X-ray pulse duration between 2.4 and 16 ps is presented.

  11. Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters

    Science.gov (United States)

    Janda, Mario; Martišovitš, Viktor; Machala, Zdenko

    2011-06-01

    The paper presents an analysis of electrical characteristics of streamer-to-spark transition discharge in air at atmospheric pressure named transient spark (TS). The TS is applicable for flue gas cleaning or bio-decontamination and has potential in plasma shielding, combustion and flow control applications. Despite the dc applied voltage, TS has a pulsed character with short (~10-100 ns) high current (>1 A) pulses, with repetitive frequencies 1-20 kHz. Estimation of the temporal evolution of electron density shows that ne ≈ 1016 cm-3 at maximum and ~1011 cm-3 on average are reached using relatively low power delivered to the plasma (0.2-3 W). Thanks to the high repetition frequency, ne between two current pulses does not fall below a critical value and therefore plasma exists during the whole time. A detailed analysis of the TS control by electrical circuit parameters is presented. With appropriate circuit components, the current pulse tail (>1 mA) can be extended and the electron density can be held above ~1013 cm-3 for several tens of μs.

  12. Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters

    Energy Technology Data Exchange (ETDEWEB)

    Janda, Mario; Martisovits, Viktor; Machala, Zdenko, E-mail: janda@fmph.uniba.sk [Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F2, 84248 Bratislava (Slovakia)

    2011-06-15

    The paper presents an analysis of electrical characteristics of streamer-to-spark transition discharge in air at atmospheric pressure named transient spark (TS). The TS is applicable for flue gas cleaning or bio-decontamination and has potential in plasma shielding, combustion and flow control applications. Despite the dc applied voltage, TS has a pulsed character with short ({approx}10-100 ns) high current (>1 A) pulses, with repetitive frequencies 1-20 kHz. Estimation of the temporal evolution of electron density shows that n{sub e} {approx} 10{sup 16} cm{sup -3} at maximum and {approx}10{sup 11} cm{sup -3} on average are reached using relatively low power delivered to the plasma (0.2-3 W). Thanks to the high repetition frequency, n{sub e} between two current pulses does not fall below a critical value and therefore plasma exists during the whole time. A detailed analysis of the TS control by electrical circuit parameters is presented. With appropriate circuit components, the current pulse tail (>1 mA) can be extended and the electron density can be held above {approx}10{sup 13} cm{sup -3} for several tens of {mu}s.

  13. Cathodes Delivered for Space Station Plasma Contactor System

    Science.gov (United States)

    Patterson, Michael J.

    1999-01-01

    technical and schedule considerations, the NASA Lewis Research Center was asked to manufacture and deliver the engineering model, the qualification model, and the flight HCA units for the plasma contactor system as government furnished equipment. To date, multiple units have been built. One cathode has demonstrated approximately 28 000-hr lifetime, two development HCA units have demonstrated over 15 000-hr lifetime, and one HCA unit has demonstrated more than 38 000 ignitions. All eight flight HCA's have been manufactured, acceptance tested, and are ready for delivery to the flight contractor.

  14. Delivering stepped care: an analysis of implementation in routine practice

    Directory of Open Access Journals (Sweden)

    Richards David A

    2012-01-01

    Full Text Available Abstract Background In the United Kingdom, clinical guidelines recommend that services for depression and anxiety should be structured around a stepped care model, where patients receive treatment at different 'steps,' with the intensity of treatment (i.e., the amount and type increasing at each step if they fail to benefit at previous steps. There are very limited data available on the implementation of this model, particularly on the intensity of psychological treatment at each step. Our objective was to describe patient pathways through stepped care services and the impact of this on patient flow and management. Methods We recorded service design features of four National Health Service sites implementing stepped care (e.g., the types of treatments available and their links with other treatments, together with the actual treatments received by individual patients and their transitions between different treatment steps. We computed the proportions of patients accessing, receiving, and transiting between the various steps and mapped these proportions visually to illustrate patient movement. Results We collected throughput data on 7,698 patients referred. Patient pathways were highly complex and very variable within and between sites. The ratio of low (e.g., self-help to high-intensity (e.g., cognitive behaviour therapy treatments delivered varied between sites from 22:1, through 2.1:1, 1.4:1 to 0.5:1. The numbers of patients allocated directly to high-intensity treatment varied from 3% to 45%. Rates of stepping up from low-intensity treatment to high-intensity treatment were less than 10%. Conclusions When services attempt to implement the recommendation for stepped care in the National Institute for Health and Clinical Excellence guidelines, there were significant differences in implementation and consequent high levels of variation in patient pathways. Evaluations driven by the principles of implementation science (such as targeted planning

  15. Influence of hot end heat exchangers on cascading three pulse tube coolers

    Science.gov (United States)

    Y Zhao, Q.; Y Wang, L.; Gan, Z. H.; Sun, X.; Chao, Y. J.; Li, S. Z.; Ren, S. J.

    2017-12-01

    Hot end heat exchanger (HHX), an indispensable part in the traditional pulse tube cooler (PTC), rejects the heat generated by dissipation of the acoustic power. The acoustic power, which should have been dissipated at the phase shifters, is delivered to the latter stage cooler in the cascade PTC. Therefore, by removing the HHX, power loss could be decreased. Specifically, in our experiment, after removing HHXs, the cooling power obtained by cascading three PTCs could reach 273.2 W at 233 K under the same working condition, which is 23.6 W more than that of the original structure.

  16. Phase-coded pulse expander-compressor

    Science.gov (United States)

    Lewis, B. L.

    1985-04-01

    A pulse expansion and compression system, especially useful for radar ranging, comprising a pulse coder for expanding an input pulse and a pulse compressor of the matched-filter type. The coder consists of a plurality of delay stages into which the input pulse is fed, a discrete Fourier transform (DFT) circuit to which the output signals of the delay stages are fed by way of respective phase weights and for which every other frequency port is inverted prior to entry to a time-dispersion-means (TDM) comprising an arrangement of adders interconnected by delay stages for differently delaying the output signals from the DFT. The adders are connected in N/2-fold cyclically permutated order to the frequency ports, where N is the number of frequency ports if that number is even, and N is the number of frequency ports less one if that number is odd. The TDM output is fed to a phase modulator and then to the transmitter. The echo signals are conjugated, time-inverted, and passed through the same DFT as the input pulse signal by way of the phase weights. The outputs of the DFT are then inverted at every other frequency port and passed through the TDM, but this time in time-inverted order. The outputs of the TDM are fed through an envelope detector to provide a cross-correlated facsimile of the original input pulse.

