WorldWideScience

Sample records for wave physics research

  1. Some recent advances of shock wave physics research at the Laboratory for Shock Wave and Detonation Physics Research

    CERN Document Server

    Jing Fu Qian

    2002-01-01

    Progress made in recent years on three topics that have been investigated at the Laboratory for Shock Wave and Detonation Physics Research are presented in this report. (1) A new equation of state (EOS) has been derived which can be used from a standard state to predict state variable change along an isobaric path. Good agreements between calculations for some representative metals using this new EOS and experiments have been found, covering a wide range from hundreds of MPa to hundreds of GPa and from ambient temperature to tens of thousands of GPa. (2) An empirical relation of Y/G = constant (Y is yield strength, G is shear modulus) at HT-HP has been reinvestigated and confirmed by shock wave experiment. 93W alloy was chosen as a model material. The advantage of this relation is that it is beneficial to formulate a kind of simplified constitutive equation for metallic solids under shock loading, and thus to faithfully describe the behaviours of shocked solids through hydrodynamic simulations. (3) An attempt...

  2. Physics of waves

    CERN Document Server

    Elmore, William C

    1985-01-01

    Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam

  3. The physics of waves

    CERN Document Server

    Georgi, Howard

    1993-01-01

    The first complete introduction to waves and wave phenomena by a renowned theorist. Covers damping, forced oscillations and resonance; normal modes; symmetries; traveling waves; signals and Fourier analysis; polarization; diffraction.

  4. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  5. Wave Generation in Physical Models

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...

  6. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  7. Physics, Astrophysics and Cosmology with Gravitational Waves.

    Science.gov (United States)

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  8. Physics, Astrophysics and Cosmology with Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Sathyaprakash B. S.

    2009-03-01

    Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  9. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  10. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  11. Physical Research Laboratory

    Indian Academy of Sciences (India)

    INF. & ANN. Non-linear Dynamics, Computational Physics and Computer Science. Classical and quantum chaos and time series analysis of complex systems. Numerical studies in general relativity. Research in computer science with focus on image processing and pattern recognition. Laser Physics and Quantum Optics.

  12. Research in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e{sup +}e{sup {minus}} and {bar p}p collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment.

  13. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  14. Serendipity in Physics Research

    Science.gov (United States)

    Khoon, Koh Aik

    2008-01-01

    This paper relates several serendipitous discoveries in physics in the 19th and 20th centuries. They are all experimental in nature and the places range from reputable universities to modern research laboratories. The discoverers could be working in solo or in group. The subject discovered ranges from the finest nucleus to the limitless cosmos.…

  15. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  16. Introduction to Shock Waves and Shock Wave Research

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and common techniques. However, the list will not be exhaustive by any means.

  17. Blast effects physical properties of shock waves

    CERN Document Server

    2018-01-01

    This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.

  18. Understanding "Human" Waves: Exploiting the Physics in a Viral Video

    Science.gov (United States)

    Ferrer-Roca, Chantal

    2018-01-01

    Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called "human" waves, choreographed by people, have proved to…

  19. Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate

    Science.gov (United States)

    Sarwi, S.; Supardi, K. I.; Linuwih, S.

    2017-04-01

    The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory.

  20. Testing fundamental physics with gravitational waves

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The landmark detection of gravitational waves (GWs) has opened a new era in physics, giving access to the hitherto unexplored strong-gravity regime, where spacetime curvature is extreme and the relevant speed is close to the speed of light. In parallel to its countless astrophysical applications, this discovery can have also important implications for fundamental physics. In this context, I will discuss some outstanding, cross-cutting problems that can be finally investigated in the GW era: the nature of black holes and of spacetime singularities, the limits of classical gravity, the existence of extra light fields, and the effects of dark matter near compact objects. Future GW measurements will provide unparalleled tests of quantum-gravity effects at the horizon scale, exotic compact objects, ultralight dark matter, and of general relativity in the strong-field regime.

  1. Physical Education Research Reference Sources.

    Science.gov (United States)

    Kissinger, Pat, Comp.

    This guide on physical education research reference resources was compiled for the use of physical education students and teachers. While it was written to be used by Northern Illinois University library users, much information may be useful to all physical education students who would be doing research using standard basic reference sources…

  2. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  3. APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS

    OpenAIRE

    Rosencwaig, A.

    1983-01-01

    Nonspectroscopic applications of thermal-wave physics, in particular those involving materials analysis through thermal-wave imaging, and quantitative thin-film thickness measurements, are described for the study of semiconductor materials and devices.

  4. Holocaust survivors: three waves of resilience research.

    Science.gov (United States)

    Greene, Roberta R; Hantman, Shira; Sharabi, Adi; Cohen, Harriet

    2012-01-01

    Three waves of resilience research have resulted in resilience-enhancing educational and therapeutic interventions. In the first wave of inquiry, researchers explored the traits and environmental characteristics that enabled people to overcome adversity. In the second wave, researchers investigated the processes related to stress and coping. In the third wave, studies examined how people grow and are transformed following adverse events, often leading to self-actualize, client creativity and spirituality. In this article the authors examined data from a study, "Forgiveness, Resiliency, and Survivorship among Holocaust Survivors" funded by the John Templeton Foundation ( Greene, Armour, Hantman, Graham, & Sharabi, 2010 ). About 65% of the survivors scored on the high side for resilience traits. Of the survivors, 78% engaged in processes considered resilient and felt they were transcendent or had engaged in behaviors that help them grow and change over the years since the Holocaust, including leaving a legacy and contributing to the community.

  5. Peer Review of "Analysis and Simulation of Near-Field Wave Motion Data from the Source Physics Experiment Explosions," Antoun, et al, 2011 Monitoring Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Steedman, David W. [Los Alamos National Laboratory

    2012-06-19

    The following is primarily a review of 'Analysis and Simulation of Near-Field Wave Motion Data from the Source Physics Experiment Explosions,' Antoun, et al, published by Lawrence Livermore National Laboratory (LLNL) after SPE-1 in 2011 (Ref. 1). However, LLNL analysis of SPE-2 (Ref. 2) will also be discussed. A review by Los Alamos National Laboratory (LANL) personnel of Reference 1 finds both the evidence of the effects of joints on the data and the correlation of calculations with the data weak. This conclusion is made on three separate levels: (1) Fundamental observations made of the various referenced figures taken as presented; (2) Observations made following corrections to errors and omissions to the selected data; and (3) Observations made after considering likely errors in the raw data set. The evidence presented in the referenced papers relies on subjective interpretation of various figures. This is the nature of this technical field of study and, indeed, much of our observation is also subjective.

