WorldWideScience

Sample records for waveform analysis

  1. Arterial waveform analysis.

    Science.gov (United States)

    Esper, Stephen A; Pinsky, Michael R

    2014-12-01

    The bedside measurement of continuous arterial pressure values from waveform analysis has been routinely available via indwelling arterial catheterization for >50 years. Invasive blood pressure monitoring has been utilized in critically ill patients, in both the operating room and critical care units, to facilitate rapid diagnoses of cardiovascular insufficiency and monitor response to treatments aimed at correcting abnormalities before the consequences of either hypo- or hypertension are seen. Minimally invasive techniques to estimate cardiac output (CO) have gained increased appeal. This has led to the increased interest in arterial waveform analysis to provide this important information, as it is measured continuously in many operating rooms and intensive care units. Arterial waveform analysis also allows for the calculation of many so-called derived parameters intrinsically created by this pulse pressure profile. These include estimates of left ventricular stroke volume (SV), CO, vascular resistance, and during positive-pressure breathing, SV variation, and pulse pressure variation. This article focuses on the principles of arterial waveform analysis and their determinants, components of the arterial system, and arterial pulse contour. It will also address the advantage of measuring real-time CO by the arterial waveform and the benefits to measuring SV variation. Arterial waveform analysis has gained a large interest in the overall assessment and management of the critically ill and those at a risk of hemodynamic deterioration.

  2. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  3. Electronics via waveform analysis

    CERN Document Server

    Craig, Edwin C

    1993-01-01

    The author believes that a good basic understanding of electronics can be achieved by detailed visual analyses of the actual voltage waveforms present in selected circuits. The voltage waveforms included in this text were photographed using a 35-rrun camera in an attempt to make the book more attractive. This book is intended for the use of students with a variety of backgrounds. For this reason considerable material has been placed in the Appendix for those students who find it useful. The Appendix includes many basic electricity and electronic concepts as well as mathematical derivations that are not vital to the understanding of the circuit being discussed in the text at that time. Also some derivations might be so long that, if included in the text, it could affect the concentration of the student on the circuit being studied. The author has tried to make the book comprehensive enough so that a student could use it as a self-study course, providing one has access to adequate laboratory equipment.

  4. Visualization and analysis of lidar waveform data

    Science.gov (United States)

    Olsen, Richard C.; Metcalf, Jeremy P.

    2017-05-01

    LiDAR waveform analysis is a relatively new activity in the area of laser scanning. The work described here is an exploration of a different approach to visualization and analysis, following the structure that has evolved for the analysis of imaging spectroscopy data (hyperspectral imaging). The waveform data are transformed into 3-dimensional data structures that provide xy position information, and a z-coordinate, which is the digitized waveform. This allows for representation of the data in spatial and waveform space, the extraction of characteristic spectra, and the development of regions of interest. This representation allows for the application of standard spectral classification tools such as the maximum likelihood classifier.

  5. Wavelet analysis of the impedance cardiogram waveforms

    Science.gov (United States)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  6. Resolution analysis in full waveform inversion

    NARCIS (Netherlands)

    Fichtner, A.; Trampert, J.

    2011-01-01

    We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic approximat

  7. Doppler flow velocity waveforms in the fetal cardiac outflow tract: Reproducibility of waveform recording and analysis

    NARCIS (Netherlands)

    I.A.L. Groenenberg (Irene); W.C.J. Hop (Wim); J.W. Wladimiroff (Juriy)

    1991-01-01

    markdownabstract__Abstract__ Reproducibility of flow velocity waveform recording and analysis was studied at fetal cardiac level (ductus arteriosus, pulmonary artery and ascending aorta) in 42 normal pregnancies. The flow velocity parameters studied were the peak systolic velocity (PSV),

  8. Multi-waveform classification for seismic facies analysis

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-04-01

    Seismic facies analysis provides an effective way to delineate the heterogeneity and compartments within a reservoir. Traditional method is using the single waveform to classify the seismic facies, which does not consider the stratigraphy continuity, and the final facies map may affect by noise. Therefore, by defining waveforms in a 3D window as multi-waveform, we developed a new seismic facies analysis algorithm represented as multi-waveform classification (MWFC) that combines the multilinear subspace learning with self-organizing map (SOM) clustering techniques. In addition, we utilize multi-window dip search algorithm to extract multi-waveform, which reduce the uncertainty of facies maps in the boundaries. Testing the proposed method on synthetic data with different S/N, we confirm that our MWFC approach is more robust to noise than the conventional waveform classification (WFC) method. The real seismic data application on F3 block in Netherlands proves our approach is an effective tool for seismic facies analysis.

  9. Analysis of a Proposed Two-Frequency Radar Waveform

    Science.gov (United States)

    1974-11-01

    Rice and Dugundji . The waveform at the Input of the detector is u(t) -§ cn cos (UM: + f^) (1) A frequency q called the "midband frequency"is selected...Analysis of Random Noise," Bell Systi Technical Journal. Vol 23, p 81, 1944. 11. J. Dugundji , "Bivelopes and Pre-Envelopes of Real Waveforms," IRE

  10. Waveform Analysis of AE in Composites

    Science.gov (United States)

    Prosser, William H.

    1998-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been developed to evaluate damage mechanisms in the testing of composite materials. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. Much more precise source location can also be obtained in comparison to conventional, threshold crossing arrival time determination techniques. Two successful examples of the application of Modal AE are presented in this work. In the first, the initiation of transverse matrix cracking in cross-ply, tensile coupons was monitored. In these tests, it was documented that the same source mechanism, matrix cracking, can produce widely different AE signal amplitudes dependent on laminate stacking sequence and thickness. These results, taken together with well known propagation effects of attenuation and dispersion of AE signals in composite laminates, cast further doubt on the validity of simple amplitude or amplitude distribution analysis for AE source determination. For the second example, delamination propagation in composite ring specimens was monitored. Pressurization of these composite rings is used to simulate the stresses in a composite rocket motor case. AE signals from delamination propagation were characterized by large amplitude flexural plate mode components which have long signal durations because of the large dispersion of this mode.

  11. Multifocal pattern VEP perimetry: analysis of sectoral waveforms.

    Science.gov (United States)

    Klistorner, A I; Graham, S L

    1999-01-01

    The objective detection of local visual field defects using multi-focal pattern visual evoked potentials (VEP) has recently been described. The individual waveforms show variable polarity in different parts of the visual field due to underlying cortical convolutions. Normal trace arrays were examined to determine if certain areas of similar waveform could be grouped for analysis, while minimising cancellation of data. The VEP was assessed using multi-focal pseudo-randomly alternated pattern stimuli which were cortically scaled in size. Bipolar occipital electrodes were used for recording. Waveforms were compared for different locations within the field up to 25 degrees of eccentricity. Analysis of sectors showing similarly shaped waveforms was performed. Twelve normal subjects were studied. Grouping waveforms by sectors of similar waveform increased the total calculated upper hemifield amplitude by 60%, compared with simple summations of responses for the whole hemifield. The inferior hemifield showed more consistent waveforms throughout, with the amplitude only increasing by 11% with sectoral summation. Intra-subject variability (10.6%) is less for sectors than for individual points (17.3%). Inter-subject amplitude differences are high, calculated at 56% for individual points and 45% for sectors. Due to differences in waveform as a result of underlying cortical anatomy, individual VEP responses from multifocal recordings should be grouped as sectors along the vertical meridian and above and below the horizontal, rather than by hemifields or quadrants. This finding is significant if one is considering within-field grouping strategies similar to the glaucoma hemifield test used in conventional perimetry, or reporting derived overall VEP amplitudes and latencies from a multifocal recording. Large amplitude variations between individuals and small signals from horizontal and upper field seen in single channel recording, still limit the application of this technique as

  12. Quantitative analysis of sensor for pressure waveform measurement

    Directory of Open Access Journals (Sweden)

    Tyan Chu-Chang

    2010-01-01

    Full Text Available Abstract Background Arterial pressure waveforms contain important diagnostic and physiological information since their contour depends on a healthy cardiovascular system 1. A sensor was placed at the measured artery and some contact pressure was used to measure the pressure waveform. However, where is the location of the sensor just about enough to detect a complete pressure waveform for the diagnosis? How much contact pressure is needed over the pulse point? These two problems still remain unresolved. Method In this study, we propose a quantitative analysis to evaluate the pressure waveform for locating the position and applying the appropriate force between the sensor and the radial artery. The two-axis mechanism and the modified sensor have been designed to estimate the radial arterial width and detect the contact pressure. The template matching method was used to analyze the pressure waveform. In the X-axis scan, we found that the arterial diameter changed waveform (ADCW and the pressure waveform would change from small to large and then back to small again when the sensor was moved across the radial artery. In the Z-axis scan, we also found that the ADCW and the pressure waveform would change from small to large and then back to small again when the applied contact pressure continuously increased. Results In the X-axis scan, the template correlation coefficients of the left and right boundaries of the radial arterial width were 0.987 ± 0.016 and 0.978 ± 0.028, respectively. In the Z-axis scan, when the excessive contact pressure was more than 100 mm Hg, the template correlation was below 0.983. In applying force, when using the maximum amplitude as the criteria level, the lower contact pressure (r = 0.988 ± 0.004 was better than the higher contact pressure (r = 0.976 ± 0.012. Conclusions Although, the optimal detective position has to be close to the middle of the radial arterial, the pressure waveform also has a good completeness with

  13. The 1930 Irpinia earthquake: collection and analysis of historical waveforms

    Science.gov (United States)

    Ferrari, G.; Megna, A.; Nardi, A.; Palombo, B.; Perniola, B.; Pino, N.

    2002-12-01

    The 1930 Irpinia earthquake is one of the most destructive events recorded by instruments in Italy. Several large events occurred in the same area before (1456, 1694, 1702, 1732, 1910) and after (1962, 1980, 1983) 1930. It has been hypothesized that significant differences characterized the source geometry. Early work carried out by several authors on macroseismic studies and a single-station waveform analysis, suggests a quasi-strike slip mechanism on an approximately EW-oriented fault plain. Conversely, all the major events in the area display normal fault mechanisms on Apennine-oriented (NW-SE) fault planes. In the present work we have collected about 45 waveforms for the 1930 earthquake, recorded in various European observatories, aiming to find precious hints on source geometry and kinematics. The seismograms have been rasterized, digitized and processed within the framework of the SISMOS project. The study of this earthquake is part of a wider ongoing research program on the 20th century Irpinia earthquakes (1910, 1030, 1962 and 1980) within the collaboration between the TROMOS and SISMOS projects of the National Institute of Geophysics and Volcanology. The search and recovery of the historical recordings is a unique opportunity to shed light upon scientific aspects related to this kind of investigation. Preliminary results about the 1930 earthquake waveform analysis are presented here.

  14. Advanced waveform decomposition for high-speed videoendoscopy analysis.

    Science.gov (United States)

    Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J

    2013-05-01

    This article presents a novel approach to analyze nonperiodic vocal fold behavior of high-speed videoendoscopy (HSV) data. Although HSV can capture true vibrational motions of the vocal folds, its clinical advantage over the videostroboscopy has not widely been accepted. One of the key advantages of the HSV over the videostroboscopy is its ability to capture vocal folds' nonperiodic behavior, which is more prominent in pathological vocal folds. However, such nonperiodicity in the HSV data has not been fully explored quantitatively beyond simple perturbation analysis. This article presents an advanced waveform modeling and decomposition technique for HSV-based waveforms. Waveforms are modeled to have three components: harmonic signal, deterministic nonharmonic signal, and random nonharmonic signal. This decomposition is motivated by the fact that voice disorders introduce signal content that is nonharmonic but carries deterministic quality such as subharmonic or modulating content. The proposed model is aimed to isolate such disordered behaviors as deterministic nonharmonic signal and quantify them. In addition to the model, the article outlines model parameter estimation procedures and a family of harmonics-to-noise ratio (HNR) parameters. The proposed HNR parameters include harmonics-to-deterministic-noise ratio (HDNR) and harmonics-to-random-noise ratio. A preliminary study demonstrates the effectiveness of the extended model and its HNR parameters. Vocal folds with and without benign lesions (Nwith = 13; Nwithout = 20) were studied with HSV glottal area waveforms. All three HNR parameters significantly distinguished the disordered condition, and the HDNR reported the largest effect size (Cohen's d = 2.04).

  15. Strategies for efficient resolution analysis in full-waveform inversion

    Science.gov (United States)

    Fichtner, A.; van Leeuwen, T.; Trampert, J.

    2016-12-01

    Full-waveform inversion is developing into a standard method in the seismological toolbox. It combines numerical wave propagation for heterogeneous media with adjoint techniques in order to improve tomographic resolution. However, resolution becomes increasingly difficult to quantify because of the enormous computational requirements. Here we present two families of methods that can be used for efficient resolution analysis in full-waveform inversion. They are based on the targeted extraction of resolution proxies from the Hessian matrix, which is too large to store and to compute explicitly. Fourier methods rest on the application of the Hessian to Earth models with harmonic oscillations. This yields the Fourier spectrum of the Hessian for few selected wave numbers, from which we can extract properties of the tomographic point-spread function for any point in space. Random probing methods use uncorrelated, random test models instead of harmonic oscillations. Auto-correlating the Hessian-model applications for sufficiently many test models also characterises the point-spread function. Both Fourier and random probing methods provide a rich collection of resolution proxies. These include position- and direction-dependent resolution lengths, and the volume of point-spread functions as indicator of amplitude recovery and inter-parameter trade-offs. The computational requirements of these methods are equivalent to approximately 7 conjugate-gradient iterations in full-waveform inversion. This is significantly less than the optimisation itself, which may require tens to hundreds of iterations to reach convergence. In addition to the theoretical foundations of the Fourier and random probing methods, we show various illustrative examples from real-data full-waveform inversion for crustal and mantle structure.

  16. Vascular waveform analysis of flap-feeding vessels using color Doppler ultrasonography.

    Science.gov (United States)

    Ogino, Akihiro; Onishi, Kiyoshi

    2014-01-01

    We performed vascular waveform analysis of flap-feeding vessels using color Doppler ultrasonography and evaluated the blood flow in the flaps prior to surgery. Vascular waveform analysis was performed in 19 patients. The analyzed parameters included the vascular diameter, flow volume, flow velocity, resistance index, pulsatility index, and acceleration time. The arterial waveform was classified into 5 types based on the partially modified blood flow waveform classification reported by Hirai et al.; in particular, D-1a, D-1b, and D-2 were considered as normal waveforms. They were 4 patients which observed abnormal vascular waveform among 19 patients (D-4 : 1, D-3 : 1, and Poor detect : 2). The case which presented D-4 waveform changed the surgical procedure, and a favorable outcome was achieved. Muscle flap of the case which presented D-3 waveform was partially necrosed. The case which detected blood flow poorly was judged to be the vascular obstruction of the internal thoracic artery. In the evaluation of blood flow in flaps using color Doppler ultrasonography, determination of not only basic blood flow information, such as the vascular distribution and diameter and flow velocity, but also the flow volume, vascular resistance, and arterial waveform is essential to elucidate the hemodynamics of the flap.

  17. Talker identification from analysis of raw complex waveforms

    Science.gov (United States)

    Stokes, Michael A.

    2002-05-01

    Stokes (1996) demonstrated that visual inspection of raw complex waveforms can be used to identify a vowel produced by a talker. This research resulted in the MAS Model of Vowel Perception and Production (Stokes, 1998; http://home.indy.net/~masmodel/). More recently, another experiment extended this work to female talkers as well as male talkers (Stokes, 2001). Together, this research represents the only ongoing comprehensive research involving visual inspection of raw complex waveforms for identifying vowels produced by any talker. As an extension of the work, the present study involves identifying a talker from a waveform display. Unique voice signatures identified from waveform displays are used to identify a talker from a set of 10 talkers in the same way as one would identify a person from fingerprints. In two trials (the word who'd in trial 1 and heed in trial 2), a talker was correctly identified from a set of 10 unique talkers per trial using small visual samples of waveforms and matching it to a waveform sample of the talkers to be identified.

  18. Correcting waveform bias using principal component analysis: Applications in multicentre motion analysis studies.

    Science.gov (United States)

    Clouthier, Allison L; Bohm, Eric R; Rudan, John F; Shay, Barbara L; Rainbow, Michael J; Deluzio, Kevin J

    2017-01-01

    Multicentre studies are rare in three dimensional motion analyses due to challenges associated with combining waveform data from different centres. Principal component analysis (PCA) is a statistical technique that can be used to quantify variability in waveform data and identify group differences. A correction technique based on PCA is proposed that can be used in post processing to remove nuisance variation introduced by the differences between centres. Using this technique, the waveform bias that exists between the two datasets is corrected such that the means agree. No information is lost in the individual datasets, but the overall variability in the combined data is reduced. The correction is demonstrated on gait kinematics with synthesized crosstalk and on gait data from knee arthroplasty patients collected in two centres. The induced crosstalk was successfully removed from the knee joint angle data. In the second example, the removal of the nuisance variation due to the multicentre data collection allowed significant differences in implant type to be identified. This PCA-based technique can be used to correct for differences between waveform datasets in post processing and has the potential to enable multicentre motion analysis studies.

  19. Analysis of Chaotic Waveforms for Application to Active Sonar Systems

    Science.gov (United States)

    1993-06-01

    Noise-Reduced Signal. Figure 4-2. Noise Reduction Power Spectra : (a) Power Spectrum of Lorenz Waveform; (b) Gaussian Noise; (c) Signal Plus Noise; and (d...dimension, theoretic entropy and Lyapunov exponent, are also described for completeness even though they are not used in this study. 2.5.1 Correlation...For each lical center, a data covariance matrix is formed using the nearest neighbors. Singular value decomposition ( SVD ) is then applied to the matrix

  20. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  1. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    CERN Document Server

    Hinder, Ian; Boyle, Michael; Etienne, Zachariah B; Healy, James; Johnson-McDaniel, Nathan K; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoglu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D; Hannam, Mark; Haas, Roland; Hemberger, Daniel A; Husa, Sascha; Kidder, Lawrence E; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O; Marronetti, Pedro; Matzner, Richard A; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W; Teukolsky, Saul A; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef

    2014-01-01

    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the ...

  2. Reference respiratory waveforms by minimum jerk model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anetai, Yusuke, E-mail: anetai@radonc.med.osaka-u.ac.jp; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan); Ota, Seiichi [Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)

    2015-09-15

    Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy

  3. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    Science.gov (United States)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  4. A Review of Intraoperative Goal-Directed Therapy Using Arterial Waveform Analysis for Assessment of Cardiac Output

    Directory of Open Access Journals (Sweden)

    Neil Mehta

    2014-01-01

    Full Text Available Increasing evidence shows that goal-directed hemodynamic management can improve outcomes in surgical and intensive care settings. Arterial waveform analysis is one of the different techniques used for guiding goal-directed therapy. Multiple proprietary systems have developed algorithms for obtaining cardiac output from an arterial waveform, including the FloTrac, LiDCO, and PiCCO systems. These systems vary in terms of how they analyze the arterial pressure waveform as well as their requirements for invasive line placement and calibration. Although small-scale clinical trials using these monitors show promising data, large-scale multicenter trials are still needed to better determine how intraoperative goal-directed therapy with arterial waveform analysis can improve patient outcomes. This review provides a comparative analysis of the different arterial waveform monitors for intraoperative goal-directed therapy.

  5. A review of intraoperative goal-directed therapy using arterial waveform analysis for assessment of cardiac output.

    Science.gov (United States)

    Mehta, Neil; Fernandez-Bustamante, Ana; Seres, Tamas

    2014-01-01

    Increasing evidence shows that goal-directed hemodynamic management can improve outcomes in surgical and intensive care settings. Arterial waveform analysis is one of the different techniques used for guiding goal-directed therapy. Multiple proprietary systems have developed algorithms for obtaining cardiac output from an arterial waveform, including the FloTrac, LiDCO, and PiCCO systems. These systems vary in terms of how they analyze the arterial pressure waveform as well as their requirements for invasive line placement and calibration. Although small-scale clinical trials using these monitors show promising data, large-scale multicenter trials are still needed to better determine how intraoperative goal-directed therapy with arterial waveform analysis can improve patient outcomes. This review provides a comparative analysis of the different arterial waveform monitors for intraoperative goal-directed therapy.

  6. Analysis of Silicon Photomultiplier Detector Waveforms from Cosmic Rays using Digital Signal Processing Techniques

    Science.gov (United States)

    Castro, Juan; Zavala, Favian; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    Silicon photomultiplier detectors exhibit high gain, low operating voltage, are insensitive to magnetic fields, and can detect light at the single photon level, making them very attractive for applications in fields such as particle physics, astrophysics, and medical physics. However, they exhibit effects that may prevent their optimal operation, including thermally induced high dark count rate, after pulse effects, and cross talk produced from photons in nearby pixels. In this presentation, we describe our coincidence setup using two scintillator pads and a Hamamatsu multipixel photon counter (MPPC) to gather cosmic ray produced signal pulses, and our methods of analysis for the detector waveforms. In particular, we discuss our methods of digitization, software implementation of low pass and Gaussian type filters, and the application of a domino ring sampler (DRS4) digitizing board to obtain signal waveforms to determine the operating characteristics for these detectors. Department of Education grant number P031S90007.

  7. Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Maillet Emmanuel

    2015-01-01

    Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.

  8. An Analysis of the Accuracy of Electromechanical Eigenvalue Calculations Based on Instantaneous Power Waveforms Recorded in a Power Plant

    Directory of Open Access Journals (Sweden)

    Piotr Pruski

    2013-12-01

    Full Text Available The paper presents the results of calculating the eigenvalues (associated with electromechanical phenomena of the state matrix of the Polish Power System model on the basis of analysis of simulated and measured instantaneous power disturbance waveforms of generating units in Łaziska Power Plant. The method for electromechanical eigenvalue calculations used in investigations consists in approximation of the instantaneous power swing waveforms in particular generating units with the use of the waveforms being a superposition of the modal components associated with the searched eigenvalues and their participation factors. The hybrid optimisation algorithm consisting of the genetic and gradient algorithms was used for computations.

  9. Analysis of full-waveform LiDAR pulse properties for vegetation discrimination and characterisation

    Science.gov (United States)

    Fieber, K.; Davenport, I.; Ferryman, J.; Gurney, R.; Walker, J.; Hacker, J.

    2012-04-01

    Accurate information about vegetation/forest structure, health and growth is needed in many fields of forest management, environmental planning, resource management, fire risk assessment and soil moisture retrievals. Airborne laser scanning has proven over the last nearly two decades to be an invaluable tool in describing vegetation and providing 3D information about its structure. In particular, the new generation full-waveform laser scanners offer an excellent source of not only accurate XYZ information, but also allow the extraction of additional parameters in the process of light curve analysis and interpretation. This analysis was carried out on full-waveform airborne LiDAR data that was collected with a Riegl LMS-Q560 instrument in the Yanco area (NSW) in Australia. The initial analysis was performed on the data acquired in 2006 during the National Airborne Field Experiment. The way the waveform data was extracted made it impossible for the targets included in the footprint to be geo-coded accurately. Nevertheless it was still possible to analyse the waveforms' shapes. For the purpose of this experiment two test sites were chosen - one very small site covering only a single Eucalyptus tree, and the second over an orange orchard (218m by 110m). Analysis included peaks detection, pulse width calculation and waveforms classification according to the number of peaks present within them. Subsequently, an amplitude-width analysis was carried out, including two-tailed t-tests, histograms and scatter plots. Based on the assumption that the first and middle returns were from vegetation (due to specifics of the sites), it was concluded from the analysis that vegetation returns are wide and weak (wider than emitted pulse). The scatter plots of amplitude versus width according to the pulse type played a crucial role in the analysis - they clearly indicated different 'fingerprints' of vegetation and last return (assumed to be a mixture of vegetation and ground returns

  10. New quantitative aPTT waveform analysis and its application in laboratory management of haemophilia A patients.

    Science.gov (United States)

    Milos, M; Coen Herak, D; Zupancic-Salek, S; Zadro, R

    2014-11-01

    Diagnosis of haemophilia A is usually made by the measurement of factor VIII (FVIII) activity that allows categorization of the disease severity. However, tests that assess global haemostasis may better reflect clinical features and give additional clinically relevant information. The aim of this study was to develop a new quantitative activated partial thromboplastin time (aPTT) waveform analysis and compare it with FVIII activities to find out whether waveform parameters are superior determinants of clinical phenotype. A total of 81 haemophilia A patients divided into two groups (37 severe, 44 non-severe) were included in the study. The control group comprised 101 healthy male volunteers. Quantitative aPTT waveform analysis was performed with Actin FS on BCS (Siemens Healthcare Diagnostics, Marburg, Germany) using three parameters (DELTA, RATIO-1, RATIO-2) obtained from a single aPTT measurement with two evaluation modes. FVIII activities were measured by one-stage clotting and two-stage chromogenic assay. Statistically significant difference (P waveform parameters. Our study revealed parameter DELTA as the best waveform parameter, showing significant correlation with FVIII activities and clinical parameters, and excellent performance for distinguishing between severe and non-severe haemophilia A patients (ROC analysis: sensitivity 97.3%, specificity 93.2%). The results obtained by new quantitative aPTT waveform analysis were superior to those obtained by standard laboratory methods. The simplicity and cost-benefit of the method make this approach a reasonable and promising tool for assessing coagulation in haemophilia A patients.

  11. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    Science.gov (United States)

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound

  12. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Wang Hongyan

    2016-01-01

    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  13. A preliminary investigation into the use of an auditory brainstem response (ABR) simulator for training audiology students in waveform analysis.

    Science.gov (United States)

    Dzulkarnain, Ahmad Aidil Arafat; Wan Mhd Pandi, Wan Mahirah; Wilson, Wayne J; Bradley, Andrew P; Sapian, Faizah

    2014-08-01

    To determine if a computer simulation can be used to improve the ability of audiology students to analyse ABR waveforms. A pretest-posttest, quasi-experimental design was used. All participants completed a pretraining examination of their ability to analyse ABR waveforms, eight hours of ABR analysis training over eight weeks using one of three training modes-manual, simulator or combined manual and simulator training, and a posttraining examination of their ability to analyse ABR waveforms. Fourteen third-year audiology students (13 female, one male, aged 21 to 22 years) participated in this study. Participants who completed the manual or the combined manual and simulator training achieved significantly higher normalized gain scores on their ABR waveform analysis examinations compared to those who completed the simulator training (p audiology students to analyse ABR waveforms were driven primarily by the manual training. The minimal improvements seen in the students who received the simulator training suggest that face-to-face instruction could be required to enhance the ability of audiology students to analyse ABR waveforms.

  14. Estimation of cardiac output and total peripheral resistance in preterm infants by arterial waveform analysis.

    Science.gov (United States)

    Zhang, Ying; Chan, Gregory S H; Tracy, Mark B; Hinder, Murray; Redmond, Stephen J; Savkin, Andrey V; Lovell, Nigel H

    2013-01-01

    This study investigated whether arterial blood pressure waveform analysis could be useful for estimating left ventricular outflow (LVO) and total peripheral resistance (TPR) in preterm infants. A cohort of 27 infants were studied, with 89 measurements of left ventricular outflow (LVO) using Doppler echocardiography and arterial pressure using catheters, performed in 0, 12, 24 and 36 hours after birth. TPR was computed as mean arterial pressure divided by LVO. The diastolic decay rate (1/τ) was obtained via fitting an exponential function to the last one third of each arterial pulse, with the mean rate computed from 50 pulses selected from each infant. This decay rate was considered to be inversely related to TPR while positively related to LVO. The results of regression analysis have confirmed that the diastolic decay rate had significant positive and negative relationships with LVO and TPR respectively(r = 0.383, P = 0.0002 and r = -0.379, P = 0.0002 respectively). These preliminary results demonstrated the potential utility of arterial pressure waveform analysis for estimating LVO and TPR in preterm infants, but more advanced multi-parameter models may be needed to improve accuracy of the estimation.

  15. Two-dimensional waveform analysis in MR elastography of skeletal muscles

    Science.gov (United States)

    Papazoglou, Sebastian; Braun, Jürgen; Hamhaber, Uwe; Sack, Ingolf

    2005-03-01

    A method for direct determination of anisotropic elastic coefficients using two-dimensional shear wave patterns is introduced. Thereby, the symmetry of the wave patterns is approximated by a squared elliptic equation yielding an explicit relation between waveform and elasticity. The method is used to analyse MR elastography wave images of the biceps acquired by a continuous harmonic excitation at the distal tendon of the muscle. Typically V-shaped wave patterns were observed in this type of tissue, which could be well reproduced by the proposed elliptic approximation of the waveform assuming incompressibility and a transverse isotropic model of elasticity. Without additional experiments, the analysis of straightness, slope and interferences of the wave fronts enabled us to deduce two Young's moduli and one shear modulus, which fully describe the anisotropy of the elasticity of muscles. The results suggest strong anisotropy of the living human biceps causing a shear wave speed parallel to the muscle fibres that is approximately four times faster than the perpendicular shear wave speed.

  16. Two-dimensional waveform analysis in MR elastography of skeletal muscles

    Energy Technology Data Exchange (ETDEWEB)

    Papazoglou, Sebastian [Institute of Radiology, Charite-University Medicine Berlin, Humboldt University Berlin, Berlin (Germany); Braun, Juergen [Institute of Medical Informatics, Charite-University Medicine Berlin, Free University Berlin, Berlin (Germany); Hamhaber, Uwe [Institute of Medical Informatics, Charite-University Medicine Berlin, Free University Berlin, Berlin (Germany); Sack, Ingolf [Institute of Radiology, Charite-University Medicine Berlin, Humboldt University Berlin, Berlin (Germany)

    2005-03-21

    A method for direct determination of anisotropic elastic coefficients using two-dimensional shear wave patterns is introduced. Thereby, the symmetry of the wave patterns is approximated by a squared elliptic equation yielding an explicit relation between waveform and elasticity. The method is used to analyse MR elastography wave images of the biceps acquired by a continuous harmonic excitation at the distal tendon of the muscle. Typically V-shaped wave patterns were observed in this type of tissue, which could be well reproduced by the proposed elliptic approximation of the waveform assuming incompressibility and a transverse isotropic model of elasticity. Without additional experiments, the analysis of straightness, slope and interferences of the wave fronts enabled us to deduce two Young's moduli and one shear modulus, which fully describe the anisotropy of the elasticity of muscles. The results suggest strong anisotropy of the living human biceps causing a shear wave speed parallel to the muscle fibres that is approximately four times faster than the perpendicular shear wave speed.

  17. Pseudo waveform inversion and model driven AVO(Amplitude Versus with Offset) analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)

    1995-12-01

    The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. This report consists of two articles. (1) Pseudo waveform inversion: In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. (2) Hessian matrices and multiples: In this article we review the three possible approaches (gradient, Gauss-Newton and full Newton methods). By specifying from the outset implicit, frequency domain, modeling using finite difference or finite element methods, we are able to introduce a new discrete, matrix formalism that considerably simplifies the analysis. (author). 57 refs., 44 figs., 2 tabs.

  18. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis.

    Science.gov (United States)

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-04-22

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface.

  19. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Shanzhi Xu

    2016-04-01

    Full Text Available In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA. Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface.

  20. Performance Analysis of a JTIDS/Link-16-type Waveform Transmitted over Slow, Flat Nakagami Fading Channels in the Presence of Narrowband Interference

    Science.gov (United States)

    2008-12-01

    ANALYSIS OF A JTIDS/LINK-16-TYPE WAVEFORM TRANSMITTED OVER SLOW, FLAT NAKAGAMI FADING CHANNELS IN THE PRESENCE OF NARROWBAND INTERFERENCE by...Performance Analysis of a JTIDS/Link-16-type Waveform Transmitted over Slow, Flat Nakagami Fading Channels in the Presence of Narrowband Interference 6...performance of a JTIDS/Link-16-type waveform in both additive white Gaussian noise (AWGN) and narrowband interference transmitted over a slow, flat Nakagami

  1. A general review of major global coagulation assays: thrombelastography, thrombin generation test and clot waveform analysis.

    Science.gov (United States)

    Lancé, Marcus D

    2015-01-01

    Thrombosis and hemorrhage are major contributors to morbidity and mortality. The traditional laboratory tests do not supply enough information to diagnose and treat patients timely and according to their phenotype. Global hemostasis tests might improve this circumstance. The viscoelastic tests (ROTEM/TEG) demonstrated to ameliorate treatment of acute hemorrhage in terms of decreased amount of transfusion and lowered costs. Thrombin generation measurement is indicative for thrombosis and might also become an important tool in managing hemorrhage. While the clot waveform analysis is less well known it could be of worth in staging sepsis patients, early detection of DIC and also in diagnosis and treatment monitoring of hemophiliac patients. Although in different degree all three methods still need more background, standardization and acceptance before a wide clinical application.

  2. Preliminary performance analysis of the advanced pulse compression noise radar waveform

    Science.gov (United States)

    Govoni, Mark A.; Moyer, Lee R.

    2012-06-01

    Noise radar systems encounter target fluctuation behavior similar to that of conventional systems. For noise radar systems, however, the fluctuations are not only dictated by target composition and geometry, but also by the non-uniform power envelope of their random transmit signals. This third dependency is of interest and serves as the basis for the preliminary analysis conducted in this manuscript. General conclusions are drawn on the implications of having a random power envelope and the impacts it could have on both the transmit and receive processes. Using an advanced pulse compression noise (APCN) radar waveform as the constituent signal, a computer simulation aids in quantifying potential losses and the impacts they might have on the detection performance of a real radar system.

  3. Performance Analysis of a Link-16/JTIDS Compatible Waveform With Noncoherent Detection, Diversity and Side Information

    Science.gov (United States)

    2009-09-01

    Narrowband Waveform over Slow, Flat Nakagami Fading Channels,” Proc. IEEE MILCOM, November 2008. [13] Bernard Sklar, Digital Communications...JTIDS.Link-16-type Waveform Transmitted over Nakagami Fading Channels with Pulsed-Noise Interference,” Proc. IEEE Military Commun. Conf., 2008

  4. Time domain reflectometry waveform analysis with second order bounded mean oscillation

    Science.gov (United States)

    Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...

  5. Arterial waveform analysis in anesthesia and critical care: Theory, practical applications, and use in goal-directed strategies

    NARCIS (Netherlands)

    Montenij, L.J.

    2016-01-01

    Cardiac output and preload are important variables in the hemodynamic optimization of critically ill patients in the operating room and intensive care unit. Arterial waveform analysis (AWA) enables continuous, minimally invasive measurement of CO from an arterial line, and provides dynamic assessmen

  6. Principal component analysis in ground reaction forces and center of pressure gait waveforms of people with transfemoral amputation.

    Science.gov (United States)

    Soares, Denise Paschoal; de Castro, Marcelo Peduzzi; Mendes, Emilia Assunção; Machado, Leandro

    2016-12-01

    The alterations in gait pattern of people with transfemoral amputation leave them more susceptible to musculoskeletal injury. Principal component analysis is a method that reduces the amount of gait data and allows analyzing the entire waveform. To use the principal component analysis to compare the ground reaction force and center of pressure displacement waveforms obtained during gait between able-bodied subjects and both limbs of individuals with transfemoral amputation. This is a transversal study with a convenience sample. We used a force plate and pressure plate to record the anterior-posterior, medial-lateral and vertical ground reaction force, and anterior-posterior and medial-lateral center of pressure positions of 12 participants with transfemoral amputation and 20 able-bodied subjects during gait. The principal component analysis was performed to compare the gait waveforms between the participants with transfemoral amputation and the able-bodied individuals. The principal component analysis model explained between 74% and 93% of the data variance. In all ground reaction force and center of pressure waveforms relevant portions were identified; and always at least one principal component presented scores statistically different (p amputation compared to the able-bodied participants. Principal component analysis reduced the amount of data, allowed analyzing the whole waveform, and identified specific sub-phases of gait that were different between the groups. Therefore, this approach seems to be a powerful tool to be used in gait evaluation and following the rehabilitation status of people with transfemoral amputation. © The International Society for Prosthetics and Orthotics 2015.

  7. Testing continuous earthquake detection and location in Alentejo (South Portugal) by waveform coherency analysis

    Science.gov (United States)

    Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana

    2015-04-01

    In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside

  8. Optimizing spinning time-domain gravitational waveforms for Advanced LIGO data analysis

    CERN Document Server

    Devine, Caleb; McWilliams, Sean T

    2016-01-01

    The Spinning Effective One Body-Numerical Relativity (SEOBNR) series of gravitational wave approximants are among the best available for Advanced LIGO data analysis. Unfortunately, SEOBNR codes as they currently exist within LALSuite are generally too slow to be directly useful for standard Markov-Chain Monte Carlo-based parameter estimation (PE). Reduced-Order Models (ROMs) of SEOBNR have been developed for this purpose, but there is no known way to make ROMs of the full eight-dimensional intrinsic parameter space more efficient for PE than the SEOBNR codes directly. So as a proof of principle, we have sped up the original LALSuite SEOBNRv2 approximant code, which models waveforms from aligned-spin systems, by about 280x. Our optimized code shortens the timescale for conducting PE with this approximant to months, assuming a purely serial analysis, so that even modest parallelization combined with our optimized code will make running the full PE pipeline with SEOBNR codes directly a realistic possibility. A n...

  9. Optimizing spinning time-domain gravitational waveforms for advanced LIGO data analysis

    Science.gov (United States)

    Devine, Caleb; Etienne, Zachariah B.; McWilliams, Sean T.

    2016-06-01

    The spinning effective-one-body-numerical relativity (SEOBNR) series of gravitational wave approximants are among the best available for advanced LIGO data analysis. Unfortunately, SEOBNR codes as they currently exist within LALSuite are generally too slow to be directly useful for standard Markov-chain Monte Carlo-based parameter estimation (PE). Reduced-order models (ROMs) of SEOBNR have been developed for this purpose, but there is no known way to make ROMs of the full eight-dimensional intrinsic parameter space more efficient for PE than the SEOBNR codes directly. So as a proof of principle, we have sped up the original LALSuite SEOBNRv2 approximant code, which models waveforms from aligned-spin systems, by nearly 300x. Our optimized code shortens the timescale for conducting PE with this approximant to months, assuming a purely serial analysis, so that even modest parallelization combined with our optimized code will make running the full PE pipeline with SEOBNR codes directly a realistic possibility. A number of our SEOBNRv2 optimizations have already been applied to SEOBNRv3, a new approximant capable of modeling sources with all eight (precessing) intrinsic degrees of freedom. We anticipate that once all of our optimizations have been applied to SEOBNRv3, a similar speed-up may be achieved.

  10. Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    CERN Document Server

    Aylott, Benjamin; Boggs, William D; Boyle, Michael; Brady, Patrick R; Brown, Duncan A; Brügmann, Bernd; Buchman, Luisa T; Buonanno, Alessandra; Cadonati, Laura; Camp, Jordan; Campanelli, Manuela; Centrella, Joan; Chatterji, Shourov; Christensen, Nelson; Chu, Tony; Diener, Peter; Dorband, Nils; Etienne, Zachariah B; Faber, Joshua; Fairhurst, Stephen; Farr, Benjamin; Fischetti, Sebastian; Guidi, Gianluca; Goggin, Lisa M; Hannam, Mark; Herrmann, Frank; Hinder, Ian; Husa, Sascha; Kalogera, Vicky; Keppel, Drew; Kidder, Lawrence E; Kelly, Bernard J; Krishnan, Badri; Laguna, Pablo; Lousto, Carlos O; Mandel, Ilya; Marronetti, Pedro; Matzner, Richard; McWilliams, Sean T; Matthews, Keith D; Mercer, R Adam; Mohapatra, Satyanarayan R P; Mroué, Abdul H; Nakano, Hiroyuki; Ochsner, Evan; Pan, Yi; Pekowsky, Larne; Pfeiffer, Harald P; Pollney, Denis; Pretorius, Frans; Raymond, Vivien; Reisswig, Christian; Rezzolla, Luciano; Rinne, Oliver; Robinson, Craig; Röver, Christian; Santamaría, Lucía; Sathyaprakash, Bangalore; Scheel, Mark A; Schnetter, Erik; Seiler, Jennifer; Shapiro, Stuart L; Shoemaker, Deirdre; Sperhake, Ulrich; Stroeer, Alexander; Sturani, Riccardo; Tichy, Wolfgang; Liu, Yuk Tung; van der Sluys, Marc; van Meter, James R; Vaulin, Ruslan; Vecchio, Alberto; Veitch, John; Viceré, Andrea; Whelan, John T; Zlochower, Yosef

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the da...

  11. Wave-formed sediment ripples: Transient analysis of ripple spectral development

    Science.gov (United States)

    Davis, Joseph P.; Walker, David J.; Townsend, Murray; Young, Ian R.

    2004-07-01

    A new method has been developed that models the changes a wave-formed rippled sediment bed undergoes as it is actively evolving between two given equilibrium states due to a change in surface wave conditions. The transient analysis of rippled beds has received very little attention within the literature. Dynamic changes within ripple parameters have implications for the estimation of flow dissipation and sediment transport by changing the bottom roughness height. The method uses the spectral density function of the rippled bed and is based on a series of ripple growth and ripple transition experimental tests. The ripple evolution model was developed from the well-known Logistic Growth Law. Fitting the general solution of the logistic nonlinear differential equation to the experimental data enabled the evolution rate of the bed to be determined for each experimental test. It was concluded that there was no difference between the evolution rate determined from the ripple growth tests and the ripple transition tests. This indicated that the two types of growth are special cases of the same evolution processes, which is adequately modeled by the logistic growth equation. A functional dependence was established between the ripple evolution rate and the Shields parameter. This allows the evolution rate to be estimated from flow and sediment properties. The estimation of the rate at which rippled sediment beds evolve under a variable sea state has the potential to lead to significant improvements to the way ripple transition and hence bottom roughness is approximated in coastal wave models.

  12. Waveform Retracking and Emulation Experiment Analysis of Synthetic Aperture Radar Altimeter

    Directory of Open Access Journals (Sweden)

    ZHAI Zhenhe

    2017-02-01

    Full Text Available Based on the synthetic aperture radar(SAR convolution model, the convolution computation formula about the derivative of three parameters of time migration, rise time and amplitude are deduced. The SAR waveform retracking is completed using numerical integration and Fourier transform. Besides, the echo waveform under SAR model is generated using the simulation orbit, troposphere, ionosphere and tide model. The comparison shows that the shape of echo waveform under SAR model is the same as that of CryoSat-2 1 Hz SAR. The experiments show that the accuracy of SAR altimeter retracking is about 5 cm under the 20 Hz data(about 350 m resolution, which are improved compared with that of the traditional model.

  13. Intrinsic frequency for a systems approach to haemodynamic waveform analysis with clinical applications.

    Science.gov (United States)

    Pahlevan, Niema M; Tavallali, Peyman; Rinderknecht, Derek G; Petrasek, Danny; Matthews, Ray V; Hou, Thomas Y; Gharib, Morteza

    2014-09-06

    The reductionist approach has dominated the fields of biology and medicine for nearly a century. Here, we present a systems science approach to the analysis of physiological waveforms in the context of a specific case, cardiovascular physiology. Our goal in this study is to introduce a methodology that allows for novel insight into cardiovascular physiology and to show proof of concept for a new index for the evaluation of the cardiovascular system through pressure wave analysis. This methodology uses a modified version of sparse time-frequency representation (STFR) to extract two dominant frequencies we refer to as intrinsic frequencies (IFs; ω1 and ω2). The IFs are the dominant frequencies of the instantaneous frequency of the coupled heart + aorta system before the closure of the aortic valve and the decoupled aorta after valve closure. In this study, we extract the IFs from a series of aortic pressure waves obtained from both clinical data and a computational model. Our results demonstrate that at the heart rate at which the left ventricular pulsatile workload is minimized the two IFs are equal (ω1 = ω2). Extracted IFs from clinical data indicate that at young ages the total frequency variation (Δω = ω1 - ω2) is close to zero and that Δω increases with age or disease (e.g. heart failure and hypertension). While the focus of this paper is the cardiovascular system, this approach can easily be extended to other physiological systems or any biological signal. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Finite-fault analysis of the 2004 Parkfield, California, earthquake using Pnl waveforms

    Science.gov (United States)

    Mendoza, C.; Hartzell, S.

    2008-01-01

    We apply a kinematic finite-fault inversion scheme to Pnl displacement waveforms recorded at 14 regional stations (Δsingle Mw 5.0 aftershock. Slip is modeled on a rectangular fault subdivided into 2×2 km subfaults assuming a constant rupture velocity and a 0.5 sec rise time. A passband filter of 0.1–0.5 Hz is applied to both data and subfault responses prior to waveform inversion. The SGF inversions are performed such that the final seismic moment is consistent with the known magnitude (Mw 6.0) of the earthquake. For these runs, it is difficult to reproduce the entire Pnl waveform due to inaccuracies in the assumed crustal structure. Also, the misfit between observed and predicted vertical waveforms is similar in character for different rupture velocities, indicating that neither the rupture velocity nor the exact position of slip sources along the fault can be uniquely identified. The pattern of coseismic slip, however, compares well with independent source models derived using other data types, indicating that the SGF inversion procedure provides a general first-order estimate of the 2004 Parkfield rupture using the vertical Pnl records. The best-constrained slip model is obtained using the single-aftershock EGF approach. In this case, the waveforms are very well reproduced for both vertical and horizontal components, suggesting that the method provides a powerful tool for estimating the distribution of coseismic slip using the regional Pnl waveforms. The inferred slip model shows a localized patch of high slip (55 cm peak) near the hypocenter and a larger slip area (~50 cm peak) extending between 6 and 20 km to the northwest.

