WorldWideScience

Sample records for waveguide electromagnetic wiggler

  1. Development of a strong electromagnet wiggler

    International Nuclear Information System (INIS)

    Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K.

    1987-01-01

    The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs

  2. Development of a laced electromagnetic wiggler

    International Nuclear Information System (INIS)

    Christensen, T.C.; Burns, M.J.; Deis, G.A.; Parkison, C.D.; Prosnitz, D.; Halbach, K.

    1987-01-01

    The laced electromagnetic wiggler is a new concept being developed to attain higher magnetic fields, shorter wavelengths, and larger gaps for the induction-linear accelerator, free-electron-laser (FEL) program. In the laced wiggler design, permanent magnets are located (''laced'') between the electromagnetic coils to increase the reverse-bias flux in the iron pole beyond that possible with only pole-edge (''side'') permanent magnets. This increase in reverse-bias flux allows wiggler operation at midplane magnetic field intensities comparable to those of a hybrid permanent magnet/steel wiggler, but with field adjustability over a specified range. The maximum field intensity and tuning range are selected, within limits, for specific design requirements. We have designed and tested a one-period prototype of this concept with promising results

  3. Electromagnetic wiggler technology development at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Deis, G.A.; Burns, M.J.; Christensen, T.C.; Coffield, F.E.; Kulke, B.; Prosnitz, D.; Scharlemann, E.T.; Halbach, K.

    1987-01-01

    As a part of the program at the Lawrence Livermore National Laboratory (LLNL) in induction-linac free-electron laser (IFEL) research, we are conducting a variety of activities addressing the unique requirements imposed on IFEL wiggler systems. We are actively developing improved dc iron-core electromagnetic wiggler designs to attain higher peak fields, greater tunability, and lower random error levels. We are pursuing specialized control systems, such as magnetic-field and beam-position controllers, which can relax requirements on the wiggler itself. We are also pursuing basic studies to establish the effect of radiation on permanent magnets

  4. Making an Inexpensive Electromagnetic Wiggler Using Sheet Materials for the Coils

    CERN Document Server

    Herman-Biallas, George; Hiatt, Thomas; Neil, George; Snyder, Michael

    2004-01-01

    An inexpensive electromagnetic wiggler, made with twenty-eight, 4 cm periods with a K of 1 and gap of 2.6 cm was made within 10 weeks after receipt of order by an industrial machine shop. The coil design used sheet and plate materials cut to shapes using water jet cutting and was assembled in a simple stack design. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The coils are conduction cooled to imbedded cooling plates. The wiggler features graded end pole fields, trim coil compensation for end field errors and mirror plates on the ends to avoid three dimensional end field effects. Details of the methods used in construction and the wiggler performance are presented.

  5. A long electromagnetic wiggler for the paladin free-electron laser experiments

    International Nuclear Information System (INIS)

    Deis, G.A.; Harvey, A.R.; Parkison, C.D.; Prosnitz, D.; Rego, J.; Scharlemann, E.T.; Halbach, K.

    1987-01-01

    We have designed, built, and tested a 25.6-m-long wiggler for a free-electron-laser (FEL) experiment. It is a DC iron-core electromagnetic wiggler that incorporates a number of important and unique features. Permanent magnets are used to suppress saturation in the iron and extend the linear operating range. Steering-free excitation allows real-time adjustment of the field taper without causing beam steering. Wiggle-plane focusing is produced by curved pole tips. The magnitude of random pole-to-pole field errors is minimized by a mechanical design concept that reduces tolerance stackup in critical locations. To date, we have tested 15 m of this wiggler, and our measurements have shown exceptionally low levels of random errors. 8 refs

  6. The 8 cm Period Electromagnetic Wiggler Magnet with Coils Made from Sheet Copper

    CERN Document Server

    Biallas, George H; Hiatt, Tommy; Neil, George R; Snyder, Michael D

    2005-01-01

    An electromagnetic wiggler, now lasing at the Jefferson Lab FEL, has 29 eight cm periods with K variable from 0.6 to1.1 and gap of 2.6 cm. The wiggler was made inexpensively in 11 weeks by an industrial machine shop. The conduction cooled coil design uses copper sheet material cut to forms using water jet cutting. The conductor is cut to serpentine shapes and the cooling plates are cut to ladder shape. The sheets are assembled in stacks insulated with polymer film, also cut with water jet. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The wiggler features graded fields in the two poles at each end and trim coils on these poles to eliminate field errors caused by saturation. An added critical feature is mirror plates at the ends with integral trim coils to eliminate three dimensional end field effects and align the entrance and exit orbit with the axis of the wiggler. Details of construction, measurement methods and excellent wiggler performance are pre...

  7. Traveling waves in a free-electron laser with an electromagnetic wiggler

    International Nuclear Information System (INIS)

    Olumi, Mohsen; Maraghechi, B; Rouhani, M H

    2011-01-01

    The propagation of electromagnetic traveling wave in a free-electron laser (FEL) with an electromagnetic wiggler is investigated using the relativistic fluid-Maxwell formulation. By adapting the traveling-wave ansatz, three coupled, nonlinear ordinary differential equations are obtained describing the nonlinear propagation of the coupled wave. These equations may be used to study saturation in FELs. By linearizing the nonlinear equations dispersion relations for the traveling wave are obtained. Numerical solution of the small-signal traveling dispersion relation reveals the coupling of radiation to both slow and fast space-charge waves. It is shown that the traveling wave, which is not a normal mode in a laboratory frame, becomes a normal mode in terms of a transformed variable.

  8. Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide

    International Nuclear Information System (INIS)

    Rybachek, S.T.

    1985-01-01

    This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented

  9. The new CHESS wiggler

    International Nuclear Information System (INIS)

    Finkelstein, K.D.

    1992-01-01

    A 25-pole permanent magnet hybrid wiggler has been built at CHESS and installed on the CESR (Cornell Electron Storage Ring). This device has a magnetic period of 19.6 cm, a peak on-axis field of 1.2 T at the nominal operating gap of 4.0 cm, and a K parameter of 22. The wiggler has been designed to provide radiation for two new experimental stations with approximately four times the flux available from the present CHESS six-pole electromagnet wiggler. Under normal running conditions at 100 mA currents, the total power radiated should exceed 6 kW making this one of the highest flux x-ray sources below 1 A critical wavelength. In this paper an overview of the development of the wiggler is given, including the unique features in its design and construction as well as results of measurements obtained on its magnetic and spectral properties

  10. Diffraction of Electromagnetic Waves on a Waveguide Joint

    Directory of Open Access Journals (Sweden)

    Malykh Mikhail

    2018-01-01

    Full Text Available In general, the investigation of the electromagnetic field in an inhomogeneous waveguide doesn’t reduce to the study of two independent boundary value problems for the Helmholtz equation. We show how to rewrite the Helmholtz equations in the “Hamiltonian form” to express the connection between these two problems explicitly. The problem of finding monochromatic waves in an arbitrary waveguide is reduced to an infinite system of ordinary differential equations in a properly constructed Hilbert space. The calculations are performed in the computer algebra system Sage.

  11. Beam expansion of electromagnetic radiation in waveguides

    International Nuclear Information System (INIS)

    Goldenberg, Ariel.

    1994-05-01

    Guided propagation has different features in the near and in the far Fresnel zones of the guiding structure. In the near zone, the field maintains the local characteristics of the source, as expressed most efficiently by the ray representation. In the far zone, on the other hand, the field adapts the global characteristics of the waveguide and the structure of guided modes. Thus the most fundamental representation at a given range is obtained if the spectral components that still maintain the local features of the source are described by rays, whereas those that have already been adapted to the global guiding environment are described by modes. This representation has also been used in order to replace transitional ray fields by an equivalent group of modes. In the hybrid beam mode representation presented here, we use Norris theorem to describe the field by a spectrum of Gaussian beams emanating radially from the source in all directions and propagating along the ray trajectories. We then show how a group of these beam basis function can be replaced by a spectrally equivalent group of modes. We therefore describe the field by an appropriately parametrized hybrid combination of modes and 'beams. The former account essentially for those spectral components that have already been adapted to the guiding environment, while the latter account for the spectral components that still maintain the local features of the source. The beam representation has certain advantages over the ray representation: It avoids the need to solve the two point problems and to calculate all the rays that pass exactly through the observation point. Instead one tracks beams that pass near, but not necessarily through, the observation point. The beam propagators are also insensitive to ray transition regions and to small artifacts of a numerically approximated medium. It therefore combines the algorithmic ease of the ray representation with the uniform features of the spectral representation. In

  12. Wigglers: the newest profession

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1981-01-01

    Wiggler systems have been used in storage rings within the last year to increase the intensity of synchrotron radiation available for experiments as well as to increase the reaction rates in high energy physics experiments. Multiperiod wigglers or undulators have also been used recently to make quasi-monochromatic photon beams as well as amplify existing photon beams such as in the free electron laser. If one defines a wiggler to be any system of transverse, periodic electromagnetic fields, then recent results on photon production via charged particle channeling in crystals also fall within this sphere. Of course, any periodic modulation of a charge or magnetic moment (e.g., by a laser) could produce coherent radiation or, conversely, passage through a periodic aperture (e.g., a metal bellows). This discussion is limited to a typical, active, macroscopic device and how it provides some unique advantages which are practical to achieve in storage rings. As implied, the subject divides into two basic parts - one related to the radiation from the wiggler and the other related to machine physics applications, e.g., tailoring the phase space of the particle beam, modifying its damping rates or possibly optimizing a ring for production of radiation. Neither area is exhausted nor hopefully the reader, since our goal is only to present enough information to allow one to make reasonable estimates of some important effects

  13. Influence of disorder on electromagnetically induced transparency in chiral waveguide quantum electrodynamics

    Science.gov (United States)

    Mirza, Imran M.; Schotland, John C.

    2018-05-01

    We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.

  14. Reflection of an electromagnetic pulse from a subcritical waveguide taper and from a supercritical-density plasma in a waveguide

    International Nuclear Information System (INIS)

    Rukhadze, Anri A; Tarakanov, V P

    2006-01-01

    Two related problems are studied by numerical simulations using the KARAT code: the reflection of the TM 01 mode of an electromagnetic pulse from the subcritical taper of the section of a circular waveguide and the reflection of the same pulse from a 'cold' collisionless plasma with a density increasing up to a supercritical value along the waveguide axis. It is shown that in the former case the pulse is totally reflected with an insignificant distortion of its shape, in accordance with the linear theory. In the latter case, the character of reflection depends substantially on the plasma density increase length, the pulse duration, and the wave field amplitude, a significant field deceleration and amplitude growth occurring near the critical point; the pulse absorption in the plasma far exceeds the absorption due to the linear transformation of the incident transverse wave to the longitudinal plasma oscillations. (laser applications and other topics in quantum electronics)

  15. An electromagnetic model for post-wall waveguide building blocks

    NARCIS (Netherlands)

    Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, van F.E.

    2010-01-01

    During the past five years, dielectric and metallic post-wall waveguides (PWWGs) have been analyzed at TNO Defence, Security and Safety, using both an integral equation approach and a modal approach. The model developed focuses on TEn0 modes facilitating the analysis of infinitelylong, straight

  16. Standard Wiggler magnets

    International Nuclear Information System (INIS)

    Winick, H.; Helm, R.H.

    1977-09-01

    Interest in Wiggler magnets (a close sequence of transverse fields with alternating polarity) to extend and enhance the spectrum of synchrotron radiation from electron storage rings has increased significantly during the past few years. Standard wigglers, i.e., wigglers in which interference effects on the spectrum of synchrotron radiation are not important, are considered. In standard wigglers the spectrum of synchrotron radiation has the same general shape as the spectrum from ring bending magnets. However, the critical energy of the wiggler spectrum may be different. The critical energy of the wiggler spectrum is given by epsilon/sub CW/ = epsilon/sub CB/(B/sub W//B/sub B/) where epsilon/sub CB/ is the critical energy from the bending magnets and B/sub W/ and B/sub B/ are the magnetic field strengths of the wiggler magnet and bending magnets respectively. Since most electron storage rings operate with relatively low bending magnet fields (B/sub B/ less than or equal to 12 kG), even a modest wiggler magnet field (less than or equal to 18 kG) can significantly increase the critical energy. Such magnets are planned for ADONE and SPEAR. Higher field (30 to 50 kG) superconducting magnets are planned at Brookhaven, Daresbury, and Novosibirsk to produce even larger increase in the critical energy. For some standard wigglers a further enhancement of the spectrum is produced due tothe superposition of the radiation from the individual poles. Wiggler designs are discussed as well as the effect of wigglers on the synchrotron radiation spectrum and on the operation of storage rings

  17. Observaton of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, Andrey A.; Lavrinenko, Andrei

    2011-01-01

    We report the experimental observation of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides shifted longitudinally by half of modulation period. According to the symmetry analysis, such a coupler supports two electromagnetic modes with exactly matched slow or fast...... group velocities but different phase velocities for frequencies close to the edge of the photonic band. We confirm the predicted properties of the modes by directly extracting their dispersion and group velocities from the near-field measurements using specialized Bloch-wave spectral analysis method....

  18. Electromagnetic Radiation : Variational Methods, Waveguides and Accelerators Including seminal papers of Julian Schwinger

    CERN Document Server

    Milton, Kimball A

    2006-01-01

    This is a graduate level textbook on the theory of electromagnetic radiation and its application to waveguides, transmission lines, accelerator physics and synchrotron radiation. It has grown out of lectures and manuscripts by Julian Schwinger prepared during the war at MIT's Radiation Laboratory, updated with material developed by Schwinger at UCLA in the 1970s and 1980s, and by Milton at the University of Oklahoma since 1994. The book includes a great number of straightforward and challenging exercises and problems. It is addressed to students in physics, electrical engineering, and applied mathematics seeking a thorough introduction to electromagnetism with emphasis on radiation theory and its applications.

  19. Current driven wiggler

    Science.gov (United States)

    Tournes, C.; Aucouturier, J.; Arnaud, B.; Brasile, J. P.; Convert, G.; Simon, M.

    1992-07-01

    A current-driven wiggler is the cornerstone of an innovative, compact, high-efficiency, transportable tunable free-electron laser (FEL), the feasibility of which is currently being evaluated by Thomson-CSF. The salient advantages are: compactness of the FEL, along with the possibility to accelerate the beam through several successive passes through the accelerating section (the number of passes being defined by the final wavelength of the radiation; i.e. visible, MWIR, LWIR); the wiggler can be turned off and be transparent to the beam until the last pass. Wiggler periodicities as small as 5 mm can be achieved, hence contributing to FEL compactness. To achieve overall efficiencies in the range of 10% at visible wavelengths, not only the wiggler periodicity must be variable, but the strength of the magnetic field of each period can be adjusted separately and fine-tuned versus time during the macropulse, so as to take into account the growing contribution of the wave energy in the cavity to the total ponderomotive force. The salient theoretical point of this design is the optimization of the parameters defining each period of the wiggler for each micropacket of the macropulse. The salient technology point is the mechanical and thermal design of the wiggler which allows the required high currents to achieve magnetic fields up to 2T.

  20. A wiggler magnet for FEL low voltage operation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  1. Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide.

    Science.gov (United States)

    Xu, Jin; Huang, Guoxiang

    2013-02-25

    We investigate the electromagnetically induced transparency (EIT) and nonlinear pulse propagation in a Λ-type three-level atomic gas filled in a slot waveguide, in which electric field is strongly confined inside the slot of the waveguide due to the discontinuity of dielectric constant. We find that EIT effect can be greatly enhanced due to the reduction of optical-field mode volume contributed by waveguide geometry. Comparing with the atomic gases in free space, the EIT transparency window in the slot waveguide system can be much wider and deeper, and the Kerr nonlinearity of probe laser field can be much stronger. We also prove that using slot waveguide ultraslow optical solitons can be produced efficiently with extremely low generation power.

  2. Diffraction of an Electromagnetic Wave on a Dielectric Rod in a Rectangular Waveguide. A Method of Partial Waveguide Filling

    Science.gov (United States)

    Zav'yalov, A. S.

    2018-04-01

    A variant of the method of partial waveguide filling is considered in which a sample is put into a waveguide through holes in wide waveguide walls at the distance equal to a quarter of the wavelength in the waveguide from a short-circuiter, and the total input impedance of the sample in the waveguide is directly measured. The equivalent circuit of the sample is found both without and with account of the hole. It is demonstrated that consideration of the edge effect makes it possible to obtain more exact values of the dielectric permittivity.

  3. A novel micro wiggler

    International Nuclear Information System (INIS)

    Liu Qingxiang; Xu Yong

    1995-01-01

    A novel structure of the micro-wiggler is presented. The authors developed a simplified theoretical model of the micro-wiggler. According to the model, an analytic formula of the magnetic field in two dimensions is got. A calculated program (PWMW-I) is developed from the formula. PWMW-I can calculate the field on the axis and the off-axis for the number of periods N, and the entrance or the exit of the micro-wiggler. Three model with different period (10 mm, 5 mm and 3 mm) is designed on the program. The 5T peak field for the period of 3 mm at the gap of 1 mm is got

  4. Power excitation by the use of a rf wiggler

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1992-01-01

    It is well-known that there are difficulties to obtain rf power sources of significant amount for frequencies larger than 3 GHz. Yet, rf sources in the centimeter/millimeter wavelength range would be very useful to drive, for example, high-gradient accelerating linacs for electron-positron linear colliders. We would like to propose an alternative method to produce such radiation. It makes use of a short electron bunch traveling along the axis of a waveguide which is at the same time excited by a TM propagating electromagnetic wave. It is well known that radiation can be obtained by wiggling the motion of the electrons in a direction perpendicular to the main one. The wiggling action can be included by electromagnetic fields in a fashion similar to the one caused by wiggler magnets. We found that an interesting mode of operation is to drive the waveguide with an excitation frequency very close to the cut off. For such excitation, the corresponding e.m. wave travels with a very large phase velocity which in turn has the effect to increase the wiggling action on the electron bunch. Our method, to be effective, relies also on the coherence of the radiation; that is the bunch length is taken to be considerably shorter than the radiated wavelength. In this case, the total power radiated should be proportional to the square of the total number of electrons in the bunch. The paper concludes with possible modes of operation, a list of performance parameters and a proposed experimental set-up

  5. High accuracy electromagnetic field solvers for cylindrical waveguides and axisymmetric structures using the finite element method

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1993-12-01

    Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required

  6. Wiggler magnets at SSRL

    International Nuclear Information System (INIS)

    Winick, H.

    1980-01-01

    A wiggler magnet has been installed in SPEAR and has been routinely used as a radiation source for Beam Line IV at SSRL since March, 1979. The magnets is 1.22 m long. It has five full central poles and two end half-poles producing a total of three complete small amplitude (<= 1 mm) oscillations of the electron beam in traversing the magnet. The magnet has been operated with the peak field in the central full poles at 17.2 kG and produces an intense beam of synchrotron radiation extending to 12 keV and beyond even at the lowest operating energies of SPEAR (1.5 GeV). It is compatible with all phases of colliding-beam operation of SPEAR and has improved the colliding-beam luminosity. The results of measurements on the spectrum and intensity of the radiation produced by the Wiggler will be presented. The measured effects of the wiggler on the stored beam tunes, energy spread and emittance will also be presented. Plans will also be described for installing additional high field wiggler magnets in SPEAR and also weak-field, many-period undulator magnets in both SPEAR and PEP. (orig.)

  7. Analogue of electromagnetically-induced-transparency based on graphene nanotube waveguide

    International Nuclear Information System (INIS)

    Wei, Buzheng; Jian, Shuisheng

    2017-01-01

    A graphene-based nanotube waveguide system is proposed and designed to realize the analogue of electromagnetically-induced-transparency. The two nanotubes act as side coupled cavity rings which can be treated as the bright and dark resonators. By mimicking the quantum nonlinear optical interference, the light at resonant frequency makes the opaque system transparent. Conveniently, the working transparency window can be dynamically controlled by shifting the Fermi energy level of graphene without refabricating the device. Furthermore, the shape of the transmission spectrum can be tuned either by adjusting the waveguide coupling distance or by the cavity ring coupling distance. If the ring radius gets bigger, higher order of modes are excited in the dark resonator consequently. Meaningfully, the light travels at resonant frequency can be efficiently slowed down and the highest group delay reaches 25 ps. In the end, some concerns about the practical realization of such device are discussed. The structure may find potential applications in nano technology or light storage field. (paper)

  8. Symplectic integration for complex wigglers

    International Nuclear Information System (INIS)

    Forest, E.; Ohmi, K.

    1992-01-01

    Using the example of the helical wiggler proposed for the KEK photon factory, we show how to integrate the equation of motion through the wiggler. The integration is performed in cartesian coordinates. For the usual expanded Hamiltonian (without square root), we derive a first order symplectic integrator for the purpose of tracking through a wiggler in a ring. We also show how to include classical radiation for the computation of the damping decrement

  9. Electromagnetic Waves Dispersion and Interaction of an Annular Beam-Ion Channel System in Plasma Waveguide

    Directory of Open Access Journals (Sweden)

    Jixiong Xiao

    2017-01-01

    Full Text Available A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also can interact with the low frequency branch at large wavenumber.

  10. Electromagnetic Modeling of Distributed-Source-Excitation of Coplanar Waveguides: Applications to Traveling-Wave Photomixers

    Science.gov (United States)

    Pasqualini, Davide; Neto, Andrea; Wyss, Rolf A.

    2001-01-01

    In this work an electromagnetic model and subsequent design is presented for a traveling-wave, coplanar waveguide (CPW) based source that will operate in the THz frequency regime. The radio frequency (RF) driving current is a result of photoexcitation of a thin GaAs membrane using two frequency-offset lasers. The GaAs film is grown by molecular-beam-epitaxy (MBE) and displays sub-ps carrier lifetimes which enable the material conductivity to be modulated at a very high rate. The RF current flows between electrodes deposited on the GaAs membrane which are biased with a DC voltage source. The electrodes form a CPW and are terminated with a double slot antenna that couples the power to a quasi-optical system. The membrane is suspended above a metallic reflector to launch all radiation in one direction. The theoretical investigation and consequent design is performed in two steps. The first step consists of a direct evaluation of the magnetic current distribution on an infinitely extended coplanar waveguide excited by an impressed electric current distributed over a finite area. The result of the analysis is the difference between the incident angle of the laser beams and the length of the excited area that maximizes the RF power coupled to the CPW. The optimal values for both parameters are found as functions of the CPW and membrane dimensions as well as the dielectric constants of the layers. In the second step, a design is presented of a double slot antenna that matches the CPW characteristic impedance and gives good overall performance. The design is presently being implemented and measurements will soon be available.

  11. Quasi-TEM electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field

    International Nuclear Information System (INIS)

    Kartashov, I. N.; Kuzelev, M. V.

    2014-01-01

    Electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field are investigated. The existence of quasi-TEM modes in a finite-strength magnetic field is demonstrated. It is shown that, in the limits of infinitely strong and zero magnetic fields, this mode transforms into a true TEM mode. The possibility of excitation of such modes by an electron beam in the regime of the anomalous Doppler effect is analyzed

  12. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-01-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam

  13. A CHI wiggler ubitron amplifier experiment: Wiggler characterization

    Energy Technology Data Exchange (ETDEWEB)

    Taccetti, J.M.; Jackson, R.H.; Freund, H.P. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A 35 GHz CHI (Coaxial Hybrid Iron) wiggler ubitron amplifier experiment is under construction at the Naval Research Laboratory. The CHI wiggler configuration has the potential of generating high wiggler magnetic fields at short periods with excellent beam focusing and transport properties. This makes it a desirable configuration for the generation of high power coherent radiation in relatively compact systems. The CHI wiggler consists of alternating rings of magnetic and non-magnetic materials concentric with a central rod of similar alternating design but shifted along the axis by half a period. Once inserted in a solenoidal magnetic field, the CHI structure deforms the axial field to create a radial field oscillating with the same periodicity as the rings. An annular electron beam is propagated through the coaxial gap where the oscillating radial field imparts an azimuthal wiggle motion. The principal goals of the experiment are to investigate the performance tradeoffs involved in the CHI configuration for high frequency amplifiers operating at low voltages with small wiggler periods. The nominal design parameters are a center frequency of 35 GHz, wiggler period of 0.75 cm, and beam voltage of approximately 150 kV. Calculations have shown an intrinsic (untapered) efficiency of {approximately} 7% when operating at 6.3 kG axial field (wiggler field, B{sub w}{approximately}1270 G). The calculated gain was 36 dB, saturating at a distance of 46 cm. These parameters yield an instantaneous amplifier bandwidth of {approximately} 25%. There appears to be room for further improvement in efficiency, a matter which will be scrutinized more closely in the final design. A prototype CHI wiggler is presently being fabricated for use in conjunction with an existing 30 kG superconducting solenoid. The performance properties of the prototype will be characterized and compared with linear and non-linear calculations.