  6. Deterministic combination of numerical and physical coastal wave models

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas; Jakobsen, K.P.

    2007-01-01

    A deterministic combination of numerical and physical models for coastal waves is developed. In the combined model, a Boussinesq model MIKE 21 BW is applied for the numerical wave computations. A piston-type 2D or 3D wavemaker and the associated control system with active wave absorption provides...... modes) near the wavemaker are taken into account. With this approach, the data transfer between the two models is thus on a deterministic level with detailed wave information transmitted along the wavemaker....

  7. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  8. Research in Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Busenitz, Jerome [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Physics and Astronomy

    2014-09-30

    We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for θ13 based on 100 days of data from the far detector. Our data indicates that θ13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2(2θ13) = 0.086 ± 0.041 (stat) ± 0.030 (syst). The null oscillation hypothesis is excluded at the 94.6% C.L. This result has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2(2θ13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will

  9. Research in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

    1992-01-01

    This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP).

  10. Engaging college physics students with photonics research

    Science.gov (United States)

    Adams, Rhys; Chen, Lawrence R.

    2017-08-01

    As educators and researchers in the field of photonics, we find what we do to be very exciting, and sharing this passion and excitement to our university students is natural to us. Via outreach programs and college research funding, a new college and university collaboration has broadened our student audience: photonics is brought into the college classroom and research opportunities are provided to college students. Photonics-themed active learning activities are conducted in the college Waves and Modern Physics class, helping students forge relationships between course content and modern communications technologies. Presentations on photonics research are prepared and presented by the professor and past college student-researchers. The students are then given a full tour of the photonics university laboratories. Furthermore, funds are set aside to give college students a unique opportunity to assist the college professor with experiments during a paid summer research internship.

  11. Universality of Sea Wave Growth and Its Physical Roots

    CERN Document Server

    Zakharov, Vladimir E; Hwang, Paul A; Caulliez, Guillemette

    2014-01-01

    Modern day studies of wind-driven sea waves are usually focused on wind forcing rather than on the effect of resonant nonlinear wave interactions. The authors assume that these effects are dominating and propose a simple relationship between instant wave steepness and time or fetch of wave development expressed in wave periods or lengths. This law does not contain wind speed explicitly and relies upon this asymptotic theory. The validity of this law is illustrated by results of numerical simulations, in situ measurements of growing wind seas and wind wave tank experiments. The impact of the new vision of sea wave physics is discussed in the context of conventional approaches to wave modeling and forecasting.

  12. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  13. Waves and particles two essays on fundamental physics

    CERN Document Server

    Newton, Roger G

    2014-01-01

    The book consists of two separate parts, the first part is on waves and the second part on particles. In part 1, after describing the awesome power of tsunami and the history of their occurrences, the book turns to the history of explaining phenomena by means of mathematical equations. Then it describes other wave phenomena and the laws governing them: the vibration of strings and drums in musical instruments, the sound waves making them audible, ultrasound and its uses, sonar, and shock waves; electromagnetic waves: light waves, refraction, diffraction, why the sky is blue, the rainbow, and the glory; microwaves and radio waves: radar, radio astronomy, the discovery of the cosmic microwave background radiation, microwave ovens and how a radio works, lasers and masers; waves in modern physics: the Schrödinger wave function and gravitational waves in general relativity; water waves in the ocean, tides and tidal waves, and the quite different solitary waves, solitons discovered in canals. Finally we return to ...

  14. For information: Geneva University - The search for gravitational waves. Physical motivations and experimental perspectives

    CERN Multimedia

    2005-01-01

    UNIVERSITE DE GENEVE ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet - 1211 GENEVE 4 Tél : (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 11 May PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium The search for gravitational waves. Physical motivations and experimental perspectives by Prof. Michele Maggiore / DPT-UniGe I will give an overview of gravitational-wave physics, addressing two main questions: What are the physical motivations for gravitational-wave research, both from the point of view of astrophysics and of high-energy physics. Present status and future perspectives of gravitational-wave experiments. Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: A. Cervera Villanueva

  15. Research ethics in physical education

    Directory of Open Access Journals (Sweden)

    Júlio César Schmitt Rocha

    2009-06-01

    Full Text Available The objective here is to point out ethics in Physical Education research against a backdrop of individual and collective human conduct. Since Plato, the question of ethics in the Western world has been an incessant search for the virtues to harmonize personal and social wellbeing and for the absolute principles of conduct: Autonomy, Beneficence and Justice. Physical Education cannot exempt itself from these and its countless areas of research. In addition to the moral education that develops and solidifies within social groups, the characteristic of which is action on an individual level, we must also consider ethical principles such as those defended by the Physical Education World Manifesto and those that regulate the professional activities of Physical Education professionals. Irrespective of the area investigated, Research in Physical Education will always clash with institutionalized ethical principles enforced by ethics committees, councils and the values accepted by the researchers. Committees strive to preserve the integrity and dignity of the people enrolled on research studies while the researchers challenge the limits of knowledge at an uncomfortable frontier between the acceptable and the unacceptable within a given context of academic vision and needs.

  16. New Wave-Ice Interaction Physics in WAVEWATCH III

    Science.gov (United States)

    2014-08-01

    22nd IAHR International Symposium on Ice Singapore, August 11 to 15, 2014 New wave- ice interaction physics in WAVEWATCH III...Swinburne University Melbourne , Australia szieger@swin.edu.au The third generation model for wind-generated surface gravity waves WAVEWATCH...III® is modified to represent the effect of ice on waves as a source function. This replaces the existing approach of representing ice via fractional

  17. Science Education Research vs. Physics Education Research: A Structural Comparison

    OpenAIRE

    Akarsu, Bayram

    2011-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and trends (e.g. current research ideas) within PER.