  15. Improved pulse transit time estimation by system identification analysis of proximal and distal arterial waveforms.

    Science.gov (United States)

    Xu, Da; Ryan, Kathy L; Rickards, Caroline A; Zhang, Guanqun; Convertino, Victor A; Mukkamala, Ramakrishna

    2011-10-01

    We investigated the system identification approach for potentially improved estimation of pulse transit time (PTT), a popular arterial stiffness marker. In this approach, proximal and distal arterial waveforms are measured and respectively regarded as the input and output of a system. Next, the system impulse response is identified from all samples of the measured input and output. Finally, the time delay of the impulse response is detected as the PTT estimate. Unlike conventional foot-to-foot detection techniques, this approach is designed to provide an artifact robust estimate of the true PTT in the absence of wave reflection. The approach is also applicable to arbitrary types of arterial waveforms. We specifically applied a parametric system identification technique to noninvasive impedance cardiography (ICG) and peripheral arterial blood pressure waveforms from 15 humans subjected to lower-body negative pressure. We assessed the technique through the correlation coefficient (r) between its 1/PTT estimates and measured diastolic pressure (DP) per subject and the root mean squared error (RMSE) of the DP predicted from these estimates and measured DP. The technique achieved average r and RMSE values of 0.81 ± 0.16 and 4.3 ± 1.3 mmHg. For comparison, the corresponding values were 0.59 ± 0.37 (P system identification approach can indeed improve PTT estimation.

  16. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    Science.gov (United States)

    Jia, Tianxia

    2011-12-01

    This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located

  17. Position Measurements with Micro-Channel Plates and Transmission lines using Pico-second Timing and Waveform Analysis

    CERN Document Server

    Adamsa, Bernhard; Bogdan, Mircea; Byrum, Karen; Genat, Jean-Francois C; Grabas, Herve; Frisch, Henry J; Kim, Heejong; Heintz, Mary K; Natoli, Tyler; Northrop, Richard; Oberla, Eric; Meehan, Samuel; May, Edward N; Stanek, Robert; Tang, Fukun; Varner, Gary; Yurtsev, Eugene

    2009-01-01

    The anodes of Micro-Channel Plate devices are coupled to fast transmission lines in order to reduce the number of electronics readout channels, and can provide two-dimension position measurements using two-ends delay timing. Tests with a laser and digital waveform analysis show that resolutions of a few hundreds of microns along the transmission line can be reached taking advantage of a few pico-second timing estimation. This technique is planned to be used in Micro-channel Plate devices integrating the transmission lines as anodes.

  18. Waveforms and Sonic Boom Perception and Response (WSPR): Low-Boom Community Response Program Pilot Test Design, Execution, and Analysis

    Science.gov (United States)

    Page, Juliet A.; Hodgdon, Kathleen K.; Krecker, Peg; Cowart, Robbie; Hobbs, Chris; Wilmer, Clif; Koening, Carrie; Holmes, Theresa; Gaugler, Trent; Shumway, Durland L.; Rosenberger, James L.; Philips, Daisy

    2014-01-01

    The Waveforms and Sonic boom Perception and Response (WSPR) Program was designed to test and demonstrate the applicability and effectiveness of techniques to gather data relating human subjective response to multiple low-amplitude sonic booms. It was in essence a practice session for future wider scale testing on naive communities, using a purpose built low-boom demonstrator aircraft. The low-boom community response pilot experiment was conducted in California in November 2011. The WSPR team acquired sufficient data to assess and evaluate the effectiveness of the various physical and psychological data gathering techniques and analysis methods.

  19. Full Waveform Inversion Using Waveform Sensitivity Kernels

    Science.gov (United States)

    Schumacher, Florian; Friederich, Wolfgang

    2013-04-01

    We present a full waveform inversion concept for applications ranging from seismological to enineering contexts, in which the steps of forward simulation, computation of sensitivity kernels, and the actual inversion are kept separate of each other. We derive waveform sensitivity kernels from Born scattering theory, which for unit material perturbations are identical to the Born integrand for the considered path between source and receiver. The evaluation of such a kernel requires the calculation of Green functions and their strains for single forces at the receiver position, as well as displacement fields and strains originating at the seismic source. We compute these quantities in the frequency domain using the 3D spectral element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework. We developed and implemented the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion) to compute waveform sensitivity kernels from wavefields generated by any of the above methods (support for more methods is planned), where some examples will be shown. As the kernels can be computed independently from any data values, this approach allows to do a sensitivity and resolution analysis first without inverting any data. In the context of active seismic experiments, this property may be used to investigate optimal acquisition geometry and expectable resolution before actually collecting any data, assuming the background model is known sufficiently well. The actual inversion step then, can be repeated at relatively low costs with different (sub)sets of data, adding different smoothing conditions. Using the sensitivity kernels, we expect the waveform inversion to have better convergence properties compared with strategies that use gradients of a misfit function. Also the propagation of the forward wavefield and the backward propagation from the receiver

  20. Waveform analysis of airborne synthetic aperture radar altimeter over Arctic sea ice

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2013-03-01

    Full Text Available Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat was launched in 2010 carrying a Ku-band Radar Altimeter (SIRAL designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types has been analyzed. A set of parameters has been defined to characterize the difference in strength and width of the returned power waveforms. With a Bayesian based method it is possible to classify about 80% of the waveforms by three parameters: maximum of the returned power echo, the trailing edge width and pulse peakiness. Furthermore, the radar power echo maximum can be used to minimize the rate of false detection of leads compared to the widely used Pulse Peakiness parameter. The possibility to distinguish between different ice types and open water allows to improve the freeboard retrieval and the conversion into sea ice thickness where surface type dependent values for the sea ice density and snow load can be used.

  1. Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data.

    Science.gov (United States)

    Altmann, Yoann; Ren, Ximing; McCarthy, Aongus; Buller, Gerald S; McLaughlin, Steve

    2016-05-01

    This paper presents a new Bayesian model and algorithm used for depth and reflectivity profiling using full waveforms from the time-correlated single-photon counting measurement in the limit of very low photon counts. The proposed model represents each Lidar waveform as a combination of a known impulse response, weighted by the target reflectivity, and an unknown constant background, corrupted by Poisson noise. Prior knowledge about the problem is embedded through prior distributions that account for the different parameter constraints and their spatial correlation among the image pixels. In particular, a gamma Markov random field (MRF) is used to model the joint distribution of the target reflectivity, and a second MRF is used to model the distribution of the target depth, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to perform Bayesian inference. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a series of experiments using real data.

  2. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.

    2016-10-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  3. Estimation of cardiac output in patients with congestive heart failure by analysis of right ventricular pressure waveforms

    Directory of Open Access Journals (Sweden)

    Linde Cecilia

    2011-05-01

    Full Text Available Abstract Background Cardiac output (CO is an important determinant of the hemodynamic state in patients with congestive heart failure (CHF. We tested the hypothesis that CO can be estimated from the right ventricular (RV pressure waveform in CHF patients using a pulse contour cardiac output algorithm that considers constant but patient specific RV outflow tract characteristic impedance. Method In 12 patients with CHF, breath-by-breath Fick CO and RV pressure waveforms were recorded utilizing an implantable hemodynamic monitor during a bicycle exercise protocol. These data were analyzed retrospectively to assess changes in characteristic impedance of the RV outflow tract during exercise. Four patients that were implanted with an implantable cardiac defibrillator (ICD implementing the algorithm were studied prospectively. During a two staged sub-maximal bicycle exercise test conducted at 4 and 16 weeks of implant, COs measured by direct Fick technique and estimated by the ICD were recorded and compared. Results At rest the total pulmonary arterial resistance and the characteristic impedance were 675 ± 345 and 48 ± 18 dyn.s.cm-5, respectively. During sub-maximal exercise, the total pulmonary arterial resistance decreased (Δ 91 ± 159 dyn.s.cm-5, p -5, NS. The algorithm derived cardiac output estimates correlated with Fick CO (7.6 ± 2.5 L/min, R2 = 0.92 with a limit of agreement of 1.7 L/min and tracked changes in Fick CO (R2 = 0.73. Conclusions The analysis of right ventricular pressure waveforms continuously recorded by an implantable hemodynamic monitor provides an estimate of CO and may prove useful in guiding treatment in patients with CHF.

  4. ASKI: A modular toolbox for scattering-integral-based seismic full waveform inversion and sensitivity analysis utilizing external forward codes

    Science.gov (United States)

    Schumacher, Florian; Friederich, Wolfgang

    Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth's interior remains of high interest in Earth sciences. Here, we give a description from a user's and programmer's perspective of the highly modular, flexible and extendable software package ASKI-Analysis of Sensitivity and Kernel Inversion-recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski).

  5. Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis

    Science.gov (United States)

    Zhou, Yuhong; Qiu, Fang

    2015-03-01

    High spatial resolution (HSR) imagery and high density LiDAR data provide complementary horizontal and vertical information. Therefore, many studies have focused on fusing the two for mapping geographic features. It has been demonstrated that the synergetic use of LiDAR and HSR imagery greatly improves classification accuracy. This is especially true with waveform LiDAR data since they provide more detailed vertical profiles of geographic objects than discrete-return LiDAR data. Fusion of discrete-return LiDAR and HSR imagery mostly takes place at the object level due to the superiority of object-based image analysis (OBIA) for classifying HSR imagery. However, the fusion of the waveform LiDAR and HSR imagery at the object level has not been adequately studied. To fuse LiDAR waveform and image objects, the waveform for the objects derived from image segmentation are needed. However, the footprints of existing waveform are usually of fixed size and fixed shape, while those of building are of different size and shape. In order to obtain waveforms with footprints that match those of image objects, we proposed synthesizing object-based pseudo-waveforms using discrete-returns LiDAR data by utilizing count or intensity based histogram over the footprints of the objects. The pseudo-waveforms were then fused with the object-level spectral histograms from HSR WorldView-2 imagery to classify the image objects using a Kullback-Leibler divergence-based curve matching approach. The fused dataset achieved an overall classification accuracy of 97.58%, a kappa coefficient of 0.97, and producer's accuracies and user's accuracies all larger than 90%. The use of the fused dataset improved the overall accuracy by 7.61% over the use of HSR imagery alone, and McNemar's test indicated that such improvement was statistically significant (p < 0.001). This study demonstrates the great potential of pseudo-waveform in improving object-based image analysis. This is especially true since

  6. Holistic Investigation of Corona Discharge: Impulse Current Waveform and Phase-resolved Measurement, Analysis and Simulation%Holistic Investigation of Corona Discharge: Impulse Current Waveform and Phase-resolved Measurement, Analysis and Simulation

    Institute of Scientific and Technical Information of China (English)

    Suwarno

    2011-01-01

    Partial discharge(PD) is one of the most important phenomenon in high voltage insulations. In most cases, the appearance of partial discharges is related to insulation defects. Understanding partial discharges is important for diagnosis on insulation condition. Corona discharges appear when extremely high electric field appears on the conductor surface exceeding the electric field strength of the gas. The high electric field may occur at around protrusion with very sharp tip. This paper reported a holistic approach of corona discharge investigation. The needle--plane electrode system was used. The medium between the electrodes was air. The needle was made from steel with radius of curvature of 3 μm (Ogura needle). Sinusoidal as well as triangular applied voltages were used. The waveform of the corona discharges was measured using a digital oscilloscope. The corona discharge pulses were measured using a phase--re- solved PD measurement system. The system was able to measure the magnitude (q) and phase angle position (9) of each PD pulses, as well as the number of discharge pulses (n). The role of applied voltage was investigated using phase--resolved analysis of corona discharge pulses through pulse sequence, pulse magnitude and pulse number analy- sis. Experimental results indicated that corona discharge current waveform was an impulse with rise time of about several ns and the impulse width of about 100 ns. The Fast Fourier Transform analysis indicated that the corona discharge current waveform had several spectrum peaks at frequency of 7.8 MHz, 85.9 MHz, 109.4 MHz and 195.3 MHz. The experimental results also showed that discharge pulses were concentrated around the peak of applied voltage for both sinusoidal and triangular voltages. The discharge magnitude, as well as its probability of occurrence, was strongly dependent on the instantaneous applied voltage. The shape of φn, as well as φ-q-n PD patterns, were strongly reflected by the shape

  7. Waveform Analysis of the Brachial-ankle Pulse Wave Velocity in Hemiplegic Stroke Patients and Healthy Volunteers: A Pilot Study.

    Science.gov (United States)

    Kim, Ju-Hyun; Kim, Mee-Young; Lee, Jeong-Uk; Lee, Lim-Kyu; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Noh, Ji-Woong; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Jin-Hwan; Huh, Yong; Kim, Junghwan

    2014-04-01

    [Purpose] Brachial-ankle pulse wave velocity (BaPWV), which has been reported as an index of arterial stiffness, is very closely related to cardiovascular risk factors. A high BaPWV indicates high cardiovascular risk. However, BaPWV and pressure waveforms after stroke are not fully understood. [Methods] BaPWV was measured in thirty-two subjects (twenty-two healthy volunteers and ten stroke patients) while they were in the supine position. It was measured in their bilateral upper and lower extremities. [Results] BaPWV was significantly increased in the stroke group compared with the healthy volunteers. It was also significantly increased on both the affected and non-affected sides of stroke patients in the stroke group. Furthermore, analysis of the pressure waveforms showed that the peak pressure was significantly increased in the stroke group compared with the control group. The peak pressure on both the affected and non-affected sides was also significantly greater than in the control group. However, the rise and decay times were significantly decreased in the stroke group compared with the control group. The rise and decay time on both the affected and non-affected sides were also significantly more decreased than in the control group. [Conclusion] The results demonstrated that increased BaPWV and changed pulse waves are closely associated with the pathologic states of hemiplegic stroke patients.

  8. An improved analysis of GW150914 using a fully spin-precessing waveform model

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Haas, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hinder, I; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vano-Vinuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) on September 14, 2015 [1]. Reference presented parameter estimation [2] of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and a 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [2], and we quote updated component masses of $35^{+5}_{-3}\\mathrm{M}_\\odot$ and $30^{+3}_{-4}\\mathrm{M}_\\odot$ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a prima...

  9. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    Directory of Open Access Journals (Sweden)

    2016-10-01

    Full Text Available This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016.]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom and an 11-dimensional nonprecessing effective-one-body (EOB model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR. Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016.], and we quote updated component masses of 35_{-3}^{+5} M_{⊙} and 30_{-4}^{+3} M_{⊙} (where errors correspond to 90% symmetric credible intervals. We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  10. Novelty P3 reductions in depression: characterization using principal components analysis (PCA) of current source density (CSD) waveforms.

    Science.gov (United States)

    Tenke, Craig E; Kayser, Jürgen; Stewart, Jonathan W; Bruder, Gerard E

    2010-01-01

    We previously reported a novelty P3 reduction in depressed patients compared to healthy controls (n=20 per group) in a novelty oddball task using a 31-channel montage. In an independent replication and extension using a 67-channel montage (n=49 per group), reference-free current source density (CSD) waveforms were simplified and quantified by a temporal, covariance-based principal components analysis (PCA) (unrestricted Varimax rotation), yielding factor solutions consistent with other oddball tasks. A factor with a loadings peak at 343 ms summarized the target P3b source as well as a secondary midline frontocentral source for novels and targets. An earlier novelty vertex source (NVS) at 241 ms was present for novels, but not targets, and was reduced in patients. Compatible CSD-PCA findings were also confirmed for the original low-density sample. Results are consistent with a reduced novelty response in clinical depression, involving the early phase of the frontocentral novelty P3.

  11. Full Waveform Analysis for Long-Range 3D Imaging Laser Radar

    Directory of Open Access Journals (Sweden)

    Wallace AndrewM

    2010-01-01

    Full Text Available The new generation of 3D imaging systems based on laser radar (ladar offers significant advantages in defense and security applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent materials (e.g., windows and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon counting technique.

  12. Sensitivity analysis for elastic full-waveform inversion in VTI media

    KAUST Repository

    Kamath, Nishant

    2014-08-05

    Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green\\'s function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.

  13. ASKI: A modular toolbox for scattering-integral-based seismic full waveform inversion and sensitivity analysis utilizing external forward codes

    Directory of Open Access Journals (Sweden)

    Florian Schumacher

    2016-01-01

    Full Text Available Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth’s interior remains of high interest in Earth sciences. Here, we give a description from a user’s and programmer’s perspective of the highly modular, flexible and extendable software package ASKI–Analysis of Sensitivity and Kernel Inversion–recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski.

  14. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study

    NARCIS (Netherlands)

    Slagt, C.; Helmi, M.; Malagon, I.; Groeneveld, A.B.

    2015-01-01

    BACKGROUND: Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. OBJECTIVES: To compare calibrated arterial pressure waveform analysis-derived CO (COap, Vo

  15. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study

    NARCIS (Netherlands)

    Slagt, C.; Helmi, M.; Malagon, I.; Groeneveld, A.B.

    2015-01-01

    BACKGROUND: Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. OBJECTIVES: To compare calibrated arterial pressure waveform analysis-derived CO (COap,

  16. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study

    NARCIS (Netherlands)

    Slagt, C.; Helmi, M.; Malagon, I.; Groeneveld, A.B.

    2015-01-01

    BACKGROUND: Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. OBJECTIVES: To compare calibrated arterial pressure waveform analysis-derived CO (COap, Vo

  17. Study of a long-term series of repeated quarry blasts using spectrograms, waveform cross-correlation and Principal Component Analysis

    Science.gov (United States)

    Yedlin, M. J.; Ben Horin, Y.; Kitov, I. O.; Margrave, G. F.; Rozhkov, M.

    2016-12-01

    We have collected and processed 1654 Jordan Phosphate Mines quarry blast waveforms recorded by the three component (3-C) station HRFI. Judging by satellite images taken for the same period, the largest spacing between these blasts might exceed 20 km while their seismic (ML) magnitudes vary in the range from 2 to 3. We have selected short waveform segments (8 min.) for each of 1654 signals, and aligned all waveforms to the Pn-wave arrival times as picked by the same detection procedure based on the STA/LTA threshold. For each event, we have created a waveform template. These waveform templates were obtained by appropriate bandpass filtering, with bands chosen heuristically by examining a spectrogram movie constructed from a subset of the data. We cross-correlated 1654x1654 waveform-template pairs in order to estimate the level of similarity between the measured signals as expressed by cross-correlation coefficient (CC). As a result of the cross-correlation procedure, a CC time series is created to which we apply standard STA/LTA detector with the same threshold as for the original waveforms to find arrival times in the CC domain. When only the Z-component is used for CC, the best four 12.5 s long templates can find all other 1653 signals. For 3-C records, there are 119 templates which can find all other signals and these observations highlight the importance of 3-C records for the performance of the waveform cross-correlation (WCC) technique. It is also found that longer templates result in lower cross-correlation because of larger difference in the shape of S-waves. To characterize the overall similarity of the whole set, we have used the Principal Component Analysis (PCA) as based on the Singular Value Decomposition technique. We have demonstrated that the level of eigenvalues falls to 0.2 for the first fifteen components and the first five components are able to find all 1654 signals when WCC is applied. Therefore, the first component obtained by SVD may serve as

  18. Simple Waveforms, Simply Described

    Science.gov (United States)

    Baker, John G.

    2008-01-01

    Since the first Lazarus Project calculations, it has been frequently noted that binary black hole merger waveforms are 'simple.' In this talk we examine some of the simple features of coalescence and merger waveforms from a variety of binary configurations. We suggest an interpretation of the waveforms in terms of an implicit rotating source. This allows a coherent description, of both the inspiral waveforms, derivable from post-Newtonian(PN) calculations, and the numerically determined merger-ringdown. We focus particularly on similarities in the features of various Multipolar waveform components Generated by various systems. The late-time phase evolution of most L these waveform components are accurately described with a sinple analytic fit. We also discuss apparent relationships among phase and amplitude evolution. Taken together with PN information, the features we describe can provide an approximate analytic description full coalescence wavefoRms. complementary to other analytic waveforns approaches.

  19. Impaired Arterial Elasticity Identified by Pulse Waveform Analysis is a Non- invasive Measure for Early Detection of Endothelial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tao Jun; Wang Yan; Yang Zhen; Tu Chang; Xu Mingguo; Wang Jiemei

    2004-01-01

    Objectives Endothelial dysfunction is the earliest marker for atherosclerosis and plays key role in the pathogenesis of cardiovascular diseases. The present study was performed to evaluate effect of aging on arterial elasticity by using pulse waveform analysis and investigate whether the changes in arterial elasticity can be used as a non - invasive measure for early detection of endothelial dysfunction.Methods Using modified Windkessel model of the circulation and pulse waveform analysis, C1 large artery and C2 small artery elasticity indices of 204 normal healthy subjects ( age 15 -80 years) were measured.Among them twenty - four male healthy subjects were divided into both the young (age 20 -30 years, n =12) and elderly (age 60 - 70 years, n = 12) groups.We delivered acethycholine (Ach), an endotheliumdependent vasodilator, and sodium nitroprusside(SNP), an endothelium- independent vasodilator, to dermal vessels of the forearm using iontophoresis, respectively, and measured basal and peak blood flow using laser doppler fluximetry. Results C1 large artery and C2 small artery elasticity indices were reduced with advancing age. C 1 large artery and C2 small artery elasticity indices were negatively correlated with age (r= -0.628, p<0.001; r= -0.595, p <0.001).Basal blood flow was similar between the young and elderly groups ( 14.58 ± 3.4 vs 13.52 ± 3.41 PU, p =NS). Peak blood flow induced by Ach was significantly reduced in the elderly group compared with the young group (83.4 ± 11.9 vs 93.75 ± 10. 87 PU, p < 0. 05 ).However, peak blood flow induced by SNP was similar in the two groups ( 119. 17 ± 16.76 vs 128.33 ± 21.29 PU,p = NS). Ach - induced peak blood flow correlated positively with C1 large artery and C2 small artery elasticity indices( r=0.56, p <0.01; r =0.53, p <0.01).Conclusions Advancing age leads to impaired artery elasticity and endothelial dysfun ction. Reduced arterial elasticity is, in parallel, associated with diminished

  20. A Comparison of Third-Generation Semi-Invasive Arterial Waveform Analysis with Thermodilution in Patients Undergoing Coronary Surgery

    Directory of Open Access Journals (Sweden)

    Ole Broch

    2012-01-01

    Full Text Available Uncalibrated semi-invasive continous monitoring of cardiac index (CI has recently gained increasing interest. The aim of the present study was to compare the accuracy of CI determination based on arterial waveform analysis with transpulmonary thermodilution. Fifty patients scheduled for elective coronary surgery were studied after induction of anaesthesia and before and after cardiopulmonary bypass (CPB, respectively. Each patient was monitored with a central venous line, the PiCCO system, and the FloTrac/Vigileo-system. Measurements included CI derived by transpulmonary thermodilution and uncalibrated semi-invasive pulse contour analysis. Percentage changes of CI were calculated. There was a moderate, but significant correlation between pulse contour CI and thermodilution CI both before (2=0.72, <0.0001 and after (2=0.62, <0.0001 CPB, with a percentage error of 31% and 25%, respectively. Changes in pulse contour CI showed a significant correlation with changes in thermodilution CI both before (2=0.52, <0.0001 and after (2=0.67, <0.0001 CPB. Our findings demonstrated that uncalibrated semi-invasive monitoring system was able to reliably measure CI compared with transpulmonary thermodilution in patients undergoing elective coronary surgery. Furthermore, the semi-invasive monitoring device was able to track haemodynamic changes and trends.

  1. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Beach, Daniel G; Melanson, Jeremy E; Purves, Randy W

    2015-03-01

    The analysis of paralytic shellfish toxins (PSTs) by liquid chromatography-mass spectrometry remains a challenge because of their high polarity, large number of analogues and the complex matrix in which they occur. Here we investigate the potential utility of high-field asymmetric waveform ion mobility spectrometry (FAIMS) as a gas-phase ion separation tool for analysis of PSTs by mass spectrometry. We investigate the separation of PSTs using FAIMS with two divergent goals: using FAIMS as a primary separation tool for rapid screening by electrospray ionization (ESI)-FAIMS-MS or combined with LC in a multidimensional LC-ESI-FAIMS-MS separation. First, a survey of the parameters that affect the sensitivity and selectivity of PST analysis by FAIMS was carried out using ESI-FAIMS-MS. In particular, the use of acetonitrile as a gas additive in the carrier gas flow offered good separation of all PST epimeric pairs. A second set of FAIMS conditions was also identified, which focussed PSTs to a relatively narrow CV range allowing development of an LC-ESI-FAIMS-MS method for analysis of PST toxins in complex mussel tissue extracts. The quantitative capabilities of this method were evaluated by analysing a PST containing mussel tissue matrix material. Results compared favourably with analysis by an established LC-post-column oxidation-fluorescence method with recoveries ranging from 70 to 106%, although sensitivity was somewhat reduced. The current work represents the first successful separation of PST isomers using ion mobility and shows the promise of FAIMS as a tool for analysis of algal biotoxins in complex samples and outlines some critical requirements for its future improvement.

  2. An MCMC-based waveform analysis with p-type point contact detectors in the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Shanks, Benjamin; MAJORANA Collaboration

    2017-01-01

    Statistical signal processing can be a powerful tool for extracting as much information as possible from raw data. By fitting data to a physical model of signal generation on an event-by-event basis, it can be used to perform precise event reconstruction and enable efficient background rejection. Searches for neutrinoless double-beta decay must achieve extremely low backgrounds to reach sensitivities required for discovery, and so can benefit greatly from this analysis technique. The MAJORANA DEMONSTRATOR has implemented a Markov Chain Monte Carlo (MCMC) signal processing algorithm to fit waveforms from p-type point contact (PPC) germanium detectors. After a machine learning step to tune detector fields and electronics response parameters, the MCMC algorithm is able to reconstruct the time, energy and position of interactions within the PPC detector. The parameters estimated with this method will find many applications within the DEMONSTRATOR physics program, including background identification and rejection. This will prove important as the DEMONSTRATOR aims to reach its background goal of < 3 counts/tonne/yr in the region of interest. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  3. Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging.

    Science.gov (United States)

    Zhu, Yi; Qiu, Hongyu; Trzeciakowski, Jerome P; Sun, Zhe; Li, Zhaohui; Hong, Zhongkui; Hill, Michael A; Hunter, William C; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2012-10-01

    A spectral analysis approach was developed for detailed study of time-resolved, dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion to identify differences in VSMC from young and aged monkeys. Atomic force microscopy (AFM) was used to measure Young's modulus of elasticity and adhesion as assessed by fibronectin (FN) or anti-beta 1 integrin interaction with the VSMC surface. Measurements demonstrated that VSMC cells from old vs. young monkeys had increased elasticity (21.6 kPa vs. 3.5 kPa or a 612% increase in elastic modulus) and adhesion (86 pN vs. 43 pN or a 200% increase in unbinding force). Spectral analysis identified three major frequency components in the temporal oscillation patterns for elasticity (ranging from 1.7 × 10(-3) to 1.9 × 10(-2) Hz in old and 8.4 × 10(-4) to 1.5 × 10(-2) Hz in young) and showed that the amplitude of oscillation was larger (P young at all frequencies. It was also observed that patterns of oscillation in the adhesion data were similar to the elasticity waveforms. Cell stiffness was reduced and the oscillations were inhibited by treatment with cytochalasin D, ML7 or blebbistatin indicating the involvement of actin-myosin-driven processes. In conclusion, these data demonstrate the efficacy of time-resolved analysis of AFM cell elasticity and adhesion measurements and that it provides a uniquely sensitive method to detect real-time functional differences in biomechanical and adhesive properties of cells. The oscillatory behavior suggests that mechanisms governing elasticity and adhesion are coupled and affected differentially during aging, which may link these events to changes in vascular stiffness. © 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  4. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    Science.gov (United States)

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-04-22

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  5. Acoustic impact testing and waveform analysis for damage detection in glued laminated timber

    Science.gov (United States)

    Feng Xu; Xiping Wang; Marko Teder; Yunfei Liu

    2017-01-01

    Delamination and decay are common structural defects in old glued laminated timber (glulam) buildings, which, if left undetected, could cause severe structural damage. This paper presents a new damage detection method for glulam inspection based on moment analysis and wavelet transform (WT) of impact acoustic signals. Acoustic signals were collected from a glulam arch...

  6. Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis

    CERN Document Server

    Zoli, Andrea; De Rosa, Adriano; Aboudan, Alessio; Fioretti, Valentina; De Cesare, Giovanni; Marx, Ramin

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation observatory for the study of very high-energy gamma rays from about 20 GeV up to 300 TeV. Thanks to the large effective area and field of view, the CTA observatory will be characterized by an unprecedented sensitivity to transient flaring gamma-ray phenomena compared to both current ground (e.g. MAGIC, VERITAS, H.E.S.S.) and space (e.g. Fermi) gamma-ray telescopes. In order to trigger the astrophysics community for follow-up observations, or being able to quickly respond to external science alerts, a fast analysis pipeline is crucial. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a fast and automated science alert trigger system, becoming a key system of the CTA observatory. Among the CTA design key requirements to the RTA system, the most challenging is the generation of alerts within 30 seconds from the last acquired event, while obtaining a flux sensitivity not worse than the one of the final analysis by more than a fac...

  7. Arterial waveform-analysis is of limited value in daily clinical practice in the intensive care unit

    DEFF Research Database (Denmark)

    Henningsen, Louise; Haase, Nicolai; Pedersen, Ulf Gøttrup

    2015-01-01

    INTRODUCTION: It is difficult to identify the patients who will respond to fluid therapy, but the arterial waveform-derived variables have reasonably predictive values for fluid responsiveness. However, the patient must fulfil a number of prerequisites for these variables to be valid. We assessed...... the proportion of intensive care unit (ICU) patients with shock who at the time of resuscitation fulfilled the prerequisites for using the arterial waveform-derived variables. METHODS: This was a prospective cohort study performed at six ICUs. The study included consecutive adult patients with shock (20 patients...... of arterial waveform-derived variables to predict fluid responsiveness. Thus, these variables may be of limited use during resuscitation in the ICU....

  8. Hydrodynamic analysis of waveforms induced by vibrational stimuli at meridian and non-meridian points.

    Science.gov (United States)

    Lee, Myeong Soo; Kim, Yong-Chin; Moon, Sun-Rock; Shin, Byung-Chul; Jeong, Dong-Myong

    2004-01-01

    Meridian theory is an important part of traditional Chinese medicine (TCM). Although acupuncture has been accepted in many countries, the nature of the meridian theory and the principles of acupuncture are still unclear in the modern scientific view. The purpose of this study was to determine the differences in wave propagation of mechanical vibrations (optimal stimulator frequency of 40 Hz) through the pericardium meridian [EH-4 (Chieh-Men) and EH-5 (Chien-Shih)] and adjacent control regions in 20 subjects using hydrodynamic analysis. The mean transfer speed was significantly lower in the meridian (4 m/s) than in the adjacent control region (8.5 m/s, P < 0.001). There were also significant differences between the meridian and control points in the attenuation rate (P < 0.001) and peak amplitude (P < 0.001). In conclusion, these results imply that the substance of the meridian differs from that of the adjacent control regions.

  9. Human processing of short temporal intervals as revealed by an ERP waveform analysis

    Directory of Open Access Journals (Sweden)

    Yoshitaka eNakajima

    2011-12-01

    Full Text Available To clarify the time course over which the human brain processes information about durations up to ~300 ms, we reanalyzed the data that were previously reported by Mitsudo et al. (2009 using a multivariate analysis method. Event-related potentials were recorded from 19 scalp electrodes on 11 (9 original and 2 additional participants while they judged whether two neighboring empty time intervals—called t1 and t2 and marked by three tone bursts—had equal durations. There was also a control condition in which the participants were presented the same temporal patterns but without a judgment task. In the present reanalysis, we sought to visualize how the temporal patterns were represented in the brain over time. A correlation matrix across channels was calculated for each temporal pattern. Geometric separations between the correlation matrices were calculated, and subjected to multidimensional scaling. We performed such analyses for a moving 100-ms time window after the t1 presentations. In the windows centered at < 100 ms after the t2 presentation, the analyses revealed the local maxima of categorical separation between temporal patterns of perceptually equal durations versus perceptually unequal durations, both in the judgment condition and in the control condition. Such categorization of the temporal patterns was prominent only in narrow temporal regions. The analysis indicated that the participants determined whether the two neighboring time intervals were of equal duration mostly within 100 ms after the presentation of the temporal patterns. A very fast brain activity was related to the perception of elementary temporal patterns without explicit judgments. This is consistent with the findings of Mitsudo et al., and it is in line with the processing time hypothesis proposed by Nakajima et al. (2004. The validity of the correlation matrix analyses turned out to be an effective tool to grasp the overall responses of the brain to temporal

  10. Phase Velocity and Full-Waveform Analysis of Co-located Distributed Acoustic Sensing (DAS) Channels and Geophone Sensor

    Science.gov (United States)

    Parker, L.; Mellors, R. J.; Thurber, C. H.; Wang, H. F.; Zeng, X.

    2015-12-01

    A 762-meter Distributed Acoustic Sensing (DAS) array with a channel spacing of one meter was deployed at the Garner Valley Downhole Array in Southern California. The array was approximately rectangular with dimensions of 180 meters by 80 meters. The array also included two subdiagonals within the rectangle along which three-component geophones were co-located. Several active sources were deployed, including a 45-kN, swept-frequency, shear-mass shaker, which produced strong Rayleigh waves across the array. Both DAS and geophone traces were filtered in 2-Hz steps between 4 and 20 Hz to obtain phase velocities as a function of frequency from fitting the moveout of travel times over distances of 35 meters or longer. As an alternative to this traditional means of finding phase velocity, it is theoretically possible to find the Rayleigh-wave phase velocity at each point of co-location as the ratio of DAS and geophone responses, because DAS is sensitive to ground strain and geophones are sensitive to ground velocity, after suitable corrections for instrument response (Mikumo & Aki, 1964). The concept was tested in WPP, a seismic wave propagation program, by first validating and then using a 3D synthetic, full-waveform seismic model to simulate the effect of increased levels of noise and uncertainty as data go from ideal to more realistic. The results obtained from this study provide a better understanding of the DAS response and its potential for being combined with traditional seismometers for obtaining phase velocity at a single location. This analysis is part of the PoroTomo project (Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, http://geoscience.wisc.edu/feigl/porotomo).

  11. An MSK Radar Waveform

    Science.gov (United States)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  12. Traditional Chinese medicine wrist pulse-taking is associated with pulse waveform analysis and hemodynamics in hypertension

    Institute of Scientific and Technical Information of China (English)

    Ivan Cordovil; Arthur de S Ferreira

    2016-01-01

    BACKGROUND: Pulse wave analysis (PWA) quantiifes the phenomenon of pulse waveform propagation in patients with cardiovascular diseases, whereas pulse image analysis (PIA) is a subjective examination in traditional Chinese medicine. OBJECTIVE:This study evaluated the association of PIA with PWA and hemodynamics in patients with hypertension. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: This observational, cross-sectional study enroled 45 patients (26 men, (55.2± 10.3) years, systolic blood pressure (155± 28) mmHg, diastolic blood pressure (93± 17) mmHg) for assessment of clinical and laboratorial data. MAIN OUTCOME MEASURES:Primary outcomes comprised: pattern differentiation based on an automated method; PIA at the radial artery using the ‘simultaneous pressing’ method for identiifcation of factors such as strength (strong/weak), depth (superifcial/deep), and speed (fast/moderate/slow); and PWA at the same artery using a noninvasive system. RESULTS: Signiifcant multivariate main effects were observed for depth (l=0.648,F5,29=3.149,P=0.022, h2=0.352), strength (l=0.608,F5,29=3.736,P=0.010,h2=0.392), and speed (l=0.535,F5,29=5.302, P=0.002,h2=0.465). General effects comprised high values of PWA and blood pressure for superifcial, strong, and fast pulse images. A strong pulse was found for pulse pressure ≥ 62.5 mmHg and systolic blood pressure ≥ 149.5 mmHg, whereas a superifcial pulse was found for heart rate ≥ 58.25 beats/min; a fast pulse was found for heart rate ≥ 69.6 beats/min and pulse wave velocity ≥ 9.185 m/s. CONCLUSION: Associations were explained by LaPlace’s law, arterial remodeling in hypertension, alongside the traditional criterion for classifying speed in pulse images. PIA is associated with PWA and hemodynamics in patients with hypertension. Systolic and pulse pressures, heart rate, and pulse wave velocity are quantitative variables that have information to describe the qualitative pulse images such as strength, depth and speed.

  13. [Semi-invasive monitoring of cardiac output in renal transplantation by a new device using arterial pressure waveform analysis compare with intermittent pulmonary thermodilution].

    Science.gov (United States)

    Terada, Takashi; Maemura, Yumi; Toyoda, Daisuke; Iwasaki, Ririko; Sato, Nobukazu; Ochtai, Ryoichi

    2010-07-01

    Clinical usefulness of PA catheter is controversial. We compared a new semi-invasive device (FloTrac/Vigileo) using arterial pressure waveform analysis for CO measurement in patients undergoing renal transplantation with bolus thermodilution method. Simultaneously CCO was measured, and we compared CCO with that obtained by bolus thermodilution method. Forty seven patients undergoing renal transplantation were enrolled. A PAC was inserted and radial arterial access was used for semi-invasive determination of CO (APCO) with the Vigileo. CO was measured simultaneously by bolus thermodilution and the Vigileo technique, and after starting operation, volume loading, before surgery, and other points were measured over 1 hour during measurements. And CCO was measured simultaneously at all points. Statistical analysis was performed using the method described by Bland and Altman. Bias was defined as the mean difference between the volumes obtained by pulmonary artery thermodilution and those by arterial pressure waveform analysis. Precision was expressed by the upper and lower limits of agreement. Means of age, height and weight were 45 years, 163.8 cm and 59.2 kg, respectively. Regression analysis of CO; APCO and ICO showed y = 0.8x + 2.2, R2 = 0.57. CCO and ICO; y = 0.8x + 1.1, R2 = 0.74. Average of APCO and ICO; bias = -0.65. SD = 1.54 average of CCO and ICO; bias = 0.38, SD = 1.23. In renal transplantation, CO measured by a new semi-invasive arterial pressure waveform analysis device showed good agreement with the volume obtained by intermittent pulmonary artery thermodilution method.

  14. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    Directory of Open Access Journals (Sweden)

    Norbert Pfeifer

    2008-08-01

    Full Text Available Airborne laser scanning (ALS is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (> 20 echoes/m2 and additional classification variables from full-waveform (FWF ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original

  15. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    Science.gov (United States)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and

  16. 心电图各波的频率分析%Frequency analysis on the ECG waveform

    Institute of Scientific and Technical Information of China (English)

    曹细武; 邓亲恺

    2001-01-01

    本文利用European ST-T Database标准心电数据库,采用非参数模型的Welch功率谱估计方法进行人体心电波形的频谱分析,从一般的角度上指出心电图各组分波形的频谱范围和最大能量区域,这对于心电波形提取的硬件电路的设计以及各组分波形(P波、QRS波、T 波)的识别算法具有一定的指导作用。%In this paper, a standard ECG database (European ST-T Database) is used to analyzed the frequency spectrum of electrocardiogram waveform based on the Welch's method of averaging modified periodograms, belonging to the nonparametric model power sepctrum estimation. The final computing results give a general description of the spectral range and the maximal energy segment of ECG waveform, which is helpful to design the hardware circuits of ECG signal extraction and the software algorithm of the waveform recognition such as P wave, QRS wave and T wave.

  17. DSP Based Waveform Generator

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The DSP Based Waveform Generator is used for CSR Control system to control special controlled objects, such as the pulsed power supply for magnets, RF system, injection and extraction synchronization, global CSR synchronization etc. This intelligent controller based on 4800 MIPS DSP and 256M SDRAM technology will supply highly stable and highly accurate reference waveform used by the power supply of magnets. The specifications are as follows:

  18. Arbitrary waveform generator

    Science.gov (United States)

    Griffin, Maurice; Sugawara, Glen

    1995-02-01

    A system for storing an arbitrary waveform on nonvolatile random access memory (NVRAM) device and generating an analog signal using the NVRAM device is described. A central processing unit is used to synthesize an arbitrary waveform and create a digital representation of the waveform and transfer the digital representation to a microprocessor which, in turn, writes the digital data into an NVRAM device which has been mapped into a portion of the microprocessor address space. The NVRAM device is removed from address space and placed into an independent waveform generation unit. In the waveform generation unit, an address clock provides an address timing signal and a cycle clock provides a transmit signal. Both signals are applied to an address generator. When both signals are present, the address generator generates and transmits to the NVRAM device a new address for each cycle of the address timing signal. In response to each new address generated, the NVRAM devices provides a digital output which is applied to a digital to analog converter. The converter produces a continuous analog output which is smoothed by a filter to produce the arbitrary waveform.

  19. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study.

    Science.gov (United States)

    Slagt, Cornelis; Helmi, Mochamat; Malagon, Ignacio; Groeneveld, A B Johan

    2015-01-01

    Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. To compare calibrated arterial pressure waveform analysis-derived CO (COap, VolumeView/EV1000) and the uncalibrated form (COfv, FloTrac/Vigileo) with transpulmonary thermodilution derived CO (COtptd). A prospective, observational, single-centre study. ICU of a general teaching hospital. Twenty consecutive patients with severe sepsis or septic shock requiring haemodynamic monitoring by VolumeView/EV1000 and receiving mechanical ventilation. Connection of FloTrac/Vigileo to radial artery catheter already in situ. Radial (COfv) and femoral (COap) arterial waveform-derived CO measurements were compared with COtptd with respect to bias, precision, limits of agreement and percentage error, and the percentage error in the course of time since the last calibration of COap by COtptd. In comparing COap with COtptd (n = 267 paired measurements), the bias was 0.02 and limits of agreement were -2.49 to 2.52 l min, with a percentage error of 31%. The percentage error between COap and COtptd remained less than 30% until 8 h after calibration. In comparing COfv with COtptd (n = 301), the bias was -0.86 l min and limits of agreement were -4.48 to 2.77 l min, with a percentage error of 48%. The biases of COap and COfv correlated with systemic vascular resistance [r = 0.13 (P = 0.029) and r = 0.42 (P arterial waveform analysis technique. Compared with the uncalibrated COfv, the recently introduced calibrated arterial pressure waveform analysis-derived COap was more accurate and less dependent on vascular tone for up to 8 hours after callibation when monitoring CO in patients with severe sepsis and septic shock. The COap and COfv methods have poor to moderate CO-tracking abilities.

  20. 基于液滴指纹图的波形分析算法的改进%Improvement of Waveform Analysis Algorithm Based on Liquid Drop Fingerprint

    Institute of Scientific and Technical Information of China (English)

    刘晶; 宋晴; 黄加勇; 吴迪; 张春松

    2011-01-01

    不同的液体在相同的夜滴分析系统中,光纤信号的强弱不同,电容信号的强弱即液滴体积不同,液滴指纹图的波峰波谷的高度、位置以及峰的形状不同,液滴指纹图的曲线长度和曲线下的面积不同;因此,对光电液滴指纹图进行波形分析,计算波形参数,可以实现特征提取并区分不同液体.针对波形分析算法在特征提取过程中存在的两个缺陷,即最值检测时可能错误识别波谷位置和邻域比较时产生大量等值数据集,提出了改进的波形分析算法;对改进前后的波形分析算法进行了分析比较,改进后的算法有效提高了波形参数的准确性.%There are some visible differences for different liquids in the same experimental system, such as the output tiber voltage ( or the light intensity), the output capacitor voltage (or the drop volume), the peak height and the profile of fingerprint, and the curve area surrounded by the fingerprint and the axis. So waveform analysis method and calculated parameters characterizing waveform are employed for feature extraction to identify different liquids. The classical waveform analysis algorithm in feature extraction has two defects: failure to identify the real hollow by extreme detection from maximum and creating excessive equivalent data sets by adjacent comparison. This paper presents an improved one, which improves the accuracy of the waveform parameters.

  1. Detection and location of repeated events using waveform cross correlation and the Principal Component Analysis: quarry blasts at Jordan phosphate mine

    Science.gov (United States)

    Kitov, Ivan; Ben Horin, Yochai; Bobrov, Dmitry; Rozhkov, Mikhail; Yeldin, Matthew

    2017-04-01

    We analyzed an extensive set of signals measured by 3-C stations HRFI, PRNI, and EIL from repeated blasts at a phosphate mine in Jordan. For a given station, all available blasts were used as master events, i.e. as waveform templates, and then as slave events, i.e. sought signals, in waveform cross correlation (WCC) processing. The number of signals is more than 1000 at each station. To find the best parameters for a standard STA/LTA detector, which was applied to the resulting traces of cross correlation coefficient (CC), we used varying number of components: all 3 components or Z-component only; template lengths from 5 s to 40 s; and a set of octave filters from 1 Hz to 16 Hz. Three stations are situated in approximately the same direction from the phosphate quarry and have the same sampling rate. We cross- correlated signals obtained at different stations and found an unusually high level of similarity, which is close to the level of similarity between signals at one station. A Principle Component Analysis was also applied to the whole set of signals at each station through the Singular Value Decomposition (SVD) technique. The level of normalized eigenvalues falls to 0.2 and below for the first five to ten components. Several PCA eigenvectors, which are used as waveform templates, from the first ten were able to find all signals at CC-traces, when the WCC method was applied. Therefore, one can use a few principal components for comprehensive signal detection. Using the signals at three stations from the same events, we applied the method of relative location based on the difference of arrival times relative to a preselected set of master events. The original signals and the templates obtained with the SVD were both used for the relative location. To improve the accuracy of location one should extend the set of stations to provide a much better azimuthal coverage.

  2. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  3. Seismic anisotropy of the lithosphere and asthenosphere beneath southern Madagascar from teleseismic shear wave splitting analysis and waveform modeling

    Science.gov (United States)

    Reiss, M. C.; Rümpker, G.; Tilmann, F.; Yuan, X.; Giese, J.; Rindraharisaona, E. J.

    2016-09-01

    Madagascar occupies a key position in the assembly and breakup of the supercontinent Gondwana. It has been used in numerous geological studies to reconstruct its original position within Gondwana and to derive plate kinematics. Seismological observations in Madagascar to date have been sparse. Using a temporary, dense seismic profile across southern Madagascar, we present the first published study of seismic anisotropy from shear wave splitting analyses of teleseismic phases. The splitting parameters obtained show significant small-scale variation of fast polarization directions and delay times across the profile, with fast polarization rotating from NW in the center to NE in the east and west of the profile. The delay times range between 0.4 and 1.5 s. A joint inversion of waveforms at each station is applied to derive hypothetical one-layer splitting parameters. We use finite-difference, full-waveform modeling to test several hypotheses about the origin and extent of seismic anisotropy. Our observations can be explained by asthenospheric anisotropy with a fast polarization direction of 50°, approximately parallel to the absolute plate motion direction, in combination with blocks of crustal anisotropy. Predictions of seismic anisotropy as inferred from global mantle flow models or global anisotropic surface wave tomography are not in agreement with the observations. Small-scale variations of splitting parameters require significant crustal anisotropy. Considering the complex geology of Madagascar, we interpret the change in fast-axis directions as a 150 km wide zone of ductile deformation in the crust as a result of the intense reworking of lithospheric material during the Pan-African orogeny. This fossil anisotropic pattern is underlain by asthenospheric anisotropy induced by plate motion.