  14. Waveguide propagation of electromagnetic waves in high-density ducts aligned along the geomagnetic field in the near-equatorial magnetospheric region

    International Nuclear Information System (INIS)

    Kaufman, R.N.

    1988-01-01

    Waveguide propagation of electromagnetic waves in axial symmetric ducts with increased plasma density aligned along the constant external magnetic field is considered for frequencies, being higher than low-hybrid, in the WKB approximation. In this case tunnel effects leading to captured wave damping are taken into account. Conditions for waveguide propagation and the logarithmic decrement of damping are found. Field construction is performed using the systems of axially symmetric WKB solutions of the Maxwell equations

  15. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Science.gov (United States)

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-08-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  16. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    OpenAIRE

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-01-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1 to 2 MHz at the COoler SYnchrotron COSY at J\\"ulich. The device will be used in a future experiment that aims at measuring the proton and deuteron ...

  17. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Slim, J. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Gebel, R. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Heberling, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); Hinder, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Hölscher, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Lehrach, A. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Lorentz, B. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Mey, S. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Nass, A.; Rathmann, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); and others

    2016-08-21

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1–2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.

  18. Modeling of the electromagnetic field and level populations in a waveguide amplifier: a multi-scale time problem.

    Science.gov (United States)

    Fafin, Alexandre; Cardin, Julien; Dufour, Christian; Gourbilleau, Fabrice

    2013-10-07

    A new algorithm based on auxiliary differential equation and finite difference time domain method (ADE-FDTD method) is presented to model a waveguide whose active layer is constituted of a silica matrix doped with rare-earth and silicon nanograins. The typical lifetime of rare-earth can be as large as some ms, whereas the electromagnetic field in a visible range and near-infrared is characterized by a period of the order of fs. Due to the large difference between these two characteristic times, the conventional ADE-FDTD method is not suited to treat such systems. A new algorithm is presented so that the steady state of rare earth and silicon nanograins electronic levels populations along with the electromagnetic field can be fully described. This algorithm is stable and applicable to a wide range of optical gain materials in which large differences of characteristic lifetimes are present.

  19. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  20. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    Wang Mei; Park, S.Y.; Hirshfield, J.L.

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  1. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  2. Pulse interactions in a quantum dot waveguide in the regime of electromagnetically Induced transparency

    DEFF Research Database (Denmark)

    Nielsen, Per; Nielsen, Henri; Mørk, Jesper

    2006-01-01

    The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications.......The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications....

  3. Electromagnetic wave attenuation in the superconducting waveguides at frequencies above the critical value

    International Nuclear Information System (INIS)

    Gashimov, A.M.; Gumbatov, S.G.

    2004-01-01

    The behavior of attenuation factor α(ν) in a wide relative frequency rAe 1 c ) at microwave energy transmission by the round superconducting waveguides is investigated. It is revealed that, despite of increasing of surface resistance with increasing ν, α(ν) sharply decreases in the rAe 1 min at ν→∞. Such behavior α(ν) is due to joint appearance of opposite influences of wave frequency and surface resistance of the superconducting material. The waveguide with radius r=1 m, made of high-temperature superconductor, has the highest value of efficiency (98% at ν=4)

  4. Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler

    CERN Document Server

    Tsunawaki, Y

    2005-01-01

    We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.

  5. Design of the 1.8 Tesla wiggler for the DAΦNE Main Rings

    International Nuclear Information System (INIS)

    Sanelli, C.; Hsieh, H.

    1992-01-01

    The electromagnetic and mechanical design of the eight wiggler magnets for DAΦNE Main Rings is described. The wigglers have a large 1.8 Tesla flat top magnetic field, 64 cm period and 4 cm gap. The magnetic 3-D calculations, the electromagnetic design and the adopted mechanical solutions, with particular attention to the vacuum chamber problems are described. A full scale prototype (5 full poles and two half pole) will be constructed in order to verify the accuracy of magnetic calculations, the end pole design and the multipole content. (author) 4 figs.; 1 tab

  6. New system for wiggler fabrication and testing

    International Nuclear Information System (INIS)

    Warren, R.W.; Elliott, C.J.

    1988-01-01

    A system approach is taken for fabrication and testing of wigglers for free-electron lasers. Emphasis is placed on convenient, practical, assembly procedures that produce wigglers with high fields, two-plane focusing, and facilities for in-place adjustments. Equal emphasis is placed on rapid and precise techniques for measuring field errors, both before final assembly and afterward, during wiggler operation. (author). 10 refs, 12 figs

  7. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    Science.gov (United States)

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  8. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  9. New wiggler beam line for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.

    1982-08-01

    A new high-intensity-beam line with a wiggler magnet source is described. This project, in final stages of design, is a joint effort between Lawrence Berkeley Laboratory (LBL), the Exxon Research and Engineering Company (EXXON), and the Stanford Synchrotron Radiation Laboratory (SSRL). Installation at SSRL will begin in the summer of 1982. The goal of this project is to provide extremely high-brightness synchrotron radiation beams over a broad spectral range from 50 eV to 40 keV. The radiation source is a 27 period (i.e., 55 pole) permanent magnet wiggler of a new design. The wiggler utilizes rare-earth cobalt (REC) material in the steel hybrid configuration to achieve high magnetic fields with short periods. An analysis has been made of the polarization, angular distribution and power density of the radiation produced by the wiggler. Details of the wiggler design are presented. The magnet is outside a thin walled (1mm) variable gap stainless steel vacuum chamber. The chamber gap will be opened to 1.8 cm for beam injection into SPEAR and then closed to 1.0 cm (or less) for operation. Five remotely controlled drives are provided; to change the wiggler gap, to change the vacuum chamber aperture and to position the wiggler. Details of the beam line optics and end stations are presented. Thermal loading on beam line components is severe. The peak power density at 7.5 m is 5 kW/cm 2 for the nominal wiggler field and present SPEAR beam currents and will approach 20 kW/cm 2 with the maximum wiggler field and projected SPEAR beam currents

  10. Nonlinear Dynamics in Spear Wigglers

    International Nuclear Information System (INIS)

    2002-01-01

    BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction

  11. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in meta-waveguides (Presentation Recording)

    Science.gov (United States)

    Shvets, Gennady B.; Khanikaev, Alexander B.; Ma, Tzuhsuan; Lai, Kueifu

    2015-09-01

    Science thrives on analogies, and a considerable number of inventions and discoveries have been made by pursuing an unexpected connection to a very different field of inquiry. For example, photonic crystals have been referred to as "semiconductors of light" because of the far-reaching analogies between electron propagation in a crystal lattice and light propagation in a periodically modulated photonic environment. However, two aspects of electron behavior, its spin and helicity, escaped emulation by photonic systems until recent invention of photonic topological insulators (PTIs). The impetus for these developments in photonics came from the discovery of topologically nontrivial phases in condensed matter physics enabling edge states immune to scattering. The realization of topologically protected transport in photonics would circumvent a fundamental limitation imposed by the wave equation: inability of reflections-free light propagation along sharply bent pathway. Topologically protected electromagnetic states could be used for transporting photons without any scattering, potentially underpinning new revolutionary concepts in applied science and engineering. I will demonstrate that a PTI can be constructed by applying three types of perturbations: (a) finite bianisotropy, (b) gyromagnetic inclusion breaking the time-reversal (T) symmetry, and (c) asymmetric rods breaking the parity (P) symmetry. We will experimentally demonstrate (i) the existence of the full topological bandgap in a bianisotropic, and (ii) the reflectionless nature of wave propagation along the interface between two PTIs with opposite signs of the bianisotropy.

  12. Particle motion in the ELF wiggler

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Sessler, A.M.

    1982-06-01

    Particle motion in the ELF wiggler was investigated numerically and analytically. A transport system was designed using continuous quadrupole focusing in the wiggle plane and natural wiggle focusing in the non-wiggle plane

  13. Single wavelength standard wiggler for PEP

    International Nuclear Information System (INIS)

    Brunk, W.; Fischer, G.; Spencer, J.

    1979-03-01

    A 1lambda planar wiggler has been designed that will be used for the initial operation of the 4 to 18 GeV storage ring PEP. Three of these wigglers will be installed symmetrically around the ring at 120 0 intervals in three of six available 5 m straight sections with the purpose of providing: (1) beam size control to obtain better luminosities below 15 GeV, and (2) decreased damping times to obtain better injection rates at lower energies. Design goals are discussed and a description of the final system including cost estimates is given. Expected results and usage in PEP are discussed. Some possibilities for production of synchrotron radiation and beam monitoring with shorter wavelength, multiple-period wigglers at PEP energies are also discussed. Comparison to a wiggler now operating in SPEAR is given

  14. Design of a superconducting wiggler system

    International Nuclear Information System (INIS)

    Shen, S.S.; Miller, J.R.; Heim, J.R.; Slack, D.S.

    1988-01-01

    We present a wiggler system based on currently available superconducting technology. The system is designed to provide maximum central field of 4.4 tesla with a specified period length of 160 mm and a gap of 40 mm, while meeting the field quality requirements along all axes. Also included are preliminary cost estimates and a survey of world-wide RandD efforts on superconducting wiggler systems. 12 refs., 6 figs., 3 tabs

  15. Different roles of electron beam in two stream instability in an elliptical waveguide for generation and amplification of THz electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S.; Jazi, B., E-mail: jaziada@kashanu.ac.ir [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Jahanbakht, S. [Department of Communications Engineering, Faculty of Electrical And Computer Engineering, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-08-15

    In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electron beam plays a stabilizing role.

  16. Brightness of synchrotron radiation from wigglers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2014-12-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called 'depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. In the geometrical optics limit computations can be performed analytically. Within this limit, we restrict ourselves to the case of the beam size-dominated regime, which is typical for synchrotron radiation facilities in the X-ray wavelength range. We give a direct demonstration of the fact that the apparent horizontal source size is broadened in proportion to the beamline opening angle and to the length of the wiggler. While this effect is well-understood, a direct proof appears not to have been given elsewhere. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in literature.

  17. Field distribution in a coaxial electrostatic wiggler

    Directory of Open Access Journals (Sweden)

    Shi-Chang Zhang

    2010-09-01

    Full Text Available The field distribution in a coaxial electrostatic wiggler corresponds to the special solution of a Laplace equation in a cylindrical coordinate system with a boundary value problem of sinusoidal ripples. This paper is devoted to the physical and mathematical treatment for an analytical solution of the field distribution in the coaxial electrostatic wiggler. The explicit expression of the solution indicates that the field distribution in the coaxial electrostatic wiggler varies according to a periodic function in the longitudinal direction, and is related to the first and second kinds of modified Bessel functions in the radial direction, respectively. Comparison shows excellent agreement between the analytical formula and the computer simulation technology (CST results. The physical application of the considered system and its analytical solution are discussed.

  18. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  19. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

    Science.gov (United States)

    Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.

    2018-06-01

    The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

  20. Polarized wiggler for NSLS X-ray ring

    International Nuclear Information System (INIS)

    Friedman, A.; Zhang, X.; Krinsky, S.; Blum, E.B.

    1993-01-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler is discussed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization. The power is dissipated in the vacuum chamber due to the eddy current

  1. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  2. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method

    Directory of Open Access Journals (Sweden)

    Dufour Christian

    2011-01-01

    Full Text Available Abstract By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λ pump = 488 nm and signal (λ signal = 1064 nm waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible.

  3. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method.

    Science.gov (United States)

    Dufour, Christian; Cardin, Julien; Debieu, Olivier; Fafin, Alexandre; Gourbilleau, Fabrice

    2011-04-04

    By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible.

  4. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  5. Harmonic generation with multiple wiggler schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  6. Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

    Science.gov (United States)

    Zirak, H.; Jafari, S.

    2015-06-01

    In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

  7. Initial operation of SSRL wiggler in spear

    International Nuclear Information System (INIS)

    Berndt, M.; Brunk, W.; Cronin, R.; Jensen, D.; Johnson, R.; King, A.; Spencer, J.; Taylor, T.; Winick, H.

    1979-03-01

    A 3 lambda planar, magnetic wiggler has been designed, built, installed and operated in the SPEAR storage ring. Its primary purpose is to provide tunable synchrotron radiation (SR) with a higher energy and intensity than previously available for a new SR beam line just commissioned at the Stanford Synchrotron Radiation Laboratory. Because the magnet operates from 0-18 kG, it should also produce undulator radiation (UR). Since the wiggler influences storage ring operation in both single beam and colliding beam modes, measurements were made of tune changes, emittance changes and energy spreads which are compared to predictions. Significant improvements in luminosity for high energy physics experiments were observed. The ability to do x-ray experiments easily that were not previously feasible at low electron beam energies and currents has also been demonstrated. The basic design, some interesting characteristics of the magnetic measurements and initial operating experience and results are discussed

  8. Electron dynamics with radiation and nonlinear wigglers

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-06-01

    The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches

  9. Wiggler as spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.; Conte, M.

    1993-01-01

    The spin of a polarized particle in a circular accelerator can be rotated with an arrangement of dipoles with field mutually perpendicular and perpendicular to the orbit. To achieve spin rotation, a given field integral value is required. The device must be designed in a way that the particle orbit is distorted as little as possible. It is shown that wigglers with many periods are suitable to achieve spin rotation with minimum orbit distortions. Wigglers are also more compact than more established structures and will use less electric power. Additional advantages include their use for non distructive beam diagnostics. Results are given for the Relativistic Heavy Ion Collider (RHIC) in the polarized proton mode

  10. Damping Wiggler Study at KEK-ATF

    CERN Document Server

    Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.

  11. Synchrotron radiation from a Helical Wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of Wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years ago. Since then it has also been suggested that synchrotron radiation from Wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a Wiggler which is appropriate when the beam is radiating incoherently. In this paper a general formalism is developed for the case when the beam radiates coherently. These results are then applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to be used as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  12. Synchrotron radiation from a helical wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years age. Since then it has also been suggested that synchrotron radiation from wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a wiggler which is appropriate when the beam is radiating incoherently. A general formalism is presented for the case when the beam radiates coherently. These results are applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to use it as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  13. Modeling a horizontal wiggler in an electron storage ring

    International Nuclear Information System (INIS)

    Helm, R.H.

    1979-02-01

    The effects of a wiggler on the beam parameters depend on several integrals involving the machine functions and the field distribution in the wiggler. It is shown that these integrals are separable into sums of products of terms containing only the initial values of the machine functions, and terms containing integrals over the wiggler fields. The field-dependent integrals may be determined by numerical integrations based on measured field distribution. In typical wiggler designs, the energy and excitation dependencies of the integrals may be modeled mathematically by simple power series

  14. Design of end magnetic structures for the Advanced Light Source wigglers

    International Nuclear Information System (INIS)

    Humphries, D.; Akre, J.; Hoyer, E.; Marks, S.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-01-01

    The vertical magnetic structures for the Advanced Light planar wiggler and 20 cm period elliptical hybrid permanent magnet design. The ends of these structures are characterized by diminishing scalar potential distributions the poles which control beam trajectories. They incorporate electromagnetic correction coils to dynamically correct for variations in the first integral of the field as a function of gap. A permanent magnet trim mechanism is incorporated to minimize the transverse integrated error field distribution. The ends were designed using analytic and computer modeling techniques. The design and modeling results are presented

  15. Permanent magnets including undulators and wigglers

    CERN Document Server

    Bahrdt, J

    2010-01-01

    After a few historic remarks on magnetic materials we introduce the basic definitions related to permanent magnets. The magnetic properties of the most common materials are reviewed and the production processes are described. Measurement techniques for the characterization of macroscopic and microscopic properties of permanent magnets are presented. Field simulation techniques for permanent magnet devices are discussed. Today, permanent magnets are used in many fields. This article concentrates on the applications of permanent magnets in accelerators starting from dipoles and quadrupoles on to wigglers and undulators.

  16. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  17. Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    International Nuclear Information System (INIS)

    Wu, Juhao

    2003-01-01

    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter K. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of K. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies

  18. Suppression and control of leakage field in electromagnetic helical microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  19. Effects of wigglers and undulators on beam dynamics

    International Nuclear Information System (INIS)

    Smith, L.

    1986-08-01

    Synchrotron light facilities are making ever increasing use of wigglers and undulators, to the extent that these devices are becoming a significant part of the beam optical system of the storage ring itself. This paper presents a theoretical formulation for investigating the effect of wigglers and undulators on beam dynamics in the approximation that the wiggler parameter, K, divided by γ is a small number and that the number of wiggler periods in one device is large. In addition to the linear forces which must be taken into account when tuning and matching the ring, nonlinear stop bends are created, with even orders more serious than odd orders. Some numerical examples are given for devices similar to those proposed for the 1-2 GeV Synchrotron Radiation Source at Lawrence Berkeley Laboratory

  20. INFLUENCE OF DYNAMIC MAGNETIZATION TO IMPROVE THE EFFICIENCY OF ELECTROMAGNETIC-ACOUSTIC TRANSFORMATION WITH WAVEGUIDE CONTROL RODS

    Directory of Open Access Journals (Sweden)

    D. V. Zlobin

    2017-01-01

    Full Text Available The disadvantage of the electromagnetic-acoustic (EMA method receiving ultrasonic waves are low efficiency. The traditional way to enhance its effectiveness is increase the bias field. The aim of the study was research the way to improve the efficiency of the EMA transformation, using a time-varying bias field.The researches held with the help of a specially designed installation that allows the magnetization to be performed by a constant and alternating magnetic field (dynamic bias, synchronously with the passage of the received pulse. The object of the study were rods made of different grades of steel with a diameter of 4–6 mm, in which the symmetrical zero mode S0 of the rod wave was excited by the EMA method (in the frequency range of about 40 kHz. A comparative analysis of the amplitudes and form pulses of multiple reflections during static and dynamic reversal of magnetization and with a full cycle of magnetization reversal conducted.The result of the efficiency measurements EMA reception during static and dynamic bias found a significant (up to 5 times increase in the signal amplitude on the receiving transducer. Taking into account that the main contribution to the excitation mechanism and the reception mechanism made the magnetostrictive effect on low frecuncy, it can assumed that using a dynamic bias field is impacting significant on the effective mobility of magnetic domains (that is changes the dynamic magnetic susceptibility of the material. It is established that it is possible to monitor steel at lower values of the bias field, and, consequently, to reduce the mass dimensions of the magnetic system.Thus, in the course of the researchers found of effect of dynamic bias and effect of dynamic bias increase acoustic pulse amplitude of the signal of the received EMA method. Using this method will improve the quality EMA testing by creating more efficient EMA transducer. Taking into account that the value of the detected effect

  1. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  2. Nonlinear analysis of wiggler-imperfections in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Freund, H.P. [Naval Research Lab., Washington, DC (United States); Yu, L.H. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-31

    We present an analysis of the effect of wiggler imperfections in FELs using a variety of techniques. Our basic intention is to compare wiggler averaged nonlinear simulations to determine the effect of various approximations on the estimates of gain degradation due to wiggler imperfections. The fundamental assumption in the wiggler-averaged formulations is that the electrons are described by a random walk model, and an analytic representation of the orbits is made. This is fundamentally different from the approach taken for the non-wiggler-averaged formulation in which the wiggler imperfections are specified at the outset, and the orbits are integrated using a field model that is consistent with the Maxwell equations. It has been conjectured on the basis of prior studies using the non-wiggler-averaged formalism that electrons follow a {open_quotes}meander line{close_quotes} through the wiggler governed by the specific imperfections; hence, the electrons behave more as a ball-in-groove than as a random walk. This conjecture is tested by comparison of the wiggler-averaged and non-wiggler-averaged simulations. In addition, two different wiggler models are employed in the non-wiggler-averaged simulation: one based upon a parabolic pole face wiggler which is not curl and divergence free in the presence of wiggler imperfections, and a second model in which the divergence and z-component of the curl vanish identically. This will gauge the effect of inconsistencies in the wiggler model on the estimation of the effect of the imperfections. Preliminary results indicate that the inconsistency introduced by the non-vanishing curl and divergence result in an overestimation of the effect of wiggler imperfections on the orbit. The wiggler-averaged simulation is based upon the TDA code, and the non-wiggler-averaged simulation is a variant of the ARACHNE and WIGGLIN codes called MEDUSA developed to treat short-wavelength Gauss-Hermite modes.

  3. Miniaturized dielectric waveguide filters

    OpenAIRE

    Sandhu, MY; Hunter, IC

    2016-01-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  4. Quantum SASE FEL with a Laser Wiggler

    CERN Document Server

    Bonifacio, R

    2005-01-01

    Quantum effects in high-gain FELs become relevant when ρ'=ρ(mcγ/ ћ k)<1. The quantum FEL parameter ρ' rules the maximum number of photons emitted per electrons. It has been shown that when ρ'<1 a "quantum purification" of the SASE regime occurs: in fact, the spectrum of the emitted radiation (randomly spiky in the usual classical SASE regime) shrinks to a very narrow single line, leading to a high degree of temporal coherence. From the definition of ρ it appears that in order to achieve the quantum regime, small values of ρ, beam energy and radiation wavelength are necessary. These requirements can be met only using a laser wiggler. In this work we state the scaling laws necessary to operate a SASE FEL in the Angstrom region. All physical quantities are expressed in terms of the normalized emittance and of two parameters: the ratio between laser and electron beam spot sizes and the ratio between Rayleigh range and electron ...

  5. Performance of the SRRC storage ring and wiggler commissioning

    International Nuclear Information System (INIS)

    Kuo, C.C.; Hsu, K.T.; Luo, G.H.

    1995-01-01

    A 1.3 GeV synchrotron radiation storage ring at SRRC has been operated for more than a year since October 1993. Starting from April 1994, the machine has been open to the user community. In February 1995, the authors installed a wiggler magnet of 1.8 tesla 25-pole in the ring and successfully commissioned. The machine was scheduled for the users' runs from the middle of April this year. The authors describe the performance of the machine without wiggler magnet system and then report the wiggler effects on the beam dynamics of the storage ring, e.g., tune shift, beta-beating, orbit change, nonlinear dynamics effect, etc. Some measurements are compared with the model prediction and agreement between them was fairly good. Possible actions to minimize wiggler effects have been taken, such as orbit correction as a function wiggler gap change. The machine improvement projects, such as longitudinal and transverse damping systems as well as orbit stability feedback system are under construction and will be in use soon

  6. An experimental analysis of the waveguide modes in a high-gain free-electron laser amplifier

    International Nuclear Information System (INIS)

    Anderson, B.R.

    1989-01-01

    The presence, growth, and interaction of transverse waveguide modes in high-gain free-electron laser (FEL) amplifiers has been observed and studied. Using the Electron Laser Facility at Lawrence Livermore National Laboratory, a 3 MeV, 800 A electron beam generated by the Experimental Test Accelerator was injected into a planar wiggler. Power was then extracted and measured in the fundamental (TE 01 ) an higher-order modes (Te 21 and TM 21 ) under various sets of operating conditions. Horizontal focusing through the wiggler was provided by external quadrupole magnets. There was no axial guide field. The input microwave signal for amplification was generated by a 100 kW magnetron operating at 34.6 Ghz. Power measurements were taken for both flat and tapered wigglers, for two sizes of waveguide, and for both flat and tapered wigglers, for two sizes of waveguide, and for both fundamental and higher mode injection. Mode content was determined by sampling the radiated signal at specific points in the radiation patter. For the flat wiggler and with the large waveguide (2.9 cm x 9.8 cm) the power in the higher modes was comparable to power in the fundamental. both exhibited gains greater than 30 dB/m prior to saturation and both reached powers in excess of 80 MW. Choice of injection mode had little effect on the operation of the system. Operation with the smaller guide (WR-229) provided much better mode selectivity. The fundamental mode continued to show optimum gain in excess of 30 dB/m while the higher-mode gain was of order 20 dB/m. As expected, power output increased significantly with the tapered wigglers. The relative mode content depended on the specific taper used

  7. Commissioning of the LNLS 2 T Hybrid Wiggler

    CERN Document Server

    Farias, Ruy H A; Aparecida-Gouveia, Ana F; Cabral-Jahnel, Lucia; Citadini, James F; Ferreira, Marcelo J; Franco, J G; Liu, Lin; Neuenschwander, Regis; Resende, Ximenes R; Tavares, Pedro; Tosin, Giancarlo

    2005-01-01

    We present the results of the commissioning of a 28-pole 2 T Hybrid Wiggler at the 1.37 GeV electron storage ring of the Brazilian Synchrotron Light Source. The wiggler will be used mainly for protein crystallography and was optimized for the production of 12 keV photons. The very high field and relatively large gap (22 mm) of this insertion device led to a magnetic design that includes large main and side magnets and heavily saturated poles. We present the results of the commissioning with beam, with special attention to the correction of the large linear tune-shift perturbations produced by the wiggler as well as on the reduction of beam lifetime at full energy. Since the injection at the LNLS storage ring is performed at 500 MeV we also focus on the effects of non-linearities and their impact on injection efficiency.