  17. Phase coded pulse expander-compressor

    Science.gov (United States)

    Lewis, B. L.

    1985-06-01

    A pulse expansion and compression system, especially useful for radar ranging, comprising a pulse coder for expanding an input pulse and a pulse compressor of the matched-filter type. The coder consists of a plurality of delay stages into which the input pulse is fed, a discrete Fourier transform (DFT) circuit to which the output signals of the delay stages are fed by way of respective phase weights and for which every other frequency port is inverted prior to entry to a time-dispersion means (TDM) comprising an arrangement of adders interconnected by delay stages for differently delaying the output signals from the DFT. The TDM output is fed to a phase modulator and then to the transmitter. The echo signals are conjugated, time-inverted, and passed through the same DFT as the input pulse signal by way of the phase weights. The outputs of the DFT are then inverted at every other frequency port and passed through the TDM, but this time in time-inverted order. The outputs of the TDM are fed through an envelope detector to provide a cross-correlated facsimile of the original input pulse.

  18. Decontamination of sugar syrup by pulsed light.

    Science.gov (United States)

    Chaine, Aline; Levy, Caroline; Lacour, Bernard; Riedel, Christophe; Carlin, Frédéric

    2012-05-01

    The pulsed light produced by xenon flash lamps was applied to 65 to 67 °Brix sugar syrups artificially contaminated with suspensions of Saccharomyces cerevisiae and with spores of Bacillus subtilis, Geobacillus stearothermophilus, Alicyclobacillus acidoterrestris, and Aspergillus niger. The emitted pulsed light contained 18.5 % UV radiation. At least 3-log reductions of S. cerevisiae, B. subtilis, G. stearothermophilus, and A. acidoterrestris suspended in 3-mm-deep volumes of sugar syrup were obtained with a fluence of the incident pulsed light equal to or less than 1.8 J/cm(2), and the same results were obtained for B. subtilis and A. acidoterrestris suspended in 10-mm-deep volumes of sugar syrup. A. niger spores would require a more intense treatment; for instance, the maximal log reduction was close to 1 with a fluence of the incident pulsed light of 1.2 J/cm(2). A flowthrough reactor with a flow rate of 320 ml/min and a flow gap of 2.15 mm was designed for pulsed light treatment of sugar syrup. Using this device, a 3-log reduction of A. acidoterrestris spores was obtained with 3 to 4 pulses of incident pulsed light at 0.91 J/cm(2) per sugar syrup volume.

  19. Theoretical spectrum of noisy optical pulse trains.

    Science.gov (United States)

    Lacaze, B; Chabert, M

    2008-06-20

    The intensity of an ideal optical pulse train is often modeled as an exact periodic repetition of a given pulse-shape function with constant amplitude and width. Therefore, the ideal intensity power spectrum is a pure line power spectrum. However, spontaneous-emission noise due to amplification media, electronic noise due to modulators, or even intentional modulations result in period-to-period fluctuations of the pulse amplitude, width, or arrival time. The power spectrum of this so-called noisy optical pulse train is then composed of a line spectrum added to a band spectrum. This study shows that the optical pulse train intensity is cyclostationary under usual assumptions on the fluctuations. This property allows us to derive the exact optical pulse train power spectrum. A general closed-form expression that takes into account the three noise manifestations (jitter, amplitude, and width modulations) is provided. Particular expressions are given for usual cases of interest such as the jitter and amplitude modulation model, for given fluctuation probability distributions, and pulse-shape functions.

  20. Pulse shortening of an ultrafast VECSEL

    Science.gov (United States)

    Waldburger, D.; Alfieri, C. G. E.; Link, S. M.; Gini, E.; Golling, M.; Mangold, M.; Tilma, B. W.; Keller, U.

    2016-03-01

    Ultrafast, optically pumped, passively modelocked vertical external-cavity surface-emitting lasers (VECSELs) are excellent sources for industrial and scientific applications that benefit from compact semiconductor based high-power ultrafast lasers with gigahertz repetition rates and excellent beam quality. Applications such as self-referenced frequency combs and multi-photon imaging require sub-200-fs pulse duration combined with high pulse peak power. Here, we present a semiconductor saturable absorber mirror (SESAM) modelocked VECSEL with a pulse duration of 147 fs and 328 W of pulse peak power. The average output power was 100 mW with a repetition rate of 1.82 GHz at a center wavelength of 1034 nm. The laser has optimal beam quality operating in a fundamental transverse mode with a M2 value of strain-compensated InGaAs quantum wells (QWs). The QWs are placed symmetrical around the antinodes of the standing electric field at a reduced average field enhancement in the QWs of ≈ 0.5 (normalized to 4 outside the structure). These results overcome the trade-off between pulse duration and peak power of the state-of-the-art threshold values of 4.35 kW peak power for a pulse duration of 400 fs and 3.3 W peak power for a pulse duration of 107 fs.

  1. Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers

    Science.gov (United States)

    Agrawal, Govind P.

    Ultrashort optical pulses are often propagated through optical waveguides for a variety of applications including telecommunications and supercontinuum generation [1]. Typically the waveguide is in the form of an optical fiber but it can also be a planar waveguide. The material used to make the waveguide is often silica glass, but other materials such as silicon or chalcogenides have also been used in recent years. What is common to all such materials is they exhibit chromatic dispersion as well as the Kerr nonlinearity. The former makes the refractive index frequency dependent, whereas the latter makes it to depend on the intensity of light propagating through the medium [2]. Both of these effects become more important as optical pulses become shorter and more intense. For pulses not too short (pulse widths > 1 ns) and not too intense (peak powers < 10 mW), the waveguide plays a passive role (except for small optical losses) and acts as a transporter of optical pulses from one place to another, without significantly affecting their shape or spectrum. However, as pulses become shorter and more intense, both the dispersion and the Kerr nonlinearity start to affect the shape and spectrum of an optical pulse during its propagation inside the waveguide. This chapter focuses on silica fibers but similar results are expected for other waveguides made of different materials

  2. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology.