  4. Platform for Postprocessing Waveform-Based NDE

    Science.gov (United States)

    Roth, Don

    2008-01-01

    Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image

  5. Quantum optical waveform conversion

    CERN Document Server

    Kielpinski, D; Wiseman, HM

    2010-01-01

    Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

  6. Fractal Dimension of Voice-Signal Waveforms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The fractal dimension is one important parameter that characterizes waveforms. In this paper, we derive a new method to calculate fractal dimension of digital voice-signal waveforms. We show that fractal dimension is an efficient tool for speaker recognition or speech recognition. It can be used to identify different speakers or distinguish speech. We apply our results to Chinese speaker recognition and numerical experiment shows that fractal dimension is an efficient parameter to characterize individual Chinese speakers. We have developed a semiautomatic voiceprint analysis system based on the theory of this paper and former researches.

  7. Aftershock mechanisms from the 2010 Mw 8.8 Maule, Chile earthquake: detailed analysis using full waveform inversion

    Science.gov (United States)

    Rietbrock, A.; Hicks, S. P.; Chagas, B.; Detzel, H. A.

    2014-12-01

    slip style can be highly variable across the megathrust, with implications for fault processes such as postseismic fluid release. We also perform 3-D full waveform forward simulation using the spectral element code, SPECFEM3D, to understand the sensitivity of our moment tensor solutions with respect to 3-D velocity structure.

  8. Windowing Waveform Relaxation of Initial Value Problems

    Institute of Scientific and Technical Information of China (English)

    Yao-lin Jiang

    2006-01-01

    We present a windowing technique of waveform relaxation for dynamic systems. An effective estimation on window length is derived by an iterative error expression provided here. Relaxation processes can be speeded up if one takes the windowing technique in advance. Numerical experiments are given to further illustrate the theoretical analysis.

  9. Impaired Arterial Elasticity Identified by Pulse Waveform Analysis as a Marker for Vascular Wall Damage in Humans With Aging and Hypertension

    Institute of Scientific and Technical Information of China (English)

    Wang Yan; Tao Jun; Tu Chang; Yang Zhen; Xu Mingguo; Wang Jiemei; Jin Yafei; Ma Hong

    2005-01-01

    Objectives Cardiovascular risk factors lead to pathogenesis of atherosclerosis and its clinical events by impairing vascular wall. Endothelial dysfunction is the earliest marker for vascular wall injuries. Development of new method to detect early vascular wall damage has an important clinical implication for the prevention and treatment of cardiovascular diseases. Therefore, the present study was performed to evaluate effect of aging and hypertension, two independent risk factors for cardiovascular diseases, on arterial elasticity by using pulse waveform analysis and investigate whether the changes in arterial elasticity can be used as a risk marker for vascular structural and functional abnormalities. Methods Using modified Windkessel model of the circulation and pulse waveform analysis,C 1 large artery and C2 small artery elasticity indices of 204 Chinese normal healthy subjects ( age 15-80years) and 46 Chinese essential hypertensive patients (age 35-70 years) were measured. Age- and hypertension-related arterial elasticity changes were examined. Results C1 large artery and C2 small artery elasticity indices were reduced with advancing age in healthy subjects. C1 large artery and C2 small artery elasticity indices were negatively correlated with age (r=-0.628, P<0.001; r=-0.595, P<0.001). C1 large artery and C2 small artery elasticity indices in patients with essential hypertension compared with the agematched healthy subjects were (9.31±3.85 ml/mm Hg x 10 versus 15.13±4.14 ml/mmHg x 10, P<0.001) and (3.57± 1.62 ml/mm Hg x 100 versus 7.89±2.91 ml/mmHg ×100 P <0.001), respectively, and were significantly lower than the corresponding healthy subjects. There were negative association between C1large artery and C2 small artery elasticity indices and systolic blood pressure (r=-0.37, P<0.05; r=-0.39,P<0.05) and pulse pressure (r=-0.39, P<0.05; r=0.43,P<0.05) in patients with essential hypertension.Conclusions Advancing age and essential

  10. Assessing Accuracy of Waveform Models against Numerical Relativity Waveforms

    Science.gov (United States)

    Pürrer, Michael; LVC Collaboration

    2016-03-01

    We compare currently available phenomenological and effective-one-body inspiral-merger-ringdown models for gravitational waves (GW) emitted from coalescing black hole binaries against a set of numerical relativity waveforms from the SXS collaboration. Simplifications are used in the construction of some waveform models, such as restriction to spins aligned with the orbital angular momentum, no inclusion of higher harmonics in the GW radiation, no modeling of eccentricity and the use of effective parameters to describe spin precession. In contrast, NR waveforms provide us with a high fidelity representation of the ``true'' waveform modulo small numerical errors. To focus on systematics we inject NR waveforms into zero noise for early advanced LIGO detector sensitivity at a moderately optimistic signal-to-noise ratio. We discuss where in the parameter space the above modeling assumptions lead to noticeable biases in recovered parameters.

  11. Optimizing defibrillation waveforms for ICDs.

    Science.gov (United States)

    Kroll, Mark W; Swerdlow, Charles D

    2007-04-01

    While no simple electrical descriptor provides a good measure of defibrillation efficacy, the waveform parameters that most directly influence defibrillation are voltage and duration. Voltage is a critical parameter for defibrillation because its spatial derivative defines the electrical field that interacts with the heart. Similarly, waveform duration is a critical parameter because the shock interacts with the heart for the duration of the waveform. Shock energy is the most often cited metric of shock strength and an ICD's capacity to defibrillate, but it is not a direct measure of shock effectiveness. Despite the physiological complexities of defibrillation, a simple approach in which the heart is modeled as passive resistor-capacitor (RC) network has proved useful for predicting efficient defibrillation waveforms. The model makes two assumptions: (1) The goal of both a monophasic shock and the first phase of a biphasic shock is to maximize the voltage change in the membrane at the end of the shock for a given stored energy. (2) The goal of the second phase of a biphasic shock is to discharge the membrane back to the zero potential, removing the charge deposited by the first phase. This model predicts that the optimal waveform rises in an exponential upward curve, but such an ascending waveform is difficult to generate efficiently. ICDs use electronically efficient capacitive-discharge waveforms, which require truncation for effective defibrillation. Even with optimal truncation, capacitive-discharge waveforms require more voltage and energy to achieve the same membrane voltage than do square waves and ascending waveforms. In ICDs, the value of the shock output capacitance is a key intermediary in establishing the relationship between stored energy-the key determinant of ICD size-and waveform voltage as a function of time, the key determinant of defibrillation efficacy. The RC model predicts that, for capacitive-discharge waveforms, stored energy is minimized

  12. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform.

    Science.gov (United States)

    Butlin, Mark; Qasem, Ahmad; Avolio, Alberto P

    2012-01-01

    There is increasing interest in non-invasive estimation of central aortic waveform parameters in the clinical setting. However, controversy has arisen around radial tonometric based systems due to the requirement of a trained operator or lack of ease of use, especially in the clinical environment. A recently developed device utilizes a novel algorithm for brachial cuff based assessment of aortic pressure values and waveform (SphygmoCor XCEL, AtCor Medical). The cuff was inflated to 10 mmHg below an individual's diastolic blood pressure and the brachial volume displacement waveform recorded. The aortic waveform was derived using proprietary digital signal processing and transfer function applied to the recorded waveform. The aortic waveform was also estimated using a validated technique (radial tonometry based assessment, SphygmoCor, AtCor Medical). Measurements were taken in triplicate with each device in 30 people (17 female) aged 22 to 79 years of age. An average for each device for each individual was calculated, and the results from the two devices were compared using regression and Bland-Altman analysis. A high correlation was found between the devices for measures of aortic systolic (R(2)=0.99) and diastolic (R(2)=0.98) pressure. Augmentation index and subendocardial viability ratio both had a between device R(2) value of 0.82. The difference between devices for measured aortic systolic pressure was 0.5±1.8 mmHg, and for augmentation index, 1.8±7.0%. The brachial cuff based approach, with an individualized sub-diastolic cuff pressure, provides an operator independent method of assessing not only systolic pressure, but also aortic waveform features, comparable to existing validated tonometric-based methods.

  13. Pseudo waveform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Soo; Park, Keun Pil [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Suh, Jung Hee; Hyun, Byung Koo; Shin, Sung Ryul [Seoul National University, Seoul (Korea, Republic of)

    1995-12-01

    The seismic reflection exploration technique which is one of the geophysical methods for oil exploration became effectively to image the subsurface structure with rapid development of computer. However, the imagining of subsurface based on the conventional data processing is almost impossible to obtain the information on physical properties of the subsurface such as velocity and density. Since seismic data are implicitly function of velocities of subsurface, it is necessary to develop the inversion method that can delineate the velocity structure using seismic topography and waveform inversion. As a tool to perform seismic inversion, seismic forward modeling program using ray tracing should be developed. In this study, we have developed the algorithm that calculate the travel time of the complex geologic structure using shooting ray tracing by subdividing the geologic model into blocky structure having the constant velocity. With the travel time calculation, the partial derivatives of travel time can be calculated efficiently without difficulties. Since the current ray tracing technique has a limitation to calculate the travel times for extremely complex geologic model, our aim in the future is to develop the powerful ray tracer using the finite element technique. After applying the pseudo waveform inversion to the seismic data of Korea offshore, we can obtain the subsurface velocity model and use the result in bring up the quality of the seismic data processing. If conventional seismic data processing and seismic interpretation are linked with this inversion technique, the high quality of seismic data processing can be expected to image the structure of the subsurface. Future research area is to develop the powerful ray tracer of ray tracing which can calculate the travel times for the extremely complex geologic model. (author). 39 refs., 32 figs., 2 tabs.

  14. 三相桥式全控整流电路波形分析%Analysis of Three Phase Full Controlled Bridge Rectification Circuit Waveform

    Institute of Scientific and Technical Information of China (English)

    罗培文; 王春芳; 熊婷婷

    2012-01-01

    为了便于分析和解决三相整流电路控制中的具体相位或者相位差,本文引入特殊点的概念。特殊点的引入不仅方便三相整流电路的波形分析,而且便于三相有源逆变电路、三相交流调压电路结论的推导和求解,让更多学习和爱好电力电子技术的学者有章可循。%The concept of special points is introduced in order to analyze and solve the three-phase rectifica- tion circuit control of specific phase or phase difference in this paper. It not only results in convenient three-phase rectifier circuit waveform analysis, but also the conclusion and solve of three phase active inverter circuit, three-phase AC voltage regulating circuit, which provides priciples for power electronic technology scholars to re- search it.

  15. Waveform analysis in the diagnosis of the engine%波形分析在发动机诊断中的应用分析

    Institute of Scientific and Technical Information of China (English)

    李强

    2014-01-01

    示波器与万用表相比有着更为精确及描述细致的优点,但是在北方汽车维修行业中,对发动机电控系统的故障诊断主要依靠解码器、万用表并配合查阅维修手册,使用示波器的很少。文章对示波器的波形检测分析对于电控发动机故障检测诊断的意义在和现存问题,进行了调查分析,并提出了对策建议。%Oscilloscope compared with multimeter has a more precise description and detailed advantages, but in the north automobile repair industry, the engine electronic control system fault diagnosis relies mainly on the decoder, multi-meter and cooperate with the review of maintenance manuals, rarely use oscilloscope. Article analyzes oscilloscope wave-form detection for the diagnosis of electronically controlled engine fault detection in the meaning of and existing problems, and has carried on the investigation and analysis, and puts forward the countermeasures and suggestions.

  16. Physiologic Waveform Analysis for Early Detection of Hemorrhage during Transport and Higher Echelon Medical Care of Combat Casualties

    Science.gov (United States)

    2014-03-01

    perhaps due to coupling between the respiratory and HR control centers in the brain (21, 30, 32).] The analysis specif- ically invokes two key...Biomed. Eng., vol. 46, no. 6, pp. 698– 706, Jun. 1999. [12] B. P. M. Imholz, W. Wieling, G. A. Montfrans, and K. H. Wesseling, “Fif- teen years experience

  17. Waveform Catalog, Extreme Mass Ratio Binary (Capture)

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...

  18. Seismic Waveform Characterization at LLNL: Analyst Guidelines and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ryall, F; Schultz, C A

    2001-11-01

    In the first section of this paper we present an overview of general set of procedures that we have followed in seismic waveform analysis. In the second section we discuss a number of issues and complexities that we have encountered in analysis of events in the Middle East, North Africa, Europe, and parts of the European Arctic. To illustrate these complexities we can include examples of waveforms recorded over a variety of paths in these regions.

  19. Multiples waveform inversion

    KAUST Repository

    Zhang, D. L.

    2013-01-01

    To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.

  20. Fast Transient Thermal Analysis of Non-Fourier Heat Conduction Using Tikhonov Well-Conditioned Asymptotic Waveform Evaluation

    Directory of Open Access Journals (Sweden)

    Sohel Rana

    2014-01-01

    Full Text Available Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE and finite element method (FEM. The non-Fourier heat conduction has been investigated where the maximum likelihood (ML and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML, another well-conditioned scheme, called mass effect (ME T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model.

  1. Rupture characteristics of the 2016 Meinong earthquake revealed by the back projection and directivity analysis of teleseismic broadband waveforms

    Science.gov (United States)

    Jian, Pei-Ru; Hung, Shu-Huei; Meng, Lingsen; Sun, Daoyuan

    2017-04-01

    The 2016 Mw 6.4 Meinong earthquake struck a previously unrecognized fault zone in midcrust beneath south Taiwan and inflicted heavy causalities in the populated Tainan City about 30 km northwest of the epicenter. Because of its relatively short rupture duration and P wave trains contaminated by large-amplitude depth phases and reverberations generated in the source region, accurate characterization of the rupture process and source properties for such a shallow strong earthquake remains challenging. Here we present a first high-resolution MUltiple SIgnal Classification back projection source image by using both P and depth-phase sP waves recorded at two large and dense arrays to understand the source behavior and consequent hazards of this peculiar catastrophic event. The results further corroborated by the directivity analysis indicate a unilateral rupture propagating northwestward and slightly downward on the shallow NE-dipping fault plane. The source radiation process is primarily characterized by one single peak, 7 s duration, with a total rupture length of 17 km and average rupture speed of 2.4 km/s. The rupture terminated immediately east of the prominent off-fault aftershock cluster about 20 km northwest of the hypocenter. Synergistic amplification of ground shaking by the directivity and strong excitation of sP and reverberations mainly caused the destruction concentrated in the area further to the northwest away from the rupture zone.

  2. Biomechanics of the cornea evaluated by spectral analysis of waveforms from ocular response analyzer and Corvis-ST.

    Directory of Open Access Journals (Sweden)

    Sushma Tejwani

    Full Text Available In this study, spectral analysis of the deformation signal from Corvis-ST (CoST and reflected light intensity from ocular response analyzer (ORA was performed to evaluate biomechanical concordance with each other.The study was non-interventional, observational, cross-sectional and involved 188 eyes from 94 normal subjects. Three measurements were made on each eye with ORA and CoST each and then averaged for each device. The deformation signal from CoST and reflected light intensity (applanation signal from ORA was compiled for all the eyes. The ORA signal was inverted about a line joining the two applanation peaks. All the signals were analyzed with Fourier series. The area under the signal curves (AUC, root mean square (RMS of all the harmonics, lower order (LO included 1st and 2nd order harmonic, higher order (HO up to 6th harmonic, CoST deformation amplitude (DA, corneal hysteresis (CH and corneal resistance factor (CRF were analyzed.The device variables and those calculated by Fourier transform were statistically significantly different between CoST and ORA. These variables also differed between the eyes of the same subject. There was also statistically significant influence of eyes (left vs. right on the differences in a sub-set of RMS variables only. CH and CRF differed statistically significantly between the eyes of subject (p<0.001 but not DA (p = 0.65.CoST was statistically significantly different from ORA. CoST may be useful in delineating true biomechanical differences between the eyes of a subject as it reports deformation.

  3. Effects of output waveforms on penetration for Nd: YAG laser welding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.

  4. Accuracy Assessment for Multi-Channel ECG Waveforms Using Soft Computing Methodologies

    Directory of Open Access Journals (Sweden)

    Menta Srinivasulu

    2014-07-01

    Full Text Available ECG waveform rhythmic analysis is very important. In recent trends, analysis processes of ECG waveform applications are available in smart devices. Still, existing methods are not able to accomplish the complete accuracy assessment while classify the multi-channel ECG waveforms. In this paper, proposed analysis of accuracy assessment of the classification of multi-channel ECG waveforms using most popular Soft Computing algorithms. In this research, main focus is on the better rule generation to analyze the multi-channel ECG waveforms. Analysis is mainly done inSoft Computing methods like the Decision Trees with different pruning analysis, Logistic Model Trees with different regression process and Support Vector Machine with Particle Swarm Optimization (SVM-PSO. All these analysis methods are trained and tested with MIT-BIH 12 channel ECG waveforms. Before trained these methods, MSO-FIR filter should be used as data preprocessing for removal of noise from original multi-channel ECG waveforms. MSO technique is used for automatically finding out the cutoff frequency of multichannel ECG waveforms which is used in low-pass filtering process. The classification performance is discussed using mean squared error, member function, classification accuracy, complexity of design, and area under curve on MIT-BIH data. Additionally, this research work is extended for the samples of multi-channel ECG waveforms from the Scope diagnostic center, Hyderabad. Our study assets the best process using the Soft Computing methods for analysis of multi-channel ECG waveforms.

  5. STRS Compliant FPGA Waveform Development

    Science.gov (United States)

    Nappier, Jennifer; Downey, Joseph

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.

  6. Use and Abuse of the Model Waveform Accuracy Standards

    Science.gov (United States)

    Lindblom, Lee

    2010-02-01

    Accuracy standards have been developed to ensure that the waveforms used for gravitational-wave data analysis are good enough to serve their intended purposes. These standards place constraints on certain norms of the frequency-domain representations of the waveform errors. Examples will be presented of possible misinterpretations and misapplications of these standards, whose effect could be to vitiate the quality control they were intended to enforce. Suggestions will be given for ways to avoid these problems. )

  7. Analysis and implementation of electric power waveform data compression method with high compression ratio%高压缩比电力系统波形数据压缩方法的实现与性能分析

    Institute of Scientific and Technical Information of China (English)

    党三磊; 肖勇; 杨劲锋; 申妍华

    2013-01-01

    在对常用数据压缩、编码方法分析的基础上,充分利用电力系统波形数据的周期性、有界性和冗余性等特点,同时分别选用游程编码和EZW编码,在DSP平台上实现了基于DCT变换、提升小波变换的压缩方法.文章对两种压缩方法实现、性能和还原效果方面进行了全面分析,认为基于提升小波与EZW编码的压缩方法可记录数据突变特征,具有压缩比和还原精度可调等特点,更适合于压缩大量电力系统故障波形数据压缩.%Power quality monitor and waveform recorder are very important equipments for security and stability a-nalysis of the electric power system. In those equipments, the core technology is power system waveform data compression method with high compression ratio. In this paper, commonly used data compression and coding method are studied firstly. Taking advantage of characteristics of the power system waveform data such as periodic, bounded and redundancy, compression methods based on DCT transform and lifting wavelet transform are imple-mentated on the DSP platform. Then, implementation, performance and reduction effect of the two compression methods are comprehensively analyzed. It is found that the compression method based on lifting wavelet and EZW coding can record abrupt data changes and has the features of adjustable compression ratio and precision restoration. The method is more suitable for compression of large amounts of power system failure waveform data.

  8. Detection of the oscillation mode of measured waveforms in power systems by Prony analysis; Puroni kaisekiho ni yoru denryoku keito ni okeru jissoku hakei no doyo mode kenshutsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, K. [Kansai Electaric Power Co. Inc., Osaka (Japan)

    2000-04-01

    This paper describes the detection method of the oscillation modes by Prony analysis from measured data on power systems. A Prony analysis method can obtain the oscillation frequency and logarithmic damping rate corresponding to eigenvalue directly, and is suitable for detecting the oscillation modes. The analysis result showed that longer sampling intervals of 0.2-0.4s allows detection of the long-period oscillation modes from less data, and the index corresponding to waveform areas allows evaluation of the significance of each mode. It was also confirmed that a low-pass filter with a time constant of nearly 0.2s is effective for poor data including various noises, and correction of amplitude and phase shifts is possible by filter. In addition, the study result on application of a Prony analysis method to instantaneous value waveforms showed that analysis of harmonic characteristics is possible by selecting proper analytical parameters, and a Prony analysis method is applicable to analysis of measured data enough. (NEDO)

  9. Influential factors for pressure pulse waveform in healthy young adults.

    Science.gov (United States)

    Du, Yi; Wang, Ling; Li, Shuyu; Zhi, Guang; Li, Deyu; Zhang, Chi

    2015-01-01

    The effects of gender and other contributory factors on pulse waveform are still under arguments. In view of different results caused by few considerations of possible influential factors and general agreement of gender relating to pulse waveform, this study aims to address the confounding factors interfering with the association between gender and pulse waveform characteristics. A novel method was proposed to noninvasively detect pressure pulse wave and assess the morphology of pulse wave. Forty healthy young subjects were included in the present research. Height, weight, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured manually and body mass index (BMI), pulse blood pressure (PP) and heart rate (HR) were calculated automatically. Student's t test was used to analyze the gender difference and analysis of variance (ANOVA) to examine the effects of intrinsic factors. Univariate regression analysis was performed to assess the main factors on the waveform characteristics. Waveform features were found significantly different between genders. However this study indicates that the main factors for time-related and amplitude-related parameters are HR and SBP respectively. In conclusion, the impact of HR and SBP on pulse waveform features should not be underestimated, especially when analyzing the gender difference.

  10. Binary Black Holes: Mergers, Dynamics, and Waveforms

    Science.gov (United States)

    Centrella, Joan

    2007-04-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  11. On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology

    Science.gov (United States)

    Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-08-01

    We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.

  12. ANALYSIS OF THE SIDE-LAP EFFECT ON FULL-WAVEFORM LIDAR DATA ACQUISITION FOR THE ESTIMATION OF FOREST STRUCTURE VARIABLES

    Directory of Open Access Journals (Sweden)

    P. Crespo-Peremarch

    2016-06-01

    In order to assess this effect, 64 pairwise samples were selected in adjacent areas with similar canopy structure, but having different point densities. Two parameters were tested and evaluated to minimise this effect: voxel size and voxel value assignation testing maximum, mean, median, mode, percentiles 90 and 95. Student’s t-test or Wilcoxon test were used for the comparison of paired samples. Moreover, the absolute value of standardised paired samples was calculated to quantify dissimilarities. It was concluded that optimizing voxel size and voxel value assignation minimised the effect of point density variations and homogenised full-waveform metrics. Height/median ratio (HTMR and Vertical distribution ratio (VDR had the lowest variability between different densities, and Return waveform energy (RWE reached the best improvement with respect to initial data, being the difference between standardised paired samples 1.28 before and 0.69 after modification.

  13. Waveform-dependent absorbing metasurfaces

    CERN Document Server

    Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F

    2014-01-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  14. Estimation of airway obstruction using oximeter plethysmograph waveform data

    Directory of Open Access Journals (Sweden)

    Desmond Renee' A

    2005-06-01

    Full Text Available Abstract Background Validated measures to assess the severity of airway obstruction in patients with obstructive airway disease are limited. Changes in the pulse oximeter plethysmograph waveform represent fluctuations in arterial flow. Analysis of these fluctuations might be useful clinically if they represent physiologic perturbations resulting from airway obstruction. We tested the hypothesis that the severity of airway obstruction could be estimated using plethysmograph waveform data. Methods Using a closed airway circuit with adjustable inspiratory and expiratory pressure relief valves, airway obstruction was induced in a prospective convenience sample of 31 healthy adult subjects. Maximal change in airway pressure at the mouthpiece was used as a surrogate measure of the degree of obstruction applied. Plethysmograph waveform data and mouthpiece airway pressure were acquired for 60 seconds at increasing levels of inspiratory and expiratory obstruction. At each level of applied obstruction, mean values for maximal change in waveform area under the curve and height as well as maximal change in mouth pressure were calculated for sequential 7.5 second intervals. Correlations of these waveform variables with mouth pressure values were then performed to determine if the magnitude of changes in these variables indicates the severity of airway obstruction. Results There were significant relationships between maximal change in area under the curve (P Conclusion The findings suggest that mathematic interpretation of plethysmograph waveform data may estimate the severity of airway obstruction and be of clinical utility in objective assessment of patients with obstructive airway diseases.

  15. The development of advanced spread spectrum LFM waveforms for enhanced SAR and GMTI

    Science.gov (United States)

    Kirk, John C.; Darden, Scott; Majumder, Uttam K.; Minardi, Michael J.; Bell, Mark R.

    2016-05-01

    Advanced spread spectrum linear frequency modulated (LFM) waveforms are being developed for advanced capability synthetic aperture radar (SAR) and ground moving target indication (GMTI) applications. We have demonstrated by analysis and simulation the feasibility of these new type waveforms and are now in the process of implementing them in hardware. The basic approach is to combine a traditional LFM radar waveform with a direct sequence spread spectrum (DSSS) waveform, and then on receive to de-spread the return and capture the resultant LFM return for traditional matched filter processing and enhanced SAR and GMTI. We show the analysis, simulation and some preliminary hardware results.

  16. Analysis of the Side-Lap Effect on Full-Waveform LIDAR Data Acquisition for the Estimation of Forest Structure Variables

    Science.gov (United States)

    Crespo-Peremarch, P.; Ruiz, L. A.; Balaguer-Beser, A.; Estornell, J.

    2016-06-01

    LiDAR full-waveform provides a better description of the physical and forest vertical structure properties than discrete LiDAR since it registers the full wave that interacts with the canopy. In this paper, the effect of flight line side-lap is analysed on forest structure and canopy fuel variables estimations. Differences are related to pulse density changes between flight stripe side-lap areas, varying the point density between 2.65 m-2 and 33.77 m-2 in our study area. These differences modify metrics extracted from data and therefore variable values estimated from these metrics such as forest stand variables. In order to assess this effect, 64 pairwise samples were selected in adjacent areas with similar canopy structure, but having different point densities. Two parameters were tested and evaluated to minimise this effect: voxel size and voxel value assignation testing maximum, mean, median, mode, percentiles 90 and 95. Student's t-test or Wilcoxon test were used for the comparison of paired samples. Moreover, the absolute value of standardised paired samples was calculated to quantify dissimilarities. It was concluded that optimizing voxel size and voxel value assignation minimised the effect of point density variations and homogenised full-waveform metrics. Height/median ratio (HTMR) and Vertical distribution ratio (VDR) had the lowest variability between different densities, and Return waveform energy (RWE) reached the best improvement with respect to initial data, being the difference between standardised paired samples 1.28 before and 0.69 after modification.

  17. Global and local waveform simulations using the VERCE platform

    Science.gov (United States)

    Garth, Thomas; Saleh, Rafiq; Spinuso, Alessandro; Gemund, Andre; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schlichtweg, Horst; Frank, Anton; Michelini, Alberto; Vilotte, Jean-Pierre; Rietbrock, Andreas

    2017-04-01

    In recent years the potential to increase resolution of seismic imaging by full waveform inversion has been demonstrated on a range of scales from basin to continental scales. These techniques rely on harnessing the computational power of large supercomputers, and running large parallel codes to simulate the seismic wave field in a three-dimensional geological setting. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. The platform supports the two widely used spectral element simulation programs SPECFEM3D Cartesian, and SPECFEM3D globe, allowing users to run a wide range of simulations. In the SPECFEM3D Cartesian implementation the user can run waveform simulations on a range of pre-loaded meshes and velocity models for specific areas, or upload their own velocity model and mesh. In the new SPECFEM3D globe implementation, the user will be able to select from a number of continent scale model regions, or perform waveform simulations for the whole earth. Earthquake focal mechanisms can be downloaded within the platform, for example from the GCMT catalogue, or users can upload their own focal mechanism catalogue through the platform. The simulations can be run on a range of European supercomputers in the PRACE network. Once a job has been submitted and run through the platform, the simulated waveforms can be manipulated or downloaded for further analysis. The misfit between the simulated and recorded waveforms can then be calculated through the platform through three interoperable workflows, for raw-data access (FDSN) and caching, pre-processing and finally misfit. The last workflow makes use of the Pyflex analysis software. In addition, the VERCE platform can be used to produce animations of waveform propagation through the velocity model, and synthetic shakemaps. All these data-products are made discoverable and re-usable thanks to the VERCE data and metadata management layer. We

  18. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    Science.gov (United States)

    Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; Yi, Donghui

    2012-01-01

    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.

  19. An MSK Waveform for Radar Applications

    Science.gov (United States)

    Quirk, Kevin J.; Srinivasan, Meera

    2009-01-01

    We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.

  20. Radar Waveform Design in Active Communications Channel

    OpenAIRE

    Ric A. Romero; Shepherd, Kevin D.

    2013-01-01

    In this paper, we investigate spectrally adaptive radar transmit waveform design and its effects on an active communication system. We specifically look at waveform design for point targets. The transmit waveform is optimized by accounting for the modulation spectrum of the communication system while trying to efficiently use the remaining spectrum. With the use of spectrally-matched radar waveform, we show that the SER detection performance of the communication system ...

  1. Generating nonlinear FM chirp waveforms for radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

  2. Fast and efficient evaluation of gravitational waveforms via reduced-order spline interpolation

    CERN Document Server

    Galley, Chad R

    2016-01-01

    Numerical simulations of merging black hole binaries produce the most accurate gravitational waveforms. The availability of hundreds of these numerical relativity (NR) waveforms, often containing many higher spherical harmonic modes, allows one to study many aspects of gravitational waves. Amongst these are the response of data analysis pipelines, the calibration of semi-analytical models, the building of reduced-order surrogates, the estimation of the parameters of detected gravitational waves, and the composition of public catalogs of NR waveform data. The large number of generated NR waveforms consequently requires efficient data storage and handling, especially since many more waveforms will be generated at an increased rate in the forthcoming years. In addition, gravitational wave data analyses often require the NR waveforms to be interpolated and uniformly resampled at high sampling rates. Previously, this resulted in very large data files (up to $\\sim$ several GB) in memory-intensive operations, which ...

  3. Application of Waveform Factors in Extracting Fault Trend of Rotary Machines

    Institute of Scientific and Technical Information of China (English)

    YE Yu-gang; ZUO Yun-bo; HUANG Xiao-bin

    2009-01-01

    Vibration intensity and non-dimensional amplitude parameters are often used to extract the fault trend of rotary machines. But, they are the parameters related to energy, and can not describe the fault trend because of varying load and conditions or too slight change of vibration signal. For this reason, three non-dimensional parameters are presented, namely waveform repeatability factor, waveform jumping factor and waveform similarity factor, called as waveform factors jointly, which are based on statistics analysis for the waveform and sensitive to the change of signal waveform. When they are used to extract the fault trend of rotary machines as a kind of technology of instrument and meter, they can reflect the fault trend better than the vibration intensity, peak amplitude and margin index.

  4. Workflows for Full Waveform Inversions

    Science.gov (United States)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  5. Why Waveform Correlation Sometimes Fails

    Science.gov (United States)

    Carmichael, J.

    2015-12-01

    Waveform correlation detectors used in explosion monitoring scan noisy geophysical data to test two competing hypotheses: either (1) an amplitude-scaled version of a template waveform is present, or, (2) no signal is present at all. In reality, geophysical wavefields that are monitored for explosion signatures include waveforms produced by non-target sources that are partially correlated with the waveform template. Such signals can falsely trigger correlation detectors, particularly at low thresholds required to monitor for smaller target explosions. This challenge is particularly formidable when monitoring known test sites for seismic disturbances, since uncatalogued natural seismicity is (generally) more prevalent at lower magnitudes, and could be mistaken for small explosions. To address these challenges, we identify real examples in which correlation detectors targeting explosions falsely trigger on both site-proximal earthquakes (Figure 1, below) and microseismic "noise". Motivated by these examples, we quantify performance loss when applying these detectors, and re-evaluate the correlation-detector's hypothesis test. We thereby derive new detectors from more general hypotheses that admit unknown background seismicity, and apply these to real data. From our treatment, we derive "rules of thumb'' for proper template and threshold selection in heavily cluttered signal environments. Last, we answer the question "what is the probability of falsely detecting an earthquake collocated at a test site?", using correlation detectors that include explosion-triggered templates. Figure Top: An eight-channel data stream (black) recorded from an earthquake near a mine. Red markers indicate a detection. Middle: The correlation statistic computed by scanning the template against the data stream at top. The red line indicates the threshold for event declaration, determined by a false-alarm on noise probability constraint, as computed from the signal-absent distribution using

  6. Best waveform score for diagnosing keratoconus

    Directory of Open Access Journals (Sweden)

    Allan Luz

    2013-12-01

    Full Text Available PURPOSE: To test whether corneal hysteresis (CH and corneal resistance factor (CRF can discriminate between keratoconus and normal eyes and to evaluate whether the averages of two consecutive measurements perform differently from the one with the best waveform score (WS for diagnosing keratoconus. METHODS: ORA measurements for one eye per individual were selected randomly from 53 normal patients and from 27 patients with keratoconus. Two groups were considered the average (CH-Avg, CRF-Avg and best waveform score (CH-WS, CRF-WS groups. The Mann-Whitney U-test was used to evaluate whether the variables had similar distributions in the Normal and Keratoconus groups. Receiver operating characteristics (ROC curves were calculated for each parameter to assess the efficacy for diagnosing keratoconus and the same obtained for each variable were compared pairwise using the Hanley-McNeil test. RESULTS: The CH-Avg, CRF-Avg, CH-WS and CRF-WS differed significantly between the normal and keratoconus groups (p<0.001. The areas under the ROC curve (AUROC for CH-Avg, CRF-Avg, CH-WS, and CRF-WS were 0.824, 0.873, 0.891, and 0.931, respectively. CH-WS and CRF-WS had significantly better AUROCs than CH-Avg and CRF-Avg, respectively (p=0.001 and 0.002. CONCLUSION: The analysis of the biomechanical properties of the cornea through the ORA method has proved to be an important aid in the diagnosis of keratoconus, regardless of the method used. The best waveform score (WS measurements were superior to the average of consecutive ORA measurements for diagnosing keratoconus.

  7. Phenomenological gravitational waveforms from spinning coalescing binaries

    CERN Document Server

    Sturani, R; Cadonati, L; Guidi, G M; Healy, J; Shoemaker, D; Vicere', A

    2010-01-01

    An accurate knowledge of the coalescing binary gravitational waveform is crucial for match filtering techniques, which are currently used in the observational searches performed by the LIGO-Virgo collaboration. Following an earlier paper by the same authors we expose the construction of analytical phenomenological waveforms describing the signal sourced by generically spinning binary systems. The gap between the initial inspiral part of the waveform, described by spin-Taylor approximants, and its final ring-down part, described by damped exponentials, is bridged by a phenomenological phase calibrated by comparison with the dominant spherical harmonic mode of a set of waveforms including both numerical and phenomenological waveforms of a different type. All waveforms considered describe equal mass systems with dimension-less spin magnitudes equal to 0.6. The noise-weighted overlap integral between numerical and phenomenological waveforms ranges between 0.93 and 0.98 for a wide span of mass values.

  8. Waveform Freezing of Sonic Booms Revisited

    Science.gov (United States)

    Cleveland, Robin O.; Blackstock, David T.

    1996-01-01

    Nonlinear distortion of sonic booms propagating in the atmosphere is strongly affected by stratification and geometrical spreading. For a downward propagating sonic boom in a standard atmosphere, stratification and spreading cause a slowing down of nonlinear distortion. In certain cases a stage is reached where no further distortion takes place. When this happens, the waveform is said to be frozen. In previous work the authors argued that for most HSCT designs and flight conditions being considered, the sonic boom is not frozen when it reaches the ground. The criterion used was the value of the distortion distance x bar is a measure of the nonlinear distortion suffered by the wave (and is closely related to Hayes's E variable). The aircraft must be at an altitude greater than 27 km (80,000 ft) for x bar at the groun be within 95% of its asymptotic value. However, work reported here demonstrates that the ground waveform is much closer to the frozen state than indicated by the previous analysis. In the new analysis, duration of the sonic boom is used as the criterion for judging closeness of approach tz frozen state. In order for the duration of the sonic boom at the ground to be within 95% of its frozen value, the flight altitude of the aircraft needs to be only 15 km (45,000 ft).

  9. Analysis and research of the influence of aircraft power waveform distortion on airborne power equipmen%飞机电源波形畸变对机载用电设备影响的分析与研究

    Institute of Scientific and Technical Information of China (English)

    陈艳; 陈亮; 陈永禄

    2016-01-01

    飞机电源系统是现代飞机的重要组成部分,其电压波形畸变直接影响到机载电子设备的工作和寿命。本文以某型民用飞机电源系统为例,介绍了飞机主交流电源系统结构和用电设备类型,在对飞机电源系统畸变参数分析的基础上,进一步研究了飞机电源波形畸变对典型用电设备的影响,希望以此对新型飞机的研制和对现役飞机的改进能提供参考。%Aircraftpower system is an important part of modern aircraft,and its voltage waveform distortion directly affects the work and life of airborne electronic equipment.The civil aircraft power system as an example,introduces the aircraft main AC power system structure and electrical equipment type,in the analysis of the distortion parameters of aircraft power supply system based on,and further study of the aircraft power waveform distortion of the typical use of electrical equipment,hope to the of new aircraft development and improvement of active aircraft can provide reference.

  10. Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates.

    Science.gov (United States)

    Kayser, Jürgen; Tenke, Craig E

    2006-02-01

    To evaluate the comparability of high- and low-density surface Laplacian estimates for determining ERP generator patterns of group data derived from a typical ERP sample size and paradigm. High-density ERP data (129 sites) recorded from 17 adults during tonal and phonetic oddball tasks were converted to a 10-20-system EEG montage (31 sites) using spherical spline interpolations. Current source density (CSD) waveforms were computed from the high- and low-density, but otherwise identical, ERPs, and correlated at corresponding locations. CSD data were submitted to separate covariance-based, unrestricted temporal PCAs (Varimax of covariance loadings) to identify and effectively summarize temporally and spatially overlapping CSD components. Solutions were compared by correlating factor loadings and scores, and by plotting ANOVA F statistics derived from corresponding high- and low-resolution factor scores using representative sites. High- and low-density CSD waveforms, PCA solutions, and F statistics were remarkably similar, yielding correlations of .9 91.6%). Low-density surface Laplacian estimates were shown to be accurate approximations of high-density CSDs at these locations, which adequately and quite sufficiently summarized group data. Moreover, reasonable approximations of many high-density scalp locations were obtained for group data from interpolations of low-density data. If group findings are the primary objective, as typical for cognitive ERP research, low-resolution CSD topographies may be as efficient, given the effective spatial smoothing when averaging across subjects and/or conditions. Conservative recommendations for restricting surface Laplacians to high-density recordings may not be appropriate for all ERP research applications, and should be re-evaluated considering objective, costs and benefits.

  11. On the accuracy and precision of numerical waveforms: Effect of waveform extraction methodology

    CERN Document Server

    Chu, Tony; Kumar, Prayush; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela

    2015-01-01

    We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1 to 3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities $e<10^{-4}$. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio $q=10$. Gravitational waveforms at asymptotic infinity are computed with two independent techniques, extrapolation, and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors somewhat dominating at noise-weighted mismatches of $\\sim 3\\times 10^{-4}$. This set of waveforms will serve to validate and improve ali...

  12. Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape

    Directory of Open Access Journals (Sweden)

    Claudia Hilbert

    2012-07-01

    Full Text Available This study explores ICESat/GLAS waveform data in Thuringian Forest, a low mountain range located in central Germany. Lidar remote sensing has been proven to directly derive tree height as a key variable of forest structure. The GLAS signal is, however, very sensitive to surface topography because of the large footprint size. This study therefore focuses on forests in a mountainous area to assess the potential of GLAS data to derive terrain elevation and tree height. The work enhances the empirical knowledge about the interaction between GLAS waveform and landscape structure regarding a special temperate forest site with a complex terrain. An algorithm to retrieve tree height directly from GLA01 waveform data is proposed and compared to an approach using GLA14 Gaussian parameters. The results revealed that GLAS height estimates were accurate for areas with a slope up to 10° whereas waveforms of areas above 15° were problematic. Slopes between 10–15° have been found to be a critical crossover. Further, different waveform shape types and landscape structure classes were developed as a new possibility to explore the waveform in its whole structure. Based on the detailed analysis of some waveform examples, it could be demonstrated that the waveform shape can be regarded as a product of the complex interaction between surface and canopy structure. Consequently, there is a great variety of waveform shapes which in turn considerably hampers GLAS tree height extraction in areas with steep slopes and complex forest conditions.

  13. Sensitivity of the gradient oscillatory number to flow input waveform shapes.

    Science.gov (United States)

    Shimogonya, Yuji; Kumamaru, Hiroshige; Itoh, Kazuhiro

    2012-04-05

    The sensitivity of the gradient oscillatory number (GON), which is a potential hemodynamic indicator for cerebral aneurysm initiation, to flow input waveform shapes was examined by performing computational fluid dynamics (CFD) simulations of an anatomical model of a human internal carotid artery under three different waveform shape conditions. The local absolute variation (standard deviation) and relative variation (coefficient of variation) of the GON calculations for three waveform shapes were computed to quantify the variation in GON due to waveform shape changes. For all waveform shapes, an elevated GON was evident at a known aneurysm site, albeit occurring at additional sites. No significant differences were observed among the qualitative GON distributions derived using the three different waveform shapes. These results suggest that the GON is largely insensitive to the variability in flow input waveform shapes. The quantitative analysis revealed that GON displays an improved relative variation over a relatively high GON range. We therefore conclude that it is reasonable to use assumed flow input waveform shapes as a substitute for individual real waveform shapes for the detection of possible GON elevations of individual clinical cases in large-scale studies, where the higher values of GON are of primary interest.

  14. Model Waveform Accuracy Requirements for the $\\chi^2$ Discriminator

    CERN Document Server

    Lindblom, Lee

    2016-01-01

    This paper derives accuracy standards for model gravitational waveforms required to ensure proper use of the $\\chi^2$ discriminator test in gravitational wave (GW) data analysis. These standards are different from previously established requirements for detection and waveform parameter measurement based on signal-to-noise optimization. We present convenient formulae both for evaluating and interpreting the contribution of model errors to measured $\\chi^2$ values. Motivated by these formula, we also present an enhanced, complexified variant of the standard $\\chi^2$ statistic used in GW searches. While our results are not directly relevant to current searches (which use the $\\chi^2$ test only to veto signal candidates with extremely high $\\chi^2$ values), they could be useful in future GW searches and as figures of merit for model gravitational waveforms.

  15. Waveform Analysis of Dynamic Magnetic Hysteresis Loop Based on Oscilloscope%基于示波器动态磁滞回线的波形分析

    Institute of Scientific and Technical Information of China (English)

    杨斌; 胡瑞雪; 张亚萍; 韩立立

    2013-01-01

    An oscilloscope was used for displaying waveform based on the dynamic measurement of magnetic hysteresis loop.The magnetic hysteresis loop and the waveform of incentive coil and detecting coil were directly shown in different source voltage.The existing magnetic hysteresis loop measuring instrument was modified,and double-wire reverse connection was used in the detecting coil,on the outside of which excitation coil was placed.It can measure many magnetic materials of different shapes and different composition structure.The magnetic hysteresis loop and double wave of ferrite materials and pure iron materials were observed in the signal source voltage of 3,6,12,24 V,respectively.The difference between the result and reasons for the difference were analyzed.It is proven that the modified instrument is useful for a more intuitive and more profound understanding of the generation of magnetic hysteresis loop,which enriches,complements,and expands the teaching contents.%基于动态磁滞回线测量的基本原理,采用示波器显示波形,直观显示了不同信号源电压下磁性材料的磁滞回线以及励磁线圈和探测线圈的波形.对现有的磁滞回线测量仪进行改装,探测线圈采用双线圈反向连接的方式,在其外面套上励磁线圈,即可测量不同形状、不同成分结构的磁性材料.观察铁氧体材料和纯铁材料在信号源电压分别取3、6、12、24 V时的磁滞回线及双线波形,分析在不同信号源电压下两种材料实验结果的差异及原因,得出该实验所用铁氧体材料为软磁材料,纯铁为硬磁材料.改装后仪器有助于对磁滞回线产生有更直观、深刻的认识,对教学内容起到丰富、补充、拓展的作用.

  16. Fractal characteristics for binary noise radar waveform

    Science.gov (United States)

    Li, Bing C.

    2016-05-01

    Noise radars have many advantages over conventional radars and receive great attentions recently. The performance of a noise radar is determined by its waveforms. Investigating characteristics of noise radar waveforms has significant value for evaluating noise radar performance. In this paper, we use binomial distribution theory to analyze general characteristics of binary phase coded (BPC) noise waveforms. Focusing on aperiodic autocorrelation function, we demonstrate that the probability distributions of sidelobes for a BPC noise waveform depend on the distances of these sidelobes to the mainlobe. The closer a sidelobe to the mainlobe, the higher the probability for this sidelobe to be a maximum sidelobe. We also develop Monte Carlo framework to explore the characteristics that are difficult to investigate analytically. Through Monte Carlo experiments, we reveal the Fractal relationship between the code length and the maximum sidelobe value for BPC waveforms, and propose using fractal dimension to measure noise waveform performance.

