WorldWideScience

Sample records for wave-zonal flow system

  1. Effects of plasma elongation on drift wave-zonal flow turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Angelino, P.; Garbet, X.; Grandgirard, V.; Sarazin, Y.; Ghendrih, P.; Dif-Pradalier, G.; Jolliet, S.; Bottino, A.; McMillan, B. F.; Tran, T. M.; Villard, L.

    2007-07-01

    The theoretical study of plasma turbulent transport is of central importance to fusion research. Experimental evidence indicates that the confinement time is in fact a consequence of the turbulent transport of energy. The magnitude of turbulent transport depends on the turbulent state resulting from nonlinear saturation mechanisms. The ion heat anomalous transport in the plasma core fusion devices seems to be dominated by a class of microinstabilities, the toroidal ion temperature gradient driven modes (ITGs). ITG turbulence is known to self organize to form coherent macroscopic structures extended in the direction perpendicular to the gradient. These structures are essentially axisymmetric flows denominated zonal flows. The amplitude of zonal flows can oscillate: these perturbations are known as Geodesic Acoustic Modes (GAMs). Zonal flows act as a regulating mechanism on plasma microturbulence, the saturated turbulent state being determined by the nonlinear interactions between ITGs, zonal flows and GAMs. We present an analytical study showing the strong impact that plasma geometry has on zonal flow collisionless linear damping. The GAM frequency is shown to scale inversely with the elongation and the aspect ratio. These results are supported by numerical linear analysis, which in addition shows that the GAM damping rate and the undamped zonal flow component are enhanced by elongation and smaller aspect ratio. The same parameters also modify the ITG linear growth rates. Therefore linear analysis suggests that geometry can play a role in the determination of the turbulent transport level. On the other hand, the extent of this action can be quantified only by means of full nonlinear calculations. We present the results of nonlinear gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria, focusing on the role of plasma elongation. The effect of the variation of this parameter on the ion heat transport and zonal flow-GAM interactions is

  2. Collisional Scaling of the Energy Transfer in Drift-Wave Zonal Flow Turbulence.

    Science.gov (United States)

    Schmid, B; Manz, P; Ramisch, M; Stroth, U

    2017-02-03

    The collisionality scaling of density and potential coupling together with zonal flow energy transfer and spectral power is investigated at the stellarator experiment TJ-K. With a poloidal probe array, consisting of 128 Langmuir probes, density and potential fluctuations are measured on four neighboring flux surfaces simultaneously over the complete poloidal circumference. By analyzing Reynolds stress and pseudo-Reynolds stress, it is found that, for increasing collisionality, the coupling between density and potential decreases which hinders the zonal flow drive. Also, as a consequence, the nonlinear energy transfer, as well as the zonal flow contribution to the complete turbulent spectrum, decreases the same way. This is in line with theoretical expectations and is a first experimental verification of the importance of collisionality for large-scale structure formation in magnetically confined toroidal plasmas.

  3. Phase dependent advection-diffusion in drift wave - zonal flow turbulence

    CERN Document Server

    Moradi, Sara

    2016-01-01

    In plasma turbulence theory, due to the complexity of the system with many non-linearly interacting waves, the dynamics of the phases is often disregarded and the so-called random-phase approximation (RPA) is used assuming the existence of a Chirikov-like criterion for the onset of wave stochasticity. The dynamical amplitudes are represented as complex numbers, $\\psi = \\psi_r + i\\psi_i = ae^{i\\theta}$, with the amplitudes slowly varying whereas the phases are rapidly varying and, in particular, distributed uniformly over the interval $[0;2\\pi)$. However, one could expect that the phase dynamics can play a role in the self-organisation and the formation of coherent structures. In the same manner it is also expected that the RPA falls short to take coherent interaction between phases into account. In this work therefore, we studied the role of phase dynamics and the coupling of phases between different modes on the characteristic time evolution of the turbulent. We assume a simple turbulent system where the so-...

  4. Vega flow assurance system

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Marit; Munaweera, Sampath

    2010-07-01

    Vega is a gas condensate field located at the west coast of Norway and developed as a tie-in to the Gjoea platform. Operator is Statoil, production startup is estimated to the end of 2010. Flow assurance challenges are high reservoir pressure and temperature, hydrate and wax control, liquid accumulation and monitoring the well/template production rates. The Vega Flow Assurance System (FAS) is a software that supports monitoring and operation of the field. The FAS is based FlowManagerTM designed for real time systems. This is a flexible tool with its own steady state multiphase- and flow assurance models. Due to the long flowlines lines and the dynamic behavior, the multiphase flow simulator OLGA is also integrated in the system. Vega FAS will be used as: - An online monitoring tool - An offline what-if simulation and validation tool - An advisory control system for well production allocation. (Author)

  5. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    Science.gov (United States)

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-09-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave - zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow.

  6. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  7. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  8. The ECN flow animation system

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, J.J.

    1995-12-01

    ECN has developed a system for the visualization of fluid flow. The system is based on so-called surface particles. A surface particle is a small facet, convected by the flow. If a large number of surface particles is used in combination, a variety of flow visualization techniques can be realised, such as moving surfaces, streamlines, stream surfaces, etc.. This system has been used to visualize the results of FloTHERM and FloVent, two highly advanced CFD-packages developed by Flomerics Ltd.. Several additional programs had to be developed for the conversion of data and the post-processing of the images. This report, written for Flomerics Ltd., is a guide to the use of the ECN Flow Animation System. The system is described on various levels of detail. After an overview, each component is described in depth, including a description of commands and examples. 22 figs., 3 refs.

  9. Numerical model for zonal flow generation by magnetized Rossby waves in the ionosphere with the background shear flow

    Science.gov (United States)

    Kharshiladze, O. A.; Chargazia, Kh.

    2017-03-01

    A theoretical-numerical description of zonal flow generation in the turbulent ionosphere by controlled inhomogeneous background wind is given. The generalized Charney-Obukhov equation, which describes the nonlinear interaction of five different-scale modes (primary modes, relatively short-wave ultra-low frequency (ULF) magnetized Rossby waves (MRWs) (pumping waves), two satellites of these MRWs, long-wave zonal mode, and large-scale background shear flows (inhomogeneous wind)) is used. New features of energy transfer from relatively small-scale waves and the background shear flow into that of largescale zonal flows and nonlinear self-organization of the five-wave collective activity in the ionospheric medium are identified based on the numerical solution of the corresponding system of equations for perturbation amplitudes (generalized eigenvalue problems). It is shown that if there is the background shear flow with a moderate amplitude growth the modulation instability increment and intensifies the zonal flow generation, while a very strong shear flow significantly reduces the modulation instability increment and can even suppress the generation process.

  10. Pulse-Flow Microencapsulation System

    Science.gov (United States)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  11. Wireless sap flow measurement system

    Science.gov (United States)

    Kuo, C.; Davis, T. W.; Tseng, C.; Cheng, C.; Liang, X.; Yu, P.

    2010-12-01

    This study exhibits a measurement system for wireless sensor networks to measure sap flow in multiple locations simultaneously. Transpiration is a major component of the land-surface system because it is indicative of the water movement between the soil and the air. Sap flow can be used to approximate transpiration. In forests, transpiration cannot be represented by the sap flow from a single tree. Multi-location sap flow measurements are required to show the heterogeneity caused by different trees or soil conditions. Traditional multi-location measurements require manpower and capital for data collection and instrument maintenance. Fortunately, multi-location measurements can be achieved by using the new technology of wireless sensor networks. With multi-hop communication protocol, data can be forwarded to the base station via multiple sensor nodes. This communication protocol can provide reliable data collection with the least power consumption. This study encountered two major problems. The first problem was signal amplification. The Crossbow IRIS mote was selected as the sensor node that receives the temperature data of the sap flow probe (thermocouple) through a MDA300 data acquisition board. However, the wireless sensor node could not directly receive any data from the thermocouples since the least significant bit value of the MDA300, 0.6 mV, is much higher than the voltage signal generated. Thus, the signal from the thermocouple must be amplified to exceed this threshold. The second problem is power management. A specific heat differential is required for the thermal dissipation method of measuring sap flow. Thus, an adjustable DC power supply is necessary for calibrating the heater's temperature settings. A circuit was designed to combine the signal amplifier and power regulator. The regulator has been designed to also provide power to the IRIS mote to extend battery life. This design enables wireless sap flow measurements in the forest. With the

  12. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen

    2017-06-01

    Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.

  13. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  14. Bioinspired Sensory Systems for Shear Flow Detection

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin K.; Kanso, Eva

    2017-03-01

    Aquatic organisms such as copepods exhibit remarkable responses to changes in ambient flows, especially shear gradients, when foraging, mating and escaping. To accomplish these tasks, the sensory system of the organism must decode the local sensory measurements to detect the flow properties. Evidence suggests that organisms sense differences in the hydrodynamic signal rather than absolute values of the ambient flow. In this paper, we develop a mathematical framework for shear flow detection using a bioinspired sensory system that measures only differences in velocity. We show that the sensory system is capable of reconstructing the properties of the ambient shear flow under certain conditions on the flow sensors. We discuss these conditions and provide explicit expressions for processing the sensory measurements and extracting the flow properties. These findings suggest that by combining suitable velocity sensors and physics-based methods for decoding sensory measurements, we obtain a powerful approach for understanding and developing underwater sensory systems.

  15. A national accounting system for worker flows

    NARCIS (Netherlands)

    Broersma, L; den Butter, FAG; Kock, U

    We present a national accounting system for the construction of a consistent macro data set for worker flows. It is an alternative to micro data sets on gross labour flows derived from panels. The method is applied to construct annual flow data for The Netherlands for 1997. (C) 2000 Elsevier Science

  16. Flow Sharing Systems for Mobile Applications

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2002-01-01

    This contribution reports about some analytical and simulation/experimental studies carried out on different flow control systems for mobile applications with respect to their ability to do flow sharing. All systems have two parallel actuators and are considered regarding functionality...

  17. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...

  18. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  19. Acoustic Flow Monitor System - User Manual

    Science.gov (United States)

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  20. Intelligent System for Radial Distribution Load Flow

    Directory of Open Access Journals (Sweden)

    Vaishali Holkar

    2012-10-01

    Full Text Available This paper shows an application of Artificial Neural Networks (ANNs to determine the bus voltages and phase angles of a radial distribution system, without executing the complicated load flow algorithm, for any given load. The performance of the conventional load flow methods such as Newtoh-Raphson load flow, Fast decoupled load flow is found to be very poor under critical conditions such as high R/X ratio, heavily loading condition etc.To overcome the limitations of these regularly used methods a simple and reliable ladder iterative technique is used for solving the power balance equations of radial distribution system (RDS. The proposed method make use of a multi-layer feed forward ANN with error back propagation learning algorithm for calculation of bus voltages and its angles. A sample IEEE 33-bus is extensively tested with the proposed ANN based approach indicating its viability for RDS load flow assessment and results are presented.

  1. Flow cell system for miscible displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.H.; Kirkham, D.

    1971-02-01

    The use of a continuous graphic recording system for flow-component measurement in miscible displacement experiments is described. This system measures and continuously records radioactive tracer concentrations of effluents of miscible displacement columns. The recordings are needed breakthrough curves. The use of the system obviates fraction collectors.

  2. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  3. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  4. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  5. The ECN flow animation system. New features

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, J.J.

    1996-02-01

    The Netherlands Energy Research Foundation (ECN) has developed a system for the visualization of fluid flow. This system is based on so-called surface particles. A surface particle is a small facet, convected by the flow. If a large number of surface particles is used in combination, a variety of flow visualization techniques can be realised, such as moving surfaces, streamlines, stream surfaces, etc.. This system has been used to visualize the results of FloTHERM and FloVent, two highly advanced CFD-packages developed by Flomerics Ltd.. The use of the system by Flomerics Ltd. has revealed the need for a number of extensions. These have been implemented at ECN, and are described in this report. For each extension its usage and, if necessary, its implementation are described. The extensions concern motion blur for moving cameras, the visualization of scalar data on surfaces, and the use of particle sinks. 14 figs., 3 refs., 3 appendices

  6. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  7. Resource Prospector Propulsion System Cold Flow Testing

    Science.gov (United States)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  8. Information flow in heterogeneously interacting systems.

    Science.gov (United States)

    Yamaguti, Yutaka; Tsuda, Ichiro; Takahashi, Yoichiro

    2014-02-01

    Motivated by studies on the dynamics of heterogeneously interacting systems in neocortical neural networks, we studied heterogeneously-coupled chaotic systems. We used information-theoretic measures to investigate directions of information flow in heterogeneously coupled Rössler systems, which we selected as a typical chaotic system. In bi-directionally coupled systems, spontaneous and irregular switchings of the phase difference between two chaotic oscillators were observed. The direction of information transmission spontaneously switched in an intermittent manner, depending on the phase difference between the two systems. When two further oscillatory inputs are added to the coupled systems, this system dynamically selects one of the two inputs by synchronizing, selection depending on the internal phase differences between the two systems. These results indicate that the effective direction of information transmission dynamically changes, induced by a switching of phase differences between the two systems.

  9. Traffic Flow Control In Automated Highway Systems

    OpenAIRE

    Alvarez, Luis; Horowitz, Roberto

    1997-01-01

    This report studies the problem of traffic control in the Automated Highway System (AHS) hierarchical architecture of the California PATH program. A link layer controller for the PATH AHS architecture is presented. It is shown that the proposed control laws stabilize the vehicular density and flow around predetermined profiles.

  10. Air-water flow in subsurface systems

    Science.gov (United States)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  11. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  12. Recovery modeling of tangential flow systems.

    Science.gov (United States)

    Rao, Suma; Gefroh, Eva; Kaltenbrunner, Oliver

    2012-12-01

    The demand for increased formulation concentrations for protein therapeutics puts a significant strain on already existing tangential flow filtration (TFF) systems that were constructed with lower protein concentration targets as part of their design criteria. TFF is commonly used to buffer exchange and concentrate the product to the appropriate drug substance concentration. Analyzing the ability of an existing TFF system to process under conditions outside its original design specifications can be challenging. In this analysis, we present a systematic approach to assess the operational limits of a TFF process with consideration of system performance parameters for changing process targets. In two new engineering diagrams, the recovery efficiency diagram and the operating space plot, all relevant operational constraints and parameters are related to allow rapid process fit evaluation. The engineering assessment of TFF systems presented in this article allows a rational review of system limitations during process fit evaluations of existing TFF systems. It also provides a rational basis for targeted system upgrades and setting system design specifications for the design of new systems if existing systems are found inadequate. Copyright © 2012 Wiley Periodicals, Inc.

  13. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  14. Flow Induced Electrification of Liquid Insulated Systems.

    Science.gov (United States)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  15. 46 CFR 153.358 - Venting system flow capacity.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Venting system flow capacity. 153.358 Section 153.358 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any...

  16. VLT Data Flow System Begins Operation

    Science.gov (United States)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was

  17. Distribution in flowing reaction-diffusion systems

    KAUST Repository

    Kamimura, Atsushi

    2009-12-28

    A power-law distribution is found in the density profile of reacting systems A+B→C+D and 2A→2C under a flow in two and three dimensions. Different densities of reactants A and B are fixed at both ends. For the reaction A+B, the concentration of reactants asymptotically decay in space as x-1/2 and x-3/4 in two dimensions and three dimensions, respectively. For 2A, it decays as log (x) /x in two dimensions. The decay of A+B is explained considering the effect of segregation of reactants in the isotropic case. The decay for 2A is explained by the marginal behavior of two-dimensional diffusion. A logarithmic divergence of the diffusion constant with system size is found in two dimensions. © 2009 The American Physical Society.

  18. Improving Software Systems By Flow Control Analysis

    Directory of Open Access Journals (Sweden)

    Piotr Poznanski

    2012-01-01

    Full Text Available Using agile methods during the implementation of the system that meets mission critical requirements can be a real challenge. The change in the system built of dozens or even hundreds of specialized devices with embedded software requires the cooperation of a large group of engineers. This article presents a solution that supports parallel work of groups of system analysts and software developers. Deployment of formal rules to the requirements written in natural language enables using formal analysis of artifacts being a bridge between software and system requirements. Formalism and textual form of requirements allowed the automatic generation of message flow graph for the (sub system, called the “big-picture-model”. Flow diagram analysis helped to avoid a large number of defects whose repair cost in extreme cases could undermine the legitimacy of agile methods in projects of this scale. Retrospectively, a reduction of technical debt was observed. Continuous analysis of the “big picture model” improves the control of the quality parameters of the software architecture. The article also tries to explain why the commercial platform based on UML modeling language may not be sufficient in projects of this complexity.

  19. Modeling the thermally governed transient flow surges in multitube condensing flow systems with thermal and flow distribution asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, G.L.; Bhatt, B.L. (Oakland Univ., Rochester, MI (United States))

    1989-08-01

    In a tube-type condenser involving complete condensation, small changes in the inlet vapor flow rate momentarily cause very large transient surges in the outlet liquid flow rate. An equivalent single-tube model is proposed that predicts these transient flow surges for a multitube system. The model, based upon a system mean void fraction model developed earlier, includes the effects of thermal and flow distribution asymmetry associated with each individual condenser tube in the multitube system. Theoretical and experimental verification for a two-tube system is presented.

  20. Stochastic uncertainty analysis for unconfined flow systems

    Science.gov (United States)

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen-Loeve decomposition, polynomial expansion, and perturbation methods. The random log-transformed hydraulic conductivity field (InKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of InKS- Next, head h is decomposed as a perturbation expansion series ??A(m), where A(m) represents the mth-order head term with respect to the standard deviation of InKS. Then A(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients Ai1,i2(m)...,im are deterministic and solved sequentially from low to high expansion orders using MODFLOW-2000. Finally, the statistics of head and flux are computed using simple algebraic operations on Ai1,i2(m)...,im. A series of numerical test results in 2-D and 3-D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique. Copyright 2006 by the American Geophysical Union.

  1. ENERGY FLOWS IN COMPLEX ECOLOGICAL SYSTEMS: A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG

    2009-01-01

    Energy flow drives the complex systems to evolve. The allometric scaling as the universal energy flow pattern has been found in different scales of ecological systems. It reflects the general power law relationship between flow and store. The underlying mechanisms of energy flow patterns are explained as the branching transportation networks which can be regarded as the result of systematic optimization of a biological target under constraints. Energy flows in the ecological system may be modelled by the food web model and population dynamics on the network. This paper reviews the latest progress on the energy flow patterns, explanatory models for the allometric scaling and modelling approach of flow and network evolution dynamics in ecology. Furthermore, the possibility of generalizing these flow patterns, modelling approaches to other complex systems is discussed.

  2. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    OpenAIRE

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic fl...

  3. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    CERN Document Server

    Ke, Xinyou; Alexander, J Iwan D; Savinell, Robert F

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic flow inlet boundary conditions. However, the volumetric flow penetration within the porous electrode beneath the flow channel through the integration of interface flow velocity reveals that this value is identical under both ideal plug flow and ideal parabolic flow inlet boundary conditions. The volumetric flow penetrations under the advection effects of flow channel and landing/rib are estimated. The maximum current density achieved in the flow battery can be predicted based on the 100% amount of electrolyte flow reactant ...

  4. Review of hybrid laminar flow control systems

    Science.gov (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.

    2017-08-01

    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  5. Dynamic modelling of packaging material flow systems.

    Science.gov (United States)

    Tsiliyannis, Christos A

    2005-04-01

    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.

  6. Investigation of the stability of melt flow in gating systems

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Larsen, Per

    2011-01-01

    of the gating system causes pressure waves to form that eventually lead to defective castings. It is clear that sharp corners and dead ends in gating systems should be avoided, and that more stream lined, organic designs based on fluid dynamic principles will are necessary to design gating systems......Melt flow in four different gating systems designed for production of brake discs was analysed experimentally and by numerical modelling. In the experiments moulds were fitted with glass fronts and melt flow was recorded on video. The video recordings were compared with modelling of melt flow...... in the gating systems. Particular emphasis was on analysing local pressure and formation of pressure waves in the gating system. It was possible to compare melt flow patterns in experiments directly to modelled flow patterns. Generally there was good agreement between flow patterns and filling times. However...

  7. Personal Computer System for Automatic Coronary Venous Flow Measurement

    OpenAIRE

    Dew, Robert B.

    1985-01-01

    We developed an automated system based on an IBM PC/XT Personal computer to measure coronary venous blood flow during cardiac catheterization. Flow is determined by a thermodilution technique in which a cold saline solution is infused through a catheter into the coronary venous system. Regional temperature fluctuations sensed by the catheter are used to determine great cardiac vein and coronary sinus blood flow. The computer system replaces manual methods of acquiring and analyzing temperatur...

  8. Optimizing the Allocation of Material Flow in a Logistics System

    OpenAIRE

    Tanka Milkova

    2013-01-01

    The article is devoted to the issue of the optimum allocation of material flow in a logistics system, the author’s proposition being that the allocation and movement of the material flow in a logistics system can be rationalized, based on the use of special approaches and techniques. There is presented the economic formulation of the problem and is constructed the economic and mathematical model ensuring the movement of the material flow in a logistics system at minimum cost of its transporta...

  9. Micro Coriolis mass flow sensor for chemical micropropulsion systems

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Groenesteijn, Jarno; Dijkstra, Pieter J.; Lötters, Joost Conrad

    2012-01-01

    We have designed a micromachined micro Coriolis flow sensor for the measurement of hydrazine (N2H4, High Purity Grade) propellant flow in micro chemical propulsion systems. The sensor measures mass flow up to 10 mg/s for a single thruster or up to 40 mg/s for four thrusters. The sensor will first be

  10. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  11. SIGNAL FLOW GRAPH ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS

    Science.gov (United States)

    CONTROL SYSTEMS, *MECHANICS, *STRUCTURES, *THERMODYNAMICS, *TOPOLOGY, BEAMS(ELECTROMAGNETIC), BEAMS(STRUCTURAL), GAS FLOW, GEARS, HEAT EXCHANGERS, MATHEMATICAL ANALYSIS, MATHEMATICS, MECHANICAL ENGINEERING , RAMJET ENGINES.

  12. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly model

  13. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly

  14. Uniqueness of system response time for transient condensing flows

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, G.L.; Bhatt, B.L. (Oakland Univ., Rochester, MI (United States)); Beck, B.T. (Kansas State Univ., Manhattan (United States)); Roslund, G.L. (General Motors Corp., Detroit, MI (United States))

    1989-11-01

    The unique characteristics under consideration in this paper are encountered in condensing flows, and have to do with a system's response time for various degrees of outlet flow quality. Specifically, the system response time for condensing flows appears to increase monotonically with decreasing outlet flow quality, reaching a maximum for systems having an outlet flow quality of between 10 and 20%. The system response time then decreases for outlet flow qualities that are less than that value. These unique characteristics are predicted theoretically by system mean void fraction model. The purpose of this paper is to develop analytically the characteristics, explain the physics of the phenomena responsible, and discuss the experimental verification efforts that have thus far been carried out.

  15. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.;

    2011-01-01

    in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....

  16. Flow cytometer acquisition and detection system

    Energy Technology Data Exchange (ETDEWEB)

    Casstevens, Martin K.; Burzynski, Ryszard; Weibel, John; Kachynski, Alexander

    2010-05-04

    A flow cytometer has a flow cell through which a sample flows and at least one laser emitting an excitation beam for illuminating a corresponding interrogation region in the flow cell. Scattered and fluorescence light from each interrogation region is collected by one or more input fibers for that region, and the input fiber(s) are fed to a dispersion module for that interrogation region that disperses the incoming light into different spectral regions. The dispersed light is conveyed, such as by a plurality of output fibers, to one or more photosensitive detectors. Thus, time multiplexed light signals may be delivered to a detector whereby several unique light signals can be measured by a single detector.

  17. Flow induced pulsations in pipe systems

    Science.gov (United States)

    Bruggeman, Jan Cornelis

    1987-12-01

    The aeroacoustic behavior of a low Mach number, high Reynolds number flow through a pipe with closed side branches was investigated. Sound is generated by coherent structures of concentrated vorticity formed periodically in the separated flow in the T-shaped junctions of side branches and the main pipe. The case of moderate pulsation amplitudes was investigated. It appears that the vortical flow in a T-joint is an aeroacoustic source of constant strength when acoustic energy losses due to radiation and friction are small but not negligible. When acoustic energy losses due to radiation and friction are negligible, the nonlinear character of vortex damping is the amplitude limiting mechanism. It is stressed that aeroacoustic sources should not be neglected in studies of the response of a piping lay-out with flow to, e.g., the pulsating output of a compressor.

  18. A conceptual framework for managing information flow in innovation systems

    NARCIS (Netherlands)

    Temel, T.

    2007-01-01

    This study introduces a framework for managing information flow in innovation systems. An organisation's capacity to receive information, to share it with others and to learn from it is assumed to be the key factor that shapes the flow patterns and, hence, the performance of the innovation system

  19. Financial Flows and the International Monetary System

    OpenAIRE

    Passari, Evgenia; Rey, Hélène

    2015-01-01

    Le fichier attaché est le working paper daté du 18 décembre 2014.; International audience; We review the findings of the literature on the benefits of international financial flows and find that they are quantitatively elusive. We then present evidence on the existence of a global cycle in gross cross-border flows, asset prices and leverage and discuss its impact on monetary policy autonomy across different exchange rate regimes. We focus in particular on the effect of US monetary policy shoc...

  20. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  1. Continuous, pulsed and stopped flow in a u-flow injection system (numerical vs experimental)

    NARCIS (Netherlands)

    van Akker, E.B.; Bos, M.; van der Linden, W.E.

    1999-01-01

    The effects of continuous, pulsed and stopped flow on the dispersion of a sample injected into a μ-flow injection system were studied. A channel with a volume of 1 μl was used to compare experimental results with numerical results. The injection was 0.067 μl of bromocresolgreen solution into a borax

  2. Continuous, pulsed and stopped flow in a μ-flow injection system (numerical vs experimental)

    NARCIS (Netherlands)

    Akker, van E.B.; Bos, M.; Linden, van der W.E.

    1999-01-01

    The effects of continuous, pulsed and stopped flow on the dispersion of a sample injected into a μ-flow injection system were studied. A channel with a volume of 1 μl was used to compare experimental results with numerical results. The injection was 0.067 μl of bromocresolgreen solution into a borax

  3. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  4. A Novel Flow Measurement System for Cryogenic Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow rate measurements for cryogenic propellants are required for spacecraft and space exploration systems. Such a requirement has been hampered by lack of fast and...

  5. Hyperbolic contraction measuring systems for extensional flow

    Science.gov (United States)

    Nyström, M.; Tamaddon Jahromi, H. R.; Stading, M.; Webster, M. F.

    2017-08-01

    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for

  6. Hyperbolic contraction measuring systems for extensional flow

    Science.gov (United States)

    Nyström, M.; Tamaddon Jahromi, H. R.; Stading, M.; Webster, M. F.

    2017-02-01

    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for

  7. Systems and Sensors for Debris-flow Monitoring and Warning.

    Science.gov (United States)

    Arattano, Massimo; Marchi, Lorenzo

    2008-04-04

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells

  8. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  9. Design flow factors for sewerage systems in small arid communities

    Directory of Open Access Journals (Sweden)

    Emad H. Imam

    2014-09-01

    Full Text Available Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc. and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  10. Design flow factors for sewerage systems in small arid communities.

    Science.gov (United States)

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  11. Pulsed photoacoustic flow imaging with a handheld system.

    Science.gov (United States)

    van den Berg, Pim J; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging--ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  12. An Architecture for Context-Aware Knowledge Flow Management Systems

    CERN Document Server

    Jarrahi, Ali

    2012-01-01

    The organizational knowledge is one of the most important and valuable assets of organizations. In such environment, organizations with broad, specialized and up-to-date knowledge, adequately using knowledge resources, will be more successful than their competitors. For effective use of knowledge, dynamic knowledge flow from the sources to destinations is essential. In this regard, a novel complex concept in knowledge management is the analysis, design and implementation of knowledge flow management systems. One of the major challenges in such systems is to explore the knowledge flow from the source to the recipient and control the flow for quality improvements concerning the users' needs as possible. Therefore, the purpose of this paper is to provide an architecture in order to solve this challenge. For this purpose, in addition to the architecture for knowledge flow management systems, a new node selection strategy is provided with higher success rate compared to previous strategies.

  13. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  14. The closed circuit and the low flow systems

    Directory of Open Access Journals (Sweden)

    S Parthasarathy

    2013-01-01

    Full Text Available A breathing system is defined as an assembly of components, which delivers gases from the anesthesia machine to the patients′ airways. When the components are arranged as a circle, it is termed a circle system. The flow of exhaled gases is unidirectional in the system. The system contains a component (absorber, which absorbs exhaled carbon dioxide and it is not necessary to give high fresh gas flows as in Mapleson systems. When the adjustable pressure limiting (APL valve is closed and all the exhaled gases without carbon dioxide are returned to the patient, the system becomes a totally closed one. Such a circle system can be used with flows as low as 250 to 500 mL and clinically can be termed as low-flow systems. The components of the circle system can be arranged in different ways with adherence to basic rules: (1 Unidirectional valve must be present between the reservoir bag and the patient on both inspiratory and expiratory sides; (2 fresh gas must not enter the system between the expiratory unidirectional valve and the patient; and (3 the APL valve must not be placed between the patient and the inspiratory unidirectional valve. The functional analysis is explained in detail. During the function, the arrangement of components is significant only at higher fresh gas flows. With the introduction of low resistance valves, improved soda lime canisters and low dead space connectors, the use of less complicated pediatric circle systems is gaining popularity to anesthetize children. There are bidirectional flow systems with carbon dioxide absorption. The Waters to and fro system, a classic example of bidirectional flow systems with a canister to absorb carbon dioxide, is valveless and portable. It was widely used in the past and now is only of historical importance.

  15. System proportions fluid-flow in response to demand signals

    Science.gov (United States)

    1966-01-01

    Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.

  16. Integrated thermal and micro Coriolis flow sensing system with a dynamic flow range of more than 4 decades

    NARCIS (Netherlands)

    Lötters, J.C.; Lammerink, T.S.J.; Groenesteijn, J.; Haneveld, J.; Wiegerink, R.J.