  18. Gravitational wave detectors: New eyes for physics and astronomy

    Indian Academy of Sciences (India)

    Several interferometric gravitational wave detectors around the world are now starting to achieve better sensitivity to gravitational waves than ever before. We describe the prospects these detectors offer for physics and astronomy and review the rapid progress and the present status of the detectors' sensitivities. We also ...

  19. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  20. The Physics of Alfvén Waves

    CERN Document Server

    Cramer, Neil F

    2011-01-01

    Low-frequency wave modes of magnetized inhomogeneous plasmas have been subject to intense study in the last decade because they play important roles in the transport of energy in the plasmas. The "Alfvén wave heating" scheme has been investigated as a supplementary heating scheme for fusion plasma devices, and it has been invoked as a model of the heating of the solar and stellar coronae.This book covers the latest research into the properties and applications of low-frequency wave modes in magnetized plasmas, the Alfvén waves and magneto-acoustic waves, in the context of laborat

  1. Rays, waves, and scattering topics in classical mathematical physics

    CERN Document Server

    Adam, John A

    2017-01-01

    This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technica...

  2. Demonstration of wave optic in physics education

    Science.gov (United States)

    Lv, Hao; Liu, Aimei; Zhang, Shengyi; Xiao, Yongjun

    2017-08-01

    The set has been designed for simple and clear demonstration of wave optics basic principles. Laser diode as highly collimated light source is used as a basic element of the laser ray box. That way the quality of teaching improves and offers us new possibilities in comparison with the classic incandescent lamp. Moreover the demonstration of beams passing through the optical elements is possible. Such a solution enables the effective demonstration and modeling of basic optical devices. A classic light source cannot be used for such a range of examples. Another remarkable advantage arises from very low demand for room light conditions. Wave optic demonstration set using laser ray box can be used in standard classrooms without any additional room darkening.

  3. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  4. Electromagnetic waves for thermonuclear fusion research

    CERN Document Server

    Mazzucato, Ernesto

    2014-01-01

    The science of magnetically confined plasmas covers the entire spectrum of physics from classical and relativistic electrodynamics to quantum mechanics. During the last sixty years of research, our initial primitive understanding of plasma physics has made impressive progress thanks to a variety of experiments - from tabletop devices with plasma temperatures of a few thousands of degrees and confinement times of less than 100 microseconds, to large tokamaks with plasma temperatures of up to five hundred million degrees and confinement times approaching one second. We discovered that plasma con

  5. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  6. Gravitational-wave physics and astronomy an introduction to theory, experiment and data analysis

    CERN Document Server

    Creighton, Jolien D E

    2011-01-01

    This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation

  7. Understanding the Physical Nature of Coronal "EIT Waves".

    Science.gov (United States)

    Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T

    2017-01-01

    For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory. In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.

  8. New researchers for applied physics

    CERN Multimedia

    Rita Giuffredi, PicoSEC project

    2012-01-01

    On 12 September, thirteen PicoSEC researchers met in Lyon for the first time, at the project’s kick-off meeting. The meeting was the opportunity for them to get to know each other and start building a fruitful working and human relationship. A hard task awaits them: reaching the 200-picosecond-limit on time resolution in photon detectors.    The 13 researchers recruited for the PicoSEC project and the organizers of the project, September 2012. Photon detectors are used in many different fields ranging from high-energy physics calorimetry for the future generation of colliders to the photon time-of-flight technique for the next generation of PET scanners. Within the PicoSEC EU-funded Marie Curie Initial Training Network, 18 Early Stage Researchers and 4 Experienced Researchers are being trained to develop new detection techniques based on very fast scintillating crystals and photo detectors. In a multi-site project like PicoSEC, in which 11 institutes and companies from 6 ...

  9. Travelling wave solutions to nonlinear physical models by means of ...

    Indian Academy of Sciences (India)

    This paper presents the first integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established first integrals, exact solutions are successfully ...

  10. On the Quantum Mechanical Wave Function as a Link Between Cognition and the Physical World A Role for Psychology

    CERN Document Server

    Snyder, D

    2002-01-01

    A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.

  11. Review of research in internal-wave and internal-tide deposits of China

    Directory of Open Access Journals (Sweden)

    Gao Zhenzhong

    2013-01-01

    Full Text Available Study of internal-wave and internal-tide deposits is a very young research field in deep-water sedimentology. It has been just twenty years since the first example of internal-wave and internal-tide deposits was identified in the stratigraphic record. Since that time, Chinese scholars have made unremitting efforts and gained some significant research achievements in this field. This paper briefly outlines the history and main achievements of research of internal-wave and internal-tide deposits in China, describes depositional characteristics, sedimentary successions, types of lithofacies, and depositional models of internal-wave and internal-tide deposits identified mainly from ancient strata, and summarizes the existing problems in this research field. New advances in marine physics should be applied to research of the subject of internal-wave and internal-tide deposition, whereas the sedimentary characteristics of internal-wave and internal-tide deposits may be used to deduce the physical processes of their creation. Flume experiments on internal-wave and internal-tide deposition should also be put in practice as often as possible, so that the mechanisms of internal-wave and internal-tide deposition can be explored.

  12. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  13. Physics of thermal wave NDE of semiconductor materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Opsal, J.; Rosencwaig, A.

    1988-04-01

    The fundamental physics of a modulated-reflectance thermal-wave NDE technique for semiconductor materials and devices is explored. In this method, an intensity-modulated laser beam produces a thermal wave in the material and in the air above it; the thermal expansion of the material is detected by a probe-beam interferometer or by the deflection of a probe beam by the thermoelastic deformation of the surface. The governing equations for these basic processes are examined in detail, with a focus on the sensitivity of thermal and plasma waves to variations in thermal and electrical transport properties and recombination effects. The applicability of this technique to on-line monitoring of ion implantation, measurement of near-surface damage from wafer polishing or dry etching, and detection of defect-related electronic surface states is indicated. 23 references.

  14. Research in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  15. Mathematical analogies in physics. Thin-layer wave theory

    Directory of Open Access Journals (Sweden)

    José M. Carcione

    2014-03-01

    Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.

  16. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications.

    Science.gov (United States)

    Taljanovic, Mihra S; Gimber, Lana H; Becker, Giles W; Latt, L Daniel; Klauser, Andrea S; Melville, David M; Gao, Liang; Witte, Russell S

    2017-01-01

    In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue's elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. ©RSNA, 2017.