  17. A new full waveform analysis approach using simulated temp ering Markov chain Monte Carlo metho d%模拟回火马尔可夫链蒙特卡罗全波形分析方法

    Institute of Scientific and Technical Information of China (English)

    尹文也; 何伟基; 顾国华; 陈钱

    2014-01-01

    To reconstruct the target shape distribution in the distance, full waveform analysis algorithm is utilized by extracting and analyzing the number of the peaks, the time of the peak maximum and other parameters. A novel fast full waveform analysis algorithm (simulated tempering Markov chain Monte Carlo algorithm, STMCMC) is proposed, which is able to process the waveform data automatically. For the different types of the parameters, simulated tempering strategy and the Metropolis strategy are presented. In simulated tempering strategy, due to the demand of speed or accuracy, active intervention tempering is used to control the process of solving the vector parameters. On the other hand, the Metropolis strategy is adopted for non-vector parameters to reduce computation amount. Both the strategies are based on Markov chain algorithm, and meanwhile can hold the convergence of the Markov chain, which makes the STMCMC algorithm robust.%针对传统的全波形分析方法不能快速自动处理全波形数据的缺点,提出了一种模拟回火马尔可夫链蒙特卡罗全波形分析法,用于求解全波形数据中的波峰数和峰值位置等参量。该方法采用Metropolis更新策略求解波峰数量和噪声两个参量,以达到快速求解的目的;而峰值位置和波峰幅值则采用改进的模拟回火策略求解,通过添加的主动干预回火步骤实现对参量更新过程的有效探测,以满足对速度或运算收敛性的要求。模拟回火马尔可夫链蒙特卡罗全波形分析方法以马尔可夫算法为基础,仍保持马氏链的收敛性,从而保证本方法具有良好的鲁棒性,实现对全波形数据的自动化处理。

  18. Seismic waveform modeling over cloud

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  19. Partitioned Waveform Inversion Applied to Eurasia and Northern Africa

    Energy Technology Data Exchange (ETDEWEB)

    bedle, H; Matzel, E; Flanagan, M

    2006-07-27

    This report summarizes the data analysis achieved during Heather Bedle's eleven-week Technical Scholar internship at Lawrence Livermore National Labs during the early summer 2006. The work completed during this internship resulted in constraints on the crustal and upper mantle S-velocity structure in Northern Africa, the Mediterranean, the Middle East, and Europe, through the fitting of regional waveform data. This data extends current raypath coverage and will be included in a joint inversion along with data from surface wave group velocity measurements, S and P teleseismic arrival time data, and receiver function data to create an improved velocity model of the upper mantle in this region. The tectonic structure of the North African/Mediterranean/Europe/Middle Eastern study region is extremely heterogeneous. This region consists of, among others, stable cratons and platforms such as the West Africa Craton, and Baltica in Northern Europe; oceanic subduction zones throughout the Mediterranean Sea where the African and Eurasian plate collide; regions of continental collision as the Arabian Plate moves northward into the Turkish Plate; and rifting in the Red Sea, separating the Arabian and Nubian shields. With such diverse tectonic structures, many of the waveforms were difficult to fit. This is not unexpected as the waveforms are fit using an averaged structure. In many cases the raypaths encounter several tectonic features, complicating the waveform, and making it hard for the software to converge on a 1D average structure. Overall, the quality of the waveform data was average, with roughly 30% of the waveforms being discarded due to excessive noise that interfered with the frequency ranges of interest. An inversion for the 3D S-velocity structure of this region was also performed following the methodology of Partitioned Waveform Inversion (Nolet, 1990; Van der Lee and Nolet, 1997). The addition of the newly fit waveforms drastically extends the range of the

  20. Full waveform modelling and misfit calculation using the VERCE platform

    Science.gov (United States)

    Garth, Thomas; Spinuso, Alessandro; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schwichtenberg, Horst; Frank, Anton; Vilotte, Jean-Pierre; Rietbrock, Andreas

    2016-04-01

    In recent years the increasing resolution of seismic imagining by full waveform inversion has opened new research perspectives and practices. These methods rely on harnessing the computational power of large supercomputers and new storage capabilities, to run large parallel codes to simulate the seismic wave field in three-dimensional geological settings. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. VERCE empowers a broad base of seismology researchers to harvest the new opportunities provided by well-established high-performance wave simulation codes such as SPECFEM3D. It meets a range of seismic research needs by eliminating the technical difficulties associated with using these codes, allowing users to focus on their research questions. VERCE delivers this power to seismologists through its science gateway, supporting wave simulation codes on each of the provided computing resources. Users can design their waveform simulation scenarios making use of a library of pre-loaded meshes and velocity models, and services for selecting earthquake focal mechanisms, seismic stations and recorded waveforms from existing catalogues, such as the GCMT catalogue, and FDSN data sources. They can also supply their own mesh, velocity model, earthquake catalogue and seismic observations. They can submit the simulations onto different computing resources, where VERCE provides codes that are tuned and supported for those resources. The simulations can currently be run on a range of European supercomputers in the PRACE network, including superMUC at LRZ, GALILEO at CINECA and on selected resources like Drachenfels at SCAI and within the EGI network. The gateway automates and looks after all these stages, but supplies seismologists with a provenance system that allows them to manage a large series of runs, review progress, and explore the results. The platform automates misfit analysis between

  1. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  2. Goldstone Solar System Radar Waveform Generator

    Science.gov (United States)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  3. A Hybrid Waveform Inversion Scheme for the Determination of Locations and Moment Tensors of the Microseismic Events and the uncertainty and Sensitivity Analysis

    Science.gov (United States)

    Li, J.; Droujinine, A.; Shen, P.

    2011-12-01

    In this research, we developed a new hybrid waveform inversion scheme to determine the hypocenters, origin times and moment tensors of the microseismic events induced by hydraulic fracturing. To overcome the nonlinearity in the determination of the hypocenter and origin time of a microseismic event, we perform a global search for the hypocenter (x,y,z) and origin time (t0) in a gridded four-dimensional model space, and at each grid point of the four-dimensional model space, we perform a linear inversion for the moment tensor components (M11, M22, M33, M12, M13, M23) in a six-dimensional model subspace. By this two-step approach, we find a global estimate optimum solution in the four- plus six-dimensional total model space. Then we further perform a nonlinear, gradient-based inversion for a better hypocenter and origin time of the microseismic event starting from the global estimate optimum solution. The linear inversion for the moment tensor can also be performed at each iteration of the nonlinear inversion for the hypocenter and origin time. In the grid-linear-nonlinear hybrid approach, we avoid being trapped in the local minima in the inverse problem while reducing the computational cost. The Green's functions between a monitored regions and receivers are computed by the elastic wave reciprocity. We also have performed a systematic study of the uncertainty, resolution and sensitivity of the method and found that it has superior performance in determining the hypocenter and origin time of a microseismic event over the traditional travel time methods, while being able to deliver the focal mechanism solution for the event as well. The method is tested on a dataset from a hydraulic fracturing practice in an oil reservoir.

  4. Categorisation of full waveform data provided by laser scanning devices

    Science.gov (United States)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  5. Mergers of black-hole binaries with aligned spins: Waveform characteristics

    CERN Document Server

    Kelly, Bernard J; Boggs, William D; McWilliams, Sean T; Centrella, Joan

    2011-01-01

    We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from equal-mass aligned-spin mergers, following an approach first presented in the complementary context of nonspinning black holes of varying mass ratio [Baker et al., Phys. Rev. D 78:044046 (2008)]. We find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-step through inspiral and merger, supporting the previous waveform description in terms of an adiabatically rigid rotator driving gravitational-wave emission -- an implicit rotating source (IRS). We further apply the late-time merger-ringdown model for the rotational frequency introduced in Baker et al. (2008), along with an improved amplitude model appropriate for the dominant (2,+/- 2) modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the major features of these waveforms can be described with reference only to the intrinsic parameters associated with the state...

  6. Goal-Directed Fluid Therapy Guided by Cardiac Monitoring During High-Risk Abdominal Surgery in Adult Patients: Cost-Effectiveness Analysis of Esophageal Doppler and Arterial Pulse Pressure Waveform Analysis.

    Science.gov (United States)

    Legrand, Guillaume; Ruscio, Laura; Benhamou, Dan; Pelletier-Fleury, Nathalie

    2015-07-01

    Several minimally invasive techniques for cardiac output monitoring such as the esophageal Doppler (ED) and arterial pulse pressure waveform analysis (APPWA) have been shown to improve surgical outcomes compared with conventional clinical assessment (CCA). To evaluate the cost-effectiveness of these techniques in high-risk abdominal surgery from the perspective of the French public health insurance fund. An analytical decision model was constructed to compare the cost-effectiveness of ED, APPWA, and CCA. Effectiveness data were defined from meta-analyses of randomized clinical trials. The clinical end points were avoidance of hospital mortality and avoidance of major complications. Hospital costs were estimated by the cost of corresponding diagnosis-related groups. Both goal-directed therapy strategies evaluated were more effective and less costly than CCA. Perioperative mortality and the rate of major complications were reduced by the use of ED and APPWA. Cost reduction was mainly due to the decrease in the rate of major complications. APPWA was dominant compared with ED in 71.6% and 27.6% and dominated in 23.8% and 20.8% of the cases when the end point considered was "major complications avoided" and "death avoided," respectively. Regarding cost per death avoided, APPWA was more likely to be cost-effective than ED in a wide range of willingness to pay. Cardiac output monitoring during high-risk abdominal surgery is cost-effective and is associated with a reduced rate of hospital mortality and major complications, whatever the device used. The two devices evaluated had negligible costs compared with the observed reduction in hospital costs. Our comparative studies suggest a larger effect with APPWA that needs to be confirmed by further studies. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  7. Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Ilana; Nissanke, Samaya; Pfeiffer, Harald P, E-mail: macdonald@astro.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada)

    2011-07-07

    This paper presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such 'hybrid waveforms'. We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to {approx}< 0.1 rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor approximants. Using our error criterion, even at 3.5th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors.

  8. Optical arbitrary waveform characterization using linear spectrograms.

    Science.gov (United States)

    Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M

    2010-08-01

    We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.

  9. Digital Waveform Generator Basedon FPGA

    Directory of Open Access Journals (Sweden)

    Shoucheng Ding

    2012-07-01

    Full Text Available Field Programmable Gate Array (FPGA of the Cyclone II series was as the core processor of frequency meter and the Quartus II was as the development plat form. This article had designed the fully digital signal generator. It use dall-digital frequency synthesizer technology and FPGA programming implemented the three waveforms: sin wave and square wave and triangle wave. The frequency was adjustable through10- bit phase accumulator and the analog multiplier achieved amplitude modulation. Using 51soft nuclear FPGA wrote a C program and realized the in put control word. The 4 × 4 matrix keyboard inputted frequency or amplitude value and the LCD1602displayedthem. The test results show that the system has high precision, distortion and low.

  10. Interpolation in waveform space: enhancing the accuracy of gravitational waveform families using numerical relativity

    CERN Document Server

    Cannon, Kipp; Hanna, Chad; Keppel, Drew; Pfeiffer, Harald

    2012-01-01

    Matched-filtering for the identification of compact object mergers in gravitational-wave antenna data involves the comparison of the data stream to a bank of template gravitational waveforms. Typically the template bank is constructed from phenomenological waveform models since these can be evaluated for an arbitrary choice of physical parameters. Recently it has been proposed that singular value decomposition (SVD) can be used to reduce the number of templates required for detection. As we show here, another benefit of SVD is its removal of biases from the phenomenological templates along with a corresponding improvement in their ability to represent waveform signals obtained from numerical relativity (NR) simulations. Using these ideas, we present a method that calibrates a reduced SVD basis of phenomenological waveforms against NR waveforms in order to construct a new waveform approximant with improved accuracy and faithfulness compared to the original phenomenological model. The new waveform family is giv...

  11. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    Science.gov (United States)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  12. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  13. Automated microseismic event location using Master-Event Waveform Stacking

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Krieger, Lars; Kriegerowski, Marius; Gammaldi, Sergio; Horalek, Josef; Priolo, Enrico; Dahm, Torsten

    2016-05-01

    Accurate and automated locations of microseismic events are desirable for many seismological and industrial applications. The analysis of microseismicity is particularly challenging because of weak seismic signals with low signal-to-noise ratio. Traditional location approaches rely on automated picking, based on individual seismograms, and make no use of the coherency information between signals at different stations. This strong limitation has been overcome by full-waveform location methods, which exploit the coherency of waveforms at different stations and improve the location robustness even in presence of noise. However, the performance of these methods strongly depend on the accuracy of the adopted velocity model, which is often quite rough; inaccurate models result in large location errors. We present an improved waveform stacking location method based on source-specific station corrections. Our method inherits the advantages of full-waveform location methods while strongly mitigating the dependency on the accuracy of the velocity model. With this approach the influence of an inaccurate velocity model on the results is restricted to the estimation of travel times solely within the seismogenic volume, but not for the entire source-receiver path. We finally successfully applied our new method to a realistic synthetic dataset as well as real data.

  14. Applying the Moment Distance Framework to LiDAR Waveforms

    Science.gov (United States)

    Salas, E. L.; Aguilar-Amuchastegui, N.; Henebry, G. M.

    2010-12-01

    In the past decade or so, there have only been limited approaches formulated for the analysis of waveform LiDAR data. We illustrate how the Moment Distance (MD) framework can characterize the shape of the LiDAR waveforms using simple, computationally fast, geometric operations. We assess the relationship of the MD metrics to some key waveform landmarks - such as locations of peaks, power of returns, and pseudo-heights - using LVIS datasets acquired over a tropical forest in La Selva, Costa Rica in 1998 and 2005. We also apply the MD framework to 2003 LVIS data from Howland Forest, Maine. We also explore the effects of noise on the MD Index (MDI). Our results reveal that the MDI can capture important dynamics in canopy structure. Movement in the location of the peaks is detected by shifts in the MDI. Because this new approach responds to waveform shape, it is more sensitive to changes of location of peak returns than to the power of the return. Results also suggest a positive relationship between the MDI and the canopy pseudo-height.

  15. Implementation of Pulse Radar Waveform Based on Software Radio Platform

    OpenAIRE

    Wang Dong; Dong Jian; Xiao Shunping

    2015-01-01

    Based on the frequency and phase modulated signal, the authors design some commonly-used pulse radar baseband waveform, such as linear frequency modulated waveform, nonlinear frequency modulated waveform, Costas waveform, Barker coding waveform and multi-phase coded waveform, and the authors compare their performance, such as the peak side lobe ratio, the Rayleigh resolution in time and distance resolution. Then, based on the software radio platform NI PXIe-5644R, the authors design the timin...

  16. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    Science.gov (United States)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full

  17. Improved retracking algorithm for oceanic altimeter waveforms

    Institute of Scientific and Technical Information of China (English)

    Lifeng Bao; Yang Lu; Yong Wang

    2009-01-01

    Over the deep oceans without land/ice interference, the waveforms created by the return altimeter pulse generally follow the ocean model of Brown, and the corresponding range can be properly determined using the result from an onboard tracker. In the case of com-plex altimeter waveforms corrupted due to a variety of reasons, the processor on the satellite cannot properly determine the center of the leading edge, and range observations can be in error. As an efficacious method to improve the precision of those altimeter observations with complex waveforms, waveform retracking is required to reprocess the original returning pulse. Based on basic altimeter theory and the geometric feature of altimeter waveforms, we developed a new altimeter waveform retracker, which is valid for all altimeter wave-forms once there exists a reasonable returning signal. The performances of the existing Beta-5 retracker, threshold retracker, improved threshold retracker, and the new retracker are assessed in the experimental regions (China Seas and its adjacent regions), and the improvements in the accuracy of sea surface height are investigated by the difference between retracked altimeter observations and ref-erenced geoid. The comparisons denote that the new algorithm gives the best performance in both the open ocean and coastal regions. Also, the new retracker presents a uniform performance in the whole test region. Besides, there is a significant improvement in the short-wavelength precision and the spatial resolution of sea surface height after retracking process.

  18. Waveform Fingerprinting for Efficient Seismic Signal Detection

    Science.gov (United States)

    Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2013-12-01

    Cross-correlating an earthquake waveform template with continuous waveform data has proven a powerful approach for detecting events missing from earthquake catalogs. If templates do not exist, it is possible to divide the waveform data into short overlapping time windows, then identify window pairs with similar waveforms. Applying these approaches to earthquake monitoring in seismic networks has tremendous potential to improve the completeness of earthquake catalogs, but because effort scales quadratically with time, it rapidly becomes computationally infeasible. We develop a fingerprinting technique to identify similar waveforms, using only a few compact features of the original data. The concept is similar to human fingerprints, which utilize key diagnostic features to identify people uniquely. Analogous audio-fingerprinting approaches have accurately and efficiently found similar audio clips within large databases; example applications include identifying songs and finding copyrighted content within YouTube videos. In order to fingerprint waveforms, we compute a spectrogram of the time series, and segment it into multiple overlapping windows (spectral images). For each spectral image, we apply a wavelet transform, and retain only the sign of the maximum magnitude wavelet coefficients. This procedure retains just the large-scale structure of the data, providing both robustness to noise and significant dimensionality reduction. Each fingerprint is a high-dimensional, sparse, binary data object that can be stored in a database without significant storage costs. Similar fingerprints within the database are efficiently searched using locality-sensitive hashing. We test this technique on waveform data from the Northern California Seismic Network that contains events not detected in the catalog. We show that this algorithm successfully identifies similar waveforms and detects uncataloged low magnitude events in addition to cataloged events, while running to completion

  19. Parallel Algorithm in Surface Wave Waveform Inversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In Surface wave waveform inversion, we want to reconstruct 3Dshear wav e velocity structure, which calculation beyond the capability of the powerful pr esent day personal computer or even workstation. So we designed a high parallele d algorithm and carried out the inversion on Parallel computer based on the part itioned waveform inversion (PWI). It partitions the large scale optimization pro blem into a number of independent small scale problems and reduces the computati onal effort by several orders of magnitude. We adopted surface waveform inversio n with a equal block(2°×2°) discretization.

  20. Periodic, pseudonoise waveforms for multifunction coherent ladar.

    Science.gov (United States)

    Dierking, Matthew P; Duncan, Bradley D

    2010-04-01

    We report the use of periodic, pseudonoise waveforms in a multifunction coherent ladar system. We exploit the Doppler sensitivity of these waveforms, as well as agile processing, to enable diverse ladar functions, including high range resolution imaging, macro-Doppler imaging, synthetic aperture ladar, and range-resolved micro-Doppler imaging. We present analytic expressions and simulations demonstrating the utility of pseudonoise waveforms for each of the ladar modes. We also discuss a laboratory pseudonoise ladar system that was developed to demonstrate range compression and range-resolved micro-Doppler imaging, as well as the phase recovery common to each of the coherent modes.

  1. Optimal pseudorandom pulse position modulation ladar waveforms.

    Science.gov (United States)

    Fluckiger, David U; Boland, Brian F; Marcus, Eran

    2015-03-20

    An algorithm for generating optimal pseudorandom pulse position modulation (PRPPM) waveforms for ladar ranging is presented. Bistatic ladar systems using Geiger-mode avalanche photodiodes require detection of several pulses in order to generate sufficient target statistics to satisfy some detection decision rule. For targets with large initial range uncertainty, it becomes convenient to transmit a pulse train with large ambiguity range. One solution is to employ a PRPPM waveform. An optimal PRPPM waveform will have minimal sidelobes: equivalent to 1 or 0 counts after the pulse correlation filter (compression). This can be accomplished by generating PRPPM pulse trains with optimal or minimal sidelobe autocorrelation.

  2. Inferring the physical properties of gravitational wave sources from multi-wavelet waveform reconstructions

    Science.gov (United States)

    Littenberg, Tyson; LIGO Scientific Collaboration

    2016-03-01

    The BayesWave burst detection and characterization algorithm was used during the first Advanced LIGO observing run as a follow-up analysis to candidate transient gravitational wave events. Among the BayesWave data products are robust reconstructed waveforms and probability density functions for metrics such as duration, bandwidth, etc. used to characterize the waveforms. We will demonstrate how the waveform metrics can be used to infer the astrophysical nature of a gravitational wave source, and present the status of BayesWave studies from the first advanced LIGO observing run.

  3. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    Science.gov (United States)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity

  4. Selection of Carrier Waveforms for PWM Inverter

    Institute of Scientific and Technical Information of China (English)

    陈国呈; 屈克庆; 许春雨; 孙承波

    2003-01-01

    In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonancetrigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.

  5. High-Voltage, Asymmetric-Waveform Generator

    Science.gov (United States)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  6. Estimating extracellular spike waveforms from CA1 pyramidal cells with multichannel electrodes.

    Science.gov (United States)

    Molden, Sturla; Moldestad, Olve; Storm, Johan F

    2013-01-01

    Extracellular (EC) recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the "local field potential" (LFP). In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe). We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike.

  7. Ultrasound tomography imaging with waveform sound speed: parenchymal changes in women undergoing tamoxifen therapy

    Science.gov (United States)

    Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark; Gierach, Gretchen

    2017-03-01

    Ultrasound tomography (UST) is an emerging modality that can offer quantitative measurements of breast density. Recent breakthroughs in UST image reconstruction involve the use of a waveform reconstruction as opposed to a raybased reconstruction. The sound speed (SS) images that are created using the waveform reconstruction have a much higher image quality. These waveform images offer improved resolution and contrasts between regions of dense and fatty tissues. As part of a study that was designed to assess breast density changes using UST sound speed imaging among women undergoing tamoxifen therapy, UST waveform sound speed images were then reconstructed for a subset of participants. These initial results show that changes to the parenchymal tissue can more clearly be visualized when using the waveform sound speed images. Additional quantitative testing of the waveform images was also started to test the hypothesis that waveform sound speed images are a more robust measure of breast density than ray-based reconstructions. Further analysis is still needed to better understand how tamoxifen affects breast tissue.

  8. [Study of sharing platform of web-based enhanced extracorporeal counterpulsation hemodynamic waveform data].

    Science.gov (United States)

    Huang, Mingbo; Hu, Ding; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2011-12-01

    Enhanced extracorporeal counterpulsation (EECP) information consists of both text and hemodynamic waveform data. At present EECP text information has been successfully managed through Web browser, while the management and sharing of hemodynamic waveform data through Internet has not been solved yet. In order to manage EECP information completely, based on the in-depth analysis of EECP hemodynamic waveform file of digital imaging and communications in medicine (DICOM) format and its disadvantages in Internet sharing, we proposed the use of the extensible markup language (XML), which is currently the Internet popular data exchange standard, as the storage specification for the sharing of EECP waveform data. Then we designed a web-based sharing system of EECP hemodynamic waveform data via ASP. NET 2.0 platform. Meanwhile, we specifically introduced the four main system function modules and their implement methods, including DICOM to XML conversion module, EECP waveform data management module, retrieval and display of EECP waveform module and the security mechanism of the system.

  9. GRC GSFC TDRSS Waveform Metrics Report

    Science.gov (United States)

    Mortensen, Dale J.

    2013-01-01

    The report presents software metrics and porting metrics for the GGT Waveform. The porting was from a ground-based COTS SDR, the SDR-3000, to the CoNNeCT JPL SDR. The report does not address any of the Operating Environment (OE) software development, nor the original TDRSS waveform development at GSFC for the COTS SDR. With regard to STRS, the report presents compliance data and lessons learned.

  10. Georgia Tech Catalog of Gravitational Waveforms

    CERN Document Server

    Jani, Karan; Clark, James A; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre

    2016-01-01

    This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios $q = m_1/m_2 \\le 15$, and those with precessing, spinning black holes have $q \\le 8$. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 even...

  11. Georgia tech catalog of gravitational waveforms

    Science.gov (United States)

    Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre

    2016-10-01

    This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.

  12. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2014-08-05

    Fast-scan cyclic voltammetry (FSCV) is an electrochemistry technique which allows subsecond detection of neurotransmitters in vivo. Adenosine detection using FSCV has become increasingly popular but can be difficult because of interfering agents which oxidize at or near the same potential as adenosine. Triangle shaped waveforms are traditionally used for FSCV, but modified waveforms have been introduced to maximize analyte sensitivity and provide stability at high scan rates. Here, a modified sawhorse waveform was used to maximize the time for adenosine oxidation and to manipulate the shapes of cyclic voltammograms (CVs) of analytes which oxidize at the switching potential. The optimized waveform consists of scanning at 400 V/s from -0.4 to 1.35 V and holding briefly for 1.0 ms followed by a ramp back down to -0.4 V. This waveform allows the use of a lower switching potential for adenosine detection. Hydrogen peroxide and ATP also oxidize at the switching potential and can interfere with adenosine measurements in vivo; however, their CVs were altered with the sawhorse waveform and they could be distinguished from adenosine. Principal component analysis (PCA) was used to determine that the sawhorse waveform was better than the triangle waveform at discriminating between adenosine, hydrogen peroxide, and ATP. In slices, mechanically evoked adenosine was identified with PCA and changes in the ratio of ATP to adenosine were observed after manipulation of ATP metabolism by POM-1. The sawhorse waveform is useful for adenosine, hydrogen peroxide, and ATP discrimination and will facilitate more confident measurements of these analytes in vivo.

  13. The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries

    CERN Document Server

    Ajith, P; Brown, Duncan A; Brügmann, Bernd; Buchman, Luisa T; Cadonati, Laura; Campanelli, Manuela; Chu, Tony; Etienne, Zachariah B; Fairhurst, Stephen; Hannam, Mark; Healy, James; Hinder, Ian; Husa, Sascha; Kidder, Lawrence E; Krishnan, Badri; Laguna, Pablo; Liu, Yuk Tung; London, Lionel; Lousto, Carlos O; Lovelace, Geoffrey; MacDonald, Ilana; Marronetti, Pedro; Mohapatra, Satya; Mösta, Philipp; Müller, Doreen; Mundim, Bruno C; Nakano, Hiroyuki; Ohme, Frank; Paschalidis, Vasileios; Pekowsky, Larne; Pollney, Denis; Pfeiffer, Harald P; Ponce, Marcelo; Pürrer, Michael; Reifenberger, George; Reisswig, Christian; Santamaría, Lucía; Scheel, Mark A; Shapiro, Stuart L; Shoemaker, Deirdre; Sopuerta, Carlos F; Sperhake, Ulrich; Szilágyi, Béla; Taylor, Nicholas W; Tichy, Wolfgang; Tsatsin, Petr; Zlochower, Yosef

    2012-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms, and to foster closer collaboration between the numerical relativity and data analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian - numerical relativity hybrid waveforms, large numbers of injections, and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical relativity groups have contributed 63 hybrid waveforms consisting of a numerical portion modelling the late ...

  14. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  15. Analytic gravitational waveforms for generic precessing compact binaries

    CERN Document Server

    Chatziioannou, Katerina; Cornish, Neil; Yunes, Nicolas

    2016-01-01

    Binary systems of two compact objects circularize and spiral toward each other via the emission of gravitational waves. The coupling of the spins of each object with the orbital angular momentum causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until now, generating frequency-domain waveforms for fully precessing systems for use in gravitational wave data analysis meant numerically integrating the equations of motion, then Fourier transforming the result, which is very computationally intensive for systems that complete hundreds or thousands of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for certain special cases or for simplified models. Here we describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals.

  16. Modelling Sensor and Target effects on LiDAR Waveforms

    Science.gov (United States)

    Rosette, J.; North, P. R.; Rubio, J.; Cook, B. D.; Suárez, J.

    2010-12-01

    The aim of this research is to explore the influence of sensor characteristics and interactions with vegetation and terrain properties on the estimation of vegetation parameters from LiDAR waveforms. This is carried out using waveform simulations produced by the FLIGHT radiative transfer model which is based on Monte Carlo simulation of photon transport (North, 1996; North et al., 2010). The opportunities for vegetation analysis that are offered by LiDAR modelling are also demonstrated by other authors e.g. Sun and Ranson, 2000; Ni-Meister et al., 2001. Simulations from the FLIGHT model were driven using reflectance and transmittance properties collected from the Howland Research Forest, Maine, USA in 2003 together with a tree list for a 200m x 150m area. This was generated using field measurements of location, species and diameter at breast height. Tree height and crown dimensions of individual trees were calculated using relationships established with a competition index determined for this site. Waveforms obtained by the Laser Vegetation Imaging Sensor (LVIS) were used as validation of simulations. This provided a base from which factors such as slope, laser incidence angle and pulse width could be varied. This has enabled the effect of instrument design and laser interactions with different surface characteristics to be tested. As such, waveform simulation is relevant for the development of future satellite LiDAR sensors, such as NASA’s forthcoming DESDynI mission (NASA, 2010), which aim to improve capabilities of vegetation parameter estimation. ACKNOWLEDGMENTS We would like to thank scientists at the Biospheric Sciences Branch of NASA Goddard Space Flight Center, in particular to Jon Ranson and Bryan Blair. This work forms part of research funded by the NASA DESDynI project and the UK Natural Environment Research Council (NE/F021437/1). REFERENCES NASA, 2010, DESDynI: Deformation, Ecosystem Structure and Dynamics of Ice. http

  17. Reproduction of consistent pulse-waveform changes using a computational model of the cerebral circulatory system.

    Science.gov (United States)

    Connolly, Mark; He, Xing; Gonzalez, Nestor; Vespa, Paul; DiStefano, Joe; Hu, Xiao

    2014-03-01

    Due to the inaccessibility of the cranial vault, it is difficult to study cerebral blood flow dynamics directly. A mathematical model can be useful to study these dynamics. The model presented here is a novel combination of a one-dimensional fluid flow model representing the major vessels of the circle of Willis (CoW), with six individually parameterized auto-regulatory models of the distal vascular beds. This model has the unique ability to simulate high temporal resolution flow and velocity waveforms, amenable to pulse-waveform analysis, as well as sophisticated phenomena such as auto-regulation. Previous work with human patients has shown that vasodilation induced by CO2 inhalation causes 12 consistent pulse-waveform changes as measured by the morphological clustering and analysis of intracranial pressure algorithm. To validate this model, we simulated vasodilation and successfully reproduced 9 out of the 12 pulse-waveform changes. A subsequent sensitivity analysis found that these 12 pulse-waveform changes were most affected by the parameters associated with the shape of the smooth muscle tension response and vessel elasticity, providing insight into the physiological mechanisms responsible for observed changes in the pulse-waveform shape.

  18. Tsunami waveform inversion by adjoint methods

    Science.gov (United States)

    Pires, Carlos; Miranda, Pedro M. A.

    2001-09-01

    An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.

  19. Photoacoustic correlation signal-to-noise ratio enhancement by coherent averaging and optical waveform optimization.

    Science.gov (United States)

    Telenkov, Sergey A; Alwi, Rudolf; Mandelis, Andreas

    2013-10-01

    Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q-switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be addressed if optical excitation is modulated using custom waveforms and correlation processing is employed to increase SNR through signal compression. This work investigates the effect of the parameters of the modulation waveform on the resulting correlation signal and offers a practical means for optimizing PA signal detection. The advantage of coherent signal averaging is demonstrated using theoretical analysis and a numerical model of PA generation. It was shown that an additional 5-10 dB of SNR can be gained through waveform engineering by adjusting the parameters and profile of optical modulation waveforms.

  20. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    Science.gov (United States)

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  1. WFCatalog: A catalogue for seismological waveform data

    Science.gov (United States)

    Trani, Luca; Koymans, Mathijs; Atkinson, Malcolm; Sleeman, Reinoud; Filgueira, Rosa

    2017-09-01

    This paper reports advances in seismic waveform description and discovery leading to a new seismological service and presents the key steps in its design, implementation and adoption. This service, named WFCatalog, which stands for waveform catalogue, accommodates features of seismological waveform data. Therefore, it meets the need for seismologists to be able to select waveform data based on seismic waveform features as well as sensor geolocations and temporal specifications. We describe the collaborative design methods and the technical solution showing the central role of seismic feature catalogues in framing the technical and operational delivery of the new service. Also, we provide an overview of the complex environment wherein this endeavour is scoped and the related challenges discussed. As multi-disciplinary, multi-organisational and global collaboration is necessary to address today's challenges, canonical representations can provide a focus for collaboration and conceptual tools for agreeing directions. Such collaborations can be fostered and formalised by rallying intellectual effort into the design of novel scientific catalogues and the services that support them. This work offers an example of the benefits generated by involving cross-disciplinary skills (e.g. data and domain expertise) from the early stages of design, and by sustaining the engagement with the target community throughout the delivery and deployment process.

  2. SCA Waveform Development for Space Telemetry

    Science.gov (United States)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  3. Photonic arbitrary waveform generator based on Taylor synthesis method

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2016-01-01

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...

  4. Photonic arbitrary waveform generator based on Taylor synthesis method.

    Science.gov (United States)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang

    2016-10-17

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.

  5. Krylov subspace acceleration of waveform relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, A.; Wu, Deyun [Univ. of Notre Dame, IN (United States)

    1996-12-31

    Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).

  6. Waveform information from quantum mechanical entropy

    Science.gov (United States)

    Funkhouser, Scott; Suski, William; Winn, Andrew

    2016-06-01

    Although the entropy of a given signal-type waveform is technically zero, it is nonetheless desirable to use entropic measures to quantify the associated information. Several such prescriptions have been advanced in the literature but none are generally successful. Here, we report that the Fourier-conjugated `total entropy' associated with quantum-mechanical probabilistic amplitude functions (PAFs) is a meaningful measure of information in non-probabilistic real waveforms, with either the waveform itself or its (normalized) analytic representation acting in the role of the PAF. Detailed numerical calculations are presented for both adaptations, showing the expected informatic behaviours in a variety of rudimentary scenarios. Particularly noteworthy are the sensitivity to the degree of randomness in a sequence of pulses and potential for detection of weak signals.

  7. Waveform Design for Wireless Power Transfer

    Science.gov (United States)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  8. Filter transient response to EEG waveforms.

    Science.gov (United States)

    Shirakawa, S; Smith, J R; Azumi, K

    1987-01-01

    The response of two types of linear filters to sinusoidal bursts was calculated to demonstrate how filters can distort EEG waveforms. Results show that the wider the filter bandwidth the less is the distortion, and for a given bandwidth, the higher the filter order the greater the distortion. The response of a linear phase filter was also calculated to demonstrate that this type of filter can also cause waveform distortion, although it is normally less than that caused by Butterworth, Tchebychev and elliptic filters.

  9. High-Energy Optical Parametric Waveform Synthesizer

    OpenAIRE

    Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.

    2014-01-01

    We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...

  10. Principles of waveform diversity and design

    CERN Document Server

    Wicks, Michael

    2011-01-01

    This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is

  11. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  12. Data mining technique for fast retrieval of similar waveforms in Fusion massive databases

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N. [Departamento de Informatica y Automatica, UNED, Madrid (Spain); Santos, M. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain); Sanchez, E. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Pajares, G. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain)

    2008-01-15

    Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with 'similar' waveforms. Here we introduce a new technique for rapid searching and retrieval of 'similar' signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable 'similar' waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.

  13. On the use of higher order waveforms in the search for gravitational waves emitted by compact binary coalescences

    CERN Document Server

    McKechan, D J A

    2011-01-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order waveform models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms; we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter esti...

  14. Analysis of speech waveform quantization methods

    Directory of Open Access Journals (Sweden)

    Tadić Predrag R.

    2008-01-01

    Full Text Available Digitalization, consisting of sampling and quantization, is the first step in any digital signal processing algorithm. In most cases, the quantization is uniform. However, having knowledge of certain stochastic attributes of the signal (namely, the probability density function, or pdf, quantization can be made more efficient, in the sense of achieving a greater signal to quantization noise ratio. This means that narrower channel bandwidths are required for transmitting a signal of the same quality. Alternatively, if signal storage is of interest, rather than transmission, considerable savings in memory space can be made. This paper presents several available methods for speech signal pdf estimation, and quantizer optimization in the sense of minimizing the quantization error power.

  15. Waveform Analysis of UWB GPR Antennas

    Directory of Open Access Journals (Sweden)

    Julia Armesto

    2009-03-01

    Full Text Available Ground Penetrating Radar (GPR systems fall into the category of ultra-wideband (UWB devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.

  16. Waveform Analysis of UWB GPR Antennas.

    Science.gov (United States)

    Rial, Fernando I; Lorenzo, Henrique; Pereira, Manuel; Armesto, Julia

    2009-01-01

    Ground Penetrating Radar (GPR) systems fall into the category of ultra-wideband (UWB) devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium) plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.

  17. A New Method of Designing Waveform Codebook

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The codebook search takes much operation quantity in CELP coder. The paper puts forward a new method redesigning the waveform codebook known, and lists the experimental data. It has been proved that the operation complexity and transmission bit rate were decreased by using the new codebook, and the synthesis speech quality was high.

  18. Waveform Selectivity at the Same Frequency

    Science.gov (United States)

    Wakatsuchi, Hiroki; Anzai, Daisuke; Rushton, Jeremiah J.; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F.

    2015-01-01

    Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of circuit elements are then combined to absorb or transmit specific waveforms in between. This waveform selectivity gives us another degree of freedom to control electromagnetic waves in various fields including wireless communications, as our simulation reveals that the metasurfaces are capable of varying bit error rates in response to different waveforms. PMID:25866071

  19. Seismic Waveform Inversion by Stochastic Optimization

    Directory of Open Access Journals (Sweden)

    Tristan van Leeuwen

    2011-01-01

    Full Text Available We explore the use of stochastic optimization methods for seismic waveform inversion. The basic principle of such methods is to randomly draw a batch of realizations of a given misfit function and goes back to the 1950s. The ultimate goal of such an approach is to dramatically reduce the computational cost involved in evaluating the misfit. Following earlier work, we introduce the stochasticity in waveform inversion problem in a rigorous way via a technique called randomized trace estimation. We then review theoretical results that underlie recent developments in the use of stochastic methods for waveform inversion. We present numerical experiments to illustrate the behavior of different types of stochastic optimization methods and investigate the sensitivity to the batch size and the noise level in the data. We find that it is possible to reproduce results that are qualitatively similar to the solution of the full problem with modest batch sizes, even on noisy data. Each iteration of the corresponding stochastic methods requires an order of magnitude fewer PDE solves than a comparable deterministic method applied to the full problem, which may lead to an order of magnitude speedup for waveform inversion in practice.

  20. Analog circuit design designing waveform processing circuits

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.

  1. Processing Waveforms as Trees for Pattern Recognition.

    Science.gov (United States)

    1986-05-01

    patterns (after Ganong (15]) 5.7 ECG Classification As in the previous example, waveforms were simulated with additive colored gaussian noise. In order to...Principles and Techniques- (AAPG Course Note Series 13), Amer. Assoc. Pet. Geol., Tulsa, OK,p. 86, (1984). [15] W. F. Ganong , Review of Medical Physiology. Lange, Los Altos, CA. pp. 393-408, (1973). /

  2. Development and validation of 2-deoxy-2-chloro-D-glucose impurity analysis in [{sup 18}F]FDG by three potential-time waveforms of high-performance liquid chromatography/pulsed amperometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Farn, S.-S. [Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan County, Taiwan (China)], E-mail: amanda@iner.gov.tw; Yeh, Y.-H.; Lin, W.-J.; Shen, L.-H. [Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan County, Taiwan (China)

    2009-02-15

    A suitable three potential-time waveforms for the electrochemical detection of 2-deoxy-2-chloro-D-glucose (ClDG) by gold working electrode and palladium reference electrode have been developed and method validation was performed on Waters 2796 Bioalliance HPLC system coupled with pulsed amperometric detection (HPLC/PAD). FDG and ClDG could be completely separated by 50 mM NaOH mobile phase at a flow rate of 1.0 ml/min; 30 deg. C analytical column temperature; and E1 of 200 mV, T1 of 900 mS; E2 of -770 mV, T2 of 10 mS; E3 of 1400 mV, T3 of 10 mS; acquisition delay (AD) of 300 mS. The validation results were shown as follows: (1) in specificity study, mannose, FDG and ClDG could be completely separated and the retention times of these were 6.2, 11.1 and 13.5 min, respectively, with a total run time of 20 min; (2) the intraday repeatable precision expressed with the CV% in six successive analysis was 0.52% (for FDG) and 0.83% (for ClDG); (3) the interday variability precision expressed with the CV% value of the repeatable precision of 3 days was 0.99%, 0.52% and 0.58% for FDG and 0.71%, 0.83% and 1.24% for ClDG; both the CV% of intraday and interday reproducibilities of FDG and ClDG were better than 1.5%; (4) the accuracy and recovery of FDG and ClDG expressed with the percentage of mean value of three successive analysis were 99.75% (for FDG) and 100.68% (for ClDG) which were all greater than 95%; (5) under optimum conditions, the limit of detection of FDG and ClDG was 0.41 and 0.68 {mu}g/ml, and the limit of quantization of FDG and ClDG was 1.24 and 2.04 {mu}g/ml; (6) the correlation coefficient (r) value of linearity is over 0.999 by 5-50 {mu}g/ml ranges of both compounds, respectively; (7) no interference peak effects by composition of mobile phase or increasing/decreasing flow rate or change of temperature was observed.

  3. Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science Waveform Receiver Plasma Wave Analysis

    Science.gov (United States)

    Boardsen, Scott A.; Hospodarsky, George B.; Kletzing, Craig A.; Engebretson, Mark J.; Pfaff, Robert F.; Wygant, John R.; Kurth, William S.; Averkamp, Terrance F.; Bounds, Scott R.; Green, Jim L.; hide

    2016-01-01

    We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 21 September 2012 to 1 August 2014. We show that statistically, the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (f(sub cP)) has a distinct funnel-shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extra-ordinary (whistler) mode at wave normal angles (theta(sub k)) near 90 deg. Performing polarization analysis on synthetic waveforms composed from a superposition of extra-ordinary mode plane waves with theta(sub k) randomly chosen between 87 and 90 deg, we show that the uncertainty in the derived wave normal is substantially broadened, with a tail extending down to theta(sub k) of 60 deg, suggesting that another approach is necessary to estimate the true distribution of theta(sub k). We find that the histograms of the synthetically derived ellipticities and theta(sub k) are consistent with the observations of ellipticities and theta(sub k) derived using polarization analysis.We make estimates of the median equatorial theta(sub k) by comparing observed and model ray tracing frequency-dependent probability occurrence with latitude and give preliminary frequency dependent estimates of the equatorial theta(sub k) distribution around noon and 4 R(sub E), with the median of approximately 4 to 7 deg from 90 deg at f/f(sub cP) = 2 and dropping to approximately 0.5 deg from 90 deg at f/f(sub cP) = 30. The occurrence of waves in this mode peaks around noon near the equator at all radial distances, and we find that the overall intensity of these waves increases with AE*, similar to findings of other studies.

  4. SAR processing with non-linear FM chirp waveforms.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-12-01

    Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.

  5. Transcranial motor evoked potential waveform changes in corrective fusion for adolescent idiopathic scoliosis.

    Science.gov (United States)

    Kobayashi, Kazuyoshi; Imagama, Shiro; Ito, Zenya; Ando, Kei; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Ishikawa, Yoshimoto; Matsumoto, Akiyuki; Nishida, Yoshihiro; Ishiguro, Naoki

    2017-01-01

    OBJECTIVE Corrective surgery for spinal deformities can lead to neurological complications. Several reports have described spinal cord monitoring in surgery for spinal deformity, but only a few have included patients younger than 20 years with adolescent idiopathic scoliosis (AIS). The goal of this study was to evaluate the characteristics of cases with intraoperative transcranial motor evoked potential (Tc-MEP) waveform deterioration during posterior corrective fusion for AIS. METHODS A prospective database was reviewed, comprising 68 patients with AIS who were treated with posterior corrective fusion in a prospective database. A total of 864 muscles in the lower extremities were chosen for monitoring, and acceptable baseline responses were obtained from 819 muscles (95%). Intraoperative Tc-MEP waveform deterioration was defined as a decrease in intraoperative amplitude of ≥ 70% of the control waveform. Age, Cobb angle, flexibility, operative time, estimated blood loss (EBL), intraoperative body temperature, blood pressure, number of levels fused, and correction rate were examined in patients with and without waveform deterioration. RESULTS The patients (3 males and 65 females) had an average age of 14.4 years (range 11-19 years). The mean Cobb angles before and after surgery were 52.9° and 11.9°, respectively, giving a correction rate of 77.4%. Fourteen patients (20%) exhibited an intraoperative waveform change, and these occurred during incision (14%), after screw fixation (7%), during the rotation maneuver (64%), during placement of the second rod after the rotation maneuver (7%), and after intervertebral compression (7%). Most waveform changes recovered after decreased correction or rest. No patient had a motor deficit postoperatively. In multivariate analysis, EBL (OR 1.001, p = 0.085) and number of levels fused (OR 1.535, p = 0.045) were associated with waveform deterioration. CONCLUSIONS Waveform deterioration commonly occurred during rotation maneuvers

  6. Multi-Gaussian fitting for pulse waveform using Weighted Least Squares and multi-criteria decision making method.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Feng, Shuting; Meng, Max Q-H; Wang, Kuanquan

    2013-11-01

    Analysis of pulse waveform is a low cost, non-invasive method for obtaining vital information related to the conditions of the cardiovascular system. In recent years, different Pulse Decomposition Analysis (PDA) methods have been applied to disclose the pathological mechanisms of the pulse waveform. All these methods decompose single-period pulse waveform into a constant number (such as 3, 4 or 5) of individual waves. Furthermore, those methods do not pay much attention to the estimation error of the key points in the pulse waveform. The estimation of human vascular conditions depends on the key points' positions of pulse wave. In this paper, we propose a Multi-Gaussian (MG) model to fit real pulse waveforms using an adaptive number (4 or 5 in our study) of Gaussian waves. The unknown parameters in the MG model are estimated by the Weighted Least Squares (WLS) method and the optimized weight values corresponding to different sampling points are selected by using the Multi-Criteria Decision Making (MCDM) method. Performance of the MG model and the WLS method has been evaluated by fitting 150 real pulse waveforms of five different types. The resulting Normalized Root Mean Square Error (NRMSE) was less than 2.0% and the estimation accuracy for the key points was satisfactory, demonstrating that our proposed method is effective in compressing, synthesizing and analyzing pulse waveforms.

  7. Platform for Post-Processing Waveform-Based NDE

    Science.gov (United States)

    Roth, Don J.

    2010-01-01

    Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.