    Science.gov (United States)

    Pal, Anoop K; Aalaei, Iraj; Gadde, Suresh; Gaines, Peter; Schmidt, Daniel; Demokritou, Philip; Bello, Dhimiter

    2014-09-23

    In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano-bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose-response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology.

  3. XFEL/Short Pulse Science

    CERN Document Server

    Schneider, Jochen

    2005-01-01

    X-rays are a most powerful tool for 3 dimensional imaging of matter on length scales from mm to nanometer. They allow for highly accurate determination of the position of atoms and their correlated motion in samples with complex structure under extreme temperature or pressure condi-tions, they probe either bulk or surface properties including order-disorder phenomena. With high resolution spectro-microscopy electronic properties of inhomogeneous novel materials are studied in great detail. So far equilibrium states are investigated. The logical next step is to extend our methodology to include the investigation of non-equilibrium, of new states of matter with atomic resolution in space and time. The XFELs provide the necessary very intense flashes of X-rays with wave-lengths down to 0.1 nm with pulse durations of 10 or 100 femtoseconds. Examples of the sug-gested applications of XFELs will be presented. Strategies for performing experiments at LINAC driven light sources will be discussed with emphasis on the ...

  4. [Music, pulse, heart and sport].

    Science.gov (United States)

    Gasenzer, E R; Leischik, R

    2018-02-01

    Music, with its various elements, such as rhythm, sound and melody had the unique ability even in prehistoric, ancient and medieval times to have a special fascination for humans. Nowadays, it is impossible to eliminate music from our daily lives. We are accompanied by music in shopping arcades, on the radio, during sport or leisure time activities and in wellness therapy. Ritualized drumming was used in the medical sense to drive away evil spirits or to undergo holy enlightenment. Today we experience the varied effects of music on all sensory organs and we utilize its impact on cardiovascular and neurological rehabilitation, during invasive cardiovascular procedures or during physical activities, such as training or work. The results of recent studies showed positive effects of music on heart rate and in therapeutic treatment (e. g. music therapy). This article pursues the impact of music on the body and the heart and takes sports medical aspects from the past and the present into consideration; however, not all forms of music and not all types of musical activity are equally suitable and are dependent on the type of intervention, the sports activity or form of movement and also on the underlying disease. This article discusses the influence of music on the body, pulse, on the heart and soul in the past and the present day.

  5. Simultaneous spatial and temporal focusing of femtosecond pulses: A new paradigm for material processing and tissue ablation

    Science.gov (United States)

    Block, Erica K.

    Femtosecond lasers are now prolific in many disciplines. While the mechanisms of femtosecond-material interactions are widely understood, femtosecond lasers as industrial and medical tools still have shortcomings. Currently conventional state of the art platforms are unable to support low numerical aperture (NA) beams (that provide large focal volumes and long working distances) without sacrificing axial precision. Furthermore inline (refractive) delivery systems that are necessary for industrial and clinical medical applications are currently hindered by nonlinear effects when delivering femtosecond pulses with tens of microJoule pulse energies and greater. In this thesis Simultaneous Space Time Focusing (SSTF) is presented as a new paradigm to move the field of femtosecond micromachining significantly forward. With this system we have delivered microjoule femtosecond pulses with low numerical aperture geometries (thesis we have focused on significantly streamlining the SSTF design into a flexible, single grating, integrated SSTF/chirped-pulse amplification system with an inline (refractive) delivery system to move towards industrial and clinical medical applications. For the first time this design also allows for variation of the beam aspect ratio of an SSTF beam, and thus the degree of pulse-front tilt at focus, while maintaining a net zero-dispersion system. Accessible variation of pulse front tilt gives full spatiotemporal control over the intensity distribution at the focus and another degree of freedom in ablation processes. Finally, real-time visualization of the femtosecond machining process is vital for industrial/medical applications, especially in medical where imaging is through scattering materials. At present a secondary imaging laser system is needed in conjunction with the surgical laser. Using complex, off the shelf, refractive optics we have created a real-time, inline (refractive), delivery system that is robust to scattering and integrated

  6. TH-C-19A-03: Characterization of the Dose Per Pulse Dependence of Various Detectors Used in Quality Assurance of FFF Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Karan, T [Stronach Regional Cancer Center, Newmarket, ON (Canada); Viel, F; Atwal, P; Gete, E; Camborde, M; Horwood, R; Strgar, V; Duzenli, C [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2014-06-15

    Purpose: To present the dose per pulse dependence of various QA devices under Flattening Filter Free (FFF) conditions. Methods: Air and liquid filled ion chamber arrays, diode arrays, radiochromic film and optically stimulated luminescence detectors were investigated. All detectors were irradiated under similar conditions of varying dose per pulse on a TrueBeam linac. Dose per pulse was controlled by varying SSD from 70 to 160 cm providing a range from ~0.5 to ~3 mGy per pulse. MU rates of up to 2400 MU/min for 10X FFF and 1400 MU/min for the 6X FFF beam were used. Beam pulses were counted using the Profiler™ diode array and pulse timing was confirmed by examining linac node files. Delivered doses were calculated with the Eclipse™ treatment planning system. Results: The detectors show a range of behaviors depending on the detector type, as expected. Diode arrays show up to 4% change in sensitivity (sensitivity increases with increasing dose per pulse) over the range tested. Air and liquid ion chambers arrays show a change in sensitivity of up to 3% (air) and 6% (liquid) (sensitivity decreases with increasing dose per pulse) while film and OSLD do not demonstrate a dependence on dose per pulse. Conclusion: Dependence of detector response on dose per pulse varies considerably depending on detector design. Interplay between dose per pulse and MU rate also exists for some detectors. Due diligence is required to characterize detector response prior to implementation of a QA protocol for FFF treatment delivery. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. We intend to further investigate the implications of this for VMAT FFF patient specific quality assurance. T Karan and F Viel have received partial funding through the Varian Research program.

  7. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    National Research Council Canada - National Science Library

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-01-01

    ...'. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause...