  8. Preliminary design for a pierce wiggler beamstick and addendum

    International Nuclear Information System (INIS)

    Pirkle, D.

    1988-05-01

    Lawrence Livermore National Laboratory is developing a fast tunable microwave source for operation at 250 GHz and 10kW peak output power. This report presents the preliminary design of a Pierce gun and solenoid magnet that will be compatible with a Pierce-wiggler electron beam formation system (beamstick). The beamstick will be an appropriate power source for a tunable gyro-BWO at 250 GHz. Figure 1 presents the major components of the Pierce-wiggler beamstick: the electron gun, solenoid, beam tunnel, wiggler, and vacuum valve. Figure 2 shows an artistic conception of how the beamstick will interface with the interaction magnet, modulator and gyro-BWO circuit at MIT. 15 figs

  9. Construction of compact FEM using solenoid-induced helical wiggler

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Fujita, M.; Imasaki, K.; Mima, K.; Nakai, S.

    2003-01-01

    A prototype of compact Free-Electron Maser (FEM) has been designed for the operation in a usual small laboratory which does not have electric source capacity available enough. The electron energy is 60-120 keV. As it is lower, stronger guiding magnetic field is necessary in addition to wiggler field. To fulfil this condition a solenoid-induced helical wiggler is applied from the viewpoint of saving the electric power of restricted source capacity. The wiggler, for example, with the period of 12 mm creates the field of 92 G in the guiding field of 3.2 kG. The whole system of FEM has been just constructed in a small-scale laboratory. It is so small to occupy the area of 0.7x2.9 m 2

  10. CALCULATION OF THE COHERENT RADIATION IMPDENACE FROM A WIGGLER

    International Nuclear Information System (INIS)

    Wu, J

    2004-01-01

    Most studies of coherent synchrotron radiation (CSR) have considered only the radiation from independent dipole magnets. However, in the damping rings of future linear colliders and many high luminosity factories, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter K. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of K. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies

  11. Superconducting 63-Pole 2 Tesla Wiggler for Canadian Light Source

    International Nuclear Information System (INIS)

    Khruschev, S.V.; Kuper, E.A.; Lev, V.H.; Mezentsev, N.A.; Miginsky, E.G.; Repkov, V.V.; Shkaruba, B.A.; Syrovatin, V.M.; Tsukanov, V.M.

    2006-01-01

    A superconducting 63-pole wiggler with the average period 34 mm designed and fabricated at the Institute of Nuclear Physics in Novosibirsk for Synchrotron Radiation Center (CLS) in Canada is described. The maximum field 2.2 Tesla in the median plane has been achieved. The liquid helium consumption less than 0.03 liters per hour in operating mode has been reached. In January 2005, the wiggler was installed in the storage ring in CLS and now experiments are already underway. The main parameters of the magnet and the cryogenic systems as well as test results are presented

  12. Superconducting 63-pole 2 T wiggler for Canadian Light Source

    International Nuclear Information System (INIS)

    Khruschev, S.V.; Kuper, E.A.; Lev, V.H.; Mezentsev, N.A.; Miginsky, E.G.; Repkov, V.V.; Shkaruba, V.A.; Syrovatin, V.M.; Tsukanov, V.M.

    2007-01-01

    A superconducting 63-pole wiggler with the average period 34 mm designed and fabricated in the Institute of Nuclear Physics in Novosibirsk for Synchrotron Radiation Center Canadian Light Source (CLS) in Canada is described. The maximum field 2.2 T in the median plane has been achieved. The liquid helium consumption less than 0.03 L h in operating mode has been reached. It allows refilling liquid helium once a year. In January 2005, the wiggler was installed in the storage ring in CLS and now experiments are carried out. The main parameters of the magnet and the cryogenic systems as well as test results are presented

  13. γ -Ray Generation from Plasma Wakefield Resonant Wiggler

    Science.gov (United States)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Zepf, Matt; Rykovanov, Sergey

    2018-03-01

    A flexible gamma-ray radiation source based on the resonant laser-plasma wakefield wiggler is proposed. The wiggler is achieved by inducing centroid oscillations of a short laser pulse in a plasma channel. Electrons (self-)injected in such a wakefield experience both oscillations due to the transverse electric fields and energy gain due to the longitudinal electric field. The oscillations are significantly enhanced when the laser pulse centroid oscillations are in resonance with the electron betatron oscillations, extending the radiation spectrum to the gamma-ray range. The polarization of the radiation can be easily controlled by adjusting the injection of the laser pulse into the plasma channel.

  14. Development of solenoid-induced helical wiggler with four poles per period

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Kiyochi, M.; Nakao, N.; Fujita, M.; Imasaki, K.; Nakai, S.; Mima, K.

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field

  15. Development of solenoid-induced helical wiggler with four poles per period

    CERN Document Server

    Ohigashi, N; Kiyochi, M; Nakao, N; Fujita, M; Imasaki, K; Nakai, S; Mima, K

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field.

  16. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  17. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  18. Spiking mode operation for a uniform-period wiggler

    International Nuclear Information System (INIS)

    Warren, R.W.; Goldstein, J.C.; Newnam, B.E.

    1985-01-01

    The onset of saturation in a uniform-period wiggler has been examined experimentally and through numerical simulations. Models have been constructed that explain the observations in simple and consistent ways. The models are based upon the development of strong frequency and amplitude modulation of the optical wave as a way to increase extraction efficiency and optical power

  19. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    Science.gov (United States)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  20. Design of High Field Multipole Wiggler at PLS

    International Nuclear Information System (INIS)

    Kim, D. E.; Park, K. H.; Lee, H. G.; Suh, H. S.; Han, H. S.; Jung, Y. G.; Chung, C. W.

    2007-01-01

    Pohang Accelerator Laboratory (PAL) is developing a high field multipole wiggler for new EXAFS beamline. The beamline is planning to utilize very high photon energy (∼40keV) synchrotron radiation at Pohang Light Source (PLS). To achieve higher critical photon energy, the wiggler field need to be maximized. A magnetic structure with wedged pole and blocks with additional side blocks which are similar to asymmetric wiggler of ESRF are designed to achieve higher flux density. The end structures were designed to be asymmetric along the beam direction to ensure systematic zero 1st field integral. The thickness of the last magnets were adjusted to minimize the transition sequence to the fully developed periodic field. This approach is more convenient to control than adjusting the strength of the end magnets. The final design features 140mm period, 2.5 Tesla peak flux density at 12mm pole gap, 1205mm magnetic structure length with 16 full field poles. In this article, all the design, engineering efforts for the HFMSII wiggler will be described

  1. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  2. The interaction between a relativistic electron beam and a slow electromagnetic wave in a waveguide that is partially filled with a dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.T.; Nikolov, N.A.

    1979-01-01

    The problem of the excitation of microwaves during the propagation of a relativistic electron beam through a waveguide which is partially filled with a dielectric is solved using Maxwell equations and relativistic magnetic hydrodynamics. Two cases are found in which the beam-excited wave has a single mode (it is coherent). For one of the coherent waves, the saturation amplitude and the efficiency of converting the beam energy into electomagnetic field energy are determined.

  3. Wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, George

    2012-01-01

    This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhe...... bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain....

  4. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    International Nuclear Information System (INIS)

    Wang, Lanfa

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  5. Beam Line VI REC-steel hybrid wiggler for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.; Chan, T.; Chin, J.W.G.; Halbach, K.; Kim, K.J.; Winick, H.; Yang, J.

    1983-03-01

    A wiggler magnet with 27 periods, each 7 cm long which reaches 1.21 T at a 1.2 cm gap and 1.64 T at 0.8 cm gap has been designed and is in fabrication. Installation in SPEAR is scheduled for mid 1983. This new wiggler will be the radiation source for a new high intensity synchrotron radiation beam line at SSRL. The magnet utilizes rare-earth cobalt (REC) material and steel in a hybrid configuration to achieve simultaneously a high magnetic field with a short period. The magnet is external to a thin walled variable gap stainless steel vacuum chamber which is opened to provide beam aperture of 1.8 cm gap at injection and then closed to a smaller aperture (< 1.0 cm). Five independent drive systems are provided to adjust the magnet and chamber gaps and alignment. Magnetic design, construction details and magnetic measurements are presented

  6. Experimental and numerical studies of sheet electron beam propagation through a planar wiggler magnet

    International Nuclear Information System (INIS)

    Zhang, Ze Xiang; Granatstein, V.L.; Destler, W.W.; Rodgers, J.; Cheng, S.; Antonsen, T.M. Jr.; Levush, B.; Bidwell, S.W.

    1993-01-01

    Detailed experimental studies on sheet relativistic electron beam propagation through a long planar wiggler are reported and compared with numerical simulations. The planar wiggler has 56 periods with a period of 9.6 mm. Typically, the wiggler field peak amplitude is 5 kG. The experimental efforts have been focused on control of the deviation of the beam toward the side edge of the planar wiggler along the wide transverse direction. It is found that a suitably tapered magnetic field configuration at the wiggler entrance can considerably reduce the rate of the deviation. The effects of the following techniques on beam transport efficiency are also discussed: side focusing, beam transverse velocity tuning at the wiggler entrance, and beam spread limiting. High beam transport efficiency (almost 100%) of a 15 A beam has been obtained in some cases. The results are relevant to development of a free electron laser amplifier for application to stabilizing and heating of plasma in magnetic fusion research

  7. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  8. SRS Behaviour with a superconducting 5-Tesla wiggler insertion

    International Nuclear Information System (INIS)

    Suller, V.P.; Marks, N.; Poole, M.W.; Walker, R.P.

    1983-01-01

    A 5 Tesla superconducting wavelength shifting wiggler magnet has been inserted into the SRS lattice. Observations have been made of the behaviour of the stored electron beam with the magnet powered. Betatron tune shifts and modulation of the betatron function have been measured and good agreement obtained with theory. Closed orbit changes have been examined and the stored beam lifetime optimised. The magnet is fully operational and is producing intense x-ray beams for users

  9. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    International Nuclear Information System (INIS)

    Hajima, Ryoichi

    1995-01-01

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms

  10. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  11. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  12. Guided modes of elliptical metamaterial waveguides

    International Nuclear Information System (INIS)

    Halterman, Klaus; Feng, Simin; Overfelt, P. L.

    2007-01-01

    The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide

  13. The waveguide Free-Electron Laser. 14

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1990-01-01

    The general characteristics of free-electron lasers (FELs) which employ a waveguiding structure to confine electromagnetic fields and to couple them to the electron beam is discussed. The mode structure of the basic parallel plate waveguide and its adaptation via quasi-optical techniques to FEL resonator design are considered in detail. A summary of the theory of FEL systems which depend intrinsically on a guide structure (micro-undulator, Cerenkov and metal-grating FELs) and a review of progress on waveguide FEL experiments are also presented. (author). 44 refs.; 16 figs

  14. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  15. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...

  16. Generalized theory of a free-electron laser in a helical wiggler and guide magnetic fields using the kinetic approach

    International Nuclear Information System (INIS)

    Misra, K.D.; Mishra, P.K.

    2002-01-01

    A self-consistent theory of a free-electron laser is developed by the kinetic approach, using the method of characteristics in helical wiggler and guide magnetic fields. The detailed relativistic particle trajectories obtained in wiggler and guide magnetic fields are used in linearized Vlasov-Maxwell equations having variations in perpendicular and parallel momenta to obtain the perturbed distribution function in terms of perturbed electric and magnetic fields deviating from the vector potential approach. The perturbed distribution function thus obtained, having variations in perpendicular and parallel momenta for an arbitrary distribution function, is used to obtain current, conductivity and dielectric tensors. The full dispersion relation (FDR) and Compton dispersion relation (CDR) have been obtained. The dispersion diagram has been obtained and the interaction of the negative longitudinal space charge with the electromagnetic wave has been shown. The temporal growth rates obtained from the full dispersion relation and Compton dispersion relation for the tenuous cold relativistic beam in microwave region have been discussed

  17. Slow light in semiconductor waveguides: Theory and experiment

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Poel, Mike van der

    2007-01-01

    Slow light in multi-section quantum well waveguide structure is realized using either coherent population oscillations (CPO) and electromagnetically induced transparency (EIT) is studied. The properties of the two schemes are compared and discussed.......Slow light in multi-section quantum well waveguide structure is realized using either coherent population oscillations (CPO) and electromagnetically induced transparency (EIT) is studied. The properties of the two schemes are compared and discussed....

  18. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1993-01-01

    The authors have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (Intense Microwave, Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT), and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA, 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. The authors summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  19. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  20. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators

    International Nuclear Information System (INIS)

    Knapp, G. S.

    1998-01-01

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator

  1. Conceptual designs for NLC ubitrons with permanent-magnet wigglers

    International Nuclear Information System (INIS)

    Phillips, R.

    1994-09-01

    This paper describes three embodiments of the ubitron (FEL) amplifier that will be analyzed for possible use on the NLC. The design frequency and power are 11.424 GHz and 200 MW peak rf output power. The baseline against which these conceptual designs are to be evaluated is the PPM-focused 50-MW SIAC klystron, which in simulation shows 65% efficiency. In order to remain competitive in cost and power consumption, only ubitron beam-wave configurations that can use permanent-magnet wigglers are considered

  2. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  3. Chicane and wiggler based bunch compressors for future linear colliders

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Emma, P.; Kheifets, S.

    1993-05-01

    In this paper, we discuss bunch compressors for future linear colliders. In the past, the bunch compression optics has been based upon achromatic cells using strong sextupoles to correct the dispersive and betatron chromaticity. To preserve the very small emittances required in most future collider designs, these schemes tend to have very tight alignment tolerances. Here, we describe bunch compressors based upon magnetic chicanes or wigglers which do need sextupoles to correct the chromatic emittance dilution. The dispersive chromaticity cancels naturally and the betatron chromaticity is not a significant source of emittance dilution. Thus, these schemes allow for substantially reduced alignment tolerances. Finally, we present a detailed design for the NLC linear collider

  4. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  5. Analysis of the superconducting wiggler magnets for the ATF Harmonic Generation FEL experiment

    International Nuclear Information System (INIS)

    Zhang, X.; Ben-Zvi, I.; Ingold, G.; Krinsky, S.; Yu, L.H.

    1992-01-01

    In this paper, we consider the superconducting wiggler magnet under construction for the High Gain Harmonic Generation experiment (HGHG) at the Accelerator Test Facility (ATF) at BNL. This wiggler consists of an energy modulation section, a dispersion magnet and a radiator section. We present an analysis of the dispersion magnet and the end effects in the other wiggler sections. The purpose of the dispersion magnet is to convert energy modulation of the electron beam into spatial bunching. For the dispersion magnet, we discuss the physical requirements, analyze the magnetic design, determine the focusing properties, and consider the effect of departures from ideal behavior on the FEL gain. In the modulator and radiator wigglers we analyze the effects due to the ends of the wiggler and discuss their correction. In addition, the localized field produced by a trim coil for horizontal beam steering is investigated

  6. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  7. Theoretical study of H- stripping with a wiggler magnet

    International Nuclear Information System (INIS)

    Hutson, R.L.

    1991-01-01

    The first step for injecting protons into the LAMPF Proton Storage Ring (PSR) at LANL is to strip a beam of 800-MeV H - ions to H 0 with a 1.8-T dipole magnet. Because of the finite lifetime of energetic H - ions in the magnetic field, their trajectories bend before stripping causing the angular spread of the beam, and therefore its emittance, to grow during the stripping process. In the case of the PSR, the horizontal beam emittance grows by a factor of roughly three during injection. As a consequence, beam losses in the ring are significantly greater than they would be if there were not emittance growth. A speculative technique is proposed in which the beam divergence growth and resulting emittance growth is reduced by stripping the H - in a wiggler magnet whose transverse field alternates in direction as a function of position along the beam axis. The wiggler field configuration is adjusted so that the angular beam spread introduced during passage through one unidirectional-field increment of path is relatively small and so that 99.99% of the beam is stripped after passing through the whole magnet. With careful field design the net added angular beam spread is reduced because the incremental angular spreads are painted back and forth over the same small range. In the hypothetical case described, the calculated emittance growth and beam loss increase are significantly smaller than those calculated for a conventional stripper magnet. 3 refs., 3 figs

  8. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman

    2009-07-01

    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  9. Initial experiment of focusing wiggler of MM wave Free Electron Laser on LAX-1

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Maebara, Sunao; Watanabe, Akihiko; Kishimoto, Yasuaki; Nagashima, Takashi; Maeda, Hikosuke; Shiho, Makoto; Oda, Hisako; Kawasaki, Sunao.

    1991-03-01

    Initial results of Free Electron laser (FEL) Experiment in the mm wave region are presented. The experiment is carried out using a induction linac system (LAX-1: Large current Accelerator Experiment) of E b = 1 MeV, Ib = 1 ∼ 3 kA. The wiggler of FEL is composed of the curved surface magnets arrays (focusing wiggler), which is found to be effective for a transport of low energy and high current beam through the wiggler. The superradiance of the mm wave region (30 GHz ∼ 40 GHz) is observed. The growth rate of this radiation is 0.42 dB/cm. (author)

  10. Quantum waveguides

    CERN Document Server

    Exner, Pavel

    2015-01-01

    This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.

  11. Cup waveguide antenna with integrated polarizer and OMT

    Science.gov (United States)

    Acosta, Roberto J. (Inventor); Kory, Carol (Inventor); Lambert, Kevin M. (Inventor)

    2011-01-01

    A cup waveguide antenna with integrated polarizer and OMT for simultaneously communicating left and right hand circularly polarized electromagnetic waves is adjustable to obtain efficient propagation and reception of electromagnetic waves. The antenna includes a circular waveguide having an orthomode transducer utilizing first and second pins longitudinally spaced apart and oriented orthogonally with respect to each other. Six radially-oriented adjustable polarizer screws extend from the exterior to the interior of the waveguide. A septum intermediate the first and second pins is aligned with the first pin. Adjustment of the polarizer screws enables maximized propagation of and/or response to left hand circularly polarized electromagnetic waves by the first pin while simultaneously enabling maximized propagation of and/or response to right hand circularly polarized electromagnetic waves by the second pin.

  12. A new type of permanent magnet ondulator and wiggler

    International Nuclear Information System (INIS)

    Jianming, X.; Maosan, L.; Qing, X.

    1987-01-01

    A new type of permanent magnet ondulator and wiggler is discussed. In this new design the magnet is composed of permanent magnet segments with modulated thickness. The magnetization directions of the segments are all perpendicular to the symmetrical plane of the magnet gap. By modulating the thicknesses of the segments, the field distribution is a pure sinusoidal curve in the ideal 2-dimensional case. The spatial expressions of the magnet field in the ideal case and in the real case are given. The methods for reducing the undesirable harmonics in the magnet field in the real case are discussed. Because of the arrangement of the magnetization directions of the magnet segments, soft iron shield can be used to strenghten the magnet field. In some cases, the stregnthening factor is more than two. The strenghtening effect of the soft iron shield is analysed also

  13. Installation of a second superconducting wiggler at SAGA-LS

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.; Koda, S. [SAGA Light Source, 8-7 Yayoigaoka, Tosu 841-0005 (Japan)

    2016-07-27

    The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of the vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.

  14. CSEM-steel hybrid wiggler/undulator magnetic field studies

    International Nuclear Information System (INIS)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields

  15. Magnetic X-ray measurements using the elliptical multipole wiggler

    International Nuclear Information System (INIS)

    Montano, P. A.; Li, Y.; Beno, M. A.; Jennings, G.; Kimball, C. W.

    1999-01-01

    The EMW at the BESSRC beam lines at the APS provides high photon flux at high energies with the capability of producing circular polarization on axis. The authors observe a high degree of circularly polarized x-rays at such energies. The polarization and frequency tunability of the elliptical multipole wiggler (EMW) is an ideal source for many magnetic measurements from X-ray Magnetic Circular Dichroism (XMCD) to Compton scattering experiments. They performed Compton scattering measurements to determine the polarization and photon flux at the sample as a function of the deflection parameters K y and K x . They used for their measurements a Si (220) Laue monochromator providing simultaneous photon energies at 50 keV, 100 keV and 150 keV. Magnetic Compton Profiles were determined by either switching the magnet polarity or the photon helicity. The results obtained using Fe(110) single crystals were very similar

  16. Magnetic field simulation of wiggler on LUCX accelerator facility using Radia

    Science.gov (United States)

    Sutygina, Y. N.; Harisova, A. E.; Shkitov, D. A.

    2016-11-01

    A flat wiggler consisting of NdFeB permanent magnets was installed on a compact linear electron accelerator LUCX (KEK) in Japan. After installing the wiggler on LUCX, the experiments on the generation of undulator radiation (UR) in the terahertz wavelength range is planned. To perform the detailed calculations and optimization of UR characteristics, it is necessary to know the parameters of the magnetic field generated in the wiggler. In this paper extended simulation results of wiggler magnetic field over the entire volume between the poles are presented. The obtained in the Radia simulation magnetic field is compared with the field calculated by another code, which is based on the finite element method.

  17. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.

    2005-01-01

    numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose–Einstein condensation are discussed.......Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...

  18. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  19. A novel small-period wiggler for free-electron lasers

    International Nuclear Information System (INIS)

    Feng Bibo; Wang Mingchang; Wang Zhijiang

    1992-01-01

    A novel small-period wiggler configuration constructed by sheet of bifilar-helix with ferro-core for free-electron lasers is proposed. The performance characteristics of the wiggler prototype with 10 mm period are measured. The field as high as 500 G to 1 kG have been obtained. The amplifier designs for operation at 190 GHz using modest electron beam energies in the range of 400-500 keV are presented

  20. The first steps towards a 7.5 T superconducting wiggler

    International Nuclear Information System (INIS)

    Werin, S.

    1988-01-01

    A 7.5 T superconducting wiggler is currently beeing constructed in cooperation between MAX-lab and the Institute of Technology in Tammerfors, Finland. The wiggler will be places at MAX-lab, either at the existing 550 MeV storage ring or at a future 1.2 GeV ring. In this paper some basic designs and calculations are described and discussed. (author)

  1. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  2. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  3. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  4. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  5. Magnetic field adjustment structure and method for a tapered wiggler

    Science.gov (United States)

    Halbach, Klaus

    1988-01-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  6. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  7. Analysis of Waveguides on Lithium Niobate Thin Films

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2018-04-01

    Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.

  8. Determination of electromagnetic modes in oversized corrugated waveguides on the electron cyclotron resonance heating installation at the tokamak Tore Supra; Determination de modes electromagnetiques de guides d'ondes corrugues surdimensionnes sur l'installation de chauffage des electrons de tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, L

    2001-03-09

    Electron cyclotron resonance heating (ECRH) in the Tore Supra tokamak constitutes an important step in the research aimed at obtaining thermonuclear fusion reactions. Electron heating is achieved by transmitting an electromagnetic wave from the oscillators (gyrotrons) to the plasma via the fundamental mode, propagating in oversized corrugated waveguides. Maximizing the proportion of the gyrotron power coupled to the fundamental waveguide mode is essential for the good functioning of the transmission line and for maximizing the effect on the plasma. This thesis gives all necessary tools for finding the proportion of the fundamental mode and all other modes present in passive components and at the output of the gyrotron as installed in the Tore Supra ECRH plant. This characterisation is based on obtaining amplitude and phase diagrams of the electric field on a plane transverse to the propagation axis. The most difficult part of obtaining these diagrams is measuring the phase which, despite the very short wavelength, is measured directly at low power levels. At high power levels the phase is numerically reconstructed from amplitude measurements for gyrotron characterisation. A complete theoretical study of the phase reconstruction code is given including its validation with theoretical diagrams. This study allows the realisation of a modal characterisation unit electromagnetic for measurement of radiated beams and usable in each part of the ECRH installation. At the end, the complete modal characterisation is given at low level for a mode converter and also at high level for the first series gyrotron installed at TORE SUPRA. (author)

  9. Cherenkov interaction of hollow electron beam with a dielectric waveguide

    International Nuclear Information System (INIS)

    Karbushev, N.I.; Shlapakovskij, A.S.