  8. Signal waveform design to detect an underwater high-speed small target

    Institute of Scientific and Technical Information of China (English)

    YANG Chonglin; YAO Lan

    2002-01-01

    The problem of sonar signal waveform design to detect a high-speed small target in an underwater environment is discussed. From theoretical analysis, time-frequency hop signal is regarded as the most suitable signal waveform in this application. To get precise target parameter estimation ability, the signal should have high range-Doppler resolution performance.The results of signal analysis show that hop signal with frequency serial coding as Costas array has sharp ambiguity characteristic, so it can be used in an active sonar system to detect a high speed small target. A scheme of frequency coding is also presented.

  9. 变压器三相涌流波形特征分析及判别方法研究%Analysis and Assessment Methods of Waveform Characteristics of Three-Phase Transformer Inrush Current

    Institute of Scientific and Technical Information of China (English)

    卓元志; 李康; 赵斌; 韩斌; 赵雪沉璎

    2012-01-01

    With two big waveform characteristics of the transformer excitation inrush current revealed, this paper makes full use of the waveform characteristics,and then proposes a method of distinguishing the transformer excitation inrush current and internal fault current. This method is based on the assumption that the inrush current waveform presents the spire concave arc characteristics and fault current presents the sine waveform characteristics, and in half a cycle samples values can find the extreme value point,frequency, forming the corresponding virtual sine wave. Judging the similarity between the closing current and the tectonic waveform in half-wave cycle can distinguish between the excitation inrush current and fault current. The simulation results show that this method can effectively and quickly remove the internal faults of the transformer, and is not influenced by the aperiodic current components.%在揭示变压器励磁涌流两大波形特征的基础上,充分利用波形特征,提出一种利用波形特征区分变压器励磁涌流和内部故障电流的方法,该方法基于涌流波形呈现出尖顶波的凹弧特征,而故障电流基本保持正弦波形特征,在半波周期内找到采样值的极值点及频率,构造出与之对应的虚拟正弦波形,通过判断合闸电流与构造波形在半波周期内的相似程度来区分励磁涌流和故障电流.仿真结果表明,该方法能够有效、快速切除变压器内部故障,并且不受电流非周期分量的影响.

  10. The effect of nonuniform motion on the Doppler spectrum of scattered continuous-wave waveforms

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2003-04-01

    The Doppler effect is a widely treated phenomena in both radar and sonar for objects undergoing uniform motion. There are many different models (Censor has written a history of the subject) one can use to derive the Doppler effect. The treatment of non-uniform motion is not widely discussed in the literature of radar and sonar. Some authors argue it is negligible, while others refer to work dating back to Kelly in the early sixties. The treatment by Kelly, based on waveform analysis in acoustics, is difficult to justify in electromagnetism. Using the language of waveform analysis it is difficult to determine when approximations are justified by the physics of the waveform interaction and when they aren't. By returning to electromagnetic considerations in the derivation and subsequent analysis, issues associated with the correct physics and proper approximations become transparent. We present a straight forward analysis of the non-uniform Doppler effect based on the relativistic mirror (moving boundary) that is undergoing arbitrary motion. The resultant structure of the scattered waveform provides a simple representation of the effect of non-uniform motion on the scattered waveform that can be more easily analyzed. This work is a continuation of earlier work done by Censor, De Smedt, and Cooper. This analysis is independent of narrow-band assumptions so it is completely general. Non-uniform motion can produce two types of effects associated with the Doppler spectrum, a baseband line that isn't straight and micro-Doppler off of the baseband that produces complicated sideband behavior. Complicated baseband and micro-Doppler are illustrated by using the example of a particular waveform, the continuous wave (CW) which is analyzed for a number of examples of interest to the radar community. Application of this information is then discussed.

  11. Application of arbitrary waveform generator for noise radar

    Science.gov (United States)

    Lukin, Konstantin A.; Zemlyaniy, Oleg V.; Vyplavin, Pavlo L.; Palamarchuk, Volodymyr P.

    2011-10-01

    The approach, when the waveforms of different types are exploited in the same radar (waveform diversity) requires new-generation sources of initial signals. For generating of different types of waveforms in the same radar we suggest using Arbitrary Waveform Generator, that allows output any type of pre-programmed signal in real time. We have carried out preliminary experimental tests of the stepped-delay mode of UHF-band radar evaluation kit. The series of experimental testing shows efficiency AWG application in radar with variety of sounding waveforms.

  12. Computational Intelligence and Wavelet Transform Based Metamodel for Efficient Generation of Not-Yet Simulated Waveforms.

    Science.gov (United States)

    Oltean, Gabriel; Ivanciu, Laura-Nicoleta

    2016-01-01

    The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the

  13. Computational Intelligence and Wavelet Transform Based Metamodel for Efficient Generation of Not-Yet Simulated Waveforms

    Science.gov (United States)

    Oltean, Gabriel; Ivanciu, Laura-Nicoleta

    2016-01-01

    The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the

  14. Estimating extracellular spike waveforms from CA1 pyramidal cells with multichannel electrodes.

    Directory of Open Access Journals (Sweden)

    Sturla Molden

    Full Text Available Extracellular (EC recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the "local field potential" (LFP. In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe. We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike.

  15. Computational Intelligence and Wavelet Transform Based Metamodel for Efficient Generation of Not-Yet Simulated Waveforms.

    Directory of Open Access Journals (Sweden)

    Gabriel Oltean

    Full Text Available The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms, efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer, and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination. The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each

  16. Reduction of edge effect on disk electrodes by optimized current waveform.

    Science.gov (United States)

    Wang, Boshuo; Petrossians, Artin; Weiland, James D

    2014-08-01

    Rectangular pulses applied to disk electrodes result in high current density at the edges of the disk, which can lead to electrode corrosion and tissue damage. We explored a method for reducing current density and corrosion, by varying the leading edge of the current pulse. Finite-element modeling and mathematical analysis were used to predict an optimal waveform that reduces current density at the edge while also maintaining short pulse duration. An approximation of the optimized waveform was implemented experimentally and applied to platinum disk electrodes. Surface analysis using energy-dispersive spectroscopy showed significant reduction of corrosion on the periphery of these electrodes after pulsing, compared to those pulsed with the control rectangular waveform.

  17. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  18. LISA parameter estimation using numerical merger waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, J I; McWilliams, S T; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G, E-mail: James.I.Thorpe@nasa.go [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2009-05-07

    Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response, and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10{sup 6} M{sub o-dot} at a redshift of z approx 1 were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.

  19. LISA parameter estimation using numerical merger waveforms

    CERN Document Server

    Thorpe, J I; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G

    2008-01-01

    Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of one million Solar masses at a redshift of one were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.

  20. Comparing numerical and analytic approximate gravitational waveforms

    Science.gov (United States)

    Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration

    2016-03-01

    A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.

  1. Advanced Waveform Simulation for Seismic Monitoring

    Science.gov (United States)

    2008-09-01

    velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range

  2. The European seismological waveform framework EIDA

    Science.gov (United States)

    Trani, Luca; Koymans, Mathijs; Quinteros, Javier; Heinloo, Andres; Euchner, Fabian; Strollo, Angelo; Sleeman, Reinoud; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin; Pinar, Ali; Evangelidis, Christos

    2017-04-01

    The ORFEUS1 European Integrated Data Archive (EIDA2) federates (currently) 11 major European seismological data centres into a common organisational and operational framework which offers: (a) transparent and uniform access tools, advanced services and products for seismological waveform data; (b) a platform for establishing common policies for the curation of seismological waveform data and the description of waveform data by standardised quality metrics; (c) proper attribution and citation (e.g. data ownership). After its establishment in 2013, EIDA has been collecting and distributing seamlessly large amounts of seismological data and products to the research community and beyond. A major task of EIDA is the on-going improvement of the services, tools and products portfolio in order to meet the increasingly demanding users' requirements. At present EIDA is entering a new operational phase and will become the reference infrastructure for seismological waveform data in the pan-European infrastructure for solid-Earth science: EPOS (European Plate Observing System)3. The EIDA Next Generation developments, initiated within the H2020 project EPOS-IP, will provide a new infrastructure that will support the seismological and multidisciplinary EPOS community facilitating interoperability in a broader context. EIDA NG comprises a number of new services and products e.g.: Routing Service, Authentication Service, WFCatalog, Mediator, Station Book and more in the near future. In this contribution we present the current status of the EIDA NG developments and provide an overview of the usage of the new services and their impact on the user community. 1 www.orfeus-eu.org/ 2 www.orfeus-eu.org/eida/eida.html 3 www.epos-ip.org

  3. Waveforms Measured in Confined Thermobaric Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  4. Full-waveform inversion: Filling the gaps

    KAUST Repository

    Beydoun, Wafik B.

    2015-09-01

    After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1

  5. Sparse Frequency Waveform Design for Radar-Embedded Communication

    Directory of Open Access Journals (Sweden)

    Chaoyun Mai

    2016-01-01

    Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.

  6. Time-dependent phase error correction using digital waveform synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  7. Continuous high PRF waveforms for challenging environments

    Science.gov (United States)

    Jaroszewski, Steven; Corbeil, Allan; Ryland, Robert; Sobota, David

    2017-05-01

    Current airborne radar systems segment the available time-on-target during each beam dwell into multiple Coherent Processing Intervals (CPIs) in order to eliminate range eclipsing, solve for unambiguous range, and increase the detection performance against larger Radar Cross Section (RCS) targets. As a consequence, these radars do not realize the full Signal-to-Noise Ratio (SNR) increase and detection performance improvement that is possible. Continuous High Pulse Repetition Frequency (HPRF) waveforms and processing enables the coherent integration of all available radar data over the full time-on-target. This can greatly increase the SNR for air targets at long range and/or with weak radar returns and significantly improve the detection performance against such targets. TSC worked with its partner KeyW to implement a Continuous HPRF waveform in their Sahara radar testbed and obtained measured radar data on both a ground vehicle target and an airborne target of opportunity. This experimental data was processed by TSC to validate the expected benefits of Continuous HPRF waveforms.

  8. Full waveform inversion for ultrasonic flaw identification

    Science.gov (United States)

    Seidl, Robert; Rank, Ernst

    2017-02-01

    Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.

  9. LPI Radar Waveform Recognition Based on Time-Frequency Distribution.

    Science.gov (United States)

    Zhang, Ming; Liu, Lutao; Diao, Ming

    2016-10-12

    In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI) radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM), BPSK (Barker code modulation), Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4). The classifier is Elman neural network (ENN), and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA), image binarization algorithm and Pseudo-Zernike moments, etc., the features are extracted from the Choi-Williams time-frequency distribution (CWD) image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR) is 94.7% at signal-to-noise ratio (SNR) of -2 dB.

  10. LPI Radar Waveform Recognition Based on Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-10-01

    Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.

  11. The Waveform Server: A Web-based Interactive Seismic Waveform Interface

    Science.gov (United States)

    Newman, R. L.; Clemesha, A.; Lindquist, K. G.; Reyes, J.; Steidl, J. H.; Vernon, F. L.

    2009-12-01

    Seismic waveform data has traditionally been displayed on machines that are either local area networked to, or directly host, a seismic networks waveform database(s). Typical seismic data warehouses allow online users to query and download data collected from regional networks passively, without the scientist directly visually assessing data coverage and/or quality. Using a suite of web-based protocols, we have developed an online seismic waveform interface that directly queries and displays data from a relational database through a web-browser. Using the Python interface to Datascope and the Python-based Twisted network package on the server side, and the jQuery Javascript framework on the client side to send and receive asynchronous waveform queries, we display broadband seismic data using the HTML Canvas element that is globally accessible by anyone using a modern web-browser. The system is used to display data from the USArray experiment, a US continent-wide migratory transportable seismic array. We are currently creating additional interface tools to create a rich-client interface for accessing and displaying seismic data that can be deployed to any system running Boulder Real Time Technology's (BRTT) Antelope Real Time System (ARTS). The software is freely available from the Antelope contributed code Git repository. Screenshot of the web-based waveform server interface

  12. Processing Aftershock Sequences Using Waveform Correlation

    Science.gov (United States)

    Resor, M. E.; Procopio, M. J.; Young, C. J.; Carr, D. B.

    2008-12-01

    For most event monitoring systems, the objective is to keep up with the flow of incoming data, producing a bulletin with some modest, relatively constant, time delay after present time, often a period of a few hours or less. Because the association problem scales exponentially and not linearly with the number of detections, a dramatic increase in seismicity due to an aftershock sequence can easily cause the bulletin delay time to increase dramatically. In some cases, the production of a bulletin may cease altogether, until the automatic system can catch up. For a nuclear monitoring system, the implications of such a delay could be dire. Given the expected similarity between a mainshock and aftershocks, it has been proposed that waveform correlation may provide a powerful means to simultaneously increase the efficiency of processing aftershock sequences, while also lowering the detection threshold and improving the quality of the event solutions. However, many questions remain unanswered. What are the key parameters for achieving the best correlations between waveforms (window length, filtering, etc.), and are they sequence-dependent? What is the overall percentage of similar events in an aftershock sequence, i.e. what is the maximum level of efficiency that a waveform correlation could be expected to achieve? Finally, how does this percentage of events vary among sequences? Using data from the aftershock sequence for the December 26, 2004 Mw 9.1 Sumatra event, we investigate these issues by building and testing a prototype waveform correlation event detection system that automatically expands its library of known events as new signatures are indentified in the aftershock sequence (by traditional signal detection and event processing). Our system tests all incoming data against this dynamic library, thereby identify any similar events before traditional processing takes place. In the region surrounding the Sumatra event, the NEIC EDR contains 4997 events in the 9

  13. Using waveform cross correlation for automatic recovery of aftershock sequences

    Science.gov (United States)

    Bobrov, Dmitry; Kitov, Ivan; Rozhkov, Mikhail

    2017-04-01

    Aftershock sequences of the largest earthquakes are difficult to recover. There can be several hundred mid-sized aftershocks per hour within a few hundred km from each other recorded by the same stations. Moreover, these events generate thousands of reflected/refracted phases having azimuth and slowness close to those from the P-waves. Therefore, aftershock sequences with thousands of events represent a major challenge for automatic and interactive processing at the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Organization (CTBTO). Standard methods of detection and phase association do not use all information contained in signals. As a result, wrong association of the first and later phases, both regular and site specific, produces enormous number of wrong event hypotheses and destroys valid event hypotheses in automatic IDC processing. In turn, the IDC analysts have to reject false and recreate valid hypotheses wasting precious human resources. At the current level of the IDC catalogue completeness, the method of waveform cross correlation (WCC) can resolve most of detection and association problems fully utilizing the similarity of waveforms generated by aftershocks. Array seismic stations of the International monitoring system (IMS) can enhance the performance of the WCC method: reduce station-specific detection thresholds, allow accurate estimate of signal attributes, including relative magnitude, and effectively suppress irrelevant arrivals. We have developed and tested a prototype of an aftershock tool matching all IDC processing requirements and merged it with the current IDC pipeline. This tool includes creation of master events consisting of real or synthetic waveform templates at ten and more IMS stations; cross correlation (CC) of real-time waveforms with these templates, association of arrivals detected at CC-traces in event hypotheses; building events matching the IDC quality criteria; and resolution of conflicts between events

  14. Unsupervised Approaches for Post-Processing in Computationally Efficient Waveform-Similarity-Based Earthquake Detection

    Science.gov (United States)

    Bergen, K.; Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2015-12-01

    Recent improvements in computational efficiency for waveform correlation-based detections achieved by new methods such as Fingerprint and Similarity Thresholding (FAST) promise to allow large-scale blind search for similar waveforms in long-duration continuous seismic data. Waveform similarity search applied to datasets of months to years of continuous seismic data will identify significantly more events than traditional detection methods. With the anticipated increase in number of detections and associated increase in false positives, manual inspection of the detection results will become infeasible. This motivates the need for new approaches to process the output of similarity-based detection. We explore data mining techniques for improved detection post-processing. We approach this by considering similarity-detector output as a sparse similarity graph with candidate events as vertices and similarities as weighted edges. Image processing techniques are leveraged to define candidate events and combine results individually processed at multiple stations. Clustering and graph analysis methods are used to identify groups of similar waveforms and assign a confidence score to candidate detections. Anomaly detection and classification are applied to waveform data for additional false detection removal. A comparison of methods will be presented and their performance will be demonstrated on a suspected induced and non-induced earthquake sequence.

  15. Range determination for generating point clouds from airborne small footprint LiDAR waveforms.

    Science.gov (United States)

    Qin, Yuchu; Vu, Tuong Thuy; Ban, Yifang; Niu, Zheng

    2012-11-05

    This paper presents a range determination approach for generating point clouds from small footprint LiDAR waveforms. Waveform deformation over complex terrain area is simulated using convolution. Drift of the peak center position is analyzed to identify the first echo returned by the illuminated objects in the LiDAR footprint. An approximate start point of peak in the waveform is estimated and adopted as the indicator of range calculation; range correction method is proposed to correct pulse widening over complex terrain surface. The experiment was carried out on small footprint LiDAR waveform data acquired by RIEGL LMS-Q560. The results suggest that the proposed approach generates more points than standard commercial products; based on field measurements, a comparative analysis between the point clouds generated by the proposed approach and the commercial software GeocodeWF indicates that: 1). the proposed approach obtained more accurate tree heights; 2). smooth surface can be achieved with low standard deviation. In summary, the proposed approach provides a satisfactory solution for range determination in estimating 3D coordinate values of point clouds, especially for correcting range information of waveforms containing deformed peaks.

  16. Investigation of the relationship between electroglottogram waveform, fundamental frequency, and sound pressure level using clustering.

    Science.gov (United States)

    Selamtzis, Andreas; Ternström, Sten

    2016-12-08

    Although it has been shown in previous research (Orlikoff, 1991; Henrich et al, 2005; Kuang et al, 2014; Awan, 2015) that there exists a relationship between the electroglottogram (EGG) waveform and the acoustic signal, this relationship is still not fully understood. To investigate this relationship, the EGG and acoustic signals were measured for four male amateur choir singers who each produced eight consecutive tones of increasing and decreasing vocal intensity. The EGG signals were processed cycle-synchronously to obtain the discrete Fourier transform, and the data were used as an input to a clustering algorithm. The acoustic signal was analyzed in terms of sound pressure level (dB SPL) and fundamental frequency (fo) of vibration, and the results of both EGG and acoustic analysis were depicted on a two-dimensional plane with fo on the x-axis and SPL on the y-axis. All the subjects were seen to have a weak, near-sinusoidal EGG waveform in their lowest SPL range, whereas increase in SPL coincided with progressive enrichment in harmonic content of the EGG waveforms. The results of the clustering were additionally used to classify waveforms across subjects to enable inter-subject comparisons and assessment of individual strategies of exploring the fo-SPL dimensions. In these male subjects, the EGG waveform shape appeared to vary with SPL and to remain essentially constant with fo over one octave.

  17. Spectral-spatial fusion model for robust blood pulse waveform extraction in photoplethysmographic imaging.

    Science.gov (United States)

    Amelard, Robert; Clausi, David A; Wong, Alexander

    2016-12-01

    Photoplethysmographic imaging is an optical solution for non-contact cardiovascular monitoring from a distance. This camera-based technology enables physiological monitoring in situations where contact-based devices may be problematic or infeasible, such as ambulatory, sleep, and multi-individual monitoring. However, automatically extracting the blood pulse waveform signal is challenging due to the unknown mixture of relevant (pulsatile) and irrelevant pixels in the scene. Here, we propose a signal fusion framework, FusionPPG, for extracting a blood pulse waveform signal with strong temporal fidelity from a scene without requiring anatomical priors. The extraction problem is posed as a Bayesian least squares fusion problem, and solved using a novel probabilistic pulsatility model that incorporates both physiologically derived spectral and spatial waveform priors to identify pulsatility characteristics in the scene. Evaluation was performed on a 24-participant sample with various ages (9-60 years) and body compositions (fat% 30.0 ± 7.9, muscle% 40.4 ± 5.3, BMI 25.5 ± 5.2 kg·m(-2)). Experimental results show stronger matching to the ground-truth blood pulse waveform signal compared to the FaceMeanPPG (p waveform via temporal analysis.

  18. Direct closed-form covariance matrix and finite alphabet constant-envelope waveforms for planar array beampatterns

    KAUST Repository

    Ahmed, Sajid

    2016-11-24

    Various examples of methods and systems are provided for direct closed-form finite alphabet constant-envelope waveforms for planar array beampatterns. In one example, a method includes defining a waveform covariance matrix based at least in part upon a two-dimensional fast Fourier transform (2D-FFT) analysis of a frequency domain matrix Hf associated with a planar array of antennas. Symbols can be encoded based upon the waveform covariance matrix and the encoded symbols can be transmitted via the planar array of antennas. In another embodiment, a system comprises an N x M planar array of antennas and transmission circuitry configured to transmit symbols via a two-dimensional waveform beampattern defined based at least in part upon a 2D-FFT analysis of a frequency domain matrix Hf associated with the planar array of antennas.

  19. The Multiple Waveform Persistent Peak (MWaPP) Retracker for SAR waveforms

    DEFF Research Database (Denmark)

    Villadsen, Heidi; Andersen, Ole Baltazar; Stenseng, Lars

    using CryoSat-2 20Hz SAR data, but due to the similarities between the Sentinel-3 SRAL altimeter and the SIRAL altimeter on-board CryoSat-2 an adaption of the method will be straightforward. The MWaPP retracker is based on a sub-waveform retracker, but takes the shape of adjacent waveforms into account...... before selecting the sub-waveform belonging to nadir. This is new compared to primary peak retrackers, and alleviates a lot of snagging due to off-nadir bright targets, but also topography challenges. The results from the MWaPP retracker show a significant decrease in the standard deviation of the mean...

  20. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  1. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    CERN Document Server

    :,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...

  2. The study of recent seismicity in the aftershock area of Neftegorsk earthquake using waveform cross correlation

    Science.gov (United States)

    Kitov, Ivan; Turuntaev, Sergey; Konovalov, Alexei; Stepnov, Andrey

    2016-04-01

    Unusually long duration of seismic activity (more than 20 years) was observed in the aftershock area of the 1995 Neftegorsk, Sakhalin, Russia catastrophic earthquake (Ms=7.6). To study the phenomena, we have processed seismic data from 130 events occurred within that area as measured between 2006 and 2015. In order to improve the accuracy of relative location and magnitude estimation of these events we have applied new techniques based on waveform cross correlation. We use 7 three-component (3-C) seismic stations which detected most of these events. Three-component waveform templates were prepared for these stations from those events which had signals with SNR>5 at vertical channels. The events with 3 and more templates are used as master-events for waveform cross correlation. Overall, the re-estimated location and magnitudes demonstrate higher precisions and are used for the statistical analysis and numerical modelling of seismo-tectonic regime within the studied zone.

  3. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic imaging applications, for example in reservoir analysis, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Adding rock physics constraints does help to mitigate these issues, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a boundary condition for the whole area. Since certain rock formations inside the Earth admit consistent elastic properties and relative values of elastic and anisotropic parameters (facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel confidence map based approach to utilize the facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such a confidence map using Bayesian theory, in which the confidence map is updated at each iteration of the inversion using both the inverted models and a prior information. The numerical examples show that the proposed method can reduce the trade-offs and also can improve the resolution of the inverted elastic and anisotropic properties.

  4. Impact of lower body negative pressure induced hypovolemia on peripheral venous pressure waveform parameters in healthy volunteers.

    Science.gov (United States)

    Alian, Aymen A; Galante, Nicholas J; Stachenfeld, Nina S; Silverman, David G; Shelley, Kirk H

    2014-07-01

    Lower body negative pressure (LBNP) creates a reversible hypovolemia by sequestrating blood volume in the lower extremities. This study sought to examine the impact of central hypovolemia on peripheral venous pressure (PVP) waveforms in spontaneously breathing subjects. With IRB approval, 11 healthy subjects underwent progressive LBNP (baseline, -30, -75, and -90 mmHg or until the subject became symptomatic). Each was monitored for heart rate (HR), finger arterial blood pressure (BP), a chest respiratory band and PVP waveforms which are generated from a transduced upper extremity intravenous site. The first subject was excluded from PVP analysis because of technical errors in collecting the venous pressure waveform. PVP waveforms were analyzed to determine venous pulse pressure, mean venous pressure, pulse width, maximum and minimum slope (time domain analysis) together with cardiac and respiratory modulations (frequency domain analysis). No changes of significance were found in the arterial BP values at -30 mmHg LBNP, while there were significant reductions in the PVP waveforms time domain parameters (except for 50% width of the respiration induced modulations) together with modulation of the PVP waveform at the cardiac frequency but not at the respiratory frequency. As the LBNP progressed, arterial systolic BP, mean BP and pulse pressure, PVP parameters and PVP cardiac modulation decreased significantly, while diastolic BP and HR increased significantly. Changes in hemodynamic and PVP waveform parameters reached a maximum during the symptomatic phase. During the recovery phase, there was a significant reduction in HR together with a significant increase in HR variability, mean PVP and PVP cardiac modulation. Thus, in response to mild hypovolemia induced by LBNP, changes in cardiac modulation and other PVP waveform parameters identified hypovolemia before detectable hemodynamic changes.

  5. Preconditioning Strategies in Elastic Full Waveform Inversion.

    Science.gov (United States)

    Matharu, G.; Sacchi, M. D.

    2016-12-01

    Elastic full waveform inversion (FWI) is inherently more non-linear than its acoustic counterpart, a property that stems from the increased model space of the problem. Whereas acoustic media can be parametrized by density and P-wave velocity, visco-elastic media are parametrized by density, attenuation and 21 independent coefficients of the elastic tensor. Imposing assumptions of isotropy and perfect elasticity to simplify the physics, reduces the number of independent parameters required to characterize a medium. Isotropic, elastic media can be parametrized in terms of density and the Lamé parameters. The different parameters can exhibit trade-off that manifest as attributes in the data. In the context of FWI, this means that certain parameters cannot be uniquely resolved. An ideal model update in full waveform inversion is equivalent to a Newton step. Explicit computation of the Hessian and its inverse is not computationally feasible in elastic FWI. The inverse Hessian scales the gradients to account for trade-off between parameters as well as compensating for inadequate illumination related to source-receiver coverage. Gradient preconditioners can be applied to mimic the action of the inverse Hessian and partially correct for inaccuracies in the gradient. In this study, we investigate the effects of model reparametrization by recasting a regularized form of the least-squares waveform misfit into a preconditioned formulation. New model parameters are obtained by applying invertible weighting matrices to the model vector. The weighting matrices are related to estimates of the prior model covariance matrix and incorporate information about spatially variant correlations of model parameters as well as correlations between independent parameters. We compare the convergence of conventional FWI to FWI after model reparametrization.

  6. The Performance of Altimeter Waveform Retrackers at Lake Baikal

    Directory of Open Access Journals (Sweden)

    Yuchan Yi

    2013-01-01

    Full Text Available At each of five fixed locations along the ground tracks of JASON-1 and ENVISAT, a repeat-track analysis of 1-Hz sea surface height (SSH data has been conducted to assess the performance of waveform retrackers over Lake Baikal in Siberia, Russia. This simple analysis of time series at each point location is needed to minimize the effect of the range correction artifacts in current Geophysical Data Record (GDR data products of radar altimeters in in-land areas. Using the retracked data available in the GDRs as the baseline, two retrackers are evaluated in terms of the number of valid data points produced and the degree of agreement with in-situ data of water level record. The threshold retrackers that are based on the amplitude of the robust OCOG algorithm (Offset Center of Gravity are found to perform the best in Lake Baikal.

  7. Pulsar average waveforms and hollow cone beam models

    Science.gov (United States)

    Backer, D. C.

    1975-01-01

    An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects.

  8. Optimal Transport for Seismic Full Waveform Inversion

    CERN Document Server

    Engquist, Bjorn; Yang, Yunan

    2016-01-01

    Full waveform inversion is a successful procedure for determining properties of the earth from surface measurements in seismology. This inverse problem is solved by a PDE constrained optimization where unknown coefficients in a computed wavefield are adjusted to minimize the mismatch with the measured data. We propose using the Wasserstein metric, which is related to optimal transport, for measuring this mismatch. Several advantageous properties are proved with regards to convexity of the objective function and robustness with respect to noise. The Wasserstein metric is computed by solving a Monge-Ampere equation. We describe an algorithm for computing its Frechet gradient for use in the optimization. Numerical examples are given.

  9. A new earthquake location method based on the waveform inversion

    CERN Document Server

    Wu, Hao; Huang, Xueyuan; Yang, Dinghui

    2016-01-01

    In this paper, a new earthquake location method based on the waveform inversion is proposed. As is known to all, the waveform misfit function is very sensitive to the phase shift between the synthetic waveform signal and the real waveform signal. Thus, the convergence domain of the conventional waveform based earthquake location methods is very small. In present study, by introducing and solving a simple sub-optimization problem, we greatly expand the convergence domain of the waveform based earthquake location method. According to a large number of numerical experiments, the new method expands the range of convergence by several tens of times. This allows us to locate the earthquake accurately even from some relatively bad initial values.

  10. Waveform Optimization for SWIPT with Nonlinear Energy Harvester Modeling

    OpenAIRE

    Clerckx, Bruno

    2016-01-01

    Simultaneous Wireless Information and Power Transfer (SWIPT) has attracted significant attention in the communication community. The problem of waveform design for SWIPT has however never been addressed so far. In this paper, a novel SWIPT transceiver architecture is introduced relying on the superposition of multisine and OFDM waveforms at the transmitter and a power-splitter receiver equipped with an energy harvester and an information decoder capable of cancelling the multisine waveforms. ...

  11. RF arbitrary waveform generation using tunable planar lightwave circuits

    Science.gov (United States)

    Samadi, P.; Chen, L. R.; Callender, C.; Dumais, P.; Jacob, S.; Celo, D.

    2011-07-01

    We demonstrate photonically-assisted generation of RF arbitrary waveforms using planar lightwave circuits (PLCs) fabricated on silica-on-silicon. We exploit thermo-optic effects in silica in order to tune the response of the PLC and hence reconfigure the generated waveform. We demonstrate the generation of pulse trains at 40 GHz and 80 GHz with flat-top, Gaussian, and apodized profiles. These results demonstrate the potential for RF arbitrary waveform generation using chip-scale photonic solutions.

  12. Information Encoding on a Pseudo Random Noise Radar Waveform

    Science.gov (United States)

    2013-03-01

    PSEUDO RANDOM NOISE RADAR WAVEFORM THESIS Joshua A. Hardin, Captain, USAF AFIT-ENG-13-M-22 DEPARTMENT OF THE AIR FORCE AIR...protection in the United States. AFIT-ENG-13-M-22 INFORMATION ENCODING ON A PSEUDO RANDOM NOISE RADAR WAVEFORM THESIS Presented to the Faculty...INFORMATION ENCODING ON A PSEUDO RANDOM NOISE RADAR WAVEFORM I. Introduction 1.1 Problem Description Navigation requires knowledge of current

  13. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    Science.gov (United States)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  14. Focal waveforms for various source waveforms driving a prolate-spheroidal impulse radiating antenna (IRA)

    Science.gov (United States)

    Altunc, Serhat; Baum, Carl E.; Christodoulou, Christos G.; Schamiloglu, Edl; Buchenauer, C. Jerald

    2008-08-01

    Impulse radiating antennas (IRAs) are designed to radiate very fast pulses in a narrow beam with low dispersion and high field amplitude. For this reason they have been used in a variety of applications. IRAs have been developed for use in the transient far-field region using parabolic reflectors. However, in this paper we focus in the near field region and develop the field waveform at the second focus of a prolate-spheroidal IRA. Certain skin cancers can be killed by the application of a high-amplitude electric field pulse. This can be accomplished by either inserting electrodes near the skin cancer or by applying fast, high-electric field pulses without direct contact. We investigate a new manifestation of an IRA, in which we use a prolate spheroid as a reflector instead of a parabolic reflector and focus in the near-field region instead of the far-field region. This technique minimizes skin damage associated with inserting electrodes near the tumor. Analytical and experimental behaviors for the focal waveforms of two and four-feed arm prolate-spheroidal IRAs are explored. With appropriate choice of the driving waveform we maximize the impulse field at the second focus. The focal waveform of a prolate-spheroidal IRA has been explained theoretically and verified experimentally.

  15. Effects of waveform model systematics on the interpretation of GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.

    2017-05-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

  16. Waveform interative techniques for device transient simulation on parallel machines

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, A. [Univ. of Notre Dame, IN (United States); Reichelt, M.W. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1993-12-31

    In this paper we describe our experiences with parallel implementations of several different waveform algorithms for performing transient simulation of semiconductor devices. Because of their inherent computation and communication structure, waveform methods are well suited to MIMD-type parallel machines having a high communication latency - such as a cluster of workstations. Experimental results using pWORDS, a parallel waveform-based device transient simulation program, in conjunction with PVM running on a cluster of eight workstations demonstrate that parallel waveform techniques are an efficient and faster alternative to standard simulation algorithms.

  17. Adaptive Robust Waveform Selection for Unknown Target Detection in Clutter

    Institute of Scientific and Technical Information of China (English)

    Lu-Lu Wang; Hong-Qiang Wang; Yu-Liang Qin; Yong-Qiang Cheng

    2014-01-01

    @@@A basic assumption of most recently proposed waveform design algorithms is that the target impulse response is a known deterministic function or a stochastic process with a known power spectral density (PSD). However, it is well-known that a target impulse response is neither easily nor accurately obtained; besides it changes sharply with attitude angles. Both of the aforementioned cases complicate the waveform design process. In this paper, an adaptive robust waveform selection method for unknown target detection in clutter is proposed. The target impulse response is considered to be unknown but belongs to a known uncertainty set. An adaptive waveform library is devised by using a signal-to-clutter-plus-noise ratio (SCNR)- based optimal waveform design method. By applying the minimax robust waveform selection method, the optimal robust waveform is selected to ensure the lowest performance bound of the unknown target detection in clutter. Results show that the adaptive waveform library outperforms the predefined linear frequency modulation (LFM) waveform library on the SCNR bound.

  18. Designing waveforms for temporal encoding using a frequency sampling method

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    , the amplitude spectrum of the transmitted waveform can be optimized, such that most of the energy is transmitted where the transducer has large amplification. To test the design method, a waveform was designed for a BK8804 linear array transducer. The resulting nonlinear frequency modulated waveform...... for the linear frequency modulated signal) were tested for both waveforms in simulation with respect to the Doppler frequency shift occurring when probing moving objects. It was concluded that the Doppler effect of moving targets does not significantly degrade the filtered output. Finally, in vivo measurements...

  19. Advances in waveform-agile sensing for tracking

    CERN Document Server

    Sira, Sandeep Prasad

    2009-01-01

    Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic wav

  20. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan

    2017-08-17

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.

  1. Analysis on the measured waveform to exciting inrush current in 500kV Mudan substation%500kV牡丹变励磁涌流实测波形数据分析

    Institute of Scientific and Technical Information of China (English)

    郭一夫

    2001-01-01

    定量分析主变空载合闸时产生的励磁涌流波形典型特征数据,进而检验变压器差动保护动作以及保护整定值的正确性,验证变压器微机差动保护鉴别和躲过励磁涌流的能力。%By analyzing quantitatively the typical data of the exciting inrush current waveform caused by main transformer closing without any load , the correctness of an operation of the transformer differential protection and its settings are tested to verify the identification capability of microprocessor based transformer differential protection and capability to escape away the exciting inrush current.

  2. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, R.

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  3. Analysis on radial pulse waveform and parameters in different types of athletes%不同类型运动员桡动脉脉搏波波形及参数分析

    Institute of Scientific and Technical Information of China (English)

    王安然; 杨益民; 杨琳; 杨星星; 孟蓝熙; 苏峻; 张松

    2014-01-01

    Objective:Classify the sports events by the maximal oxygen uptake (MaxO2) and the maximal muscular voluntary contraction (MVC). Collect the radial pulse wave of different sports events and discuss the pulse waveform and characteristic parameters. Methods: Radial pulse waveform on 304 subjects was collected, by using PowerLab and its bundled software LabChart 7, developed by ADInstrument. Normalize each radial pulse waveform and let the waveform cycle and amplitude distribute in the range of 0-100. Analyze the relative time of the maximum point Tm, the abscissa X and ordinate Y of dichotic notch, the pulse waveform area K and the pulse wave age index SDPTG. Results: With increasing MaxO2, the pulse wave descending curve of MVC-1 and MVC-2 group gradually moves down, the maximum point first moves to the right and then left, the dichotic notch point moves to the lower-left corner, K and SDPTG gradually decreasing;And the pulse wave descending curve of MVC-3 group gradually moves up, the maximum point gradually moves to the right, the dichotic notch point moves to the top-left corner, K and SDPTG gradually increasing. With increasing MVC, the pulse wave descending curve of MaxO2-1 group gradually moves down, the maximum point gradually moves to the left, the dichotic notch point moves to the lower-left corner, K and SDPTG gradually decreasing; The pulse wave descending curve of MaxO2-2 group gradually moves up, the maximum point gradually moves to the left, the dichotic notch point moves to the top-left corner, K and SDPTG gradually increasing; And the pulse wave descending curve of MaxO2-3 group first moves down then up, the maximum point first moves to the left and then right, the dicrotic notch point moves to left, K and SDPTG first decreasing then increasing. Conclusion:The pulse wave changing trend of MVC groups are different while the sports have the same MaxO2. And the pulse wave changing trend of MaxO2 groups are as well as different while the sports have the

  4. Respiratory variations in the photoplethysmographic waveform amplitude depend on type of pulse oximetry device.

    Science.gov (United States)

    Høiseth, Lars Øivind; Hoff, Ingrid Elise; Hagen, Ove Andreas; Kirkebøen, Knut Arvid; Landsverk, Svein Aslak

    2016-06-01

    Respiratory variations in the photoplethysmographic waveform amplitude predict fluid responsiveness under certain conditions. Processing of the photoplethysmographic signal may vary between different devices, and may affect respiratory amplitude variations calculated by the standard formula. The aim of the present analysis was to explore agreement between respiratory amplitude variations calculated using photoplethysmographic waveforms available from two different pulse oximeters. Analysis of registrations before and after fluid loads performed before and after open-heart surgery (aortic valve replacement and/or coronary artery bypass grafting) with patients on controlled mechanical ventilation. Photoplethysmographic (Nellcor and Masimo pulse oximeters) and arterial pressure waveforms were recorded. Amplitude variations induced by ventilation were calculated and averaged over ten respiratory cycles. Agreements for absolute values are presented in scatterplots (with least median square regression through the origin, LMSO) and Bland-Altman plots. Agreement for trending presented in a four-quadrant plot. Agreement between respiratory photoplethysmographic amplitude variations from the two pulse oximeters was poor with LMSO ΔPOPNellc = 1.5 × ΔPOPMas and bias ± limits of agreement 7.4 ± 23 %. Concordance rate with a fluid load was 91 %. Agreement between respiratory variations in the photoplethysmographic waveform amplitude calculated from the available signals output by two different pulse oximeters was poor, both evaluated by LMSO and Bland-Altman plot. Respiratory amplitude variations from the available signals output by these two pulse oximeters are not interchangeable.

  5. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Helmberger, D; Tromp, J; Rodgers, A

    2007-07-16

    Comprehensive test ban monitoring in terms of location and discrimination has progressed significantly in recent years. However, the characterization of sources and the estimation of low yields remains a particular challenge. As the recent Korean shot demonstrated, we can probably expect to have a small set of teleseismic, far-regional and high-frequency regional data to analyze in estimating the yield of an event. Since stacking helps to bring signals out of the noise, it becomes useful to conduct comparable analyses on neighboring events, earthquakes in this case. If these auxiliary events have accurate moments and source descriptions, we have a means of directly comparing effective source strengths. Although we will rely on modeling codes, 1D, 2D, and 3D, we will also apply a broadband calibration procedure to use longer periods (P>5s) waveform data to calibrate short-period (P between .5 to 2 Hz) and high-frequency (P between 2 to 10 Hz) as path specify station corrections from well-known regional sources. We have expanded our basic Cut-and-Paste (CAP) methodology to include not only timing shifts but also amplitude (f) corrections at recording sites. The name of this method was derived from source inversions that allow timing shifts between 'waveform segments' (or cutting the seismogram up and re-assembling) to correct for crustal variation. For convenience, we will refer to these f-dependent refinements as CAP+ for (SP) and CAP++ for still higher frequency. These methods allow the retrieval of source parameters using only P-waveforms where radiation patterns are obvious as demonstrated in this report and are well suited for explosion P-wave data. The method is easily extended to all distances because it uses Green's function although there may be some changes required in t* to adjust for offsets between local vs. teleseismic distances. In short, we use a mixture of model-dependent and empirical corrections to tackle the path effects. Although

  6. Towards Full-Waveform Ambient Noise Inversion

    Science.gov (United States)

    Sager, Korbinian; Ermert, Laura; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-04-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source distribution, and thereby to contribute to a better understanding of both Earth structure and noise generation. First, we develop an inversion strategy based on a 2D finite-difference code using adjoint techniques. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: i) the capability of different misfit functionals to image wave speed anomalies and source distribution and ii) possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus (http://salvus.io). It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. By studying the effect of noise sources on correlation functions in 3D, we validate the aforementioned inversion strategy and prepare the

  7. Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume.

    Science.gov (United States)

    Hamilton, Robert; Baldwin, Kevin; Fuller, Jennifer; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2012-11-01

    This study identifies a novel relationship between cerebrospinal fluid (CSF) stroke volume through the cerebral aqueduct and the characteristic peaks of the intracranial pulse (ICP) waveform. ICP waveform analysis has become much more advanced in recent years; however, clinical practice remains restricted to mean ICP, mainly due to the lack of physiological understanding of the ICP waveform. Therefore, the present study set out to shed some light on the physiological meaning of ICP morphological metrics derived by the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm by investigating their relationships with a well defined physiological variable, i.e., the stroke volume of CSF through the cerebral aqueduct. Seven patients received both overnight ICP monitoring along with a phase-contrast MRI (PC-MRI) of the cerebral aqueduct to quantify aqueductal stroke volume (ASV). Waveform morphological analysis of the ICP signal was performed by the MOCAIP algorithm. Following extraction of morphological metrics from the ICP signal, nine temporal ICP metrics and two amplitude-based metrics were compared with the ASV via Spearman's rank correlation. Of the nine temporal metrics correlated with the ASV, only the width of the P2 region (ICP-Wi2) reached significance. Furthermore, both ICP pulse pressure amplitude and mean ICP did not reach significance. In this study, we showed the width of the second peak (ICP-Wi2) of an ICP pulse wave is positively related to the volume of CSF movement through the cerebral aqueduct. This finding is an initial step in bridging the gap between ICP waveform morphology research and clinical practice.

  8. Tera-sample-per-second Real-time Waveform Digitizer

    CERN Document Server

    Han, Y; Jalali, B; Han, Yan; Boyraz, Ozdal; Jalali, Bahram

    2005-01-01

    We demonstrate a real-time transient waveform digitizer with a record 1 TSa/s (Tera-Sample/sec) sampling rate. This is accomplished by using a photonic time stretch preprocessor which slows down the electrical waveform before it is captured by an electronic digitizer.

  9. An Overview of Radar Waveform Optimization for Target Detection

    Directory of Open Access Journals (Sweden)

    Wang Lulu

    2016-10-01

    Full Text Available An optimal waveform design method that fully employs the knowledge of the target and the environment can further improve target detection performance, thus is of vital importance to research. In this paper, methods of radar waveform optimization for target detection are reviewed and summarized and provide the basis for the research.

  10. Automated multimode inversion of surface and S waveforms

    NARCIS (Netherlands)

    Lebedev, Sergei; Nolet, Guust; Meier, Thomas; Hilst, R.D. van der

    2005-01-01

    Inversion of the surface, S, and multiple-S waveforms is an effective means of constraining the structure of the upper mantle, including the transition zone. Exploiting the resolving power of the enormous volume of presently available data requires efficiency of data processing and waveform modellin

  11. Method and apparatus for resonant frequency waveform modulation

    Science.gov (United States)

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  12. Waveform Selectivity at the Same Frequency

    CERN Document Server

    Wakatsuchi, Hiroki; Rushton, Jeremiah J; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F

    2014-01-01

    Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of the circuit elements are then combined to absorb or tran...

  13. Heartrate variation of umbilical artery Doppler waveforms.

    Science.gov (United States)

    Hoskins, P R; Johnstone, F D; Chambers, S E; Haddad, N G; White, G; McDicken, W N

    1989-01-01

    Umbilical artery Doppler waveforms from 20 patients were used to investigate the dependence of resistance index and pulsatility index on beat to beat pulse length over short time periods for individual patients, and on the usefulness of a common normalisation formula. For individual patients the resistance index and pulsatility index were only partially correlated with pulse length. Changes in both indices occurred independently of pulse length. Use of a common normalisation formula resulted in no significant reduction of the coefficient of variation of the resistance index (p greater than 0.1), and a reduction in the coefficient of variation of the pulsatility index of 10% (p greater than 0.001). It is concluded that short term changes in resistance index and pulsatility index cannot be corrected by a common normalisation formula.

  14. Direct Waveform Inversion by Iterative Inverse Propagation

    CERN Document Server

    Schlottmann, R B

    2009-01-01

    Seismic waves are the most sensitive probe of the Earth's interior we have. With the dense data sets available in exploration, images of subsurface structures can be obtained through processes such as migration. Unfortunately, relating these surface recordings to actual Earth properties is non-trivial. Tomographic techniques use only a small amount of the information contained in the full seismogram and result in relatively low resolution images. Other methods use a larger amount of the seismogram but are based on either linearization of the problem, an expensive statistical search over a limited range of models, or both. We present the development of a new approach to full waveform inversion, i.e., inversion which uses the complete seismogram. This new method, which falls under the general category of inverse scattering, is based on a highly non-linear Fredholm integral equation relating the Earth structure to itself and to the recorded seismograms. An iterative solution to this equation is proposed. The res...

  15. Waveform Synthesizer For Imaging And Ranging Applications

    Science.gov (United States)

    DUDLEY, PETER A.; [et al

    2004-11-30

    Frequency dependent corrections are provided for quadrature imbalance. An operational procedure filters imbalance effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of quadrature imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.