    2011-01-01

    We have realized a micromachined single chip flow sensing system with an unprecedented ultra-wide dynamic flow range of more than 4 decades, from less than 0.1 up to more than 1000 μl/h. The system comprises both a thermal and a micro Coriolis flow sensor with partially overlapping flow ranges. Oper

  17. Integrated Thermal and Microcoriolis Flow Sensing System with a Dynamic Flow Range of More Than Five Decades

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-03-01

    Full Text Available We have realized a micromachined single chip flow sensing system with an ultra-wide dynamic flow range of more than five decades, from 100 nL/h up to more than 10 mL/h. The system comprises both a thermal and a micro Coriolis flow sensor with partially overlapping flow ranges.

  18. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  19. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia

    2009-01-01

    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  20. Holomorphic Embedded Load Flow for autonomous spacecraft power systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Holomorphic Embedding Load Flow Method (HELM) is a breakthrough that brings significant advances to the field of power systems. It provides a non-iterative...

  1. Bifurcation and catastrophe of seepage flow system in broken rock

    Institute of Scientific and Technical Information of China (English)

    MIAO Xie-xing; LI Shun-cai; CHEN Zhan-qing

    2009-01-01

    The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo-tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.

  2. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  3. Flow electrification characteristics of transformer oil by rotating electrode systems

    Energy Technology Data Exchange (ETDEWEB)

    Jagadish, R.; Poovamma, P.K. [Central Power Research Inst., Bangalore (India)

    1995-07-01

    Flow electrification has been found to be the principal cause of a number of failures of forced oil cooled power transformers. Flow charging characteristics of oil/cellulose system with factors like electrode configuration, electrode material, presence of Benzotriazole (BTA), metallic contaminants and Copper coils were investigated for paraffinic oil by employing rotating electrode system. A few hydrodynamic parameters viz. Reynolds number, boundary layer thickness and friction factor were correlated with flow charging characteristics of oil for varying temperatures and concentrations of BTA. With lower concentrations of BTA in oil viz. 10 ppm and 25 ppm a marginal reduction in flow charging of oil was noticed, but about 40% reduction was observed with 150 ppm of BTA. A significant reduction in the flow charging characteristics of untreated and BTA treated oils was also observed in the presence of Copper coils and metallic particle contaminants.

  4. Multisensor Acquirement System of Electrokinetic in Multiphase Flow

    Directory of Open Access Journals (Sweden)

    Yahui Bu

    2013-09-01

    Full Text Available Streaming potential is one kind of electrokinetic effect coupled with fluid flow in porous media, and it has the ability to evaluate properties of rock and fluid in reservoirs. Geophysicists are much concerned about its application in geophysical survey, especially to monitor multiphase flow which is widespread in petroleum industry. To study the electrokinetic effect during multiphase flow, it is necessary to collect electrical and hydraulic parameters in real time. So we designed an acquisition system of multisensors (pressure, flow rate, electrical potential and resistivity, which could conduct measurement process automatically, introduced noise reduction algorithm to the primary analog signals. Data and control command were transmitted in network based on TCP/IP protocol and USB converter. Result from an water-oil displacement experiment showed that this system can effectively and rightly monitor the state of electrokinetic process during multiphase flow

  5. DistFlow Extensions for AC Transmission Systems

    OpenAIRE

    Coffrin, Carleton; Hijazi, Hassan L.; Van Hentenryck, Pascal

    2015-01-01

    Convex relaxations of the power flow equations and, in particular, the Semi-Definite Programming (SDP), Second-Order Cone (SOC), and Convex DistFlow (CDF) relaxations, have attracted significant interest in recent years. Thus far, studies of the CDF model and its connection to the other relaxations have been limited to power distribution systems, which omit several parameters necessary for modeling transmission systems. To increase the applicability of the CDF relaxation, this paper develops ...

  6. NOAA-USGS Debris-Flow Warning System - Final Report

    Science.gov (United States)

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  7. A congestion line flow control in deregulated power system

    Directory of Open Access Journals (Sweden)

    Venkatarajan Shanmuga Sundaram

    2011-01-01

    Full Text Available Under open access, market-driven transactions have become the new independent decision variables defining the behavior of the power system. The possibility of transmission lines getting over-loaded is relatively more under deregulated operation because different parts of the system are owned by separate companies and in part operated under varying service charges. This paper discusses a two-tier algorithm for correcting the lone overloads in conjunction with the conventional power-flow methods. The method uses line flow sensitivities, which are computed by the East Decoupled Power-flow algorithm and can be adapted for on-line implementation.

  8. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both...... radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promising results, and show large potentials, exploiting the existing water infrastructure in future climate...

  9. Performance of redox flow battery systems in Japan

    Institute of Scientific and Technical Information of China (English)

    Shibata Toshikazu; Kumamoto Takahiro; Nagaoko Yoshiyuki; Kawase Kazunori; Yano Keiji

    2013-01-01

    Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects.

  10. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  11. Synchronization trigger control system for flow visualization

    Science.gov (United States)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  12. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for ind...

  13. Permafrost thaw in a nested groundwater-flow system

    Science.gov (United States)

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  14. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  15. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi

    2012-01-01

    of complementing this reasoning methodology. Domestic heating systems, as the main resource to meet the thermal requirements of end-users, have different implementations in Europe in order to achieve various degrees of controllability and heating efficiencies. As all the heating systems serve the same basic needs...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...

  16. Digital Schlieren System for Flow Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is an SBIR proposal to develop a revolutionary digital schlieren imaging system that will greatly improve a widely used aerodynamics tool and render it so...

  17. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  18. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  19. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  20. MAG-GATE System for Molten metal Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  1. Stochastic modeling of a lava-flow aquifer system

    Science.gov (United States)

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  2. On the Flow Behavior in Rotor-Stator System with Superposed Flow

    Directory of Open Access Journals (Sweden)

    Roger Debuchy

    2008-01-01

    Full Text Available The flow between a rotor and a stator at high Reynolds number and small Ekman number is divided into three domains, two boundary layers adjacent to the discs separated by a central core. In the present work, a simple theoretical approach provides analytical solutions for the radial distribution of the core swirl ratio valid for a rotor-stator system with a superposed radial inflow rate. At first, the flow in the rotor boundary layer is assumed to behave as expressed by Owen and Rogers (1989 in the case of a turbulent flow on a rotating single disc. On the stator side, a necessary compensation flow rate must take place according to the conservation of mass. It is found that this compensation flow rate cannot be estimated with a good accuracy using the hypotheses of a stationary disc in a rotating fluid by Owen and Rogers (1989. Thus, two innovative weighting functions are tested, leading to new analytical laws relating the core swirl ratio K to the coefficient of flow rate Cqr introduced by Poncet et al. (2005. The adequacy between the theoretical solutions and numerous results of the literature is clearly improved and the discussion allows a better understanding of the flow behavior.

  3. Power System Stability Enhancement Using Unified Power Flow Controller

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: The enhancement of transient stability of the power system is one of the most challenging research areas in power engineer. Approach: This study presents the method to enhance transient stability of power system by Unified Power Flow Controller (UPFC. The mathematical model of power system equipped with a UPFC is systematically derived. The parameters of UPFC are modeled into power flow equation and thus it is used to determine control strategy. The swing curves of the three phase faulted power system without and with a UPFC are tested and compared in various cases. Results: The swing curve of system without a UPFC gets increases monotonically and thus the system can be considered as unstable whereas the swing curves of system with a UPFC can return to stable equilibrium point. Conclusion: From the simulation results, the UPFC can enhance transient stability of power system.

  4. Dynamical-systems approach to localised turbulence in pipe flow

    CERN Document Server

    Ritter, Paul; Avila, Marc

    2015-01-01

    Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.

  5. Effects of uniform rotational flow on predator-prey system

    Science.gov (United States)

    Lee, Sang-Hee

    2012-12-01

    Rotational flow is often observed in lotic ecosystems, such as streams and rivers. For example, when an obstacle interrupts water flowing in a stream, energy dissipation and momentum transfer can result in the formation of rotational flow, or a vortex. In this study, I examined how rotational flow affects a predator-prey system by constructing a spatially explicit lattice model consisting of predators, prey, and plants. A predation relationship existed between the species. The species densities in the model were given as S (for predator), P (for prey), and G (for plant). A predator (prey) had a probability of giving birth to an offspring when it ate prey (plant). When a predator or prey was first introduced, or born, its health state was assigned an initial value of 20 that subsequently decreased by one with every time step. The predator (prey) was removed from the system when the health state decreased to less than zero. The degree of flow rotation was characterized by the variable, R. A higher R indicates a higher tendency that predators and prey move along circular paths. Plants were not affected by the flow because they were assumed to be attached to the streambed. Results showed that R positively affected both predator and prey survival, while its effect on plants was negligible. Flow rotation facilitated disturbances in individuals’ movements, which consequently strengthens the predator and prey relationship and prevents death from starvation. An increase in S accelerated the extinction of predators and prey.

  6. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    CERN Document Server

    Pushkarev, Andrey V; Nazarenko, Sergey V

    2012-01-01

    Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of a turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model which contains the drift-wave/zonal-flow feedback loop prototypical of the LH transition in plasma devices.

  7. Mechanism and estimation of negative entropy flow in terrestrial system

    Institute of Scientific and Technical Information of China (English)

    LI Shaoxin; HUA Ben; HAN Guangze; WEN Dehua

    2005-01-01

    The origin, existence and evolution of life on the earth depend on the negative entropy flow in the terrestrial system (TS). In this paper, we investigate the mechanisms of different negative entropy flows caused by the vertical heat transfer of water phase transition and the gravitational field effect, and the vertical atmospheric heat transfer and the gravitational field effect, under the influences of the sun's radiation, the photosynthesis of the plants, and the earth's rotation. The magnitude orders and the mechanisms of the abovementioned negative entropy flow are also discussed.

  8. A multi-agent system for monitoring patient flow.

    Science.gov (United States)

    Rosati, Samanta; Tralli, Augusta; Balestra, Gabriella

    2013-01-01

    Patient flow within a healthcare facility may follow different and, sometimes, complicated paths. Each path phase is associated with the documentation of the activities carried out during it and may require the consultation of clinical guidelines, medical literature and the use of specific software and decision aid systems. In this study we present the design of a Patient Flow Management System (PFMS) based on Multi Agent Systems (MAS) methodology. System requirements were identified by means of process modeling tools and a MAS consisting of six agents was designed and is under construction. Its main goal is to support both the medical staff during the health care process and the hospital managers in assuring that all the required documentation is completed and available. Moreover, such a tool can be used for the assessment and comparison of different clinical pathways, in order to identify possible improvementsand the optimum patient flow.

  9. Peculiarities of the Accretion Flow in the System HL CMa

    CERN Document Server

    Semena, Andrey; Buckley, David; Lutovinov, Alexander; Breytenbach, Hannes

    2016-01-01

    The properties of the aperiodic brightness variability for the dwarf nova HL CMa are considered. The variability of the system HL CMa is shown to be suppressed at frequencies above $7\\times10^{-3}$Hz. Different variability suppression mechanisms related to the radiation reprocessing time, partial disk evaporation, and characteristic variability formation time are proposed. It has been found that the variability suppression frequency does not change when the system passes from the quiescent state to the outburst one, suggesting that the accretion flow geometry is invariable. It is concluded from the optical and X-ray luminosities of the system that the boundary layer on the white dwarf surface is optically thick in both quiescent and outburst states. The latter implies that the optically thick part of the accretion flow (disk) reaches the white dwarf surface. The accretion rate in the system, the flow geometry and temperature have been estimated from the variability power spectra and spectral characteristics i...

  10. Numerical simulation of transient flow in horizontal drainage systems

    Institute of Scientific and Technical Information of China (English)

    Ze-yu MAO; Han XIAO; Ying LIU; Ying-jun HU

    2009-01-01

    A numerical simulation model based on the characteristic-based finite-difference method with a time-line interpolation scheme was developed for predicting transient free surface flow in horizontal drainage systems. The fundamental accuracy of the numerical model was first clarified by comparison with the experimental results for a single drainage pipe. Boundary conditions for junctions and bends, which are often encountered in drainage systems, were studied both experimentally and numerically. The numerical model was applied to an actual drainage system. Comparison with a full-scale model experiment indicates that the model can be used to accurately predict flow characteristics in actual drainage networks.

  11. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  12. A contribution about ferrofluid based flow manipulation and locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, K; Zeidis, I; Bohm, V; Popp, J [TU Ilmenau, Fak. f. Maschinenbau, FG Technische Mechanik, Max-Planck-Ring 12, 98693 Ilmenau (Germany)], E-mail: klaus.zimmermann@tu-ilmenau.de, E-mail: jana.popp@tu-ilmenau.de

    2009-02-01

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  13. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  14. A Support System to Tie Apron Strings to Debris Flow

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists from the Chengdubased CAS Institute of Mountain Hazards and Environment (IMHE) recently worked out a decision-making support system for disaster mitigation on debris fans in mountainous regions.As a domestic vanguard, the system plays a key role in the fight against debris flow and helping to reduce casualties.

  15. Load flow computations in hybrid transmission - distributed power systems

    NARCIS (Netherlands)

    Wobbes, E.D.; Lahaye, D.J.P.

    2013-01-01

    We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting

  16. Analysis on Issues of Variable Flow Water System

    Directory of Open Access Journals (Sweden)

    Jinming Yang

    2013-09-01

    Full Text Available Variable flow water system has played an important role in the field of energy saving with the Electronic Variable Frequency Drive (VFD widely used in practical projects. How to control the frequency converter to work properly is an essential issue which we must first emphatically solve. The control technology of frequency converter is closely related to characteristics of pumps. Based on the mathmatical a model of pumps with or without inverters, the article discusses some issues in detail, such as inverters configuration, flow rate regulation and overload. These are key issues of control technology of variable flow water system. For those multiple-pump water systems, the engineers may select synchronous frequency conversion control technology or Add-Sub pumps control technology to achieve the maximum energy-saving benefits.  

  17. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    Science.gov (United States)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  18. Magnetically insulated electron flows in pulsed power systems

    Science.gov (United States)

    Lawconnell, Robert I.

    1989-08-01

    Magnetic insulation is crucial in the operation of large pulsed power systems. Particular attention will be paid to describing magnetic insulation in realistic pulsed power systems. A theoretical model is developed that allows the production of self consistent magnetically insulated laminar flows in perturbed cylindrical systems given only the electron density profile. The theory is checked and justified by detailed comparisons with results from a 2-dimensional electromagnetic code, MASK. The procedure followed in the theoretical development is to use the relativistic Vlasov equation, Ampere's law and Gauss' law, to obtain a relation between the density profile and the velocity profile for insulated flows. Given the density profile and the corresponding derived velocity profile, a self consistent flow solution is obtained by means of Maxwell's equations. It is checked by taking a special case (corresponding to no perturbations) which results in the well known Brillouin flow theory. Emphasis is placed on determining the magnetic insulation threshold of a pulsed power system employing a plasma erosion opening switch. The procedure employed in the computational study is to vary critical aspects of the pulsed power system and then note whether magnetic insulation breaks down. The point at which magnetic insulation breaks down (as a function of geometry, load impedance, and applied voltage) is the magnetic insulation threshold for the system.

  19. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    Science.gov (United States)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  20. Design and Implementation of Automatic Air Flow Rate Control System

    Science.gov (United States)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  1. Shock-induced turbulent flow in baffle systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A.L. [Lawrence Livermore National Lab., CA (United States); Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany)

    1993-07-01

    Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.

  2. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The...

  3. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  4. Three-Phase Load Flow for Unbalanced Systems.

    Science.gov (United States)

    Chang, Yih-Ping

    Traditionally, transmission systems are assumed to be balanced in power system analysis. A single phase positive sequence circuit is used in transmission system load flow analysis to simplify the study. However, when untransposed transmission lines are used in a power system due to economic considerations, space limitation; or when large unbalanced load is on the system; or when an unbalance contingency occurs on the system, this assumption may not hold true. The unbalance condition in some isolated systems are so precarious that disaster can result. One such incident occurred on a generator unit of the third nuclear power plant of Taipower in 1985. In that particular case, the turbine blades were broken and a spark ignited the liquid hydrogen when the blade vibration resonated with the 120.5 Hz rotor current. One cause of this rotor current generation is system unbalance. The unbalanced three-phase load flow program is needed in today's power system analysis. An advanced three-phase unbalanced transmission load flow program, capable of locating the unbalanced problem of large electric network systems, was proposed to be developed and tested in this research. Features of this program include simultaneous power flow of multiple voltage levels on an individual phase basis; PV bus generator, cogenerator, transformer simulation, and load modeling. It is found that delta-grounded wye step-up transformer reduces the convergence speed greatly. When too many delta-grounded wye step-up transformers exist in a large scale system and a quick approximate result of the unbalance conditions is needed, these step-up transformers can be substituted by grounded-wye to grounded-wye type transformers. This is tested on a Taipower system case which included 345KV, 161KV and 69KV feeders, network transformers, 34 PV bus generators and 188 three-phase buses. Impending unbalance problems in Taipower system were located. When not too many delta-grounded wye type transformers are in the

  5. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  6. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  7. Thermal power system analysis using a generalized network flow model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, John Arun [Former Senior Design Engineer, Power System Analysis and Control Group, Bharat Heavy Electricals Limited, New Delhi (India); Chebiyam, Radhakrishna [Former Director, Academic Staff College, JNT University, Hyderabad-72 (India)

    2012-07-01

    This paper analyzes an Integrated Thermal Power System using a Multiperiod Generalized Network Flow Model. The thermal system analysis is carried out by taking into account the complex dynamics involved in utilizing multiple energy carriers (coal, diesel and natural gas). The model comprises energy source nodes, energy transformation nodes, energy storage nodes, energy demand nodes and their interconnections. The solution to the integrated energy system problem involves the evaluation of energy flows that meet the electricity demand at minimum total cost, while satisfying system constraints. This is illustrated through the India case study using a minimum time-step of one hour. MATLAB based software was developed for carrying out this study. TOMLAB/CPLEX software was utilized for obtaining the optimal solution. The model and the methodology utilized for conducting the study would be of interest to those involved in integrated energy system planning for a country or a region.

  8. Modeling of D-STATCOM in distribution systems load flow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents modeling of Distribution STATCOM (D-STATCOM) in load flow calculations for the steadystate voltage compensation. An accurate model for D-STATCOM is derived to use in load flow calculations. The rating of this device as well as the direction of required reactive power injection for voltage compensation in the desired value (1 p.u.) is derived and discussed analytically and mathematically by the phasor diagram method. Furthermore, an efficient method for node and line identification used in load flow calculations is presented. The validity of the proposed model is examined by using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of D-STATCOM for under voltage problem mitigation approach in the distribution networks is determined. The results validate the proposed model for DSTATCOM in large distribution systems.

  9. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  10. From Flow Logic to Static Type Systems in Coordination Languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, René Rydhof;

    2008-01-01

    ; therefore, the correctness properties cannot be statically enforced. By contrast, static analysis approaches based on Flow Logic usually guarantee properties statically. In this paper we show how to combine these two approaches to obtain a static type system for describing secure access to tuple spaces...

  11. Numerical analysis of complex fluid-flow systems

    Science.gov (United States)

    Holland, R. L.

    1980-01-01

    Very flexible computer-assisted numerical analysis is used to solve dynamic fluid-flow equations characterizing computer-controlled heat dissipation system developed for Space lab. Losses caused by bends, ties, fittings, valves, and like are easily included, and analysis can solve both steady-state and transient cases. It can also interact with parallel thermal analysis.

  12. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    of container ships. The purpose of the model is to describe the important dynamics of the system, such as nonlinearities, transport delays and closed circuit flow dynamics to enable the model to be used for control design and simulation. The control challenge is related to the highly non-standard type of step...

  13. On the Curvature and Heat Flow on Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    Ohta Shin-ichi

    2014-01-01

    Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

  14. Flow induced noise modelling for industrial piping systems

    NARCIS (Netherlands)

    Gijrath, H.; Ǎbom, M.

    2003-01-01

    Noise from e.g. gas-transport piping systems becomes more and more a problem for plants located close to urban areas. Too high noise levels are unacceptable and will put limitations on the plant capacity. Flow-induced noise of valves, orifices and headers installed in the installation plays a domina

  15. Ultrasound Vector Flow Imaging: Part II: Parallel Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.;

    2016-01-01

    ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed....

  16. Vision System for Relative Motion Estimation from Optical Flow

    Directory of Open Access Journals (Sweden)

    Sergey M. Sokolov

    2010-08-01

    Full Text Available For the recent years there was an increasing interest in different methods of motion analysis based on visual data acquisition. Vision systems, intended to obtain quantitative data regarding motion in real time are especially in demand. This paper talks about the vision systems that allow the receipt of information on relative object motion in real time. It is shown, that the algorithms solving a wide range of practical problems by definition of relative movement can be generated on the basis of the known algorithms of an optical flow calculation. One of the system's goals is the creation of economically efficient intellectual sensor prototype in order to estimate relative objects motion based on optic flow. The results of the experiments with a prototype system model are shown.

  17. The Distributed Workflow Management System--FlowAgent

    Institute of Scientific and Technical Information of China (English)

    王文军; 仲萃豪

    2000-01-01

    While mainframe or 2-tier client/server system have serious problems in flexibility and scalability for the large-scale business processes, 3-tier client/server architecture and object-oriented system modeling which construct business process on service components seem to bring software system some scalability. As enabling infrastructure for object-oriented methodology, distributed WFMS (Work-flow Management System) can flexibly describe business rules among autonomous 'service tasks', and support scalability of large-scale business process. But current distributed WFMS still have difficulty to manage a large number of distributed tasks, the 'multi-TaskDomain' architecture of FlowAgent will try to solve this problem, and bring a dynamic and distributed environment for task-scheduling.

  18. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into the existing power flow program based on fast decoupled method. The presented method was tested on the multimachine power system. Results: The transmission line loss of the system with and without HVDC was compared. Conclusion: From the simulation results, the HVDC can reduce transmission line loss of power system.

  19. Model of Integration of Material Flow Control System with MES/ERP System via Cloud Computing

    National Research Council Canada - National Science Library

    Peter Peniak

    2014-01-01

    This article deals with a model of application gateway for integration of Material Flow Control System with ERP/MES systems, which are provided by Cloud Computing and Software as Service delivery model...

  20. Obtaining Internet Flow Statistics by Volunteer-Based System

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Bujlow, Tomasz

    2012-01-01

    In this paper we demonstrate how the Volunteer Based System for Research on the Internet, developed at Aalborg University, can be used for creating statistics of Internet usage. Since the data is collected on individual machines, the statistics can be made on the basis of both individual users......, and average flow durations. The paper is concluded with a discussion on what further statistics can be made, and the further development of the system....

  1. Porcine skin flow-through diffusion cell system.

    Science.gov (United States)

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  2. An annotation system for 3D fluid flow visualization

    Science.gov (United States)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  3. Model of Integration of Material Flow Control System with MES/ERP System via Cloud Computing

    Directory of Open Access Journals (Sweden)

    Peter Peniak

    2014-05-01

    Full Text Available This article deals with a model of application gateway for integration of Material Flow Control System with ERP/MES systems, which are provided by Cloud Computing and Software as Service delivery model. The developed gateway interface is supposed to cover fundamental requirements of production systems for customization and real-time control of material flow within manufacturing processes. Designed solution has been tested and evaluated for High Bay Storage system in a real production environment

  4. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  5. Continuous-flow free acid monitoring method and system

    Science.gov (United States)

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  6. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  7. OPTIMISATION OF MANTLE TANKS FOR LOW FLOW SOLAR HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1996-01-01

    A model, describing the heat transfer coefficients in the mantle of a mantle tank has been developed. The model is validated by means of measurements with varying operational conditions for different designed mantle tanks. The model has been implemented in an existing detailed mathematical...... programme that simulates the thermal behaviour of low flow SDHW systems. The yearly thermal performance of low flow SDHW systems with different designed mantle tanks has been calculated. The influence of the mantle tank design on the thermal performance is investigated by means of the calculations...... with the programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed...

  8. Development of Saline Flow Systems in Closed Basins

    Science.gov (United States)

    Huntington, J. M.; Halford, K. J.; Garcia, C.

    2011-12-01

    Saline playas frequently occur in closed basins, such as the Humboldt Salt Marsh in Dixie Valley, in west-central Nevada. This playa is the terminus of a local groundwater flow system, is comprised of dense clay, and has shallow groundwater salinities more than 5 times the salinity of sea water (TDS concentrations of 172,000 to 311,900 mg/L). The saline system has developed and continues to expand as surface runoff and groundwater evaporates from the playa surface and dissolved solutes remain. Negligible discharge of fresh groundwater occurs where the saline system is present, because the fresh-water / saltwater interface that abuts the playa is analogous hydraulically to interfaces in coastal aquifers. The period of time necessary to develop a relatively isolated saline flow system was quantified by simulating a hypothetical cross-section with a variable-density groundwater flow and transport model (SEAWAT). Preliminary analysis suggests that the perimeter of saline system expands between 10 and 100 m every 10,000 years.

  9. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    Science.gov (United States)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-08-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: - Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. - Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. - Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  10. A Multiphase Flow Measurement System Comprising an Impedance Cross Correlation (ICC) Device and an Imaging Electromagnetic Flow Meter (IEF).

    OpenAIRE

    Meng, Yiqing; Lucas, Gary

    2012-01-01

    Flow measurements are playing increasingly important roles in many different application areas, such as manufacturing processes and the oil & gas industry. Multiphase flow measurement in particular is becoming increasingly important to the oil industry. This project concerns the design and implementation of a two-phase flow measurement system which integrates an impedance cross correlation (ICC) flow meter - which can be utilized for measuring the local dispersed phase volume fraction distrib...

  11. Knowledge Representation Using Multilevel Flow Model in Expert System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenlin; Yang, Ming [Harbin Engineering University, Harbin (China)

    2015-05-15

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available.

  12. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  13. A new method for flow measurement in cryogenic systems

    Science.gov (United States)

    Grohmann, S.

    2014-03-01

    A new method for mass flow measurement of fluids in pipes is presented; its novelty lies in the capability for intrinsic calibration. The method is founded on a concept, where two independent analytic expressions for the flow rate are formed from the same direct measurement readings (input parameters). If the input parameters were error-free, the two expressions would yield identical results, by definition. This fact can be used as goal function in a minimization routine that removes systematic errors of the inherently error-prone input parameters. The uncertainty of the mass flow measurement is then only influenced by statistical effects and is typically less than 1% with regard to the measured value. The new method is explained by a proof-of-principle that is based on measurements in a large-scale cryogenic system. The intrinsic calibrations can be executed in situ at any moment during operation of a plant, and with no need for a reference standard. While the new method is applicable in any system involving single-phase fluid flow, it offers particular advantages in cryogenic application.

  14. Thinking in Terms of Flow in Design of Software Systems

    Directory of Open Access Journals (Sweden)

    Al-Fedaghi Sabah

    2017-01-01

    Full Text Available This paper examines conceptual models and their application to the task of software system design. With the software development life cycle in mind, the concern here is the initial phases of the design process, when customer needs are investigated, conceptualized, and included in specifications. More specifically, the paper concentrates on the “patterning aspect of cognition” (i.e., object-oriented where pattern refers to recurring templates used by designers in thinking. It is proposed that representation of thinking activity be based on flows of things using flow machines formed by stages (states occurring sequentially in a flow. According to such an approach, a designer’s “thought machine” forms a train of thought that excludes other modes such as procedural and object-oriented modes of thinking. The new idea presented here is that flow-based modelling is used not only as an external representation of the design’s thinking but also as the style of thinking. A thinking style involves how one organizes thoughts and is a “conscious system of design.” The method is illustrated by remodelling examples from the object-oriented paradigm. It seems to have merits that deserve further development.

  15. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  16. Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes

    Science.gov (United States)

    Long, Maureen D.; Wirth, Erin A.

    2013-02-01

    The mantle wedge above subducting slabs is associated with many important processes, including the transport of melt and volatiles. Our understanding of mantle wedge dynamics is incomplete, as the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, measurements of shear wave splitting can constrain the geometry of mantle flow. In order to identify processes that make first-order contributions to the pattern of wedge flow, we have compiled a data set of local S splitting measurements from mantle wedges worldwide. There is a large amount of variability in splitting parameters, with average delay times ranging from ~0.1 to 0.3 s up to ~1.0-1.5 s and large variations in fast directions. We tested for relationships between splitting parameters and a variety of parameters related to subduction processes. We also explicitly tested the predictions made by 10 different models that have been proposed to explain splitting patterns in the mantle wedge. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  17. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  18. Reaction kinetics of fluorite in flow systems and surface chemistry

    Institute of Scientific and Technical Information of China (English)

    张荣华; 胡书敏

    1996-01-01

    The kinetic experiments of fluorite in water-HCl solution in an open-flow system at the temperatures ≤100℃ reveal that the variation of flow rate (U) can change the reaction rate orders from 0 to 2 or higher. In the far from equilibrium systems, the dissolution rates of fluorite in aqueous solutions have a zero order.The reaction rates are controlled by pH values of input solutions. In fact, the reaction rates are related to the concentrations of the active sites occupied by H+ on fluorite surface [SOH]. X-ray photospectroscopy observations on fluorite surface before and after reaction indicate that surface chemical processes control the reaction rates: Cl- cations attach on and enter into surface of fluorite besides H+ when fluorites react with HCl solutions, which affect the reaction rates.

  19. Optimal Power Flow for Distribution Systems under Uncertain Forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-29

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  20. The aerodynamic performance of several flow control devices for internal flow systems

    Science.gov (United States)

    Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.

    1982-01-01

    An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.

  1. Sap flow measurements of lateral tree roots in agroforestry systems.

    Science.gov (United States)

    Lott, J. E.; Khan, A. A. H.; Ong, C. K.; Black, C. R.