    1989-01-01

    The waveguide excitation methods are used to study magnetized hollow electron beam interaction with electromagnetic waves of a waveguide with a dielectric bush. Characteristic equation with explicit presentation of depression coefficients and the beam coupling with the synchronous wave is derived. Dependences of depression and coupling coefficients on the beam and waveguide parameters are studied. the current limiting values of small and large space charge regimes are determined. Coefficients of synchronous wave amplification by a beam and oscillation set up conditions in the considered finite length system are determined

  10. Planar optical waveguides for civil and military applications

    International Nuclear Information System (INIS)

    Lavers, C R

    2009-01-01

    There is significant military and civil interest in being able to detect chemical species adsorbed from air or present in aqueous solutions. Planar optical waveguide transmission properties are sensitive to changes in parameters such as refractive index or absorption and to light-emitting processes such as fluorescence. These changes modulate light travelling in optical waveguides, and so may be used as sensors for detecting biological and chemical agents, non-ionizing and ionizing electromagnetic radiation. Several waveguide systems have been studied theoretically and experimentally, and their responses to basic influences such as alcohol and UV radiation, and gamma rays determined.

  11. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...... radiation on the nanoscale. Here, we present the underlying physical principles of radiation nanofocusing in metallic nanostructures, overview recent progress and major developments, and consider future directions and potential applications of this subfield of nano-optics....

  12. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  13. A microwave FEL [free electron laser] code using waveguide modes

    International Nuclear Information System (INIS)

    Byers, J.A.; Cohen, R.H.

    1987-08-01

    A free electron laser code, GFEL, is being developed for application to the LLNL tokamak current drive experiment, MTX. This single frequency code solves for the slowly varying complex field amplitude using the usual wiggler-averaged equations of existing codes, in particular FRED, except that it describes the fields by a 2D expansion in the rectangular waveguide modes, using coupling coefficients similar to those developed by Wurtele, which include effects of spatial variations in the fields seen by the wiggler motion of the particles. Our coefficients differ from those of Wurtele in two respects. First, we have found a missing √2γ/a/sub w/ factor in his C/sub z/; when corrected this increases the effect of the E/sub z/ field component and this in turn reduces the amplitude of the TM mode. Second, we have consistently retained all terms of second order in the wiggle amplitude. Both corrections are necessary for accurate computation. GFEL has the capability of following the TE/sub 0n/ and TE(M)/sub m1/ modes simultaneously. GFEL produces results nearly identical to those from FRED if the coupling coefficients are adjusted to equal those implied by the algorithm in FRED. Normally, the two codes produce results that are similar but different in detail due to the different treatment of modes higher than TE/sub 01/. 5 refs., 2 figs., 1 tab

  14. CESR-c Performance of a Wiggler-Dominated Storage Ring

    CERN Document Server

    Temnykh, Alexander

    2005-01-01

    CESR-c operates now as a Wiggler-Dominated Storage Ring extending the lowest operating energy to 1.5GeV/beam. To improve beam stability at low energy, 12 super-ferric wiggler magnets with total length of 15m and 2.1T maximum field were installed in the ring. They cause ~90% of total beam radiation lost and increase radiation damping rate by factor 10 from ~3 to 40 Hz. However, the field of the wiggler magnets not only initiates the radiation, but potentially affects beam dynamics. The latter was an issue of a great concern from the planning the CESR-c project. In this paper we describe general performance of CESR-c and report the results of an experimental study on some aspects of beam dynamics. Comparisons are made between the experimental data and the model prediction. We find that all parameters, which are critically dependent on wigglers, such as beam properties and ring nonlinearity, are in good agreement with those calculated from the model. This validates the ring and wiggler models and justifies our d...

  15. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  16. Enhancement of single mode operation in coaxial optical waveguide using DB boundary conditions

    Science.gov (United States)

    Lohia, Pooja; Prajapati, Y.; Saini, J. P.; Rai, B. S.

    2014-11-01

    In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.

  17. Dispersion characteristics of plasmonic waveguides for THz waves

    Science.gov (United States)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  18. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  19. Near-ideal lasing with a uniform wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Warren, R.W.; Sollid, J.E.; Feldman, D.W.; Stein, W.E.; Johnson, W.J.; Lumpkin, A.H.; Goldstein, J.C.

    1988-01-01

    Over the years the Los Alamos FEL team has reduced or eliminated many of the experimental problems that resulted in non-ideal lasing. The major problems were accelerator instabilities that cause noise and fluctuations in current, energy, and timing; wakefield effects in the wiggler and beamline that introduce fluctuations in the beam's energy; and mirror nonlinearities caused by free carriers produced in the mirror by the high light levels, which caused extra light losses and interfered with the diagnostics. Lasing is not thought to be ideal in that it lacks major disturbing effects and is limited only by emittance, energy spread, and peak current. In this paper we describe the features of lasing that we have observed over a range of optical power of 1000, from the onset of lasing, to the threshold of the sideband instability, to the organization of regular optical spikes, to the region of chaotic spikes. Cavity-length detuning is presented as an ideal technique, in most circumstances, to completely suppress sidebands. With detuning one can easily switch operating modes from that giving the highest efficiency (chaotic spiking) to that giving the narrowest spectral line (no sidebands). Alternative techniques for sideband suppression normally use some kind of wavelength selective device (e.g., a grating) inserted in the cavity. With detuning, there is no need for such a device, and, therefore, no conflict between the wavelength control exerted by this extra optical component and that exerted by the energy of the electron beam. Lasing, therefore, starts easily, a shift in wavelength, i.e., chirp, is easily accomplished, and the consequences of inadequate control of the electron beam energy are not severe. 35 refs., 16 figs.

  20. Field correction for a one meter long permanent-magnet wiggler

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    1992-01-01

    Field errors in wigglers are usually measured and corrected on-axis only, thus ignoring field error gradients. We find that gradient scale lengths are of the same order as electron beam size and therefore can be important. We report measurements of wiggler field errors in three dimensions and expansion of these errors out to first order (including two dipole and two quadrupole components). Conventional techniques for correcting on-axis errors (order zero) create new off-axis (first order) errors. We present a new approach to correcting wiggler fields out to first order. By correcting quadrupole errors in addition to the usual dipole correction, we minimize growth in electron beam size. Correction to first order yields better overlap between the electron and optical beams and should improve laser gain. (Author) 2 refs., 5 figs

  1. Design and manufacture of a 6-T wiggler magnet for the Daresbury SRS

    International Nuclear Information System (INIS)

    Ross, J.; Smith, K.

    1992-01-01

    The 6-T wiggler is an iron-cored, warm bore, superconducting dipole magnet destined for the SERC Daresbury Laboratory's 2-GeV Synchrotron Radiation Source to enhance the available radiation spectrum. The new wiggler will be inserted in the ring in addition to an existing 5-T wiggler, both of which will use the existing, although upgraded, refrigerator. The magnet is designed to provide a peak field of 6 T on the beam line. The design and manufacturing contract for this magnet was started in September 1989 and was preceded by a feasibility study, presented by Oxford Instruments in mid 1988. The major features of the magnet, along with a discussion of the early stages of manufacture, are described in the article

  2. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  3. Optical waveguide demultiplexer

    International Nuclear Information System (INIS)

    Gajdaj, Yu.O.; Maslyukyivs'kij, R.M.; Sirota, A.V.

    2009-01-01

    For channels division in fibre-optical networks with wavelength multiplexing, the planar waveguide together with a prism coupler is offered for using. The planar waveguide fulfils a role of a dispersing unit, and prism coupler is the selector of optical channels. The parameters of the planar waveguide which provide maximal space division of adjacent information channels in networks with coarse wavelength multiplexing are calculated

  4. Experiences with rectangular waveguide

    International Nuclear Information System (INIS)

    Beltran, J.; Sepulveda, J. J.; Navarro, E. A.

    2000-01-01

    A simple and didactic experimental arrangement is presented to show wave propagation along a structure with translational symmetry, particularly the rectangular waveguide. Parameters of this waveguide as cutoff frequency, guide wavelength and field distribution of fundamental mode can be measured. For this purpose a large paralelepipedical waveguide structure is designed and built, its dimensions can be varied in order to change its parameters. (Author) 9 refs

  5. Control System of the Superconducting 63-Pole 2-Tesla Wiggler for Canadian Light Source

    International Nuclear Information System (INIS)

    Kuper, E.A.; Mezentsev, N.A.; Miginsky, E.G.; Repkov, V.V.; Tsukanov, V.M.

    2006-01-01

    A control system of the superconducting 63-pole wiggler fabricated at the Institute of Nuclear Physics in Novosibirsk (BINP) for Synchrotron Radiation Center in Canada (CLS) is described. Specific electronics and software which provide continuos monitoring of all the superconducting wiggler parameters as well as full control and monitoring of power suppliers and cryogenics machines, have been designed. The control system is VME-based. A client/server architecture of the software allowed us to integrate easily this system into the CLS distributed control system

  6. Design of a 6 Tesla wiggler for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hsieh, H.; Krinsky, S.; Luccio, A.; van Steenbergen, A.

    1981-01-01

    A 6-pole, 6 Tesla wiggler with Nb-Ti superconducting windings has been designed, to be installed in a straight section of the 2.5 GeV x-ray storage ring of the NSLS. The technical problems of this magnet are discussed, in particular the optimization of the two-layer magnetic windings and the mechanical structure designed to counteract the strong magnetic forces. The effects of the insertion of the wiggler in the storage ring lattice are also studied

  7. Wigglers and single-particle dynamics in the NLC damping rings

    International Nuclear Information System (INIS)

    Venturini, Marco; Wolski, Andrzej; Dragt, Alex

    2003-01-01

    Wiggler insertions are expected to occupy a significant portion of the lattice of the Next Linear Collider (NLC) Main Damping Rings (MDR) and have a noticeable impact on the single-particle beam dynamics. Starting from a realistic 3D representation of the magnetic fields we calculate the transfer maps for the wigglers, accounting for linear and nonlinear effects, and we study the beam dynamics with particular attention paid to the Dynamic Aperture(DA). A DA reduction is observed but appears to remain within acceptable limits

  8. Essentials of Electromagnetics for Engineering

    Science.gov (United States)

    de Wolf, David A.

    2000-11-01

    Essentials of Electromagnetics for Engineering introduces the key physical and engineering principles of electromagnetics. Throughout the book, David de Wolf describes the intermediate steps in mathematical derivations that many other textbooks leave out. He covers in depth the concepts of fields and potentials and then progresses to magnetostatics, Maxwell's equations, electrodynamics and wave propagation, waveguides, transmission lines, and antennas. At each stage, de Wolf stresses the physical principles underlying the mathematical results. He also includes homework exercises, a separate chapter on numerical methods in electromagnetics, and a broad range of worked examples to illustrate important concepts. Solutions manual available.

  9. Relativistic kinematics of the electromagnetic fields of a guided mode

    International Nuclear Information System (INIS)

    Rivlin, Lev A

    2000-01-01

    It is shown that during the observation of a wave in a waveguide from a comoving reference system travelling at a velocity equal to the group velocity of the wave, the wave propagation is halted and the electromagnetic energy contained in the waveguide proves to be stationary. The nonzero rest mass of the photons in the waveguide is equivalent to this rest energy and is identical with the rest mass measured in dynamic experiments. (laser applications and other topics in quantum electronics)

  10. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  11. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  12. Slow and fast light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Mørk, Jesper; Hansen, Per Lunnemann; Xue, Weiqi

    2010-01-01

    Investigations of slow and fast light effects in semiconductor waveguides entail interesting physics and point to a number of promising applications. In this review we give an overview of recent progress in the field, in particular focusing on the physical mechanisms of electromagnetically induced...... transparency and coherent population oscillations. While electromagnetically induced transparency has been the most important effect in realizing slowdown effects in atomic gasses, progress has been comparatively slow in semiconductors due to inherent problems of fast dephasing times and inhomogeneous...... broadening in quantum dots. The physics of electromagnetically induced transparency in semiconductors is discussed, emphasizing these limitations and recent suggestions for overcoming them. On the other hand, the mechanism of coherent population oscillations relies on wave mixing effects and is well suited...

  13. Ultrasensitive Terahertz Waveguide Modulators Using Multilayer Graphene Metamaterials

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz-infrared electromagnetic properties of multilayer graphene- dielectric metamaterial and present novel waveguide-based devices: modulators with high mod- ulation depth ( > 38 dB at 0 : 07 eV graphene’s Fermi energy change) or extreme sensitivity (mod- ulation depth of > 13 : 2 d...

  14. In vacuum permanent magnet wiggler optimized for the production of hard x rays

    Directory of Open Access Journals (Sweden)

    O. Marcouille

    2013-05-01

    Full Text Available A new concept of wiggler has been designed and realized at SOLEIL to produce high energy photons in low/intermediate electron storage rings. Instead of using the superconducting technology which requires new equipment and instrumentation, heavy maintenance, and additional running costs, we have proposed to build a compact in-vacuum small gap short period wiggler that operates rather at moderate field than at high field. The wiggler composed of 38 periods of 50 mm produces 2.1 T at a gap of 5.5 mm. The moderate value of the magnetic field enables one to limit the effects on the beam dynamics and to avoid excessive power and magnetic forces. In this purpose, the narrow magnetic system has been equipped with a counterforce device made of nonmagnetic springs. The roll-off resulting from the small size of poles has been compensated in situ by permanent magnet magic fingers. This paper reports the phases of design, construction, magnetic measurements, and on-beam tests of the in-vacuum wiggler WSV50.

  15. Predesign Study of a 4-5 tesla Superconducting Wiggler Magnet for the ESRF

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; ter Avest, D.; ter Avest, D.; Ravex, A.; Lagnier, M.; Elleaume, P.

    1994-01-01

    The ESRF is currently setting up a beam line for very hard photons well above 250 keV. This requires the installation of a high field three polewavelength shifter. The nominal and target fields of the wiggler magnet are 4 and 5 tesla respectively while the nominal field integral over the central

  16. Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    International Nuclear Information System (INIS)

    Wu, Juhao

    2003-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings

  17. High-power free-electron laser amplifier using a scalloped electron beam and a two-stage wiggler

    Directory of Open Access Journals (Sweden)

    D. C. Nguyen

    2006-05-01

    Full Text Available High-power free-electron laser (FEL amplifiers present many practical design and construction problems. One such problem is possible damage to any optical beam control elements beyond the wiggler. The ability to increase the optical beam’s divergence angle after the wiggler, thereby reducing the intensity on the first optical element, is important to minimize such damage. One proposal to accomplish this optical beam spreading is to pinch the electron beam thereby focusing the radiation as well. In this paper, we analyze an approach that relies on the natural betatron motion to pinch the electron beam near the end of the wiggler. We also consider a step-tapered, two-stage wiggler to enhance the efficiency. The combination of a pinched electron beam and step-taper wiggler leads to additional optical guiding of the optical beam. This novel configuration is studied in simulation using the MEDUSA code. For a representative set of beam and wiggler parameters, we discuss (i the effect of the scalloped beam on the interaction in the FEL and on the focusing and propagation of the radiation, and (ii the efficiency enhancement in the two-stage wiggler.

  18. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  19. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2008-01-01

    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling...... of in-plane curved or helically wound waveguides with use of available simulators for straight waveguides without the restrictions of the known approximate equivalent-index formulas....

  20. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...

  1. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  2. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  3. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  4. Photonic Crystal Waveguide Weakly Interacting with Multiple Off-Channel Resonant Features Formed of Kerr Nonlinear Dielectric Media

    Directory of Open Access Journals (Sweden)

    A. R. McGurn

    2007-01-01

    a number of analytical results are presented providing simple explanations of the quantitative behaviors of the systems. A relationship of these systems to forms of electromagnetic-induced transparency and modifications of waveguide dispersion relations is discussed.

  5. Extremely Low Frequency (ELF) Propagation Formulas for Dipole Sources Radiating in a Spherical Earth-Ionosphere Waveguide

    National Research Council Canada - National Science Library

    Casey, Joseph

    2002-01-01

    .... In these formulas, the earth and ionosphere boundaries are modeled as scalar surface impedances. The spherical waveguide formulas are applied to predict the electromagnetic fields produced by vertical and horizontal electric dipoles...

  6. Omnidirectional optical waveguide

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-08-02

    In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.

  7. Design and analysis of a wiggler magnet system for the PEP-II B-Factory LER

    International Nuclear Information System (INIS)

    Heim, J.; Kendall, M.; Bertolini, L.; Fackler, O.; O'Connor, T.; Swan, T.; Zholents, A.

    1996-01-01

    The Low Energy Ring (LER) of the PEP-II B-Factory will use a wiggler magnet system for emittance control and additional damping. The wiggler magnet system is a set of 11 individual iron core, water cooled, dipole magnets designed to operate at 1.6 T and generate 400 kW of synchrotron radiation. Space has been provided to add a second wiggler with an additional 400 kW of synchrotron radiation if more damping is needed in the future. A copper vacuum chamber is used with continuous antechambers connected to both sides of the beam chamber via slots. Synchrotron radiation dump surfaces and distributed vacuum pumping are located in both antechambers. The authors describe the design and analysis of the wiggler magnets and the salient features of the vacuum chamber and dumps

  8. Free-electron lasers with magnetized ion-wiggler

    International Nuclear Information System (INIS)

    Mehdian, H.; Jafari, S.; Hasanbeigi, A.; Ebrahimi, F.

    2009-01-01

    Significant progress has been made using laser ionized channels to guide electron beams in the ion focus regime in a free-electron laser. Propagation of an electron beam in the ion focusing regime (IFR) allows the beam to propagate without expanding from space-charge repulsion. The ninth-degree polynomial dispersion relation for electromagnetic and space-charge waves is derived analytically by solving the electron momentum transfer and wave equations. The variation of resonant frequencies and peak growth rates with axial magnetic field strength has been demonstrated. Substantial enhancement in peak growth rate is obtained as the axial field frequency approaches the gyroresonance frequency.

  9. The training on propagation of guided electromagnetic waves from the point of view of LSM LSE modes; La ensenanza de las ondas electromagneticas guiadas desde el punto de vista de los modos LSM y LSE

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.

    1997-09-01

    In this work, LSM and LSE modes are proposed as a didactic alternative for modeling the propagation of guided electromagnetic waves. Our considerations can be applied to the most common electromagnetic waves guiding systems: empty metallic waveguides, metallic waveguides partially filled with dielectrics, dielectric sheet waveguides and 3-D dielectric waveguides. In all cases, our interest is focussed on modes with a defined polarization; therefore the teaching activity can be treated from the scalar wave approximation point of view. (Author)

  10. Simulations of the effects of a superconducting damping wiggler on a short bunched electron beam at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, Julian; Bernhard, Axel; Blomley, Edmund; Hillenbrand, Steffen; Mueller, Anke-Susanne; Smale, Nigel [Karlsruher Institut fuer Technologie (KIT) (Germany); Zolotarev, Konstantin [Budker Institute of Nuclear Physics (Russian Federation)

    2016-07-01

    (As a part of the CLIC collaboration) A CLIC damping wiggler prototype has been installed at the ANKA synchrotron light source in order to validate the technical design of the 3 T superconducting conduction cooled wiggler and its cryostat and to cary out studies on beam dynamical aspects including collective effects. The latter one will be the main focus in this talk. Collective effects that will occur in damping rings are an issue in ANKA's short bunch operation as well. To simulate these effects the accelerator's model including its insertion device has to be very accurate. Such a model of the ANKA storage ring in short bunch operation mode has been developed in elegant. Simulations with the damping wiggler switched on and off have been performed in order to investigate effects of the wiggler on different machine parameters. These new results will be discussed with regard to the question if on the one hand the wiggler could be used for diagnostic purposes and if on the other hand the wiggler's impact on the beam dynamics is changed by the collective effects.

  11. Simulation of light propagation in the thin-film waveguide lens

    Science.gov (United States)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  12. Remote detection of single emitters via optical waveguides

    Science.gov (United States)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  13. The Beam Line X NdFe-steel hybrid wiggler for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.; Halbach, K.; Humphries, D.; Marks, S.; Plate, D.; Shuman, D.; Karpenko, V.P.; Kulkarni, S.; Tirsell, K.G.

    1987-01-01

    A wiggler magnet with 15 periods, each 12.85 cm long, which achieves 1.40 T at a 2.1 cm gap (2.26T at 0.8 cm) has been designed and is now in fabrication at LBL. This wiggler will be the radiation source of the high intensity synchrotron radiation beam line for the Beam Line X PRT facility at SSRL. The magnet utilizes Neodymium-Iron (NdFe) material and Vanadium Permendur (steel) in the hybrid configuration to achieve simultaneously a high magnetic field and short period. Magnetic field adjustment is with a driven chain and ball screw drive system. The magnetic structure is external to an s.s. vacuum chamber which has thin walls, 0.76 mm thickness, at each pole tip for higher field operation. Magnetic design, construction details and magnetic measurements are presented

  14. Particle-in-Cell Calculations of the Electron Cloud in the ILC Positron Damping Ring Wigglers

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.-L.; Grote, D.P.

    2007-01-01

    The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed

  15. Measurements of electron cloud growth and mitigation in dipole, quadrupole, and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.R., E-mail: jrc97@cornell.edu; Hartung, W.; Li, Y.; Livezey, J.A.; Makita, J.; Palmer, M.A.; Rubin, D.

    2015-01-11

    Retarding field analyzers (RFAs), which provide a localized measurement of the electron cloud, have been installed throughout the Cornell Electron Storage Ring (CESR), in different magnetic field environments. This paper describes the RFA designs developed for dipole, quadrupole, and wiggler field regions, and provides an overview of measurements made in each environment. The effectiveness of electron cloud mitigations, including coatings, grooves, and clearing electrodes, are assessed with the RFA measurements.

  16. Dispersion relation of Raman FEL with helical Wiggler and ion channel

    International Nuclear Information System (INIS)

    Hosseinalinezhad, M.; Bahmani, M.; Hasanbeigi, A.; Salehkoutahi, M.

    2012-01-01

    In this paper the theory of free electron laser with helical wiggler and ion channel guiding has been presented. The equations of motion for an electron have been analyzed. A formula for the dispersion relation is then derived in the low-gain-per-pass limit. The results of a numerical study of the growth rate enhancement due to the ion channel are presented and discussed.

  17. Investigation of betatron instability in a wiggler pumped ion-channel free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Raghavi, A [Physics Department, Payame Noor University, 19395-4697 (Iran, Islamic Republic of); Mehdian, H, E-mail: Raghavi@tmu.ac.ir, E-mail: Mehdian@tmu.ac.ir [Department of Physics, Teacher Training University, Tehran (Iran, Islamic Republic of)

    2011-10-15

    Betatron emission from an ion-channel free electron laser in the presence of a helical wiggler pump and in the high gain regime is studied. The dispersion relation and the frequency of betatron emission are derived. Growth rate is illustrated and maximum growth rate as a function of ion-channel density is considered. Finally, the relation between beam energy, the density of ion channel and the region of betatron emission is discussed.

  18. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  19. X-ray lithography using wiggler and undulator synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Neureuther, A.R.; Kim, K.J.; Thompson, A.C.; Hoyer, E.

    1983-08-01

    A systems design approach is used to identify feasible options for wiggler and undulator beam lines for x-ray lithography in the 0.5 to 0.2 μm linewidth region over 5 cm by 5 cm fields. Typical parameters from the Wiggler and Undulator in the Advanced Light Source designed at the Lawrence Berkeley Laboratory are used as examples. Moving from the conventional wavelengths of 4 to 9 A to very soft wavelengths around 15 A is shown to be very promising. The mask absorber thickness can be reduced a factor of three so that 0.2 μm features can be made with a 1:1 mask aspect ratio. The mask heating limited exposure time is also reduced a factor of three to 3 sec/cm 2 . However, extremely thin beam line windows (1/4 mil Be) and mask supports (1 μm Si) must be used. A wiggler beam line design using a small slit window at a scanning mirror appears feasible. A unconventional, windowless differentially pumped beam line with dual deflecting mirrors could be used with an undulator source

  20. Global beta-beating compensation of the ALS W16 wiggler

    International Nuclear Information System (INIS)

    Robin, D.; Decking, W.; Nishimura, H.

    1997-05-01

    The W16 wiggler is the first wiggler and highest field insertion device to be installed in the ALS storage ring. When the gaps of the W16 wiggler are closed, the vertical tune increases by 0.065 and the vertical beta function is distorted by up to ±37%. There are 48 quadrupoles in the ring whose fields can be adjusted individually to restore the tunes and partially compensate the beta-beating. In order to adjust the quadrupole field strengths to accurately compensate the focusing, it is necessary to have a method to precisely determine the beta-beating. In this paper we compare measurements of the induced beta-beating using two methods: measuring the tune dependence on quadrupole field strength and fitting a lattice model with measured response matrices. The fitted model also allows us to predict quadrupole field strengths that will best compensate the beta beating. These quadrupole field strengths are then applied and the resultant beta-beating is measured

  1. Magnetic measurements of the 10 T superconducting wiggler for the SPring-8 storage ring

    CERN Document Server

    Batrakov, A; Bekhtenev, E A; Fedurin, M; Hara, M; Karpov, G; Kuzin, M; Mezentsev, N A; Miahara, Y; Shimada, T; Shkaruba, V A; Soutome, K; Tzumaki, K

    2001-01-01

    In 1999, in the frame of the project ISTC No. 767 'Budker INP/RIKEN Slow Positron Source', the Budker Institute of Nuclear Physics had made a 10 T Three-pole Superconducting Wiggler. The wiggler will be the keystone of this project by its installation on the SPring-8 storage ring for powerful gamma ray generation (lambda sub c =450 keV), that will be used for slow positron production (N subgamma(epsilon>1 MeV)approx 10 sup 1 sup 5 , gamma/s I sub e =0.1 A). A. Ando et al., Proposal of the high magnetic field super conducting WLS for slow positron source at SPring-8, presented at SR1 '97 Conference. In January, 2000, the wiggler was transported to SPring-8, where the last test and measurements were carried out in collaboration with Japan. In this article, the results of measurements of the magnetic field, finding the magnetic field amplitude by an NMR probe, the definition of feed current relations by stretch current wire method, the calibration of a Hall probe in the high magnetic field, and the measurement o...