  16. Integrating Biosystem Models Using Waveform Relaxation

    Directory of Open Access Journals (Sweden)

    Stephen Baigent

    2008-12-01

    Full Text Available Modelling in systems biology often involves the integration of component models into larger composite models. How to do this systematically and efficiently is a significant challenge: coupling of components can be unidirectional or bidirectional, and of variable strengths. We adapt the waveform relaxation (WR method for parallel computation of ODEs as a general methodology for computing systems of linked submodels. Four test cases are presented: (i a cascade of unidirectionally and bidirectionally coupled harmonic oscillators, (ii deterministic and stochastic simulations of calcium oscillations, (iii single cell calcium oscillations showing complex behaviour such as periodic and chaotic bursting, and (iv a multicellular calcium model for a cell plate of hepatocytes. We conclude that WR provides a flexible means to deal with multitime-scale computation and model heterogeneity. Global solutions over time can be captured independently of the solution techniques for the individual components, which may be distributed in different computing environments.

  17. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  18. Design of a 9-loop quasi-exponential waveform generator.

    Science.gov (United States)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  19. Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure

    Science.gov (United States)

    Zielinski, Todd M.; Hettrick, Doug; Cho, Yong

    2010-04-01

    Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.

  20. Noninvasive Measurement of Central Vascular Pressures With Arterial Tonometry: Clinical Revival of the Pulse Pressure Waveform?

    Science.gov (United States)

    Nelson, Matthew R.; Stepanek, Jan; Cevette, Michael; Covalciuc, Michael; Hurst, R. Todd; Tajik, A. Jamil

    2010-01-01

    The arterial pulse has historically been an essential source of information in the clinical assessment of health. With current sphygmomanometric and oscillometric devices, only the peak and trough of the peripheral arterial pulse waveform are clinically used. Several limitations exist with peripheral blood pressure. First, central aortic pressure is a better predictor of cardiovascular outcome than peripheral pressure. Second, peripherally obtained blood pressure does not accurately reflect central pressure because of pressure amplification. Lastly, antihypertensive medications have differing effects on central pressures despite similar reductions in brachial blood pressure. Applanation tonometry can overcome the limitations of peripheral pressure by determining the shape of the aortic waveform from the radial artery. Waveform analysis not only indicates central systolic and diastolic pressure but also determines the influence of pulse wave reflection on the central pressure waveform. It can serve as a useful adjunct to brachial blood pressure measurements in initiating and monitoring hypertensive treatment, in observing the hemodynamic effects of atherosclerotic risk factors, and in predicting cardiovascular outcomes and events. Radial artery applanation tonometry is a noninvasive, reproducible, and affordable technology that can be used in conjunction with peripherally obtained blood pressure to guide patient management. Keywords for the PubMed search were applanation tonometry, radial artery, central pressure, cardiovascular risk, blood pressure, and arterial pulse. Articles published from January 1, 1995, to July 1, 2009, were included in the review if they measured central pressure using radial artery applanation tonometry. PMID:20435839

  1. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    Science.gov (United States)

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized.

  2. U potential waveform interference analysis for Russianthrough-casing resistivity logging tool%俄罗斯过套管电阻率测井仪U电位波形干扰分析

    Institute of Scientific and Technical Information of China (English)

    李永发

    2011-01-01

    俄罗斯过套管电阻率测井仪在测井时,需要向井下套管注入6 A~7 A正负交替的供电电流。由于供电电流大,缠在滚筒上的电缆具有电感效应,在正负电流极性更换瞬间,会在电缆缆芯上产生很强的感应电动势,使得U电位波形出现双峰强脉冲干扰。俄罗斯测井软件提供了测井数据采集区间选取功能,可以避开双峰强脉冲干扰区间。经过实验验证,用模拟电缆阻值的大功率纯电阻代替电缆注入套管供电电流,U电位双峰强脉冲干扰消失。%The reason for the strong two-peak pulse interference which exists in the U potential waveform of Russian through-casing resistivity logging tool is analyzed.When Russian through-casing resistivity logging tool is in logging,6 A~7 A positive or negative alternate current supply to the downhole casing is needed.Due to the large current and the inductance effect of the cable entangled in the rotary drum,strong induced EMF is produced in the cable core when positive or negative current is alternated,which makes the strong two-peak pulse appear on the U potential waveform.Russian logging software functions to select the logging data acquisition interval,so the strong two-peak pulse interference interval is avoided.Experiments verify that if a simulating high-power pure resistor replaces the cable to supply the current for casing,the strong two-peak pulse interference on the U potential disappears.

  3. The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility

    Science.gov (United States)

    Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman

    2013-11-01

    In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.

  4. Simulation of Full-Waveform Laser Altimeter Echowaveform

    Science.gov (United States)

    Lv, Y.; Tong, X. H.; Liu, S. J.; Xie, H.; Luan, K. F.; Liu, J.

    2016-06-01

    Change of globe surface height is an important factor to study human living environment. The Geoscience Laser Altimeter System (GLAS) on ICESat is the first laser-ranging instrument for continuous global observations of the Earth. In order to have a comprehensive understanding of full-waveform laser altimeter, this study simulated the operating mode of ICESat and modeled different terrains' (platform terrain, slope terrain, and artificial terrain) echo waveforms based on the radar equation. By changing the characteristics of the system and the targets, numerical echo waveforms can be achieved. Hereafter, we mainly discussed the factors affecting the amplitude and size (width) of the echoes. The experimental results implied that the slope of the terrain, backscattering coefficient and reflectivity, target height, target position in the footprint and area reacted with the pulse all can affect the energy distribution of the echo waveform and the receiving time. Finally, Gaussian decomposition is utilized to decompose the echo waveform. From the experiment, it can be noted that the factors which can affect the echo waveform and by this way we can know more about large footprint full-waveform satellite laser altimeter.

  5. Design and implementation of a hospital wide waveform capture system.

    Science.gov (United States)

    Blum, James M; Joo, Heyon; Lee, Henry; Saeed, Mohammed

    2015-06-01

    The use of telemetry and invasive monitoring is exceptionally common in modern healthcare. To date the vast majority of this information is not stored for more than a brief duration on the local monitor. This prohibits extensive investigation into waveform data. We describe a system to collect such data in a quaternary care facility. Using standardized "packet sniffing" technology along with routine manual documentation, we reverse engineered the Unity network protocol used to transmit waveform data across the University of Michigan mission critical monitor network. Data was subsequently captured using a proprietary piece of software writing waveform data to local disks. Nightly, this data is post-processed using data from the admit-discharge-transfer system into individual patient waveforms for the day regardless of location. Over a 10 month period, over 2,785 individual patients had a total of 65,112 waveforms captured 15,978 from the operating rooms and 49,134 from the ICUs. The average OR case collected over 11 MB of data. The average single day data collection consisted of 8.6 GB of data. Entire hospital waveform data collection is possible using internally developed software enabling research on waveform data with minimal technical burden. Further research is required to determine the long-term storage and processing of such data.

  6. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Jardak, Seifallah

    2014-09-01

    Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.

  7. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.

  8. Gold - A novel deconvolution algorithm with optimization for waveform LiDAR processing

    Science.gov (United States)

    Zhou, Tan; Popescu, Sorin C.; Krause, Keith; Sheridan, Ryan D.; Putman, Eric

    2017-07-01

    approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE. Additionally, the high level of uncertainty occurs more on areas with high slope and high vegetation. This study provides an alternative and innovative approach for waveform processing that will benefit high fidelity processing of waveform LiDAR data to characterize vegetation structures.

  9. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.

    2014-06-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a ‘blind injection challenge’ similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs’ angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M⊙ + 10M⊙ (50M⊙ + 50M⊙) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This

  10. Averaging methods for extracting representative waveforms from motor unit action potential trains.

    Science.gov (United States)

    Malanda, Armando; Navallas, Javier; Rodriguez-Falces, Javier; Rodriguez-Carreño, Ignacio; Gila, Luis

    2015-08-01

    In the context of quantitative electromyography (EMG), it is of major interest to obtain a waveform that faithfully represents the set of potentials that constitute a motor unit action potential (MUAP) train. From this waveform, various parameters can be determined in order to characterize the MUAP for diagnostic analysis. The aim of this work was to conduct a thorough, in-depth review, evaluation and comparison of state-of-the-art methods for composing waveforms representative of MUAP trains. We evaluated nine averaging methods: Ensemble (EA), Median (MA), Weighted (WA), Five-closest (FCA), MultiMUP (MMA), Split-sweep median (SSMA), Sorted (SA), Trimmed (TA) and Robust (RA) in terms of three general-purpose signal processing figures of merit (SPMF) and seven clinically-used MUAP waveform parameters (MWP). The convergence rate of the methods was assessed as the number of potentials per MUAP train (NPM) required to reach a level of performance that was not significantly improved by increasing this number. Test material comprised 78 MUAP trains obtained from the tibialis anterioris of seven healthy subjects. Error measurements related to all SPMF and MWP parameters except MUAP amplitude descended asymptotically with increasing NPM for all methods. MUAP amplitude showed a consistent bias (around 4% for EA and SA and 1-2% for the rest). MA, TA and SSMA had the lowest SPMF and MWP error figures. Therefore, these methods most accurately preserve and represent MUAP physiological information of utility in clinical medical practice. The other methods, particularly WA, performed noticeably worse. Convergence rate was similar for all methods, with NPM values averaged among the nine methods, which ranged from 10 to 40, depending on the waveform parameter evaluated.

  11. Open Access to Decades of NCSN Waveforms at the Northern California Earthquake Data Center

    Science.gov (United States)

    Neuhauser, D.; Klein, F.; Zuzlewski, S.; Jensen, E. G.; Oppenheimer, D.; Gee, L.; Romanowicz, B.

    2003-12-01

    The USGS in Menlo Park has operated the Northern California Seismic Network (NCSN) since 1967 and has generated digital seismograms since 1984. Since its inception, the NCSN has recorded 2900 distinct channels at over 500 distinct sites. Although originally used only for earthquake location and coda magnitude, these seismograms are now of interest to seismologists for studying earth structure, precision relocations through cross correlation timing, and analysis of strong motion records. Until recently, the NCSN waveform data were available only through research accounts and special request methods due to incomplete instrument responses. Over the past 2 years, the USGS has assembled the necessary descriptions for both historic and current NCSN instrumentation. The NCEDC and USGS jointly developed a procedure to assemble the hardware attributes and instrument responses for the NCSN data channels using a combination of a simple spreadsheet that defines the attributes of each data channel, and a limited number of attribute files for classes of sensors and shared digitizers. These files are used by programs developed by the NCEDC to populate the NCEDC hardware tracking database tables and then to generate both the simple response and the full SEED instrument response database tables. As a result, the NCSN waveform data can now be distributed in SEED format with any of the NCEDC standard waveform request methods. The NCEDC provides access to waveform data through Web forms, email requests, and programming interfaces. The SeismiQuery Web interface provides information about data holdings. NetDC allows users to retrieve inventory information, instrument responses, and waveforms in SEED format. STP provides both a Web and programming interface to retrieve data in SEED or other user-friendly formats. Through the California Integrated Seismic Network, we are working with the SCEDC to provide unified access to California earthquake data. The NCEDC is a joint project of the UC

  12. Adaptive Prony method for waveform distortion detection in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bracale, A.; Carpinelli, G. [Electrical Engineering Department, University of Napoli, Via Claudio 21, 80125 Napoli (Italy); Caramia, P. [Industrial Engineering Department, University of Cassino (Italy)

    2007-06-15

    IEC Standards characterize the waveform distortions in power systems with the amplitudes of harmonic and interharmonic groupings (subgroups and groups) calculated by using the waveform spectral components obtained with a 5 Hz frequency resolution DFT. In some cases the power system waveforms are characterized by means of spectral signal components that the DFT with 5 Hz frequency resolution is unable to capture with sufficient accuracy. In this paper a new Prony method is proposed to calculate the harmonic and interharmonic subgroups. This method is based on an adaptive technique that acts with the aim of minimizing the mean square relative error of signal estimation. (author)

  13. Compressive full-waveform LIDAR with low-cost sensor

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2016-10-01

    Full-waveform LiDAR is a method that digitizes the complete waveform of backscattered pulses to obtain range information of multi-targets. To avoid expensive sensors in conventional full-waveform LiDAR system, a new system based on compressive sensing method is presented in this paper. The non-coherent continuous-wave laser is modulated by electro-optical modulator with pseudo-random sequences. A low-bandwidth detector and a low-bandwidth analog-digital converter are used to acquire the returned signal. OMP algorithm is employed to reconstruct the high resolution range information.

  14. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    Directory of Open Access Journals (Sweden)

    Scott E. Field

    2014-07-01

    Full Text Available We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mc_{fit} online operations, where c_{fit} denotes the fitting function operation count and, typically, m≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10^{5}M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in

  15. General Dynamic (GD) Launch Waveform On-Orbit Performance Report

    Science.gov (United States)

    Briones, Janette C.; Shalkhauser, Mary Jo

    2014-01-01

    The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.

  16. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.

    2017-05-26

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  17. Full Waveform Inversion of Solar Interior Flows

    CERN Document Server

    Hanasoge, Shravan M

    2014-01-01

    The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here we apply techniques of Full Waveform Inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L_2 norm deviations in travel times between prediction and observation, as measured using short-distance f and p_1 filtered and large-distance unfiltered $p$ modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, owi...

  18. Waveform synthesis for imaging and ranging applications

    Science.gov (United States)

    Doerry, Armin W.; Dudley, Peter A.; Dubert, Dale F.; Tise, Bertice L.

    2004-12-07

    Frequency dependent corrections are provided for quadrature imbalance and Local Oscillator (LO) feed-through. An operational procedure filters imbalance and LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as LO feed-through and/or imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through and imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.

  19. Inversion method for initial tsunami waveform reconstruction

    Directory of Open Access Journals (Sweden)

    V. V. Voronin

    2014-12-01

    Full Text Available This paper deals with the application of r-solution method to recover the initial tsunami waveform in a tsunami source area by remote water-level measurements. Wave propagation is considered within the scope of a linear shallow-water theory. An ill-posed inverse problem is regularized by means of least square inversion using a truncated SVD approach. The properties of obtained solution are determined to a large extent by the properties of an inverse operator, which were numerically investigated. The method presented allows one to control instability of the numerical solution and to obtain an acceptable result in spite of ill-posedness of the problem. It is shown that the accuracy of tsunami source reconstruction strongly depends on the signal-to-noise ratio, the azimuthal coverage of recording stations with respect to the source area and bathymetric features along the wave path. The numerical experiments were carried out with synthetic data and various computational domains including a real bathymetry. The method proposed allows us to make a preliminary prediction of the efficiency of the inversion with a given set of the recording stations and to find out the most informative part of the existing observation system. This essential property of the method can prove to be useful in designing a monitoring system for tsunamis.

  20. Correcting attenuation effects caused by interactions in the forest canopy in full-waveform airborne laser scanner data

    Science.gov (United States)

    Richter, K.; Stelling, N.; Maas, H.-G.

    2014-08-01

    Full-waveform airborne laser scanning offers a great potential for various forestry applications. Especially applications requiring information on the vertical structure of the lower canopy parts benefit from the great amount of information contained in waveform data. To enable the derivation of vertical forest canopy structure, the development of suitable voxel based data analysis methods is straightforward. Beyond extracting additional 3D points, it is very promising to derive the voxel attributes from the digitized waveform directly. For this purpose, the differential backscatter cross sections have to be projected into a Cartesian voxel structure. Thereby the voxel entries represent amplitudes of the cross section and can be interpreted as a local measure for the amount of pulse reflecting matter. However, the "history" of each laser echo pulse is characterized by attenuation effects caused by reflections in higher regions of the crown. As a result, the received waveform signals within the canopy have a lower amplitude than it would be observed for an identical structure without the previous canopy structure interactions (Romanczyk et al., 2012). If the biophysical structure is determined from the raw waveform data, material in the lower parts of the canopy is thus under-represented. To achieve a radiometrically correct voxel space representation the loss of signal strength caused by partial reflections on the path of a laser pulse through the canopy has to be compensated. In this paper, we present an integral approach correcting the waveform at each recorded sample. The basic idea of the procedure is to enhance the waveform intensity values in lower parts of the canopy for portions of the pulse intensity, which have been reflected (and thus blocked) in higher parts of the canopy. The paper will discuss the developed correction method and show results from a validation both with synthetic and real world data.

  1. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data

    Science.gov (United States)

    Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui

    2016-07-01

    The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.

  2. Analysis of waveform design and its signal processing for some imported ATC radar%某引进空管雷达波形设计及信号处理分析

    Institute of Scientific and Technical Information of China (English)

    费太勇; 谭贤四; 曲智国; 林强

    2015-01-01

    某空管雷达是我国最近引进的技术先进的L波段两坐标中远程空中交通管制一次雷达。为了揭示其先进的雷达信号处理设计理念,对该雷达的波形设计及其信号处理流程进行了详细分析。分析结果表明,该雷达的信号处理器由于采用软件化、精细化、开放式的设计思想,使得雷达在实际应用过程中具有现场优化调整能力和优良探测性能。这为国内相关雷达装备的设计和论证提供了参考。%Some imported ATC radar is a sort of primary radar for two-dimensional intermediate and long-range ATC in L band, which is recently brought in and of advanced technology. To uncover its advanced idea of radar signal processing and its design, this paper analyses this radar’s waveform design and its signal processing flow in detail. Analytical results indicate that this type of radar is of on site optimized adjusting capability and excellent detection performance in use, as the radar’s signal processor takes advantages of the design idea of software, sophistication and openness, affording a certain reference for the design and argumentation of related radar equipment inland.

  3. The natural combination of full and image-based waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-06-01

    Integrating migration velocity analysis and full waveform inversion can help reduce the high non-linearity of the classic full waveform inversion objective function. The combination of inverting for the long and short wavelength components of the velocity model using a dual objective function that is sensitive to both components is still very expensive and have produced mixed results. We develop an approach that includes both components integrated to complement each other. We specifically utilize the image to generate reflections in our synthetic data only when the velocity model is not capable of producing such reflections. As a result, we get the migration velocity analysis working when we need it, and we mitigate its influence when the velocity model produces accurate reflections (possibly first for the low frequencies). This is achieved using a novel objective function that includes both objectives. Applications to a layered model and the Marmousi model demonstrate the main features of the approach. © 2015 European Association of Geoscientists & Engineers.

  4. A New Process Monitoring Method Based on Waveform Signal by Using Recurrence Plot

    OpenAIRE

    Cheng Zhou; Weidong Zhang

    2015-01-01

    Process monitoring is an important research problem in numerous areas. This paper proposes a novel process monitoring scheme by integrating the recurrence plot (RP) method and the control chart technique. Recently, the RP method has emerged as an effective tool to analyze waveform signals. However, unlike the existing RP methods that employ recurrence quantification analysis (RQA) to quantify the recurrence plot by a few summary statistics; we propose new concepts of template recurrence plots ...

  5. A scalable, fast and multichannel arbitrary waveform generator

    CERN Document Server

    Baig, Muhammad Tanveer; Wiese, Andreas; Heidbrink, Stefan; Ziolkowski, Michael; Wunderlich, Christof

    2013-01-01

    This article reports on development of a multichannel arbitrary waveform generator (MAWG), which simultaneously generates arbitrary voltage waveforms on 24 independent channels with a dynamic update rate of up to 25 Msps. A real-time execution of a single waveform and/or sequence of multiple waveforms in succession, with a user programmable arbitrary sequence order is provided under the control of a stand-alone sequencer circuit implemented using an FPGA. The device is operated using an internal clock and can be synced to other devices by means of the TTL pulses. The device can be used for output voltages in the range of up to +-9 V with a drift rate below +-10 uV/min and a maximum deviation less than +- 300 uVpp over a period of two hours.

  6. Multiscale Stategies in Automatic Image-Domain Waveform Tomography

    Institute of Scientific and Technical Information of China (English)

    Yujin Liu; Zhenchun Li

    2015-01-01

    Multiscale strategies are very important in the successful application of waveform-based velocity inversion. The strategy that sequentially preceeds from long to short scale of velocity model, has been well developed in full waveform inversion (FWI) to solve the local mininum problem. In contrast, it’s not well understood in the image-domain waveform tomography (IWT), which back-projects incoherent waveform components of the common image gather into velocity updates. IWT is less prone to local minimum problem but tends to build long-scale model with low resolution. In order to build both long- and short-scale model by IWT, we discuss several multiscale strategies restricted in the image domain. The strategies include model reparameterization, objective function switching and gradient rescaling. Numerical tests on Marmsousi model and real data demonstrate that our proposed multiscale IWT is effective in buidling velocity model with wide wavenumber spectrum.

  7. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Ahmed, Sajid

    2016-01-13

    Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.

  8. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    Science.gov (United States)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  9. Binary black hole waveform extraction at null infinity

    Energy Technology Data Exchange (ETDEWEB)

    Babiuc, M C [Department of Physics, Marshall University, Huntington, WV 25755 (United States); Winicour, J [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Zlochower, Y, E-mail: babiuc@marshall.edu [Center for Computational Relativity and Gravitation and School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2011-07-07

    In this paper, we present a work in progress toward an efficient and economical computational module which interfaces between Cauchy and characteristic evolution codes. Our goal is to provide a standardized waveform extraction tool for the numerical relativity community which will allow CCE to be readily applied to a generic Cauchy code. The tool provides a means of unambiguous comparison between the waveforms generated by evolution codes based upon different formulations of the Einstein equations and different numerical approximation.

  10. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang

    2016-09-06

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  11. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-04-12

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I

  12. Optimal current waveforms for brushless permanent magnet motors

    Science.gov (United States)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  13. Full Elastic Waveform Search Engine for Near Surface Imaging

    Science.gov (United States)

    Zhang, J.; Zhang, X.

    2014-12-01

    For processing land seismic data, the near-surface problem is often very complex and may severely affect our capability to image the subsurface. The current state-of-the-art technology for near surface imaging is the early arrival waveform inversion that solves an acoustic wave-equation problem. However, fitting land seismic data with acoustic wavefield is sometimes invalid. On the other hand, performing elastic waveform inversion is very time-consuming. Similar to a web search engine, we develop a full elastic waveform search engine that includes a large database with synthetic elastic waveforms accounting for a wide range of interval velocity models in the CMP domain. With each CMP gather of real data as an entry, the search engine applies Multiple-Randomized K-Dimensional (MRKD) tree method to find approximate best matches to the entry in about a second. Interpolation of the velocity models at CMP positions creates 2D or 3D Vp, Vs, and density models for the near surface area. The method does not just return one solution; it gives a series of best matches in a solution space. Therefore, the results can help us to examine the resolution and nonuniqueness of the final solution. Further, this full waveform search method can avoid the issues of initial model and cycle skipping that the method of full waveform inversion is difficult to deal with.

  14. Quantification of wave reflection using peripheral blood pressure waveforms.

    Science.gov (United States)

    Kim, Chang-Sei; Fazeli, Nima; McMurtry, M Sean; Finegan, Barry A; Hahn, Jin-Oh

    2015-01-01

    This paper presents a novel minimally invasive method for quantifying blood pressure (BP) wave reflection in the arterial tree. In this method, two peripheral BP waveforms are analyzed to obtain an estimate of central aortic BP waveform, which is used together with a peripheral BP waveform to compute forward and backward pressure waves. These forward and backward waves are then used to quantify the strength of wave reflection in the arterial tree. Two unique strengths of the proposed method are that 1) it replaces highly invasive central aortic BP and flow waveforms required in many existing methods by less invasive peripheral BP waveforms, and 2) it does not require estimation of characteristic impedance. The feasibility of the proposed method was examined in an experimental swine subject under a wide range of physiologic states and in 13 cardiac surgery patients. In the swine subject, the method was comparable to the reference method based on central aortic BP and flow. In cardiac surgery patients, the method was able to estimate forward and backward pressure waves in the absence of any central aortic waveforms: on the average, the root-mean-squared error between actual versus computed forward and backward pressure waves was less than 5 mmHg, and the error between actual versus computed reflection index was less than 0.03.

  15. Biomass Estimation for Individual Trees using Waveform LiDAR

    Science.gov (United States)

    Wang, K.; Kumar, P.; Dutta, D.

    2015-12-01

    Vegetation biomass information is important for many ecological models that include terrestrial vegetation in their simulations. Biomass has strong influences on carbon, water, and nutrient cycles. Traditionally biomass estimation requires intensive, and often destructive, field measurements. However, with advances in technology, airborne LiDAR has become a convenient tool for acquiring such information on a large scale. In this study, we use infrared full waveform LiDAR to estimate biomass information for individual trees in the Sangamon River basin in Illinois, USA. During this process, we also develop automated geolocation calibration algorithms for raw waveform LiDAR data. In the summer of 2014, discrete and waveform LiDAR data were collected over the Sangamon River basin. Field measurements commonly used in biomass equations such as diameter at breast height and total tree height were also taken for four sites across the basin. Using discrete LiDAR data, individual trees are delineated. For each tree, a voxelization methods is applied to all waveforms associated with the tree to result in a pseudo-waveform. By relating biomass extrapolated using field measurements from a training set of trees to waveform metrics for each corresponding tree, we are able to estimate biomass on an individual tree basis. The results can be especially useful as current models increase in resolution.

  16. Design and Testing of Space Telemetry SCA Waveform

    Science.gov (United States)

    Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.

    2006-01-01

    A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.

  17. Waveform descriptor for pulse onset detection of intracranial pressure signal.

    Science.gov (United States)

    Yang, Li; Zhao, Mingxi; Peng, Chenglin; Hu, Xiao; Feng, Hua; Ji, Zhong

    2012-03-01

    We present an algorithm to identify the onset of intracranial pressure (ICP) pulses. The algorithm creates a waveform descriptor to extract the feature of each local minimum of the waveform and then identifies the onset by comparing the feature with a customized template. The waveform descriptor is derived by transforming the vectors connecting a given point and the local waveform samples around it into log-polar coordinates and ranking them into uniform bins. Using an ICP dataset consisting of 40933 normal beats and 306 segments of artifacts and noise, we investigated the performance of our algorithm (waveform descriptor, WD), global minimum within a sliding window (GM) and two other algorithms originally proposed for arterial blood pressure (ABP) signal (slope sum function, SSF and pulse waveform delineator, PUD). As a result, all the four algorithms showed good performance and WD showed overall better one. At a tolerance level of 30 ms (i.e., the predicted onset and ground truth were considered as correctly matched if the distance between the two was equal or less than 30 ms), WD achieved a sensitivity of 0.9723 and PPV of 0.9475, GM achieved a sensitivity of 0.9226 and PPV of 0.8968, PUD achieved a sensitivity of 0.9599 and PPV of 0.9327 and SSF, a sensitivity of 0.9720 and PPV of 0.9136. The evaluation indicates that the algorithms are effective for identifying the onset of ICP pulses.

  18. An improved driving waveform reference grayscale of electrophoretic displays

    Science.gov (United States)

    Wang, Li; Yi, Zichuan; Peng, Bao; Zhou, Guofu

    2015-10-01

    Driving waveform is an important component for gray scale display on the electrophoretic display (EPD). In the traditional driving waveform, a white reference gray scale is formed before writing a new image. However, the reflectance value can not reach agreement in each gray scale transformation. In this paper, a new driving waveform, which has a short waiting time after the formation of reference gray scale, is proposed to improve the consistency of reference gray scale. Firstly, the property of the particles in the microcapsule is analyzed and the change of the EPD reflectance after the white reference gray scale formation is studied. Secondly, the reflectance change curve is fitted by using polynomial and the duration of the waiting time is determined. Thirdly, a set of the new driving waveform is designed by using the rule of DC balance and some real E-ink commercial EPDs are used to test the performance. Experimental results show that the effect of the new driving waveform has a better performance than traditional waveforms.

  19. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion, with reduced local minima. We propose a waveform inversion algorithm using the unwrapped phase objective function in the frequency-domain. The unwrapped phase, or what we call the instantaneous traveltime, is given by the imaginary part of dividing the derivative of the wavefield with respect to the angular frequency by the wavefield itself. As a result, the objective function is given a traveltime-like function, which allows us to smooth it and reduce its nonlinearity. The gradient of the objective function is computed using the back-propagation algorithm based on the adjoint-state technique. We apply both our waveform inversion algorithm using the unwrapped phase and the conventional waveform inversion and show that our inversion algorithm gives better convergence to the true model than the conventional waveform inversion. © 2011 Society of Exploration Geophysicists.

  20. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  1. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  2. Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information

    DEFF Research Database (Denmark)

    Cordua, Knud Skou; Hansen, Thomas Mejer; Mosegaard, Klaus

    2012-01-01

    We present a general Monte Carlo full-waveform inversion strategy that integrates a priori information described by geostatistical algorithms with Bayesian inverse problem theory. The extended Metropolis algorithm can be used to sample the a posteriori probability density of highly nonlinear...... into account during the inversion. The suggested inversion strategy is tested on synthetic tomographic crosshole ground-penetrating radar full-waveform data using multiple-point-based a priori information. This is, to our knowledge, the first example of obtaining a posteriori realizations of a full......-waveform inverse problem. Benefits of the proposed methodology compared with deterministic inversion approaches include: (1) The a posteriori model variability reflects the states of information provided by the data uncertainties and a priori information, which provides a means of obtaining resolution analysis. (2...

  3. The influence of maternal undernutrition in ovine twin pregnancy on fetal growth and Doppler flow-velocity waveforms.

    Science.gov (United States)

    Newnham, J P; Kelly, R W; Patterson, L; James, I

    1991-11-01

    The effects on placental blood flow velocity of maternal undernutrition during mid pregnancy were investigated in 38 twin bearing pregnant sheep by Doppler analysis of umbilical and uteroplacental arterial waveforms. Mid pregnancy undernutrition resulted in fetal growth restriction manifest at term gestation by reduced mean birth weight. Arterial waveform systolic/diastolic ratios from the umbilical and uteroplacental arterial circulations were not influenced by maternal nutrition either during the dietary deprivation or during a subsequent period of dietary supplementation. An effect of heart rate on systolic/diastolic ratios could not be demonstrated. The results indicate that the fetus responds to mid pregnancy maternal undernutrition with restricted growth but without alterations in systolic/diastolic ratios in umbilical or uteroplacental arterial waveforms.

  4. Evaluation of human exposure to complex waveform magnetic fields generated by arc-welding equipment according to European safety standards.

    Science.gov (United States)

    Zoppetti, Nicola; Bogi, Andrea; Pinto, Iole; Andreuccetti, Daniele

    2015-02-01

    In this paper, a procedure is described for the assessment of human exposure to magnetic fields with complex waveforms generated by arc-welding equipment. The work moves from the analysis of relevant guidelines and technical standards, underlining their strengths and their limits. Then, the procedure is described with particular attention to the techniques used to treat complex waveform fields. Finally, the procedure is applied to concrete cases encountered in the workplace. The discussion of the results highlights the critical points in the procedure, as well as those related to the evolution of the technical and exposure standards.

  5. Waveforms for Active Sensing: Optical Waveform Design and Analysis for Ballistic Imaging Through Turbid Media

    Science.gov (United States)

    2008-04-04

    Presentation, San - Agustin , FL, September, 2006 Invited Speaker, Peyman Milanfar, International Conference on Image Processing, Atlanta, GA, Oct...Ballistic Imaging Through Turbid Media", S. Farsiu and P. Milanfar, In proceedings of the IEEE International Conference on Image Processing (ICIP), San ...Invited Speaker, Sina Farsiu, Sony Electronics, San Jose, CA, Feb. 2007 Invited Speaker, Peyman Milanfar Conference on Applied Inverse Problems

  6. On the Empirical Estimation of Utility Distribution Damping Parameters Using Power Quality Waveform Data

    Directory of Open Access Journals (Sweden)

    Irene Y. H. Gu

    2007-01-01

    Full Text Available This paper describes an efficient yet accurate methodology for estimating system damping. The proposed technique is based on linear dynamic system theory and the Hilbert damping analysis. The proposed technique requires capacitor switching waveforms only. The detected envelope of the intrinsic transient portion of the voltage waveform after capacitor bank energizing and its decay rate along with the damped resonant frequency are used to quantify effective X/R ratio of a system. Thus, the proposed method provides complete knowledge of system impedance characteristics. The estimated system damping can also be used to evaluate the system vulnerability to various PQ disturbances, particularly resonance phenomena, so that a utility may take preventive measures and improve PQ of the system.

  7. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    Science.gov (United States)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  8. Simulations of rotating neutron star collapse with the puncture gauge: end state and gravitational waveforms

    CERN Document Server

    Dietrich, Tim

    2014-01-01

    We reexamine the gravitational collapse of rotating neutron stars to black holes by new 3+1 numerical relativity simulations employing the Z4c formulation of Einstein equations, the moving puncture gauge conditions, and a conservative mesh refinement scheme or the general relativistic hydrodynamics. The end state of the collapse is compared to the vacuum spacetime resulting from the evolution of spinning puncture initial data. Using a local analysis for the metric fields, we demonstrate that the two spacetimes atually agree. Gravitational waveforms are analyzed in some detail. We connect the emission of radiation to the collapse dynamics using simplified spacetime diagrams, and discuss the similarity of the waveform structure with the one of black hole perturbation theory.

  9. A Simple Adaptive Transfer Function for Deriving the Central Blood Pressure Waveform from a Radial Blood Pressure Waveform.

    Science.gov (United States)

    Gao, Mingwu; Rose, William C; Fetics, Barry; Kass, David A; Chen, Chen-Huan; Mukkamala, Ramakrishna

    2016-09-14

    Generalized transfer functions (GTFs) are available to compute the more relevant central blood pressure (BP) waveform from a more easily measured radial BP waveform. However, GTFs are population averages and therefore may not adapt to variations in pulse pressure (PP) amplification (ratio of radial to central PP). A simple adaptive transfer function (ATF) was developed. First, the transfer function is defined in terms of the wave travel time and reflection coefficient parameters of an arterial model. Then, the parameters are estimated from the radial BP waveform by exploiting the observation that central BP waveforms exhibit exponential diastolic decays. The ATF was assessed using the original data that helped popularize the GTF. These data included radial BP waveforms and invasive reference central BP waveforms from cardiac catheterization patients. The data were divided into low, middle, and high PP amplification groups. The ATF estimated central BP with greater accuracy than GTFs in the low PP amplification group (e.g., central systolic BP and PP root-mean-square-errors of 3.3 and 4.2 mm Hg versus 6.2 and 7.1 mm Hg; p ≤ 0.05) while showing similar accuracy in the higher PP amplification groups. The ATF may permit more accurate, non-invasive central BP monitoring in elderly and hypertensive patients.

  10. Basis of monitoring central blood pressure and hemodynamic parameters by peripheral arterial pulse waveform analyses.

    Science.gov (United States)

    Miyashita, Hiroshi; Katsuda, Shin-ichiro

    2013-01-01

    In hypertension clinics, central blood pressure (CBP) should be estimated, instead of directly measured, by the "signal processing" of a noninvasive peripheral pressure waveform. This paper deals with the data obtained in our three separate studies focusing on a major estimation method, i.e., radial artery late systolic shoulder pressure (rSBP2)-based CBP estimation. Study 1: Using a wave separation analysis of precise animal data of pressure wave transmission along the upper-limb arteries, we first demonstrate that pulse pressure amplification is largely attributable to local wave reflection alone. Study 2: A frequency component analysis of simultaneously recorded human central and radial artery pressure waveforms showed a predominance of lower (1st+2nd) harmonic components in determining the central augmentation peak amplitude. The features of a central pressure waveform, including its phase property, may contribute to the less-altered transmission of augmentation peak pressure to rSBP2. Study 3: Comparisons of noninvasive rSBP2 with direct or estimated central systolic blood pressure (cSBP) revealed broad agreement but also augmentation-dependent biases. Based on the features of the biases as well as the counterbalanced relationship between pulse pressure amplification and the transmission-induced alterations of augmentation peak amplitude observed in Study 2, we propose an improved cSBP estimate, SBPm, the simple arithmetic mean of rSBP2 and peripheral systolic blood pressure.

  11. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    Science.gov (United States)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  12. Direct detection of sharp upper-mantle features with waveform complexity

    Science.gov (United States)

    Sun, D.; Helmberger, D. V.

    2009-12-01

    A recent technique for processing array data searching for multipathing has been applied to USArray data [Sun and Helmberger, 2009]. A record can be decomposed by S(t) + A×S(t+ΔLR), where S(t) is the synthetics for a reference model. Time separation ΔLR and amplitude ratio A are needed to obtain best cross-correlation between a simulated waveform and data. The travel time of the composite waveform relative to the reference model synthetics is defined as ΔT. A simulated annealing algorithm is used to inverse the parameters of ΔLR, ΔT, and A. Whereas the conventional tomography yields a travel time correction (ΔT), our analysis yields an extra parameter of ΔLR which describe the waveform complexity. With the array, we can construct a mapping of the gradient of ΔLR with complexity patterns. A horizontal structure will introduce the waveform complexity along the distance profile (in-plane multipathing). A azimuthally orientation ΔLR pattern indicates a vertical structure with out-of-plane multipathing. Using such maps generated from artificial data we can easily recognize features produced by downwelling (DW) vs. upwelling (UW) and address their scale lengths. In particular, we find a line of DW's along the Rock Mountain Front which have anomalies similar to those found along the La Ristra line. These ΔLR anomalies are up to 8s, which corresponds to features extending down to the 410 discontinuity with a 6% shear velocity increase. Such features appear to be produced by delamination caused by the sharp lateral temperature gradient [Song and Helmberger, 2007]. The ΔLR patters for the Western US indicates a number of UW's, in which the Yellowstone is particular obvious. The records for events from southwestern and southeastern directions show generally simple waveform across the Yellowstone -Snake River Plain (SRP). For the event from the northeast, the stations along the western edge of SRP show strong waveform distortions, which indicate azimuthally

  13. Spectral implementation of full waveform inversion based on reflections

    KAUST Repository

    Wu, Zedong

    2014-01-01

    Using the reflection imaging process as a source to model reflections for full waveform inversion (FWI), referred to as reflection FWI (RFWI), allows us to update the background component of the model, and avoid using the relatively costly migration velocity analysis (MVA), which usually relies on extended images. However, RFWI requires a good image to represent the current reflectivity, as well as, some effort to obtain good smooth gradients. We develop a spectral implementation of RFWI where the wavefield extrapolations and gradient evaluation are performed in the wavenumber domain, obtaining clean dispersion free and fast extrapolations. The gradient, in this case, yields three terms, two of which provide us with each side of the rabbit ear kernel, and the third, often ignored, provides a normalization of the reflectivity within the kernel, which can be used to obtain a reflectivity free background update. Since the image is imperfect (it is an adjoint, not an inverse), an optimization process for the third term scaling is implemented to achieve the smoothest gradient update. A rare application of RFWI on the reflectivity infested Marmousi model shows some of the potential of the approach.

  14. Velocity Building by Reflection Waveform Inversion without Cycle-skipping

    KAUST Repository

    Guo, Q.

    2017-05-26

    Reflection waveform inversion (RWI) provides estimation of low wavenumber model components using reflections generated from a migration/demigration process. The resulting model tends to be a good initial model for FWI. In fact, the optimization images to combine the migration velocity analysis (MVA) objectives (given here by RWI) and the FWI ones. However, RWI may still encounter cycle-skipping at far offsets if the velocity model is highly inaccurate. Similar to MVA, RWI is devoted to focusing reflection data to its true image positions, yet because of the cycle skipping potential we tend to initially use only near offsets. To make the inversion procedure more robust, we introduce the extended image into our RWI. Extending the model perturbations (or image) allows us to better fit the data at larger offsets even with an inaccurate velocity. Thus, we implement a nested approach to optimize the velocity and extended image simultaneously using the objective function of RWI. We slowly reduce the extension, as the image becomes focused, to allow wavepath updates from far offsets to near as a natural progression from long wavelength updates to shorter ones. Applications on synthetic data demonstrate the effectiveness of our method without much additional cost to RWI.

  15. Estimation of earthquake source parameters by the inversion of waveform data: synthetic waveforms

    Science.gov (United States)

    Sipkin, S.A.

    1982-01-01

    Two methods are presented for the recovery of a time-dependent moment-tensor source from waveform data. One procedure utilizes multichannel signal-enhancement theory; in the other a multichannel vector-deconvolution approach, developed by Oldenburg (1982) and based on Backus-Gilbert inverse theory, is used. These methods have the advantage of being extremely flexible; both may be used either routinely or as research tools for studying particular earthquakes in detail. Both methods are also robust with respect to small errors in the Green's functions and may be used to refine estimates of source depth by minimizing the misfits to the data. The multichannel vector-deconvolution approach, although it requires more interaction, also allows a trade-off between resolution and accuracy, and complete statistics for the solution are obtained. The procedures have been tested using a number of synthetic body-wave data sets, including point and complex sources, with satisfactory results. ?? 1982.

  16. A Time Domain Waveform for Testing General Relativity

    CERN Document Server

    Huwyler, Cédric; Jetzer, Philippe

    2014-01-01

    Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signa...

  17. Ocular pressure waveform reflects ventricular bigeminy and aortic insufficiency

    Directory of Open Access Journals (Sweden)

    Jean B Kassem

    2015-01-01

    Full Text Available Ocular pulse amplitude (OPA is defined as the difference between maximum and minimum intraocular pressure (IOP during a cardiac cycle. Average values of OPA range from 1 to 4 mmHg. The purpose of this investigation is to determine the source of an irregular IOP waveform with elevated OPA in a 48-year-old male. Ocular pressure waveforms had an unusual shape consistent with early ventricular contraction. With a normal IOP, OPA was 9 mmHg, which is extraordinarily high. The subject was examined by a cardiologist and was determined to be in ventricular bigeminy. In addition, he had bounding carotid pulses and echocardiogram confirmed aortic insufficiency. After replacement of the aortic valve, the bigeminy resolved and the ocular pulse waveform became regular in appearance with an OPA of 1.6-2.0 mmHg. The ocular pressure waveform is a direct reflection of hemodynamics. Evaluating this waveform may provide an additional opportunity for screening subjects for cardiovascular anomalies and arrhythmias.

  18. Breast ultrasound computed tomography using waveform inversion with source encoding

    Science.gov (United States)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  19. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control

    Science.gov (United States)

    Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J.-P.

    2017-07-01

    A comprehensive hybrid model of a hydrogen capacitively coupled plasma, including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these discharges. Two kinds of TVWs are considered, valleys-to-peaks and saw-tooth, with amplitude and slope asymmetry respectively. By tailoring the voltage waveform only, it is possible to exert substantial control over the peak density and position of negative ions inside the discharge volume. This control is particularly effective for saw-tooth waveforms. Insight into the mechanisms allowing this control is provided by an analysis of the model results. This reveals the roles of the vibrational distribution function and of the electron energy distribution and their correlations, as well as changes in the negative ion transport in the electric field when using different TVWs. Considering the chemical reactivity of H- ions, the possibility of a purely electrical control of the negative ion cloud in a reactor operating with a feedstock gas diluted by hydrogen may find interesting applications. This is the first study of vibrational kinetics in the context of TVWs in molecular gases.

  20. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe [Dept. of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fatouraee, Nasser [Dept. of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saben, Hazhir [Dept. Radiology, Imaging Center of Imam Khomaini Hospital, Tehran Medical Sciences University, Tehran (Iran, Islamic Republic of)

    2017-04-15

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes.

  1. Validity of linear acoustics for prediction of waveforms caused by sonically moving laser beams.

    Science.gov (United States)

    Pierce, A D; Berthelot, Y H

    1988-03-01

    The question is raised as to whether the analysis of the generation of sound by a laser beam moving over a water surface at the sound speed c for an interminable time period requires consideration of nonlinear effects. A principal consideration in this regard is whether the linear acoustics theory predicts a pressure waveform that is bounded in the asymptotic limit when the laser irradiation time is arbitrarily large. It is shown that a bounded asymptotic limit exists when the upper boundary condition corresponds (as is more nearly appropriate) to that of a pressure release surface, but not when it corresponds to that of a rigid surface. The asymptotic solution to the appropriate inhomogeneous wave equation is given exactly for the former case, and it is shown that the highest asymptotic amplitudes, given specified laser power and beam radius a, occur in the limit of a very small light absorption coefficient mu. In this limit, the peak amplitude is independent of mu and occurs at a depth of 0.88/mu. An approximate solution for the pressure waveform at intermediate times establishes that the characteristic time for buildup to the asymptotic limit is of the order of 2.5/(c mu 2a). If this time is substantially shorter than the time that a plane-wave pulse with the asymptotic waveform would take to develop a shock wave, then accumulative nonlinear effects are of minor importance.

  2. A method for improving the computational efficiency of a Laplace-Fourier domain waveform inversion based on depth estimation

    Science.gov (United States)

    Zhang, Dong; Zhang, Xiaolei; Yuan, Jianzheng; Ke, Rui; Yang, Yan; Hu, Ying

    2016-01-01

    The Laplace-Fourier domain full waveform inversion can simultaneously restore both the long and intermediate short-wavelength information of velocity models because of its unique characteristics of complex frequencies. This approach solves the problem of conventional frequency-domain waveform inversion in which the inversion result is excessively dependent on the initial model due to the lack of low frequency information in seismic data. Nevertheless, the Laplace-Fourier domain waveform inversion requires substantial computational resources and long computation time because the inversion must be implemented on different combinations of multiple damping constants and multiple frequencies, namely, the complex frequencies, which are much more numerous than the Fourier frequencies. However, if the entire target model is computed on every complex frequency for the Laplace-Fourier domain inversion (as in the conventional frequency domain inversion), excessively redundant computation will occur. In the Laplace-Fourier domain waveform inversion, the maximum depth penetrated by the seismic wave decreases greatly due to the application of exponential damping to the seismic record, especially with use of a larger damping constant. Thus, the depth of the area effectively inverted on a complex frequency tends to be much less than the model depth. In this paper, we propose a method for quantitative estimation of the effective inversion depth in the Laplace-Fourier domain inversion based on the principle of seismic wave propagation and mathematical analysis. According to the estimated effective inversion depth, we can invert and update only the model area above the effective depth for every complex frequency without loss of accuracy in the final inversion result. Thus, redundant computation is eliminated, and the efficiency of the Laplace-Fourier domain waveform inversion can be improved. The proposed method was tested in numerical experiments. The experimental results show that

  3. Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes

    Science.gov (United States)

    Kamei, R.; Lumley, D.