    1996-01-01

    Successful extension of agroforestry to areas of the semi-arid tropics where deep reserves of water exist requires that the tree species be complementary to the associated crops in their use of water within the crop rooting zone. However, it is difficult to identify trees suitable for dryland agroforestry because most existing techniques for determining water uptake by roots cannot distinguish between absorption by tree and crop roots. We describe a method for measuring sap flow through lateral roots using constant temperature heat balance gauges, and the application of this method in a study of complementarity of water use in agroforestry systems containing Grevillea robusta A. Cunn. Sap flow gauges were attached to the trunks and roots of Grevillea with minimum disturbance to the soil. Thermal energy emanating from the soil adversely affected the accuracy of sap flow gauges attached to the roots, with the result that the uncorrected values were up to eightfold greater than the true water uptake determined gravimetrically. This overestimation was eliminated by using a calibration method in which nonconducting excised root segments, with sap flow gauges attached, were placed adjacent to the live roots. The power consumption and temperature differentials of the excised roots were used to correct for external sources and internal losses of heat within the paired live root. The fraction of the total sap flow through individual trees supplied by the lateral roots varied greatly between trees of similar canopy size. Excision of all lateral roots, except for one to which a heat balance gauge was attached, did not significantly increase sap flow through the intact root, suggesting that it was functioning at near maximum capacity.

  2. Far from equilibrium energy flow in quantum critical systems

    CERN Document Server

    Bhaseen, M J; Lucas, Andrew; Schalm, Koenraad

    2013-01-01

    We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.

  3. Aging and transmitral flow pattern in patients with systemic hypertension.

    Science.gov (United States)

    Kishida, Yukari; Tanaka, Nobuaki; Ezumi, Tomoko; Hadano, Yasuyuki; Akagawa, Eizo; Hashimoto, Ryo; Kunichika, Hideki; Murata, Kazuya; Hinoda, Yuji; Matsuzaki, Masunori

    2006-12-01

    Currently, the transmitral flow (TMF) pattern is routinely recorded as the first step in the assessment of left ventricular diastolic function. In young, healthy subjects, it is known that the early diastolic flow (E wave) of TMF is larger than the late diastolic flow (A wave). The E/A ratio then gradually decreases with age. This change in the pattern of TMF can be expected to occur earlier in patients with systemic hypertension than in healthy subjects. However, data pertaining to this matter are limited for Japanese patients. The purpose of this study was to investigate the changing pattern of TMF with age in Japanese patients with systemic hypertension. A database of echocardiographic examination reports was surveyed. A total of 553 patients with systemic hypertension (HT group) and 394 patients without hypertension or organic heart disease (control group) were included in this study. The patients were subdivided according to age, after which the E/A ratio was compared for different patient categories and age groups. The E/A ratio gradually decreased with age in the control group, and the mean value of E/A was <1 in the sixth decade. On the other hand, the E/A ratio rapidly decreased and was <1 in the fifth decade in the HT group. In patients in the HT group, the E/A ratio decreased about a decade earlier compared with patients in the control group.

  4. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different m...... pumps connected to the microfluidic system. © 2013 by the authors; licensee MDPI, Basel, Switzerland....

  5. Flow system boundary by D'Agnese and others (1997) for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the flow-system boundary encompassing the regional ground-water flow model by D'Agnese and others (1997). The boundary encompasses an...

  6. A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective

    Science.gov (United States)

    Tarquini, Simone

    2017-08-01

    A simple formula relates lava discharge rate to the heat radiated per unit time from the surface of active lava flows (the "thermal proxy"). Although widely used, the physical basis of this proxy is still debated. In the present contribution, lava flows are approached as open, dissipative systems that, under favorable conditions, can attain a non-equilibrium stationary state. In this system framework, the onset, growth, and demise of lava flow units can be explained as a self-organization phenomenon characterized by a given temporal frequency defined by the average life span of active lava flow units. Here, I review empirical, physical, and experimental models designed to understand and link the flow of mass and energy through a lava flow system, as well as measurements and observations that support a "real-world" view. I set up two systems: active lava flow system (or ALFS) for flowing, fluid lava and a lava deposit system for solidified, cooling lava. The review highlights surprising similarities between lava flows and electric currents, which typically work under stationary conditions. An electric current propagates almost instantaneously through an existing circuit, following the Kirchhoff law (a least dissipation principle). Flowing lavas, in contrast, build up a slow-motion "lava circuit" over days, weeks, or months by following a gravity-driven path down the steepest slopes. Attainment of a steady-state condition is hampered (and the classic thermal proxy does not hold) if the supply stops before completion of the "lava circuit." Although gravity determines initial flow path and extension, the least dissipation principle means that subsequent evolution of mature portions of the active lava flow system is controlled by increasingly insulated conditions.

  7. Flow Transport in Microtubes Inspired by Insect Respiratory Systems

    Science.gov (United States)

    Aboelkaasem, Yasser; Staples, Anne

    2010-11-01

    The mechanics of insect respiration and tracheal ventilation generally follow either highly discontinuous, or cyclic gas exchange patterns. In the former, gases are exchanged by diffusion, while in the latter, recent imaging of internal respiratory flow dynamics in insects performed at the x-ray synchrotron imaging facility at Argonne indicates that convective gas exchange is accomplished by changes in internal pressure due to rhythmic compressions of the tracheal tubes that comprise the respiratory network. These localized tracheal compressions are induced by global body movements and are used to enhance the oxygen transport to the tissue. Inspired by the dynamics of insect respiratory networks in the cyclic gas exchange regime, we study fluid transport in a mixed rigid/elastic microtube that undergoes localized single and multiple periodic collapses. The latter induces a streaming of flows and therefore enhances convection and flow transport in the tube downstream of the collapse site. The shape of the microtube, the material properties, and the compression and reinflation spatial and temporal profiles are selected to mimic those observed in insect tracheal tubes. A low Reynolds number assumption and lubrication theory are used to develop a mathematical model for the system. The effects of tube shape, collapse amplitude, collapse-to-collapse distance, and collapse phase lags on the net flow rate, pressure gradient, wall shear stress, velocity are investigated.

  8. Nanoparticle-based assays in automated flow systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Marieta L.C. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Pinto, Paula C.A.G., E-mail: ppinto@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Santos, João L.M., E-mail: joaolms@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Saraiva, M. Lúcia M.F.S., E-mail: lsaraiva@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Araujo, André R.T.S. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, n° 50, 6300-559 Guarda (Portugal)

    2015-08-19

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section.

  9. Continuous-Flow System Produces Medical-Grade Water

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R.

    2009-01-01

    A continuous-flow system utilizes microwave heating to sterilize water and to thermally inactivate endotoxins produced in the sterilization process. The system is designed for use in converting potable water to medical-grade water. Systems like this one could be used for efficient, small-scale production of medical- grade water in laboratories, clinics, and hospitals. This system could be adapted to use in selective sterilization of connections in ultra-pure-water-producing equipment and other equipment into which intrusion by microorganisms cannot be tolerated. Lightweight, port - able systems based on the design of this system could be rapidly deployed to remote locations (e.g., military field hospitals) or in response to emergencies in which the normal infrastructure for providing medical-grade water is disrupted. Larger systems based on the design of this system could be useful for industrial production of medical-grade water. The basic microwave-heating principle of this system is the same as that of a microwave oven: An item to be heated, made of a lossy dielectric material (in this case, flowing water) is irradiated with microwaves in a multimode microwave cavity. The heating is rapid and efficient because it results from absorption of microwave power throughout the volume of the lossy dielectric material. In this system, a copper tube having a length of 49.5 cm and a diameter of 2.25 cm serves as both the microwave cavity and the sterilization chamber. Microwave power is fed via a coaxial cable to an antenna mounted inside the tube at mid-length (see figure). Efficient power transfer occurs due to the shift in wavelength associated with the high permittivity of water combined with the strong coupling of 2.45-GHz microwaves with rotational-vibrational transitions of the dipolar water molecule.

  10. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  11. Sequential feasible optimal power flow in power systems

    Institute of Scientific and Technical Information of China (English)

    HAN ZhenXiang; JIANG QuanYuan; CAO YiJia

    2009-01-01

    A sequential feasible optimal power flow (OPF) method is developed for large-scale power systems. One of the outstanding features of this method is that it can maintain feasibility for both equality and inequality constraints during iterations. In sequential feasible OPF, every iteration consists of two stages: Objective improving stage and feasibility enforcing stage. Analytical basis for each stage is provided. Numerical studies on various power systems up to 2383 buses indicate that the proposed feasible approach is promising. Compared with the conventional OPF algorithms, such as interior point method, the proposed sequential feasible OPF approach can be terminated at any iteration and yield a feasible operating point simultaneously.

  12. Ward-type Data Flow Diagram Simulating System

    OpenAIRE

    Arisawa, Makoto; Iwatani, Yasuaki; Kato, Juniji

    1989-01-01

    In the present paper we discuss about a Ward-type Data Flow Diagram Simulating System that we implemented. The system works on NEC PC9801/VX personal computer with a mouse. It consists of two parts, DFD editor and DFD Interpreter. The DFD Editor is to draw Ward-type DFD's along with Mini Spec. in the form of Finite State Automaton and Guarded Command. The DFD Interpreter is to simulate the parallel process interactions and to output the results. We have a simple assumption that time sequence ...

  13. VERTICAL FLOW OF GAS-LIQUID-SOLID PARTICLES SYSTEM

    OpenAIRE

    幡手, 泰雄; 野村, 博; 碇, 醇; ハタテ, ヤスオ; ノムラ, ヒロシ; イカリ, アツシ; HATATE, Yasuo; Nomura, Hiroshi; IKARI, Atsushi

    1983-01-01

    It is significant to know the hydrodynamic characteristics of the system in the design and scale-up of reactors containing gas-liquid-solid particles system. As a fundamental study of such a three-phase flow, the gas holdup and the pressure drop were measured in the vertical tubes, through which various mixtures of air, water, and fine glass-sphere, particles were passed. Three kinds of glass particles were used the average sizes of which were 30, 60 and 90 μm. Two kinds of tubes, 15 an...

  14. Particle seeding flow system for horizontal shock tube

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Stephen [Los Alamos National Laboratory; Garcia, Nicolas J. [Los Alamos National Laboratory; Martinez, Adam A. [Los Alamos National Laboratory; Orlicz, Gregory C. [Los Alamos National Laboratory; Prestridge, Katherine P. [Los Alamos National Laboratory

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  15. A model of blood flow in the mesenteric arterial system

    Directory of Open Access Journals (Sweden)

    Cheng Leo K

    2007-05-01

    Full Text Available Abstract Background There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure mainly due to the highly unspecific nature of the disease. Understanding how perfusion is affected during ischemic conditions can be a useful clinical tool which can help clinicians during the diagnosis process. As a first step towards this final goal, a computational model of the gastrointestinal system has been developed and used to simulate realistic blood flow during normal conditions. Methods An anatomically and biophysically based model of the major mesenteric arteries has been developed to be used to simulate normal blood flows. The computational mesh used for the simulations has been generated using data from the Visible Human project. The 3D Navier-Stokes equations that govern flow within this mesh have been simplified to an efficient 1D scheme. This scheme, together with a constitutive pressure-radius relationship, has been solved numerically for pressure, vessel radius and velocity for the entire mesenteric arterial network. Results The computational model developed shows close agreement with physiologically realistic geometries other researchers have recorded in vivo. Using this model as a framework, results were analyzed for the four distinct phases of the cardiac cycle – diastole, isovolumic contraction, ejection and isovolumic relaxation. Profiles showing the temporally varying pressure and velocity for a periodic input varying between 10.2 kPa (77 mmHg and 14.6 kPa (110 mmHg at the abdominal aorta are presented. An analytical solution has been developed to model blood flow in tapering vessels and when compared with the numerical solution, showed excellent agreement. Conclusion An

  16. Energy Flows in Low-Entropy Complex Systems

    CERN Document Server

    Chaisson, Eric J

    2015-01-01

    Nature's many complex systems--physical, biological, and cultural--are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence--relating neither entropy nor information, rather energy--suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density--the rate of energy flow per unit mass--can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy t...

  17. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  18. Method and apparatus for controlling the flow rate of mercury in a flow system

    Science.gov (United States)

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  19. CyNC - a method for Real Time Analysis of Systems with Cyclic Data Flows

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens F. Dalsgaard; Larsen, Kim Guldstrand

    2005-01-01

    The paper addresses a novel method for realtime analysis of systems with cyclic data flows. The presented method is based on Network Calculus principles, where upper and lower flow and service constraint are used to bound data flows and processing resources. In acyclic systems flow constraints may...

  20. Analysis of system trustworthiness based on information flow noninterference theory

    Institute of Scientific and Technical Information of China (English)

    Xiangying Kong; Yanhui Chen; Yi Zhuang

    2015-01-01

    The trustworthiness analysis and evaluation are the bases of the trust chain transfer. In this paper the formal method of trustworthiness analysis of a system based on the noninterfer-ence (NI) theory of the information flow is studied. Firstly, existing methods cannot analyze the impact of the system states on the trustworthiness of software during the process of trust chain trans-fer. To solve this problem, the impact of the system state on trust-worthiness of software is investigated, the run-time mutual interfer-ence behavior of software entities is described and an interference model of the access control automaton of a system is established. Secondly, based on the intransitive noninterference (INI) theory, a formal analytic method of trustworthiness for trust chain transfer is proposed, providing a theoretical basis for the analysis of dynamic trustworthiness of software during the trust chain transfer process. Thirdly, a prototype system with dynamic trustworthiness on a plat-form with dual core architecture is constructed and a verification algorithm of the system trustworthiness is provided. Final y, the monitor hypothesis is extended to the dynamic monitor hypothe-sis, a theorem of static judgment rule of system trustworthiness is provided, which is useful to prove dynamic trustworthiness of a system at the beginning of system construction. Compared with previous work in this field, this research proposes not only a formal analytic method for the determination of system trustworthiness, but also a modeling method and an analysis algorithm that are feasible for practical implementation.

  1. Maximum flow-based resilience analysis: From component to system

    Science.gov (United States)

    Jin, Chong; Li, Ruiying; Kang, Rui

    2017-01-01

    Resilience, the ability to withstand disruptions and recover quickly, must be considered during system design because any disruption of the system may cause considerable loss, including economic and societal. This work develops analytic maximum flow-based resilience models for series and parallel systems using Zobel’s resilience measure. The two analytic models can be used to evaluate quantitatively and compare the resilience of the systems with the corresponding performance structures. For systems with identical components, the resilience of the parallel system increases with increasing number of components, while the resilience remains constant in the series system. A Monte Carlo-based simulation method is also provided to verify the correctness of our analytic resilience models and to analyze the resilience of networked systems based on that of components. A road network example is used to illustrate the analysis process, and the resilience comparison among networks with different topologies but the same components indicates that a system with redundant performance is usually more resilient than one without redundant performance. However, not all redundant capacities of components can improve the system resilience, the effectiveness of the capacity redundancy depends on where the redundant capacity is located. PMID:28545135

  2. OPTIMIZATION OF MATERIAL FLOW IN FLEXIBLE MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    J.V.S. BHASKAR,

    2010-12-01

    Full Text Available Flexible manufacturing systems have evolved as a solution to efficient mid-volume production of a variety of part types with low setup time, low work-in-process, low inventory, short manufacturing lead time, high machine utilization and high quality. Flexible manufacturing system (FMS is a computer controlled manufacturing system composed of separate workstations that are inter-connected by automatic material handling system. FMS can produce a number of different parts concurrently. Each part requires different operations in a certain sequence and workstations can typically perform a variety of operations. In this work, a material and information flow analysis as well as an analysis of the department and machines layout is made using genetic algorithm and Tabu search. This method reduces the manufacturing lead-time to produce the components and in-turn gives monetary benefits to the industry.

  3. GAS FLOW CONTROL SYSTEM IN REACTIVE MAGNETRON SPUTTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. M. Klimovich

    2015-01-01

    Full Text Available  It is known that the discharge parameters and the chemical composition of the particles flux impinging onto the substrate during a reactive magnetron sputtering are unstable. As a result spontaneous transitions between the «metal» mode of the target surface and the «poisoned» mode of the target surface have been observed. This leads to nonrepeatability of the coating compositions from process to process. The aim of this work is to design a gas flow control system for reactive sputtering processes. The control system allows to maintain a steady nonequilibrium state of the magnetron discharge in transition mode where the chemical state of the target surface is unstable. The intensities of spectral lines of the discharge spectrum are proposed as control parameters. Photodiode detectors were used for registration of intensities of spectral lines. A gas flow control system regulates argon and reactive gas flow automatically, using feedback signals from photodiode detectors on the intensities of the spectral lines, vacuum gauge, ion current sensor, sensors of discharge current and voltage. As an example, the process of reactive magnetron Ti-Al-N deposition is considered. The following discharge parameters are controlled during sputtering a composite target based on Ti with Al cylindrical inserts: current, voltage, total pressure of a gas mixture, substrate temperature, bias voltage and current of the substrate. Nitrogen flow was controlled by the spectral line intensity of titanium TiI 506,5 nm. The value of the line intensity is connected with the value of reactivity. Elemental composition and structure of the Ti-Al-N coatings were studied using Rutherford backscattering spectroscopy, scanning electron microscopy and X-ray diffraction. It was found, that stoichiometric Ti-Al-N coatings have a globular structure, enhanced hardness and low friction coefficient in contrast to Ti-Al-N coatings with nonstoichiometric composition, which have a

  4. Characterization of Fluid Flow in Paper-Based Microfluidic Systems

    Science.gov (United States)

    Walji, Noosheen; MacDonald, Brendan

    2014-11-01

    Paper-based microfluidic devices have been presented as a viable low-cost alternative with the versatility to accommodate many applications in disease diagnosis and environmental monitoring. Current microfluidic designs focus on the use of silicone and PDMS structures, and several models have been developed to describe these systems; however, the design process for paper-based devices is hindered by a lack of prediction capability. In this work we simplify the complex underlying physics of the capillary-driven flow mechanism in a porous medium and generate a practical numerical model capable of predicting the flow behaviour. We present our key insights regarding the properties that dictate the behaviour of fluid wicking in paper-based microfluidic devices. We compare the results from our model to experiments and discuss the application of our model to design of paper-based microfluidic devices for arsenic detection in drinking water in Bangladesh.

  5. In-vitro laser anemometry blood flow systems

    Science.gov (United States)

    Liepsch, Dieter W.; Poll, Axel; Pflugbeil, Gottlieb

    1993-08-01

    Lasers are used in a wide variety of medical applications. While laser catheters have been developed for highly accurate velocity measurements these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  6. Study on flow stability margin by method of system identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Youjie; Jiang Shengyao [Tsinghua Univ., Beijing, BJ (China). Inst. of Nuclear Energy Technology

    1999-11-01

    The main objective of the investigation is to develop a practical technology and method in engineering, based on general control theory, for distinguishing two-phase flow stability and identifying the safety margin by using the system identification method. By combining the two-phase flow stability theory in the thermo-physics field with the system stability theory and the system identification method in the field of information science, a thermo-hydraulic experiment technology with a new concept was developed. The experiment was carried out on the thermo-hydraulic test system HRTL-5 which serves as simulator to the primary circulation of the nuclear heating reactor NHR-5 and was used for investigation on its thermo-physical behavior. Reverse repeat pseudo-random sequences which were added to the steady heat flux as input signal sources and measured flow rates as response function were used in the test. The two-phase flow stability and the stability margin of the natural circulation system were investigated by analyzing the system pulse response function, the decay ratio and the stability boundary under different operational conditions. The results are compared with those obtained by using conventional methods. The test method and typical results obtained are presented in this paper. (orig.) [German] Das Hauptziel der Untersuchung ist die Entwicklung einer Technik und eines Verfahrens um - basierend auf allgemeiner Regelungstheorie - die Stabilitaet einer Zweiphasenstroemung zu bestimmen und unter Verwendung von Methoden zur Systemidentifikation Sicherheitsreserven zu ermitteln. Durch Kombination der Theorie der Zweiphasenstroemungsstabilitaet im Bereich der Thermophysik mit der Systemstabilitaetstheorie und der informationstheoretischen Systemidentifikationsmethode wurde eine thermohydraulische Experimentiertechnik neuartigen Konzepts entwickelt. Die Versuche wurden auf dem Thermohydraulikteststand HRTL-5 ausgefuehrt, der dem Primaeranlauf des Heizreaktors HHR-5

  7. Flooding in urban drainage systems: Coupling hyperbolic conservation laws for sewer systems and surface flow

    CERN Document Server

    Borsche, Raul

    2014-01-01

    In this paper we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the run off on the urban surface modelled by shallow water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow.

  8. Energy Flows in Low-Entropy Complex Systems

    Directory of Open Access Journals (Sweden)

    Eric J. Chaisson

    2015-12-01

    Full Text Available Nature’s many complex systems—physical, biological, and cultural—are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence—relating neither entropy nor information, rather energy—suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density—the rate of energy flow per unit mass—can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.

  9. Decomposing the Unsteady Flow Routing in River Systems

    Science.gov (United States)

    Gomez Cunya, L. A.; Leon, A.; Gibson, N. L.; Vasylkivska, V.

    2014-12-01

    This work presents an optimization-based domain decomposition strategy for unsteady flow routing in complex river systems. This strategy couples the domain decomposition technique with a Precomputed Channel Hydraulics Ensemble approach, known also as HydraulicPerformance Graph (HPG), which utilizes precomputed solutions along reaches on a river system. These solutions are stored in a database. While efficient and robust, HPGs requires extensive memory allocation, especially for high resolution simulations. Decomposing the river system into subdomains reduces computer memory constraints as each sub-domain is solved independently. Further, an optimization method is used to couple the sub-domains using the stored precomputed solution. In turn, the computational efficiency of the HPG approach allows the optimization-based scheme to be competitive with a whole domain methodology. The combined strategy is expected to reduce the overall computational time for large-scale problems. This work discusses the results of the application to the Columbia River (Northwest USA).

  10. Security Constrained Distributed Optimal Power Flow of Interconnected Power Systems

    Institute of Scientific and Technical Information of China (English)

    BINKOU Alhabib; YU Yixin

    2008-01-01

    The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PCIPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.

  11. The ATLAS Data Flow System for Run 2

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  12. The ATLAS Data Flow System for LHC Run II

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  13. Ultrasound Vector Flow Imaging: Part I: Sequential Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.

    2016-01-01

    The paper gives a review of the most important methods for blood velocity vector flow imaging (VFI) for conventional, sequential data acquisition. This includes multibeam methods, speckle tracking, transverse oscillation, color flow mapping derived vector flow imaging, directional beamforming...

  14. Flow Instability and Its Control in Compression Systems

    Institute of Scientific and Technical Information of China (English)

    Jingyi Chen

    2003-01-01

    This paper reviews the development in the research of flow instability and its control over the recent ten or more years. This development was largely stimulated by the novel idea of active control of the aerodynamic instability in compressors. Three topics are covered in the paper, which appeared as the major themes towards the goal of stability enhancement. The first topic is the pre-stall behavior of rotating stall, which plays a vital role in designing the control scheme and discovering the convenient route to find the causal factors of flow disturbances potentially leading to stall. The second topic is the mechanism of blade passage flow during stall and its inception, which is the basic knowledge needed to manipulate the blade design for the stability improvement and eventually to predict the unsteady performance of the compressor system. The third topic is the recent trend of the control strategy based on the learning of active vs. passive methods. To introduce to the discussion of these topics, a brief description of the history of the recent development is given at the beginning of the paper. In discussing each topic, future works are also highlighted to enhance the further development of this long-standing problem in turbomachinery research and application.

  15. Scaling of flow and transport behavior in heterogeneous groundwater systems

    Science.gov (United States)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  16. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Nativ, R. [Hebrew Univ., Jerusalem (IL); Hunley, A.E. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small.

  17. Fluid Flow Prediction with Development System Interwell Connectivity Influence

    Science.gov (United States)

    Bolshakov, M.; Deeva, T.; Pustovskikh, A.

    2016-03-01

    In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.

  18. Effect of channel arrangement on fluid flow in PEMFC flow field using serpentine channel system with trapezoidal cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; McAuley, K.B. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemical Engineering

    2005-07-01

    Developments in Computational Flow Dynamics (CFD) software have meant that Proton Exchange Membrane Fuel Cell (PEMFC) modelling is now able to include cell components such as gas channels and porous diffusion layers. This paper discussed a numerical model which was developed to study air flow in the flow plate and gas diffusion layer assembly on the cathode side of a PEMFC. The flow plate in this fuel cell often has serpentine channels, and the porous layer is adjacent to the flow plate in order to diffuse the air to the catalyst layer. Flow crossover of air through the porous diffusion layer from one part of the channel to another can occur as a result of pressure differences between different parts of the channel. The numerical study was undertaken to compare the cases of a single channel and 2 parallel channels, with the channels having a trapezoidal cross-sectional shape. The objective of the study was to examine the effect of the flow plate geometry on the basic fluid flow through the plate. Flow was assumed to be 3-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer was described using the Darcy model. Dimensionless governing equations were solved using FIDAP, a commercial CFD solver. The results indicate that single channel systems have a greater maximum flow rate difference than the parallel channel systems under the conditions considered in the experiment. In addition, the size ratio R of trapezoidal cross-sectional shape has a significant effect on the flow crossover and pressure variation in the flow field. 16 refs., 15 figs.

  19. Broadband measuring system for unsteady flow investigation in wind tunnel

    Science.gov (United States)

    Biriukov, V. I.; Garifullin, M. F.; Korneeva, D. B.; Slitinskaya, A. Ju.

    2016-10-01

    Due to increasingly tough requirements to the accuracy and informativity of the wind tunnel experiments, the urgency has grown of the unsteady flows research. A distinctive feature of such studies is synchronous multichannel measurements of rapidly changing in time process parameters (with a broadband spectrum and characteristic frequencies of 0 Hz to 1000 Hz and above) and also the need for fast processing and storage of large volumes of the data received. To solve these problems and to meet the requirements, TsAGI has developed a measuring system (MS) and the corresponding software. The basic purpose of MS is to conduct transonic buffeting research in T-128 wind tunnel. Besides, it can be used to study separated flow regimes, aeroelastic vibrations, including: classic flutter, stall flutter, limit cycle oscillations, etc. The MS can be used also to study a variety of transient regimes. It is possible to expand the system further on to enhance its performance without introducing any fundamental changes in its structure and software, and without breaking its operability for the period of modernization.

  20. Verification of Information Flow in Agent-Based Systems

    Science.gov (United States)

    Sabri, Khair Eddin; Khedri, Ridha; Jaskolka, Jason

    Analyzing information flow is beneficial for ensuring the satisfiability of security policies during the exchange of information between the agents of a system. In the literature, models such as Bell-LaPadula model and the Chinese Wall model are proposed to capture and govern the exchange of information among agents. Also, we find several verification techniques for analyzing information flow within programs or multi-agent systems. However, these models and techniques assume the atomicity of the exchanged information, which means that the information cannot be decomposed or combined with other pieces of information. Also, the policies of their models prohibit any transfer of information from a high level agent to a low level agent. In this paper, we propose a technique that relaxes these assumptions. Indeed, the proposed technique allows classifying information into frames and articulating finer granularity policies that involve information, its elements, or its frames. Also, it allows for information manipulation through several operations such as focusing and combining information. Relaxing the atomicity of information assumption permits an analysis that takes into account the ability of an agent to link elements of information in order to evolve its knowledge.

  1. Dynamic Flow Control Strategies of Vehicle SCR Urea Dosing System

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; ZHANG Youtong; ASIF Malik

    2015-01-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine’s operating conditions. That will lead to low NOX conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between–8%and 10%to–4%and 2%and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms . The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NOX emission remains almost unchanged. The trade-off between NOX conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine’s operating conditions quickly.

  2. Uncertainty in prediction and simulation of flow in sewer systems

    DEFF Research Database (Denmark)

    Breinholt, Anders

    was obtained with the stochastic method as the preferred. The thesis has demonstrated that the statistical requirements to the formal stochastic approach are very hard to fulfill in practice when prediction steps beyond the one-step is considered. Thus the underlying assumption of the GLUE methodology...... of describing features such as flow constraints, basins and pumps were tested for their ability to describe the output with a time resolution of 15 minutes. Two approaches to uncertainty quantification were distinguished and adopted, the stochastic and the epistemic method. Stochastic uncertainty refers...... to the randomness observed in nature, which is normally irreducible due to the inherent variation of physical systems. Epistemic uncertainty on the contrary arises from incomplete knowledge about a physical system. For quantifying stochastic uncertainties a frequentist approach was applied whereas the generalised...

  3. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    Science.gov (United States)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  4. NUMERICAL INVESTIGATION OF FLOW PATTERNS IN DIFFERENT PUMP INTAKE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAN Jie-min; WANG Ben-cheng; YU Ling-hui; LI Yok-sheung; TANG Ling

    2012-01-01

    A 3-D numerical model for pump intake is established based on the Navier-Stokes equations with the RNG k-εturbulence model and the VOF method to simulate the free surface.The applicability of the proposed model is validated by a test case of non-symmetric pump-intake bay.The predicted locations,structures and shapes of all vortices are in good agreement with those observed in experiments,though with some differences in vorticity strengths.The flow pattern and the efficiency of five types of pump intake systems are studied.The discharge and the velocity uniformity of the intake system are used as indices to evaluate its performance.

  5. Linear system identification of a cold flow circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Panday, R [West Virginia Univ., Morgantown, WV (United States); Woerner, B D [West Virginia Univ., Morgantown, WV (United States); Ludlow, J C [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shadle, L J [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Boyle, E J [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2009-02-01

    Knowledge of the solids circulation rate (SCR) is essential to the control and improved performance of a circulating fluidized bed system. In the present work, the noise model is derived using the prediction error method considering process and measurement noises acting on the cold flow circulating fluidized bed (CFCFB) with a cork particulate material. The outputs of the initial model are the total pressure drop across the riser, the pressure drop across the crossover, the pressure drop across the primary cyclone, the total pressure drop across the stand-pipe, the pressure drop across the loop seal, and the SCR. The stochastic estimate of SCR is determined from the noise model using the stochastic pressure drop estimates. The deterministic estimate is obtained through the inputs taken as move air flow, riser aeration, and loop seal fluidization air that are all independent variables of the given setup and under the control of the user. The theory has been developed to convert a complete blackbox model to a grey box model through the output-to-state transformation such that both the models of the CFCFB consists of all these output variables as the states of the system, and only pressure drops across the system as the output measurements. Thus, the final models do not include any fictitious terms and they are defined only in terms of physical parameters of the given system. Both components of SCR are separately analysed. The combined SCR response of both the noise model and deterministic model is compared with the validation data set of this state variable in terms of modelfit, and the results are shown.

  6. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  7. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.