  2. Conceptual design of a three-pole wiggler for the APS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Abliz, M., E-mail: mabliz@aps.anl.gov; Grimmer, J., E-mail: grimmer@aps.anl.gov; Dejus, R.; Ramanathan, M., E-mail: mohan@aps.anl.gov [The Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    The current design of the Advanced Photon Source Upgrade (APS-U) project is a multi-bend achromat (MBA) lattice, which incorporates three-pole wigglers as radiation sources for the bending magnet beamlines. They are located in the short section between the M4 dipole and Q8 quadrupole magnets. Due to space constraints, a hybrid permanent magnet design is necessary to provide the required magnetic field strength. A three-pole wiggler with a flat peak field profile along the beam axis was designed to enhance the photon flux and flatten the transverse flux density distributions. The magnetic peak field at the center pole reached 1.08 Tesla for a magnetic gap of 26 mm. The maximum power density, integrated over all vertical angles, is 3.1 W/mm{sup 2}, which is substantially higher than that of the existing bending magnets at the APS (0.86 W/mm{sup 2}). Detailed designs of the three-pole wiggler is presented, including calculated spectral-angular flux distributions.

  3. Decreasing the emittance using a multi-period Robinson wigglers in TPS

    Energy Technology Data Exchange (ETDEWEB)

    Huamg, C. W., E-mail: huang.zw@nsrrc.org.tw [Department of Physics, National Tsing Hua University Hsinchu 30043, Taiwan (China); Hwang, C. S., E-mail: cshwang@nsrrc.org.tw [NSRRC, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Lee, S. Y., E-mail: shylee@indiana.edu [Department of Physics, Indiana University (United States)

    2016-07-27

    The Taiwan Photon Source (TPS) has been successfully commissioned. However, the minimum emittance in the TPS lattice is 1.6 nm rad. In the existing TPS storage ring lattice, it is imperative to reduce the emittance to below 1 nm rad. Therefore, a feasibility study for reducing the effective emittance of the TPS storage ring by using a Robinson wiggler was launched; the reduction is necessary to enhance the photon brilliance. In this study, a permanent-magnet multiperiod Robinson wiggler (MRW) was developed for use instead of the single-period Robinson wiggler. In general, the quadruple field of a combined function magnet in the storage ring is approximately few tesla per meter. According to beam dynamic analysis, we found that it is necessary to adopt a high gradient (40 T/m) combined-function MRW magnet to reduce the emittance effectively. Therefore, a high gradient field strength is required in the combined function MRW magnet. In this study, the quadrupole field strength of the MRW magnet was allowed to be approximately 40 T/m at a magnet gap of 20 mm. The period length of the MRW magnet was 300 mm and the period number was 16. The of MRWs is discussed in regard to the possibility of increasing the photon brilliance from IU22.

  4. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  5. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  6. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  7. Apodized coupled resonator waveguides.

    Science.gov (United States)

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  8. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms.

    Science.gov (United States)

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-03-21

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.

  9. Progress in planar optical waveguides

    CERN Document Server

    Wang, Xianping; Cao, Zhuangqi

    2016-01-01

    This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

  10. ALL-OPTICAL CONTROL OF THZ RADIATION IN PARALLEL PLATE WAVEGUIDES

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to control of THz radiation in parallel plate waveguides (PPWG) by forming components in the waveguide by use of optical radiation pulses. Patterns of excited regions induced in the PPWG by an optical excitation pulses changes the electromagnetic properties of the waveguide...... medium in the THz regime, thereby forming transient passive and active components for controlling THz radiation signals. The excitation can be generation of free charge carriers in a semiconductor material in the PPWG, to create metallic regions that form mirrors, lenses or photonic crystal structures......-on-a-chip applications. The optical and THz radiation can be ultrashort pulses with picosecond or femtosecond pulse durations. L...

  11. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    Science.gov (United States)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  12. Spectroelectrochemical sensing: planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R

    2003-09-30

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)

  13. Nanoscale waveguiding methods

    Directory of Open Access Journals (Sweden)

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  14. Spectroelectrochemical sensing: planar waveguides

    International Nuclear Information System (INIS)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.

    2003-01-01

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)

  15. Devices Based on Parallel-Plate Waveguides for Terahertz Applications

    Science.gov (United States)

    Reichel, Kimberly S.

    The promise of terahertz (THz) frequencies for technological applications is wide, spanning from wireless communications for faster downloads to non-destructive imaging for security screening. Although the potential is high, there is a lack of the basic devices necessary to make these prospects a reality. One essential component for any electromagnetic wave technology is a waveguide, which as the name implies can guide light waves, like a hose would direct water from the source to the desired target location. Several waveguide types have been introduced for THz frequencies, one of the most promising of which is the parallel-plate waveguide (PPWG). The PPWG is attractive based on its superior waveguiding performance of efficient input coupling and low losses, but additionally it serves as an excellent platform for other purposes. The projects presented in this dissertation highlight a few new functionalities incorporated into, and enabled by, a PPWG for sensing, filtering, and splitting. First, we characterize a high quality factor resonator integrated into a PPWG used for microfluidic sensing. Typically, the characterization of the frequency-dependent electric field profile inside a narrowband resonator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. In our situation however, the geometry of the PPWG allows for direct access to the resonant cavity via the open sides of the waveguide and a novel implementation of the air-biased coherent detection (ABCD) method permits non-invasive probing. Through both experiment and simulation, we see the narrowband frequencies trapped in the resonator and also discover an unexpected broadband asymmetric field distribution due to the resonator inside the waveguide, yielding new information that is not available in the far field. Second, we investigate a narrowband tunable filter based on extraordinary optical transmission (EOT) through a 1D array of subwavelength holes inside

  16. Microtubules in biological cells as circular waveguides and resonators

    Czech Academy of Sciences Publication Activity Database

    Jelínek, František; Pokorný, Jiří

    2001-01-01

    Roč. 20, č. 1 (2001), s. 75-80 ISSN 1061-9526. [Electromagnetic Aspects of Selforganization in Biology. Prague, 09.07.2000-12.07.2000] R&D Projects: GA ČR GA102/97/0867 Grant - others:EU COST (XE) OC 244BIS.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : cellular biophysics * waveguides * resonators Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.333, year: 2001

  17. Induced transparencies in metamaterial waveguides doped with quantum dots

    International Nuclear Information System (INIS)

    Singh, Mahi R; Brzozowski, Marek; Racknor, Chris

    2015-01-01

    The light-mater interaction in quantum dots doped artificial electromagnetic materials such as metamaterial waveguides has been studied. The effect of surface plasmon polaritons (SPPs) on the absorption coefficient of quantum dots in metamaterial waveguides is investigated. The waveguides are made by sandwiching a metamaterial slab between two dielectric material layers. An ensemble of quantum dots are deposited near the waveguide interfaces. The transfer matrix method is used to calculate the SSPs in the waveguide and the density matrix method and Schrödinger equation method are used to calculate the absorption spectrum. It is found that when the thickness of the metamaterial slab is greater than the SPP wavelength the SPP energy is degenerate. However when the thickness of the slab is smaller than that of the SPP wavelength the degeneracy of SPP state splits into odd and even SPP modes due the surface mode interaction (SMI) of the waveguide. We also found that the absorption spectrum has a minima (transparent state) which is due to strong coupling between excitons in quantum dots and SPPs in the waveguide. This transparent state is called the SPP induced transparency. However when the thickness of the slab is smaller than that of the SPP wavelength one transparent state in the absorption spectrum split into two transparent states due to the surface mode interaction. This type of transparency is called the SMI induced transparency. Transparent states can be achieved by applying pulse stress field or an intense laser pulse field. Hence present findings can be used to fabricate the metamaterial optical sensors and switches. (paper)

  18. An Influence of 7.5 T Superconducting Wiggler on Beam Parameters of Siberia-2 Storage Ring

    International Nuclear Information System (INIS)

    Korchuganov, Vladimir; Valentinov, Alexander; Mezentsev, Nikolai

    2007-01-01

    At present the dedicated synchrotron radiation source Siberia-2 in Kurchatov Institute operates with electron energy 2.5 GeV and current up to 200 mA. In order to expand spectral range of SR and to increase brightness an installation of 7.5 T 19-pole superconducting wiggler is planned at the end of 2006. Now the wiggler is under fabrication in BINP, Novosibirsk. Such high level of a magnetic field in the wiggler will have a great influence on electron beam parameters of Siberia-2. Changes of these parameters (betatron tunes, horizontal emittance of the electron beam, momentum compaction, energy spread etc.) are discussed in the report. Different methods of compensation (global and local) of betatron functions distortion are presented. Much attention is paid to dynamic aperture calculations using analytical approximation of magnetic field behavior in transverse horizontal direction

  19. Competition of electron-cyclotron maser and free-electron laser modes with combined solenoidal and longitudinal wiggler fields

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.

    1986-01-01

    A relativistic electron beam with a finite transverse dc momentum (β/sub perpendicular/ = 1/γ 0 ) passing through a region of combined uniform solenoidal and longitudinal wiggler magnetic fields is observed to convert 25% of its kinetic energy into coherent radiation at frequency ω = γ 2 0 (k/sub w/V 0 +Ω/sub c//γ 0 ) if the phase velocity of the generated wave is slightly above the speed of light. In this situation, the bunchings of the slow electron-cyclotron mode and free-electron laser modes with combined solenoidal and longitudinal wiggler fields (lowbitron) are observed to compensate each other, which gives rise to a finite threshold for lowbitron operation. In order to attain high efficiency, the wiggler strength of a lowbitron must substantially exceed the threshold

  20. CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers

    International Nuclear Information System (INIS)

    Calvey, J.R.; Li, Y.; Livezey, J.A.; Makita, J.; Meller, R.E.; Palmer, M.A.; Schwartz, R.M.; Strohman, C.R.; Harkay, K.; Calatroni, S.; Rumolo, G.; Kanazawa, K.; Suetsugu, Y.; Pivi, M.; Wang, L.

    2010-01-01

    Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers.

  1. Kinetic description of a wiggler pumped ion-channel free electron laser

    International Nuclear Information System (INIS)

    Mehdian, H; Raghavi, A

    2006-01-01

    The wiggler pumped ion-channel free electron laser (WPIC-FEL) is treated and the classes of possible single-particle electron trajectories in this configuration are discussed in the paper. A new region of orbital stability is seen in the negative mass regime. A kinetic description of WPIC-FEL is given. Vlasov-Maxwell equations are solved to get the linear gain in a tenuous-beam limit, where the beam plasma frequency is much less than the radiation frequency and the self-field effects can be ignored

  2. Depth-of-field effects in wiggler radiation sources: Geometrical versus wave optics

    Directory of Open Access Journals (Sweden)

    Richard P. Walker

    2017-02-01

    Full Text Available A detailed analysis is carried out of the optical properties of synchrotron radiation emitted by multipole wigglers, concentrating on the effective source size and brightness and the so-called “depth of field” effects, concerning which there has been some controversy in the literature. By comparing calculations made with both geometrical optics and wave optics methods we demonstrate that the two approaches are not at variance, and that the wave optics results tend towards those of geometrical optics under well-defined conditions.

  3. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    Science.gov (United States)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  4. Waveguide-based optofluidics

    DEFF Research Database (Denmark)

    Karnutsch, Christian; Tomljenovic-Hanic, Snjezana; Monat, Christelle

    2010-01-01

    blocks in many applications, from microlasers and biomedical sensor systems to optical switches and integrated circuits. In this paper, we show that PhC microcavities can be formed by infusing a liquid into a selected section of a uniform PhC waveguide and that the optical properties of these cavities...... and highlight the benefits of an optofluidic approach, focusing on optofluidic cavities created in silicon photonic crystal (PhC) waveguide platforms. These cavities can be spatially and spectrally reconfigured, thus allowing a dynamic control of their optical characteristics. PhC cavities are major building...... can be tuned and adapted. By taking advantage of the negative thermo-optic coefficient of liquids, we describe a method which renders PhC cavities insensitive to temperature changes in the environment. This is only one example where the fluid-control of optical elements results in a functionality...

  5. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  6. Modeling the effects of a flat wiggler on a storage ring beam

    International Nuclear Information System (INIS)

    Helm, R.H.

    1978-06-01

    The purpose of the present note is to show how the various effects of the wiggler may be modeled in a simple way suitable for use in machine control. It will be seen that in general a total of about 17 functions are involved. However, in typical designs many of these functions vanish identically because of symmetries, and others are neglibly small. Furthermore, each of the functions may be modeled quite accurately by a single power law in (B/sub o//E)/sup n/ where B is a measure of the field excitation. E is the beam energy, and n is an integer which takes on values of either 0, 2, 3, 4, for 5 for the different functions. Magnet saturation may cause the field distribution to vary with excitation so that the series coefficients would vary slowly with B/sub o/. A computer program has been used to obtain numerical results for typical wiggler designs. In practice, the required functions could be determined either by computer analysis of the measured field data, or by experimental calibration using the stored beam in the ring. 9 refs., 3 figs., 11 tabs

  7. Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xun; John, Sajeev [Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7 Canada (Canada)

    2011-11-15

    We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA). The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 {mu}m) QD transition. This excitation controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic and, or, and not operations. Simulation results demonstrate that such operations can be done on picosecond time scales and within a waveguide length of about 10 {mu}m in a photonic-band-gap (PBG) optical microchip.

  8. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides

    Directory of Open Access Journals (Sweden)

    Zhijie Ma

    2017-11-01

    Full Text Available We present a highly sensitive microfluidic sensing technique for the terahertz (THz region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs. By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide’s fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.

  9. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    International Nuclear Information System (INIS)

    Deng Yang; Liu Yuan; Gao Dingshan

    2011-01-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  10. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  11. Analytical expression of giant Goos-Hänchen shift in terms of proper and improper modes in waveguide structures with arbitrary refractive index profile.

    Science.gov (United States)

    Alishahi, Fatemeh; Mehrany, Khashayar

    2010-06-01

    We analytically relate the giant Goos-Hänchen shift, observed at the interface of a high refractive index prism and a waveguide structure with an arbitrary refractive index profile, to the spatial resonance phenomenon. The proximity effect of the high refractive index prism on modal properties of the waveguide is discussed, and the observed shift is expressed in terms of proper and improper electromagnetic modes supported by the waveguide with no prism. The transversely increasing improper modes are shown playing an increasingly important role as the high refractive index prism comes closer to the waveguide.

  12. The disorder effect on the performance of novel waveguides constructed in two-dimensional amorphous photonic materials

    International Nuclear Information System (INIS)

    Chen Xiao; Wang Yi-Quan

    2011-01-01

    On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  14. Hybrid finite element/waveguide mode analysis of passive RF devices

    Science.gov (United States)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  15. Numerical and Experimental Study on Confinement in Y-Shaped Post Wall Branching Waveguide

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2014-01-01

    Full Text Available Post wall waveguides consist of dielectric or metallic cylinders for microwave around 4 GHz were experimentally and numerically investigated. The structure attracts interests for application of transmission circuit for three-dimensionally integrated planar circuit in millimeter wavelength. In straight waveguide with dielectric cylinders, confinement of microwave is poor, when the post wall was composed of a pair of single row of cylinders. The confinement was improved as increase of rows of post wall. In metallic cylinders, microwave was well confined even when a pair of single row of cylinders composed the waveguide. After confirming confinement of the electromagnetic field, Y-shaped branches of post wall waveguide consisted of dielectric cylinders for microwave were similarly investigated for dielectric rods. The confinement was also improved by increase of post wall up to 3 layers. These results are applicable for fundamental design and fabrication of integrated circuit for microwave and millimeter wave.

  16. Relativity and the Tunneling Problem in a “Reduced” Waveguide

    Directory of Open Access Journals (Sweden)

    Eckehard W. Mielke

    2013-01-01

    Full Text Available Wave packets are considered as solutions of the Maxwell equations in a reduced waveguide exhibiting tunneling due to a stepwise change of the index of refraction. We discuss several concepts of “tunneling time” during the propagation of an electromagnetic pulse and analyze their compatibility with standard relativity.

  17. Freeform Phononic Waveguides

    Directory of Open Access Journals (Sweden)

    Georgios Gkantzounis

    2017-11-01

    Full Text Available We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones, both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.

  18. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report

    International Nuclear Information System (INIS)

    Pirkle, D.R.; Alford, C.W.; Anderson, M.H.; Garcia, R.F.; Legarra, J.R.; Nordquist, A.L.

    1989-01-01

    This final report summarizes the design and performance of the VUW-8028 Pierce-Wiggler electron beam systems, which can be used to power high frequency gyro-BWO's. The operator's manual for this gyro-BWO beamstick is included as appendix A. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing a gyro-BWO with a center frequency of 250 GHz, 6% bandwidth, and 10 kV peak output power. The gyro-BWO will be used to drive a free electron laser amplifier at LLNL. The electron beam requirements of the gyro-BWO application are: Small beam size, .100 inch at 2500 gauss axial magnetic field; a large fraction of the electron energy in rotational velocity; ability to vary the electrons' axial velocity easily, for electronic tuning; and low velocity spread i.e. little variation in the axial velocities of the electrons in the interaction region. 1 ref., 13 figs

  19. Self-fields in free-electron lasers with planar wiggler and ion-channel guiding

    International Nuclear Information System (INIS)

    Farokhi, B; Jafary, F B; Maraghechi, B

    2006-01-01

    A theory of self-electric and self-magnetic fields of a relativistic electron beam passing through a one-dimensional planar wiggler and an ion-channel is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analysed. New unstable orbits, in the first part of the group I orbits, are found. It is shown that for a low energy and high density beam the self-fields can produce very large effects. Stabilities of quasi-steady-state orbits are investigated by analytical and numerical methods and perfect agreement was found. The theory of small signal gain is used to derive a formula for the gain with the self-field effects included. A numerical analysis is conducted to study the self-field effects on the quasi-steady-state orbits and the gain

  20. Design Concept of Superconducting Multipole Wiggler with Variably Polarized X-Ray

    International Nuclear Information System (INIS)

    Hwang, C.S.; Chang, C.H.; Li, W.P.; Lin, F.Y.

    2004-01-01

    In response to the growing demand for X-ray research, and to satisfy future needs for generating circularly polarized synchrotron radiation in the X-ray region, a 3.5 T superconducting multipole with a periodic length of 6 cm was designed to produce horizontal linearly polarized, and circularly polarized light on a 1.5 GeV electron storage ring. Differently arranged excitation current loop for the same coil design switched between the operation of symmetric and asymmetric modes to creat the linearly and circularly polarized light, respectively. This study elucidates the design concepts of the superconducting multipole wiggler with symmetric and asymmetric operation modes. The design of the magnetic circuit and the field calculation are also discussed. Meanwhile, the spectra characteristics of the symmetric and asymmetric modes are calculated and presented in this article

  1. Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-05-01

    CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)

  2. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Betz, Michael; Caspers, Fritz [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Institute for Particle Physics Phenomenology, Durham (United Kingdom); Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Semertzidis, Yannis [Brookhaven National Lab., Upton, NY (United States); Sikivie, Pierre [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Zioutas, Konstantin [Patras Univ. (Greece)

    2011-10-15

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  3. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    International Nuclear Information System (INIS)

    Baker, Oliver K.; Jaeckel, Joerg; Lindner, Axel; Ringwald, Andreas; Semertzidis, Yannis; Sikivie, Pierre

    2011-10-01

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  4. Free-electron laser with a plasma wave wiggler propagating through a magnetized plasma channel

    International Nuclear Information System (INIS)

    Jafari, S; Jafarinia, F; Mehdian, H

    2013-01-01

    A plasma eigenmode has been employed as a wiggler in a magnetized plasma channel for the generation of laser radiation in a free-electron laser. The short wavelength of the plasma wave allows a higher radiation frequency to be obtained than from conventional wiggler free-electron lasers. The plasma can significantly slow down the radiation mode, thereby relaxing the beam energy requirement considerably. In addition, it allows a beam current in excess of the vacuum current limit via charge neutralization. This configuration has a higher tunability by controlling the plasma density in addition to the γ-tunability of the standard FEL. The laser gain has been calculated and numerical computations of the electron trajectories and gain are presented. Four groups (I–IV) of electron orbits have been found. It has been shown that by increasing the cyclotron frequency, the gain for orbits of group I and group III increases, while a decrease in gain has been obtained for orbits of group II and group IV. Similarly, the effect of plasma density on gain has been exhibited. The results indicate that with increasing plasma density, the orbits of all groups shift to higher cyclotron frequencies. The effects of beam self-fields on gain have also been demonstrated. It has been found that in the presence of beam self-fields the sensitivity of the gain increases substantially in the vicinity of gyroresonance. Here, the gain enhancement and reduction are due to the paramagnetic and diamagnetic effects of the self-magnetic field, respectively. (paper)

  5. Propagation of SLF/ELF electromagnetic waves

    CERN Document Server

    Pan, Weiyan

    2014-01-01

    This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).

  6. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  7. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  8. Nonlinear performances of dual-pump amplifiers in silicon waveguides

    International Nuclear Information System (INIS)

    Meng Fan; Yu Chong-Xiu; Deng Yun-Yi; Yuan Jin-Hui

    2012-01-01

    The performances of a dual-pump parametric and Raman amplification process and the wavelength conversion in silicon waveguides are investigated. By setting the Raman contribution fraction f to be 0.043 in our analytical model, the amplification gain of the probe signal can be obtained to be over 10 dB. The pump transfer noise (PTN), the quantum noise (QN), and the total noise figure (TNF) are discussed, and the TNF has a constant value of about 4 dB in the gain bandwidth. An idler signal generated during the parametric amplification (PA) process can be used to realize the wavelength conversion in wavelength division multiplexing (WDM) systems. In addition, the pump signal parameters, the generated free carrier lifetime and effective mode area (EMA) of the waveguide are analysed for the optimization of signal gain and noise characteristics. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Tunable Multilayer Graphene Metamaterials for Terahertz/Infrared Waveguide Modulators

    DEFF Research Database (Denmark)

    Khromova, Irina; Andryieuski, Andrei; Lavrinenko, Andrei

    regimes of multilayer graphene-dielectric artificial metamaterials. The interplay between interband and intraband transitions in graphene allows converting the structure into a transparent and/or electromagnetically dense artificial medium. The gate voltage can be used to electrically control...... the concentration of carriers in the graphene sheets and, thus, efficiently change the dispersion of the whole structure. Placed inside a hollow waveguide, a multilayer graphene/dielectric metamaterial provides high-speed modulation and tunable bandpass filtering. The absence of scattered radiation enables dense...... the latter to shift its central frequency by 1:25% per every meV graphene Fermi energy change. We believe that graphene-dielectric multilayer metamaterials will constitute the functional platform for THz-IR waveguide-integrated devices....

  10. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    Science.gov (United States)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  11. Evanescent fields of laser written waveguides

    Science.gov (United States)

    Jukić, Dario; Pohl, Thomas; Götte, Jörg B.

    2015-03-01

    We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.

  12. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  13. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  14. Grating-Coupled Waveguide Cloaking

    International Nuclear Information System (INIS)

    Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect

  15. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  16. Free electron laser with small period wiggler and sheet electron beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.

    1988-01-01

    The use of a small period wiggler (/ell//sub ω/ 2 ). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 μs pulses: electron energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs

  17. Electromagnetic fields and Green functions in elliptical vacuum chambers

    CERN Document Server

    AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department

    2017-01-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...

  18. Optical waveguide theory

    CERN Document Server

    Snyder, Allan W

    1983-01-01

    This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con­ centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goa...

  19. Polymer Waveguide Fabrication Techniques

    Science.gov (United States)

    Ramey, Delvan A.

    1985-01-01

    The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.

  20. Enhanced THz radiation generation by photo-mixing of tophat lasers in rippled density plasma with a planar magnetostatic wiggler and s-parameter

    Science.gov (United States)

    Abedi-Varaki, M.