    2017-02-01

    obtain a reasonably accurate baseline velocity model. Extensive synthetic tests using a realistic velocity model developed from a real project area demonstrate the potential of full waveform inversion to estimate velocity changes from dense surface arrays of seismic stations recording a small number of repeating events. Analysis of sensitivity kernels suggests that positioning sensors at large distances allows for a stable recovery of velocity changes near the event locations by illuminating the inversion area with a wide aperture of angles. We show how full waveform inversion maps the errors in the baseline velocity model and the non-repeatable noise into the estimates of time-lapse velocity changes. Among the three time-laspe inversion methods, parallel inversion is most affected by non-repeatability factors, and is thus the least robust and most contaminated by artefacts. In contrast, the double-difference and bootstrapping methods result in more accurate time-lapse inversions. As the non-repeatability of both sources and noise increases, the bootstrapping method provides more robust and accurate results than the double-difference method.

  4. Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes

    Science.gov (United States)

    Kamei, R.; Lumley, D.

    2017-05-01

    obtain a reasonably accurate baseline velocity model. Extensive synthetic tests using a realistic velocity model developed from a real project area demonstrate the potential of full waveform inversion to estimate velocity changes from dense surface arrays of seismic stations recording a small number of repeating events. Analysis of sensitivity kernels suggests that positioning sensors at large distances allows for a stable recovery of velocity changes near the event locations by illuminating the inversion area with a wide aperture of angles. We show how full waveform inversion maps the errors in the baseline velocity model and the non-repeatable noise into the estimates of time-lapse velocity changes. Among the three time-lapse inversion methods, parallel inversion is most affected by non-repeatability factors, and is thus the least robust and most contaminated by artefacts. In contrast, the double-difference and bootstrapping methods result in more accurate time-lapse inversions. As the non-repeatability of both sources and noise increases, the bootstrapping method provides more robust and accurate results than the double-difference method.

  5. Shaping the spectrum of random-phase radar waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  6. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  7. Fast evaluation of asymptotic waveforms from gravitational perturbations

    CERN Document Server

    Benedict, Alex G; Lau, Stephen R

    2012-01-01

    In the context of blackhole perturbation theory, we describe both exact evaluation of an asymptotic waveform from a time series recorded at a finite radial location and its numerical approximation. From the user's standpoint our technique is easy to implement, affords high accuracy, and works for both axial (Regge-Wheeler) and polar (Zerilli) sectors. Our focus is on the ease of implementation with publicly available numerical tables, either as part of an existing evolution code or a post-processing step. Nevertheless, we also present a thorough theoretical discussion of asymptotic waveform evaluation and radiation boundary conditions, which need not be understood by a user of our methods. In particular, we identify (both in the time and frequency domains) analytical asymptotic waveform evaluation kernels, and describe their approximation by techniques developed by Alpert, Greengard, and Hagstrom. This paper also presents new results on the evaluation of far-field signals for the ordinary (acoustic) wave equa...

  8. Schwarz waveform relaxation algorithm for heat equations with distributed delay

    Directory of Open Access Journals (Sweden)

    Wu Shu-Lin

    2016-01-01

    Full Text Available Heat equations with distributed delay are a class of mathematic models that has wide applications in many fields. Numerical computation plays an important role in the investigation of these equations, because the analytic solutions of partial differential equations with time delay are usually unavailable. On the other hand, duo to the delay property, numerical computation of these equations is time-consuming. To reduce the computation time, we analyze in this paper the Schwarz waveform relaxation algorithm with Robin transmission conditions. The Robin transmission conditions contain a free parameter, which has a significant effect on the convergence rate of the Schwarz waveform relaxation algorithm. Determining the Robin parameter is therefore one of the top-priority matters for the study of the Schwarz waveform relaxation algorithm. We provide new formula to fix the Robin parameter and we show numerically that the new Robin parameter is more efficient than the one proposed previously in the literature.

  9. Classification of Pulse Waveforms Using Edit Distance with Real Penalty

    Directory of Open Access Journals (Sweden)

    Zhang Dongyu

    2010-01-01

    Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.

  10. A 10 tesla table-top controlled waveform magnet.

    Science.gov (United States)

    Roy Choudhury, Aditya N; Venkataraman, V

    2012-04-01

    Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%.

  11. Autocorrelation Properties of OFDM Timing Synchronization Waveforms Employing Pilot Subcarriers

    Directory of Open Access Journals (Sweden)

    Oktay Üreten

    2009-01-01

    Full Text Available We investigate the autocorrelation properties of timing synchronization waveforms that are generated by embedded frequency domain pilot tones in orthogonal frequency division multiplex (OFDM systems. The waveforms are composed by summing a selected number of OFDM subcarriers such that the autocorrelation function (ACF of the resulting time waveform has desirable sidelobe behavior. Analytical expressions for the periodic and aperiodic ACF sidelobe energy are derived. Sufficient conditions for minimum and maximum aperiodic ACF sidelobe energy for a given number of pilot tones are presented. Several useful properties of the pilot design problem, such as invariance under transformations and equivalence of complementary sets are demonstrated analytically. Pilot tone design discussion is expanded to the ACF sidelobe peak minimization problem by including various examples and simulation results obtained from a genetic search algorithm.

  12. Autocorrelation Properties of OFDM Timing Synchronization Waveforms Employing Pilot Subcarriers

    Directory of Open Access Journals (Sweden)

    Taşcıoğlu Selçuk

    2009-01-01

    Full Text Available Abstract We investigate the autocorrelation properties of timing synchronization waveforms that are generated by embedded frequency domain pilot tones in orthogonal frequency division multiplex (OFDM systems. The waveforms are composed by summing a selected number of OFDM subcarriers such that the autocorrelation function (ACF of the resulting time waveform has desirable sidelobe behavior. Analytical expressions for the periodic and aperiodic ACF sidelobe energy are derived. Sufficient conditions for minimum and maximum aperiodic ACF sidelobe energy for a given number of pilot tones are presented. Several useful properties of the pilot design problem, such as invariance under transformations and equivalence of complementary sets are demonstrated analytically. Pilot tone design discussion is expanded to the ACF sidelobe peak minimization problem by including various examples and simulation results obtained from a genetic search algorithm.

  13. Agile high resolution arbitrary waveform generator with jitterless frequency stepping

    Science.gov (United States)

    Reilly, Peter T. A.; Koizumi, Hideya

    2010-05-11

    Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.

  14. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah

    2012-11-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  15. Ultra-wideband noise radar based on optical waveform generation

    Science.gov (United States)

    Grodensky, Daniel; Kravitz, Daniel; Zadok, Avi

    2012-06-01

    A microwave-photonic, ultra-wideband (UWB) noise radar system is proposed and demonstrated. The system brings together photonic generation of UWB waveforms and fiber-optic distribution. The use of UWB noise provides high ranging resolution and better immunity to interception and jamming. Distribution over fibers allows for the separation the radar-operating personnel and equipment from the location of the front-end. The noise waveforms are generated using the amplified spontaneous emission that is associated with stimulated Brillouin scattering in a standard optical fiber, or with an erbium-doped fiber amplifier. Our experiments demonstrate a proof of concept for an integrated radar system, driven by optically generated UWB noise waveforms of more than 1 GHz bandwidth that are distributed over 10 km distance. The detection of concealed metallic object and the resolving of two targets with the anticipated ranging resolution are reported.

  16. Design of output voltage waveform on magnetic encoder

    Energy Technology Data Exchange (ETDEWEB)

    Shi Yu E-mail: shiyu_aaa@163.com; Zhang Huaiwu; Jiang Xiangdong; Wen Qiye; Han Baoshan

    2004-11-01

    A novel design model based on slant multi-phase filter (SMPF) theory is presented. By the theory nth harmonic voltage (n=2nd, 3rd and 4th...(V)) can be reduced easily. Magnetic encoder with sinusoidal output voltage waveform has been developed and sinusoidal output waveform can be easily improved. The minimum of distortion factor was observed when the difference of slant phase is 2{pi}3. This result agrees with SMPF theory value {phi}=4.904 deg. (p=0.8 mm, l=3 mm, {delta}{theta}=2{pi}3]. This result can be widely used in magnetoresistive sensor fields.

  17. Efficient 2d full waveform inversion using Fortran coarray

    Science.gov (United States)

    Ryu, Donghyun; Kim, ahreum; Ha, Wansoo

    2016-04-01

    We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.

  18. Krylov-subspace acceleration of time periodic waveform relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, A. [Univ. of Notre Dame, IN (United States)

    1994-12-31

    In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.

  19. A Novel Memory Compress Algorithm for Arbitrary Waveform Generator

    Institute of Scientific and Technical Information of China (English)

    吕铁良; 仇玉林

    2000-01-01

    A memory compress algorithm for 12-bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16× 13hits with a Spurious-Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8× 12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.

  20. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data

    Science.gov (United States)

    Höfle, Bernhard; Hollaus, Markus; Hagenauer, Julian

    2012-01-01

    This paper introduces a new GIS workflow for urban vegetation mapping from high-density (50 pts./m 2) full-waveform airborne LiDAR data, combining the advantages of both raster and point cloud based analysis. Polygon segments derived by edge-based segmentation of the normalized digital surface model are used for classification. A rich set of segment features based on the point cloud and derived from full-waveform attributes is built, serving as input for a decision tree and artificial neural network (ANN) classifier. Exploratory data analysis and detailed investigation of the discriminative power of selected point cloud and full-waveform LiDAR observables indicate a high value of the occurrence of multiple distinct targets in a laser beam (i.e. 'echo ratio') for vegetation classification (98% correctness). The radiometric full-waveform observables (e.g. backscattering coefficient) do not suffice as single discriminators with low correctness values using a decision tree classifier (⩽72% correctness) but higher values with ANN (⩽95% correctness). Tests using reduced point densities indicate that the derived segment features and classification accuracies remain relatively stable even up to a reduction factor of 10 (5 pts./m 2). In a representative study area in the City of Vienna/Austria the applicability of the developed object-based GIS workflow is demonstrated. The unique high density full-waveform LiDAR data open a new scale in 3D object characterization but demands for novel joint strategies in object-based raster and 3D point cloud analysis.

  1. Urban Tree Classification Using Full-Waveform Airborne Laser Scanning

    Science.gov (United States)

    Koma, Zs.; Koenig, K.; Höfle, B.

    2016-06-01

    Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria). The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries) and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas) on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  2. URBAN TREE CLASSIFICATION USING FULL-WAVEFORM AIRBORNE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Zs. Koma

    2016-06-01

    Full Text Available Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria. The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  3. A new parameterization for waveform inversion in acoustic orthorhombic media

    KAUST Repository

    Masmoudi, Nabil

    2016-05-26

    Orthorhombic anisotropic model inversion is extra challenging because of the multiple parameter nature of the inversion problem. The high number of parameters required to describe the medium exerts considerable trade-off and additional nonlinearity to a full-waveform inversion (FWI) application. Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy can help in mitigating this problem. Using the Born approximation, which is the central ingredient of the FWI update process, we have derived radiation patterns for the different acoustic orthorhombic parameterizations. Analyzing the angular dependence of scattering (radiation patterns) of the parameters of different parameterizations starting with the often used Thomsen-Tsvankin parameterization, we have assessed the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. The analysis led us to introduce new parameters ϵd, δd, and ηd, which have azimuthally dependent radiation patterns, but keep the scattering potential of the transversely isotropic parameters stationary with azimuth (azimuth independent). The novel parameters ϵd, δd, and ηd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. Therefore, these deviation parameters offer a new parameterization style for an acoustic orthorhombic medium described by six parameters: three vertical transversely isotropic (VTI) parameters, two deviation parameters, and one parameter describing the anisotropy in the horizontal symmetry plane. The main feature of any parameterization based on the deviation parameters, is the azimuthal independency of the modeled data with respect to the VTI parameters, which allowed us to propose practical inversion strategies based on our experience with the VTI parameters. This feature of the new parameterization style holds for even the long-wavelength components of

  4. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic areas. Our final 3D Earth model is tested using forward wave simulations of earthquakes (M ≥ 3.7) that were not used during the inversion process. The comparison of observed and synthetic seismograms, calculated by initial and final models, showed significant

  5. Sonar waveforms for reverberation rejection, part I: theory

    NARCIS (Netherlands)

    Doist, Y.; Deruz, L.; Been, R.

    2000-01-01

    The influence of the waveform of the transmitted signal on the signal to reverberation ratio induced at the processing output of a moving sonar array is analysed on an theoretical basis. Three main classes of signals are analysed: wide band signals with a flat spectrum (for instance FM signals), con

  6. Waveform Diversity and Design for Interoperating Radar Systems

    Science.gov (United States)

    2013-01-01

    University Di Pisa Department Di Ingegneria Dell Informazione Elettronica, Informatica , Telecomunicazioni Via Girolamo Caruso 16 Pisa, Italy 56122...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University Di Pisa Department Di Ingegneria Dell Informazione Elettronica, Informatica ...DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE ELETTRONICA, INFORMATICA , TELECOMUNICAZIONI WAVEFORM DIVERSITY AND DESIGN FOR INTEROPERATING

  7. On the Contribution of Head Waves to Full Waveform Inversion

    NARCIS (Netherlands)

    Kazei, V.V.; Ponomarenko, A.V.; Troyan, V.N.; Kashtan, B.M.; Mulder, W.A.

    2012-01-01

    Full waveform inversion suffers from local minima, due to a lack of low frequencies in the data. A reflector below the zone of interest may, however, help in recovering the long-wavelength components of a velocity perturbation, as demonstrated in a paper by Mora. With the Born approximation for the

  8. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang

    2016-09-06

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  9. Notched spectrum: from probing waveforms to receive filters

    Science.gov (United States)

    Jiang, Yi; Gianelli, Christopher D.

    2013-05-01

    The increasing demand for wireless data services and communications is expanding the frequency footprint of both civilian and military wireless networks, and hence encroaches upon spectrum traditionally reserved for radar systems. To maximize spectral efficiency, it is desirable for a modern radar system to use waveforms with the ability to fit into tightly controlled spectral regions, which requires the formation of nulls with required notching levels on prescribed frequency stop-bands. Additionally, the waveform should posses a low peak-to-average ratio (PAR), and have good auto-correlation performance. In this work, we propose a novel method for the design of such a waveform using alternating convex optimization. The core module of the proposed algorithm is a fast Fourier transform, which makes the algorithm quite efficient and can handle waveform designs with up to 105 samples. Moreover, our algorithm can achieve a flexible tradeoff between PAR and reduced pass band ripple. A simple application in synthetic aperture radar is considered to highlight the performance of the design algorithm.

  10. A marked point process for modeling lidar waveforms.

    Science.gov (United States)

    Mallet, Clément; Lafarge, Florent; Roux, Michel; Soergel, Uwe; Bretar, Frédéric; Heipke, Christian

    2010-12-01

    Lidar waveforms are 1-D signals representing a train of echoes caused by reflections at different targets. Modeling these echoes with the appropriate parametric function is useful to retrieve information about the physical characteristics of the targets. This paper presents a new probabilistic model based upon a marked point process which reconstructs the echoes from recorded discrete waveforms as a sequence of parametric curves. Such an approach allows to fit each mode of a waveform with the most suitable function and to deal with both, symmetric and asymmetric, echoes. The model takes into account a data term, which measures the coherence between the models and the waveforms, and a regularization term, which introduces prior knowledge on the reconstructed signal. The exploration of the associated configuration space is performed by a reversible jump Markov chain Monte Carlo (RJMCMC) sampler coupled with simulated annealing. Experiments with different kinds of lidar signals, especially from urban scenes, show the high potential of the proposed approach. To further demonstrate the advantages of the suggested method, actual laser scans are classified and the results are reported.

  11. Multisource waveform inversion of marine streamer data using normalized wavefield

    KAUST Repository

    Choi, Yun Seok

    2013-09-01

    Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply multisource full-waveform inversion to marine streamer data, we construct the L1- and L2-norm objective functions using the normalized wavefield. The new residual seismograms obtained from the L1- and L2-norms using the normalized wavefield mitigate the problem of unmatched acquisition geometries, which enables multisource full-waveform inversion to work with marine streamer data. In the new approaches using the normalized wavefield, we used the back-propagation algorithm based on the adjoint-state technique to efficiently calculate the gradients of the objective functions. Numerical examples showed that multisource full-waveform inversion using the normalized wavefield yields much better convergence for marine streamer data than conventional approaches. © 2013 Society of Exploration Geophysicists.

  12. Structural similarity regularization scheme for multiparameter seismic full waveform inversion

    NARCIS (Netherlands)

    Li, M.; Liang, L.; Abubakar, A.; Van den Berg, P.M.

    2013-01-01

    We introduce a new regularization scheme for multiparameter seismic full-waveform inversion (FWI). Using this scheme, we can constrain spatial variations of parameters which are having a weak sensitivity with the one that having a good sensitivity to the measurement, assuming that these parameters h

  13. On the potential of OFDM enhancements as 5G waveforms

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Pajukoski, Kari; Lähetkangas, Eeva

    2014-01-01

    Division Multiplexing (OFDM) and its recently proposed enhancements as 5G waveforms, mainly focusing on their capability to cope with our requirements. Significant focus is given to the novel zero-tail paradigm, which allows boosting the OFDM flexibility while circumventing demerits such as poor spectral...

  14. Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters.

    Science.gov (United States)

    Gozani, S N; Miller, J P

    1994-04-01

    We describe advanced protocols for the discrimination and classification of neuronal spike waveforms within multichannel electrophysiological recordings. The programs are capable of detecting and classifying the spikes from multiple, simultaneously active neurons, even in situations where there is a high degree of spike waveform superposition on the recording channels. The protocols are based on the derivation of an optimal linear filter for each individual neuron. Each filter is tuned to selectively respond to the spike waveform generated by the corresponding neuron, and to attenuate noise and the spike waveforms from all other neurons. The protocol is essentially an extension of earlier work [1], [13], [18]. However, the protocols extend the power and utility of the original implementations in two significant respects. First, a general single-pass automatic template estimation algorithm was derived and implemented. Second, the filters were implemented within a software environment providing a greatly enhanced functional organization and user interface. The utility of the analysis approach was demonstrated on samples of multiunit electrophysiological recordings from the cricket abdominal nerve cord.

  15. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data.

    Science.gov (United States)

    Rodeberg, Nathan T; Johnson, Justin A; Bucher, Elizabeth S; Wightman, R Mark

    2016-11-16

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS.

  16. Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements

    Science.gov (United States)

    Bai, Guang-Fu; Hu, Lin; Jiang, Yang; Tian, Jing; Zi, Yue-Jiao; Wu, Ting-Wei; Huang, Feng-Qin

    2017-08-01

    In this paper, a photonic microwave waveform generator based on a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. In this reported scheme, only one radio frequency signal is used to drive the dual-parallel Mach-Zehnder modulator. Meanwhile, dispersive elements or filters are not required in the proposed scheme, which make the scheme simpler and more stable. In this way, six variables can be adjusted. Through the different combinations of these variables, basic waveforms with full duty and small duty cycle can be generated. Tunability of the generator can be achieved by adjusting the frequency of the RF signal and the optical carrier. The corresponding theoretical analysis and simulation have been conducted. With guidance of theory and simulation, proof-of-concept experiments are carried out. The basic waveforms, including Gaussian, saw-up, and saw-down waveforms, with full duty and small duty cycle are generated at the repetition rate of 2 GHz. The theoretical and simulation results agree with the experimental results very well.

  17. Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data

    Science.gov (United States)

    Fujii, Yushiro; Satake, Kenji

    2013-09-01

    The slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes were estimated from tsunami and coastal geodetic data. These two earthquakes generated transoceanic tsunamis, and the waveforms were recorded around the Pacific Ocean. In addition, coseismic coastal uplift and subsidence were measured around the source areas. For the 27 February 2010 Maule earthquake, inversion of the tsunami waveforms recorded at nearby coastal tide gauge and Deep Ocean Assessment and Reporting of Tsunamis (DART) stations combined with coastal geodetic data suggest two asperities: a northern one beneath the coast of Constitucion and a southern one around the Arauco Peninsula. The total fault length is approximately 400 km with seismic moment of 1.7 × 1022 Nm (Mw 8.8). The offshore DART tsunami waveforms require fault slips beneath the coasts, but the exact locations are better estimated by coastal geodetic data. The 22 May 1960 earthquake produced very large, ~30 m, slip off Valdivia. Joint inversion of tsunami waveforms, at tide gauge stations in South America, with coastal geodetic and leveling data shows total fault length of ~800 km and seismic moment of 7.2 × 1022 Nm (Mw 9.2). The seismic moment estimated from tsunami or joint inversion is similar to previous estimates from geodetic data, but much smaller than the results from seismic data analysis.

  18. GLAS/ICESat L1B Global Waveform-based Range Corrections Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 1B waveform parameterization data will contain waveform-based range corrections and surface characteristics at the full 40 per second resolution. Data...

  19. Non-sinusoidal waveform effects on heat transfer performance in pulsating pipe flow

    Directory of Open Access Journals (Sweden)

    R. Roslan

    2016-12-01

    Full Text Available In the present paper, an unsteady motion of fluid flow in a pulsating pipe is studied to determine the effect of non-sinusoidal waveforms on the heat transfer performance. Three non-sinusoidal waveforms, namely sawtooth, square and triangular waveforms have been considered. Explicit analytical expressions for a periodic laminar flow describing the flow and heat transfer at small and large times with sawtooth and square pressure waveforms have been derived using Bessel transform technique. The heat transfer performance of periodic flow at sawtooth and square pressure waveforms has been compared with the published result for triangular waveform [1]. The temperature performance for a triangular waveform pressure is very different from the sawtooth and square pressure waveforms.

  20. Moment Tensors and their Uncertainties for M3 Earthquakes in the Geysers, California, from Waveform Modeling and First Motions

    Science.gov (United States)

    Guilhem, A.; Dreger, D. S.; Hutchings, L. J.; Johnson, L.

    2012-12-01

    We investigate moment tensor solutions and their uncertainties for magnitude (M) ~3 earthquakes located in the northwest Geysers geothermal field, California. We are exploiting an unusual opportunity where data for M~3 events have been recorded by three different networks and have moment tensor solutions calculated by three different methods. We solve for both deviatoric and full moment tensor solutions. The data sets include local short-period instruments (4.5 Hz) of the 30 stations of the Lawrence Berkeley National Laboratory (LBNL), with which we obtain waveform inversion solutions at relatively high frequencies (i.e., up to 2.5 Hz), and regionally distributed broadband stations operated by the Berkeley Seismological Laboratory (BSL), with which are used to provide waveform inversion solutions with data filtered at longer periods (i.e., > 10 sec). We also utilize the LBNL data to obtain moment tensor solutions by fitting the P-wave first motions. The USGS, LBNL, and BSL obtain different event locations, utilize different velocity models, and analyze different frequency bands and wave types (i.e., body waves for LBNL method and primarily surface waves for the BSL analysis). Preliminary results indicate that the BSL and LBNL waveform modeling analyses give similar results in terms of nodal plane characteristics, moment magnitude, and moment tensor decomposition. Analysis of the P-wave first motions recorded by LBNL stations can illuminate complexities in the source processes when compared to waveform moment tensor solutions. We discuss uncertainties in the source inversions that use broadband and/or short-period waveform modeling, and in the source inversions from first motions only. We also combine the different datasets and compare their individual importance as they can help illustrate the complex source processes happening in the Geysers. This study introduces the possibility to interpret the seismic sources as complex processes in which both shear and tensile

  1. Ultralow-velocity zone geometries resolved by multidimensional waveform modelling

    Science.gov (United States)

    Vanacore, E. A.; Rost, S.; Thorne, M. S.

    2016-07-01

    Ultralow-velocity zones (ULVZs) are thin patches of material with strongly reduced seismic wave speeds situated on top of the core-mantle boundary (CMB). A common phase used to detect ULVZs is SPdKS (SKPdS), an SKS wave with a short diffracted P leg along the CMB. Most previous efforts have examined ULVZ properties using 1-D waveform modelling approaches. We present waveform modelling results using the 2.5-D finite-difference algorithm PSVaxi allowing us better insight into ULVZ structure and location. We characterize ULVZ waveforms based on ULVZ elastic properties, shape and position along the SPdKS ray path. In particular, we vary the ULVZ location (e.g. source or receiver side), ULVZ topographical profiles (e.g. boxcar, trapezoidal or Gaussian) and ULVZ lateral scale along great circle path (2.5°, 5°, 10°). We observe several waveform effects absent in 1-D ULVZ models and show evidence for waveform effects allowing the differentiation between source and receiver side ULVZs. Early inception of the SPdKS/SKPdS phase is difficult to detect for receiver-side ULVZs with maximum shifts in SKPdS initiation of ˜3° in epicentral distance, whereas source-side ULVZs produce maximum shifts of SPdKS initiation of ˜5°, allowing clear separation of source- versus receiver-side structure. We present a case study using data from up to 300 broad-band stations in Turkey recorded between 2005 and 2010. We observe a previously undetected ULVZ in the southern Atlantic Ocean region centred near 45°S, 12.5°W, with a lateral scale of ˜3°, VP reduction of 10 per cent, VS reduction of 30 per cent and density increase of 10 per cent relative to PREM.

  2. Test Waveform Applications for JPL STRS Operating Environment

    Science.gov (United States)

    Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.

    2013-01-01

    This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.

  3. Effects of waveform model systematics on the interpretation of GW150914

    OpenAIRE

    2016-01-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's e...

  4. Assessment of waveform control method for mitigation of low-frequency current ripple

    OpenAIRE

    Zhu, GR; Wang, HR; Xiao, CY; Kang, Y.; Tan, SC

    2013-01-01

    Waveform control method can mitigate such a low-frequency ripple current being drawn from the DC distribution while the DC distribution system delivers AC power to the load through a differential inverter. Assessment on the waveform control method and comparative study between with and without waveform control method are proposed in this paper1. Experimental results are provided to explain the operation and showcase the performance between with and without the waveform control method. Results...

  5. Joint Filter and Waveform Design for Radar STAP in Signal Dependent Interference

    OpenAIRE

    Setlur, Pawan; Rangaswamy, Muralidhar

    2015-01-01

    Waveform design is a pivotal component of the fully adaptive radar construct. In this paper we consider waveform design for radar space time adaptive processing (STAP), accounting for the waveform dependence of the clutter correlation matrix. Due to this dependence, in general, the joint problem of receiver filter optimization and radar waveform design becomes an intractable, non-convex optimization problem, Nevertheless, it is however shown to be individually convex either in the filter or i...

  6. Waveform library for chinch bugs (Hemiptera: Heteroptera: Blissidae): Characterization of Electrical Penetration Graph (EPG) waveforms at multiple input impedances

    Science.gov (United States)

    Electrical penetration graph (EPG) monitoring has been used extensively to elucidate mechanisms of resistance in plants to insect herbivores with piercing-sucking mouthparts, or stylets. Characterization of waveforms produced by insects during stylet probing is essential to the application of this ...

  7. A new optimization approach for source-encoding full-waveform inversion

    NARCIS (Netherlands)

    Moghaddam, P.P.; Keers, H.; Herrmann, F.J.; Mulder, W.A.

    2013-01-01

    Waveform inversion is the method of choice for determining a highly heterogeneous subsurface structure. However, conventional waveform inversion requires that the wavefield for each source is computed separately. This makes it very expensive for realistic 3D seismic surveys. Source-encoding waveform

  8. A new optimization approach for source-encoding full-waveform inversion

    NARCIS (Netherlands)

    Moghaddam, P.P.; Keers, H.; Herrmann, F.J.; Mulder, W.A.

    2013-01-01

    Waveform inversion is the method of choice for determining a highly heterogeneous subsurface structure. However, conventional waveform inversion requires that the wavefield for each source is computed separately. This makes it very expensive for realistic 3D seismic surveys. Source-encoding waveform

  9. Time-Frequency Analysis for Full Waveform Characteristics of Acoustic Logging Based on Fractal Fourier Transform%基于分数阶Fourier变换的声波测井全波列特征时频分析

    Institute of Scientific and Technical Information of China (English)

    王祝文; 向旻; 刘菁华; 王晓丽; 张雪昂; 杨闯

    2012-01-01

    目前,阵列声波测井信号处理大多在时间域或频率域中进行.但是,单纯的时间域或频率域方法有很大的局限性.为了打破这些局限性,笔者将分数阶Fourier变换方法用于阵列声波测井信号的分析之中,研究了不同性质储集层中信号幅度随分数阶Fourier变换阶数变化的规律.实验结果表明:在干层,幅度呈“1”型分布;在水层,幅度呈“Y”型分布,“Y”的两支开口较小,在阶数大于0.3的区域中,幅度较大;在油层,幅度呈“Y”型分布,“Y”的两支开口较大,在阶数大于0.6的区域中,幅度较大.因此,分数阶Fourier变换在提取阵列声波测井蕴含的储集层流体性质信息方面具有很好的前景.%As we knew, most of the process techniques for array acoustic logging data still use the analysis methods only in either time domain or frequency domain, but these methods all have obvious limitation for signal analysis. In order to break these limitations, the authors used the fratal Fourier for analysing the array acoustic logging signals and researching the law of signal amplitude variation with the order of the fratal Fourier transform variation in different kinds of reservoirs. As the results, in the dry formation, amplitude shows "1" type distribution; In water formation, amplitude shows "Y" type distribution, two branch of "Y" open narrow and in area of order greater than 0. 3, amplitude is larger; In oil formation, amplitude shows "Y" type distribution, two branch of "Y" open wide and in area of order greater than 0. 6, amplitude is larger. So the fratal Fourier transform have very good prospect for extracting the reservoir liquid properties information embedded in the array acoustic logging data.

  10. 基于LAS码与混沌的水下LPI波形设计%Underwater LPI Waveforms Design Based on LAS Code and Chaos

    Institute of Scientific and Technical Information of China (English)

    洪嘉翔; 易红; 张娟; 张林让

    2011-01-01

    In view of the requirement for low probability of intercept (LPI) waveform characteristics in underwater detection, we serialize the chaotic sequences and use it to modulate the signal phase such that the basic waveform is obtained. Then the large area synchronized (LAS) codes are introduced for both interpulse and intrapulse modulations to design two new waveforms. Relying on the zero-delayed section and zero-Doppler section of an ambiguity function, we compare the discrimination property of the two new waveforms intuitively with four kinds of typical underwater detection waveforms, I.e. Continuous waveform (CW), linear frequency modulation (LFM) waveform, binary phase shift keying (BPSK) waveform and Costas waveform. Quantification analysis is made by their time resolution constants and frequency resolution constants. In addition, nonzero-Doppler section of an ambiguity function is used to compare their Doppler sensitivity characteristics under the ideal background, followed by a further comparison of reverberation suppression capability via the Q function. The results show that two new waveforms have outstanding distance resolution, Doppler tolerance and reverberation suppression capability over whole velocity ranges required by practical use.%鉴于水下探测对低截获概率(LPI)波形特性的需求,将混沌序列连续化后用以相位调制得到基本波形,然后用大区域同步(LAS)码对其分别作脉内、脉间调制设计出2种新波形,借助其模糊图的零延时切面和零频移切面直观比较了新波形与连续波(CW)、线性调频(LFM)、二进制相移键控(BPSK)、Costas等4种典型水下探测波形的分辨特性,并通过时间分辨常数和频率分辨常数作出量化分析.模糊图的非零频移切面被用以理想背景下各波形的多普勒敏感性比较,并通过Q函数进一步比较了它们的抗混响能力.对比分析表明,新设计的2种波形具有出色的距离分辨率和多普勒容忍性,且

  11. The shaping of a national ignition campaign pulsed waveform

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, Gordon, E-mail: brunton2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Erbert, Gaylen; Browning, Don; Tse, Eddy [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer NIF pulse is generated using an electro-optic modulator to vary the intensity of light. Black-Right-Pointing-Pointer Electrical impulse generators, each with a 300 ps pulse Gaussian signal are utilized. Black-Right-Pointing-Pointer Adjusting the impulse amplitude for 140 impulses, produces a pulsed waveform. Black-Right-Pointing-Pointer System auto shapes 48 waveforms with to 275:1 contrast ratio with 3% absolute error. - Abstract: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192 beam, 1.8 MJ, 500 TW ultraviolet laser system used for inertial confinement fusion research. For each experimental shot, NIF must deliver a precise amount of laser power on the target for successful and efficient target ignition, and these characteristics vary depending on the physics of the particular campaign. The precise temporal shape, energy and timing characteristics of a pulsed waveform target interaction are key components in meeting the experimental goals. Each NIF pulse is generated in the Master Oscillator Room (MOR) using an electro-optic modulator to vary the intensity of light in response to an electrical input. The electrical drive signal to the modulator is produced using a unique, high-performance arbitrary waveform generator (AWG). This AWG sums the output of 140 electrical impulse generators, each producing a 300 ps pulse width Gaussian signal separated in time by 250 ps. By adjusting the amplitudes and summing the 140 impulses, a pulsed waveform can be sculpted from a seed 45 ns square pulse. Using software algorithms written for NIF's Integrated Computer Control System (ICCS), the system is capable of autonomously shaping 48 unique experimental pulsed waveforms for each shot that have demonstrated up to 275:1 contrast ratio with {+-}3% absolute error averaged over any 2 ns interval, meeting the stringent pulse requirements needed to achieve ignition

  12. Computer processing sleep data of two-channel electroencephalogram and one-channel electrooculogram by aperiodic waveform analysis%计算机处理睡眠数据中2导脑电和1导眼电的非周期波形分析

    Institute of Scientific and Technical Information of China (English)

    王国锋; 彭小虎

    2011-01-01

    BACKGROUND: The sleep data are very large, and it is not satisfied with practice demand if the data cannot process by computer However, the methods which are using at present have a disadvantage that the accuracy is comparatively low OBJECTIVE: To investigate a new method for sleep stage classification only using electroencephalogram (EEG) and electrooculogram (EOG) based on aperiodic waveform analysis and genetic neural network of radial basis function (RBF) METHODS: Raw data including two-channel EEG and one-channel EOG recorded from eight subjects were obtained from Sleep-EDF database of PhysioBank, MIT After digital filter with zero phase, raw data were analyzed by aperiodic waveform analysis to extract several parameters that were necessary for sleep stage classification Then, preprocessed data as input for genetic neural network of RBF accepted training Finally, test data were sent to trained neural network to validate RESULTS AND CONCLUSION: The results obtained, on average 95 6% of agreement between the expert and the GA-ANN for six stages of vigilance, going beyond results of known literature (70%-90%), which possess high value in practice and maybe satisfy with research and clinical application%背景:睡眠中记录的数据量很大,不用计算机自动处理不能满足实用需要,而现有的对睡眠数据进行分期的方法准确率都不高.目的:考察仅依据脑电与眼电,基于非周期波形分析和径向基函数遗传神经网络的睡眠数据分期新方法.方法:实验数据来自MIT的PhysioBank中的S1eep-EDF数据库,共8名被试,各记录2导脑电和1导眼电.原始数据经零相位数字滤波后,进行非周期波形分析,得出每个Epoch的特征向量,经预处理后送遗传径向基函数.神经网络配合专家手工分类结果进行训练,训练好的神经网络再对测试数据进行分析.结果与结论:总的分期符合率为95.6%,超出已知文献研究结果(70%~90%),具有很高的实用价值,

  13. High-frequency chest compression: effect of the third generation compression waveform.

    Science.gov (United States)

    Milla, Carlos E; Hansen, Leland G; Weber, Adam; Warwick, Warren J

    2004-01-01

    High-frequency chest compression (HFCC) therapy has become the prevailing form of airway clearance for patients with cystic fibrosis (CF) in the United States. The original square waveform was replaced in 1995 with a sine waveform without published evidence of an equality of effectiveness. The recent development of a triangle waveform for HFCC provided the opportunity to compare the functional and therapeutic effects of different waveforms. Clinical testing was done in patients at home with therapy times recorded with all sputum collected in preweighed sealable vials. The eight study patients with CF were regular users of a sine waveform device. They produced sputum consistently and were clinically stable. They used their optimum frequencies for therapy for each waveform and, for one week for each waveform, collected all sputum during their twice-daily timed HFCC therapies. After collection, these vials were reweighed, desiccated, and reweighed to calculate wet and dry weights of sputum per minute of therapy time. Frequency associated vest pressures transmitted to the mouth, and induced airflows at the mouth were measured in healthy volunteers. The pressure waveforms produced in the vest were, in shape, faithfully demonstrable at the mouth. In the healthy subject the transmission occurred in 2 ms and was attenuated to about 75% of the vest pressure for the triangle waveform and 60% for the sine waveform. All patients produced more sputum with the triangle waveform than with the sine waveform. The mean increase was 20%+ range of 4% to 41%. P value was HFCC should investigate the other effects of the sine and triangle waveforms, as well as the neglected square waveform, on mucus clearance and determine the best frequencies for each waveform, disease, and patient.

  14. Overvoltage On-line Monitoring System for 110 kV Substation and Its Waveforms Analysis%110kV变电站过电压在线监测系统及其波形分析

    Institute of Scientific and Technical Information of China (English)

    杜林; 李欣; 司马文霞; 席世友; 杨庆; 袁涛

    2012-01-01

    Overvoltage is one of the main reasons to cause insulation damage and is also the decisive factor to choose insulation coordination for electrical accessory in power system,and overvoltage on-line monitoring system is of great importance for the analysis of origins of overvoltage failures and improvement of the electrical apparatus insulation coordination in the power system.We introduced an overvoltage on-line system monitoring system for 110 kV Xianfeng substation in Chongqing,which was developed successfully based on the divider and high,variable sampling speed data acquisition card.Moreover,we presented key modules of this system,including two low damping capacitance-resistance dividers,a transformer bushing divider,a variable sampling speed system,and a software system,and so on,and then analyzed overvoltage type and its forming causes by running records.The monitoring results can be utilized for transmission lines lightning protection,substation voltage protection,electrical grid layout,and design.%过电压是造成电网绝缘损害的主要原因之一,也是选择电气设备绝缘强度的决定性因素,电力系统过电压在线监测对分析过电压事故原因和改善系统绝缘配合具有重要的现实意义。在研制成功110kV过电压传感器以及高速变频采集系统的基础上,重庆110kV先锋过电压在线监测系统可自动捕获10、35、110kV电网中出现的外部和内部过电压。另外还介绍了该系统的结构、用于过电压信号采集的低阻尼阻容分压器和套管式分压器、变频采集系统及系统软件等关键模块。根据现场采集到的典型过电压波形样本,结合值班室记录,分析了雷电、操作及暂时等过电压的波形特点和产生原因,监测结果可为输电线路防雷、变电站过电压防护、电力系统规划和设计提供科学依据。

  15. Signal waveform detection with statistical automaton for internet and web service streaming.

    Science.gov (United States)

    Tseng, Kuo-Kun; Ji, Yuzhu; Liu, Yiming; Huang, Nai-Lun; Zeng, Fufu; Lin, Fang-Ying

    2014-01-01

    In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC) automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment.

  16. Signal Waveform Detection with Statistical Automaton for Internet and Web Service Streaming

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2014-01-01

    Full Text Available In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment.

  17. Exploring the limits of waveform correlation event detection as applied to three earthquake aftershock sequences.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Megan E.; Carr, Dorthe Bame; Young, Christopher John

    2010-05-01

    addition, the Waveform Correlation Detector and Self Scanner identified significant numbers of new events that were not in either the EDR or regional catalogs, showing a lowering of the detection threshold. We extended our analysis to study the effect of distance on correlation results by applying the analysis tools to multiple stations along a transect of nearly constant azimuth when possible. We expected the number of events found via correlation would drop off as roughly 1/r2, where r is the distance from mainshock to station. However, we found that regional geological conditions influenced the performance of a given station more than distance. For example, for one sequence we clustered 25% of events at the nearest station to the mainshock (34 km), while our performance dropped to 2% at a station 550 km distant. However, we matched our best performance (25% clustering) at a station 198 km distant.

  18. Optimizing master event templates for CTBT monitoring with dimensionality reduction techniques: real waveforms vs. synthetics.

    Science.gov (United States)

    Rozhkov, Mikhail; Bobrov, Dmitry; Kitov, Ivan

    2014-05-01

    The Master Event technique is a powerful tool for Expert Technical Analysis within the CTBT framework as well as for real-time monitoring with the waveform cross-correlation (CC) (match filter) approach. The primary goal of CTBT monitoring is detection and location of nuclear explosions. Therefore, the cross-correlation monitoring should be focused on finding such events. The use of physically adequate waveform templates may significantly increase the number of valid, both natural and manmade, events in the Reviewed Event Bulletin (REB) of the International Data Centre. Inadequate templates for master events may increase the number of CTBT irrelevant events in REB and reduce the sensitivity of the CC technique to valid events. In order to cover the entire earth, including vast aseismic territories, with the CC based nuclear test monitoring we conducted a thorough research and defined the most appropriate real and synthetic master events representing underground explosion sources. A procedure was developed on optimizing the master event template simulation and narrowing the classes of CC templates used in detection and location process based on principal and independent component analysis (PCA and ICA). Actual waveforms and metadata from the DTRA Verification Database were used to validate our approach. The detection and location results based on real and synthetic master events were compared. The prototype of CC-based Global Grid monitoring system developed in IDC during last year was populated with different hybrid waveform templates (synthetics, synthetics components, and real components) and its performance was assessed with the world seismicity data flow, including the DPRK-2013 event. The specific features revealed in this study for the P-waves from the DPRK underground nuclear explosions (UNEs) can reduce the global detection threshold of seismic monitoring under the CTBT by 0.5 units of magnitude. This corresponds to the reduction in the test yield by a

  19. Statistical test of VEP waveform equality.

    Science.gov (United States)

    Young, Rockefeller S L; Kimura, Eiji

    2010-04-01

    The aim of the study was to describe a theory and method for inferring the statistical significance of a visually evoked cortical potential (VEP) recording. The statistical evaluation is predicated on the pre-stimulus VEP as estimates of the cortical potentials expected when the stimulus does not produce an effect, a mathematical transform to convert the voltages into standard deviations from zero, and a time-series approach for estimating the variability of between-session VEPs under the null hypothesis. Empirical and Monte Carlo analyses address issues concerned with testability, statistical validity, clinical feasibility, as well as limitations of the proposed method. We conclude that visual electrophysiological recordings can be evaluated as a statistical study of n = 1 subject using time-series analysis when confounding effects are adequately controlled. The statistical test can be performed on either a single VEP or the difference between pairs of VEPs.

  20. A method of waveform design based on mutual information

    Institute of Scientific and Technical Information of China (English)

    Bo JIU; Hongwei LIU; Liya LI; Shunjun WU

    2009-01-01

    A novel method called the general waterfilling, which is suitable when clutter is not negligible, is proposed to solve the waveform design problem of broadband radar for the recognition of multiple extended targets. The uncertainty of the target's radar signatures is decreased via maximizing the mutual information between a random extended target and the received signal. Then, the general water-filling method is employed to the waveform design problem for multiple extended targets identification to increase the separability of multiple targets. Experimental results evaluated the efficiency of the proposed method. Compared to chirp signal and water-filling signal,our method improves the classification rates and even performs better at low signal-to-interference-plus-noise ratio (SINR).

  1. An electro-optic waveform interconnect based on quantum interference

    CERN Document Server

    Qin, Li-Guo; Gong, Shang-Qing

    2016-01-01

    The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information processing systems. One of the main required devices for such interconnects is the electro-optic modulator (EOM). Current EOM based on the electro-optic effect and the electro-absorption effect often is bulky and power inefficient due to the weak electro-optic properties of its constituent materials. Here we propose a new mechanism to produce an arbitrary-waveform EOM based on the quantum interference, in which both the real and imaginary parts of the susceptibility are engineered coherently with the superhigh efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realised. We expect that such a new type of electro-optic interconnect will have a broad range of applications including the optical communications and network.

  2. Software Communication Architecture Implementation and Its Waveform Application

    Institute of Scientific and Technical Information of China (English)

    SUN Pei-gang; ZHAO Hai; WANG Ting-chang; FAN Jian-hua

    2006-01-01

    This paper attempts to do a research on the development of software defined radio(SDR) based on software communication architecture(SCA). Firstly, SCA is studied and a whole reference model of SCA3.0 core framework (CF)is realized; Secondly, an application-specific FM3TR waveform is implemented on the platform of common software based on the reference model; Thirdly, from the point of view of real-time performance and software reuse, tests and validations are made on the above realized CF reference model and FM3TR waveform. As a result, the SCA-compliant SDR has favorable interoperability and software portability and can satisfy the real-time performance requirements which are not too rigorous.

  3. TOF Spectroscopy measurement with waveform Digitizer at TMSR Photoneutron Source

    CERN Document Server

    Liu, Longxiang; Ma, Yugang; Cao, Xiguang; Cai, Xiangzhou; Chen, Jingen; Zhang, Guilin; Han, Jianlong; Zhang, Guogiang; Hu, Jifeng; Wang, Xiaohe

    2015-01-01

    The Photo-Neutron Source(PNS,phase 1), is an electron linear accelerator (linac) based pulsed neutron facility, combined with TOF technique, was constructed for nuclear data measurement of Thorium Molten Salt Reactor(TMSR) in Shanghai Institute of Applied Physics(SINAP) at JiaDing campus. The TOF detector signal, with the arrive time, pulse shape and pulse hight information, was recorded by a waveform digitizer. Through the pulse-shape discrimination(PSD) between neutrons and gamma-rays and time of Gamma Flash and Neutron signal analyse, the neutron TOF spectrum was deduced with this simple electronics design, and a new DAQ system based on waveform digitizer was used in this test experiment.

  4. Image-domain full waveform inversion: Field data example

    KAUST Repository

    Zhang, Sanzong

    2014-08-05

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.

  5. Transient sodium current at subthreshold voltages: activation by EPSP waveforms.

    Science.gov (United States)

    Carter, Brett C; Giessel, Andrew J; Sabatini, Bernardo L; Bean, Bruce P

    2012-09-20

    Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also "persistent" sodium current, a noninactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37°C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo.