    Science.gov (United States)

    Noeth, Nadine; Keller, Stephan Sylvest; Boisen, Anja

    2013-12-23

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN) and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  8. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  9. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  10. Trends in Flow-based Biosensing Systems for Pesticide Assessment

    Directory of Open Access Journals (Sweden)

    Jean-Louis Marty

    2006-10-01

    Full Text Available This review gives a survey on the state of the art of pesticide detection usingflow-based biosensing systems for sample screening. Although immunosensor systems havebeen proposed as powerful pesticide monitoring tools, this review is mainly focused onenzyme-based biosensors, as they are the most commonly employed when using a flowsystem. Among the different detection methods able to be integrated into flow-injectionanalysis (FIA systems, the electrochemical ones will be treated in more detail, due to theirhigh sensitivity, simple sample pretreatment, easy operational procedures and real-timedetection. During the last decade, new trends have been emerging in order to increase theenzyme stability, the sensitivity and selectivity of the measurements, and to lower thedetection limits. These approaches are based on (i the design of novel matrices for enzymeimmobilisation, (ii new manifold configurations of the FIA system, sometimes includingminiaturisation or lab-on-chip protocols thanks to micromachining technology, (iii the useof cholinesterase enzymes either from various commercial sources or genetically modifiedwith the aim of being more sensitive, (iv the incorporation of other highly specificenzymes, such as organophosphate hydrolase (OPH or parathion hydrolase (PH and (v thecombination of different electrochemical methods of detection. This article discusses thesenovel strategies and their advantages and limitations.

  11. Contaminant attenuation by shallow aquifer systems under steady flow

    Science.gov (United States)

    Soltani, S. S.; Cvetkovic, V.

    2017-10-01

    We present a framework for analyzing advection-dominated solute transport and transformation in aquifer systems of boreal catchments that are typically shallow and rest on crystalline bedrock. A methodology is presented for estimating tracer discharge based on particle trajectories from recharge to discharge locations and computing their first passage times assuming that the flow pattern is approximately steady-state. Transformation processes can be included by solving one-dimensional reactive transport with randomized water travel time as the independent variable; the distribution of the travel times incorporates morphological dispersion (due to catchment geometry/topography) as well as macro-dispersion (due to heterogeneity of underlying hydraulic properties). The implementation of the framework is illustrated for the well characterized coastal catchment of Forsmark (Sweden). We find that macro-dispersion has a notable effect on attenuation even though the morphological dispersion is significantly larger. Preferential flow on the catchment scale is found to be considerable with only 5% of the Eulerian velocities contributing to transport over the simulation period of 375 years. Natural attenuation is illustrated as a simple (linear decay) transformation process. Simulated natural attenuation can be estimated analytically reasonably well by using basic hydrological and structural information, the latter being the pathway length distribution and average aquifer depth to the bedrock.

  12. Transport and Clogging of Particulate Flow in Fracture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Koplik, Joel [City College of New York, NY (United States)

    2016-10-31

    The aim of the project is to understand the effects of confinement in narrow rough-walled fractures on the transport behavior of fluids and suspended particles in subsurface hydro- carbon reservoirs. A key motivation for the study is that such fracture systems provide the highest throughput in oil and gas extraction and have been the focus of recent industrial activity. The scientific challenge is to understand how the confined geometry alters transport phenomena, and in particular its influence on (diagnostic) tracer transport and the effects of flow channeling and clogging on fluid motion. An important complicating feature of geological fractures is the self-affine fractal nature of their surface roughness, leading to irregular but correlated fluid and particle motion. The key technique used is computer simulation, augmented by analytical calculations and collaboration with outside experimental colleagues when possible. The principal topics studied were fluid permeability, tracer dispersion, flow channeling and anisotropy, particle transport in narrow channels and particle trapping in tight fractures.

  13. Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System

    Science.gov (United States)

    Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng

    2010-02-01

    Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.

  14. Investigation of hydrate formation and transportability in multiphase flow systems

    Science.gov (United States)

    Grasso, Giovanny A.

    The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the

  15. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  16. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    Science.gov (United States)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  17. Exergy Flows inside a One Phase Ejector for Refrigeration Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Khennich

    2016-03-01

    Full Text Available The evaluation of the thermodynamic performance of the mutual transformation of different kinds of exergy linked to the intensive thermodynamic parameters of the flow inside the ejector of a refrigeration system is undertaken. Two thermodynamic metrics, exergy produced and exergy consumed, are introduced to assess these transformations. Their calculation is based on the evaluation of the transiting exergy within different ejector sections taking into account the temperature, pressure and velocity variations. The analysis based on these metrics has allowed pinpointing the most important factors affecting the ejector’s performance. A new result, namely the temperature rise in the sub-environmental region of the mixing section is detected as an important factor responsible for the ejector’s thermodynamic irreversibility. The overall exergy efficiency of the ejector as well as the efficiencies of its sections are evaluated based on the proposed thermodynamic metrics.

  18. Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micron-thin surface hot-film signatures will be used to simultaneously obtain airspeed and flow direction. The flow-angle and airspeed sensor system (FASS) will...

  19. Multi-Use Non-Intrusive Flow Characterization System (FCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  20. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  1. The ATLAS Data Flow system for the Second LHC Run

    CERN Document Server

    Hauser, Reiner; The ATLAS collaboration

    2015-01-01

    After its first shutdown, LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the Readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, the f...

  2. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  3. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  4. Flow visualization using a computerized data acquisition system

    Science.gov (United States)

    Gallington, R.; Sisson, G.

    1981-01-01

    A computer-driven traversing mechanism combined with mass data storage, data reduction programs, and general-purpose graphics programs permits a visualization of complex flows. A unique seven-hole probe is used which permits reasonably accurate measurements of all average flow properties if the local flow angle does not exceed 80 degrees. A description is given of the wake of a lifting canard surface as this wake passes over a wing. The flow includes concentrated and dissipating vortices, large regions of reduced total pressure, and local flow angles up to 60 deg. All these features can be clearly seen and accurately located in the graphical output.

  5. Load flow solutions of large systems on small computers using novel piecewise fast decoupled load flow algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, T.; Bijwe, P.R.; Kothari, D.P.

    1982-10-01

    This paper presents the development of a highly effective piecewise fast developed load flow algorithm which has a promising potential for practical application. The algorithm requires minimal storage which is almost independent of the sytem size thus enabling power flow solutions of large systems being accomplished on available small size computers and microprocessors. The potential of the suggested algorithm for practical application has been demonstrated by obtaining the load flow results for a few sample systems. It is envisaged that the algorithm would immensely appeal to the utility engineers, since the engineer not only needs the minimum memory for solving the problem but also can develop the program with utmost care and confidence since the algorithm is devoid of such programming complexities like sparsity exploitation and optimal ordering inherent with modern load flow programs. It is believed that the algorithm would find great popularity with the utilities.

  6. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  7. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    KAUST Repository

    Chen, Jie

    2014-07-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.

  8. Clogging transition of many-particle systems flowing through bottlenecks

    Science.gov (United States)

    Zuriguel, Iker; Parisi, Daniel Ricardo; Hidalgo, Raúl Cruz; Lozano, Celia; Janda, Alvaro; Gago, Paula Alejandra; Peralta, Juan Pablo; Ferrer, Luis Miguel; Pugnaloni, Luis Ariel; Clément, Eric; Maza, Diego; Pagonabarraga, Ignacio; Garcimartín, Angel

    2014-12-01

    When a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify the transition to clogging in terms of the divergence of the average time lapse. Such a unified description allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating a room and might become a starting point for researchers working in a wide variety of situations where clogging represents a hindrance.

  9. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  10. Clogging transition of many-particle systems flowing through bottlenecks.

    Science.gov (United States)

    Zuriguel, Iker; Parisi, Daniel Ricardo; Hidalgo, Raúl Cruz; Lozano, Celia; Janda, Alvaro; Gago, Paula Alejandra; Peralta, Juan Pablo; Ferrer, Luis Miguel; Pugnaloni, Luis Ariel; Clément, Eric; Maza, Diego; Pagonabarraga, Ignacio; Garcimartín, Angel

    2014-12-04

    When a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify the transition to clogging in terms of the divergence of the average time lapse. Such a unified description allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating a room and might become a starting point for researchers working in a wide variety of situations where clogging represents a hindrance.

  11. Acoustic module of the Acquabona (Italy debris flow monitoring system

    Directory of Open Access Journals (Sweden)

    A. Galgaro

    2005-01-01

    Full Text Available Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys.

  12. Development of an aerodynamic measurement system for hypersonic rarefied flows.

    Science.gov (United States)

    Ozawa, T; Fujita, K; Suzuki, T

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  13. Disaster Reduction Decision Support System Against Debris Flows and Landslides Along Highway in Mountainous Area

    Institute of Scientific and Technical Information of China (English)

    LiFa-bin; WeiFang-qiang; CuiPeng; ZhouWan-cun

    2003-01-01

    Highways in mountainous areas are easy to be damaged by such natural disasters as debris flows and landslides and disaster reduction decision support system (DRDSS) is one of the important means to mitigate these disasters. Guided by the theories and technologies of debris flow and landslide reduction and supported by geographical information system (GIS), remote sensing and database techniques, a DRDSS against debris flow and landslide along highways in mountainous areas has been established on the basis of such principles as pertinence, systematicness, effectiveness, easy to use, open and expandability. The system consists of database, disaster analysis models and decisions on reduction of debris flows and landslides, mainly functioning to zone disaster dangerous degree, analyze debris flow activity,simulate debris flow deposition and diffusion, analyze landslide stability, select optimal highway renovation scheme and plan disaster prevention and control engineering. This system has been applied successfully to the debris flow and landslide treatment works along Palongzangbu Section of Siehuan-Tibet Highway.

  14. Disaster Reduction Decision Support System Against Debris Flows and Landslides Along Highway in Mountainous Area

    Institute of Scientific and Technical Information of China (English)

    Li Fa-bin; Wei Fang-qiang; Cui Peng; Zhou Wan-cun

    2003-01-01

    Highways in mountainous areas are easy to be damaged by such natural disasters as debris flows and landslides and disaster reduction decision support system (DRDSS) is one of the important means to mitigate these disasters. Guided by the theories and technologies of debris flow and landslide reduction and supported by geographical information system (GIS), remote sensing and database techniques, a DRDSS against debris flow and landslide along highways in mountainous areas has been established on the basis of such principles as pertinence, systematicness, effectiveness, easy to use, open and expandability. The system consists of database, disaster analysis models and decisions on reduction of debris flows and landslides, mainly functioning to zone disaster dangerous degree, analyze debris flow activity,simulate debris flow deposition and diffusion, analyze landslide stability, select optimal highway renovation scheme and plan disaster prevention and control ergineering. This system has been applied successfully to the debris flow and landslide treatment works along Palongzangbu Section of Sichuan-Tibet Highway.

  15. Adhesion to model surfaces in a flow through system

    Energy Technology Data Exchange (ETDEWEB)

    Habeger, C.F.; Linhart, R.V.; Adair, J.H. [Univ. of Florida, Gainesville, FL (United States)

    1995-12-31

    A hydrodynamic method for measuring the adhesion of particles to a surface has been designed. By using hydrodynamic flow to remove particles from a model surface, the adhesive strength of particles to the surface can be measured using a flow-through cell. The hydrodynamic force required to displace a particle is calculated using the cell dimensions and the flow rate in Poiseuille`s equation.

  16. Load flow solution of large systems on small computers using novel piecewise fast decoupled load flow algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, J.; Bijwe, P.R.; Kothari, D.P.

    1982-10-01

    A highly effective piecewise fast developed load flow algorithm has been developed which has a promising potential for practical application. The algorithm requires minimal storage which is almost independent of the systems size thus enabling power flow solutions of large systems being accomplished on available small size computers and microprocessors. The potential of the suggested algorithm for practical applications has been demonstrated by obtaining the load flow results for a few sample systems. It is envisaged that the algorithm would immensely appeal to utility engineers who not only need the minimum memory for solving the problem but also can develop the program with utmost care and confidence since the algorithm i devoid of such programming complexities like sparsity exploitation and optimal ordering inherent with modern load programs.

  17. High-Frequency Acoustic Flow Visualization (HFAFV) Sonar Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Flow visualization of fluid processes on the continental shelf; e.g., internal tides, ear instabilities, and nonlinear internal gravity waves (solitons)....

  18. Optical density measurements in a multiphase cryogenic fluid flow system

    Science.gov (United States)

    Korman, Valentin; Wiley, John; Gregory, Don A.

    2006-05-01

    An accurate determination of fluid flow in a cryogenic propulsion environment is difficult under the best of circumstances. The extreme thermal environment increases the mechanical constraints, and variable density conditions create havoc with traditional flow measurement schemes. Presented here are secondary results of cryogenic testing of an all-optical sensor capable of a mass flow measurement by directly interrogating the fluid's density state and a determination of the fluid's velocity. The sensor's measurement basis does not rely on any inherent assumptions as to the state of the fluid flow (density or otherwise). The fluid sensing interaction model will be discussed. Current test and evaluation data and future development work will be presented.

  19. Volumetric flow rate comparisons for water and product on pasteurization systems.

    Science.gov (United States)

    Schlesser, J E; Stroup, W H; McKinstry, J A

    1994-04-01

    A flow calibration tube system was assembled to determine the volumetric flow rates for water and various dairy products through a holding tube, using three different flow promotion methods. With the homogenizer, the volumetric flow rates of water and reconstituted skim milk were within 1.5% of each other. With the positive displacement pump, the flow rate for reconstituted skim milk increased compared with that for water as the pressure increased or temperature decreased. The largest increase in flow rate was at 310-kPa gauge and 20 degrees C. On a magnetic flow meter system, the volumetric flow rates of water and reconstituted skim milk were within .5% of the flow rate measured from the volume collected in a calibrated tank. The flow rate of whole milk was similar to that of skim milk on the three flow promoters evaluated. Ice milk mix increased the flow rate of the positive displacement pump, but not the homogenizer and magnetic flow meter system.

  20. Preheating Cold Gas Thruster Flow Through a Thermal Energy Storage Conversion System

    Science.gov (United States)

    2013-01-01

    Journal Article 3. DATES COVERED (From - To) January 2013- October 2013 4. TITLE AND SUBTITLE Preheating Cold Gas Thruster Flow Through a Thermal Energy... Gas Thruster Flow through a Thermal Energy Storage Conversion System Michael R. Reid1 United States Air Force, Colorado Springs, CO, 80840 David B...specific impulse relative to a cold gas flow. Electric propulsion systems, the primary competitor to solar thermal propulsion systems, rely on the rather

  1. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    Energy Technology Data Exchange (ETDEWEB)

    Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  2. Development of digital flow control system for multi-channel variable-rate sprayers

    Science.gov (United States)

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  3. CyNC: A method for real time analysis of systems with cyclic data flows

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard

    2006-01-01

    The paper addresses a novel method for performance analysis of distributed realtime systems with complex, and especially cyclic data flow graphs. The presented method is based on Network Calculus principles, where flow and service constraint functions are used to bound data flows and processing...

  4. Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems.

    Science.gov (United States)

    Teodósio, Joana S; Silva, Filipe C; Moreira, Joana M R; Simões, Manuel; Melo, Luís F; Alves, Manuel A; Mergulhão, Filipe J

    2013-09-01

    Semi-circular flow cells are often used to simulate the formation of biofilms in industrial pipes with circular section because their planar surface allows easy sampling using coupons. Computational fluid dynamics was used to assess whether the flow in pipe systems can be emulated by the semi-circular flow cells that are used to study biofilm formation. The results show that this is the case for Reynolds numbers (Re) ranging from 10 to 1000 and 3500 to 10,000. A correspondence involving the friction factor was obtained in order to correlate any semi-circular flow cell to any circular pipe for Re between 10 and 100,000. The semi-circular flow cell was then used to assess experimentally the effect of Reynolds number (Re = 4350 and 6720) on planktonic cell concentration and biofilm formation using Escherichia coli JM109 (DE3). Lower planktonic cell concentrations and thicker biofilms (>1.2 mm) were obtained with the lower Re.

  5. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren; Green, Nick; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These resul...

  6. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    National Research Council Canada - National Science Library

    S. Ravindra; Chintalapudi V. Suresh; S. Sivanagaraju; V.C. Veera Reddy

    2017-01-01

    .... An improved teaching learning based optimization (ITLBO) algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC...

  7. Focusing of the Flow Capture for Local Exhaust Ventilation Systems

    Directory of Open Access Journals (Sweden)

    S. Y. Spotar

    2010-01-01

    Full Text Available Problem statement: The extraction hoods commonly used as inlet element of the local ventilation systems exhibit limited emission capture over moderate distances from the source of the hazardous emissions. Proposed inclusion of a swirling peripheral jet was found to increase the effective length over which the extraction hood successfully captures harmful fumes. However information on a detailed pattern field of the vortex focused inflow was insufficient thus restricting the potential applications of the method. Approach: The numerical modeling study of the focusing by vortex inflow was accomplished to reveal the implication of the key operating parameters. In addition the visualization technique was applied to confirm the fume capturing features. Results: The simulated overall flow field patterns for an inflow of 10 m sec-1 value under sets of 0.5-1.5 swirl numbers and 0- 21 m sec-1 outcome velocities of peripheral jet showed the arrangement and contour of the capture stream. Under optimum parameters the capture zone derived from the vector velocity field yielded up to 4 inlet diameters near-axis distance from the extractor entrance. The complimentary observations using laser sheet visualization technique confirmed the enhanced capturing capacity from the mist or smoke sources of emission. Conclusion: Through numerical modeling study the capacity of peripheral vortex shielding to generate the more concentrated exhaust inflow comparing with action of the conventional hood has been elucidated.

  8. Properties of train traffic flow in a moving block system

    Institute of Scientific and Technical Information of China (English)

    Wang Min; Zeng Jun-Wei; Qian Yong-Sheng; Li Wen-Jun; Yang Fang; Jia Xin-Xin

    2012-01-01

    The development direction of railways is toward the improvement of capacity and service quality,where the service quality includes safety,schedule,high speed,and comfort.In light of the existing cellular automaton models,in this paper,we develop a model to analyze the mixed running processes of trains with maximal speeds of 500 km/h and 350 km/h respectively in the moving block system.In the proposed model,we establish some sound rules to control the running processes of a train,where the rules include the departure rules in the intermediate stations,the overtaking rules,and the conditions of speed limitation for a train stopping at a station or passing through a station.With the consideration of the mixed ratio and the distance between two adjacent stations,the properties of the train traffic flow (including capacity and average speed) are simulated.The numerical results show that the interactions among different trains will affect the capacity,and a proper increase of the spatial distance between two adjacent stations can enhance the capacity and the average speed under the moving block.

  9. Application of the flow dimension concept for numerical drawdown data analyses in mixed-flow karst systems

    Science.gov (United States)

    Giese, M.; Reimann, T.; Liedl, R.; Maréchal, J.-C.; Sauter, M.

    2017-01-01

    A numerical discrete conduit-continuum model is employed to investigate large-scale groundwater abstraction in karst aquifers. The application of large-scale experiments is one approach to deal with the scale problem in hydraulic parameter assessment, caused by significant contrasts of hydraulic parameters in a karst aquifer. Here, conduit drawdown is evaluated by diagnostic plots and by considering the apparent flow dimension. These tools are frequently used for the interpretation of hydraulic borehole tests by analytical solutions. In contrast to existing analytical solutions, a numerical groundwater model allows the incorporation of the effect of complex parameter distributions. The objective is to demonstrate the application of diagnostic plots and flow dimension analysis for a systematic analysis of the effect of different boundary conditions as well as sink/source terms for idealized two-dimensional mixed karst aquifer systems, which ultimately extends existing analytical solutions and, therefore, contributes to the interpretation of measured field data. The analysis is focused on the apparent flow dimension and shows the extension of the cross-sectional flow area for selected models. The results are used to evaluate the large-scale pumping test of the karstified Cent Fonts catchment (Languedoc, France). The inverse calibration of two realistic, but still simplified, catchment models reveals that the apparent flow dimension supplies useful information about the general flow pattern during the Cent Fonts pumping test. The flow dimension after the end of the storage period can be explained by a large contribution of exchange flow resulting in a strong influence of radial flow on regional, i.e., kilometer scale.

  10. Numerical Simulation of the Supersonic Flows in the Second Throat Ejector —Diffuser Systems

    Institute of Scientific and Technical Information of China (English)

    HeuydongKim; ToshiakiSetoguchi; 等

    1999-01-01

    The supersonic ejector-diffuser system with a second throat was simulated using CFD.A fully implicity finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations and a standard k-ε turbulence model was used to close the governing equations,The flow field in the supersonic ejectordiffuser system was investigated by changing the ejector throat area ratio and the secondary mass flow ratio at a fixed operating pressure ratio of 10. A convergent-divergent nozzle with a design Mach number of 2.11 was selected to give the supersonic operation of the ejector -diffuser system.For the constant area mixing tube the secondary mass flow seemed not to singnificantly change the flow field in the ejector-diffuser systems.It was however,found that the flow in the ejector-diffuser systems having the second throat is strongly dependent on the secondary mass flow.

  11. Recent trends in energy flows through the Arctic climate system

    Science.gov (United States)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  12. An Intelligent Traffic Flow Control System Based on Radio Frequency Identification and Wireless Sensor Networks

    OpenAIRE

    Chao, Kuei-Hsiang; Chen, Pi-Yun

    2014-01-01

    This study primarily focuses on the use of radio frequency identification (RFID) as a form of traffic flow detection, which transmits collected information related to traffic flow directly to a control system through an RS232 interface. At the same time, the sensor analyzes and judges the information using an extension algorithm designed to achieve the objective of controlling the flow of traffic. In addition, the traffic flow situation is also transmitted to a remote monitoring control syste...

  13. Relation of streams, lakes, and wetlands to groundwater flow systems

    Science.gov (United States)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  14. Wastewater treatment performances of horizontal and vertical subsurface flow constructed wetland systems in tropical climate

    Directory of Open Access Journals (Sweden)

    Suwasa Kantawanichkul

    2013-10-01

    Full Text Available The study was carried out in 4 concrete beds: two vertical subsurface flow beds (dimension of 1x1.4 x 0.6 m3 and twohorizontal subsurface flow beds (dimension of 0.6 x 2.3x 0.6 m3 planted with Cyperus alternifolius L. Under the averagewastewater temperature of 27°C, the hydraulic loading rates (HLR were varied from 5 to 20 cm/d in order to obtain theoptimum operating conditions and compare the removal efficiency. The wastewater was intermittently fed into the verticalsubsurface flow beds (5 minutes on and 55 minutes off, and continuously into the horizontal subsurface flow beds. Themaximum removal efficiencies were found at the lowest hydraulic loading rate for both systems. The horizontal subsurfaceflow system had a higher removal rate than the vertical subsurface flow system in terms of COD (the removal rates at 5-20cm/d were 9.6-33.9 g/m2.d. The vertical subsurface flow system showed higher removal efficiency for TKN and NH4+-N, inevery hydraulic loading rate and the removal rates for TKN and NH4+-N were 0.4-1.1 g/m2.d, respectively. Furthermore, it wasfound that the uptake of N by plants in the horizontal flow system was higher than in the vertical flow system for everyhydraulic loading rate (HLR but the loss of N via adsorption/denitrification was higher in the vertical flow system than inthe horizontal flow system, at 20 cm/d HLR. The removal rate constants in the horizontal subsurface flow system for COD andNH4+-N were 0.0166 and 0.0188 m/d and 0.0204 and 0.0287 m/d for the vertical subsurface flow system, respectively

  15. Study on double-shaft mixing paddle undergoing planetary motion in the laminar flow mixing system

    Directory of Open Access Journals (Sweden)

    Jiaqi Zhang

    2015-06-01

    Full Text Available This article has studied the impact of double-shaft mixing paddle undergoing planetary motion on laminar flow mixing system using flow field visualization experiment and computational fluid dynamics simulation. Digital image processing was conducted to analyze the mixing efficiency of mixing paddle in co-rotating and counter-rotating modes. It was found that the double-shaft mixing paddle undergoing planetary motion would not produce the isolated mixing regions in the laminar flow mixing system, and its mixing efficiency in counter-rotating modes was higher than that in co-rotating modes, especially at low rotating speed. According to the tracer trajectory experiment, it was found that the path line of the tracer in the flow field in co-rotating modes was distributed in the opposite direction to the path line in counter-rotating modes. Planetary motion of mixing paddle had stretching, shearing, and folding effects on the trajectory of the tracer. By means of computational fluid dynamics simulation, it was found that axial flows and tangential flows produced in co-rotating and counter-rotating modes have similar flow velocity but opposite flow directions. It is deduced from the distribution rule of axial flow, radial flow, and tangential flow in the flow field that axial flow is the main reason for causing different mixing efficiencies between co-rotating and counter-rotating modes.

  16. FLOW CHARACTERISTICS OF WALL-FLOW DIESEL PARTICULATE FILTER SYSTEM WITH REVERSE PULSE AIR REGENERATION

    Institute of Scientific and Technical Information of China (English)

    Yao Chunde; Shao Yuping; Zhang Chunrun; Zi XinYun; Jiang Dahai; Deng Chenglin

    2005-01-01

    To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.

  17. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors

    NARCIS (Netherlands)

    Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs

    2013-01-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we t

  18. Flow Shop Systems as a Part of the Logistics Information System

    Directory of Open Access Journals (Sweden)

    Ivan Brezina

    2006-12-01

    Full Text Available The Establishing of an efficient information system to support decision making in a production company is a challenging task, which involves coordination of activities and knowledge of many people in modern technical environment. The organization of each production process into one unit is very demanding and for that reason, production logistics plays an important role in this process. Production logistics is an aggregation of logistics problems and steps essential for preparation and its own development of the production process. Thus logistics information system is a significant part of management information systems. Logistics information system in order to purvey relevant data for decision making should contain methods that objectify decision making, i.e. methods based on quantitative approaches. A Part of the quantitative approaches in the field of production logistics are the FLOW SHOP systems. This article deals with the FlowShop program system (software, which was developed at the Faculty of Economic Informatics, University of economics in Bratislava in cooperation with Siemens PSE.

  19. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  20. A net-jet flow system for mass transfer and microsensor studies of sinking aggregates

    DEFF Research Database (Denmark)

    Ploug, H.; Jørgensen, BB

    1999-01-01

    was shown to be laminar at flow velocities ranging from 40 to 200 m d(-1), which cover typical sinking velocities of aggregates in the ocean. A viscous boundary layer with steep gradients of flow velocity was measured around sinking aggregates by flow visualization techniques. Velocity gradients......A flow system was developed which enables studies of hydrodynamics and mass transfer in freely sinking aggregates. The aggregates stabilized their positions in the water phase at an upward flow Velocity which balanced and opposed the sinking velocity of the individual aggregate. The flow field...... in the viscous boundary layer along the sides of the aggregate parallel to the flow could by explained by creeping flow, while a non-turbulent wake was present at the rear (downstream) of the aggregate. The oxygen distribution inside a ca 3.5 mm large diatom aggregate and in the surrounding water was mapped in 2...

  1. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  2. Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...

  3. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  4. Doppler colour flow mapping of fetal intracerebral arteries in the presence of central nervous system anomalies

    NARCIS (Netherlands)

    J.W. Wladimiroff (Juriy); R. Heydanus (Rogier); P.A. Stewart (Patricia)

    1993-01-01

    textabstractThe adjunctive role of Doppler colour flow mapping in the evaluation of intracerebral morphology and arterial blood flow in the presence of normal and abnormal central nervous system morphology was determined. A total of 59 fetuses with suspected central nervous system pathology between

  5. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    Science.gov (United States)

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  6. Service Oriented Architectural Model for Load Flow Analysis in Power Systems

    Science.gov (United States)

    Muthu, Balasingh Moses; Veilumuthu, Ramachandran; Ponnusamy, Lakshmi

    2011-07-01

    The main objective of this paper is to develop the Service Oriented Architectural (SOA) Model for representation of power systems, especially of computing load flow analysis of large interconnected power systems. The proposed SOA model has three elements namely load flow service provider, power systems registry and client. The exchange of data using XML makes the power system services standardized and adaptable. The load flow service is provided by the service provider, which is published in power systems registry for enabling universal visibility and access to the service. The message oriented style of SOA using Simple Object Access Protocol (SOAP) makes the service provider and the power systems client to exist in a loosely coupled environment. This proposed model, portraits the load flow services as Web services in service oriented environment. To suit the power system industry needs, it easily integrates with the Web applications which enables faster power system operations.

  7. Stability of permeative flows in 1 dimensionally ordered systems

    Science.gov (United States)

    Prost, J.; Pomeau, Y.; Guyon, E.