  8. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    Science.gov (United States)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  9. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  10. Pulsed field gel electrophoresis a practical guide

    CERN Document Server

    Birren, Bruce

    1993-01-01

    Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv

  11. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  12. Four-wave mixing with femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Skenderovic, H [Institute of Physics, Bijenicka cesta 46, HR-10001 Zagreb (Croatia)], E-mail: hrvoje@ifs.hr

    2009-07-15

    The recent development of noncollinear optical parametric amplifiers (NOPAs) has equipped many laboratories with widely tunable, spectrally broad ultrashort laser pulses with a duration of 15-30 fs. The present work deals with sub-20 fs pulsed degenerate four wave mixing (DFWM) on high-frequency vibrational levels in all-trans-{beta}-carotene. The observed wavepacket motion on the electronic ground state revealed fast oscillating vibrational modes whose frequencies and time development were measured. The coherent control in an open loop is demonstrated by appropriate phase shaping of the pulses.

  13. Optimal generation of pulsed entangled photon pairs

    Science.gov (United States)

    Hodelin, Juan F.; Khoury, George; Bouwmeester, Dirk

    2006-07-01

    We experimentally investigate a double-pass parametric down-conversion scheme for producing pulsed, polarization-entangled photon pairs with high visibility. The amplitudes for creating photon pairs on each pass interfere to compensate for distinguishing characteristics that normally degrade two-photon visibility. The result is a high-flux source of polarization-entangled photon pulses that does not require spectral filtering. We observe quantum interference visibility of over 95% without the use of spectral filters for 200fs pulses, and up to 98.1% with 5nm bandwidth filters.

  14. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  15. Modular, Parallel Pulse-Shaping Filter Architectures

    Science.gov (United States)

    Gray, Andrew A.

    2003-01-01

    Novel architectures based on parallel subconvolution frequency-domain filtering methods have been developed for modular processing rate reduction of discrete-time pulse-shaping filters. Such pulse-shaping is desirable and often necessary to obtain bandwidth efficiency in very-high-rate wireless communications systems. In principle, this processing could be implemented in very-large-scale integrated (VLSI) circuits. Whereas other approaches to digital pulse-shaping are based primarily on time-domain processing concepts, the theory and design rules of the architectures presented here are founded on frequency-domain processing that has advantages in certain systems.

  16. Air Liquide Space Pulse Tube Cryocoolers

    Science.gov (United States)

    Tanchon, J.; Trollier, T.; Buquet, J.; Ravex, A.; Crespi, P.

    2008-03-01

    Thanks to important internal development efforts completed and partial ESA funding, AL/DTA is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as MTG, Sentinel 3, etc… The two pulse tube coolers thermo-mechanical units have been qualified against thermal and mechanical environment constraints. To complete these two Pulse Tube coolers, a Cooler Drive Electronic has been developed for active damping and vibration cancellation. The paper presents the current status of these products and associated Cooler Drive Electronics.

  17. [Role of ocular pulse amplitude in glaucoma].

    Science.gov (United States)

    Stürmer, J P E; Kniestedt, C

    2015-02-01

    The ocular pulse amplitude is defined as the difference between diastolic and systolic intraocular pressure. The ocular pulse is generated by the pulsatile ocular blood flow in the choroid. It is dependent on the dynamics of the cardiovascular system, the rigidity of the ocular vessels on one side and the biomechanical properties of the eye on the other side. In addition the influence of outflow facility of the aqueous humor, the level of the intraocular pressure itself and last but not least the rigidity of the sclera on the ocular pulse amplitude is until now not clear. Dynamic contour tonometry (Pascal®) does not only measure intraocular pressure almost independent of corneal thickness and curvature but also allows easy and fast measurement of ocular pulse amplitude on the slit lamp. The ocular pulse amplitude in healthy subjects is between 1.2 and 4 mmHg. If the ocular pulse amplitude is larger than 1.2 mmHg spontaneous pulsations of the central retinal vein are visible on fundoscopy. In patients with ocular hypertension the ocular pulse amplitude is larger than in normal subjects but this is mainly due to higher IOP levels. In patients with manifest open-angle glaucoma the ocular pulse amplitude stays initially within the normal range. In more advanced stages of the disease and especially in patients with ocular perfusion pressure dependent optic neuropathy the ocular pulse amplitude is gradually reduced. Due to the various factors influencing ocular pulse amplitude a direct correlation between reduced ocular pulse amplitude and reduced ocular perfusion pressure has not been established as yet. New approaches investigating the variations of the ocular pressure Fourier spectral analysis are promising, especially when simultaneous analysis of the arterial blood pressure is performed. These techniques may allow a fast and easy discrimination between healthy and glaucomatous patients in the near future. If ocular pulse amplitude exhibits a massive inter

  18. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    Science.gov (United States)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  19. High-voltage pulsed galvanic stimulation: effects of frequency of current on blood flow in the human calf muscle.

    Science.gov (United States)

    Heath, M E; Gibbs, S B

    1992-06-01

    1. Twelve healthy subjects received high-voltage pulsed galvanic stimulation (115-475 V d.c.) delivered in separate treatments of 2, 32 and 128 pulses/s for 10 min at the subject's maximum tolerable voltage while calf muscle blood flow was measured by non-invasive Whitney strain-gauge venous occlusion plethysmography. 2. The high-voltage pulsed galvanic stimulation was administered with negative polarity by an intermittent mode of 30 s on, 30 s off. Measurements of calf muscle blood flow were made during each 30 s period when the stimulus was off. The effect of one 30 s maximum isometric contraction of the calf muscles on blood flow was used as a standard for evaluating the effectiveness of high-voltage pulsed galvanic stimulation on calf muscle blood flow. 3. Significant (paired t-tests; P less than 0.05) increases in calf muscle blood flow over the preceding baseline levels occurred for the isometric contraction (322%) and for frequencies of 2 pulses/s (33.5%) and 128 pulses/s (13.36%), but not for a frequency of 32 pulses at which calf muscle blood flow increased in only six of 12 subjects. The mean increases in calf muscle blood flow at 2 and 128 pulses/s represented 11.63% and 4.0%, respectively, of that resulting from the isometric contraction. 4. A clear positive correlation between voltage level and the magnitude of increase in calf muscle blood flow was demonstrated but differed for each frequency used.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ning; Guan Huaiqun; Hammoud, Rabih; Pradhan, Deepak; Nurushev, T; Li Shidong; Movsas, Benjamin [Henry Ford Health System, Detroit, MI (United States)

    2007-04-21

    With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was {approx}4.0 cGy, which was {approx}40% higher than the Rt Lat dose of {approx}2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm x 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370{sup 0} scan rotation (10{sup 0} scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of {approx}10-11 cGy while the right hip received {approx}6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than {approx}12% to the table-drop setup.