  17. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    by different directional wave spectra. The wave generator displacement signals applied in the tests are generated by means of linear digital filtering of Gaussian white noise in the time domain. An absorbing wave generator for 2-D wave facilities (wave channels) is developed. The absorbing wave generator...... in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...

  18. Travelling wave solutions to nonlinear physical models by means of ...

    Indian Academy of Sciences (India)

    NPDEs is an important and attractive research area. Not all NPDEs are integrable. For ... Thus, based on the qualitative theory of ordinary differential equations. [22], if we can find a single first .... Equation (29) has appeared in the study of qualitative behaviours of wave-breaking [27,. 28]. A peaked solution of the form u(x, ...

  19. Superluminal Physics and Instantaneous Physics as New Trends in Research

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2012-01-01

    Full Text Available In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we can pass from Subluminal Physics to Superluminal Physics, and further to Instantaneous Physics. In the lights of two consecutive successful CERN experiments with superlumi- nal particles in the Fall of 2011, we believe that these two new fields of research should begin developing.

  20. Theoretical physics implications of gravitational wave observation with future detectors

    Science.gov (United States)

    Chamberlain, Katie; Yunes, Nicolás

    2017-10-01

    Gravitational waves encode invaluable information about the nature of the relatively unexplored extreme gravity regime, where the gravitational interaction is strong, nonlinear and highly dynamical. Recent gravitational wave observations by advanced LIGO have provided the first glimpses into this regime, allowing for the extraction of new inferences on different aspects of theoretical physics. For example, these detections provide constraints on the mass of the graviton, Lorentz violation in the gravitational sector, the existence of large extra dimensions, the temporal variability of Newton's gravitational constant, and modified dispersion relations of gravitational waves. Many of these constraints, however, are not yet competitive with constraints obtained, for example, through Solar System observations or binary pulsar observations. In this paper, we study the degree to which theoretical physics inferences drawn from gravitational wave observations will strengthen with detections from future detectors. We consider future ground-based detectors, such as the LIGO-class expansions A + , Voyager, Cosmic Explorer and the Einstein Telescope, as well as space-based detectors, such as various configurations of eLISA and the recently proposed LISA mission. We find that space-based detectors will place constraints on general relativity up to 12 orders of magnitude more stringently than current aLIGO bounds, but these space-based constraints are comparable to those obtained with the ground-based Cosmic Explorer or the Einstein Telescope (A + and Voyager only lead to modest improvements in constraints). We also generically find that improvements in the instrument sensitivity band at low frequencies lead to large improvements in certain classes of constraints, while sensitivity improvements at high frequencies lead to more modest gains. These results strengthen the case for the development of future detectors, while providing additional information that could be useful in

  1. Pakistan: Government to promote research in physics

    CERN Multimedia

    Punjab Govenor,

    2002-01-01

    According to the Punjab Governor, Lt.General Khalid, the government will soon set up a school of biological sciences by unifying Physics, High Energy Physics and Solid State Physics departments so as to implement the government policy of promoting research in this sector (1/2 page).

  2. Research in theoretical physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Domokos, G.; Kovesi-Domokos, S.

    1998-06-01

    This report summarizes the research carried out under Grant DE-FG02-85ER40211. The main topics covered are: astroparticle physics at very high and ultrahigh energies; search for new physics by means of detectors of ultrahigh energy particles of extraterrestrial origin. Methods for searching in heavy quark decays for signatures of physics beyond the standard model are developed.

  3. Physics Research Methods at Jefferson High.

    Science.gov (United States)

    Demchik, Michael

    1989-01-01

    Described are several physics activities developed by a high school: research corner, exploring an invention, construction projects, archives report and archives update, short term research and design projects, essay contest, and special projects. (YP)

  4. Research on elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, L.E.; O' Halloran, T.A.

    1992-05-01

    This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p{bar p} collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) The SLD experiment at SLAC and design studies for a {tau}-charm factor. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development.

  5. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maceira, Monica [Los Alamos National Laboratory; Blom, Philip Stephen [Los Alamos National Laboratory; Maccarthy, Jonathan K. [Los Alamos National Laboratory; Marcillo, Omar Eduardo [Los Alamos National Laboratory; Euler, Garrett Gene [Los Alamos National Laboratory; Begnaud, Michael Lee [Los Alamos National Laboratory; Ford, Sean R. [Lawrence Livermore National Laboratory; Pasyanos, Michael E. [Lawrence Livermore National Laboratory; Orris, Gregory J. [Naval Research Laboratory; Foxe, Michael P. [Pacific Northwest National Laboratory; Arrowsmith, Stephen J. [Sandia National Laboratory; Merchant, B. John [Sandia National Laboratory; Slinkard, Megan E. [Sandia National Laboratory

    2017-06-01

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the document for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.

  6. A brief history of gravitational wave research

    CERN Document Server

    Chen, Chiang-Mei; Ni, Wei-Tou

    2016-01-01

    For the benefit of the readers of this journal, the editors requested that we prepare a brief review of the history of the development of the theory, the experimental attempts to detect them, and the recent direct observations of gravitational waves (GWs). The theoretical ideas and disputes beginning with Einstein in 1916 regarding the existence and nature of GWs and the extent to which one can rely on the electromagnetic analogy, especially the controversies regarding the quadrupole formula and whether GWs carry energy, are discussed. The theoretical conclusions eventually received strong observational support from the binary pulsar. This provided compelling, although indirect, evidence for GWs carrying away energy--as predicted by the quadrupole formula. On the direct detection experimental side, Weber started more than 50 years ago. In 1966, his bar for GW detection reached a strain sensitivity of a few times 10^-16. His announcement of coincident signals (now considered spurious) stimulated many experimen...

  7. Physics Research Integrated Development Environment (PRIDE)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J.; Cormell, L.

    1993-12-01

    Past efforts to implement a Software Engineering approach to High Energy Physics computing have been met with significant resistance and have been, in many cases, only marginally successful. At least a portion of the problem has been the Lick of an integrated development environment, tailored to High Energy Physics and incorporating a suite of Computer Aided Software Engineering tools. The Superconducting Super Collider Physics Research Division Computing Department is implementing pilot projects to develop just such an environment.