    1991-03-01

    Layered structures are met in dissipative systems, such as Rayleigh Bénard rolls, as well as in liquid crystalline phases (smectics and cholesterics). We present here a general description, in the framework of phase dynamics, of the stability of these structures when submitted to an external force field (flow, electric field) acting perpendicular to the roll axis for various boundary conditions. The one-dimensional equilibrium solution with fixed boundary conditions leads to an effect, discovered experimentally by Pocheau and Croquette on Rayleigh-Bérnard rolls in the presence of a transverse flow, and involving the coexistence of compressed and dilated rolls; this effect has a known counterpart in cholesterics. Using the same boundary conditions, we generalize the well known undulation instability obtained under a dilative stress to the case of the action of a transverse force both from the point of view of linear stability and in the highly nonlinear limit. The possibility of observing fractal structures is indicated. For mixed boundary conditions, it is possible to have a sustained time dependent behavior involving the nucleation of new layers as also observed in the above mentioned experiments. On rencontre des structures en couches dans des systèmes dissipatifs tels que les rouleaux convectifs de Rayleigh-Bénard et dans les cristaux liquides (smectiques et cholestériques). Nous présentons ici une description générale de la stabilité de ces structures dans le cadre du formalisme de la diffusion de phase, lorsqu'elles sont soumises à un champ de force extérieur (écoulement, champ électrique) agissant à angle droit de la direction des rouleaux, en fonction des conditions aux limites. La solution unidimensionnelle d'équilibre avec des conditions aux limites rigides pour la phase conduit à un effet découvert par Pocheau et Croquette (P.C.) dans la convection de R.B. et mettant en jeu la coexistence de zones dilatée et comprimée. Cet effet a un

  8. System-focused environmental flow regime prescription, monitoring and adaptive management

    Science.gov (United States)

    Hetherington, David; Lexartza Artza, Irantzu

    2016-04-01

    The definition of appropriate environmental flow regimes through hydropower schemes and water storage reservoirs is key part of mitigation. Insufficient (magnitude and variability) environmental flows can result in much environmental harm with negative impacts being encountered by morphological, ecological and societal systems. Conventionally, environmental flow regimes have been determined by using generic protocols and guidance such as the Tennant method of environmental flow estimation. It is generally accepted that such approaches to minimum environmental flow definition, although being a useful starting point, are not universally applicable across catchment typologies and climatic regions. Such approaches will not always produce conditions that would be associated with 'Good Ecological Status' under the Water framework Directive (or equivalent). Other similar approaches to minimum environmental flow estimation are used that are specific to geographies, yet still the associated guidance rarely thoroughly covers appropriate definition for healthy holistic systems across the flow regime. This paper draws on experience of system-focused environmental flow regime determination in the UK and the Georgian Caucasus Mountains, which allowed for a critical analysis of more conventional methods to be undertaken. The paper describes a recommended approach for determining appropriate environmental flow regimes based on analysis of the impacted geomorphological, ecological and societal systems in a way which is sensitive to the local holistic environment and associated complexities and interactions. The paper suggests that a strong understanding of the local geomorphology in key in predicting how flows will manifest habitat differently across the flow regime, and be spatially dynamic. Additionally, an understanding of the geomorphological system allows the flow of course and fine sediment to be factored into the initial suggested environmental flow regime. It is suggested

  9. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  10. Analysis of Interline Power Flow Controller (IPFC Location in Power Transmission Systems

    Directory of Open Access Journals (Sweden)

    Amir Kahyaei

    2011-07-01

    Full Text Available The Interline Power Flow Controller (IPFC is one of the latest generation Flexible AC Transmission Systems (FACTS controller used to control power flows of multiple transmission lines. The aim of this paper is investigation of the effect of location of IPFC on profile of voltage and real and reactive power flow in transmission lines in power system. This model is incorporated in Newton- Raphson (NR power flow algorithm to study the power flow control in transmission lines in which IPFC is placed. A program in MATLAB/SIMULINK has been written in order to extend conventional NR algorithm based on this model. Numerical results are carried out on a standard power system. The results without and with IPFC for various locations are compared in terms of voltages, active and reactive power flows to demonstrate the performance of the IPFC model.

  11. Demonstration of flow localization in analogue partially molten system

    Science.gov (United States)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2003-04-01

    Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from permeable flow to localized one is promoted with advance of melting and deformation of the medium. Kelemen et al(1995) and Spiegelmanet al(2001) modeled this process taking into accounts of compaction and dissolution. But the physics behind this transition is not yet clarified well. Here we explore rheological aspect of this problem based analogue experiments using deformable soft gel as a solid phase and would like to argue the role of self-organization in the flow development. In this presentation we show two kinds of experimental results which are mutually related. One is a demonstration of development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid(glycerol solution) is poured at the top of the matrix fluid;homogeneous mixture of soft transparent gel and visocous fluid( the viscosity is controlled by adding methyl-cellulose) having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction(between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by adoting PIV/PTV methods. Calculated relative motion describes how flow localization has developed. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. At the intermediate gel fraction, the rheology is sensitive to the mixture state. Deformation of bulk sample depends on the internal melt distribution and the melt distribution depends on the

  12. Measurements and Computations of Flow in an Urban Street System

    Science.gov (United States)

    Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.

    2016-09-01

    We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.

  13. Performance Characterization of the Production Facility Prototype Helium Flow System

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  14. Measurements and Computations of Flow in an Urban Street System

    Science.gov (United States)

    Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.

    2017-02-01

    We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.

  15. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.

    Science.gov (United States)

    Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs

    2013-06-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications.

  16. Spray flow-network flow transition of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime

    2010-07-01

    We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. © 2010 Elsevier B.V. All rights reserved.

  17. Blood flow in the cerebral venous system: modeling and simulation.

    Science.gov (United States)

    Miraucourt, Olivia; Salmon, Stéphanie; Szopos, Marcela; Thiriet, Marc

    2017-04-01

    The development of a software platform incorporating all aspects, from medical imaging data, through three-dimensional reconstruction and suitable meshing, up to simulation of blood flow in patient-specific geometries, is a crucial challenge in biomedical engineering. In the present study, a fully three-dimensional blood flow simulation is carried out through a complete rigid macrovascular circuit, namely the intracranial venous network, instead of a reduced order simulation and partial vascular network. The biomechanical modeling step is carefully analyzed and leads to the description of the flow governed by the dimensionless Navier-Stokes equations for an incompressible viscous fluid. The equations are then numerically solved with a free finite element software using five meshes of a realistic geometry obtained from medical images to prove the feasibility of the pipeline. Some features of the intracranial venous circuit in the supine position such as asymmetric behavior in merging regions are discussed.

  18. Groundwater Parameters and Flow Systems Near Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K.

    1989-01-01

    Precipitation near Oak Ridge National Laboratory (ORNL) averages 132 cm/yr. About 76 cm/yr of water is consumed by evapotranspiration. The natural streamflow, which averages 56 cm/yr of water, consists of overland flow (about 21 cm/yr) from water bodies, wetlands, and impervious areas of groundwater discharge (about 35 cm/yr of water). Groundwater occurs in a stormflow zone that extends from the land surface to a depth of 0.3-2 m and in shallow and deeper aquifers that extend from the water table to the base of fresh water. in the stormflow zone, most water flows through macropores and mesopores, which have a volumetric porosity of about 0.002. In the vadose zone and below the water table, water flows through fractures that have a volumetric porosity in the range 1 x 10{sup -5} to 0.02. Water inflow occurs by precipitation and infiltration. infiltration that exceeds the soil water deficit forms a perched water table in the stormflow zone at the level where infiltration rate exceeds vertical hydraulic conductivity. Some water percolates down to the water table but the majority flows downslope to the streams. Recharge of the shallow aquifer is only about 3.2 cm/yr of water or 5.7% of streamflow. Most of the water that recharges the shallow aquifer is discharged by evapotranspiration above the water table. The remainder is discharged at springs and streams where the water table is within the stormflow zone. Digital models that permit unsaturated conditions and transient flows may be more appropriate than steady-state models of saturated flow for the ORNL area.

  19. Complex groundwater flow systems as traveling agent models

    CERN Document Server

    López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  20. Mantle flow influence on the evolution of subduction systems.

    Science.gov (United States)

    Chertova, Maria; Spakman, Wim; Steinberger, Bernhard

    2016-04-01

    Evolution of the subducting slab has been widely investigated in the past two decades be means of numerical and laboratory modeling, including analysis of the factors controlling its behavior. However, until present, relatively little attention has been paid to the influence of the mantle flow. While for large subduction zones, due to the high slab buoyancy force, this effect might be small, mantle flow might be a primary factor controlling the evolution of a regional subduction zone. Here we investigate the impact of prescribed mantle flow on the evolution of both generic and real-Earth subduction models by means of 3D thermo-mechanical numerical modeling. The generic setup consists of a laterally symmetric subduction model using a 3000×2000×1000 km modeling domain with a lateral slab width varying from 500 to 1500 km. Non-linear rheology is implemented including diffusion, dislocation creep and a viscosity-limiter. To satisfy mass conservation, while implementing mantle inflow on some side boundaries, we keep other sides open (Chertova et al. 2012). To test the mantle flow influence on the dynamics of real-Earth subduction zone we adopt the numerical model from Chertova et al. (2014) for the evolution of the western Mediterranean subduction since 35 Ma. First, this model was tested with the arbitrary mantle flow prescribed on one of the four side boundaries or for the combination of two boundaries. In the last set of experiments, for side boundary conditions we use time-dependent estimates of actual mantle flow in the region based on Steinberger (2015) given for every 1 My. We demonstrate that for the western-Mediterranean subduction, the surrounding mantle flow is of second-order compared to slab buoyancy in controlling the dynamics of the subducting slab. Introducing mantle flow on the side boundaries might, however, improve the fit between the modeled and real slab imaged by tomography, although this may also trade-off with varying rheological parameters of

  1. Investigation and Modelling of Thermal Conditions in Low Flow SDHW Systems

    DEFF Research Database (Denmark)

    Shah, Louise Jivan

    1999-01-01

    The purpose of this study was to characterise the thermal conditions in low flow SDHW systems. As the heat storage has proved to be the most important system component, there has been an emphasis on this component in the study. A literature survey revealed that the mantle tank heat storage type...... and compared with the CFD-predicted flow structures in the mantle. The results showed that the mantle flow was highly dominated by buoyancy and the CFD-models were able to model this flow. With a steel mantle tank, different dynamic thermal experiments were carried out in a heat storage test facility...

  2. Numerical simulations of flow field in the target region of accelerator-driven subcritical reactor system

    CERN Document Server

    Chen Hai Yan

    2002-01-01

    Numerical simulations of flow field were performed by using the PHOENICS 3.2 code for the proposed spallation target of accelerator-driven subcritical reactor system (ADS). The fluid motion in the target is axisymmetric and is treated as a 2-D steady-state problem. A body-fitted coordinate system (BFC) is then chosen and a two-dimensional mesh of the flow channel is generated. Results are presented for the ADS target under both upward and downward flow, and for the target with diffuser plate installed below the window under downward flow

  3. Phasic reflux of pulmonary blood flow in atelectasis: influence of systemic PO2.

    Science.gov (United States)

    Newell, J C; Levitzky, M G; Krasney, J A; Dutton, R E

    1976-06-01

    In 16 dogs ventilated with 100% O2, control blood flow to the left lung was 35 +/- 2% of aortic flow. When left lung atelectasis was induced, left pulmonary artery flow fell to 19 +/- 2% of aortic flow. A large retrograde component of flow developed in this pulmonary artery, suggesting that blood flows into the pulmonary arteries of both lungs during systole, but flows back out of the collapsed lung and into the uncollapsed lung during diastole. Systemic PaO2 remained above 78 mmHg. Subsequently, when the ventilation of the right lung was changed from oxygen to room air, systemic PaO2 fell to 64 +/- 3 mmHg and atelectatic left lung flow rose from 19 +/- 2% to 28 +/- 2% f aortic flow. This was associated with a reduction in reflux from the atelectatic lung. These results suggest that the attenuation of flow to an atelectatic lung is more pronounced if systemic normoxemia is maintained by adequate oxygenation of the normal lung.

  4. THE STUDY OF INTERACTION OF SOLID—LIQUID ADSORPTION SYSTEM BY USING THE FLOW INJECTION—SPECTROPHOTOMETRY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    HEGuangping; CHENBingren; 等

    2001-01-01

    The flow injection analysis was firatly used for studying a solid-liquid adsorption system,and the dynamics process in the adsorption of adyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry,Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999 by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solid-liquid system.The method shows a good stability and reproducibility.It provides a new method for the studies on adsorption dynamics in solid-liquid system.

  5. THE STUDY OF INTERACTION OF SOLID-LIQUID ADSORPTION SYSTEM BY USING THE FLOW INJECTION-SPECTROPHOTOMETRY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The flow injection analysis was firstly used for studying a solid-liquid adsorption system,and the dynamics process in the adsorption of dyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry. Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solid-liquid system. The method shows a good stability and reproducibility. It provides a new method for the studies on adsorption dynamics in solid- liquid system.

  6. Steady hydromagnetic Couette flow in a rotating system with non ...

    African Journals Online (AJOL)

    user

    energy equation and numerical values of rate of heat transfer at both plates are ... It may be noted that MHD Couette flow may be generated into two ways and .... Equations (5), (6), (10) and (11) with the use of (12), in non-dimensional form, ...

  7. Flow-induced pruning of branched systems and brittle reconfiguration

    CERN Document Server

    Lopez, Diego; de Langre, Emmanuel

    2011-01-01

    Whereas most plants are flexible structures that undergo large deformations under flow, another process can occur when the plant is broken by heavy fluid-loading. We investigate here the mechanism of such possible breakage, focusing on the flow-induced pruning that can be observed in plants or aquatic vegetation when parts of the structure break under flow. By computation on an actual tree geometry, a 20-yr-old walnut tree (Juglans Regia L.) and comparison with simple models, we analyze the influence of geometrical and physical parameters on the occurrence of branch breakage and on the successive breaking events occurring in a tree-like structure when the flow velocity is increased. We show that both the branching pattern and the slenderness exponent, defining the branch taper, play a major role in the breakage scenario. We identify a criterion for branch breakage to occur before breakage of the trunk. In that case, we show that the successive breakage of peripheral branches allows the plant to sustain higher...

  8. Disabilities Information Flow: A Disabilities Information Management System

    Science.gov (United States)

    Ling, Bin; Allison, Colin; Nicholl, J. Ross; Moodley, Luke; Roberts, Dave

    2006-01-01

    The Disabilities Information Flow (DIF) project at the University of St Andrews has sought to provide a means of efficiently managing all student disabilities information within the institution and provide appropriate role-based service interfaces for all staff who need to routinely interact with this information. This paper describes the software…

  9. Separation system with a sheath-flow supported electrochemical detector

    Science.gov (United States)

    Mathies, Richard A.; Emrich, Charles A.; Singhal, Pankaj; Ertl, Peter

    2008-10-21

    An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.

  10. Variable flow controls of closed system pumps for energy savings in maritime power systems

    DEFF Research Database (Denmark)

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu

    2016-01-01

    Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption...... pumps on marine vessels. The existing problem of traditional control methods for closed system pumps is analyzed and a mathematical model for variable flow controls with the appropriate control settings is derived. The performance of the proposed method is demonstrated and verified through experimental...... and field tests of a practical auxiliary boiler feed water management system on a commercial vessel. It is proved that the proposed method can maintain constant water pressure for closed system pumps and provide an efficient way to measure energy savings and maintenance benefits. The results serve...

  11. Automatic system for air flow control in air-tight chambers of the NPP primary circuit

    Energy Technology Data Exchange (ETDEWEB)

    Bersenev, V.L.; Bagautdinov, Z.S.; Panov, S.Yu.

    1985-01-01

    A system for automatic control of air flows is briefly described which is based on a tensometric flow rate sensor. A sensitive element of the sensor, made of paper-based laminate, under the effect of incoming air flow travels, causing a bending of an elastic element, made of stainless steel. The deformation causes changes in the electric resistance of tensoresistors, the degree of a change being proportional to the air flow rate. A 400 Ohm tensoresistor is used in the sensor. Errors in the flow rate measurement using the tensometric sensor does not exceed +-3% even in the low rate air flow range. The system, tested at the Beloyarsk NPP, has shown a high reliability and accuracy of measurements, which permits to recommend it for the use in technological ventilation of NPPs.

  12. Power Flow Analysis of Island Business District 33KV Distribution Grid System with Real Network Simulations

    Directory of Open Access Journals (Sweden)

    Adesina, L.M

    2015-07-01

    Full Text Available The solution to power flow is one of the most important problems in electrical power systems. Traditional methods have been previously used for power flow analysis, but with prevalent drawbacks such as abnormal operating solutions and divergences in heavy loads. This paper presents power flow analysis in a power system, by modelling a typical 33kV Distribution Network, and simulating using the NEPLAN software for power flow studies. Island Business Unit’s (IBU 33kV network of Eko Electricity Distribution Plc (EKEDP for a scenario day is taken as case study in the analysis. The most important parameters of power flow analysis is utilized to find the magnitude and phase angles of the voltages at each Busbar, as well as the real and reactive power flowing through each distribution line within the network under consideration.

  13. Generalized Flow Tracing for the Analysis of Networked Renewable Electricity Systems

    CERN Document Server

    Hörsch, Jonas; Becker, Sarah; Schramm, Stefan; Greiner, Martin

    2016-01-01

    Flow allocation methods represent a valuable tool set to analyze the power flows in networked electricity systems. Based on this flow allocation, the costs associated with the usage of the underlying network infrastructure can be assigned to the users of the electricity system. This paper presents a generalization of the flow tracing method that is applicable to arbitrary compositions of inflow appearing naturally in aggregated networks. The composition of inflow is followed from net-generating sources through the network and assigns corresponding shares of the total power flow as well as of the outflow to the net-consuming sinks. We showcase the analytical power of this method for a scenario based on the IEEE 118 bus network and emphasize the need of appropriate aggregating measures, which allow to integrate over whole time series of fluctuating flow patterns.

  14. Identifying ways of closing the metal flow loop in the global mobile phone product system : A system dynamics modeling approach

    OpenAIRE

    Sinha, Rajib; Laurenti, Rafael; Singh, Jagdeep; Malmström, Maria E.; Frostell, Björn

    2016-01-01

    In the past few decades, e-waste has emerged as one of the fastest growing and increasingly complex waste flows world-wide. Within e-waste, the life cycle of the mobile phone product system is particularly important because of: (1) the increasing quantities of mobile phones in this waste flow; and (2) the sustainability challenges associated with the emerging economies of reuse, refurbishment, and export of used mobile phones. This study examined the possibilities of closing the material flow...

  15. Reliability evaluation of auxiliary feedwater system by mapping GO-FLOW models into Bayesian networks.

    Science.gov (United States)

    Liu, Zengkai; Liu, Yonghong; Wu, Xinlei; Yang, Dongwei; Cai, Baoping; Zheng, Chao

    2016-09-01

    Bayesian network (BN) is a widely used formalism for representing uncertainty in probabilistic systems and it has become a popular tool in reliability engineering. The GO-FLOW method is a success-oriented system analysis technique and capable of evaluating system reliability and risk. To overcome the limitations of GO-FLOW method and add new method for BN model development, this paper presents a novel approach on constructing a BN from GO-FLOW model. GO-FLOW model involves with several discrete time points and some signals change at different time points. But it is a static system at one time point, which can be described with BN. Therefore, the developed BN with the proposed method in this paper is equivalent to GO-FLOW model at one time point. The equivalent BNs of the fourteen basic operators in the GO-FLOW methodology are developed. Then, the existing GO-FLOW models can be mapped into equivalent BNs on basis of the developed BNs of operators. A case of auxiliary feedwater system of a pressurized water reactor is used to illustrate the method. The results demonstrate that the GO-FLOW chart can be successfully mapped into equivalent BNs.

  16. Dynamical systems analysis of fluid transport in time-periodic vortex ring flows

    OpenAIRE

    Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.

    2006-01-01

    It is known that the stable and unstable manifolds of dynamical systems theory provide a powerful tool for understanding Lagrangian aspects of time-periodic flows. In this work we consider two time-periodic vortex ring flows. The first is a vortex ring with an elliptical core. The manifolds provide information about entrainment and detrainment of irrotational fluid into and out of the volume transported with the ring. The likeness of the manifolds with features observed in flow visualization ...

  17. Properties of Phase Transition of Traffic Flow on Urban Expressway Systems with Ramps and Accessory Roads

    Institute of Scientific and Technical Information of China (English)

    梅超群; 刘业进

    2011-01-01

    In this paper, we develop a cellular automaton model to describe the phase transition of traffic flow on urban expressway systems with on-off-ramps and accessory roads. The lane changing rules are given in detailed, the numerical results show that the main road and the accessory road both produce phase transitions. These phase transitions will omen be influenced by the number of lanes, lane changing, the ramp flow, the input flow rate, and the geometry structure.

  18. Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape

    OpenAIRE

    Buehler, D.; Graf, R; Holderegger, R; Gugerli, F.

    2017-01-01

    Background and Aims Gene flow is important in counteracting the divergence of populations but also in spreading genes among populations. However, contemporary gene flow is not well understood across alpine landscapes. The aim of this study was to estimate contemporary gene flow through pollen and to examine the realized mating system in the alpine perennial plant, Arabis alpina (Brassicaceae). Methods An entire sub-alpine to alpine landscape of 2 km2 was exhaustively sampled in the Swiss Alps...

  19. Flow field description of the Space Shuttle Vernier reaction control system exhaust plumes

    Science.gov (United States)

    Cerimele, Mary P.; Alred, John W.

    1987-01-01

    The flow field for the Vernier Reaction Control System (VRCS) jets of the Space Shuttle Orbiter has been calculated from the nozzle throat to the far-field region. The calculations involved the use of recently improved rocket engine nozzle/plume codes. The flow field is discussed, and a brief overview of the calculation techniques is presented. In addition, a proposed on-orbit plume measurement experiment, designed to improve future estimations of the Vernier flow field, is addressed.

  20. A continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay

    OpenAIRE

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-01-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear...

  1. Verification and Validation of the Coastal Modeling System. Report 3: CMS-Flow: Hydrodynamics

    Science.gov (United States)

    2011-12-01

    ER D C/ CH L TR -1 1- 10 Verification and Validation of the Coastal Modeling System Report 3, CMS -Flow: Hydrodynamics Co as ta l a nd...11-10 December 2011 Verification and Validation of the Coastal Modeling System Report 3, CMS -Flow: Hydrodynamics Alejandro Sánchez, Weiming Wu...of four reports toward the Verification and Validation (V&V) of the Coastal Modeling System ( CMS ). The details of the V&V study specific to the

  2. 4D flow MR imaging of the portal venous system: a feasibility study in children

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Keyur; Rose, Michael; Popescu, Andrada; Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); McCormick School of Engineering, Northwestern University, Department of Biomedical Engineering, Chicago, IL (United States); Schnell, Susanne [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States)

    2017-02-15

    To determine the feasibility of 4D flow MRI for visualization and quantification of the portal venous haemodynamics in children and young adults. 4D flow was performed in 28 paediatric patients (median age, 8.5 years; interquartile range, 5.2-16.5), 15 with non-operated native portal system and 13 with surgically created portal shunt. Image quality assessment for 3D flow visualization and flow pattern analyses was performed. Regional 4D flow peak velocity and net flow were compared with 2D-cine phase contrast MRI (2D-PC MR) in the post-surgical patients. Mean 3D flow visualization quality score was excellent (mean ± SD, 4.2 ± 0.9) with good inter-rater agreement (κ,0.67). Image quality in children aged >10 years was better than children ≤10 years (p < 0.05). Flow pattern was defined for portal, superior mesenteric, splenic veins and splenic artery in all patients. 4D flow and 2D-PC MR peak velocity and net flow were similar with good correlation (peak velocity: 4D flow 22.2 ± 9.1 cm/s and 2D-PC MR 25.2 ± 11.2 cm/s, p = 0.46; r = 0.92, p < 0.0001; net flow: 4D flow 9.5 ± 7.4 ml/s and 2D-PC MR 10.1 ± 7.3 ml/s, p = 0.65; r = 0.81, p = 0.0007). 4D flow MRI is feasible and holds promise for the comprehensive 3D visualization and quantification of portal venous flow dynamics in children and young adults. (orig.)

  3. GORE Flow Reversal System and GORE Embolic Filter Extension Study

    Science.gov (United States)

    2016-01-22

    Carotid Stenosis; Constriction, Pathologic; Carotid Artery Diseases; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Arterial Occlusive Diseases; Vascular Diseases; Cardiovascular Diseases; Pathological Conditions, Anatomical

  4. The Cascadia Paradox: Mantle flow and slab fragmentation in the Cascadia subduction system

    Science.gov (United States)

    Long, Maureen D.

    2016-12-01

    The pattern of mantle flow in subduction systems and the processes that control the mantle flow field represent fundamental but still poorly understood aspects of subduction dynamics. The Cascadia subduction zone is a compelling system in which to understand the controls on mantle flow, especially given the dense geophysical observations recently provided by EarthScope, GeoPRISMS, the Cascadia Initiative, and related efforts. Observations of seismic anisotropy, which provide relatively direct constraints on mantle flow, are particularly intriguing in Cascadia because they seem to yield contradictory views of the mantle flow field in different parts of the system. Specifically, observations of seismic anisotropy on the overriding plate, notably in the central portion of the backarc, apparently require a significant component of three-dimensional, toroidal flow around the slab edge. In contrast, new observations from offshore stations are compellingly explained with a simple two-dimensional entrained flow model. Recent evidence from seismic tomography for the likely fragmentation of the Cascadia slab at depth provides a further puzzle: how does a fragmented slab provide a driving force for either two-dimensional entrained flow or three-dimensional toroidal flow due to slab rollback? Resolution of this apparent paradox will require new imaging strategies as well as the integration of constraints from seismology, geodynamics, and geochemistry.

  5. Milk flow traits of buffalo cows in intensive farming system

    Directory of Open Access Journals (Sweden)

    M. Zucali

    2010-04-01

    Full Text Available The particular morphology of buffalo udder is associated to milking difficulties. To better understandthe characteristics of milk ejection in buffaloes, a study was conducted in an intensive farm in Lombardy, Italy. Atotal of 184 milk flow profiles were measured with an electronic flow meter. The results showed that during the first3 minutes of milking 73% of total milk yield was milked; lag time of milk ejection (1.94 min ± 1.57 was very longand increased significantly with the increasing of lactation stage. The overmilking phase has also a long duration(33% of total milking time, on average. Administration of oxytocin before milking did not significantly affect milkflow parameters and machine on-time. The results suggested that proper pre-milking stimulation and prompt clustertakeoff could improve milking efficiency, ensuring good milk letdown and protecting teat conditions.

  6. Nonintrusive fast response oxygen monitoring system for high temperature flows

    Science.gov (United States)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  7. Numerical Recovery of Gas Flows in Pipeline Systems

    Directory of Open Access Journals (Sweden)

    Vadim E. Seleznev

    2012-01-01

    Full Text Available Optimal control, prevention and investigation of accidents, and detection of discrepancies in estimated gas supply and distribution volumes are relevant problems of trunkline operation. Efficient dealing with these production tasks is based on the numerical recovery of spacetime distribution of nonisothermal transient flow parameters of transmitted gas mixtures based on full-scale measurements in a substantially limited number of localities spaced considerable distances apart along the gas pipelines. The paper describes a practical method of such recovery by defining and solving a special identification problem. Simulations of product flow parameters in extended branched pipelines, involving calculations of the target function and constraint function for the identification problem of interest, are done in the 1D statement. In conclusion, results of practical application of the method in the gas industry are briefly discussed.

  8. Materials and Systems for Organic Flow Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Pan, Wenxiao; Duan, Wentao; Hollas, Aaron M.; Yang, Zheng; Li, Bin; Nie, Zimin; Liu, Jun; Reed, David M.; Wang, Wei; Sprenkle, Vincent L.

    2017-08-25

    Redox flow batteries are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency and sustainability of our power grid. The redox-active materials are the central component to RFBs for achieving high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here the recent development of a variety of ROM families and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. Moreover, the critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

  9. Development of a micro flow sensor for microfluidic systems

    OpenAIRE

    Loane, S; Selvaganapathy, PR; Ching, CY; 3rd Micro and Nano Flows Conference (MNF2011)

    2011-01-01

    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute. ...

  10. Development of a micro flow sensor for microfluidic systems

    OpenAIRE

    Loane, S; Selvaganapathy, PR; Ching, CY; 3rd Micro and Nano Flows Conference (MNF2011)

    2011-01-01

    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute. ...

  11. Comparison of short term rainfall forecasts for model based flow prediction in urban drainage systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Poulsen, Troels Sander; Bøvith, Thomas;

    2012-01-01

    Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied...... as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 hours. The best...... performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times....

  12. Comparison Of Short Term Rainfall Forecasts For Model Based Flow Prediction In Urban Drainage Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Poulsen, Troels Sander; Bøvith, Thomas;

    2012-01-01

    Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied...... as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 hours. The best...... performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times....

  13. Comparison of short-term rainfall forecasts for modelbased flow prediction in urban drainage systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Ahm, Malte; Nielsen, Jesper Ellerbek;

    2013-01-01

    Forecast-based flow prediction in drainage systems can be used to implement real-time control of drainage systems. This study compares two different types of rainfall forecast - a radar rainfall extrapolation-based nowcast model and a numerical weather prediction model. The models are applied...... as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real-time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 h. The best...... performance of the system is found using the radar nowcast for the short lead times and the weather model for larger lead times....

  14. Comparison of short term rainfall forecasts for model based flow prediction in urban drainage systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Poulsen, Troels Sander; Bøvith, Thomas

    2012-01-01

    Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied...... as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 hours. The best...... performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times....

  15. Comparison Of Short Term Rainfall Forecasts For Model Based Flow Prediction In Urban Drainage Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Poulsen, Troels Sander; Bøvith, Thomas

    2012-01-01

    Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied...... as input to an urban runoff model predicting the inlet flow to a waste water treatment plant. The modelled flows are auto-calibrated against real time flow observations in order to certify the best possible forecast. Results show that it is possible to forecast flows with a lead time of 24 hours. The best...... performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times....

  16. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  17. Mapping the flow of information within the putative mirror neuron system during gesture observation

    NARCIS (Netherlands)

    Schippers, Marleen B.; Keysers, Christian

    2011-01-01

    The putative mirror neuron system may either function as a strict feed-forward system or as a dynamic control system. A strict feed-forward system would predict that action observation leads to a predominantly temporal -> parietal -> premotor flow of information in which a visual representation is t

  18. A Digital Method for the Detection of Blood Flow Direction in Ultrasonic Doppler Systems

    Directory of Open Access Journals (Sweden)

    P. Acevedo–Contla.

    2010-01-01

    Full Text Available Doppler ultrasound systems are widely used to study blood flow and diagnosis of vascular diseases. An important characteristic of these systems is the ability to detect the direction of the blood flow. Most Doppler ultrasound systems apply a quadrature demodulation technique on the ultrasonic transducer output signal. Therefore additional treatment is necessary to separate forward and reverse flow signals. This work presents a digital method to convert signals in quadrature into directional signals using a Fast Fourier Transform (FFT approach. Validation of the method has been achieved using simulated Doppler ultrasound signals.

  19. PASSIVE-ACTIVE CONTROL OF POWER FLOW IN AN ISOLATION SYSTEM MOUNTED ON FLEXIBLE FOUNDATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi-disturbance, multi-mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive-active synthetic control strategy of power flow is summarized.