    2018-02-01

    In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.

  1. Analytic Electron Trajectories in an Extremely Relativistic Helical Wiggler an Application to the Proposed SLAC E166 Experiment.

    CERN Document Server

    ThomasDonohue, John

    2004-01-01

    The proposed experiment SLAC E166 intends to generate circularly polarized gamma rays of energy 10 MeV by passing a 15 GeV electron beam through a meter long wiggler with approximately 400 periods. Using an analytic model formulated by Rullier and me, I present calculations of electron trajectories. At this extremely high energy the trajectories are described quite well by the model, and an extremely simple picture emerges, even for trajectories that that fail to encircle the axis of the wiggler. Our calculations are successfully compared with standard numerical integration of the Lorentz force equations of motion. In addition, the calculation of the spectrum and angular distribution of the radiated photons is easily carried out.

  2. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  3. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  4. MHD waveguides in space plasma

    International Nuclear Information System (INIS)

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-01-01

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  5. Finite-size resonance dielectric cylinder in a rectangular waveguide

    International Nuclear Information System (INIS)

    Chuprina, V.N.; Khizhnyak, N.A.

    1988-01-01

    The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted

  6. Operation of a five-pole superconducting wiggler in the DCI positron ring and design of the beamline

    International Nuclear Information System (INIS)

    Bazin, C.; Dubuisson, J.M.; Labeque, A.; Level, M.P.; Raoux, D.; Sommer, M.; Zyngier, H.; Chomillier, J.; Frouin, J.; Garreau, Y.; Loupias, G.; Tarbes, J.

    1989-01-01

    A five-pole superconducting wiggler has been installed in the DCI positron ring and operated without disturbing the machine characteristics at full energy (1.85 GeV) and maximum current (300 mA). Three beamlines have been built which feed six beam ports. The first two-crystal monochromator to be used for Compton scattering has been commissioned although the sagittal focusing has not yet been tested

  7. Waveguide harmonic damper for klystron amplifier

    International Nuclear Information System (INIS)

    Kang, Y.

    1998-01-01

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper

  8. Black hole in a waveguide: Hawking radiation or self-phase modulation?

    International Nuclear Information System (INIS)

    Smolyaninov, Igor I

    2015-01-01

    Recently it was suggested that Hawking radiation may be observed in a nonlinear electromagnetic waveguide upon propagation of an optical pulse. We show that the spectral characteristics of the Hawking effect in such a waveguide are indistinguishable from the well-known effect of frequency broadening of an optical pulse due to self-phase modulation. Furthermore, we derive an estimate on the critical optical power at which Hawking effect is dominated by the self-phase modulation. It appears that optical experiments reported so far are clearly dominated by self-phase modulation. (paper)

  9. Modeling of Coaxial Slot Waveguides Using Analytical and Numerical Approaches: Revisited

    Directory of Open Access Journals (Sweden)

    Kok Yeow You

    2012-01-01

    Full Text Available Our reviews of analytical methods and numerical methods for coaxial slot waveguides are presented. The theories, background, and physical principles related to frequency-domain electromagnetic equations for coaxial waveguides are reassessed. Comparisons of the accuracies of various types of admittance and impedance equations and numerical simulations are made, and the fringing field at the aperture sensor, which is represented by the lumped capacitance circuit, is evaluated. The accuracy and limitations of the analytical equations are explained in detail. The reasons for the replacement of analytical methods by numerical methods are outlined.

  10. Reactive ion etching of tellurite and chalcogenide waveguides using hydrogen, methane, and argon

    International Nuclear Information System (INIS)

    Vu, K. T.; Madden, S. J.

    2011-01-01

    The authors report in detail on the reactive plasma etching properties of tellurium and demonstrate a high quality etching process using hydrogen, methane, and argon. Very low loss planar ridge waveguides are demonstrated. Optical losses in tellurium dioxide waveguides below 0.1 dB/cm in most of the near infrared region of the electromagnetic spectrum and at 1550 nm have been achieved--the lowest ever reported by more than an order of magnitude and clearly suitable for planar integrated devices. The etch process is also shown to be suitable for chalcogenide glasses which may be of importance in applications such as phase change memory devices and nonlinear integrated optics.

  11. Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials

    DEFF Research Database (Denmark)

    Khromova, Irina; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    This paper studies and classifies the electromagnetic regimes of multilayer graphene-dielectric artificial metamate- rials in the terahertz/infrared range. The employment of such composites for waveguide-integrated modulators is analysed and three examples of novel tunable devices are presented. ...... leads to > 13 . 2 dB modulation depth. The third one is a tunable waveguide-based passband filter. The narrow-band cut-off con- ditions around the ON-state allow the latter to shift its central frequency by 1 . 25% per every meV graphene’s Fermi energy change...

  12. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  13. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  14. Study and realisation of plane optical waveguides in amorphous silica by ion implantation

    International Nuclear Information System (INIS)

    Moutonnet, Danielle

    1974-01-01

    Within the framework of the replacement of radio-electric waves by light waves as support of information transmission in telecommunications, this research thesis addresses the use of ion implantation for the development of small waveguides with low losses. The author first describes how such waveguides can be characterised by studying the propagation of an electromagnetic wave in a plane waveguide, and the different ways to introduce energy in these waveguides. Then, she discusses how the obtained results can be used to determine the main parameters of an optical waveguide, or more generally of a thin transparent layer for a chosen wavelength. In the second part, the author reports the application of this general method to the case of guides obtained by ion implantation. She notably identifies the possibilities of ion implantation as technological tool to develop waveguides, and discusses how the performed experiments allow a better understanding of physical mechanisms occurring during implantation. In this second part, she recalls generally admitted theories about ion implantation, describes experiment principles (implantation of oxygen or nitrogen ions into amorphous silica followed by annealing) and discusses the obtained results (increase of the refraction index, i.e. of the guiding effect, stronger for oxygen than for nitrogen) [fr

  15. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  16. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  17. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    Science.gov (United States)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  18. Design of a High-Throughput Biological Crystallography Beamline for Superconducting Wiggler

    International Nuclear Information System (INIS)

    Tseng, P.C.; Chang, C.H.; Fung, H.S.; Ma, C.I.; Huang, L.J.; Jean, Y.C.; Song, Y.F.; Huang, Y.S.; Tsang, K.L.; Chen, C.T.

    2004-01-01

    We are constructing a high-throughput biological crystallography beamline BL13B, which utilizes the radiation generated from a 3.2 Tesla, 32-pole superconducting multipole wiggler, for multi-wavelength anomalous diffraction (MAD), single-wavelength anomalous diffraction (SAD), and other related experiments. This beamline is a standard double crystal monochromator (DCM) x-ray beamline equipped with a collimating mirror (CM) and a focusing mirror (FM). Both the CM and FM are one meter long and made of Si substrate, and the CM is side-cooled by water. Based on detailed thermal analysis, liquid nitrogen (LN2) cooling for both crystals of the DCM has been adopted to optimize the energy resolution and photon beam throughput. This beamline will deliver, through a 100 μm diameter pinhole, photon flux of greater than 1011 photons/sec in the energy range from 6.5 keV to 19 keV, which is comparable to existing protein crystallography beamlines from bending magnet source at high energy storage rings

  19. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  20. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...... is heavily dependent on the lattice position of the waveguide and its direction. Our experiments of defect inscription by 2-photon polymerization for the production of straight and bent waveguides in opal templates are reported....

  1. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  2. Light-emitting waveguide-plasmon polaritions

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.

    2012-01-01

    We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency

  3. Theoretical study of the folded waveguide

    International Nuclear Information System (INIS)

    Chen, G.L.; Owens, T.L.; Whealton, J.H.

    1988-01-01

    We have applied a three-dimensional (3-D) algorithm for solving Maxwell's equations to the analysis of foleded waveguides used for fusion plasma heating at the ion cyclotron resonance frequency. A rigorous analysis of the magnetic field structure in the folded waveguide is presented. The results are compared to experimenntal measurements. Optimum conditions for the folded waveguide are discussed. 6 refs., 10 figs

  4. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu

    2007-01-01

    and thickness-modulated gold strips different waveguide components including reflecting gratings can be realized. For applications where polarization is random or changing, metal nanowire waveguides are shown to be suitable candidates for efficient guiding of arbitrary polarized light. Plasmonic waveguides...

  5. Waveguide Phased Array Antenna Analysis and Synthesis

    NARCIS (Netherlands)

    Visser, H.J.; Keizer, W.P.M.N.

    1996-01-01

    Results of two software packages for analysis and synthesis of waveguide phased array antennas are shown. The antennas consist of arrays of open-ended waveguides where irises can be placed in the waveguide apertures and multiple dielectric sheets in front of the apertures in order to accomplish a

  6. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  7. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Lu Hua; Liu Xueming; Wang Guoxi; Mao Dong

    2012-01-01

    We have proposed a novel type of bandpass plasmonic filter consisting of metal–insulator–metal bus waveguides coupled with a series of side-coupled cavities and stub waveguides. The theoretical modeling demonstrates that our waveguide-resonator system performs a plasmonic analogue of electromagnetically induced transparency (EIT) in atomic systems, as is confirmed by numerical experiments. The plasmonic EIT-like response enables the realization of nanoscale bandpass filters with multiple channels. Additionally, the operating wavelengths and bandwidths of our filters can be efficiently tuned by adjusting the geometric parameters such as the lengths of stub waveguides and the coupling distances between the cavities and stub waveguides. The ultracompact configurations contribute to the achievement of wavelength division multiplexing systems for optical computing and communications in highly integrated optical circuits. (paper)

  8. Slow wave structures using twisted waveguides for charged particle applications

    Science.gov (United States)

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  9. Waveguide modes of 1D photonic crystals in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sylgacheva, D. A., E-mail: sylgacheva.darjja@physics.msu.ru; Khokhlov, N. E.; Kalish, A. N.; Belotelov, V. I. [Moscow State University, Physics Department (Russian Federation)

    2016-11-15

    We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.

  10. Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures

    International Nuclear Information System (INIS)

    Iovane, G.; Giordano, P.

    2005-01-01

    In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe

  11. Investigation of the nonlinear effects of Wiggler and undulator fields on the beam dynamics of particle storage rings in the case of DORIS III

    International Nuclear Information System (INIS)

    Decking, W.

    1995-11-01

    In this thesis I analyze the effects of wiggler and undulator magnetic fields on the beam dynamics of electron/positron storage rings. DORIS III, DESY's synchrotron radiation source is taken as an example. Wigglers and undulators are used for the production of synchrotron radiation or to control beam sizes in storage rings. Their introduction in the lattices of storage rings causes some problems due to the strong nonlinearities of the magnetic fields. Therefore a detailed analysis of the particle dynamics under the influence of wiggler magnetic fields and their field errors is necessary. This thesis provides such an analysis. The problem will be attacked analytically, numerically and experimentally. The analytic approach is based on the treatment of the appropriate Hamiltonian with perturbation theory. The magnetic fields are described with a Fourier series, which covers the main characteristics of wiggler and undulator fields. The main effect of wigglers and undulators is the excitation of fourth order synchro-betatron resonances. The description of field errors and other details of the magnetic fields is achieved by integrating over appropriately distributed current sheets. This allows the modeling of different parameters such as magnet pole width, periodicity errors and errors in the field gradients. (orig./WL)ons of motion in the fields calculated with this method can only be integrated numerically. This would be much too slow to be used in particle tracking codes. Therefore a transfer map b

  12. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  13. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    the diffraction limit, i.e., on the nanoscale, while enhancing local field strengths by several orders of magnitude. This unique feature of SPP modes along with ever increasing demands for miniaturization of photonic components and circuits generates an exponentially growing interest to SPP-mediated radiation...... guiding and SPP-based waveguide components. Here we review the current status of this rapidly developing field, starting with a brief presentation of main planar SPP modes, and then describing in detail various SPP-based waveguide configurations that ensure two-dimensional mode confinement. Excitation...

  14. Microwave corrosion detection using open ended rectangular waveguide sensors

    Energy Technology Data Exchange (ETDEWEB)

    Qaddoumi, N.; Handjojo, L.; Bigelow, T.; Easter, J.; Bray, A.; Zoughi, R.

    2000-02-01

    The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulates the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.

  15. The electromagnetic interferent antennae for gravitational waves detection

    International Nuclear Information System (INIS)

    Kulak, A.

    1984-01-01

    An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)

  16. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei

    2007-01-01

    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  17. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1989-01-01

    This is a second year progress report which details the work on the generation of radiation by intense plasma and electromagnetic undulators being carried out at UCLA. The status of the experimental work is described and the future directions are outlined. We have completed the first phase of experiments on the plasma wiggler generation and characterization. Suitability of a null-pinch as a plasma source was investigated in great detail. It is found that a w of a few percent can be excited but there are trapped magnetic fields within null-pinch plasma which hinder the injection of the electrons. A new more uniform and field-free plasma source is now being characterized

  18. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1989-01-01

    This is a second year progress report which details the work on the generation of radiation by intense plasma and electromagnetic undulators being carried out at UCLA. The status of the experimental work is described and the future directions are outlined. We have completed the first phase of experiments on the plasma wiggler generation and characterization. Suitability of a θ-pinch as a plasma source was investigated in great detail. It is found that a w of a few percent can be excited but there are trapped magnetic fields within θ-pinch plasma which hinder the injection of the electrons. A few more uniform and field-free plasma source is now being characterized. 8 refs., 5 figs

  19. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...

  20. Fractal apertures in waveguides, conducting screens and cavities analysis and design

    CERN Document Server

    Ghosh, Basudeb; Kartikeyan, M V

    2014-01-01

    This book deals with the design and analysis of fractal apertures in waveguides, conducting screens and cavities using numerical electromagnetics and field-solvers. The aim is to obtain design solutions with improved accuracy for a wide range of applications. To achieve this goal, a few diverse problems are considered. The book is organized with adequate space dedicated for the design and analysis of fractal apertures in waveguides, conducting screens, and cavities, microwave/millimeter wave applications followed by detailed case-study problems to infuse better insight and understanding of the subject. Finally, summaries and suggestions are given for future work. Fractal geometries were widely used in electromagnetics, specifically for antennas and frequency selective surfaces (FSS). The self-similarity of fractal geometry gives rise to a multiband response, whereas the  space-filling nature of the fractal geometries makes it an efficient element in antenna and FSS unit cell miniaturization. Until now, no e...

  1. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  2. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  3. Glass Waveguides for Periodic Poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    Planar silica-based waveguide devices have been developed for second-harmonic generation by poling with periodic electrodes. We show that detrimental charge transport can occur along interfaces, but with proper choice of fabrication, high-quality devices are obtained....

  4. Waveguides with asymptotically diverging twisting

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David

    2015-01-01

    Roč. 46, AUG (2015), s. 7-10 ISSN 0893-9659 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguide * exploding twisting * Quasi-bounded * Quasi-cylindrical * discrete spectrum Subject RIV: BE - Theoretical Physics Impact factor: 1.659, year: 2015

  5. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  6. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  7. Poling of Planar Silica Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo

    1999-01-01

    UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...

  8. The influence of non-homogenous dielectric material in the waveguide propagation modes

    Directory of Open Access Journals (Sweden)

    Ion VONCILA

    2006-12-01

    Full Text Available The aim of this paper is to indicate the equations of electromagnetic wave in homogenous and non-homogenous dielectric material, estabilising the bundary conditions and solves by FEM the equations of the electromagnetic wave in the rectangular cavity. By numeric simulation of the waveguide in the cavity there have been studied the modifications of both the ways of propagation and the field’s distribution. The non-homogenous mediums afectes the field’s amplitude, obtaining a non-homogenous distribution. Poyting vector of the wave’s transmision, indicates the energetic flux’s concentration in the air besides the dielectric material.

  9. Dispersion relation and growth in a two-stream free electron laser with helical wiggler and ion channel guiding

    International Nuclear Information System (INIS)

    Mehdian, Hassan; Abbasi, Negar

    2008-01-01

    A linear theory of two-stream free electron laser (FEL) with helical wiggler and ion channel guiding is presented. The dispersion relation is obtained with the help of fluid theory and the growth rate is analyzed through the numerical solutions. The considerable enhancement of the growth rate is demonstrated due to the two-stream instability and continuous tuning of peak growth rate ratio, two-stream FEL compared to single-stream FEL, in terms of varying the ion channel frequency is illustrated

  10. Self-generation and management of spin-electromagnetic wave solitons and chaos

    International Nuclear Information System (INIS)

    Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.

    2014-01-01

    Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.

  11. Modeling of the propagation of low-frequency electromagnetic radiation in the Earth’s magnetosphere

    International Nuclear Information System (INIS)

    Lebedev, N. V.; Rudenko, V. V.

    2015-01-01

    A numerical algorithm for solving the set of differential equations describing the propagation of low-frequency electromagnetic radiation in the magnetospheric plasma, including in the presence of geomagnetic waveguides in the form of large-scale plasma density inhomogeneities stretched along the Earth’s magnetic field, has been developed. Calculations of three-dimensional ray trajectories in the magnetosphere and geomagnetic waveguide with allowance for radiation polarization have revealed characteristic tendencies in the behavior of electromagnetic parameters along the ray trajectory. The results of calculations can be used for magnetospheric plasma diagnostics

  12. Design of bandwidth tunable HTS filter using H-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We have developed a bandwidth tuning method for use in high-temperature superconducting (HTS) microstrip filters. Several H-shaped waveguides are placed between the resonators, and the bandwidth is adjusted by changing the switch states of the waveguides. The coupling coefficients between the resonators are controlled by switching the connection or isolation of the center gaps of the waveguides so as to tune the bandwidth. The effects of using this method were evaluated by simulation using a filter composed of 3-pole half-wavelength straight-line resonators with an H-shaped waveguide between each pair and additional electric pads for post-tuning trimming. The filter was designed to have a center frequency of 5 GHz and a bandwidth of 100 MHz by using an electromagnetic simulator based on the moment method. The simulation showed that bandwidth tuning of 150 MHz can be obtained by using H-shaped waveguides to adjust the coupling coefficients. It also showed that using additional electric pads around the feed lines, which was previously shown to be useful for trimming to improve insertion loss after center-frequency tuning, is also useful for bandwidth tuning.

  13. Propagation properties of dielectric-lined hollow cylindrical metallic waveguides for THz waves

    International Nuclear Information System (INIS)

    Huang Binke; Zhao Chongfeng

    2013-01-01

    For the rigorous analysis of the propagation properties of dielectric-lined hollow cylindrical metallic waveguides operating in the THz range of frequencies, the characteristic equation for propagation constants is derived from the electromagnetic field equations and the boundary conditions of the dielectric-lined waveguides. The propagation constant of the dominant hybrid HE 11 mode can be obtained by solving the characteristic equation with the improved Muller method. The classical relaxation-effect model for the conductivity is adopted to describe the frequency dispersive behavior of normal metals for the metallic waveguide wall. For a 1.8 mm bore diameter silver waveguide with the inner surface coated with a 17 μm-thick layer of polystyrene(PS) film, the transmission losses of HE 11 mode can be reduced to the level below 1 dB/m at 1.5-3.0 THz, and the dispersion is relatively small for HE 11 mode. In addition, with the PS film thickness increasing, the transmission losses of HE 11 mode increase first and then decrease for a 2.2 mm bore diameter silver waveguide at 2.5 THz, and the minimum loss can be achieved by adopting the optimum dielectric layer thickness. (authors)

  14. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  15. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  16. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  17. Electromagnetic characteristics of carbon nanotube film materials

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2015-08-01

    Full Text Available Carbon nanotube (CNT possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material. This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method. The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed. It is shown that CNT film exhibits anisotropic electromagnetic characteristic. Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film. For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases. The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 dB to 78 dB in X-band. Stretching process induces the alignment of CNTs. When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity. Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness. This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.

  18. Waveguide evanescent field fluorescence microscopy & its application in cell biology

    Science.gov (United States)

    Hassanzadeh, Abdollah

    are captured and collected during the experiment, permitting time lapse analysis. As a proof of concept, we have monitored the response of cells on the waveguide surface to an external lethal agent. Imaging analysis showed very low photobleaching. Therefore photobleaching can be neglected during the experiments. The effects of secondary patterns (inhomogeneities) in the grating and scratches and inhomogeneities in the wave guiding film on the fluorescence background, ultra-thin film and cell-substrate contact regions image were investigated. In conclusion, we developed and established WEFF microscopy and have visualized and quantified solid thin films thicknesses and cell-substrate contact regions. The achieved low scattering results in an improved signal-to-noise ratio and increased sensitivity. Photobleaching and phototoxicity are largely reduced compared to other microscopy techniques. Therefore imaging can be carried out over extended periods and having better temporal resolution without sample damage, such as effect of external agents on the cell-substrate contact regions. Keywords. Waveguide Evanescent Field Fluorescence Microscopy, Evanescent Field, Ion-exchanged Waveguides, TE modes, TM modes, Electromagnetic Field Distribution, Fluorescence, Microscopy, Optical Waveguides, Imaging, Interface, Triton X-100, Focal Contacts, Close Contacts, Cell-Substrate Contact Regions, Cell-Substrate Separation Distances, Photobleaching, Phototoxicity, Cell-Substrate Interaction, Langmuir-Blodgett Films, Phase Separated Lipid Films, SGG 11 Glass, Resolution, Total Internal Reflection, Total Internal Reflection Fluorescence Microscopy, Osteoblast Cells, Grating Coupling, Prism Coupling, Grating.

  19. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    International Nuclear Information System (INIS)

    Turner, L.R.; Levine, D.; Huang, M.; Papka, M.

    1995-01-01

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed

  20. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...... index of the waveguide substrate less than the refractive index of the medium covering the waveguiding film (n(water) = 1.33). This is opposed to the conventional waveguide geometry, where the substrate is usually glass or polymers with refractive indices of approximate to1.5. The reverse configuration...... are combined with air-grooved polymer supports to form freestanding single-material polymer waveguides of reverse symmetry capable of guiding light....

  1. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  2. Excitation of waves in elastic waveguides by piezoelectric patch actuators

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available for waveguides excited by piezoelectric patch actuators. The waveguide is modelled using specially developed waveguide finite elements. These elements are formulated using a complex exponential to describe the wave propagation along the structure and finite...

  3. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  4. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  5. All silicon waveguide spherical microcavity coupler device.

    Science.gov (United States)

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  6. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  7. Talbot Effect in Three Waveguide Arrays

    International Nuclear Information System (INIS)

    Zhi, Li; Hai-Feng, Zhou; Jian-Yi, Yang; Xiao-Qing, Jiang

    2008-01-01

    By taking the coupling between the non-neighbourhood waveguides into account, the coupling characteristic of three waveguide arrays is analysed. The strong coupling equation of three waveguides is dealt with Laplace transform and LU decomposition. The general field evolution equation is obtained by inversion of the Laplace transform. The results show that the self-imaging conditions (Talbot effect) do not satisfy in general. The theoretical predictions are in good agreement with the BPM simulations. (fundamental areas of phenomenology (including applications))

  8. Dispersion relation and electron acceleration in the combined circular and elliptical metallic-dielectric waveguide filled by plasma

    Science.gov (United States)

    Abdoli-Arani, A.; Montazeri, M. M.

    2018-04-01

    Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.

  9. Interactive visualization system to analyze corrugated millimeter-waveguide component of ECH in nuclear fusion with FDTD simulation

    International Nuclear Information System (INIS)

    Kashima, N; Nakamura, H; Kubo, S; Tamura, Y; Ito, A M

    2014-01-01

    We have simulated distribution of electromagnetic waves through the system composed of miter bends by Finite-Difference Time-Domain (FDTD) simulation. We develop the interactive visualization system using a new interactive GUI system which is composed of the virtual reality system and android tablet to analyze the FDTD simulation. The effect of the waveguide system with grooves have been investigated to quantitatively by visualization system. Comparing waveguide system with grooves and without grooves, grooves have been confirmed to suppress the surface current at the metal surface. The surface current at complex shape such as the miter bend have been investigated

  10. Enhanced Cerenkov second-harmonic generation in a planar nonlinear waveguide that reproduces a one-dimensional photonic bandgap structure

    International Nuclear Information System (INIS)

    Pezzetta, D.; Sibilia, C.; Bertolotti, M.; Ramponi, R.; Osellame, R.; Marangoni, M.; Haus, J. W.; Scalora, M.; Bloemer, M. J.; Bowden, C. M.

    2002-01-01

    Second-harmonic generation in the Cerenkov configuration is investigated under conditions for which the use of a linear grating fabricated on top of the waveguide reproduces a photonic bandgap structure. The fundamental mode of the guide at the fundamental frequency is tuned at the photonic band-edge resonance, thus producing great confinement and enhancement of the electromagnetic field inside the structure. The conversion efficiency achieved in both the forward and the backward directions is at least 1 order of magnitude greater than that of a conventional Cerenkov emission in a waveguide of the same length. An analysis of the tolerances of the grating period on the conversion efficiency is presented

  11. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  12. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  13. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  14. Behavioral and Biological Effects of Resonant Electromagnetic Absorption in Rats.