  8. (Nuclear theory). [Research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

  9. Review of Recent Neutrino Physics Research

    Science.gov (United States)

    Kisslinger, Leonard S.

    2013-08-01

    We review recent research in neutrino physics, including neutrino oscillations to test time reversal and CP symmetry violations, the measurement of parameters in the U matrix, sterile neutrino emission causing pulsar kicks, and neutrino energies in the neutrinosphere.

  10. Gesture analysis for physics education researchers

    Directory of Open Access Journals (Sweden)

    Rachel E. Scherr

    2008-01-01

    Full Text Available Systematic observations of student gestures can not only fill in gaps in students’ verbal expressions, but can also offer valuable information about student ideas, including their source, their novelty to the speaker, and their construction in real time. This paper provides a review of the research in gesture analysis that is most relevant to physics education researchers and illustrates gesture analysis for the purpose of better understanding student thinking about physics.

  11. Some little-known facts and events from the history of gravitational wave research in Ukraine

    Science.gov (United States)

    Yatskiv, Ya. S.,; Vavilova, I. B.; Romanets, O. A.; Savchuk, V. S.

    2017-10-01

    The paper deals with the history of gravitational wave research in Ukraine and describes two little-known facts and events. The first one is concerning with a short period of Dr. Nathan Rosen's life in Kyiv and his scientific activity at the Institute of Physics of the Academy of Sciences of the UkrSSR in 1936-1938 years. At that time, he has published several papers, which promoted the first steps in the creation of modern theories in the fields of gravity and quantum physics. These papers, including "Plane-polarized waves in the General Theory of Relativity", have been issued in the "Ukrainian Physical Notes" ("Ukrainski Fizychni Zapysky"), which was not widely accessed. We quote also some parts from correspondence of N. Rosen and A. Einstein in this period. The second comment is related to the history of gravitational wave experimental research in Kyiv, which were initiated in 1970s by Prof. Aleksey Z. Petrov at the Institute of Theoretical Physics of the Academy of Sciences of the UkrSSR. We describe briefly the development of the detector of high-frequency gravitational waves (the Weber type antenna) as well as results obtained by K.A. Piragas's group.

  12. High Energy Physics Research at Louisiana Tech

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Lee [Louisiana State Univ., Baton Rouge, LA (United States); Greenwood, Zeno [Louisiana State Univ., Baton Rouge, LA (United States); Wobisch, Marcus [Louisiana State Univ., Baton Rouge, LA (United States)

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  13. Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves

    CERN Document Server

    Westbrook, C; David, F; Coherent Atomic Matter Waves

    2001-01-01

    Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...

  14. Physics and applications with laser-induced relativistic shock waves

    National Research Council Canada - National Science Library

    S Eliezer; J M Martinez-Val; Z Henis; N Nissim; S V Pinhasi; A Ravid; M Werdiger; E Raicher

    2016-01-01

    The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance laser or indirectly by a laser acceleration of a foil that collides with a second static foil...

  15. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  16. Research on a new wave energy absorption device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  17. Between tide and wave marks: a unifying model of physical zonation on littoral shores

    Science.gov (United States)

    Bird, Christopher E.; Franklin, Erik C.; Smith, Celia M.

    2013-01-01

    The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic. PMID:24109544

  18. Between tide and wave marks: a unifying model of physical zonation on littoral shores.

    Science.gov (United States)

    Bird, Christopher E; Franklin, Erik C; Smith, Celia M; Toonen, Robert J

    2013-01-01

    The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as 'intertidal', whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional "intertidal zone". We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic.

  19. NASA's Microgravity Fluid Physics Strategic Research Roadmap

    Science.gov (United States)

    Motil, Brian J.; Singh, Bhim S.

    2004-01-01

    The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.

  20. Leadership in applied psychology: Three waves of theory and research.

    Science.gov (United States)

    Lord, Robert G; Day, David V; Zaccaro, Stephen J; Avolio, Bruce J; Eagly, Alice H

    2017-03-01

    Although in the early years of the Journal leadership research was rare and focused primarily on traits differentiating leaders from nonleaders, subsequent to World War II the research area developed in 3 major waves of conceptual, empirical, and methodological advances: (a) behavioral and attitude research; (b) behavioral, social-cognitive, and contingency research; and (c) transformational, social exchange, team, and gender-related research. Our review of this work shows dramatic increases in sophistication from early research focusing on personnel issues associated with World War I to contemporary multilevel models and meta-analyses on teams, shared leadership, leader-member exchange, gender, ethical, abusive, charismatic, and transformational leadership. Yet, many of the themes that characterize contemporary leadership research were also present in earlier research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. A review of computational methods in materials science: examples from shock-wave and polymer physics.

    Science.gov (United States)

    Steinhauser, Martin O; Hiermaier, Stefan

    2009-12-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment.

  2. The black hole symphony: probing new physics using gravitational waves.

    Science.gov (United States)

    Gair, Jonathan R

    2008-12-13

    The next decade will very likely see the birth of a new field of astronomy as we become able to directly detect gravitational waves (GWs) for the first time. The existence of GWs is one of the key predictions of Einstein's theory of general relativity, but they have eluded direct detection for the last century. This will change thanks to a new generation of laser interferometers that are already in operation or which are planned for the near future. GW observations will allow us to probe some of the most exotic and energetic events in the Universe, the mergers of black holes. We will obtain information about the systems to a precision unprecedented in astronomy, and this will revolutionize our understanding of compact astrophysical systems. Moreover, if any of the assumptions of relativity theory are incorrect, this will lead to subtle, but potentially detectable, differences in the emitted GWs. Our observations will thus provide very precise verifications of the theory in an as yet untested regime. In this paper, I will discuss what GW observations could tell us about known and (potentially) unknown physics.

  3. Research in particle physics. [Dept. of Physics, Boston Univ

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Scott J.