  20. Heat Transfer and Fluid Flow of Nanofluids in Laminar Radial Flow Cooling Systems

    Institute of Scientific and Technical Information of China (English)

    Gilles ROY; Samy Joseph PALM; Cong Tam NGUYEN

    2005-01-01

    Nanofluids are considered as interesting alternatives to conventional coolants. It is well known that traditional fluids have limited heat transfer capabilities when compared to common metals. It is therefore quite conceivable that a small amount of extremely fine metallic particles placed in suspension in traditional fluids will considerably increase their heat transfer performances. A numerical investigation into the heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside a radial, laminar flow cooling configuration is presented. Temperature dependant nanofluid properties are evaluated from experimental data available in recent literature. Results indicate that considerable heat transfer increases are possible with the use of relatively small volume fractions of nanoparticles. Generally, however, these are accompanied by considerable increases in wall shear-stress. Results also show that predictions obtained with temperature variable nanofluid properties yield greater heat transfer capabilities and lower wall shear stresses when compared to predictions using constant properties.

  1. Stochastic Optimization of Large Scale Multi-Reservoir Systems subject to environmental flow demands

    Science.gov (United States)

    Fernandes Marques, Guilherme; Tilmant, Amaury

    2014-05-01

    Among the environmental impacts caused by dams, the alteration of flow regimes is one of the most critical to river ecosystems given its influence in long river reaches and its continuous pattern. While the reoperation of reservoir systems to recover some of the natural flow regime is expected to mitigate the impacts, associated costs and losses will be imposed on different power plants depending on flows, power plant and reservoir characteristics, system's topology and other aspects. In a large scale reservoir system this economic impact is not trivial, and it should be properly evaluated to identify coordinated operating solutions that avoid penalizing a single reservoir. This paper combines an efficient stochastic dual dynamic programming method for reservoir optimization subject to environmental flow targets with specific magnitude and return period, which effects on fish recruitment are already known. This allows the evaluation of the economic and power generation impacts in a large scale hydropower system when subject to environmental flow demands. The present paper contributes with methods and results that are useful in (a) quantifying the foregone hydropower and revenues resulting from meeting a specific environmental flow demand, (b) identifying the distribution and reallocation of the foregone hydropower and revenue across a large scale system, and (c) identifying optimal reservoir operating strategies to meet environmental flow demands in a large scale multi-reservoir system.

  2. Cost Distribution of Environmental Flow Demands in a Large Scale Multi-Reservoir System

    Science.gov (United States)

    Marques, G.; Tilmant, A.

    2014-12-01

    This paper investigates the recovery of a prescribed flow regime through reservoir system reoperation, focusing on the associated costs and losses imposed on different power plants depending on flows, power plant and reservoir characteristics and systems topology. In large-scale reservoir systems such cost distribution is not trivial, and it should be properly evaluated to identify coordinated operating solutions that avoid penalizing a single reservoir. The methods combine an efficient stochastic dual dynamic programming algorithm for reservoir optimization subject to environmental flow targets with specific magnitude, duration and return period, which effects on fish recruitment are already known. Results indicate that the distribution of the effect of meeting the environmental flow demands throughout the reservoir cascade differs largely, and in some reservoirs power production and revenue are increased, while in others it is reduced. Most importantly, for the example system modeled here (10 reservoirs in the Parana River basin, Brazil) meeting the target environmental flows was possible without reducing the total energy produced in the year, at a cost of $25 Million/year in foregone hydropower revenues (3% reduction). Finally, the results and methods are useful in (a) quantifying the foregone hydropower and revenues resulting from meeting a specific environmental flow demand, (b) identifying the distribution and reallocation of the foregone hydropower and revenue across a large scale system, and (c) identifying optimal reservoir operating strategies to meet environmental flow demands in a large scale multi-reservoir system.

  3. Stagnation point flow and heat transfer on a thin porous sheet: Applications to flow dynamics of the circulatory system

    Science.gov (United States)

    Misra, J. C.; Sinha, A.; Mallick, B.

    2017-03-01

    The paper is concerned with the modeling and analysis of stagnation point flow and heat transfer on a thin porous sheet under the action of an induced magnetic field. The fluid is considered to be incompressible viscous and electrically conducting. The study is motivated towards exploring some interesting phenomena in the micro-circulatory system. Heat transfer is considered to be governed by the heat equation. In order to take care of the induced magnetism that affects the flow process, the flow equations are coupled with magnetic field variables. The analysis has been performed under the purview of the boundary layer theory, together with the use of similarity transformation. The transformed equations are solved by developing an appropriate numerical method. Numerical results have been computed for a typical situation of the fluid in motion. The results are displayed graphically/in tabular form, which depict the distribution of velocity and temperature under the action of the induced magnetic field and permeability of the porous sheet. The study shows that the flow of the fluid reduces, as the strength of the induced magnetic field increases. However, the reduction in velocity is accompanied by an enhancement of the temperature field.

  4. Flow induced vibration of subsea gas production systems caused by choke valves

    NARCIS (Netherlands)

    Ligterink, N.E.; Groot, R. de; Gharaibah, E.; Slot, H.J.

    2012-01-01

    In the design of subsea flow systems the integrity and reliability is paramount. As the equipment must be designed to operate at a large variety of conditions, inherent to the many processes, evaluation of the integrity is complex. . Flow induced pulsations and vibrations can cause serious design an

  5. Flow induced vibration of subsea gas production system caused by choke valves

    NARCIS (Netherlands)

    Ligterink, N.E.; Groot, R. de; Gharaibah, E.; Slot, H.J.

    2012-01-01

    In the design of subsea flow systems the integrity and reliability is paramount. As the equipment must be designed to operate at a large variety of conditions, inherent to the many processes, evaluation of the integrity is complex. . Flow induced pulsations and vibrations can cause serious design an

  6. An electronic flow control system for a variable-rate tree sprayer

    Science.gov (United States)

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  7. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an...

  8. An Approach to Student Flow Analysis: An Application of the NCHEMS Costing and Data Management System.

    Science.gov (United States)

    Young, Michael E.; Haight, Michael J.

    An analytic system for colleges that involves student flow calculation, an historical curriculum matrix, and departmental workload forecasts is examined. The conceptual base, uses of the data, technical issues, and implementation are covered. The student flow calculation uses enrollment trends to develop the probability of a student with a given…

  9. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    NARCIS (Netherlands)

    Duran Matute, M.; Gerkema, T.

    2015-01-01

    The concept of residual, i.e., tidally-averaged,flows through a multiple inlet system is reappraised. Theevaluation of the residual through-flow depends on the timeinterval over which is integrated, in other words, on how onedefines the tidal period. It is demonstrated that this definitionis

  10. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  11. The Use of Logistics n the Quality Parameters Control System of Material Flow

    Science.gov (United States)

    Karpova, Natalia P.; Toymentseva, Irina A.; Shvetsova, Elena V.; Chichkina, Vera D.; Chubarkova, Elena V.

    2016-01-01

    The relevance of the research problem is conditioned on the need to justify the use of the logistics methodologies in the quality parameters control process of material flows. The goal of the article is to develop theoretical principles and practical recommendations for logistical system control in material flows quality parameters. A leading…

  12. Fingering in unsaturated zone flow: a qualitative review with laboratory experiments on heterogeneous systems

    CSIR Research Space (South Africa)

    Sililo, OTN

    2000-11-01

    Full Text Available of flow will be greatest where the fine-grained layer is thinnest; (5) surface depressions in an upper fine-grained layer will concentrate flow, with fingers forming below such areas; and (6) in systems where an upper fine-grained layer has macro pores...

  13. Analysis of electrode system for generation of high-power electrodynamic flow

    Science.gov (United States)

    Rebrov, I. E.; Khomich, V. Yu.; Yamshchikov, V. A.

    2016-08-01

    A high-power electrodynamic flow in atmospheric air is numerically simulated and experimentally studied. An electrode system consisting of a cylindrical plasma emitter and a plane metal grid collector of ions is used to generate a flow with a speed of 2 m/s and a volume rate of 15 L/s.

  14. Hair-based flow-sensing inspired by the cricket cercal system

    NARCIS (Netherlands)

    Krijnen, G.J.M.; Droogendijk, H.; Steinmann, T.; Dagamseh, A.M.K.; Jaganatharaja, R.K.; Casas, J.

    2014-01-01

    Micro Electro Mechanical Systems (MEMS) offer exciting possibilities for the fabri­cation of bioinspired mechanosensors. Over the last years we have been working on cricket inspired hair-sensor arrays for spatio-temporal flow-field observations (i.e., flow-cameras) and source localization. Whereas m

  15. The Design of the Assistant Decision Support System of Cross-Regional Rural Labor Flow

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The framework of the assistant decision support system of cross-regional rural labor flow is established,the system combines the cross-regional rural labor flow with DSS,which provides the leaders with the maximum assistant decision-making function in the regulation and guidance of rural labors as well as in relevant programs.The assistant decision support system functions are discussed,the function modules of this system are introduced from four aspects,including the analysis of labor flow,the prediction of labor flow,the regulation of cross-regional flow and the configuration of decision support system;based on the data base obtained from dynamic tracking of the migrant workers and combining other data sources,the data warehouse model is established,for example,in the analysis of the labor migration times,a star multi-dimensional data model is designed from the time dimension,place dimension,the type of work dimension,accompaniers dimension and so on;the trans-regional flow of rural labor force is analyzed and predicted by using OLAP from the labor’s migration times,migration places and other various perspectives.The operation principles of the assistant decision support system of trans-regional labor flow are introduced,it is pointed out that the system serves the policy-makers of the regulation of labor flow and other relevant enterprises,the system will play an important role in the tracking monitoring and cross-regional regulation of the rural labor flow.

  16. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  17. Hall Effects on Unsteady Hydromagnetic Flow Past an Accelerated Porous Plate in a Rotating System

    Directory of Open Access Journals (Sweden)

    Sanatan Das

    2015-01-01

    Full Text Available An unsteady hydromagnetic flow of a viscous incompressible electrically conducting fluid past an accelerated porous flat plate in the presence of a uniform transverse magnetic field in a rotating system taking the Hall effects into account have been presented. An analytical solution describing the flow at large and small times after the start is obtained by the use of Laplace transform technique. The influences of the physical parameters acting on the flow are discussed in detail with the help of several graphs. It is found that interplay of Coriolis force and hydromagnetic force in the presence of Hall currents plays an important role in characterizing the flow behavior.

  18. The effect of unified power flow controller location in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumay, M. [Cukurova University, Baliai-Adana (Turkey). Department of Electrical and Electronic Engineering; Vural, A.M. [Gaziantep University (Turkey). Department of Electrical and Electronic Engineering; Lo, K.L. [University of Strathclyde, Glasgow (United Kingdom). Department of Electrical and Electronic Engineering

    2004-09-01

    The Unified Power Flow Controller (UPFC) is a device that is capable of providing control of voltage magnitude, active and reactive power flows. This paper represents the effect of UPFC location in steady-state analysis and to demonstrate the capabilities of UPFC in controlling active and reactive power flow within any electrical network. In this paper, a complete power injection model of UPFC including both the series injection branch and the shunt exciting branch is derived in rectangular form. An injected power model method is used to represent UPFC in load flow program. Finally, different types of simulation tasks are carried out based on IEEE 30-bus test system. (author)

  19. Debris Flow Monitoring System and Observed Event in Taiwan: A Case Study at Aiyuzi River

    Institute of Scientific and Technical Information of China (English)

    HSIAO Taichung; LEE Bingjean; CHOU Tienyin; LIEN Huipain; CHANG Yinghuei

    2007-01-01

    Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have successfully carried out the establishment and maintenance of 13 fixed debris flow monitoring stations over the island and 2 mobile debris flow monitoring stations. During July 2004, a powerful southwest air current brought by Mindulle Typhoon caused serious flood in central and southern Taiwan. This paper aims to describe the establishment of debris flow monitoring systems in Taiwan and the observation of the debris flow event during Mindulle Typhoon at Aiyuzi River in Shenmu Village, Nantou County by the monitoring station.

  20. AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller

    Directory of Open Access Journals (Sweden)

    Tulasichandra Sekhar Gorripotu

    2015-12-01

    Full Text Available In this paper, Proportional Integral Derivative with Filter (PIDF is proposed for Automatic Generation Control (AGC of a multi-area power system in deregulated environment. Initially, a two area four units thermal system without any physical constraints is considered and the gains of the PIDF controller are optimized employing Differential Evolution (DE algorithm using ITAE criterion. The superiority of proposed DE optimized PIDF controller over Fuzzy Logic controller is demonstrated. Then, to further improve the system performance, an Interline Power Flow Controller (IPFC is placed in the tie-line and Redox Flow Batteries (RFB is considered in the first area and the controller parameters are tuned. Additionally, to get an accurate insight of the AGC problem, important physical constraints such as Time Delay (TD and Generation Rate Constraints (GRC are considered and the controller parameters are retuned. The performance of proposed controller is evaluated under different operating conditions that take place in a deregulated power market. Further, the proposed approach is extended to a two area six units hydro thermal system. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values.

  1. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    Science.gov (United States)

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  2. Macropore system characteristics controls on non-reactive solute transport at different flow rates

    Science.gov (United States)

    Larsbo, Mats; Koestel, John

    2014-05-01

    Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.

  3. Lattice gas automata for flow and transport in geochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  4. Elliptic flow in small systems due to elliptic gluon distributions?

    Science.gov (United States)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2017-08-01

    We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the 'elliptic flow' parameter v2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.

  5. A Calibration of the Preston Tube in Liquid Flow Systems.

    Science.gov (United States)

    1979-12-01

    connected to a 40 in. mercury manometer bank. Two total pressure probe installations are available, with one located at the extreme outflow end of the pipe...versatile and assured both good probe alignment to the flow and negligible probe interference effects. The probe was connected to a single 30 in. mercury ... manometer which gave readings accurate to .05 in. Hg as did the 40 in. manometer bank. 17 *r4 $4 P., 0 ~r54 so 18 Additional features of the oil pipe

  6. Lattice gas automata for flow and transport in geochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  7. Simulation of non-equilibrium two-phase flow in single component fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Norbert [Scandpower A/S, Kjeller (Norway)

    1996-12-31

    Traditionally, two-phase flow has been modelled by separate correlations for void fraction, pressure drop and flow regimes. A more unified approach, which treats flow regimes as an integral part of the two-fluid model is described in this work. A general, transient simulator for steam-water/inert gas systems has been developed. MONA is based on a full two-fluid, three field, nonequilibrium, nonhomogeneous two-phase flow model. It includes further an extensive heat and mass transfer package. The major contribution for MONA validation comes from the FRIGG loop experiments, covering a wide range of parameters like geometry, flow, subcooling, pressure and heat flux. Both validation against steady state and dynamic experiments has been carried out, the former comprising void fractions, pressure drops as well as natural and forced circulation flow rates while the latter consists of boiling instability analysis. 69 refs., 41 figs., 5 tabs.

  8. Flow through the tile gaps in the Space Shuttle Thermal Protection System

    Science.gov (United States)

    Dwoyer, D. L.; Newman, P. A.; Thames, F. C.; Melson, N. D.

    1982-01-01

    The problem of predicting aerodynamic loads on the insulating tiles of the Space Shuttle Thermal Protection System (TPS) is discussed and seen to require a method for predicting pressure and mass flux in the gaps between tiles. A mathematical model of the tile-gap flow is developed based upon a slow viscous (Stokes) flow analysis and is verified against available experimental data. This model derives the tile-gap pressure field from a solution of the two-dimensional Laplace equation; the mass flux vector is then calculated from the pressure gradient. The means for incorporating this model into a lumped-parameter network analogy for porous-media flow is also given. The flow model shows tile-gap mass flux to be very sensitive to the gap width indicating a need for coupling the TPS flow and tile displacement calculations. Finally recommendations are made concerning additional analytical and experimental work to improve TPS flow predictions.

  9. From Flow Logic to static type systems for coordination languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, Rene Rydhof;

    2010-01-01

    Coordination languages are often used to describe open-ended systems. This makes it challenging to develop tools for guaranteeing the security of the coordinated systems and the correctness of their interaction. Successful approaches to this problem have been based on type systems with dynamic ch...

  10. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  11. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  12. A novel multi-fidelity coupled simulation method for flow systems

    Institute of Scientific and Technical Information of China (English)

    Wang Peng; Zheng Yun; Zou Zhengping; Qi Lei; Zhou Zhixiang

    2013-01-01

    For the numerical simulation of flow systems with various complex components,the traditional one-dimensional (1D) network method has its comparative advantage in time consuming and the CFD method has its absolute advantage in the detailed flow capturing.The proper coupling of the advantages of different dimensional methods can strike balance well between time cost and accuracy and then significantly decrease the whole design cycle for the flow systems in modern machines.A novel multi-fidelity coupled simulation method with numerical zooming is developed for flow systems.This method focuses on the integration of one-,two-and three-dimensional codes for various components.Coupled iterative process for the different dimensional simulation cycles of sub-systems is performed until the concerned flow variables of the whole system achieve convergence.Numerical zooming is employed to update boundary data of components with different dimensionalities.Based on this method,a highly automatic,multi-discipline computing environment with integrated zooming is developed.The numerical results of Y-Junction and the air system of a jet engine are presented to verify the solution method.They indicate that this type of multi-fidelity simulation method can greatly improve the prediction capability for the flow systems.

  13. Thermo-hydraulic modeling of flow in flare systems

    OpenAIRE

    Meindinyo, Remi-Erempagamo T.

    2012-01-01

    Flare systems play a major role in the safety of Oil and Gas installations by serving as outlets for emergency pressure relief in case of process upsets. Accurate and reliable estimation of system thermo-hydraulic parameters, especially system back-pressure is critical to the integrity of a flare design. FlareNet (Aspen Flare System Analyzer Version 7) is a steady state simulation tool tailored for flare system design and has found common use today. But design based on steady state modelin...

  14. A Queuing Model-Based System for Triggering Traffic Flow Management Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation air traffic management systems are expected use multiple software tools and quantitative methods for managing traffic flow in the National Airspace....

  15. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  16. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    Science.gov (United States)

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  17. Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micron-thin surface hot-film gages are used to develop flow-angle and airspeed sensor system (FASS). Unlike Pitot-static and other pressure-based devices, which...

  18. Multi-Use Non-Intrusive Flow Characterization System (FCS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The product of the Phase II effort will be a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic...

  19. Color-infrared composite of Landsat data for the Death Valley regional flow system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The raster-based, color-infrared composite was derived from Landsat Thematic Mapper imagery data acquired during June 1992 for the Death Valley regional flow system....

  20. Inactivation of L. fructivorans in Sake Using a Continuous Flow System for High-Pressure Carbonation

    National Research Council Canada - National Science Library

    TANIMOTO, Shota; MATSUMOTO, Hideyuki; FUJII, Kazuyoshi; OHDOI, Ritsushi; SAKAMOTO, Koji; YAMANE, Yuichi; MIYAKE, Masaki; SHIMODA, Mitsuya; OSAJIMA, Yutaka

    2007-01-01

    ...) quality, was investigated using a continuous flow system for high-pressure carbonation. In addition, the effects of ethanol and sugar concentration on lactic acid bacteria inactivation were investigated. Cells of L. fructivorans (1×106CFU/ml...

  1. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  2. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  3. Water Level Altitude Contours for the Diamond Valley Flow System, Central Nevada, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  4. Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  5. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    Science.gov (United States)

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  6. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  7. Evapotranspiration Units for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  8. Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Dunning, Charles P.

    2015-01-01

    A regional, two-dimensional, steady-state groundwater-flow model was developed to simulate the groundwater-flow system and groundwater/surface-water interactions within the Menominee Indian Reservation. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Menominee Indian Tribe of Wisconsin, to contribute to the fundamental understanding of the region’s hydrogeology. The objectives of the regional model were to improve understanding of the groundwater-flow system, including groundwater/surface-water interactions, and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate groundwater/surface-water interactions, provide a framework for simulating regional groundwater-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate groundwater-flow patterns at multiple scales. Simulations made with the regional model reproduce groundwater levels and stream base flows representative of recent conditions (1970–2013) and illustrate groundwater-flow patterns with maps of (1) the simulated water table and groundwater-flow directions, (2) probabilistic areas contributing recharge to high-capacity pumped wells, and (3) estimation of the extent of infiltrated wastewater from treatment lagoons.

  9. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  10. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  11. Experimental studies of zonal flow and field in compact helical system plasmaa)

    Science.gov (United States)

    Fujisawa, A.; Itoh, K.; Shimizu, A.; Nakano, H.; Ohshima, S.; Iguchi, H.; Matsuoka, K.; Okamura, S.; Minami, T.; Yoshimura, Y.; Nagaoka, K.; Ida, K.; Toi, K.; Takahashi, C.; Kojima, M.; Nishimura, S.; Isobe, M.; Suzuki, C.; Akiyama, T.; Ido, T.; Nagashima, Y.; Itoh, S.-I.; Diamond, P. H.

    2008-05-01

    The experimental studies on zonal flows and turbulence have been carried out in Compact Helical System [K. Matsuoka, S. Kubo, M. Hosokawa et al., in Plasma Physics and Controlled Nuclear Fusion Research, Proc. 12th Int. Conf., Nice, 1988 (International Atomic Energy Agency, Vienna, 1989, Vol. 2, p. 411] using twin heavy ion beam probes. The paper presents the experimental observations of stationary zonal flow, nonlinear couplings between zonal flow and turbulence, and the role of zonal flow in the improved confinement, together with the recent discovery of zonal magnetic field. The presented experimental results strongly support the new paradigm that the plasma transport should be considered as a system of drift wave and zonal flows, and provides the first direct evidence for turbulence dynamo that the structured magnetic field can be really generated by turbulence.

  12. Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance

    Science.gov (United States)

    Xiao, Tiejun

    2016-11-01

    In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.

  13. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    Science.gov (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  14. Power flow transmission in a coupled flexible system with active executive elements

    Institute of Scientific and Technical Information of China (English)

    HUO Rui; SHI Yin; SONG Kongjie

    2002-01-01

    Based on its prototype of machine-isolator-foundation systems, a theoretical model for dynamic coupled linear system is established, in which both the passive and active control factors are considered. Power flow is used as the cost function to evaluate the isolation effectiveness. And the transmission of vibratory power flow from a vibrating rigid body into a simply supported thin panel through passive isolators and actuators is investigated numerically. The active control strategy is summarized in the conclusion.

  15. Flow system for liquid sample introduction in arc/spark excitation sources

    OpenAIRE

    Bellato, CR; Pasquini, C

    1996-01-01

    A flow system based on the monosegmented flow analysis (MSFA) approach is described for delivery of liquid samples to arc/spark excitation sources commonly used in spectrographs. A Carl Zeiss PGS-2 spectrograph, previously-automated in the laboratory by replacing its photographic plate detection system with a photodiode array, was employed, The sample is introduced via an injection port into the path to the excitation source, where the liquid sample plug (typically 50 mu l) is passed through ...

  16. Muskingum equation based downstream sediment flow simulation models for a river system

    Institute of Scientific and Technical Information of China (English)

    Briti Sundar Sil; Parthasarathi Choudhury

    2016-01-01

    Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.

  17. Iterative solution of large, sparse linear systems on a static data flow architecture - Performance studies

    Science.gov (United States)

    Reed, D. A.; Patrick, M. L.

    1985-01-01

    The applicability of static data flow architectures to the iterative solution of sparse linear systems of equations is investigated. An analytic performance model of a static data flow computation is developed. This model includes both spatial parallelism, concurrent execution in multiple PE's, and pipelining, the streaming of data from array memories through the PE's. The performance model is used to analyze a row partitioned iterative algorithm for solving sparse linear systems of algebraic equations. Based on this analysis, design parameters for the static data flow architecture as a function of matrix sparsity and dimension are proposed.

  18. SELECTIVE MODAL ANALYSIS OF POWER FLOW OSCILLATION IN LARGE SCALE LONGITUDINAL POWER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Wirindi -

    2009-06-01

    Full Text Available Novel selective modal analysis for the determination of low frequency power flow oscillation behaviour based on eigenvalues with corresponding damping ratio, cumulative damping index, and participation factors is proposed. The power system being investigated consists of three large longitudinally interconnected areas with some weak tie lines. Different modes, such as exciter modes, inter area modes, and local modes of the dominant poles are fully studied to find out the significant level of system damping and other factors producing power flow instability. The nature of the energy exchange between area is determined and strategic power flow stability improvement is developed and tested.

  19. Preprogrammed capillarity to passively control system-level sequential and parallel microfluidic flows.

    Science.gov (United States)

    Kim, Sung-Jin; Paczesny, Sophie; Takayama, Shuichi; Kurabayashi, Katsuo

    2013-06-01

    In microfluidics, capillarity-driven solution flow is often beneficial, owing to its inherently spontaneous motion. However, it is commonly perceived that, in an integrated microfluidic system, the passive capillarity control alone can hardly achieve well-controlled sequential and parallel flow of multiple solutions. Despite this common notion, we hereby demonstrate system-level sequential and parallel microfluidic flow processing by fully passive capillarity-driven control. After manual loading of solutions with a pipette, a network of microfluidic channels passively regulates the flow timing of the multiple solution menisci in a sequential and synchronous manner. Also, use of auxiliary channels and preprogramming of inlet-well meniscus pressure and channel fluidic conductance allow for controlling the flow direction of multiple solutions in our microfluidic system. With those components orchestrated in a single device chip, we show preprogrammed flow control of 10 solutions. The demonstrated system-level flow control proves capillarity as a useful means even for sophisticated microfluidic processing without any actively controlled valves and pumps.

  20. Active flow control integrated diffuser (afcid) for increased energy efficiency in variable air volume systems

    Science.gov (United States)

    Van Der Schijff, Hermanus P.

    Variable air volume (VAV) air terminals are designed to save energy by reducing airflow into a given space based on occupancy and required load. Systems are typically designed to operate at peak load, however as load is reduced, performance is compromised due to inadequate throw. As a result, fans are installed to adjust for the losses, negating many of the energy savings. Additionally flow is vectored by the use of vanes, a basic passive type of flow control. An experimental investigation was performed to study the application of flow control on that of a HVAC diffuser using synthetic jets distributed evenly along the diffuser edge parallel to the flow field. The study was conducted on a 1:3 scale typical office space (150 ft2), which included a simulated scale HVAC system supplied by compressed air. Two different jet blowing ratios were investigated for system loads of 60% and 90%. The flow field was established using hot wire anemometry and Particle Image Velocimetry (PIV). This study demonstrates the effectiveness of synthetic jet based active flow control at controlling airflow, showing ability to affect throw parameters for changing flow rates within the test chamber. Vectoring of up to 20% and improvement in jet spread of 200% was demonstrated. The use of such devices has the potential to improve air quality and air distribution in building while simultaneously lowering energy demands of HVAC systems.

  1. Periodic flows to chaos in time-delay systems

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains pro...

  2. Coupled equations for transient water flow, heat flow, and deformation in hydrogeological systems

    Indian Academy of Sciences (India)

    T N Narasimhan

    2006-04-01

    Hydrogeological systems are earth systems influenced by water.Their behaviors are governed by interacting processes,including flow of fluids,deformation of porous materials,chemical reactions, and transport of matter and energy.Here,coupling among three of these processes is considered: flow of water,heat,and deformation,each of which is represented by a diffusion-type of partial differential equation.One side of the diffusion-type equation relates to motion of matter or energy, while the other relates to temporal changes of state variables at a given location.The coupling arises from processes that govern motion as well as those that relate to change of state.In this work, attention is devoted to coupling arising from changes in state.Partial derivatives of equations of state constitute the capacitance terms of diffusion-type equations.Of the many partial derivatives that are mathematically possible in physical systems characterized by several variables,only a few are physically signi ficant.Because the state variables are related to each other through an equation of state,the partial derivatives must collectively satisfy a closure criterion.This framework offers a systematic way of developing the coupled set of equations that govern hydrogeological systems involving the flow of water,heat,and deformation.Such systems are described in terms of four variables,and the associated partial derivatives.The physical import of these derivatives are discussed,followed by a description of partial derivatives that are of practical interest.These partial derivatives are then used as the basis to develop a set of coupled equations.A brief discussion is presented on coupled equations from a perspective of energy optimization.

  3. System for measurement and automatic regulation of gas flow within an oil aging test device

    Directory of Open Access Journals (Sweden)

    Žigić Aleksandar

    2014-01-01

    Full Text Available This paper describes a system within an oil aging test device that serves for measurement and automatic regulation of gas flow. Following an already realized system that continuously monitors, logs, and regulates transformer oil temperature during the aging process and maintains temperature consistency within strict limits, a model of a flow meter and regulator of air or oxygen through transformer oil samples is developed. A special feature of the implemented system is the measurement of very small gas flows. A short technical description of the realized system is given with a functional block diagram. The basic technical characteristics of the system are specified, and the operating principles and application of the system are described. The paper also gives performance test results in a real exploitation environment.

  4. Design Flow Instantiation for Run-Time Reconfigurable Systems: A Case Study

    Directory of Open Access Journals (Sweden)

    Yang Qu

    2007-12-01

    Full Text Available Reconfigurable system is a promising alternative to deliver both flexibility and performance at the same time. New reconfigurable technologies and technology-dependent tools have been developed, but a complete overview of the whole design flow for run-time reconfigurable systems is missing. In this work, we present a design flow instantiation for such systems using a real-life application. The design flow is roughly divided into two parts: system level and implementation. At system level, our supports for hardware resource estimation and performance evaluation are applied. At implementation level, technology-dependent tools are used to realize the run-time reconfiguration. The design case is part of a WCDMA decoder on a commercially available reconfigurable platform. The results show that using run-time reconfiguration can save over 40% area when compared to a functionally equivalent fixed system and achieve 30 times speedup in processing time when compared to a functionally equivalent pure software design.

  5. Information flow within relational multi-context systems

    DEFF Research Database (Denmark)

    Cruz-Filipe, Luís; Gaspar, GrąCa; Nunes, Isabel

    2014-01-01

    Multi-context systems (MCSs) are an important framework for heterogeneous combinations of systems within the Semantic Web. In this paper, we propose generic constructions to achieve specific forms of interaction in a principled way, and systematize some useful techniques to work with ontologies w...

  6. Synthesis of Asynchronous Systems from Data Flow Specifications

    Science.gov (United States)

    1993-12-01

    is a mix-mode simulator, and it is a registered trademarks of Cadence Design Systems, Inc. DRACULA is an IC layout verification system, and it is a...Experimental results of the multiplier design. with wiring capacitances derived from a parasitic extraction tool, DRACULA (R), and it is labeled "Csim". The

  7. An update of the Death Valley regional groundwater flow system transient model, Nevada and California

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.