    Science.gov (United States)

    1976-11-01

    for 23-550 MHz, biological phantom materials to simulate tissue properties, monopole -above-ground radiation chamber, design of a waveguide slot array...Resonant Electromagnetic Power Absorption in Rats" L T OF FTCTIF S A,’L i .LIS SFigure Pa 1 A photograiph of the monopole -above-gruund radiation...and mice without ground effects (L/2b = 3.25 where 21Tb is the "average" circumference of the animals) ........ .................... ... 20 8

  15. Modeling microwave electromagnetic field absorption in muscle tissues

    Science.gov (United States)

    Felbacq, D.; Clerjon, S.; Damez, J. L.; Zolla, F.

    2002-07-01

    Absorption of electromagnetic energy in human tissues is an important issue with respect to the safety of low-level exposure. Simulation is a way to a better understanding of electromagnetic dosimetry. This letter presents a comparison between results obtained from a numerical simulation and experimental data of absorbed energy by a muscle. Simulation was done using a bidimensional double-scale homogenization scheme leading to the effective permittivity tensor. Experimental measurements were performed at 10 GHz on bovine muscle, 30 hours after slaughter, thanks to the open-ended rectangular waveguide method. Results show a good agreement between measurements and simulated data.

  16. Flipping the Electromagnetic Theory classroom

    Science.gov (United States)

    Berger, Andrew J.

    2017-08-01

    Electromagnetic Theory is a required junior-year course for Optics majors at the University of Rochester. This foundational course gives students their first rigorous exposure to electromagnetic vector fields, dipole radiation patterns, Fresnel reflection/transmission coefficients, waveguided modes, Jones vectors, waveplates, birefringence, and the Lorentz model of refractive index. To increase the percentage of class time devoted to student-centered conceptual reasoning and instructor feedback, this course was recently "flipped". Nearly all of the mathematically-intensive derivations were converted to narrated screencasts ("Khan Academy" style) and made available to students through the course's learning management system. On average, the students were assigned two 10-15 minute videos to watch in advance of each lecture. An electronic survey after each tutorial encouraged reflection and counted towards the student's participation grade. Over the past three years, students have consistently rated the videos as being highly valuable. This presentation will discuss the technical aspects of creating tutorial videos and the educational tradeoffs of flipping a mathematically-intensive upper-level course. The most important advantage is the instructor's increased ability to identify and respond to student confusion, via activities that would consume too much time in a lecture-centered course. Several examples of such activities will be given. Two pitfalls to avoid are the temptation for the instructor not to update the videos from year to year and the tendency of students not to take lecture notes while watching the videos.

  17. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  18. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  19. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    Science.gov (United States)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  20. Attenuation in Rectangular Waveguides with Finite Conductivity Walls

    Directory of Open Access Journals (Sweden)

    K. C. Yeong

    2011-06-01

    Full Text Available We present a fundamental and accurate approach to compute the attenuation of electromagnetic waves propagating in rectangular waveguides with finite conductivity walls. The wavenumbers kx and ky in the x and y directions respectively, are obtained as roots of a set of transcendental equations derived by matching the tangential component of the electric field (E and the magnetic field (H at the surface of the waveguide walls. The electrical properties of the wall material are determined by the complex permittivity ε, permeability μ, and conductivity σ. We have examined the validity of our model by carrying out measurements on the loss arising from the fundamental TE10 mode near the cutoff frequency. We also found good agreement between our results and those obtained by others including Papadopoulos’ perturbation method across a wide range of frequencies, in particular in the vicinity of cutoff. In the presence of degenerate modes however, our method gives higher losses, which we attribute to the coupling between modes as a result of dispersion.

  1. Electromagnetic wave propagation in a medium with a progressive sinusoidal fluctuation

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Ito, Akinari

    1984-01-01

    Study was made on the rigorous solutions for electromagnetic waves transmitted and reflected by a medium of finite length with time-space periodic fluctuation, loaded in a rectangular waveguide. When an electromagnetic wave is incident upon the medium modulated in a travelling wave fashion by a pump wave, the reflected and transmitted waves are shifted in frequency by +nω 1 (where n is an integer, ω 1 is the angular frequency of fluctuation). The harmonic level of the reflected waves is much increased as the frequency of the incident wave approaches the cutoff-frequency of TE 10 mode of the rectangular waveguide. Measurement of the spectrum of the reflected waves can be utilized as a diagnosis of even a very slightly fluctuating medium. The theoretical results have been verified on examining experimentally the harmonic level of the microwave reflected by a plasma, weakly modulated (about 10 -4 ) by RF signal and loaded in the WRJ-10 waveguide. (author)

  2. FDTD-analyse of electromagnetic wave propagation through photonic band gap structure

    International Nuclear Information System (INIS)

    Brendel', M.O.; Danilov, V.V.; Makarov, D.G.; Nechiporuk, O.Yu.

    2007-01-01

    FDTD-method for numerical solution of Maxwell's equation has used for investigation of electromagnetic wave transmission through the periodically inhomogeneous planar waveguide. The spectral dependence for transmission factor has obtained. This result compared with the previous one, obtained with approximate analytical calculations

  3. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  4. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  5. Systematic Design of Slow Light Waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen

    it is vulnerable to manufacturing disorders. This thesis aims to design novel waveguides to alleviate signal distortions and propagation loss using optimization methodologies, and to explore the design robustness with respect to manufacturing imperfections. To alleviate the signal distortions in waveguides...

  6. Discontinuities during UV writing of waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc

    2005-01-01

    UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....

  7. Testing Born-Infeld Electrodynamics in Waveguides

    International Nuclear Information System (INIS)

    Ferraro, Rafael

    2007-01-01

    Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior

  8. Fundamental losses in planar Bragg waveguides

    NARCIS (Netherlands)

    Vinogradov, A. V.; Mitrofanov, A. N.; Popov, A. V.; Fedin, M. A.

    2007-01-01

    This paper considers a planar Bragg waveguide. The guided modes and their dissipation due to the fundamental absorption are described. In the interacting-wave approximation, an analytical relation between the characteristics of the modes and parameters of the Bragg-waveguide geometry was

  9. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  10. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver

    2005-01-01

    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...

  11. Stimulated scattering of space-charge waves in a relativistic electron beam by the ion acoustic wave of a plasma waveguide

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Buts, V.A.

    1982-01-01

    The interaction of a relativistic electron beam with a plasma waveguide whose density is modulated by an ion acoustic wave leads to the emission of electromagnetic radiation. The wavelength of the radiation is 2#betta# 2 times shorter than the ion acoustic wavelength. The emission is accompanied by the amplification of the ion acoustic wave. The maximum amplitudes of the excited waves are found

  12. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    International Nuclear Information System (INIS)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-01-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  13. Modular filter design for the white-beam undulator/wiggler beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Brite, C.; Shu, D.; Nian, T.; Wang, Z.; Haeffner, D.; Alp, E.; Kuzay, T.

    1994-01-01

    A new filter has been designed at Argonne National Laboratory that is intended for the use in undulator/wiggler beamlines at the Advanced Photon Source. The water-cooled frame allows up to four individual filter foil banks simultaneously in the beam path. Additionally, the bottom of each frame holds two thin (20 μm) uncooled carbon filters in tandem for low-energy filtering. Therefore, a maximum of 625 filter selection combinations is theoretically possible. The design is intelligent, compact and modular, with great flexibility for the users. To prevent accidental movement of the filter, effort has been taken to provide a mechanically locked, fail-safe actuator system. Programming aspects are under development as part of our general personnel and equipment protection system. Aspects of the design and operational principles of the filter are presented in this paper

  14. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    Science.gov (United States)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-09-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  15. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...... is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β...

  16. Perturbation measurement of waveguides for acoustic thermometry

    Science.gov (United States)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  17. Photonic waveguides theory and applications

    CERN Document Server

    Boudrioua, Azzedine

    2009-01-01

    This book presents the principles of non-linear integrated optics. The first objective is to provide the reader with a thorough understanding of integrated optics so that they may be able to develop the theoretical and experimental tools to study and control the linear and non-linear optical properties of waveguides.The potential use of these structures can then be determined in order to realize integrated optical components for light modulation and generation. The theoretical models are accompanied by experimental tools and their setting in order to characterize the studied phenomenon. Th

  18. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  19. Analytical extraction of leaky modes in circular slab waveguides with arbitrary refractive index profile.

    Science.gov (United States)

    Sarrafi, P; Zareian, N; Mehrany, K

    2007-12-20

    Circular slab waveguides are conformally transformed into straight inhomogeneous waveguides, whereupon electromagnetic fields in the core are expanded in terms of Legendre polynomial basis functions. Thereafter, different analytical expression of electromagnetic fields in the cladding region, viz. Wentzel-Kramers-Brillouin solution, modified Airy function expansion, and the exact field solution for circular waveguides, i.e., Hankel function of complex order, are each matched to the polynomial expansion of the transverse electric field within the guide. This field matching process renders different boundary conditions to be satisfied by the set of orthogonal Legendre polynomial basis functions. In this fashion, the governing wave equation is converted into an algebraic and easy to solve eigenvalue problem, which is associated with a matrix whose elements are analytically given. Various numerical examples are presented and the accuracy of each of the abovementioned different boundary conditions is assessed. Furthermore, the computational efficiency and the convergence rate of the proposed method with increasing number of basis functions are briefly discussed.

  20. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)

    2016-03-11

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  1. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    International Nuclear Information System (INIS)

    Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong

    2016-01-01

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  2. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  3. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  4. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Ravikumar

    2017-09-01

    Full Text Available Brookhaven National Laboratory (BNL has proposed to build an electron ion collider (EIC as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC. A part of the new design is to use superconducting radio frequency (SRF cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  5. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Science.gov (United States)

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; Longtin, Jon

    2017-09-01

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). A part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  6. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  7. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  8. Silicon Photonic Waveguides for Near- and Mid-Infrared Regions

    Science.gov (United States)

    Stankovic, S.; Milosevic, M.; Timotijevic, B.; Yang, P. Y.; Teo, E. J.; Crnjanski, J.; Matavulj, P.; Mashanovich, G. Z.

    2007-11-01

    The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.

  9. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  10. Undulator radiation in a waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-03-15

    We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)

  11. Undulator radiation in a waveguide

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-03-01

    We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)

  12. On the generation of electromagnetic waves in the terahertz frequency range

    International Nuclear Information System (INIS)

    Namiot, V.A.; Shchurova, L.Yu.

    2011-01-01

    It is shown that a thin dielectric plate, which can act as an open dielectric waveguide, it is possible to produce amplification and generation of electromagnetic waves with frequencies in the terahertz range. For this purpose, we propose using a dielectric plate with a corrugated surface, in which case the electric field of the transverse electromagnetic wave in the waveguide has a periodic spatial structure in the local area near to the corrugation. Terahertz electromagnetic waves are excited by a beam of electrons moving in vacuum along the dielectric plate at a small distance from its corrugated surface. Corrugation period is chosen in order to ensure the most effective interaction of the electron beam with the first harmonic of the electric field induced by the corrugation. Amplification and generation of electromagnetic waves propagating in a dielectric waveguide is realized as a result of deceleration of the electron beam by a wave electric field induced by a corrugated dielectric surface in the zone near the corrugation. We discuss possible ways to create electron beams with the desired characteristics. We offer a way to stabilize the beam position above the plate, avoiding the bombardment of the plate by electrons. It is shown that it is possible to significantly increase the efficiency of the device through the recovery of energy that remains in the electrons after their interaction with the wave. -- Highlights: → We propose a scheme of a generator of radio waves in the terahertz range. → This scheme includes a corrugated dielectric plate, which can act as an open waveguide. → A strip electron beam is in vacuum near the dielectric corrugated surface. → Generation is achieved by converting electrons' energy into electromagnetic energy. → The waveguide wave extends perpendicularly to electron motion.

  13. Determination of the Goos-Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum.

    Science.gov (United States)

    Stenmark, Theodore; Word, R C; Könenkamp, R

    2016-02-22

    Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410 nm and 780 nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. The electromagnetic field interaction at the boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.

  14. Electromagnetic launchers

    Science.gov (United States)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  15. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  16. Theoretical study of electromagnetic transport in Lepidoptera Danaus plexippus wing scales

    Directory of Open Access Journals (Sweden)

    J. Sackey

    2018-01-01

    Full Text Available This paper examines the electromagnetic energies developed in the scales of the Lepidoptera Danaus plexippus. The Green tensor method was used to calculate and simulate the energies at specific wavelengths. Scattering of electromagnetic waves within the scales was simulated at different wavelengths (λ with the corresponding maximum energy occurred at λ = 0.45 μm. The study shows that the design of wing’s cross-ribs maximizes the eigenmode of electromagnetic energy. This shows promising applications in bio-sensors of Solar light and likewise in waveguide for photonic transmission.

  17. Massive parallel electromagnetic field simulation program JEMS-FDTD design and implementation on jasmin

    International Nuclear Information System (INIS)

    Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li

    2010-01-01

    A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)

  18. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang

    2012-10-22

    We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.

  19. Interference of guiding modes in 'traffic' circle waveguides composed of dielectric spherical particles

    International Nuclear Information System (INIS)

    Polishchuk, I.Ya.; Gozman, M.I.; Samoylova, O.M.; Burin, A.L.

    2009-01-01

    The interference of guiding polariton modes propagating through the waveguide composed of dielectric spherical particles forming a 'traffic' circle docked by two linear entrance and exit chains is investigated. The dependence of intensity of the polariton wave on the position of the particle on the circle was studied using the multisphere Mie scattering formalism. We show that, if the frequency of light belongs to the pass-band of the circular part of this waveguide, the electromagnetic waves may be considered as two optical beams running along the circle in opposite directions and interfering with each other. Indeed, the obtained intensity behavior can be represented as a simple superposition of two waves propagating along the circle in opposite directions. The applications of this interference are discussed

  20. Substrate integrated waveguide (SIW 3 dB coupler for K-Band applications

    Directory of Open Access Journals (Sweden)

    Khalid Nurehansafwanah

    2017-01-01

    Full Text Available This paper presented a designed coupler by using Rogers RO4003C with thickness (h 0.508 mm and relative permittivity (εr 3.55. The four port network coupler operates in K-band (18-27 GHz and design by using substrate integrated waveguide (SIW method. The reflection coefficient and isolation coefficient of propose Substrate Integrated Waveguide (SIW coupler is below than -10 dB. Meanwhile the coupler requirements are phase shift 90° between coupled port and output. SIW are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable for use in microwave and communication electronics, as well as increase bandwidth systems. The designs of coupler are investigated using CST Microwave Studio simulation tool. This proposed couplers are varied from parameters that cover the frequency range (21 -24 GHz and better performance of scattering (S-parameter.

  1. Synthesis and Characterization of Germanium Dioxide - Dioxide Waveguides

    Science.gov (United States)

    Chen, Din-Guo

    theoretical electromagnetic field distribution profiles for a step-index planar waveguide has been calculated and compared to the experimentally measured mode profiles using a near field technique. The nonlinear refractive indices of the sol-gel films (GeO_2-SiO_2 and GeO_2-TiO_2 ) were measured using a THG interferometry fringe technique. The relation between n_{ rm 2THG} and n_1 was found to follow that predicted by the empirical BGO model. An additive model was used to calculate the linear refractive indices, Abbe numbers, and n_1 dispersion curves of the films.

  2. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides.

    Science.gov (United States)

    Kong, Deqing; Tsubokawa, Makoto

    2015-07-27

    We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

  3. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  4. A self-repairing polymer waveguide sensor

    International Nuclear Information System (INIS)

    Song, Young J; Peters, Kara J

    2011-01-01

    This paper presents experimental demonstrations of a self-repairing strain sensor waveguide created by self-writing in a photopolymerizable resin system. The sensor is fabricated between two multi-mode optical fibers via lightwaves in the ultraviolet (UV) wavelength range and operates as a sensor through interrogation of the power transmitted through the waveguide in the infrared (IR) wavelength range. After failure of the sensor occurs due to loading, the waveguide re-bridges the gap between the two optical fibers through the UV resin. The response of the original sensor and the self-repaired sensor to strain are measured and show similar behaviors

  5. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  6. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  7. Sm 3+-doped polymer optical waveguide amplifiers

    Science.gov (United States)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  8. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.

    Science.gov (United States)

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-11-10

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.

  9. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  10. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  11. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  12. Progress on erbium-doped waveguide components

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Berendt, Martin Ole; Broeng, Jes

    1997-01-01

    The recent development in erbium-doped fiber amplifiers, and fiber lasers is reviewed. Also the latest results on planar erbium-doped waveguide amplifiers and high erbium concentration characterisation methods are presented...

  13. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  14. Low-index discontinuity terahertz waveguides

    Science.gov (United States)

    Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich

    2006-10-01

    A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

  15. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  16. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    Science.gov (United States)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  17. Hybrid numerical calculation method for bend waveguides

    OpenAIRE

    Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno

    2017-01-01

    National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...

  18. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  19. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  20. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  1. Transmission of infrared radiation through cylindrical waveguides

    International Nuclear Information System (INIS)

    Nucara, A.; Dore, P.; Calvani, P.; Cannavo', D.; Marcelli, A.

    1998-01-01

    Measurement of the transmittance of infrared radiation (v -1 ) through cylindrical waveguides are presented and discussed. The experimental results are compared with numerical simulations, obtained through conventional ray tracing programs. Finally, it' estimated the transmittance of a waveguide in the case of an infrared synchrotron radiation source. Are applied the results to the case of the DAΦNE collider, where a synchrotron radiation beamline for the far infrared is under construction

  2. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    International Nuclear Information System (INIS)

    Fawley, William; Vay, Jean-Luc

    2010-01-01

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma 2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the 'standard' eikonal FEL simulation approach.

  3. Concept of ceramics-free coaxial waveguide

    International Nuclear Information System (INIS)

    Arai, Hiroyuki

    1994-01-01

    A critical key point of the ITER IC antenna is ceramics support of an internal conductor of a coaxial antenna feeder close to the plasma, because dielectric loss tangent of ceramics enhanced due to neutron irradiation limits significantly the antenna injection power. This paper presents a ceramics-free waveguide to overcome this problem by a T-shaped ridged waveguide with arms for the mechanical support. This ridged waveguide has a low cutoff frequency for its small cross section, which has been proposed for the conceptual design study of Fusion Experimental Reactor (FER) IC system and the high frequency supplementary IC system for ITER. This paper presents the concept of ceramics-free coaxial waveguide consisting of the coaxial-line and the ridged waveguide. This paper also presents the cutoff frequency and the electric field distribution of the ridged waveguide calculated by a finite element method and an approximate method. The power handling capability more than 3 MW is evaluated by using the transmission-line theory and the optimized antenna impedance considering the ITER plasma parameters. We verify this transmission-line model by one-tenth scale models experimentally. (author)

  4. Linear and nonlinear properties of segmented waveguides

    International Nuclear Information System (INIS)

    Katz, M.

    1998-07-01

    This dissertation deals with Periodically Segmented Waveguides (PSW), which are applied on KTiOP0 4 (KTP) crystals, by chemical ion-exchange process. In these waveguides, the crystal polarity and refractive index are periodically modulated to obtain Quasi Phase Matching (QPM) between the fundamental and second-harmonic waves. PSW is a relatively new optical device which exhibits unique optical properties in comparison with a continuous waveguide. The possibility of utilizing the KTP-PSW as a compact, cw, blue-violet, source by doubling infra-red light, is the main motivation for studying the optical properties of KTP segmented waveguides. Nevertheless, much attention in this work is also given to the study of linear optical properties of KTP-PSW, most of which, to my best knowledge, has not been studied yet. Controlling and understanding the linear optical properties of KTP-PSW, are required, for applying the PSW as an optical device by its own, and for control and characterization of the non-linear optical properties of the waveguide. In this work the dependence of the linear optical properties of KTP-PSW on geometrical parameters (period size, duty cycle and waveguide width) were studied. The experimental measured parameters include the PSW near field and the Bragg reflections, which appear due lo the grating structure of the waveguide. The possibility of controlling the wavelength and intensity, of the segmented waveguide Bragg reflections of regular period and super-period, is shown theoretically and experimentally. An unexpected dependence was found, by the experimental measurement, between the index profile and the ion-exchanged segment area,. The segmented waveguide dispersion curve, n eff (λ) in the infra-red region was found, A main part of the research work is dedicated to the study of nonlinear characteristics of PSW. The different factors, which effect the Second Harmonic Generation (SHG), are measured experimentally and analyzed. The experimental

  5. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  6. High frequency electromagnetic characterization of NEG properties for the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Zannini, C

    2014-01-01

    Coating materials will be used in the CLIC damping rings (DR) to suppress two-stream effects. In particular, NEG coating is necessary to suppress fast beam ion instabilities in the electron damping ring (EDR). The electromagnetic (EM) characterization of the material properties up to high frequencies is required for the impedance modeling of the CLIC DR components. The EM properties for frequencies of few GHz are determined with the waveguide method, based on a combination of experimental measurements of the complex transmission coefficient S21 and CST 3D EM simulations. The results obtained from a NEG-coated copper (Cu) waveguide are presented in this paper.

  7. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  8. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  9. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  10. Excitation of THz hybrid modes in an elliptical dielectric rod waveguide with a cold collisionless unmagnetized plasma column by an annular electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Z., E-mail: z.rahmani@kashanu.ac.ir; Safari, S. [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Heidari-Semiromi, E. [Department of Condense Matter, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-06-15

    The dispersion relation of electromagnetic waves propagating in an elliptical plasma waveguide with a cold collisionless unmagnetized plasma column and a dielectric rod is studied analytically. The frequency spectrum of the hybrid waves and the growth rate for excitation of the waves by a thin annular relativistic elliptical electron beam (TAREEB) is obtained. The effects of relative permittivity constant of dielectric rod, geometrical dimensions, plasma frequency, accelerating voltage, and current density of TAREEB on the growth rate and frequency spectra of the waveguide will be investigated.

  11. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  12. Thermo-mechanical analysis of a user filter assembly for undulator/wiggler operations at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Nian, H.L.T.; Kuzay, T.M.; Collins, J.; Shu, D.; Benson, C.; Dejus, R.

    1996-01-01

    This paper reports a thermo-mechanical study of a beamline filter (user filter) for undulator/wiggler operations. It is deployed in conjunction with the current commissioning window assembly on the APS insertion device (ID) front ends. The beamline filter at the Advanced Photon Source (APS) will eventually be used in windowless operations also. Hence survival and reasonable life expectancy of the filters under intense insertion device (ID) heat flu are crucial to the beamline operations. To accommodate various user requirements, the filter is configured to be a multi-choice type and smart to allow only those filter combinations that will be safe to operate with a given ring current and beamline insertion device gap. However, this paper addresses only the thermo-mechanical analysis of individual filter integrity and safety in all combinations possible. The current filter design is configured to have four filter frames in a cascade with each frame holding five filters. This allows a potential 625 total filter combinations. Thermal analysis for all of these combinations becomes a mammoth task considering the desired choices for filter materials (pyrolitic graphite and metallic filters), filter thicknesses, undulator gaps, and the beam currents. The paper addresses how this difficult task has been reduced to a reasonable effort and computational level. Results from thermo-mechanical analyses of the filter combinations are presented both in tabular and graphical format

  13. Second harmonic generation by a relativistic annular electron beam propagating through a cylindrical waveguide

    International Nuclear Information System (INIS)

    Yasumoto, Kiyotoshi; Abe, Hiroshi

    1983-01-01

    The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)

  14. Studying Lorentz-violating electromagnetic waves in confined media

    International Nuclear Information System (INIS)

    Viana, Davidson R.; Gomes, Andre H.; Fonseca, Jakson M.; Moura-Melo, Winder A.