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  4. Professional development workshops for physics education research

    Science.gov (United States)

    Sayre, Eleanor C.; Franklin, Scott V.; Kustusch, Mary Bridget

    2017-01-01

    Physics education research holds the promise of satisfying expectations of both scholarship, which is increasing at teaching-centric institutions, and teaching effectiveness, a concern at all institutions. Additionally, junior physics education researchers seek more diverse training in research methods and theories. Emerging education researchers need support as they develop their research programs and expand their theoretical and methodological expertise, and they benefit from the guidance of knowledgable peers and near-peers. Our two-part professional development model combines intensive in-person workshops with long-term remote activities. During a two-week in-person workshop, emerging and established education researchers work closely together to develop research questions, learn appropriate analytic techniques, and collect a corpus of data appropriate to their research questions. Afterwards, they meet biweekly in a distributed, mentored research group to share analyses and develop their ideas into publishable papers. In this talk, we discuss this model for professional development and show results from one three-year implementation in the IMPRESS program at the Rochester Institute of Technology. Partially funded by the PERTG of the AAPT.

  5. Intuitive Physics: Current Research and Controversies.

    Science.gov (United States)

    Kubricht, James R; Holyoak, Keith J; Lu, Hongjing

    2017-10-01

    Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  7. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    Directory of Open Access Journals (Sweden)

    Liang Zeng

    2014-07-01

    Full Text Available In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  8. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-12-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  9. Cyber physical systems in mechatronic research centre

    Directory of Open Access Journals (Sweden)

    Erdei Timotei István

    2017-01-01

    Full Text Available In the Building Mechatronic Research Centre we started to develop our cyber-physical system. The Department provided us all necessary equipment to realize the first cyber-physical system. The main core of the project was to create an augmented reality based navigation system in our robot laboratory. In that aspect we also built an internet of things ready automated guided vehicle prototype. It must be said that the internet of things has induced a new paradigm shift in the socio-economic world. Nowadays, augmented reality and virtual reality are industrial processes development tools. In recent years, these technologies demonstrated significant improvements in real-time industrial technology.

  10. Health physics practices at research accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.H.

    1976-02-01

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators. (PMA)

  11. Mathematical models of physics problems (physics research and technology)

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-01-01

    This textbook is intended to provide a foundation for a one-semester introductory course on the advanced mathematical methods that form the cornerstones of the hard sciences and engineering. The work is suitable for first year graduate or advanced undergraduate students in the fields of Physics, Astronomy and Engineering. This text therefore employs a condensed narrative sufficient to prepare graduate and advanced undergraduate students for the level of mathematics expected in more advanced graduate physics courses, without too much exposition on related but non-essential material. In contrast to the two semesters traditionally devoted to mathematical methods for physicists, the material in this book has been quite distilled, making it a suitable guide for a one-semester course. The assumption is that the student, once versed in the fundamentals, can master more esoteric aspects of these topics on his or her own if and when the need arises during the course of conducting research. The book focuses on two cor...

  12. Research in theoretical and elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Mitselmakher, G. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    In 1995 the University of Florida started a major expansion of the High Energy Experimental Physics group (HEE) with the goal of adding four new faculty level positions to the group in two years. This proposal covers the second year of operation of the new group and gives a projection of the planned research program for the next five years, when the group expects their activities to be broader and well defined. The expansion of the HEE group started in the Fall of 1995 when Guenakh Mitselmakher was hired from Fermilab as a Full Professor. A search was then performed for two junior faculty positions. The first being a Research Scientist/Scholar position which is supported for 9 months by the University on a faculty line at the same level as Assistant Professor but without the teaching duties. The second position is that of an Assistant Professor. The search has been successfully completed and Jacobo Konigsberg from Harvard University has accepted the position of Research Scientist and Andrey Korytov from MIT has accepted the position of Assistant Professor. They will join the group in August 1996. The physics program for the new group is focused on hadron collider physics. G. Mitselmakher has been leading the CMS endcap muon project since 1994. A Korytov is the coordinator of the endcap muon chamber effort for CMS and a member of the CDF collaboration and J. Konigsberg is a member of CDF where he has participated in various physics analyses and has been coordinator of the gas calorimetry group. The group at the U. of Florida has recently been accepted as an official collaborating institution on CDF. They have been assigned the responsibility of determining the collider beam luminosity at CDF and they will also be an active participant in the design and operation of the muon detectors for the intermediate rapidity region. In addition they expect to continue their strong participation in the present and future physics analysis of the CDF data.

  13. Advanced accelerator and mm-wave structure research at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  14. RCOP: Research Center for Optical Physics

    Science.gov (United States)

    Tabibi, Bagher M. (Principal Investigator)

    1996-01-01

    During the five years since its inception, Research Center for Optical Physics (RCOP) has excelled in the goals stated in the original proposal: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, there have been 16 Bachelors degrees and 9 Masters degrees awarded to African American students working in RCOP during the last five years. RCOP has also provided research experience to undergraduate and high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been instrumental in the development of the Ph.D. program in physics which is in its fourth year at Hampton. There are currently over 40 graduate students in the program and 9 African American graduate students, working in RCOP, that have satisfied all of the requirements for Ph.D. candidancy and are working on their dissertation research. At least three of these students will be awarded their doctoral degrees during 1997. RCOP has also excelled in research and technological development. During the first five years of existence, RCOP researchers have generated well over $3 M in research funding that directly supports the Center. Close ties with NASA Langley and NASA Lewis have been established, and collaborations with NASA scientists, URC's and other universities as well as with industry have been developed. This success is evidenced by the rate of publishing research results in refereed journals, which now exceeds that of the goals in the original proposal (approx. 2 publications per faculty per year). Also, two patents have been awarded to RCOP scientists.