  6. A versatile waveform generator for testing neuroelectric signal processors.

    Science.gov (United States)

    Kohn, A F

    1989-08-01

    A multi-channel waveform generator was designed for testing neuroelectric signal processors. Smooth transient signals that resemble action potentials or evoked potentials are generated by a second order switched capacitor filter excited by brief rectangular pulses. The choice of an integrated circuit switched capacitor filter simplified the design by circumventing some of the disadvantages of conventional active filters. The waveform generator is versatile, with several signal parameters being independently adjustable from front panel controls: duration, waveshape, latency, amplitude and signal-to-noise ratio. The generator has been used for testing evoked potential acquisition and processing systems, for evaluating the effects of analog filters on evoked potentials and for testing systems designed to detect and classify trains of multi-unit action potentials.

  7. Leveraging waveform complexity for confident detection of gravitational waves

    CERN Document Server

    Kanner, Jonah B; Cornish, Neil; Millhouse, Meg; Xhakaj, Enia; Salemi, Francesco; Drago, Marco; Vedovato, Gabriele; Klimenko, Sergey

    2016-01-01

    The recent completion of Advanced LIGO suggests that gravitational waves (GWs) may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to have strong performance, and in particular, allows high-confidence detections of a range of waveforms at realistic signal-to-noise ratio with a two detector network.

  8. Waveform effects of a metastable olivine tongue in subducting slabs

    Science.gov (United States)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  9. Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems

    Science.gov (United States)

    Niyonzima, I.; Geuzaine, C.; Schöps, S.

    2016-12-01

    This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton-Raphson scheme. The resolution of many mesoscale problems per Gauß point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauß point.

  10. Optimal control of photoelectron emission by realistic waveforms

    CERN Document Server

    Solanpää, Janne; Räsänen, Esa

    2016-01-01

    Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory (QOCT). In this work we bring QOCT to experimental feasibility by providing an optimal control scheme with realistic pulse representation. We apply the technique to optimal control of above-threshold photoelectron emission from a one-dimensional hydrogen atom. By mixing different spectral channels and thus lowering the intensity requirements for individual channels, the resulting optimal pulses can extend the cutoff energies by at least up to 50% and bring up the electron yield by several orders of magnitude. Insights into the electron dynamics for optimized photoelectron emission are obtained with a semiclassical two-step model.

  11. Leveraging waveform complexity for confident detection of gravitational waves

    Science.gov (United States)

    Kanner, Jonah B.; Littenberg, Tyson B.; Cornish, Neil; Millhouse, Meg; Xhakaj, Enia; Salemi, Francesco; Drago, Marco; Vedovato, Gabriele; Klimenko, Sergey

    2016-01-01

    The recent completion of Advanced LIGO suggests that gravitational waves may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to perform well and, in particular, to allow high-confidence detections of a range of waveforms at a realistic signal-to-noise ratio with a two-detector network.

  12. Waveform effects of a metastable olivine tongue in subducting slabs

    Science.gov (United States)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  13. MURI: Adaptive Waveform Design for Full Spectral Dominance

    Science.gov (United States)

    2011-03-11

    response of a uniform linear array 3 ( ULA ) with BIC. We derived the maximum likelihood estimates (MLEs) of the DOAs and computed the Cramér-Rao bound (CRB...Elnour, 2006-2007 IEEE Antennas and Propagation Society Graduate Fellowship award. (Advisor: Danilo Erricolo) • Murat Akcakaya, Best Student Paper...Award (first place) at the 2010 Waveform Diversity & Design Conference. (Co-author: Arye Nehorai) • Murat Akcakaya, co-author, Best Student Paper

  14. Optimal storage and retrieval of single-photon waveforms.

    Science.gov (United States)

    Zhou, Shuyu; Zhang, Shanchao; Liu, Chang; Chen, J F; Wen, Jianming; Loy, M M T; Wong, G K L; Du, Shengwang

    2012-10-22

    We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49 ± 3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum light-matter interface closer to practical quantum information applications.

  15. PMT waveform modeling at the Daya Bay experiment

    Institute of Scientific and Technical Information of China (English)

    S(o)ren JETTER; Dan DWYER; JIANG Wen-Qi; LIU Da-Wei; WANG Yi-Fang; WANG Zhi-Min; WEN Liang-Jian

    2012-01-01

    Detailed measurements of Hamamatsu R5912 photomultiplier signals are presented,including the single photoelectron charge response,waveform shape,nonlinearity,saturation,overshoot,oscillation,prepulsing,and afterpulsing.The results were used to build a detailed model of the PMT signal characteristics over a wide range of light intensities.Including the PMT model in simulated Daya Bay particle interactions shows no significant systematic effects that are detrimental to the experimental sensitivity.

  16. Comparison of three arterial pulse waveform classification techniques.

    Science.gov (United States)

    Allen, J; Murray, A

    1996-01-01

    Peripheral pulse waveforms can become stretched and damped with increasing severity of peripheral vascular disease (PVD) and hence could provide valuable diagnostic information. This study compares the diagnostic performance of 3 established classification techniques (a linear discriminant classifier, a k-nearest neighbour classifier, and an artificial neural network) for the detection of lower limb arterial disease from pulse waveforms obtained using photoelectric plethysmography (PPG). Pulse waveforms and pre- and post-exercise Doppler ultrasound ankle to brachial pressure indices (ABPI) were obtained from patients attending a vascular measurement laboratory. A single PPG pulse from each big toe was recorded direct to computer, pre-processed, and then used as classifier input data. The correct classifier outputs were the corresponding ABPI diagnostic classification. Pulse and ABPI measurements from 100 legs were used as training data for each classifier, and the computed classifications for pulses from a further 266 legs were then compared with their ABPI diagnoses. The diagnostic accuracy of the artificial neural network (80%; was higher than for the optimized k-nearest neighbour classifier (k = 27, accuracy 76% and the linear discriminant classifier (71%). The Kappa measure of agreement which excludes chance was highest for the artificial neural network (57%) and significantly higher than that of the linear discriminant classifier (Kappa 40%, p < 0.05). The value of Kappa for the optimized k-nearest neighbour classifier (k = 27) was intermediate at 47%. This study has shown that classifiers can be taught to discriminate between small, and perhaps subtle, differences in features. We have demonstrated that artificial neural networks can be used to classify arterial pulse waveforms, and can perform better overall than k-nearest neighbour or linear discriminant classifiers for this application.

  17. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  18. Individual Flagellar Waveform Affects Collective Behavior of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Kage, Azusa; Mogami, Yoshihiro

    2015-08-01

    Bioconvection is a form of collective motion that occurs spontaneously in the suspension of swimming microorganisms. In a previous study, we quantitatively described the "pattern transition," a phase transition phenomenon that so far has exclusively been observed in bioconvection of the unicellular green alga Chlamydomonas. We suggested that the transition could be induced by changes in the balance between the gravitational and shear-induced torques, both of which act to determine the orientation of the organism in the shear flow. As both of the torques should be affected by the geometry of the Chlamydomonas cell, alteration in the flagellar waveform might change the extent of torque generation by altering overall geometry of the cell. Based on this working hypothesis, we examined bioconvection behavior of two flagellar mutants of Chlamydomonas reinhardtii, ida1 and oda2, making reference to the wild type. Flagella of ida1 beat with an abnormal waveform, while flagella of oda2 show a normal waveform but lower beat frequency. As a result, both mutants had swimming speed of less than 50% of the wild type. ida1 formed bioconvection patterns with smaller spacing than those of wild type and oda2. Two-axis view revealed the periodic movement of the settling blobs of ida1, while oda2 showed qualitatively similar behavior to that of wild type. Unexpectedly, ida1 showed stronger negative gravitaxis than did wild type, while oda2 showed relatively weak gravitaxis. These findings suggest that flagellar waveform, not swimming speed or beat frequency, strongly affect bioconvection behavior in C. reinhardtii.

  19. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    Science.gov (United States)

    Motohashi-Saigo, Miki; Hardison, Debra M.

    2009-01-01

    The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV) and auditory-only (A-only) Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two…

  20. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio

    2012-01-01

    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  1. Photonic Synthesis and Processing of Ultrabroadband Radio-Frequency Waveforms

    Science.gov (United States)

    2009-11-17

    Filed in Foreign Countries? (5d-2) Was the assignment forwarded to the contracting officer? (5e) N Foreign Countries of application ( 5g -2): 5 Jason D...techniques given the fixed electronic pulse shaping networks used to generated monocycle waveforms. Finally, the delay between adjacent monocycles is tunable...Dispersion Compensation In moving our RF-AWG technique and apparatus towards applications in wireless RF systems, we have begun to investigate

  2. A Convergent Iterative Algorithm for Solving Elastic Waveform Inversion

    Institute of Scientific and Technical Information of China (English)

    张剑锋

    1994-01-01

    The numerical method for elastic waveform inversion is studied and a convergent iterative algorithm is achieved by designing vinual source and altering objective function of the optimization solution in the computational process, which enables the solutions to converge to the real values and improves the convergence rate by changing the property of curved surface of the objective function, thus opening a new way for further developing the optimization solution of inverse problems.

  3. Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andrews, John M. [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States)

    2014-07-01

    Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.

  4. Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms

    Science.gov (United States)

    Kubo, Hisahiko; Suzuki, Wataru; Aoi, Shin; Sekiguchi, Haruko

    2016-10-01

    The detailed source rupture process of the M 7.3 event (April 16, 2016, 01:25, JST) of the 2016 Kumamoto, Japan, earthquakes was derived from strong-motion waveforms using multiple-time-window linear waveform inversion. Based on the observations of surface ruptures, the spatial distribution of aftershocks, and the geodetic data, a realistic curved fault model was developed for source-process analysis of this event. The seismic moment and maximum slip were estimated as 5.5 × 1019 Nm ( M w 7.1) and 3.8 m, respectively. The source model of the M 7.3 event had two significant ruptures. One rupture propagated toward the northeastern shallow region at 4 s after rupture initiation and continued with large slips to approximately 16 s. This rupture caused a large slip region 10-30 km northeast of the hypocenter that reached the caldera of Mt. Aso. Another rupture propagated toward the surface from the hypocenter at 2-6 s and then propagated toward the northeast along the near surface at 6-10 s. A comparison with the result of using a single fault plane model demonstrated that the use of the curved fault model led to improved waveform fit at the stations south of the fault. The source process of the M 6.5 event (April 14, 2016, 21:26, JST) was also estimated. In the source model obtained for the M 6.5 event, the seismic moment was 1.7 × 1018 Nm ( M w 6.1), and the rupture with large slips propagated from the hypocenter to the surface along the north-northeast direction at 1-6 s. The results in this study are consistent with observations of the surface ruptures. [Figure not available: see fulltext. Caption: .

  5. "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    CERN Document Server

    Babak, S; Gair, J R; Glampedakis, K; Hughes, S A; Babak, Stanislav; Fang, Hua; Gair, Jonathan R.; Glampedakis, Kostas; Hughes, Scott A.

    2006-01-01

    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky...

  6. Reconstructing core-collapse supernovae waveforms with advanced era interferometers

    Science.gov (United States)

    McIver, Jessica; LIGO Scientific Collaboration

    2015-04-01

    Among of the wide range of potentially interesting astrophysical sources for Advanced LIGO and Advanced Virgo are galactic core-collapse supernovae. Although detectable core-collapse supernovae have a low expected rate (a few per century, or less) these signals would yield a wealth of new physics in the form of many messengers. Of particular interest is the insight into the explosion mechanism driving core-collapse supernovae that can be gleaned from the reconstructed gravitational wave signal. A well-reconstructed waveform will allow us to assess the likelihood of different explosion models, perform model selection, and potentially map unexpected features to new physics. This talk will present a study evaluating the current performance of the reconstruction of core-collapse supernovae gravitational wave signals. We used simulated waveforms modeled after different explosion mechanisms that we first injected into fake strain data re-colored to the expected Advanced LIGO/Virgo noise curves and then reconstructed using the pipelines Coherent Waveburst 2G and BayesWave. We will discuss the impact of these results on our ability to accurately reconstruct core-collapse supernovae signals, and by extension, other potential astrophysical generators of rich, complex waveforms.

  7. Frequency-domain waveform inversion using the phase derivative

    KAUST Repository

    Choi, Yun Seok

    2013-09-26

    Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from the wrapping effect, its inversion has the potential of providing a robust and reliable inversion result. We propose a new waveform inversion algorithm using the phase derivative in the frequency domain along with the exponential damping term to attenuate reflections. We estimate the phase derivative, or what we refer to as the instantaneous traveltime, by taking the derivative of the Fourier-transformed wavefield with respect to the angular frequency, dividing it by the wavefield itself and taking the imaginary part. The objective function is constructed using the phase derivative and the gradient of the objective function is computed using the back-propagation algorithm. Numerical examples show that our inversion algorithm with a strong damping generates a tomographic result even for a high ‘single’ frequency, which can be a good initial model for full waveform inversion and migration.

  8. Waveform simulation of predominant periods in Osaka basin

    Science.gov (United States)

    Petukhin, A.; Tsurugi, M.

    2016-12-01

    Predominant period of strong ground motions is an important parameter in earthquake engineering practice. Resonance at predominant period may result in collapse of building. Usually, predominant periods are associated with the soil resonances. However, considering that strong ground motions are composed from source, path and site effects, predominant periods are affected by source and propagation path too. From another side, 3D basin interferences may amplify quite different periods, depending on site location relatively to the basin edges and independently on the soil depth. Moreover, constructive or destructive interference of waves from different asperities of a large source may enhance or diminish amplitudes at a particular predominant period respectively. In this study, to demonstrate variations of predominant periods due to complicated effects above, we simulated wavefield snapshots and waveforms at a few representative sites of Osaka basin, Japan. Seismic source is located in Nankai trough, hosting anticipated M9 earthquake. 3D velocity structure is combined from JIVSM velocity structure (Koketsu et al., 2012) and Osaka basin structure of Iwaki and Iwata, 2011. 3D-FDM method is used to simulate waveforms. Simulation results confirm some previous results that due to elongated elliptical shape of Osaka basin, interference effects are strong and peak amplitudes has characteristic stripped pattern elongated in parallel to the long axis of basin. We demonstrate that predominant periods have similar pattern and value of predominant period may strongly depend on the location of site and azimuthal orientation of waveform component.

  9. Characterizing Canopy Structure Using Waveform LiDAR

    Science.gov (United States)

    Wang, K.; Kumar, P.

    2016-12-01

    The structure of light penetration through the canopy plays an important role in water, carbon, and energy fluxes between the biosphere and the atmosphere. Canopy clumping, a description of foliage distribution, is one of the major aspects of canopy structure that significantly influence light and vegetation interaction. Airborne full-waveform LiDAR data contains large amounts of vegetation structural information, and is a powerful tool for providing detailed foliage distribution information for large areas of vegetation. In this study, we present a method for describing physical canopy clumping structure for individual trees that can resolve fine scale variations in foliage distribution. We first utilize the K-means clustering algorithm to extract structure from the large amounts of vegetation data provided by full-waveform LiDAR. Then we find representative traits for data clusters and use them to classify the clusters into three groups. Based on these traits, we draw conclusions about physical representations of each group, and identify two groups to contain structurally significant clusters. This study demonstrates that large amounts of canopy structural information can be extracted from waveform LiDAR data. The fine resolution canopy clumping structure found by the method described in this work can be used as valuable input for ecological models.

  10. Excitation Waveform Design for Lamb Wave Pulse Compression.

    Science.gov (United States)

    Lin, Jing; Hua, Jiadong; Zeng, Liang; Luo, Zhi

    2016-01-01

    Most ultrasonic guided wave methods focus on tone burst excitation to reduce the effect of dispersion so as to facilitate signal interpretation. However, the resolution of the output cannot attain a very high value because time duration of the excitation waveform cannot be very small. To overcome this limitation, a pulse compression technique is introduced to Lamb wave propagation to achieve a δ-like correlation so as to obtain a high resolution for inspection. Ideal δ-like correlation is impossible as only a finite frequency bandwidth can propagate. The primary purpose of this paper is to design a proper excitation waveform for Lamb wave pulse compression, which shortens the correlation as close as possible to a δ function. To achieve this purpose, the performance of some typical signals is discussed in pulse compression, which include linear chirp (L-Chirp) signal, nonlinear chirp (NL-Chirp) signal, Barker code (BC), and Golay complementary code (GCC). In addition, how the excitation frequency range influences inspection resolution is investigated. A strategy for the frequency range determination is established subsequently. Finally, an experiment is carried out on an aluminum plate where these typical signals are used as excitations at different frequency ranges. The quantitative comparisons of the pulse compression responses validate the theoretical findings. By utilizing the experimental data, the improvement of pulse compression in resolution compared with tone burst excitation is also validated, and the robustness of the waveform design method to inaccuracies in the dispersion compensation is discussed as well.

  11. EPOS-S: Integrated access to seismological waveforms

    Science.gov (United States)

    Sleeman, Reinoud; Strollo, Angelo; Michelini, Alberto; Clinton, John; Gueguen, Philippe; Luzi, Lucia; Pinar, Ali; Diaz, Jordi; Ceken, Ulubey; Evangelidis, Christos; Haslinger, Florian

    2016-04-01

    The main challenges of the EPOS TCS Seismology are to improve and to extend existing services to access earthquake waveforms (ORFEUS), parameters (EMSC) and hazard data and products (EFEHR), and producing a single framework that is technically integrated within the EPOS architecture. Technical developments in the services for seismological waveforms and associated data, including the compilation of station metadata and installing common data archival and sharing policies are within ORFEUS and its Working Groups. The focus is on 1) the development of the next generation software architecture for the European Integrated (seismological) Data Archive EIDA based on standardized webservices, the implementation of a data quality service and the realisation of a mediator service; 2) the development of EIDA-compliant services for strong motion data and acceleration data and the extension of the station metadata model; 3) the integration of data from mobile networks and OBS waveforms into EIDA by implementing mechanisms for coordination of transnational access and multinational experiments at available pools of OBS and mobile seismic stations; 4) achieve close integration with other EPOS TCS and the ICS with regard to interoperability and common use of tools & services, common and coordinated data models and metadata formats, and common computational platforms and IT solution implementations. This presentation will present the status of and current developments towards the above objectives.

  12. Arbitrary waveform modulated pulse EPR at 200 GHz

    Science.gov (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  13. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong

    2016-09-06

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current RWI methods are mostly based on isotropic media assumption. We extend the idea of the combining inversion for the background model and perturbations to address transversely isotropic with a vertical axis of symmetry (VTI) media taking into consideration of the optimal parameter sensitivity information. As a result, we apply Born modeling corresponding to perturbations in only for the variable e to derive the relative reflected waveform inversion formulation. To reduce the number of parameters, we assume the background part of η = ε and work with a single variable to describe the anisotropic part of the wave propagation. Thus, the optimization variables are the horizontal velocity v, η = ε and the e perturbation. Application to the anisotropic version of Marmousi model with a single frequency of 2.5 Hz shows that this method can converge to the accurate result starting from a linearly increasing isotropic initial velocity. Application to a real dataset demonstrates the versatility of the approach.

  14. The waveform similarity approach to identify dependent events in instrumental seismic catalogues

    Science.gov (United States)

    Barani, S.; Ferretti, G.; Massa, M.; Spallarossa, D.

    2007-01-01

    In this paper, waveform similarity analysis is adapted and implemented in a declustering procedure to identify foreshocks and aftershocks, to obtain instrumental catalogues that are cleaned of dependent events and to perform an independent check of the results of traditional declustering techniques. Unlike other traditional declustering methods (i.e. windowing techniques), the application of cross-correlation analysis allows definition of groups of dependent events (multiplets) characterized by similar location, fault mechanism and propagation pattern. In this way the chain of intervening related events is led by the seismogenetic features of earthquakes. Furthermore, a time-selection criterion is used to define time-independent seismic episodes eventually joined (on the basis of waveform similarity) into a single multiplet. The results, obtained applying our procedure to a test data set, show that the declustered catalogue is drawn by the Poisson distribution with a degree of confidence higher than using the Gardner and Knopoff method. The declustered catalogues, applying these two approaches, are similar with respect to the frequency-magnitude distribution and the number of earthquakes. Nevertheless, the application of our approach leads to declustered catalogues properly related to the seismotectonic background and the reology of the investigated area and the success of the procedure is ensured by the independence of the results on estimated location errors of the events collected in the raw catalogue.

  15. Effects of current waveform parameters during droplet transfer on spatter in high speed waveform controlled Short-circuiting GMAW

    Institute of Scientific and Technical Information of China (English)

    Lü Xiaoqing; Cao Biao; Zeng Min; Huang Zenghao

    2005-01-01

    Aim at improving the stability of the Short-circuiting Gas Metal Arc Welding ( GMA W-S) process for the enhanced speed usage, effects of current waveform parameters during short-term on the welding stability have been investigated by experimental method. The welding power source used for the research is an inverter with a special current waveform control. It is shown that the spatter decreases at first then increases with each increase of the low current period, current increase rate and the maximum current limit. The test results are provided for welding of 1 mm and 3 mm mild steel at speed of 1.2 m/min. The stable GMA W-S process under high speed welding condition has been achieved by optimizing the parameters.

  16. Glottal Waveform Analysis of Physical Task Stress Speech (Preprint)

    Science.gov (United States)

    2012-03-01

    stress [3]. The center frequencies of the first two formants decrease in certain con- texts [3]. There is evidence that high vowels are affected dif...ferently than low vowels [4], and that nasals are affected more than fricatives and plosives [4]. Recent advances in methods for the estimation of...respectively) were collected in the same sound booth, using the same recording equipment and micro- phone, on the same exercise machine, and both include a

  17. Analysis of Soldier Radio Waveform Performance in Operational Test

    Science.gov (United States)

    2015-05-01

    would remain isolated until it could finally regain contact with 1st Platoon. Although nodes in 2nd and 3rd Platoons may be in RF range of the...capabilities to critical communications is a sensible course of action, though a similar path may have been possible using the current EW mode. The

  18. Efficient Spatiotemporal Analysis of the Flagellar Waveform of Chlamydomonas reinhardtii

    OpenAIRE

    Bayly, P.V.; Lewis, B L; Kemp, P.S.; Pless, R.B.; Dutcher, S. K.

    2010-01-01

    The 9 + 2 axoneme is a microtubule-based machine that powers the oscillatory beating of cilia and flagella. Its highly regulated movement is essential for the normal function of many organs; ciliopathies cause congenital defects, chronic respiratory tract infections and infertility. We present an efficient method to obtain a quantitative description of flagellar motion, with high spatial and temporal resolution, from high speed video recording of bright field images. This highly automated tec...

  19. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  20. Sums of Spike Waveform Features for Motor Decoding

    Directory of Open Access Journals (Sweden)

    Jie Li

    2017-07-01

    Full Text Available Traditionally, the key step before decoding motor intentions from cortical recordings is spike sorting, the process of identifying which neuron was responsible for an action potential. Recently, researchers have started investigating approaches to decoding which omit the spike sorting step, by directly using information about action potentials' waveform shapes in the decoder, though this approach is not yet widespread. Particularly, one recent approach involves computing the moments of waveform features and using these moment values as inputs to decoders. This computationally inexpensive approach was shown to be comparable in accuracy to traditional spike sorting. In this study, we use offline data recorded from two Rhesus monkeys to further validate this approach. We also modify this approach by using sums of exponentiated features of spikes, rather than moments. Our results show that using waveform feature sums facilitates significantly higher hand movement reconstruction accuracy than using waveform feature moments, though the magnitudes of differences are small. We find that using the sums of one simple feature, the spike amplitude, allows better offline decoding accuracy than traditional spike sorting by expert (correlation of 0.767, 0.785 vs. 0.744, 0.738, respectively, for two monkeys, average 16% reduction in mean-squared-error, as well as unsorted threshold crossings (0.746, 0.776; average 9% reduction in mean-squared-error. Our results suggest that the sums-of-features framework has potential as an alternative to both spike sorting and using unsorted threshold crossings, if developed further. Also, we present data comparing sorted vs. unsorted spike counts in terms of offline decoding accuracy. Traditional sorted spike counts do not include waveforms that do not match any template (“hash”, but threshold crossing counts do include this hash. On our data and in previous work, hash contributes to decoding accuracy. Thus, using the

  1. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    Science.gov (United States)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations

  2. Picking vs Waveform based detection and location methods for induced seismicity monitoring

    Science.gov (United States)

    Grigoli, Francesco; Boese, Maren; Scarabello, Luca; Diehl, Tobias; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2017-04-01

    Microseismic monitoring is a common operation in various industrial activities related to geo-resouces, such as oil and gas and mining operations or geothermal energy exploitation. In microseismic monitoring we generally deal with large datasets from dense monitoring networks that require robust automated analysis procedures. The seismic sequences being monitored are often characterized by very many events with short inter-event times that can even provide overlapped seismic signatures. In these situations, traditional approaches that identify seismic events using dense seismic networks based on detections, phase identification and event association can fail, leading to missed detections and/or reduced location resolution. In recent years, to improve the quality of automated catalogues, various waveform-based methods for the detection and location of microseismicity have been proposed. These methods exploit the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. Although this family of methods have been applied to different induced seismicity datasets, an extensive comparison with sophisticated pick-based detection and location methods is still lacking. We aim here to perform a systematic comparison in term of performance using the waveform-based method LOKI and the pick-based detection and location methods (SCAUTOLOC and SCANLOC) implemented within the SeisComP3 software package. SCANLOC is a new detection and location method specifically designed for seismic monitoring at local scale. Although recent applications have proved an extensive test with induced seismicity datasets have been not yet performed. This method is based on a cluster search algorithm to associate detections to one or many potential earthquake sources. On the other hand, SCAUTOLOC is more a "conventional" method and is the basic tool for seismic event detection and location in SeisComp3. This approach was specifically designed for

  3. Inadvertent arterial insertion of a central venous catheter: delayed recognition with abrupt changes in pressure waveform during surgery -A case report-.

    Science.gov (United States)

    Choi, Yong Sun; Park, Ji Young; Kwak, Young Lan; Lee, Jong Wha

    2011-01-01

    We present a case of inadvertent arterial insertion of a central venous catheter, identified during a pericardiectomy procedure after observing abrupt changes in pressure waveform and confirmed via arterial blood gas analysis and transesophageal echocardiography. Central venous pressure measurement was initially 20 mmHg in supine, and then elevated to 30-40 mmHg in right lateral decubitus, presumably resulting from constrictive physiology of pericarditis. The pressure waveforms, however, abruptly changed from a venous to an arterial waveform during surgery. When visual discrimination between arterial and venous blood regurgitation is unreliable, anesthesiologists should confirm that using all the available methods one has on the scene, especially after at least two unsuccessful attempts or in patients with advanced age or clinical conditions resulting in jugular venous dilation. To prevent arterial catheterization, one should limit the leftward rotation of the head by <40° and consider using ultrasound-guided method after more than two unsuccessful attempts.

  4. Leakage Current Waveforms and Arcing Characteristics of Epoxy Resin for Outdoor Insulators under Clean and Salt Fogs

    Directory of Open Access Journals (Sweden)

    Suwarno

    2008-05-01

    Full Text Available Ceramic outdoor insulators have been used in high voltage transmission lines since long time ago. Due to superiority in their resistance to pollution, recently, polymeric outdoor insulators are widely used. Epoxy resin is one polymer which shows good properties for outdoor insulation. During service, outdoor insulators may severe a certain degree of pollution which may reduce their surface resistance. Leakage current (LC usually increase and degradation may take place. This paper reports experimental results on the leakage current waveforms and arcing characteristics of epoxy resin under clean and salt fog. The samples used are blocks of epoxy resin with dimension of 250 x 50 x 20 mm3. The samples were put in a test chamber with dimension of 900x900x1200 mm3 with controllable humidity and pollution conditions. Clean and salt fog were generated according to IEC 60-1 and 507. The arcing experiment was done with incline plane test in accordance with IEC 587. AC voltage in the range from 5 kV to 50 kV with frequency of 50 Hz was applied. The LC waveforms up to flash over were measured. The magnitudes as well as harmonic content of the LC were analyzed. The correlation between LC waveforms and dry band arching phenomenon was elaborated. Visual observation of the arc on the sample surfaces was observed using a video camera. Experimental results indicated that LC magnitude on clean samples was slightly affected by humidity (RH. However, under salt fog, RH greatly affected the LC magnitude. The flashover voltage of clean samples under salt fog reduced significantly for fog conductivity of more than 1.2 mS/cm. Kaolin-polluted samples under salt fog showed an Ohmic behaviour. The LC magnitude was high and a large discrepancy of LC magnitude was observed for high applied voltage of larger than 25 kV. The largest LC magnitude was observed on salt-kaolin polluted samples under clean fog at high RH. LC waveforms analysis indicated that in general LC waveforms

  5. A New Process Monitoring Method Based on Waveform Signal by Using Recurrence Plot

    Directory of Open Access Journals (Sweden)

    Cheng Zhou

    2015-09-01

    Full Text Available Process monitoring is an important research problem in numerous areas. This paper proposes a novel process monitoring scheme by integrating the recurrence plot (RP method and the control chart technique. Recently, the RP method has emerged as an effective tool to analyze waveform signals. However, unlike the existing RP methods that employ recurrence quantification analysis (RQA to quantify the recurrence plot by a few summary statistics; we propose new concepts of template recurrence plots and continuous-scale recurrence plots to characterize the waveform signals. A new feature extraction method is developed based on continuous-scale recurrence plot. Then, a monitoring statistic based on the top-  approach is constructed from the continuous-scale recurrence plot. Finally, a bootstrap control chart is built to detect the signal changes based on the constructed monitoring statistics. The comprehensive simulation studies show that the proposed monitoring scheme outperforms other RQA-based control charts. In addition, a real case study of progressive stamping processes is implemented to further evaluate the performance of the proposed scheme for process monitoring.

  6. Determining Neutron Star Properties by Fitting Oblate Schwarzschild Waveforms To X-ray Burst Oscillations

    CERN Document Server

    Miller, M Coleman

    2014-01-01

    We have developed sophisticated new Bayesian analysis methods that enable us to estimate quickly the masses and radii of rapidly rotating, oblate neutron stars using the energy-resolved waveforms of their X-ray burst oscillations and to determine the uncertainties in these mass and radius estimates. We demonstrate these methods by generating and analyzing the energy-resolved burst oscillation waveforms that would be produced by a hot spot on various rapidly rotating, oblate stars, using the analytic implementation of the oblate-star Schwarzschild-spacetime (OS) approximation introduced by Morsink et al. 2007. In generating these synthetic data, we assume that 10$^6$ counts have been collected from the hot spot and that the background is $9\\times10^6$ counts. This produces a realistic modulation amplitude and a total number of counts comparable to the number that could be obtained by future space missions, by combining data from many bursts from a given star. We compute the joint posterior distribution of the ...

  7. A novel target detection approach based on adaptive radar waveform design

    Institute of Scientific and Technical Information of China (English)

    Wang Haitao; Shi Lei; Wang Youlin; Ben De

    2013-01-01

    To resolve problems of complicated clutter,fast-varying scenes,and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR),a target detection approach based on adaptive waveform design is proposed in this paper.Firstly,complicated sea clutter is modeled as compound Gaussian process,and a target is modeled as some scatterers with Gaussian reflectivity.Secondly,every dwell duration of radar is divided into several sub-dwells.Regular linear frequency modulated pulses are transmitted at Sub-dwell 1,and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection.Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR.Furthermore,waveform of every following sub-dwell is designed adaptively according to mean square optimization technique.Finally,principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate,respectively.Simulation results show that,considering configuration of SBR and condition of complicated clutter,9 dB is reduced for SCR which reliable detection requires by this target detection approach.Therefore,the work in this paper can markedly improve radar detection performance for weak targets.

  8. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  9. Full-waveform data for building roof step edge localization

    Science.gov (United States)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  10. Ultrafast chirped optical waveform recorder using a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  11. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-08-17

    One of the key challenges associated with time-lapse surveys is ensuring the repeatability between the baseline and monitor surveys. Non-repeatability between the surveys is caused by varying environmental conditions over the course of different surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI, and the data are naturally redatumed to this reference reflector using natural reflections as the redatuming operator. This natural redatuming mitigates the artifacts introduced by the repeatability errors that originate above the reference reflector.

  12. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    Science.gov (United States)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  13. A complete waveform model for compact binaries on eccentric orbits

    Science.gov (United States)

    Huerta, Eliu; Agarwal, Bhanu; George, Daniel; Kumar, Prayush

    2016-03-01

    The detection of compact binaries with significant eccentricity in the sensitivity band of gravitational wave detectors will provide critical insights on the dynamics and formation channels of these events. In order to search for these systems and place constraints on their rates, we present an inspiral-merger-ringdown time domain waveform model that describes the GW emission from compact binaries on orbits with low to moderate values of eccentricity. We use this model to explore the detectability of these events in the context of advanced LIGO.

  14. The Lazarus project: Plunge waveforms from inspiralling black holes

    Science.gov (United States)

    Baker, J.; Brügmann, B.; Campanelli, M.; Lousto, C.; Takahashi, R.

    2001-10-01

    We study the coalescence of binary black holes from the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We thus produce an estimate for the plunge radiation with a non negligible signal lasting for over t~100M, and we obtain estimates of the total gravitational radiated energy and angular momentum during this process, plunging time, and waveforms. .

  15. Test definitions for the evaluation of digital waveform recorders.

    Energy Technology Data Exchange (ETDEWEB)

    Kromer, Richard Paul (R.P. Kromer Consulting, Albuquerque, NM); Hart, Darren M.; Harris, James Mark

    2007-07-01

    This Test Definition for the Evaluation of Digitizing Waveform Recorders (DWR) defines the process that can be performed as part of the evaluation and testing of geophysical sensors, digitizers, sensor subsystems and geophysical station/array systems. The objectives are to (1) evaluate the overall technical performance of the DWR, measure the distortions introduced by the high resolution digitizers and provide a performance check of the internal calibrator if provided and (2) evaluate the technical performance of the DWR for a specific sensor application. The results of these evaluations can be compared to the manufacturer's specifications and any relevant application requirements or specifications.

  16. Investigation of Leakage Current Waveforms Recorded in a Coastal High Voltage Substation

    Directory of Open Access Journals (Sweden)

    E. Thalassinakis

    2011-06-01

    Full Text Available Leakage current monitoring is a widely employed technique to monitor the performance of outdoor insulation. The evaluation of leakage current waveforms recorded in the field, offers significant information since insulation’s performance is strongly linked with local conditions, and the waveforms’ shape correlate to different types of surface activity. In this paper, an investigation of leakage current waveforms recorded in a 150 kV coastal Substations suffering which suffers intense marine pollution is presented. Investigation of the recorded waveforms verified the basic waveform shapes described in the literature. Further, several variations of the basic types and complex waveforms, as well as field related waveforms, are presented. The need for added categorization criteria in the case of field measurements is discussed.

  17. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  18. Maximally Flat Waveforms with Finite Number of Harmonics in Class-F Power Amplifiers

    Directory of Open Access Journals (Sweden)

    Anamarija Juhas

    2013-01-01

    Full Text Available In this paper general solution to the problem of finding maximally flat waveforms with finite number of harmonics (maximally flat trigonometric polynomials is provided. Waveform coefficients are expressed in closed form as functions of harmonic orders. Two special cases of maximally flat waveforms (so-called maximally flat even harmonic and maximally flat odd harmonic waveforms, which proved to play an important role in class-F and inverse class-F power amplifier (PA operations, are also considered. For these two special types of waveforms, coefficients are expressed as functions of two parameters only. Closed form expressions for efficiency and power output capability of class-F and inverse class-F PA operations with maximally flat waveforms are also provided as explicit functions of number of a harmonics.

  19. A Denoising Method for LiDAR Full-Waveform Data

    Directory of Open Access Journals (Sweden)

    Xudong Lai

    2015-01-01

    Full Text Available Decomposition of LiDAR full-waveform data can not only enhance the density and positioning accuracy of a point cloud, but also provide other useful parameters, such as pulse width, peak amplitude, and peak position which are important information for subsequent processing. Full-waveform data usually contain some random noises. Traditional filtering algorithms always cause distortion in the waveform. λ/μ filtering algorithm is based on Mean Shift method. It can smooth the signal iteratively and will not cause any distortion in the waveform. In this paper, an improved λ/μ filtering algorithm is proposed, and several experiments on both simulated waveform data and real waveform data are implemented to prove the effectiveness of the proposed algorithm.

  20. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper.

    Science.gov (United States)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yang, Ting; Chen, Xiaolin; Gao, Dingshan; Zhang, Xinliang

    2015-05-04

    We propose and demonstrate an optical arbitrary waveform generator and high-order photonic differentiator based on a four-tap finite impulse response (FIR) silicon-on-insulator (SOI) on-chip circuit. Based on amplitude and phase modulation of each tap controlled by thermal heaters, we obtain several typical waveforms such as triangular waveform, sawtooth waveform, square waveform and Gaussian waveform, etc., assisted by an optical frequency comb injection. Unlike other proposed schemes, our scheme does not require a spectral disperser which is difficult to fabricate on chip with high resolution. In addition, we demonstrate first-, second- and third-order differentiators based on the optical pulse shaper. Our scheme can switch the differentiator patterns from first- to third-order freely. In addition, our scheme has distinct advantages of compactness, capability for integration with electronics.

  1. Radar Constant-Modulus Waveform Design with Prior Information of the Extended Target and Clutter.

    Science.gov (United States)

    Yue, Wenzhen; Zhang, Yan; Liu, Yimin; Xie, Jingwen

    2016-06-17

    Radar waveform design is of great importance for radar system performances and has drawn considerable attention recently. Constant modulus is an important waveform design consideration, both from the point of view of hardware realization and to allow for full utilization of the transmitter's power. In this paper, we consider the problem of constant-modulus waveform design for extended target detection with prior information about the extended target and clutter. At first, we propose an arbitrary-phase unimodular waveform design method via joint transmitter-receiver optimization. We exploit a semi-definite relaxation technique to transform an intractable non-convex problem into a convex problem, which can then be efficiently solved. Furthermore, quadrature phase shift keying waveform is designed, which is easier to implement than arbitrary-phase waveforms. Numerical results demonstrate the effectiveness of the proposed methods.

  2. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper

    Institute of Scientific and Technical Information of China (English)

    DONG Jian-Ji; LUO Bo-Wen; ZHANG Yin; LEI Lei; HUANG De-Xiu; ZHANG Xin-Liang

    2012-01-01

    We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper, which is based on liquid crystal on silicon switching elements, and both amplitude and phase of the spectrum are programmable. By designing specific transfer functions with the optical waveform shaper, we obtain first-, second-, and third-order differentiators for periodic pulses with small average errors. We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.%We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,which is based on liquid crystal on silicon switching elements,and both amplitude and phase of the spectrum are programmable.By designing specific transfer functions with the optical waveform shaper,we obtain first-,second-,and third-order differentiators for periodic pulses with small average errors.We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.

  3. Channel Influence Mitigation in Pseudo-noise Waveform Design for Radar Applications

    Directory of Open Access Journals (Sweden)

    J. S. Kulpa

    2014-04-01

    Full Text Available Noise Radar is a rapidly developing technology which uses noise or pseudo-noise waveforms as sounding signals to de- tect targets of interest. The advantages of such waveforms are no range nor velocity ambiguities, the possibility of using continuous waveform and low probability of intercept. However, the noise waveform correlation sidelobes are spread across the entire range–Doppler plane and their level is de- termined by the time-bandwidth product. Such sidelobes limit the detection capability in the multitarget environment. Several algorithms exist that decrease the sidelobe level and thus enhance dynamic range of the radar, but they are very susceptible to distortions in an analogue channel. In this paper the author presents a method to create low-sidelobe waveforms using a filtering algorithm designed for given channel, decreasing the analogue front-end impact on the final properties of the waveforms.

  4. Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data

    Science.gov (United States)

    Ranson, K, Lon; Sun, G.

    2011-01-01

    The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data.

  5. FULL WAVEFORM LIDAR EXPLOITATION TECHNIQUE AND ITS EVALUATION IN THE MIXED FOREST HILLY REGION

    OpenAIRE

    Chhatkuli, S.; Mano, K; Kogure, T.; Tachibana, K.; H. Shimamura

    2012-01-01

    In this paper a full waveform exploitation technique and its evaluation in the mixed forest hilly region is presented. The increment in ground penetration by using the full waveform exploitation technique compared to the discrete LiDAR pulses during autumn and winter season is evaluated. The results showed that the technique used for the full waveform exploitation has effectively increased the ground penetration by 50 % and 20 %, respectively, during autumn and winter in the mixed fo...

  6. Hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oguzkurt, Levent [Department of Radiology, Adana Teaching and Medical Research Center, Baskent University, Adana 01250 (Turkey)]. E-mail: loguzkurt@yahoo.com; Yildirim, Tulin [Department of Radiology, Adana Teaching and Medical Research Center, Baskent University, Adana 01250 (Turkey); Torun, Dilek [Department of Nephrology, Adana Teaching and Medical Research Center, Baskent University, Adana (Turkey); Tercan, Fahri [Department of Radiology, Adana Teaching and Medical Research Center, Baskent University, Adana 01250 (Turkey); Kizilkilic, Osman [Department of Radiology, Adana Teaching and Medical Research Center, Baskent University, Adana 01250 (Turkey); Niron, E. Alp [Department of Radiology, Baskent University, Ankara (Turkey)

    2005-05-01

    Objective: To determine the incidence of abnormal hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver (FIL). Materials and methods: In this prospective study, 40 patients with diffuse FIL and 50 normal healthy adults who served as control group underwent hepatic vein (HV) Doppler ultrasonography. The patients with the diagnosis of FIL were 23 men (57.5%) and 17 women aged 30-62 years (mean age {+-} S.D., 42 {+-} 12 years). Subjects in the control group were 27 men (54%) and 23 women aged 34-65 years (mean age {+-} S.D., 45 {+-} 14 years). The diagnosis of FIL was confirmed with computed tomography density measurements. The waveforms of HV were classified into three groups: regular triphasic waveform, biphasic waveform without a reverse flow, and monophasic or flat waveform. Etiological factors for FIL were diabetes mellitus (DM), hyperlipidemia and obesity (body mass index > 25). Serum lipid profile was obtained from all the patients with FIL. Results: Seventeen of the 40 patients (43%) with FIL had an abnormal HV Doppler waveform, whereas only one of the 50 (2%) healthy subjects had an abnormal waveform. The difference in the distribution of normal Doppler waveform pattern between the patients and the control group was significant (P < 0.001). No differences were found in the behaviour of the hepatic vein Doppler waveform in relation to the different etiologic factors for FIL (P > 0.05). There was not any correlation between the degree of fat infiltration and the hepatic vein waveform pattern (P = 0.60). Conclusion: Patients with fatty liver has a high rate of an abnormal hepatic vein Doppler waveform pattern which can be biphasic or monophasic. We could not find a relation between the etiological factors for FIL and the occurrence of an abnormal HV Doppler waveform.

  7. FULL WAVEFORM LIDAR EXPLOITATION TECHNIQUE AND ITS EVALUATION IN THE MIXED FOREST HILLY REGION

    OpenAIRE

    S. Chhatkuli; Mano, K; Kogure, T; Tachibana, K; H. Shimamura

    2012-01-01

    In this paper a full waveform exploitation technique and its evaluation in the mixed forest hilly region is presented. The increment in ground penetration by using the full waveform exploitation technique compared to the discrete LiDAR pulses during autumn and winter season is evaluated. The results showed that the technique used for the full waveform exploitation has effectively increased the ground penetration by 50 % and 20 %, respectively, during autumn and winter in the mixed fo...

  8. Integrated Range-Doppler Map and Extended Target Classification with Adaptive Waveform for Cognitive Radar

    Science.gov (United States)

    2014-12-01

    RANGE-DOPPLER MAP AND EXTENDED TARGET CLASSIFICATION WITH ADAPTIVE WAVEFORM FOR COGNITIVE RADAR by Jo-Yen Nieh December 2014 Dissertation...TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE INTEGRATED RANGE-DOPPLER MAP AND EXTENDED TARGET CLASSIFICATION WITH ADAPTIVE WAVEFORM ...design an extended target classification scheme while determining the target’s range-and-Doppler location with the use of adaptive waveform for a

  9. An Identification Method of Magnetizing Inrush Current Phenomena by Voltage Waveform

    Science.gov (United States)

    Naitoh, Tadashi; Takeda, Keiki; Toyama, Atsushi; Maeda, Tatsuhiko

    In this paper, the authors propose a new identification method of the magnetizing inrush current phenomena. In general, the identification is done using with current waveform. However, the saturation of current transformer can't give waveform. Therefore, the authors introduce the identification method using with voltage waveform, in which the saturation of voltage transformer doesn't happen. And then, applying the Aitken's Δ2-process, it is showed that the new identification method gives the exact saturation on/off time.

  10. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K.; Dey, B.; /Hawaii U. /UC, Riverside; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; /SLAC; Roberts, D.; /Maryland U.; Ruckman, L.; /Hawaii U.; Shtol, D.; /Novosibirsk, IYF; Varner, G.S.; /Hawaii U.; Va' vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  11. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  12. Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion

    KAUST Repository

    Choi, Yun Seok

    2011-09-01

    Full waveform inversion requires a good estimation of the source wavelet to improve our chances of a successful inversion. This is especially true for an encoded multisource time-domain implementation, which, conventionally, requires separate-source modeling, as well as the Fourier transform of wavefields. As an alternative, we have developed the source-independent time-domain waveform inversion using convolved wavefields. Specifically, the misfit function consists of the convolution of the observed wavefields with a reference trace from the modeled wavefield, plus the convolution of the modeled wavefields with a reference trace from the observed wavefield. In this case, the source wavelet of the observed and the modeled wavefields are equally convolved with both terms in the misfit function, and thus, the effects of the source wavelets are eliminated. Furthermore, because the modeled wavefields play a role of low-pass filtering, the observed wavefields in the misfit function, the frequency-selection strategy from low to high can be easily adopted just by setting the maximum frequency of the source wavelet of the modeled wavefields; and thus, no filtering is required. The gradient of the misfit function is computed by back-propagating the new residual seismograms and applying the imaging condition, similar to reverse-time migration. In the synthetic data evaluations, our waveform inversion yields inverted models that are close to the true model, but demonstrates, as predicted, some limitations when random noise is added to the synthetic data. We also realized that an average of traces is a better choice for the reference trace than using a single trace. © 2011 Society of