  1. Using technology to deliver healthcare education to rural patients.

    Science.gov (United States)

    McIlhenny, Carol V; Guzic, Brenda L; Knee, Dawna R; Wendekier, Camille M; Demuth, Barbara R; Roberts, Jay B

    2011-01-01

    The prevalence of chronic disease in the US population is increasing. Projections indicate that half the US population will live with at least one chronic disease by the year 2030. Statistics indicate that chronic illnesses account for 70% of all deaths. Developing healthy self-management behaviors can lower the risk of developing chronic disease and also minimize the magnitude of subsequent morbidity and disability. Individuals need access to reliable information in order to learn successful self-management skills. Delivering healthcare information in rural areas is difficult. Geography, distance, inclement weather and/or the lack of financial resources are barriers that can prevent individuals from accessing health care and health education. Likewise, rural health clinics often lack the financial resources to provide the most current patient education materials. However, the internet allows remote and immediate access to this type of information if individuals know how and where to search for it. An internet portal, My Health Education & Resources Online (MyHERO) was created to facilitate locating current, non-commercial, reliable, evidence-based health information. The authors sought to assess the impact of a publically accessible internet information portal on diabetes knowledge, quality of life (QOL) measures, and self-management behaviors in a US rural area. Participants (n=48) with type 2 diabetes in one clinic received regularly scheduled, one-on-one individualized diabetes-related health education and hands-on instructions on how to use an internet portal from a nurse educator. Each health clinic was supplied with a laptop computer for participants to use if they lacked internet access. Control participants (n=50) in a second clinic received a pamphlet describing how to access the portal. All participants completed baseline and end-of-study surveys. Disease knowledge was measured with the BASICS test developed by the International Diabetes Center. Problem

  2. Hipparcos to deliver its final results catalogue soon

    Science.gov (United States)

    1995-10-01

    them, almost 30 years ago, to propose carrying out these observations from the relatively benign environment of space. Hipparcos is, by present standards, a medium-sized satellite, with a 30 cm telescope sensing simply ordinary light. But it has been described as the most imaginative in the short history of space astronomy. This foresight has been amply repaid. In the long history of stargazing it ranks with the surveys by Hipparchus the Greek in the 2nd Century BC and by Tichy Brahe the Dane in the 16th Century AD, both of which transformed human perceptions of the Universe. Positions derived from the Hipparcos satellite are better than a millionth of a degree, and newly a thousand times more accurate than star positions routinely determined from he ground. This accuracy makes it possible to measure directly the distances to the stars. While it took 250 years between astronomers first setting out on the exacting task of measuring the distance to a star, and a stellar distance being measured for the first time, ESA's Hipparcos mission has revolutionised this long, painstaking, and fundamental task by measuring accurate distances and movements of more than one hundred thousand. The measurement concept involved he satellite triangulating its way between he stars all wound the sky, building up a celestial map in much the same way as land surveyors use triangulation between hill-tops to measure distances accurately. Only the angles involved are much smaller : the accuracy that has been achieved with the Hipparcos Catalogue is such that he two edges of a coin, viewed from he other side of the Atlantic Ocean, could be distinguished. The results from Hipparcos will deliver scientists with long-awaited details of our place in he Milky Way Galaxy. Most of he stars visible to the naked eye are, to a large extent, companions of the Sun, in a great orbital march around the centre of the Galaxy, a journey so long that it takes individual stars 250 million years to complete, in

  3. Effects of acoustical stimuli delivered through hearing aids on tinnitus.

    Science.gov (United States)

    Sweetow, Robert W; Sabes, Jennifer Henderson

    2010-01-01

    range of preferences observed for fractal settings, with most participants preferring fractals with a slow or medium tempo and restricted dynamic range. The majority (86%) indicated that it was easier to relax while listening to fractal signals. Participants had preferences for certain programs and fractal characteristics. Although seven participants rated the noise-only condition as providing the least tinnitus annoyance, only two opted to have noise only as a program during the field trial, and none selected the noise-only condition as the preferred setting. Furthermore, while all four of the experienced hearing aid users selected noise as producing the least annoying tinnitus in the laboratory, only one selected it for field wear. Tinnitus Handicap Inventory and Tinnitus Reaction Questionnaire scores were improved over the course of the 6 mo trial, with clinically significant improvements occurring for over half of the participants on at least one of the measures. The results suggest that use of acoustic stimuli, particularly fractal tones, delivered though hearing aids can provide amplification while allowing for relief for some tinnitus sufferers. It is important to recognize, however, that tinnitus management procedures need to be supplemented with appropriate counseling. American Academy of Audiology.

  4. Telephone-Delivered Cognitive Behavioral Therapy for Chronic Pain Following Traumatic Brain Injury

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-12-2-0109 TITLE: Telephone-Delivered Cognitive Behavioral Therapy for Chronic Pain Following Traumatic Brain Injury...2014-29 Sept 2015 4. TITLE AND SUBTITLE Telephone-Delivered Cognitive Behavioral Therapy for Chronic Pain 5a. CONTRACT NUMBER W81XWH-12-2-0109...included a Quad Chart for this particular study as requested by the CDMRP. Planned Recruitment Telephone-Delivered Cognitive Behavioral Therapy for

  5. Telephone Delivered Cognitive Behavioral Therapy for Chronic Pain Following Traumatic Brain Injury

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-12-2-0109 TITLE: Telephone -Delivered Cognitive Behavioral Therapy for Chronic Pain Following Traumatic Brain Injury...2015 - 29 Sep 2016 4. TITLE AND SUBTITLE Telephone -Delivered Cognitive Behavioral Therapy for Chronic Pain 5a. CONTRACT NUMBER Following Traumatic...evaluate the efficacy of a telephone -delivered cognitive behavioral treatment (T-CBT) in Veterans with a history of traumatic brain injury (TBI) for the

  6. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diwakar, P.K., E-mail: pdiwakar@purdue.edu; Harilal, S.S.; Freeman, J.R.; Hassanein, A.