  15. Plasma Physics Research at an Undergraduate Institution

    Science.gov (United States)

    Padalino, Stephen

    2007-11-01

    Undergraduate research experiences have motivated many physics majors to continue their studies at the graduate level. The Department of Physics and Astronomy at SUNY Geneseo, a primarily undergraduate institution, recognizes this simple reality and is committed to ensuring research opportunities are available to interested majors beginning as early as their freshman year. Every year for more than a decade, as many as two dozen students and 8 faculty members have worked on projects related to high energy density physics and inertial confinement fusion during the summer months and the academic year. By working with their research sponsors, it has been possible to identify an impressive number of projects suitable for an institution such as Geneseo. These projects tend to be hands-on and require teamwork and innovation to be successful. They also take advantage of in-house capabilities such as the 2 MV tandem pelletron accelerator, a scanning electron microscope, a duoplasmatron ion deposition system and a 64 processor computing cluster. The end products of their efforts are utilized at the sponsoring facilities in support of nationally recognized programs. In this talk, I will discuss a number of these projects and point out what made them attractive and appropriate for an institution like Geneseo, the direct and indirect benefits of the research opportunities for the students and faculty, and how the national programs benefited from the cost-effective use of undergraduate research. In addition, I will discuss the importance of exposure for both students and faculty mentors to the larger scientific community through posters presentations at annual meetings such as the DPP and DNP. Finally, I will address the need for even greater research opportunities for undergraduate students in the future and the importance of establishing longer ``educational pipelines'' to satisfy the ever growing need for top-tier scientists and engineers in industry, academia and the

  16. Summary of Research 1997, Department of Physics

    OpenAIRE

    Faculty of the Department of Physics, Naval Postgraduate School

    1997-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Physics. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  17. Summary of Research 1998, Department of Physics

    OpenAIRE

    Faculty of the Department of Physics, Naval Postgraduate School

    1998-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Physics. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  18. Research Misconduct and the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    HM Kerch; JJ Dooley

    1999-10-11

    Research misconduct includes the fabrication, falsification, and plagiarism (FFP) of concepts or ideas; some institutions have expanded this concept to include ''other serious deviations (OSD) from accepted research practice.'' An action can be evaluated as research misconduct if it involves activities unique to the practice of science and could negatively affect the scientific record. Although the number of cases of research misconduct is uncertain (formal records are kept only by the NIH and the NSF), the costs are high in integrity of the scientific record, diversions from research to investigate allegations, ruined careers of those eventually exonerated, and erosion of public confidence in science. Currently, research misconduct policies vary from institution to institution and from government agency to government agency; some have highly developed guidelines that include OSD, others have no guidelines at ail. One result has been that the federal False Claims Act has been used to pursue allegations of research misconduct and have them adjudicated in the federal court, rather than being judged by scientific peers. The federal government will soon establish a first-ever research misconduct policy that would apply to all research funded by the federal government regardless of what agency funded the research or whether the research was carried out in a government, industrial or university laboratory. Physical scientists, who up to now have only infrequently been the subject or research misconduct allegations, must none-the-less become active in the debate over research misconduct policies and how they are implemented since they will now be explicitly covered by this new federal wide policy.

  19. Experimental research on dust lifting by propagating shock wave

    Science.gov (United States)

    Żydak, P.; Oleszczak, P.; Klemens, R.

    2017-03-01

    The aim of the presented work was to study the dust lifting process from a layer of dust behind a propagating shock wave. The experiments were conducted with the use of a shock tube and a specially constructed, five-channel laser optical device enabling measurements at five positions located in one vertical plane along the height of the tube. The system enabled measurements of the delay in lifting up of the dust from the layer, and the vertical velocity of the dust cloud was calculated from the dust concentration measurements. The research was carried out for various initial conditions and for three fractions of black coal dust. In the presented tests, three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. On the grounds of the obtained experimental results, it was assumed that the vertical component of the lifted dust velocity is a function of the dust particle diameter, the velocity of the air flow in the channel, the layer thickness and the dust bulk density. It appeared, however, that lifting up of the dust from the thick layers, thicker than 1 mm, is a more complex process than that from thin layers and still requires further research. A possible explanation is that the shock wave action upon the thick layer results in its aggregation in the first stage of the dispersing process, which suppresses the dust lifting process.

  20. Princeton University High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Marlow, Daniel R. [Princeton Univ., NJ (United States)

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  1. The Peoples Republic of China High-Frequency Gravitational Wave Research Program

    Science.gov (United States)

    Baker, Robert M. L.

    2009-03-01

    For the past decade the Peoples Republic of China has been increasingly active in the pursuit of High-Frequency Gravitational Wave (HFGW) research. Much of their progress has been during 2008. An epochal achievement was the publication of the theoretical analysis of the Li-Baker HFGW detector in the European Physical Journal C (Li, et al., 2008), "Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects"). Many Chinese scientists and graduate students have participated in these HFGW studies and their contributions are briefly discussed. Some of the key scientists and their institutions are as follows: first from Chongqing University: Zhenyun Fang, Director of the Institute of Theoretical Physics, Xing gang Wu, The Institute of Theoretical Physics, Nan Yang, The Institute of Gravitational Physics; Jun Luo, Huazhong University of Science and Technology (HUST), Wuhan, China, the Head of Gravitational Laboratory, Yang Zhang, University of Science and Technology of China, Associate Dean of the College of Sciences, Biao Li, Institute of Electronic Engineering of China Academy of Engineering Physics (CAEP), Chief of Microwave Antenna Division, Chuan-Ming Zhou, Technology Committee of Institute of Electronic Engineering of the CAEP, Jie Zhou, Institute of Electronic Engineering of the CAEP, Chief of the Signal Processing Division; Weijia Wen, Department of Physics, The Hong Kong University of Science and Technology. This Chinese HFGW team includes two parts: (1) Theoretical study and (2) Experimental investigation. These two parts have closed relations, and many cross projects, including cooperation between the American GravWave and Chinese HFGW teams. Referring to financial support, The Institute of Electronic Engineering (i.e., Microwave Laboratory) has already (June 2008) provided support more than three million Yuan for the HFGW detection project and this activity is discussed.

  2. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  3. Cosmic Rays & ULF Waves: Research in Schools Projects in London

    Science.gov (United States)

    Archer, Martin

    2017-04-01

    Research in Schools (RiS) projects offer school students opportunities to experience scientific research over prolonged periods within their school environment. Over the past two years we have piloted a RiS programme with five London schools across two research areas: the cosmic ray muons which serve as backgrounds to current neutrino experiments; and the magnetospheric ultra-low frequency waves that play a key role within space weather. From the evaluation of this pilot programme we have found that RiS can have significantly positive results on students' understanding and appreciation of science, as well as equipping them with vital skills. Teachers are also found to benefit from the projects, reconnecting them with their subject at an academic level, challenging them and aiding towards their professional development. It is important to note that supervision from current researchers was key to these outcomes. Finally, a number of recommendations on project structure, resources and workloads are presented.