    2009-01-01

    Full text. Planck energy scale is still far beyond current possibilities. A question of interest is whether the Lorentz symmetry remains valid at these extremely high energies, whose answer certainly would be useful whenever building grand unified theories, in which general relativity is consistently accommodated. Here, we study a reminiscent of this possible symmetry violation, incorporated in the body of the so-called Standard Model Extension (SME). More precisely, we deal with the pure (Abelian) gauge sector, so that we have a modified classical electromagnetism in (3+1) dimensions, whose Lagrangian include a term proportional to a (constant) background tensor that breaks the Lorentz symmetry, but respecting CPT. Our attention is devoted to the wave-like solutions constrained to propagate inside confined media, like waveguides and resonant cavities. Our preliminary findings indicate that Lorentz-breaking implies in modifications of the standard results which are proportional to the (very small) violating parameters, but could be largely enhanced by diminishing the size of the confined media. Under study is the case of a toroidal cavity where the electromagnetic field should respect the additional requirement of being single-valued in the (toroidal) angular variable. Perhaps, such an extra feature combined with the usual boundary conditions could lead us to large effects of this violation, somewhat similar to those predicted for CPT- and Lorentz-odd electromagnetic waves constrained to propagate along a hollow conductor waveguide. (author)

  15. Evanescent Waveguide Apparatus and Method for Measurement of Dielectric Constant

    National Research Council Canada - National Science Library

    Tonn, David A

    2005-01-01

    .... In one embodiment, a metal septum is inserted between two samples of the unknown material to thereby reduce the cross-sectional area of the waveguide aperture by splitting width a of the rectangular waveguide in half...

  16. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed; Niver, Edip

    2011-01-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes

  17. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu

    2017-01-01

    and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...

  18. Spatial mode discriminator based on leaky waveguides

    Science.gov (United States)

    Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian

    2018-06-01

    We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.

  19. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-06

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  20. Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates.

    Science.gov (United States)

    Skorobogatiy, Maksim; Jacobs, Steven; Johnson, Steven; Fink, Yoel

    2002-10-21

    Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.

  1. Transient analysis of cutoff waveguide antenna in three-dimensional space

    International Nuclear Information System (INIS)

    Kashiwa, Tatsuya; Yoshida, Norinobu; Fukai, Ichiro

    1986-01-01

    Recently, the exciting system for electric power heating as seen in nuclear fusion plasma heating and medical purpose has been actively studied and developed. Since such system treats basically a neighborhood field, various problems unlike conventional exciting system for communication arise. In such situation, the structure having the waveguides of simple and robust construction as the main body has been proposed. In this exciting system including the condition of media, the complex distribution of a neighborhood field based on a three-dimensional structure exerts an important effect on the characteristics. Especially in large power excitation, the higher mode of relatively small power distribution cannot be neglected. Besides, also a transient field distribution exerts an important effect on the characteristics, and the time response analysis is required. In this analysis, by the three-dimensional time response analysis method using Bergeron method, the unified analysis of the total system comprising a cutoff waveguide, a coaxial exciting part and a heating region was carried out for determining a radiation neighborhood electromagnetic field by a cutoff waveguide antenna. (Kako, I.)

  2. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-01

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  3. High gain free electron laser at ETA

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Prosnitz, D.; Halbach, K.

    1983-01-01

    A single pass, tapered electron wiggler and associated beam transport has been constructed at the Experimental Test Accelerator (ETA) at Lawrence Livermore National Laboratory (LLNL). The system is designed to transport 1 kA of 4.5 MeV electrons with an emittance of 30 millirad-cm. The planar wiggler is provided by a pulsed electromagnet. The interaction region is an oversized rectangular waveguide. Quadrupole fields stabilize the beam in the plane parallel to the wiggler field. The 3 meter long wiggler has a 9.8 cm period. The Free Electron Laser (FEL) will serve as an amplifier for input frequencies of 35 GHz and 140 GHz. The facility is designed to produce better than 500 Megawatts peak power

  4. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...

  5. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    International Nuclear Information System (INIS)

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun

    2014-01-01

    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide

  6. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  7. Utilization of optical waveguides in dosimetry

    International Nuclear Information System (INIS)

    Darikova, A.; Vanickova, M.; Matejec, V.; Pospisilova, M.

    1994-01-01

    Some optical waveguides used for communication purposes are very sensitive to ionizing radiation.Ionizing radiation radiation affects the optical waveguides by creating color centers that are responsible for the transmission loss.This transmission loss is the function of wavelength of the passing light. The dose of ionizing radiation will manifest itself not only in the magnitude of the transmission loss value but even in changing the position of maximum of the transmission loss curve with respect to the wavelength. The position of the maximum is stable in time and temperature and independent of dose rate. The study of effects of ionizing radiation on the optical waveguides leads to the possibility of utilizing them not only as sensors of ionizing radiation but even as a dosimeters. 4 figs., 2 refs. (author)

  8. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  9. Ultra-compact plasmonic waveguide modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia

    of developing new material platforms for integrated plasmonic devices. Furthermore, novel plasmonic materials such as transparent conductive oxides and transition metal nitrides can offer a variety of new opportunities. In particular, they offer adjustable/tailorable and nonlinear optical properties, dynamic...... modulators based on ultra-compact waveguides with different active cores. Plasmonic modulators with the active core such as indium phosphides or ferroelectrics sandwiched between metal plates have promising characteristics. Apart from the speed and dimensions advantages, the metal plates can serve...... as electrodes for electrical pumping of the active material making it easier to integrate. Including an additional layer in the plasmonic waveguide, in particular an ultrathin transparent conductive oxide film, allows the control of the dispersive properties of the waveguide and thus the higher efficiency...

  10. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  11. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  12. Transmission of electromagnetic waves through sub-wavelength channels

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-ε isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel...... without being cut off, as if it has just passed through the original empty waveguide. Both the magnitude and phase information of the EM fields can be effectively restored after passing this channel, regardless of the polarization of the incoming wave. The performance of this subwavelength channel, which...

  13. Fully relativistic free-electron laser in a completely filled waveguide

    International Nuclear Information System (INIS)

    Farokhi, B.; Abdykian, A.

    2005-01-01

    An analysis of the azimuthally symmetrical, high frequency eigenmodes of a cylindrical metallic waveguide completely filled with a relativistic magnetized plasma is presented. A relativistic nonlinear wave equation is derived in a form which includes the coupling of EH and HE modes due to the finite axial magnetic field. Relativistic equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical analysis is conducted to study the relativistic dispersion curves of various modes as a function of axial magnetic field B 0 . This treatment is shown that the dispersion curves dependent to γ in low frequency which is ignored in previous work. It is found that in drawn figures shown difference between relativistic and non-relativistic cases. The former each figure is treated for two orbit groups. This study is benefiting to facilities the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguide. (author)

  14. Nanoparticle sorting in silicon waveguide arrays

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  15. Bidirectional waveguide coupling with plasmonic Fano nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui; Decker, Manuel, E-mail: manuel.decker@anu.edu.au; Staude, Isabelle; Neshev, Dragomir N.; Kivshar, Yuri S. [Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-08-04

    We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing.

  16. Poling of UV-written Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Hübner, Jörg

    1999-01-01

    We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months......We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months...

  17. Chaotic behavior of a quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)

    2013-02-15

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.

  18. Chaotic behavior of a quantum waveguide

    International Nuclear Information System (INIS)

    Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.

    2013-01-01

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system

  19. Experimental investigations on channelized coplanar waveguide

    Science.gov (United States)

    Simons, Rainee N.; Ponchak, George E.; Martzaklis, Konstantinas S.; Romanofsky, Robert R.

    1990-01-01

    A new variant of coplanar waveguide (CPW) which was termed channelized coplanar waveguide (CCPW) is presented. Measured propagation characteristics for CCPW such as epsilon(eff) and unloaded Q as a function of geometrical parameters and frequency are presented. The measured and modeled epsilon(eff) are also compared. Equivalent circuit model element values are presented for a CCPW open circuit and a CCPW right angle bend. A CCPW matched T-junction, matched 1:3 junction, and a novel coax-to-CCPW in-phase, N-way, radial power divider are also demonstrated.

  20. Cascaded Quadratic Soliton Compression in Waveguide Structures

    DEFF Research Database (Denmark)

    Guo, Hairun

    between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong......-phase-matching technology is not necessarily needed. In large-RI-changed waveguides, CQSC is extended to the mid-infrared range to generate single-cycle pulses with purely nonlinear interactions, since an all-normal dispersion profile could be achieved within the guidance band. We believe that CQSC in quadratic waveguides...

  1. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  2. Effect of patterns and inhomogeneities on the surface of waveguides used for optical waveguide lightmode spectroscopy applications

    DEFF Research Database (Denmark)

    Horvath, R.; Voros, J.; Graf, R.

    2001-01-01

    It has been found that patterns acid inhomogeneities on the surface of the waveguide used fur optical waveguide lightmode spectroscopy applications can produce broadening and fine structure in the incoupled light peak spectra. During cell spreading on the waveguide, a broadening of the incoupling...

  3. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  4. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  5. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  6. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  7. Three-dimensional analysis of a vacuum window connected to waveguide

    International Nuclear Information System (INIS)

    Nakatsuka, H.; Yoshida, N.

    1988-01-01

    Recently, as the experimental tokamak-type system for nuclear fusion has become larger, the additional heating system by microwave power has become more and more important. In this heating system the pillbox-type vacuum window is arranged for isolation, but discharge by local concentration of the electric field and destruction by local heating in this window are becoming serious problems. So far designing the system of the vacuum window and deciding on the matching condition, it is indispensable to know exactly the characteristics of the electromagnetic field. But the electromagnetic field inside such a system is very complicated because of its three-dimensional structure with various medium conditions. For the analysis of this complicated field numerical methods are generally known to be useful. The analysis by Bergeron's method has been shown to be effective for problems of this type involving complex boundary and medium conditions in three-dimensional space. In this paper, the authors show Bergeron's formulation of the pillbox-type vacuum window system and the fundamental characteristics of the electromagnetic field within this system. For an effective additional heating system in the experimental tokamak-type system the pillbox-type vacuum window is proposed to isolate each part. In this paper, the authors describe Bergeron's formulation of the pillbox-type vacuum window connected to cylindrical waveguides and show the fundamental characteristics of the electromagnetic field within this system

  8. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  9. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    International Nuclear Information System (INIS)

    Hyodo, K.; Ando, M.; Oku, Y.; Yamamoto, S.; Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y.; Tada, J.

    1998-01-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper

  10. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, K.; Ando, M. [High Energy Accelerator Research Organization, Inst. of Material Structure Sciences, Tsukuba (Japan); Oku, Y.; Yamamoto, S. [Graduated School for Advanced Sciences, Tsukuba (Japan); Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y. [The Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Tada, J. [The Univ. of Tsukuba, Inst. of Basic Medical Sciences, Tsukuba (Japan)

    1998-05-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper. 18 refs.

  11. Coaxial waveguide mode reconstruction and analysis with THz digital holography.

    Science.gov (United States)

    Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan

    2012-03-26

    Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.

  12. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  13. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  14. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    Science.gov (United States)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  15. Spatially variant periodic structures in electromagnetics

    Science.gov (United States)

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  16. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Directory of Open Access Journals (Sweden)

    Bruno Bureau

    2009-09-01

    Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.

  17. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...

  18. Finite mode analysis through harmonic waveguides

    NARCIS (Netherlands)

    Alieva, T.; Wolf, K.B.

    2000-01-01

    The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part

  19. Planar optical waveguide sensor of ammonia

    Science.gov (United States)

    Sarkisov, Sergey S.; Curley, Michael J.; Boykin, Courtney; Diggs, Darnell E.; Grote, James G.; Hopkins, Frank K.

    2004-12-01

    We describe a novel sensor of ammonia based on a planar optical waveguide made of a thin film of polymer polyimide doped with indicator dye bromocresol purple. The film of dye-doped polyimide demonstrated reversible increase of absorption with a peak near 600 nm in response to presence of ammonia in ambient air. Coupling of input and output optic fibers with the waveguide was done by means of coupling prisms or coupling grooves. The latter configuration has the advantage of low cost, less sensitivity to temperature variation, and the possibility of coupling from both sides of the waveguide. Special experimental setup was built to test the sensor. It included test gas chamber with sealed optic fiber feed-throughs, gas filling line, laser source, photodetector, and signal processing hardware and software. The sensor was capable of detecting 100 ppm of ammonia in air within 8 seconds. Further increase of sensitivity can be achieved by adding more dye dopant to the polymer, increase of the length of the waveguide, and suppression of noise. Overexposure of the sensor to more than 5000 ppm of ammonia led to the saturation of the polymer film and, as a result, significant decrease of sensitivity and increase of the response time. The sensor can be used as low cost component of a distributed optical network of chemical sensors for monitoring presence of hazardous industrial pollutants in air.

  20. Chaotic waveguide-based resonators for microlasers

    Czech Academy of Sciences Publication Activity Database

    Méndez-Bermúdez, J. A.; Luna-Acosta, G. A.; Šeba, Petr; Pichugin, K. N.

    2003-01-01

    Roč. 67, č. 16 (2003), 161104/1-161104/4 ISSN 0163-1829 Institutional research plan: CEZ:AV0Z1010914 Keywords : waveguide * laser * resonators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  1. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  2. Planned waveguide electric field breakdown studies

    International Nuclear Information System (INIS)

    Wang Faya; Li Zenghai

    2012-01-01

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  3. Novel concepts for terahertz waveguide spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    . With such waveguides we demonstrate that it is possible to perform quantitative spectroscopy on very small volumes of sample material inside the PPWG. Using continuous-wave as well as femtosecond excitation we inject carriers into semiconductor material in the transparent PPWG, and perform static as well as transient...

  4. Ka-band waveguide rotary joint

    KAUST Repository

    Yevdokymov, Anatoliy; Sirenko, Kostyantyn; Kryzhanovskiy, Volodymyr; Pazynin, Vadim

    2013-01-01

    The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three

  5. Femtosecond laser written waveguides deep inside silicon.

    Science.gov (United States)

    Pavlov, I; Tokel, O; Pavlova, S; Kadan, V; Makey, G; Turnali, A; Yavuz, Ö; Ilday, F Ö

    2017-08-01

    Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 μm. To this end, we use 350 fs long, 2 μJ pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The position of the beam is accurately controlled with pump-probe imaging during fabrication. Waveguides that were 5.5 mm in length and 20 μm in diameter were created by scanning the focal position along the beam propagation axis. The fabricated waveguides were characterized with a continuous-wave laser operating at 1.5 μm. The refractive index change inside the waveguide was measured with optical shadowgraphy, yielding a value of 6×10 -4 , and by direct light coupling and far-field imaging, yielding a value of 3.5×10 -4 . The formation mechanism of the modification is discussed.

  6. Hardy Inequalities in Globally Twisted Waveguides

    Czech Academy of Sciences Publication Activity Database

    Briet, Ph.; Hammedi, H.; Krejčiřík, David

    2015-01-01

    Roč. 105, č. 7 (2015), s. 939-958 ISSN 0377-9017 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguides * twisted tubes * Dirichlet Laplacian * Hardy inequality Subject RIV: BE - Theoretical Physics Impact factor: 1.517, year: 2015

  7. Comb-like optical transmission spectrum resulting from a four-cornered two-waveguide-connected network

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiangbo, E-mail: xbyang@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China); Song, Huanhuan [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Liu, Timon Chengyi [School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China)

    2013-12-06

    In this Letter a four-cornered two-waveguide-connected network (FCTWCN) is proposed to generate comb-like optical transmission spectrum, where nearest-neighbor nodes are connected by two segments of one-dimensional waveguides. We investigate the band structure and transmission spectrum of electromagnetic waves propagating through FCTWCNs and find that the transmission through a FCTWCN exhibits periodic comb-like characteristic and the range, number and width of continuous equidistant frequency bands can be controlled by adjusting the lengths of the two types of segments. The comb-like frequency bands may be useful for the designing of optical switches, optical narrowband filters, high capacity telecommunications, and multichannel filters, etc.

  8. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    Science.gov (United States)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  9. Efficient waveguide coupler based on metal materials

    Science.gov (United States)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  10. A periodic plasma waveguide accelerator

    International Nuclear Information System (INIS)

    Cole, F.T.

    1985-01-01

    The increasing cost of synchrotrons and storage rings has given new interest in the search for new methods of acceleration. The primary goal of this search is very large accelerating fields, because the cost of an accelerator to reach TeV energies is dominated by costs that scale with length. Very large electric fields are possible in plasmas and in lasers and many geometries are being studied that make use of plasmas, lasers, or combinations of them. In a plasma accelerator, the plasma can have several different functions. It may act as a medium for the propagation of accelerating electric-field waves. In addition, these waves may also act as a source of the energy needed to accelerate particles. Accelerators using various waves in plasmas have been built and studied in many laboratories. The device proposed here is an attempt to separate the two functions of providing a medium and providing an energy source. A relatively low-energy electron beam is used as a non-neutral plasma only to make a slow-wave medium for the propagation of an externally generated wave. The wave is a TM electromagnetic wave and the device may be thought of as a conventional electron linear accelerator with the evacuated volume and metallic envelope replaced by the electron beam. A separate second beam, which may be electrons or heavier particles, is accelerated. The application in mind here is a single-pass collider

  11. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  12. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  13. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  14. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  15. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  16. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides

    International Nuclear Information System (INIS)

    Li Zhiyuan; Ho Kaiming

    2003-01-01

    The plane-wave-based transfer-matrix method (TMM) exhibits a peculiar advantage of being capable of solving eigenmodes involved in an infinite photonic crystal and electromagnetic (EM) wave propagation in finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical framework. In addition, this theoretical approach can achieve much improved numerical convergency in solution of photonic band structures than the conventional plane-wave expansion method. In this paper we employ this TMM in combination with a supercell technique to handle two important kinds of three-dimensional (3D) photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed to investigate structures with or without complete 3D optical confinement. The fact that the EM field components investigated in the TMM are collinear with the symmetric axes of the waveguide brings great convenience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The classification of symmetry involved in the guided modes can help people to better understand the coupling of the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides

  17. Nanoscale devices based on plasmonic coaxial waveguide resonators

    Science.gov (United States)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  18. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    Science.gov (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  19. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    International Nuclear Information System (INIS)

    Rodriguez, Ricardo; Lewis, Winston G

    2014-01-01

    Adequately identifying and managing hazards at the workplace can be a tedious task which extends into the realm of uncertainty, probability and prediction models in order to fully comprehend the nature of the hazard. As such, organizations cannot be blamed for knowledge gaps in the training of personnel they contract to ensure a safe and healthy work environment, especially where there are latent hazards. Electromagnetic wave propagation at frequencies in the SAR (specific absorption rate) region is a special concern to authorities involved in setting RF (radiofrequency) and microwave exposure guidelines. Despite that there is no conclusive evidence to suggest that non-ionizing electromagnetic radiation causes adverse health effects other than thermal, no effort should be lost to ensure that workers and the public at large are adequately protected from unnecessary exposure to radiation. Standards however set exposure limits for free space, plane wave propagation but fall short in compiling information on intensities of these waves after they undergo reflection and diffraction from wall surfaces. Waveguide technology has managed to constrain microwaves to remain within set boundaries, with fixed frequencies that force the waves to behave differently to if they were moving in free space. This technology has offered the ability to transport more energy for communication purposes other than transmission lines. The size of a waveguide may be to the order of a few centimetres and can guide RF of wavelengths of the order of centimetres also but what if spaces of larger dimensions are capable of being waveguides and can guide waves of larger wavelengths such as those that correspond to frequencies between 30MHz to 300MHz? Such RF waves belong to the SAR region of the spectrum where strict exposure limits are set for health and safety protection since a standing man acts as a dipole antenna for this radiation and can absorb maximum energy from propagating RF waves. This

  20. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    Science.gov (United States)

    Rodriguez, Ricardo; Lewis, Winston G.

    2014-07-01

    Adequately identifying and managing hazards at the workplace can be a tedious task which extends into the realm of uncertainty, probability and prediction models in order to fully comprehend the nature of the hazard. As such, organizations cannot be blamed for knowledge gaps in the training of personnel they contract to ensure a safe and healthy work environment, especially where there are latent hazards. Electromagnetic wave propagation at frequencies in the SAR (specific absorption rate) region is a special concern to authorities involved in setting RF (radiofrequency) and microwave exposure guidelines. Despite that there is no conclusive evidence to suggest that non-ionizing electromagnetic radiation causes adverse health effects other than thermal, no effort should be lost to ensure that workers and the public at large are adequately protected from unnecessary exposure to radiation. Standards however set exposure limits for free space, plane wave propagation but fall short in compiling information on intensities of these waves after they undergo reflection and diffraction from wall surfaces. Waveguide technology has managed to constrain microwaves to remain within set boundaries, with fixed frequencies that force the waves to behave differently to if they were moving in free space. This technology has offered the ability to transport more energy for communication purposes other than transmission lines. The size of a waveguide may be to the order of a few centimetres and can guide RF of wavelengths of the order of centimetres also but what if spaces of larger dimensions are capable of being waveguides and can guide waves of larger wavelengths such as those that correspond to frequencies between 30MHz to 300MHz? Such RF waves belong to the SAR region of the spectrum where strict exposure limits are set for health and safety protection since a standing man acts as a dipole antenna for this radiation and can absorb maximum energy from propagating RF waves. This

  1. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  2. Synthesis of the Thickness Profile of the Waveguide Layer of the Thin Film Generalized Waveguide Luneburg Lens

    Directory of Open Access Journals (Sweden)

    Ayryan E.A.

    2016-01-01

    Full Text Available A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z with the distribution of the effective refractive index of the waveguide β (y, z is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r and in the form of a cubic spline for Δβ (r.

  3. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  4. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  5. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  6. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    International Nuclear Information System (INIS)

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-01-01

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass

  7. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  8. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R

    2007-01-01

    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  9. Surface enhanced Raman scattering spectroscopic waveguide

    Science.gov (United States)

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  10. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  11. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  12. "Unmanned” optical micromanipulation using waveguide microstructures

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson

    2013-01-01

    be shaped more arbitrarily, engineered light deflection could lead to more control in the resulting motion. We demonstrated this principle with the autonomous translation of bent waveguides though pre-defined light tracks. In our experiment, incoming light makes a near 90 degree turn, hence the resulting......As researchers meet the demands of real world problems, there is a trend for experiments to get multidisciplinary. For example, health monitoring, cell sorting or lab on a chip devices would require optical tools for vision or characterization and engineered fluidic chambers for loading...... that could be microfabricated, the study of how optical forces behave in such structures become useful in the emerging field of optofludics. Recently, we have shown how optically maneuverable tapered waveguide microstructures can augment beam shaping experiments by delivering strongly focused light...

  13. Efficient shortcut techniques in evanescently coupled waveguides

    Science.gov (United States)

    Paul, Koushik; Sarma, Amarendra K.

    2016-10-01

    Shortcut to Adiabatic Passage (SHAPE) technique, in the context of coherent control of atomic systems has gained considerable attention in last few years. It is primarily because of its ability to manipulate population among the quantum states infinitely fast compared to the adiabatic processes. Two methods in this regard have been explored rigorously, namely the transitionless quantum driving and the Lewis-Riesenfeld invariant approach. We have applied these two methods to realize SHAPE in adiabatic waveguide coupler. Waveguide couplers are integral components of photonic circuits, primarily used as switching devices. Our study shows that with appropriate engineering of the coupling coefficient and propagation constants of the coupler it is possible to achieve efficient and complete power switching. We also observed that the coupler length could be reduced significantly without affecting the coupling efficiency of the system.

  14. Figures of merit for surface plasmon waveguides

    Science.gov (United States)

    Berini, Pierre

    2006-12-01

    Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of hree popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

  15. Blood typing using microstructured waveguide smart cuvette.

    Science.gov (United States)

    Zanishevskaya, Anastasiya A; Shuvalov, Andrey A; Skibina, Yulia S; Tuchin, Valery V

    2015-04-01

    We introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e., microstructured waveguides (MSWs). The transmission spectrum of an MSW smart cuvette filled by a specific or nonspecific agglutinating serum depends on the scattering, refractive, and absorptive properties of the blood probe. This concept was proven in the course of a laboratory clinical study. The obtained ratio of the spectral-based discrimination parameter for positive and negative reactions (I+/I-) was found to be 16 for standard analysis and around 2 for used sera with a weak activity.

  16. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  17. Spectra of definite type in waveguide models

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Siegl, Petr

    2017-01-01

    Roč. 145, č. 3 (2017), s. 1231-1246 ISSN 0002-9939 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : spectral points of definite and of type pi * weakly coupled bound states * pertrubations of essential spectrum * PT-symmetric waveguide Subject RIV: BE - Theoretical Physics OBOR OECD: Applied mathematics Impact factor: 0.679, year: 2016

  18. A four waveguide grill experiment in Petula

    International Nuclear Information System (INIS)

    Parlange, F.

    1980-09-01

    A four waveguide grill has been used to launch lower hybrid waves with power up to 300 kW. Reflected power was found to be unexpectedly low after grill conditionning. Effects on a 80 kA, 2.7 Tesla discharge are presented with special emphasis on ion heating. Temperature increase is a linear function of RF power up to 200 kW where saturation occurs

  19. A holographic waveguide based eye tracker

    Science.gov (United States)

    Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng

    2018-02-01

    We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.

  20. Nonlinear optical interactions in silicon waveguides

    Directory of Open Access Journals (Sweden)

    Kuyken B.

    2017-03-01

    Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.