    2013-09-01

    Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm. - Highlights: • Role of pre-pulse wavelength and inter-pulse delay on LIBS sensitivity was studied. • For NIR:NIR combination, dual peaks in signal enhancement were observed. • UV:NIR combination resulted in maximum absolute signal intensity. • Persistence of neutral species was increased for double pulse.

  7. A conceptual framework for understanding and improving adolescents' exposure to Internet-delivered interventions

    National Research Council Canada - National Science Library

    Crutzen, R.M.M; de Nooijer, J; Brouwer, W; Oenema, A; Brug, J; de Vries, N.K

    2009-01-01

    .... Therefore, a conceptual framework, which incorporates elements of user experience of websites, is applied to Internet-delivered health behaviour change interventions aimed at adolescents and results...

  8. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  9. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  10. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  11. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow ab...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics.......The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...

  12. Cavitation pulse extraction and centrifugal pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong Lind Shaoran [University of Electronic Science and Technology of China, Chengdu (China); Yu, Bo; Qing, Biao [Xihua University, Chengdu (China)

    2017-03-15

    This study extracted cavitation pulses from hydrophone signals sampled in a centrifugal pump and analyzed their characteristics. The modified and simplified Empirical mode decomposition (EMD) algorithm was proposed for extracting cavitation pulses from strong background noise. Experimental results showed that EMD can effectively suppress noise and obtain clear cavitation pulses, facilitating the identification of the number of pulses associated with the degree of cavitation. The cavitation characteristics were modeled to predict the value of incipient cavitation. Then, we proposed a method for detecting the wear of the impeller surface. That is, the information on the impeller surface of the centrifugal pump, including the roughness of the impeller surface and its wear trends, were quantified based on the net positive suction head available of incipient cavitation. The findings indicate that the proposed technique is suitable for condition monitoring of the pump.

  13. The Compact Pulsed Hadron Source Construction Status

    CERN Document Server

    Wei, Jie; Cai, Jinchi; Chen, Huaibi; Cheng, Cheng; Du, Qiang; Du, Taibin; Feng, Qixi; Feng, Zhe; Gong, Hui; Guan, Xialing; Han, Xiaoxue; Huang, Tuchen; Huang, Zhifeng; Li, Renkai; Li, Wenqian; Loong, Chun-Keung; Tang, Chuanxiang; Tian, Yang; Wang, Xuewu; Xie, Xiaofeng; Xing, Qingzi; Xiong, Zhengfeng; Xu, Dong; Yang, Yigang; Zeng, Zhi; Zhang, Huayi; Zhang, Xiaozhang; Zheng, Shu-xin; Zheng, Zhihong; Zhong, Bin; Billen, James; Young, Lloyd; Fu, Shinian; Tao, Juzhou; Zhao, Yaliang; Guan, Weiqiang; He, Yu; Li, Guohua; Li, Jian; Zhang, Dong-sheng; Li, Jinghai; Liang, Tianjiao; Liu, Zhanwen; Sun, Liangting; Zhao, Hongwei; Shao, Beibei; Stovall, James

    2010-01-01

    This paper reports the design and construction status, technical challenges, and future perspectives of the proton-linac based Compact Pulsed Hadron Source (CPHS) at the Tsinghua University, Beijing, China

  14. A review of pulse tube refrigeration

    Science.gov (United States)

    Radebaugh, Ray

    1990-01-01

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  15. Plasma response to transient high voltage pulses

    Indian Academy of Sciences (India)

    solitary electron and ion holes) is reviewed for a metallic electrode covered by a dielectric material. The wave excitation during and after the pulse withdrawal, excitation and propagation characteristics of various electrostatic plasma waves are ...

  16. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  17. Ultrafast pulse generation with black phosphorus

    CERN Document Server

    Li, Diao; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus has been recently rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of black phosphorus thin films, indicating that both linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness. Then we employ the nonlinear optical property of black phosphorus for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 {\\mu}m. Our results underscore relatively large optical nonlinearity in black phosphorus and its prospective for ultrafast pulse generation, paving the way to black phosphorus based nonlinear and ultrafast photonics applications (e.g., ultrafast all-optical switches/modulators, frequency converters etc.).

  18. Construction of a Pulsed Streamer Corona Reactor

    National Research Council Canada - National Science Library

    Locke, Bruce

    1995-01-01

    The objective of this effort was to construct a pulsed corona discharge capability for conducting investigations into the destruction of noxious combustion products from jet engines and ground support equipment...

  19. Pulse arrival time measurement with coffee provocation.

    Science.gov (United States)

    Ahmaniemi, Teemu; Rajala, Satu; Lindholm, Harri; Taipalus, Tapio

    2017-07-01

    This study investigated the effect of coffee intake in pulse arrival time (PAT) and pulse wave velocity (PWV) measured with electrocardiogram (ECG) from arms and photoplethysmogram (PPG) from fingertip. In addition, correlation of PWV with blood pressure (BP) is analyzed. 30 healthy participants were recruited to two measurement sessions, one arranged before and another one after the coffee intake. During each session, ECG and PPG were measured continuously for six minutes and PAT values calculated from ECG R-peak to the maximum of the first derivative of the PPG pulse. In addition, blood pressure was measured twice during each session with cuff based method. Coffee intake had statistically significant influence on both systolic and diastolic blood pressure, but not on PAT or PWV. Correlation between systolic blood pressure and PWV was 0.44. Individual calibration, additional derivatives of ECG and PPG such as heart rate, pulse pressure, or waveform characteristics could improve the correlation.