    2017-01-19

    Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.

  8. Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems

    CERN Document Server

    De Domenico, Manlio; Arenas, Alex; Rosvall, Martin

    2014-01-01

    Unveiling the community structure of networks is a powerful methodology to comprehend interconnected systems across the social and natural sciences. To identify different types of functional modules in interaction data aggregated in a single network layer, researchers have developed many powerful methods. For example, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow in the systems they represent. However, many networked systems consist of agents or components that exhibit multiple layers of interactions. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here we propose a method based on compression of network flows that can identify modular flows in non-aggregated multilayer networks. Our numerical experiments on synthetic networks show that the method can accurately identify modules that cannot be identified in agg...

  9. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  10. Software that goes with the flow in systems biology

    Directory of Open Access Journals (Sweden)

    Le Novère Nicolas

    2010-11-01

    Full Text Available Abstract A recent article in BMC Bioinformatics describes new advances in workflow systems for computational modeling in systems biology. Such systems can accelerate, and improve the consistency of, modeling through automation not only at the simulation and results-production stages, but also at the model-generation stage. Their work is a harbinger of the next generation of more powerful software for systems biologists. See research article: http://www.biomedcentral.com/1471-2105/11/582/abstract/ Ever since the rise of systems biology at the end of the last century, mathematical representations of biological systems and their activities have flourished. They are being used to describe everything from biomolecular networks, such as gene regulation, metabolic processes and signaling pathways, at the lowest biological scales, to tissue growth and differentiation, drug effects, environmental interactions, and more. A very active area in the field has been the development of techniques that facilitate the construction, analysis and dissemination of computational models. The heterogeneous, distributed nature of most data resources today has increased not only the opportunities for, but also the difficulties of, developing software systems to support these tasks. The work by Li et al. 1 published in BMC Bioinformatics represents a promising evolutionary step forward in this area. They describe a workflow system - a visual software environment enabling a user to create a connected set of operations to be performed sequentially using seperate tools and resources. Their system uses third-party data resources accessible over the Internet to elaborate and parametrize (that is, assign parameter values to computational models in a semi-automated manner. In Li et al.'s work, the authors point towards a promising future for computational modeling and simultaneously highlight some of the difficulties that need to be overcome before we get there.

  11. Power flow model/calculation for power systems with multiple FACTS controllers

    Energy Technology Data Exchange (ETDEWEB)

    Radman, Ghadir; Raje, Reshma S. [Center for Energy Systems Research, Tennessee Technological University, P.O. Box 5004, Cookeville, Tennessee-38505 (United States)

    2007-10-15

    This paper presents a new procedure for steady state power flow calculation of power systems with multiple flexible AC transmission system (FACTS) controllers. The focus of this paper is to show how the conventional power flow calculation method can systematically be modified to include multiple FACTS controllers. Newton-Raphson method of iterative solution is used for power flow equations in polar coordinate. The impacts of FACTS controllers on power flow is accommodated by adding new entries and modifying some existing entries in the linearized Jacobian equation of the same system with no FACTS controllers. Three major FACTS controllers (STATic synchronous COMpensator (STATCOM), static synchronous series compensator (SSSC), and unified power flow controller (UPFC)) are studied in this paper. STATCOM is modeled in voltage control mode. SSSC controls the active power of the link to which it is connected. The UPFC controls the active and the reactive power flow of the link while maintaining a constant voltage at one of the buses. The modeling approach presented in this paper is tested on the 9-bus western system coordinating council (WSCC) power system and implemented using MATLAB software package. The numerical results show the robust convergence of the presented procedure. (author)

  12. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  13. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.

    Science.gov (United States)

    Schwalbe, Margot A B; Sevey, Benjamin J; Webb, Jacqueline F

    2016-04-01

    The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes.

  14. Performance evaluation of a flow-down collecting solar system; Ryuka shunetsushiki solar system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K.; Li, X.; Baba, H.; Endo, N. [Kitami Institute of Technology, (Japan)

    1997-11-25

    The paper evaluated performance of a flow-down collecting solar system. The solar heat pump PV system is composed of a solar system, heat pump and PV, of which the heat collecting portion is a water-use horizontal evacuated double glass tube solar collector. As a result of the performance measurement, the necessity of fundamental improvement arose. Under an idea of disproving common sense of the original forced circulation solar system, a system was designed in which heat is collected by making the heat media reversely circulate and flow down in accordance with gravity. When the flow rate was 2m{sup 3}/h, the collecting rate reached a maximum, approximately 54% (36.9% before improvement). When the flow rate was 1.3-1.5m{sup 3}/h, the system can realize the maximum merit, and the collecting efficiency became approximately 50%. Helped by reduction in consumed power, the average system performance coefficient reached more than 85% (28.9% before improvement). The obtainable energy rate rapidly increased to 2.9 times more than before improvement. Further, the consumed power of pump was decreased 65% from before improvement when the flow rate was 2.4m{sup 3}/h. 2 refs., 5 figs.

  15. Traffic flow in a Manhattan-like urban system

    CERN Document Server

    Li, Ming; Jiang, Rui; Hu, Mao-Bin; Wang, Bing-Hong

    2011-01-01

    In this paper, a cellular automaton model of vehicular traffic in Manhattan-like urban system is proposed. In this model, the origin-destination trips and traffic lights have been considered. The system exhibits three different states, i.e., moving state, saturation state and global deadlock state. With a grid coarsening method, vehicle distribution in the moving state and the saturation state has been studied. Interesting structures (e.g., windmill-like one, T-shirt-like one, Y-like one) have been revealed. A metastability of the system is observed in the transition from saturation state to global deadlock state. The effect of advanced traveller information system (ATIS), the traffic light period, and the traffic light switch strategy have also been investigated.

  16. Fragmentation and flow regulation of the world's large river systems.

    Science.gov (United States)

    Nilsson, Christer; Reidy, Catherine A; Dynesius, Mats; Revenga, Carmen

    2005-04-15

    A global overview of dam-based impacts on large river systems shows that over half (172 out of 292) are affected by dams, including the eight most biogeographically diverse. Dam-impacted catchments experience higher irrigation pressure and about 25 times more economic activity per unit of water than do unaffected catchments. In view of projected changes in climate and water resource use, these findings can be used to identify ecological risks associated with further impacts on large river systems.

  17. Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G.W.

    1978-09-18

    Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

  18. Groundwater Flow Systems and Their Response to Climate Change: A Need for a Water-System View Approach

    Directory of Open Access Journals (Sweden)

    Joel J. Carrillo-Rivera

    2012-01-01

    Full Text Available Problem statement: The interest in early hydrogeological studies was the aquifer unit, as it is the physical media that stores and permits groundwater transfers from the recharge zone to the discharge zone, making groundwater available to boreholes for water extraction. Approach: Recently, the aquifer concept has been complemented by the groundwater flow system theory, where groundwater may be defined by local, intermediate and regional flow systems. This implies that groundwater may travel from one aquifer unit to another aquifer unit (or more located above or below the former. Water in a local flow system takes months or several years to travel from the recharge to the discharge zone. These flows usually transfer the best natural quality water, so a reduction in precipitation would lessen recharge and diminish stored water, making them more vulnerable to contamination and variability in climatic conditions. Thus, there is a need to define local flows and to enhance actions to protect them from contamination and inefficient extraction. Results: In contrast to local flows, intermediate and regional flows travel from a region, or country, into another, with their recharge processes usually taking place in a zone located far away from the discharge zone (natural or by boreholes. There is a need of groundwater flow systems evaluation by means of an integrated wide system-view analysis of partial evidence represented by surface (soil and vegetation covers as well as hydraulic, isotopic and chemical groundwater characterization in the related geological media where the depth of actual basement rock is paramount as well as discharge areas. The flow system definition may assist in extraction management strategies to control related issues as subsidence, obtained the water quality change, desiccation of springs and water bodies, soil erosion, flooding response, contamination processes in recharge areas, among others; many of which could be efficiently

  19. Effective communication : satellite system poised to improve information flow

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, R.

    2009-01-15

    This paper described a new satellite technology that can be used to transfer important information from offshore oil and gas facilities to decision-makers in distant onshore offices. Cascade Data Services (CDS), a subsidiary of British Columbia-based MDA Corporation, is developing a high-speed low-latency satellite information transfer service which has its roots in the Cascade Smallsat and Ionospheric Polar Explorer (CASSIOPE) mission scheduled for launch in 2009. The technology will enable customers to move thousands of gigabytes to and from anywhere on the planet on a daily basis. CASSIOPE received funding from the Canadian Space Agency and Technology Partnerships Canada. The first payload will be a suite of space science instruments known as the Enhanced Polar Outflow Probe (e-Pop) developed by researchers at the University of Calgary. The second payload will involve a demonstration of the digital courier service model and delivery of large digital data files. CDS has entered into an alliance with O3b Networks funded by Google Inc., Liberty Global Inc., and HSBC Principal Investments, among others. The technological development should improve the flow of information, making oil and gas operations in remote areas more efficient and help cut costs. 1 ref., 2 figs.

  20. Advanced Diagnostics and Instrumentation for Chemically Reactive Flow Systems.

    Science.gov (United States)

    1981-09-01

    AO-Aill 912 STANFORD UNIV CA DEPT OF MECHANICAL ENINEERING F/S 20/5 ADVANCED IAGNOSTICS AN ZNSYR%0TATON FOR CHMICALLY R9[ACT!VY-fTCU) SP 1 R K HANSON...fused silica fiber optics. 2. development of hardware and software to modulate the dye laser wave- length, transfer detector signals to a dedicated...color display monitor, the high speed Versatec graphics printer and the CAMAC 4 M~z A/D system. We have installed the com- puter software system and

  1. Evaluation of Bubbler Irrigation System at Different Emission Flow Rates for Young Mango Orchard

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Soothar

    2016-08-01

    Full Text Available An experiment was conducted on evaluating performance of bubbler irrigation system under young mango plant rows at the Higher Education Commission, research station at Sindh Agriculture University, Tandojam. The experimental station possesses more than 70 mango plants, irrigated by micro and traditional irrigation methods fed by tubewell with average water static level of 9 ft below ground surface. Bubbler irrigation system was designed to irrigate 12 mango plants. The aim of study was to assess the performance of the bubbler irrigation system at different emission flow rates with an installed bubbler irrigation system to improve water distribution uniformity. The result of this study showed that the high pressure losses and the system operated on one gallon per minute flow rate of each bubbler, water distribution uniformity was low, with an average of 68 %. Other hand, comparison with emission (bubbler flow rate was adjusted at half gallon per minute has shown high water emission uniformity of system performed with an average of 92 % distribution uniformity. The reasons for the minimum distribution uniformity of bubblers were observed at one gallon per minute emission flow and this study recommended to improve the bubbler irrigation at dissimilar flow rates.

  2. LED controlled flow photolysis for concentration gradients in microfluidic systems.

    Science.gov (United States)

    Potter, Oscar G; Thomas, Mark E; Breadmore, Michael C; Hilder, Emily F

    2010-05-21

    Many of the channels and reservoirs in microfluidic systems are used simply to allow liquids with different compositions to be delivered to where they are needed. An alternative approach is to use dissolved photochemicals and variable intensity LEDs to generate composition changes in situ. We applied this approach to generate concentration gradients of HCl for gradient ion chromatography.

  3. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable e

  4. SSHCure: a flow-based SSH intrusion detection system

    NARCIS (Netherlands)

    Hellemons, Laurens; Hendriks, Luuk; Hofstede, Rick; Sperotto, Anna; Sadre, Ramin; Pras, Aiko

    2012-01-01

    SSH attacks are a main area of concern for network managers, due to the danger associated with a successful compromise. Detecting these attacks, and possibly compromised victims, is therefore a crucial activity. Most existing network intrusion detection systems designed for this purpose rely on the

  5. Engineering of modular material flow systems in the internet of things; Engineering von modularen Foerderanlagen im Internet der Dinge

    Energy Technology Data Exchange (ETDEWEB)

    Hompel, Michael ten; Nettstraeter, Andreas; Schier, Arkadius [Fraunhofer-Institut fuer Materialfluss und Logistik, Dortmund (Germany); Feldhorst, Sascha [TU Dortmund (Germany). Lehrstuhl fuer Foerder- und Lagerwesen

    2011-04-15

    This contribution describes new engineering concepts for modular conveyor systems. Through modularisation of mechanical material flow systems and the decentralisation of material flow control, the realisation of flexible and scalable systems is facilitated. We describe the concept of the internet of things in logistics and discuss benefits of this approach towards the efficiency of a material flow system. Subsequently, the main part of the paper deals with new ways for engineering such systems. (orig.)

  6. Optimal power flow calculation for power system with UPFC considering load rate equalization

    Science.gov (United States)

    Liu, Jiankun; Chen, Jing; Zhang, Qingsong

    2017-06-01

    Unified power flow controller (UPFC) device can change system electrical quantity (such as voltage, impedance, phase angle, etc.) rapidly and flexibly under the premise of maintain security, stability and reliability of power system, thus can improve the transmission power and transmission line utilization, so as to enhance the power supply capacity of the power grid. Based on a thorough study of the steady-state model of UPFC, taking load rate equalization as objective function, the optimal power flow model is established with UPFC, and simplified interior point method is used to solve it. Finally, optimal power flow of 24 continuous sections actual data is calculated on a typical day of Nanjing network. The results show that the optimal power flow calculation with UPFC can optimize the load rate equalization on the basis of eliminating line overload, improving the voltage level of local power network.

  7. Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI GuoMin; YANG Liao; DANG XueYa; ZHAO ChunHu; HOU GuangCai; ZHANG MaoSheng

    2007-01-01

    The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei,Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  8. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system

    Science.gov (United States)

    Gol, Berrak; Kurdzinski, Michael E.; Tovar-Lopez, Francisco J.; Petersen, Phred; Mitchell, Arnan; Khoshmanesh, Khashayar

    2016-04-01

    Here, we investigate the directional control of Galinstan liquid metal droplets when transferring from the high-viscosity glycerol core into the parallel low-viscosity NaOH sheath streams within a flow focusing microfluidic system. In the presence of sufficient flow mismatch between the sheath streams, the droplets are driven toward the higher velocity interface and cross the interface under the influence of surface tension gradient. A minimum flow mismatch of 125 μl/min is required to enable the continuous transfer of droplets toward the desired sheath stream. The response time of droplets, the time required to change the direction of droplet transfer, is governed by the response time of the syringe pump driven microfluidic system and is found to be 3.3 and 8.8 s when increasing and decreasing the flow rate of sheath stream, respectively.

  9. Compact counter-flow cooling system with subcooled gravity-fed circulating liquid nitrogen

    Science.gov (United States)

    Ivanov, Yu.; Radovinsky, A.; Zhukovsky, A.; Sasaki, A.; Watanabe, H.; Kawahara, T.; Hamabe, M.; Yamaguchi, S.

    2010-11-01

    A liquid nitrogen (LN2) is usually used to keep the high-temperature superconducting (HTS) cable low temperature. A pump is utilized to circulate LN2 inside the cryopipes. In order to minimize heat leakage, a thermal siphon circulation scheme can be realized instead. Here, we discuss the effectiveness of thermal siphon with counter-flow circulation loop composed of cryogen flow channel and inner cable channel. The main feature of the system is the existence of essential parasitic heat exchange between upwards and downwards flows. Feasibility of the proposed scheme for cable up to 500 m in length has been investigated numerically. Calculated profiles of temperature and pressure show small differences of T and p in the inner and the outer flows at the same elevation, which allows not worrying about mechanical stability of the cable. In the case under consideration the thermal insulating properties of a conventional electrical insulating material (polypropylene laminated paper, PPLP) appear to be sufficient. Two interesting effects were disclosed due to analysis of subcooling of LN2. In case of highly inclined siphon subcooling causes significant increase of temperature maximum that can breakup of superconductivity. In case of slightly inclined siphon high heat flux from outer flow to inner flow causes condensation of nitrogen gas in outer channel. It leads to circulation loss. Results of numerical analyses indicate that counter-flow thermosiphon cooling system is a promising way to increase performance of short-length power transmission (PT) lines, but conventional subcooling technique should be applied carefully.

  10. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    validated and showed that a slip flow model need be used. A test case 8.8 kW residential air-conditioning system with R410A as refrigerant is chosen as baseline for the numerical investigations, and the simulations are performed at standard rating conditions from ANSI/AHRI Standard 210/240 (2008...... cases are standard tube circuitry designs and these results are thus tube circuitry specific. In addition, a novel method of compensating flow maldistribution is analyzed, i.e. the discontinuous liquid injection principle. The method is based upon the recently developed EcoFlowTM valve by Danfoss A...

  11. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  12. Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities.

    Science.gov (United States)

    Segovia, N; Tamez, E; Peña, P; Carrillo, J; Acosta, E; Armienta, M A; Iturbe, J L

    1999-03-01

    Natural radionuclides and physicochemical parameters have been evaluated in groundwater samples from boreholes belonging to the drinking water supply system of the Toluca City, Mexico. The results obtained for radon and radium, together with the physicochemical parameters of the studied samples, indicate a fast and efficient recharge pattern. The presence of a local and a regional groundwater flows was also observed. The local flow belongs to shallower water, recognized by its low radon content and dissolved ions, as compared with the regional, deeper groundwater flow with a longer residence time.

  13. An Autonomous Dynamical System Captures all LCSs in Three-Dimensional Unsteady Flows

    CERN Document Server

    Oettinger, David

    2016-01-01

    Lagrangian coherent structures (LCSs) are material surfaces that shape finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, $\\xi_{2}(x_{0})$, of the Cauchy-Green strain tensor. This $\\xi_{2}$-system allows for the detection of LCSs in any unsteady flow by classic methods, such as Poincar\\'e maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual $\\xi_{2}$-system to uncover both hyperbolic and elliptic LCSs from a single computation.

  14. Possible Self-Organised Criticality and Dynamical Clustering of Traffic flow in Open Systems

    CERN Document Server

    Larraga, M E; Mehta, A; Mehta, Anita

    1999-01-01

    We focus in this work on the study of traffic in open systems using a modified version of an existing cellular automaton model. We demonstrate that the open system is rather different from the closed system in its 'choice' of a unique steady-state density and velocity distribution, independently of the initial conditions, reminiscent of self-organised criticality. Quantities of interest such as average densities and velocities of cars, exhibit phase transitions between free flow and the jammed state, as a function of the braking probability R in a way that is very different from closed systems. Velocity correlation functions show that the concept of a dynamical cluster, introduced earlier in the context of granular flow is also relevant for traffic flow models.

  15. Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures

    Science.gov (United States)

    Bruna, Maria; Burger, Martin; Ranetbauer, Helene; Wolfram, Marie-Therese

    2017-04-01

    In this paper, we discuss the analysis of a cross-diffusion PDE system for a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys 137:204116-1-204116-16, 2012a) from a stochastic system of interacting Brownian particles using the method of matched asymptotic expansions. The resulting cross-diffusion system is valid in the limit of small volume fraction of particles. While the system has a gradient flow structure in the symmetric case of all particles having the same size and diffusivity, this is not valid in general. We discuss local stability and global existence for the symmetric case using the gradient flow structure and entropy variable techniques. For the general case, we introduce the concept of an asymptotic gradient flow structure and show how it can be used to study the behavior close to equilibrium. Finally, we illustrate the behavior of the model with various numerical simulations.

  16. Special purpose computer system with highly parallel pipelines for flow visualization using holography technology

    Science.gov (United States)

    Masuda, Nobuyuki; Sugie, Takashige; Ito, Tomoyoshi; Tanaka, Shinjiro; Hamada, Yu; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho

    2010-12-01

    We have designed a PC cluster system with special purpose computer boards for visualization of fluid flow using digital holographic particle tracking velocimetry (DHPTV). In this board, there is a Field Programmable Gate Array (FPGA) chip in which is installed a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform (FFT). This cluster system can create 1024 reconstructed images from a 1024×1024-grid hologram in 0.77 s. It is expected that this system will contribute to the analysis of fluid flow using DHPTV.

  17. Heat flow control in thermo-magnetic convective systems using engineered magnetic fields

    Science.gov (United States)

    Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.

    2012-09-01

    We present the design of a magnetically controlled convective heat transfer system. The underlying thermo-magnetic instability phenomenon is described, and enhanced convective fluid flow patterns are determined using non-linear programming techniques plus a design sensitivity analysis. Specifically, the magnetic fluid body force is computed by finding the optimal distribution and magnetization direction of a magnetic field source, where the objective is to minimize the maximum temperature of a closed loop heat transfer system. Sizeable fluid recirculation zones are induced by arranging magnetic field generation elements in configurations similar to Halbach arrays. Applications include improved heat flow control for electromechanical systems.

  18. Representing Causality and Reasoning about Controllability of Multi-level Flow-Systems

    DEFF Research Database (Denmark)

    Heussen, Kai; Lind, Morten

    2010-01-01

    -based reasoning about control situations remains a challenge due to the entanglement of process and control systems that co-establish the intended causal structure of a process. Due to this entanglement, reasoning about such systems depends on a coherent representation of control and process. This paper explains...... modeling of controlled processes with multilevelflow models and proposes a new framework for modeling causal influence in multilevel flow models on the basis of a flow/potential analogy. The results are illustrated on examples from the domain of electric power systems....

  19. Vibration control of multi-degrees-of-freedom system with dynamic absorbers based on power flow

    Institute of Scientific and Technical Information of China (English)

    WANG Quanjuan; HUANG Wenhua; XIA Songbo; LI Jimin; SUN Zhizhuo

    2003-01-01

    In accordance with a multiple degrees of freedom vibration system with dynamicvibration absorbers (DVAs), an equivalent admittance matrix and the power flows input majorstructure and minor structure are deduced on the basis of the theories of structure mobility.Furthermore, regarding the net power flow of main vibration system as the controlled object,probed into are the single and multiple model controls of multi-degrees-of-freedom system withone or several absorbers attached. And the control mechanism and effect of dynamic vibrationabsorbers are revealed.

  20. Flow and permeability structure of the Beowawe, Nevada hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Faulder, D.D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Johnson, S.D.; Benoit, W.R. [Oxbow Power Services, Inc., Reno, NV (United States)

    1997-05-01

    A review of past geologic, geochemical, hydrological, pressure transient, and reservoir engineering studies of Beowawe suggests a different picture of the reservoir than previously presented. The Beowawe hydrothermal contains buoyant thermal fluid dynamically balanced with overlying cold water, as shown by repeated temperature surveys and well test results. Thermal fluid upwells from the west of the currently developed reservoir at the intersection of the Malpais Fault and an older structural feature associated with mid-Miocene rifting. A tongue of thermal fluid rises to the east up the high permeability Malpais Fault, discharges at the Geysers area, and is in intimate contact with overlying cooler water. The permeability structure is closely related to the structural setting, with the permeability of the shallow hydrothermal system ranging from 500 to 1,000 D-ft, while the deeper system ranges from 200 to 400 D-ft.

  1. Focusing of the Flow Capture for Local Exhaust Ventilation Systems

    OpenAIRE

    S. Y. Spotar; Sorokin, A. L.

    2010-01-01

    Problem statement: The extraction hoods commonly used as inlet element of the local ventilation systems exhibit limited emission capture over moderate distances from the source of the hazardous emissions. Proposed inclusion of a swirling peripheral jet was found to increase the effective length over which the extraction hood successfully captures harmful fumes. However information on a detailed pattern field of the vortex focused inflow was insufficient thus restricting the potential applicat...

  2. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  3. Control Volume Analysis, Entropy Balance and the Entropy Production in Flow Systems

    OpenAIRE

    Niven, Robert K.; Noack, Bernd R.

    2014-01-01

    This chapter concerns "control volume analysis", the standard engineering tool for the analysis of flow systems, and its application to entropy balance calculations. Firstly, the principles of control volume analysis are enunciated and applied to flows of conserved quantities (e.g. mass, momentum, energy) through a control volume, giving integral (Reynolds transport theorem) and differential forms of the conservation equations. Several definitions of steady state are discussed. The concept of...

  4. TensorFlow: A system for large-scale machine learning

    OpenAIRE

    2016-01-01

    TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexib...

  5. Flow-Induced Control of Pattern Formation in Chemical Systems

    Science.gov (United States)

    Berenstein, Igal; Beta, Carsten

    Since Alan Turing's seminal paper in 1952, the study of spatio-temporal patterns that arise in systems of reacting and diffusing components has grown into an immense and vibrant realm of scientific research. This field includes not only chemical systems but spans many areas of science as diverse as cell and developmental biology, ecology, geosciences, or semiconductor physics. For several decades research in this field has concentrated on the vast variety of patterns that can emerge in reaction-diffusion systems and on the underlying instabilities. In the 1990s, stimulated by the pioneering work of Ott, Grebogi and Yorke, control of pattern formation arose as a new topical focus and gradually developed into an entire new field of research. On the one hand, research interests concentrated on control and suppression of undesired dynamical states, in particular on control of chaos. On the other hand, the design and engineering of particular space-time patterns became a major focus in this field that motivates ongoing scientific effort until today...

  6. Dependable Design Flow for Protection Systems using Programmable Logic Devices

    CERN Document Server

    Kwiatkowski, M

    2011-01-01

    Programmable Logic Devices (PLD) such as Field Programmable Gate Arrays (FPGA) are becoming more prevalent in protection and safety-related electronic systems. When employing such programmable logic devices, extra care and attention needs to be taken. The final synthesis result, used to generate the bit-stream to program the device, must be shown to meet the design’s requirements. This paper describes how to maximize confidence using techniques such as Formal Methods, exhaustive Hardware Description Language (HDL) code simulation and hardware testing. An example is given for one of the critical functions of the Safe Machine Parameters (SMP) system, used in the protection of the Large Hadron Collider (LHC) at CERN. CERN is also working towards an adaptation of the IEC- 61508 lifecycle designed for Machine Protection Systems (MPS), and the High Energy Physics environment, implementation of a protection function in FPGA code is only one small step of this lifecycle. The ultimate aim of this project is to cre...

  7. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    2012-01-01

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  8. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    2012-01-01

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  9. Development of fiber optic sensor for fluid flow of astronauts’ life-support system

    Science.gov (United States)

    Shachneva, E. A.; Murashkina, T. I.

    2016-08-01

    This paper proposes a fiber optic sensor consumption (volume, speed) of liquids in life-support systems of astronauts, as well as offers a simple method and apparatus for reproducing the parameters of fluid flow needed in research, yustiovke and adjusting the optical sensor system.

  10. THE LONG TIME BEHAVIORS OF NON-AUTONOMOUS EVOLUTION SYSTEM DESCRIBING GEOPHYSICAL FLOW WITHIN THE EARTH

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chunshan; LI Kaitai; HUANG Aixiang

    2002-01-01

    In this paper, the long time behaviors of non-autonomous evolution system describing geophysical flow within the earth are studied. The uniqueness and existence of the solution to the evolution system and the existence of uniform attractor are proven.Moreover, the upper bounds of the uniform attractor's Hausdorff and Fractal dimensions are obtained.

  11. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  12. Closed-cycle gas flow system for cooling of high Tc d.c. SQUID magnetometers

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1995-01-01

    A high Tc.d.c SQUID based magnetometer for magnetocardiography is currently under development at the University of Twente. Since such a magnetometer should be simple to use, the cooling of the system can be realized most practically by means of a cryocooler. A closed-cycle gas flow cooling system in

  13. THE LONG TIME BEHAVIORS OF NON-AUTONOMOUS EVOLUTION SYSTEM DESCRIBING GEOPHYSICAL FLOW WITHIN THE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper,the long time behaviors of non-autonomous evolution system describing geophysical flow within the earth are studied.The uniqueness and existence of the solution to the evolution system and the existence of uniform attractor are proven.Moreover,the upper bounds of the uniform attractor's hausdorff and Fractal dimensions are obtained.

  14. The Rheology of Blood Flow in a Branched Arterial System.

    Science.gov (United States)

    Shibeshi, Shewaferaw S; Collins, William E

    2005-01-01

    Blood flow rheology is a complex phenomenon. Presently there is no universally agreed upon model to represent the viscous property of blood. However, under the general classification of non-Newtonian models that simulate blood behavior to different degrees of accuracy, there are many variants. The power law, Casson and Carreau models are popular non-Newtonian models and affect hemodynamics quantities under many conditions. In this study, the finite volume method is used to investigate hemodynamics predictions of each of the models. To implement the finite volume method, the computational fluid dynamics software Fluent 6.1 is used. In this numerical study the different hemorheological models are found to predict different results of hemodynamics variables which are known to impact the genesis of atherosclerosis and formation of thrombosis. The axial velocity magnitude percentage difference of up to 2 % and radial velocity difference up to 90 % is found at different sections of the T-junction geometry. The size of flow recirculation zones and their associated separation and reattachment point's locations differ for each model. The wall shear stress also experiences up to 12 % shift in the main tube. A velocity magnitude distribution of the grid cells shows that the Newtonian model is close dynamically to the Casson model while the power law model resembles the Carreau model. ZUSAMMENFASSUNG: Die Rheologie von Blutströmungen ist ein komplexes Phänomen. Gegenwärtig existiert kein allgemein akzeptiertes Modell, um die viskosen Eigenschaften von Blut wiederzugeben. Jedoch gibt es mehrere Varianten unter der allgemeinen Klassifikation von nicht-Newtonschen Modellen, die das Verhalten von Blut mit unterschiedlicher Genauigkeit simulieren. Die Potenzgesetz-, Casson und Carreau-Modelle sind beliebte nicht-New-tonsche Modelle und beeinflussen die hämodynamischen Eigenschaften in vielen Situationen. In dieser Studie wurde die finite Volumenmethode angewandt, um die h

  15. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  16. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin

    Science.gov (United States)

    Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui

    2017-10-01

    Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.

  17. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  18. Mapping the flow of information within the putative mirror neuron system during gesture observation.