  20. Pulse current enhanced electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.; Jensen, Pernille E.

    2012-01-01

    Energy consumption is an important factor influencing the cost of electrodialytic soil remediation (EDR). It has been indicated that the pulse current (in low frequency range) could decrease the energy consumption during EDR. This work is focused on the comparison of energy saving effect at diffe......Energy consumption is an important factor influencing the cost of electrodialytic soil remediation (EDR). It has been indicated that the pulse current (in low frequency range) could decrease the energy consumption during EDR. This work is focused on the comparison of energy saving effect...... at different pulse frequencies. Based on the restoration of equilibrium, the relaxation process of the soil-water system was investigated by chronopotentiometric analysis to find the optimal relaxation time for energy saving. Results showed that the pulse current decreased the energy consumption with different...

  1. Binary Pulse Compression Techniques for MST Radars

    Science.gov (United States)

    Woodman, R. F.; Sulzer, M. P.; Farley, D. T.

    1984-01-01

    In most mesosphere-stratosphere-troposphere (MST) applications pulsed radars are peak power limited and have excess average power capability. Short pulses are required for good range resolution but the problem of range biguity (signals received simultaneously from more than one altitude) sets a minimum limit on the interpulse period (IPP). Pulse compression is a echnique which allows more of the transmitter average power capacity to be used without scarificing range resolution. Binary phase coding methods for pulse compression are discussed. Many aspects of codes and decoding and their applications to MST experiments are addressed; this includes Barker codes and longer individual codes, and then complementary codes and other code sets. Software decoding, hardware decoders, and coherent integrators are also discussed.

  2. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  3. Evolution Strategies for Laser Pulse Compression

    NARCIS (Netherlands)

    Monmarché, Nicolas; Fanciulli, Riccardo; Willmes, Lars; Talbi, El-Ghazali; Savolainen, Janne; Collet, Pierre; Schoenauer, Marc; van der Walle, P.; Lutton, Evelyne; Back, Thomas; Herek, Jennifer Lynn

    2008-01-01

    This study describes first steps taken to bring evolutionary optimization technology from computer simulations to real world experimentation in physics laboratories. The approach taken considers a well understood Laser Pulse Compression problem accessible both to simulation and laboratory

  4. Photoacoustic microscopy of blood pulse wave

    OpenAIRE

    Yeh, Chenghung; Hu, Song; Maslov, Konstantin; Wang, Lihong V.

    2012-01-01

    Blood pulse wave velocity (PWV) is an important physiological parameter that characterizes vascular stiffness. In this letter, we present electrocardiogram-synchronized, photoacoustic microscopy for noninvasive quantification of the PWV in the peripheral vessels of living mice. Interestingly, blood pulse wave-induced fluctuations in blood flow speed were clearly observed in arteries and arterioles, but not in veins or venules. Simultaneously recorded electrocardiograms served as references to...

  5. Mycotoxin production on rice, pulses and oilseeds

    Science.gov (United States)

    Begum, Fouzia; Samajpati, N.

    Mycotoxin-producing fungi were isolated from contaminated grains of rice, pulses and oilseeds sold in the local markets of Calcutta for human consumption. It was found that aflatoxin B1 was produced by Aspergillus flavus and Aspergillus parasiticus, aflatoxin G1 by A. flavus, ochratoxin by Aspergillus ochraceous, sterigmatocystin by Aspergillus japonicus and citrinin by Penicillium citrinum. Aflatoxin B1 (333-10416μg/kg) was produced by Aspergillus spp. in rice, pulses and oilseeds.

  6. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.D. [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  7. Femtosecond laser pulses principles and experiments

    CERN Document Server

    1998-01-01

    This smooth introduction for advanced undergraduate students starts with the fundamentals of lasers and pulsed optics Thus prepared, the student learns how to generate short and ultrashort laser pulses, how to manipulate them, and how to measure them Finally, spectroscopic implications are discussed This rounded text gives the student an up-to-date introduction to one of the most exciting fields in laser physics

  8. Stimulation of unidirectional pulses in excitable systems

    Science.gov (United States)

    Friedman, M.; Ovsyshcher, I. E.; Fleidervish, I.; Crystal, E.; Rabinovitch, A.

    2004-10-01

    Using a judicious spatial shape of input current pulses (and electrodes), responses of an excitable system (FitzHugh-Nagumo) appear as unidirectional pulses (UDP’s) instead of bidirectional ones (in one dimension) or circular ones (in two dimensions). The importance of the UDP’s for a possible mechanism for pinpointing the reentry cycle position and for a possible use in tachycardia suppression is discussed.

  9. Colliding pulse mode-locked VECSEL

    Science.gov (United States)

    Marah, Declan; Laurain, Alexandre; Stolz, Wolfgang; Koch, Stephan; Ruiz Perez, Antje; McInerney, John; Moloney, Jerome

    2016-03-01

    Recent development of high power femtosecond pulse modelocked VECSEL with gigahertz pulse repetition rates sparked an increased interest from the scientific community due to the broad field of applications for such sources, such as frequency metrology, high-speed optical communication systems or high-resolution optical sampling. To the best of our knowledge, we report for the first time a colliding pulse modelocked VECSEL, where the VECSEL gain medium and a semiconductor saturable absorber (SESAM) are placed inside a ring cavity. This cavity geometry provides both a practical and an efficient way to get optimum performance from a modelocked laser system. The two counter propagating pulses in our ring cavity synchronize in the SESAM because the minimum energy is lost when they saturate the absorber together. This stronger saturation of the absorber increases the stability of the modelocking and reduces the overall losses of the laser for a given intra-cavity fluence, leading to a lower modelocking threshold. This also allows the generation of fundamental modelocking at a relatively low repetition rate (pulse repetition rate of 1GHz and a pulse duration ranging from 1ps to 3ps. The emitted spectrum was centered at 1007nm with a FWHM of 3.1nm, suggesting that shorter pulses can be obtained with adequate dispersion compensation. The laser characteristics such as the pulse duration and stability are studied in detail.

  10. Pulse detection by gated synchronous demodulation

    OpenAIRE

    Efthymiou, Spyros; Ozanyan, Krikor B.

    2013-01-01

    Synchronous demodulation (SD) is the signal recovery method of choice when the input envelope signal is modulated by either a pure sine wave or a square wave. SD is less efficient for pulsed periodic signals with a low duty factor. For the latter signals, we introduce data processing that applies gating on a part of the signal period to achieve optimum conditions for recovering the pulse amplitude by quadrature SD. The proposed method is evaluated for signal-to-noise performance against Boxca...

  11. Applications of Pulse-Coupled Neural Networks

    CERN Document Server

    Ma, Yide; Wang, Zhaobin

    2011-01-01

    "Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci

  12. Intense Pulsed Light Therapy for Skin Rejuvenation.

    Science.gov (United States)

    DiBernardo, Barry E; Pozner, Jason N

    2016-07-01

    Intense pulsed light (IPL), also known as pulsed light and broad band light, is a nonlaser light source used to treat a variety of vascular and pigmented lesions, photo damage, active acne, and unwanted hair. Current IPL systems are much improved from older-generation devices with better calibration, integrated cooling, and improved tuning. These devices are extremely popular because of their versatility and are often the first devices recommended and purchased in many offices. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Pulse Clarithromycin Therapy In Severe ACNE Vulgaris

    Directory of Open Access Journals (Sweden)

    Rathi Sanjay K

    2002-01-01

    Full Text Available Three patients with severe acne vulgaris, not responding with long courses of doxycycline, minocycline and erythromycin were given oral clarithromycin in pulsed regimen. The patients were given 7 days course of clarithromycin 250mg twice daily, which was repeated after a gap of 10 days. Such 3 courses were given. The lesions responded significantly. No significant side effect was noted. Pulse clarithromycin therapy seems to be a good alternative and effective tool in the management of severe acne vulgaris.

  14. Pulse Compression of Phase-matched High Harmonic Pulses from a Time-Delay Compensated Monochromator

    Directory of Open Access Journals (Sweden)

    Ito Motohiko

    2013-03-01

    Full Text Available Pulse compression of single 32.6-eV high harmonic pulses from a time-delay compensated monochromator was demonstrated down to 11±3 fs by compensating the pulse front tilt. The photon flux was intensified up to 5.7×109 photons/s on target by implementing high harmonic generation under a phase matching condition in a hollow fiber used for increasing the interaction length.

  15. Pulsing ULXs: tip of the iceberg?

    Science.gov (United States)

    King, Andrew; Lasota, Jean-Pierre; Kluźniak, Włodek

    2017-06-01

    We consider the three currently known pulsing ultraluminous X-ray sources (PULXs). We show that in one of them the observed spin-up rate requires super-Eddington accretion rates at the magnetospheric radius, even if magnetar-strength fields are assumed. In the two other systems, a normal-strength neutron star field implies super-Eddington accretion at the magnetosphere. Adopting super-Eddington mass transfer as the defining characteristic of ULX systems, we find the parameters required for self-consistent simultaneous fits of the luminosities and spin-up rates of the three pulsed systems. These imply near equality between their magnetospheric radii RM and the spherization radii Rsph where radiation pressure becomes important and drives mass-loss from the accretion disc. We interpret this near equality as a necessary condition for the systems to appear as pulsed, since if it is violated the pulse fraction is small. We show that as a consequence all PULXs must have spin-up rates \\dot{ν }≳ 10^{-10} s^{-2}, an order of magnitude higher than in any other pulsing neutron-star binaries. The fairly tight conditions required for ULXs to show pulsing support our earlier suggestion that many unpulsed ULX systems must actually contain neutron stars rather than black holes.

  16. Interaction between two stopped light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Hsin, E-mail: yhchen920@gmail.com; Lee, Meng-Jung, E-mail: yhchen920@gmail.com; Hung, Weilun, E-mail: yhchen920@gmail.com; Yu, Ite A., E-mail: yu@phys.nthu.edu.tw [Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Ying-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan and Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yong-Fan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-03-05

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10{sup 9}. With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons.

  17. Pulse width modulation inverter with battery charger

    Science.gov (United States)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  18. Intense pulsed light (IPL): a review.

    Science.gov (United States)

    Babilas, Philipp; Schreml, Stephan; Szeimies, Rolf-Markus; Landthaler, Michael

    2010-02-01

    Intense pulsed light (IPL) devices use flashlamps and bandpass filters to emit polychromatic incoherent high-intensity pulsed light of determined wavelength spectrum, fluence, and pulse duration. Similar to lasers, the basic principle of IPL devices is a more or less selective thermal damage of the target. The combination of prescribed wavelengths, fluences, pulse durations, and pulse intervals facilitates the treatment of a wide spectrum of skin conditions. To summarize the physics of IPL, to provide guidance for the practical use of IPL devices, and to discuss the current literature on IPL in the treatment of unwanted hair growth, vascular lesions, pigmented lesions, acne vulgaris, and photodamaged skin and as a light source for PDT and skin rejuvenation. A systematic search of several electronic databases, including Medline and PubMed and the authors experience on intense pulsed light. Numerous trials show the effectiveness and compatibility of IPL devices. Most comparative trials attest IPLs similar effectiveness to lasers (level of evidence: 2b to 4, depending on the indication). However, large controlled and blinded comparative trials with an extended follow-up period are necessary.

  19. Production of picosecond, kilojoule, petawatt laser pulses via Raman amplification of nanosecond pulses

    CERN Document Server

    Trines, R; Bingham, R; Fonseca, R A; Silva, L O; Cairns, R A; Norreys, P A

    2011-01-01

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump to probe pulses, implying that multi-kiloJoule ultra-violet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  20. Note: fast double pulse system using transmission line characteristic of the pulse forming line.

    Science.gov (United States)

    Sharma, Surender Kumar; Deb, P; Sharma, Archana; Shyam, A

    2012-11-01

    A fast double pulse system is designed and developed using the transmission line characteristic of the pulse forming line to generate two flat top rectangular pulses with extremely short interpulse repetition interval. The helical pulse forming line (HPFL) is used to generate longer duration rectangular pulses in smaller length. The HPFL inner conductor is made up of 13 turns of SS-304 strip, 39.5 mm wide and 0.5 mm thick wounded on the 168 mm delrin cylinder. The impedance of the HPFL is 22 Ω. The 2 turns at the input side of the HPFL are wounded with ethylene propylene rubber tape on the strip. The HPFL is charged to 180 kV in 4 μs and discharges into a matched load through a spark switch. It generates two flat top rectangular pulses of 90 kV, 100 ns duration with the 30 ns interval between the pulses. The system can be used as fast double pulse source for repetitive pulsed power loads.