    Science.gov (United States)

    Schippers, Marleen B; Keysers, Christian

    2011-07-01

    The putative mirror neuron system may either function as a strict feed-forward system or as a dynamic control system. A strict feed-forward system would predict that action observation leads to a predominantly temporal→parietal→premotor flow of information in which a visual representation is transformed into motor-programs which contribute to action understanding. Instead, a dynamic feedback control system would predict that the reverse direction of information flow predominates because of a combination of inhibitory forward and excitatory inverse models. Here we test which of these conflicting predictions best matches the information flow within the putative mirror neuron system (pMNS) and between the pMNS and the rest of the brain during the observation of comparatively long naturalistic stretches of communicative gestures. We used Granger causality to test the dominant direction of influence. Our results fit the predictions of the dynamic feedback control system: we found predominantly an information flow within the pMNS from premotor to parietal and middle temporal cortices. This is more pronounced during an active guessing task than while passively reviewing the same gestures. In particular, the ventral premotor cortex sends significantly more information to other pMNS areas than it receives during active guessing than during passive observation.

  19. Safety System for Controlling Fluid Flow into a Suction Line

    Science.gov (United States)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2015-01-01

    A safety system includes a sleeve fitted within a pool's suction line at the inlet thereof. An open end of the sleeve is approximately aligned with the suction line's inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining a plurality of distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. Each of the distinct channels is at least approximately three feet in length. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith.

  20. Modeling reactive flow and transport in natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, P.C. [Center for Nuclear Waste Regulatory Analyses, S.Antonio, TX (United States)

    1998-12-31

    A general formulation of reactive transport equations in a porous medium has been presented including homogeneous reactions of aqueous species, heterogenous reactions of minerals, and microbiological processes. The canonical form of chemical reactions was introduced and the transformation between primary or basis species derived. The use of parallel linearly-dependent reactions was discussed for incorporating different reaction rate mechanisms. It was demonstrated how the electron may be used in reactive transport equations with redox reactions formulated in terms of half-cell reactions. A single component system was investigated for both a one-dimensional porous medium and a two-dimensional geometry incorporating fracture-matrix interaction. Finally two multicomponent examples were considered using the computer code MULTIFLO of in situ leaching of copper ore and acid mine drainage.

  1. Bidirectional control system for energy flow in solar powered flywheel

    Science.gov (United States)

    Nola, Frank J. (Inventor)

    1987-01-01

    An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.

  2. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area of South China

    Science.gov (United States)

    Luo, Mingming; Chen, Zhihua; Criss, Robert E.; Zhou, Hong; Huang, He; Han, Zhaofeng; Shi, Tingting

    2016-12-01

    The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of -2.4 ‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ˜2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water-rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 -. The intensity of water-rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.

  3. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    Science.gov (United States)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  4. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area of South China

    Science.gov (United States)

    Luo, Mingming; Chen, Zhihua; Criss, Robert E.; Zhou, Hong; Huang, He; Han, Zhaofeng; Shi, Tingting

    2016-08-01

    The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of -2.4 ‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ˜2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water-rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 -. The intensity of water-rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.

  5. Study on a gas transport system based on thermal induced flow

    Science.gov (United States)

    Matsumoto, Hiroaki; Mihara, Kai; Yamagishi, Daigo; Morokuma, Takayuki

    2016-11-01

    In this study, the performance of a rarefied gas transport system which works by thermal induced flow was studied experimentally. The driving force of the pump system presented in this study is thermal creep flow around the edge of a small circular plate. The thermal induced flow is generated by irradiating the plates, which are colored black on one side and white on the other. The system was constructed by arranging a series of such plates in a glass pipe which was connected to two vessels and irradiated with an infrared lamp. It was observed that the ratio of pressures in the two vessels was about 96% when the temperature difference between the black and white surfaces of the plates was about 40 °C.

  6. Large Matched-Index-of-Refraction (MIR) Flow Systems for International Collaboration In Fluid Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Donald M. McEligot; Stefan Becker; Hugh M. McIlroy, Jr.

    2010-07-01

    In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.

  7. Modeling and Power Flow Analysis for Herringbone Gears Power Dual-Branching Transmission System

    Science.gov (United States)

    Yang, Xiaofang; Zhu, Yanxiang; Fang, Zongde; Gu, Jiangong

    Based on power dual-branching transmission system of herringbone gears, the mechanical structural model was established. This study represented the simplified algorithm to obtain its power flow situations through formulating the deformation compatibility condition for the linear relationship between the torque and transverse deformation of tooth surface and the torque equilibrium condition. Besides, the effects on the power flow of system were calculated under all kinds of the installation error and processing error of gear pairs. Finally, the power flow situations of dual branches were solved via Programming. A numerical example that illustrated the developed theory was provided. The research results can be applied to analyze the actual application of herringbone gears power split-path transmission system.

  8. System-Level Modeling and Synthesis of Flow-Based Microfluidic Biochips

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. There are several types of microfluidic biochips, each having its advantages and limitations. In this paper we are interested in flow......-based biochips, in which the flow of liquid is manipulated using integrated microvalves. By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. Although researchers have proposed significant work on the system-level synthesis of droplet......-based biochips, which manipulate droplets on a two-dimensional array of electrodes, no research on system-level synthesis of flow-based biochips has been reported so far. The focus has been on application modeling and component-level simulation. Therefore, for the first time to our knowledge, we propose a system...

  9. An information flow analysis of a distributed information system for space medical support.

    Science.gov (United States)

    Zhang, Tao; Aranzamendez, Gina; Rinkus, Susan; Gong, Yang; Rukab, Jamie; Johnson-Throop, Kathy A; Malin, JaneT; Zhang, Jiajie

    2004-01-01

    In this study, we applied the methodology grounded in human-centered distributed cognition principles to the information flow analysis of a highly intensive, distributed and complex environment--the Biomedical Engineer (BME) console system at NASA Johnson Space Center. This system contains disparate human and artificial agents and artifacts. Users and tasks of this system were analyzed. An ethnographic study and a detailed communication pattern analysis were conducted to gain deeper insight and better understanding of the information flow patterns and the organizational memory of the current BME console system. From this study, we identified some major problems and offered recommendations to improve the efficiency and effectiveness of this system. We believe that this analysis methodology can be used in other distributed information systems, such as a healthcare environment.

  10. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  11. Power flow in a small electromagnetic energy harvesting system excited by mechanical motion

    CERN Document Server

    Helseth, Lars Egil

    2014-01-01

    In this study the power flow in a coupled mechanical and electromagnetic harvesting system in presence of both positional and electrical fluctuations is analyzed. Explicit expressions for the power into and out of the mechanical and electrical parts of the system are found in the case of weak coupling, and it is shown how the power flows between the domains consistent with energy conservation. The case of thermal fluctuations is considered in particular, and use of the fluctuation-dissipation theorem explicitly demonstrates that the power delivered to the mechanical system from the electrical system is the same as the power delivered to the electrical system from the mechanical system. On the other hand, the power dissipated in the electrical circuit is not the same as the power transferred from the mechanical domain if the electrical circuit contains its own current fluctuations. The electrical noise power dissipated in a load resistor is calculated, and found to consist of a component due to electromagnetic...

  12. Predicting the mode of flow in pneumatic conveying systems-A review

    Institute of Scientific and Technical Information of China (English)

    Mark G.Jones; Kenneth C.Williams

    2008-01-01

    An initial prediction of the particulate mode of flow in pneumatic conveying systems is beneficial as this knowledge can provide clearer direction to the pneumatic conveying design process.There are three general categories of modes of flow,two dense flows:fluidised dense phase and plug flow,and dilute phase only.Detailed in this paper is a review of the commonly used and available techniques for predicting mode of flow.Two types of predictive charts were defined:basic particle parameter based (e.g.particle size and density) and air-particle parameter based (e.g.permeability and de-aeration).The basic particle techniques were found to have strong and weak areas of predictive ability,on the basis of a comparison with data from materials with known mode of flow capability.It was found that there was only slight improvement in predictive ability when the particle density was replaced by loose-poured bulk density in the basic parameter techniques.The air-particle-parameter-based techniques also showed well-defined regions for mode of flow prediction though the data set used was smaller than that for the basic techniques.Also,it was found to be difficult to utilise de-aeration values from different researchers and subsequently,an air-particle-based technique was developed which does not require any de-aeration parameter in its assessment.

  13. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  14. Optical flow based guidance system design for semi-strapdown image homing guided missiles

    Directory of Open Access Journals (Sweden)

    Huang Lan

    2016-10-01

    Full Text Available This paper focuses mainly on semi-strapdown image homing guided (SSIHG system design based on optical flow for a six-degree-of-freedom (6-DOF axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.

  15. Numerical Investigation of Supersonic Oscillatory Flow with Strong Interference over a Capsule-shaped Abort System

    Science.gov (United States)

    Wang, Yunpeng; Ozawa, Hiroshi; Nakamura, Yoshiaki

    The flow past a capsule-shaped space transportation system (STS) is numerically analyzed using computational fluid dynamics (CFD) for different free stream Mach numbers ranging from 1.2 to 5.0, where a capsule is modeled by a cone, and a rocket by a circular cylinder. The objective of this research is to study Mach number effects on phenomena of the supersonic aerodynamic interference with periodic flow oscillations at supersonic regime. So far we have considered two models: model A (without disk) and model B (with disk). It was found from experimental and computational results that the flow around model A becomes steady, where aerodynamic interaction is not observed, while in model B, flow becomes unsteady with periodic oscillations. This flow oscillation is considered to be a potentially high risk in separation of the capsule and rocket. Therefore, the present study focuses on the unsteady case of model B. Numerical results at M=3.0 compared well with experimental ones, which validates the present CFD. Time-averaged results are employed to see the whole trajectories of shock waves and the variation in amplitude of flow oscillation during one cycle. Moreover, a fence is proposed as a device to suppress the flow oscillation.

  16. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    Science.gov (United States)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  17. Improvement of system security with unified-power-flow controller at suitable locations under network contingencies of interconnected systems

    OpenAIRE

    Thukaram, D; Jenkins, L.; Visakha, K

    2005-01-01

    The operation and planning of large interconnected power systems are becoming increasingly complex. To maintain security of such systems, it is desirable to estimate the effect of contingencies and plan suitable measures to improve system security/stability. The paper presents an approach for selection of unified-power-flow-controller (UPFC-) suitable locations considering normal and network contingencies after evaluating the degree of severity of the contingencies. The ranking is evaluated u...

  18. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms;

    2013-01-01

    We combined electrical resistivity tomography (ERT) on land and in a stream with zone-based hydraulic conductivities (from multi-level slug testing) to investigate the local geological heterogeneity of the deposits in a wetland–stream system. The detailed geology was incorporated into a numerical....... The presented approach of integrating such methods in groundwater–surface water exchange studies, proved efficient to obtain information of the controlling factors....... steady-state groundwater model that was calibrated against average head observations. The model results were tested against groundwater fluxes determined from streambed temperature measurements. Discharge varied up to one order of magnitude across the stream and the model was successful in capturing...... this variability. Water quality analyses from multi-level sampling underneath the streambed and in the wetland showed a stratification in groundwater composition with an aerobic shallow zone with oxygen and nitrate (top ∼3 m) overlying a reduced, anoxic zone. While NO3- concentrations up to 58 mg L−1 were found...

  19. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  20. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  1. Flow characteristics of the raw sewage for the design of sewage-source heat pump systems.

    Science.gov (United States)

    Xu, Ying; Wu, Yuebin; Sun, Qiang

    2014-01-01

    The flow characteristics of raw sewage directly affect the technical and economic performance of sewage-source heat pump systems. The purpose of this research is to characterize the flow characteristics of sewage by experimental means. A sophisticated and flexible experimental apparatus was designed and constructed. Then the flow characteristics of the raw sewage were studied through laboratorial testing and theoretical analyses. Results indicated that raw sewage could be characterized as a power-law fluid with the rheological exponent n being 0.891 and the rheological coefficient k being 0.00175. In addition, the frictional loss factor formula in laminar flow for raw sewage was deduced by theoretical analysis of the power-law fluid. Furthermore, an explicit empirical formula for the frictional loss factor in turbulent flow was obtained through curve fitting of the experimental data. Finally, the equivalent viscosity of the raw sewage is defined in order to calculate the Reynolds number in turbulent flow regions; it was found that sewage had two to three times the viscosity of water at the same temperature. These results contributed to appropriate parameters of fluid properties when designing and operating sewage-source heat pump systems.

  2. Study of an ammonia-based wet scrubbing process in a continuous flow system

    Energy Technology Data Exchange (ETDEWEB)

    Resnik, Kevin P.; Pennline, Henry W.

    2013-03-01

    A continuous gas and liquid flow, regenerative scrubbing process for CO{sub 2} capture was demonstrated at the bench-scale level. An aqueous ammonia-based solution captures CO{sub 2} from simulated flue gas in an absorber and releases a nearly pure stream of CO{sub 2} in the regenerator. After the regeneration, the solution of ammonium compounds is recycled to the absorber. The design of a continuous flow unit was based on earlier exploratory results from a semi-batch reactor, where a CO{sub 2} and N{sub 2} simulated flue gas mixture flowed through a well-mixed batch of ammonia-based solution. During the semi-batch tests, the solution was cycled between absorption and regeneration steps to measure the carrying capacity of the solution at various initial ammonia concentrations and temperatures. Consequentially, a series of tests were conducted on the continuous unit to observe the effect of various parameters on CO{sub 2} removal efficiency and regenerator effectiveness within the flow system. The parameters that were studied included absorber temperature, regenerator temperature, initial NH{sub 3} concentration, simulated flue gas flow rate, liquid solvent inventory in the flow system, and height of the packed-bed absorber. From this testing and subsequent testing, ammonia losses from both the absorption and regeneration steps were quantified, and attempts were made to maintain steady state during operations. Implications of experimental results with respect to process design are discussed.

  3. The impact of viscosity on the morphology of gaseous flows in semidetached binary systems

    CERN Document Server

    Bisikalo, D V; Kuznetsov, O A; Chechetkin, V M

    2000-01-01

    Results of 3D gas dynamical simulation of mass transfer in binaries are presented for systems with various values of viscosity. Analysis of obtained solutions shows that in the systems with low value of viscosity the flow structure is qualitatively similar to one for systems with high viscosity. Presented calculations confirm that there is no shock interaction between the stream from L1 and the forming accretion disk (`hot spot') at any value of viscosity.

  4. Investigation of power flow in a continuous floating raft isolation system

    Institute of Scientific and Technical Information of China (English)

    SONG Kongjie; MAO Yinghong; LIN Li

    2001-01-01

    A general dynamic model of a floating raft isolation system with multiple machines and supports is established. Considering the coupling of the foundation in high frequency and basing on the mobility analysis of substructures, the expression of the power flow transmission spectrum of the finite continuous isolation system of asymmetry is derived. At the same time the mathematical calculation and analysis by figure are made to find the rules related to the isolation effect in the case of different parameters of the system.

  5. NOVEL COMPOSITE CVT SYSTEMS WITH DIVERGING AND DUAL-MODE CONVERGING POWER FLOW

    Institute of Scientific and Technical Information of China (English)

    Liu Shodao; Huang Xiangdong; Zhao Kegang; Luo Yutao

    2004-01-01

    A new type of composite CVT(continuously variable transmission) systems featured by power flow divergence and dual-mode convergence,capable of improving CVT's efficiency and power capacity or making AMTs(automated manual transmissions) become continuously variable,is studied.With specific mechano-mechanical and electromechanical composite CVT systems as detailed examples,its basic working principles are expatiated.General methods and key points in designing and realizing such systems are also analyzed and discussed.

  6. Design and setup of intermittent-flow respirometry system for aquatic organisms

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard; Bushnell, P.G.; Steffensen, John Fleng

    2016-01-01

    and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry...... (e.g. chamber size, flush rate, flush time, chamber mixing, measurement periods and temperature control). Finally, recent advances in oxygen probe technology and open source automation software will be discussed in the context of assembling relatively low cost and reliable measurement systems.......Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short...

  7. Calculation of three-dimensional transonic flows in turbomachinery with generalized von Mises corrdinate system

    Institute of Scientific and Technical Information of China (English)

    沈孟育; 刘秋生; 张增产

    1996-01-01

    An efficient numerical method for calculating the three-dimensional transonic flows in turbomachinery is proposed. Instead of the Euler equation, streamsurface-governing equations are deduced in the generalized von Mises coordinate system to reflect the flow feature in turbomachinery. Its main advantage is that it is easier to specify more reasonable initial values, i.e. initial streamsurface position, thus accelerating the convergence rate of the iteration process. Moreover, to use the generalized von Mises coordinates makes the present method capable of incorporating the calculation of the flow field, design and modification of the blade contour into a unified algorithm. A rotated finite difference scheme for the streamsurface-governing equations is constructed, and a new measure is presented to deal with the double-value problem of the velocity and density caused by the application of the stream functions as coordinates in the transonic flow. Three test cases were considered with the present approach

  8. A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows

    CERN Document Server

    Selvam, A M

    2006-01-01

    Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the main...

  9. Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems.

    Science.gov (United States)

    Masselon, Chloé; Colin, Annie; Olmsted, Peter D

    2010-02-01

    In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.

  10. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H

    1991-01-01

    was associated with a 30-40% increase in blood flow rate and a highly significant decrease in mean arterial blood pressure and heart rate (P less than 0.001 for all). Approximately 100 min after the subjects went to sleep an additional blood flow rate increment (mean 56%) and a simultaneous significant decrease......Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...... were used for measurement of blood flow rates. An automatic portable blood pressure recorder and processor unit was used for measurement of systolic blood pressure, diastolic blood pressure, and heart rate every 15 min. The change from upright to supine position at the beginning of the night period...

  11. elVis: An Interactive System For Visualization of Unsteady Fluid Flow

    Science.gov (United States)

    Gerald-Yamasaki, Michael; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    ElVis is a prototype system with allows for the interactive visualization of unsteady fluid flow. The increasing computational power applied to fluid dynamics simulations presents the enormous challenge to the visualization system designer to apply a wide range of technologies to the analysis process with ever increasing demands on performance. Visualization of the results of unsteady fluid flow simulations presents the challenge of exploring very large and complex data sets. Since exploration is a trial and error process, it is of utmost importance that the time required to execute a trial (i.e., create a visualization) be at a minimum in order to provide real time interaction.

  12. Energy identity of the heat flow of H-systems at finite singular time

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is well known that there exists a global solution to the heat flow of H-systems.If the solution satisfies a certain energy inequality,it is global regular with at most finitely many singularities.Under the same energy inequality,we can show the energy identity of the heat flow of H-systems at finite singular time.The most interesting thing in our proof is that we find the singular points can only occur in the interior of the set in some sense.

  13. Specifics of boiling and condensation in upward flow in minichannel systems

    Science.gov (United States)

    Kuznetsov, V. V.; Safonov, S. A.; Shamirzaev, A. S.

    2015-12-01

    The results of experimental and numerical studies focused on determining the mechanism of heat transfer during boiling and condensation in a single-row system of minichannels in upward flow conditions at a mass flux of 30 and 50 kg/(m2 s) are presented. Refrigerant R21, which models cryogenic liquids at low temperatures, was used as the working liquid. The determining influence of self-organization of the flow under the influence of capillary forces on the processes of heat transfer during a phase transition in the system of minichannels at low mass and heat fluxes was revealed.

  14. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  15. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  16. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  17. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  18. A static pressure reset control system with a new type of flow damper for use in low pressure ventilation systems

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2012-01-01

    The control strategy for mechanical ventilation systems has significant impact on the performance of the system, in terms of energy consumption and correct air distribution. This paper presents a static pressure reset control system employing a new type of flow damper with lower pressure loss...... for use in low pressure ventilation systems. The flow damper has a droplet shape that minimizes turbulence generation and the resulting pressure loss. The performance of the damper was examined by making measurements of pressure loss and airflow. These were used to determine the required pressure loss...... for operation and the airflow accuracy. Results were compared to similar tests carried out with conventional flat plate dampers. A static pressure reset control algorithm was programmed and analyzed on a test system consisting of three dampers, representing three office rooms. The comparison of the dampers...

  19. A compactly integrated flow cell with a chemiluminescent FIA system for determining lactate concentration in serum.

    Science.gov (United States)

    Nakamura, H; Murakami, Y; Yokoyama, K; Tamiya, E; Karube, I; Suda, M; Uchiyama, S

    2001-01-15

    We have fabricated an integrated flow cell as a total microanalysis system (microTAS). This flow cell (size, 15 x 20 mm; total inner volume, 12.2 microL) was designed for a rational analyzing system of lactate determination for serum. This cell was made by micromachining techniques and consisted of two hollows of a lactate oxidase (LOD) reactor and a mixing cell, a spiral groove, and three penetrated holes. To form the reactor and capillary, these patterns, etched on a silicon wafer, were attached to a glass plate by the anodic bonding method. A photodiode was put under part of the spiral capillary. The compactly accumulated devices were integrated into a flow injection analysis (FIA) system. In the flow cell, lactate was catalyzed to pyruvate and hydrogen peroxide at the LOD reactor; subsequently, hydrogen peroxide reacted with the luminol-ferricyanic reagent at the mixing cell. The resulting chemiluminescent light was detected by the photodiode. Using the miniaturized flow cell, the sample volume for one measurement was greatly reduced to 0.2 microL. The response to lactate was obtained within 30 s and was linear between 0.5 and 5.0 mM (4.5 and 45 mg/dL) lactate with excellent correlative variances of 3.2% (average of three measurements at 5.0 mM). For practical application, the lactate concentration in control human serum was determined using this system. The results showed a good correlation coefficient (r = 0.979) with the results obtained by the spectrophotometric reference method. No difference in sera (normal or pathological) was found. Consequently, this integrated flow cell shows potential as a clinical device for lactate determination in serum. In this article, the effect of the design on the chemiluminescent FIA system is also described.

  20. Measuring information flow in cellular networks by the systems biology method through microarray data.

    Science.gov (United States)

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  1. A high-speed photographic system for flow visualization in a steam turbine

    Science.gov (United States)

    Barna, G. J.

    1973-01-01

    A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.

  2. Nitrogen removal in a combined system: vertical vegetated bed over horizontal flow sand bed.

    Science.gov (United States)

    Kantawanichkul, S; Neamkam, P; Shutes, R B

    2001-01-01

    Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater. This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2 x d and 11 g/m2 x d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2 x d or dry biomass production was 2.8 kg/m2 over 100 days.

  3. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Directory of Open Access Journals (Sweden)

    Ge Y.T.

    2013-04-01

    Full Text Available The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  4. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Science.gov (United States)

    Fsadni, A.-M.; Ge, Y. T.

    2013-04-01

    The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  5. Study and application of a high-pressure water jet multi-functional flow test system

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  6. Radial basis function neural network for power system load-flow

    Energy Technology Data Exchange (ETDEWEB)

    Karami, A.; Mohammadi, M.S. [Faculty of Engineering, The University of Guilan, P.O. Box 41635-3756, Rasht (Iran)

    2008-01-15

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  7. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  8. An improved continuous flow analysis system for high-resolution field measurements on ice cores.

    Science.gov (United States)

    Kaufmann, Patrik R; Federer, Urs; Hutterli, Manuel A; Bigler, Matthias; Schüpbach, Simon; Ruth, Urs; Schmitt, Jochen; Stocker, Thomas F

    2008-11-01

    Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.

  9. Modelling of the Blood Coagulation Cascade in an In Vitro Flow System

    DEFF Research Database (Denmark)

    Andersen, Nina Marianne; Sørensen, Mads Peter; Efendiev, Messoud A.;

    2010-01-01

    We derive a mathematical model of a part of the blood coagulation cascade set up in a perfusion experiment. Our purpose is to simulate the influence of blood flow and diffusion on the blood coagulation pathway. The resulting model consists of a system of partial differential equations taking into...... and flow equations, which guarantee non negative concentrations at all times. The criteria is applied to the model of the blood coagulation cascade.......We derive a mathematical model of a part of the blood coagulation cascade set up in a perfusion experiment. Our purpose is to simulate the influence of blood flow and diffusion on the blood coagulation pathway. The resulting model consists of a system of partial differential equations taking...

  10. CONWIP card setting in a flow-shop system with a batch production machine

    Directory of Open Access Journals (Sweden)

    Marcello Braglia

    2011-01-01

    Full Text Available This paper presents an analytical technique to determine the optimum number of cards to control material release in a CONWIP system. The work focuses on the card setting problem for a flow-shop system characterised by the presence of a batch processing machine (e.g. a kiln for long heat treatment. To control production, two different static approaches are developed: the first one is used when the bottleneck coincides with the batch processing machine and the second one is proposed when the bottleneck is another machine of the flow shop. In both contexts, by means of the appropriate model, one can optimize the performance of the flow-shop by maximizing the throughput and keeping the work in process at a minimum level. Numerical examples are also included in the paper to confirm the validity of the models and to demonstrate their practical utility.

  11. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  12. Development of an outdoor MRI system for measuring flow in a living tree

    Science.gov (United States)

    Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko

    2016-04-01

    An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees.

  13. Numerical Prediction of Flow and Heat Transfer on lubricant Supplying and Scavenging Flow Path of an Aero-Engine Lubrication System

    Science.gov (United States)

    Huang, S. Q.; Liu, Z. X.; Lv, Y. G.; Zhang, L. F.; Xu, T.

    This paper presents a numerical model of internal flows on lubricant supplying and scavenging flow path of an aero-engine lubrication system. The numerical model was built in the General Analysis Software of Aero-engine Lubrication System (GASLS), developed by Northwestern Polytechnical University. The lubricant flow flux, pressure and temperature distribution at steady state were calculated. GASLS is a general purpose computer program employed a ID steady state network algorithm for analyzing flowrates, pressures and temperatures in a complex flow network. All kinds of aero-engine lubrication systems can be divided into finite correlative typical elements and nodes from which the calculation network is developed in GASLS. Special emphasis is put on how to use combinational elements which is a type of typical elements to replace some complex components such as bearing compartments, accessory drive gearboxes or heat exchangers. This method can reduce network complexity and improve calculation efficiency. The computational results show good agreement with experimental data.

  14. A compact self-flowing lithium system for use in an industrial neutron source

    Science.gov (United States)

    Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David

    2016-10-01

    A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.

  15. Electrodiffusion Method of Near-Wall Flow Diagnostics in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Tihona J.

    2015-01-01

    Full Text Available The electrodiffusion technique has been mostly used for the near-wall flow diagnostics on large scales. A novel technique for fabrication of plastic microfluidic systems with integrated metal microelectrodes (called technique of sacrificed substrate enables us to produce microfluidic devices with precisely shaped sensors for wall shear stress measurements. Several micrometer thick gold sensors, which are built-in a plastic substrate, exhibit good mechanical resistance and smoothness. Proper functioning of prepared chips with microsensors has been first tested in various calibration experiments (polarization curve, sensor response to polarization set-up, steady flow calibration, temperature dependence of diffusivity. Our first results obtained for separating/reattaching flow behind a backward-facing step and for gas-liquid Taylor flow in microchannels then demonstrate its applicability for the detection of near-wall flow reversal, the delimitation of flow - recirculation zones, and the determination of wall shear stress response to moving bubbles. Other applications of these sensors in microfluidics (e.g. characterization of liquid films, capillary waves, bubbles or drops can be also envisaged.

  16. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs.

  17. Network-based Type-2 Fuzzy System with Water Flow Like Algorithm for System Identification and Signal Processing

    Directory of Open Access Journals (Sweden)

    Che-Ting Kuo

    2015-02-01

    Full Text Available This paper introduces a network-based interval type-2 fuzzy inference system (NT2FIS with a dynamic solution agent algorithm water flow like algorithm (WFA, for nonlinear system identification and blind source separation (BSS problem. The NT2FIS consists of interval type-2 asymmetric fuzzy membership functions and TSK-type consequent parts to enhance the performance. The proposed scheme is optimized by a new heuristic learning algorithm, WFA, with dynamic solution agents. The proposed WFA is inspired by the natural behavior of water flow. Splitting, moving, merging, evaporation, and precipitation have all been introduced for optimization. Some modifications, including new moving strategies, such as the application of tabu searching and gradient-descent techniques, are proposed to enhance the performance of the WFA in training the NT2FIS systems. Simulation and comparison results for nonlinear system identification and blind signal separation are presented to illustrate the performance and effectiveness of the proposed approach.

  18. Multilevel Flow Modeling Based Decision Support System and Its Task Organization

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Ravn, Ole

    2013-01-01

    Flow Modeling (MFM) represents complex system in multiple levels of means-end and part-whole decompositions, which is considered suitable for plant supervi-sion tasks. The aim of this paper is to explore the different possible functionali-ties by applying MFM to DSS, where both currently available...

  19. Data network, collection, and analysis in the Diamond Valley flow system, central Nevada

    Science.gov (United States)

    Knochenmus, Lari A.; Berger, David L.; Moreo, Michael T.; Smith, J. LaRue

    2011-01-01

    Future groundwater development and its effect on future municipal, irrigation, and alternative energy uses in the Diamond Valley flow system are of concern for officials in Eureka County, Nevada. To provide a better understanding of the groundwater resources, the U.S. Geological Survey, in cooperation with Eureka County, commenced a multi-phase study of the Diamond Valley flow system in 2005. Groundwater development primarily in southern Diamond Valley has resulted in water-level declines since the 1960s ranging from less than 5 to 100 feet. Groundwater resources in the Diamond Valley flow system outside of southern Diamond Valley have been relatively undeveloped. Data collected during phase 2 of the study (2006-09) included micrometeorological data at 4 evapotranspiration stations, 3 located in natural vegetation and 1 located in an agricultural field; groundwater levels in 95 wells; water-quality constituents in aquifers and springs at 21 locations; lithologic information from 7 recently drilled wells; and geophysical logs from 3 well sites. This report describes what was accomplished during phase 2 of the study, provides the data collected, and presents the approaches to strengthen relations between evapotranspiration rates measured at micrometeorological stations and spatially distributed groundwater discharge. This report also presents the approach to improve delineation of areas of groundwater discharge and describes the current methodology used to improve the accuracy of spatially distributed groundwater discharge rates in the Diamond Valley flow system.

  20. The Curriculum System Development of Sightseeing Agriculture Major Based on Work Flow

    Institute of Scientific and Technical Information of China (English)

    Sujuan; CHEN; Guoyuan; CHEN; Chengzhong; WANG

    2014-01-01

    From the position setting of sightseeing agriculture businesses and ability analysis,this paper analyzes the career action field based on training objectives of sightseeing agriculture major and determines the typical tasks and career action field. According to the major teaching design of career action field,this paper introduces the systematic curriculum system of sightseeing agriculture major based on work flow.