  4. (Almost) All You Need to Know About Gravitational Wave Physics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    General Relativity, some of which have been taken for granted without observations: are gravitons massless? Are black holes the simplest possible macroscopic objects? do event horizons and black holes really exist, or is their formation halted by some as-yet unknown mechanism? In these lectures, we will describe the anatomy of a GW event, with particular emphasis on how to compute gravitational-waves from black hole systems and what kind of information such waves carry.

  5. Understanding ‘human’ waves: exploiting the physics in a viral video

    Science.gov (United States)

    Ferrer-Roca, Chantal

    2018-01-01

    Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called ‘human’ waves, choreographed by people, have proved to be an advisable way to understand basic wave concepts. Videos are widely used as a teaching resource and can be of considerable help in order to watch and discuss ‘human’ waves provided their quality is reasonably good. In this paper we propose and analyse a video that went viral online and has been revealed to be a useful teaching resource for introductory physics students. It shows a unique and very complete series of wave propagations, including pulses with different polarizations and periodic waves that can hardly be found elsewhere. After a proposal on how to discuss the video qualitatively, a quantitative analysis is carried out (no video-tracker needed), including a determination of the main wave magnitudes such as period, wavelength and propagation speed.

  6. Second-order theory for coupling 2D numerical and physical wave tanks: Derivation, evaluation and experimental validation

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.

    2013-01-01

    nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment......A full second-order theory for coupling numerical and physical wave tanks is presented. The ad hoc unified wave generation approach developed by Zhang et al. [Zhang, H., Schäffer, H.A., Jakobsen, K.P., 2007. Deterministic combination of numerical and physical coastal wave models. Coast. Eng. 54...... of regular waves, and the re-reflection control on the wave paddle is also not included. In order to validate the solution methodology further, a series of nonlinear, periodic waves based on stream function theory are generated in a physical wave tank using a piston-type wavemaker. These experiments show...

  7. Physical Sciences Research Priorities and Plans in OBPR

    Science.gov (United States)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  8. Shear Wave Generation and Modeling Ground Motion From a Source Physics Experiment (SPE) Underground Explosion

    Science.gov (United States)

    Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn

    2014-05-01

    We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.

  9. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    Science.gov (United States)

    MacKenzie Laxague, Nathan Jean

    Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of

  10. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    Science.gov (United States)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  11. Research frontiers in the physical sciences

    Science.gov (United States)

    Thompson, J. M. T.

    2002-12-01

    As a prestigious generalist journal with a high scholarly reputation and a long influential history, the Philosophical Transactions of the Royal Society (Series A: Mathematical, Physical and Engineering Sciences), is an ideal vehicle for charting research frontiers across the physical sciences. It is the world's longest running scientific journal, and all issues since its foundation in 1665 are archived electronically by JSTOR in the USA (see http://www.jstor.org/) and are accessible through most university libraries. This archive gives facsimile access, and search facilities, to the works of many famous scientists. In this brief editorial I give first an introduction to the special Christmas issues by young scientists, followed by an overview of the fields covered.

  12. Research accomplishments and future goals in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, J.S.

    1990-01-05

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper.

  13. Testing Gravitational Physics with Space-based Gravitational-wave Observations

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.

  14. Research in experimental High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, P.; Yelton, J. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    UF Task B has been funded continuously by the DoE since 1986. Formerly it included work on the D0 experiment at Fermilab which is no longer a part of the UF program. With the addition of Prof. Guenakh Mitselmakher, Dr. Jacobo Konigsberg and one more Assistant Professor to the faculty, the group now has a new Task to incorporate their work at Fermilab and Cern. They intend Task B to continue to cover the major research of Paul Avery and John Yelton, which is presently directed towards the CLEO detector with some effort going to B physics at Fermilab.

  15. Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics

    Science.gov (United States)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-07-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.

  16. Learning from physics education research: Lessons for economics education

    OpenAIRE

    Simkins, Scott P.; Maier, Mark H.

    2008-01-01

    We believe that economists have much to learn from educational research practices and related pedagogical innovations in other disciplines, in particular physics education. In this paper we identify three key features of physics education research that distinguish it from economics education research - (1) the intentional grounding of physics education research in learning science principles, (2) a shared conceptual research framework focused on how students learn physics concepts, and (3) a...

  17. Current status of nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Department of Physics and Astronomy, Texas A and M University-Commerce (United States); Hussein, Mahir S., E-mail: hussein@if.usp.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica

    2015-12-15

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as {sup 4}He, {sup 7}Li, {sup 9}Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate

  18. New Experiments on Wave Physics with a Simply Modified Ripple Tank

    Science.gov (United States)

    Logiurato, Fabrizio

    2014-01-01

    The ripple tank is one of the physics education devices most appreciated by teachers and students. It allows one to visualize various phenomena related to wave physics in an effective and enthralling way. Usually this apparatus consists of a tank with a transparent bottom that is filled with a thin layer of water. A source of light illuminates the…

  19. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  20. International research work experience of young females in physics

    CERN Document Server

    Choi, Serene H -J; Roelofs, Susan H; Alvarez-Elizondo, Martha B; Nieminen, Timo A

    2011-01-01

    International research work for young people is common in physics. However, work experience and career plan of female workers in physics are little studied. We explore them by interviewing three international female workers in physics.

  1. Review of research in internal-wave and internal-tide deposits of China: Discussion

    Directory of Open Access Journals (Sweden)

    G. Shanmugam

    2014-10-01

    Full Text Available This discussion of a review article by [27], published in the Journal of Palaeogeography (2(1: 56– 65, is aimed at illustrating that interpretations of ten ancient examples in China and one in the central Appalachians (USA as deep-water deposits of internal waves and internal tides are unsustainable. This critical assessment is based on an in-depth evaluation of oceanographic and sedimentologic data on internal waves and internal tides derived from 332 print and online published works during 1838–January 2013, which include empirical data on the physical characteristics of modern internal waves and internal tides from 51 regions of the world’s oceans [108]. In addition, core and outcrop descriptions of deep-water strata from 35 case studies worldwide carried out by the author during 1974–2011, and a selected number of case studies published by other researchers are evaluated for identifying the sedimentological challenges associated with distinguishing types of bottom-current reworked sands in the ancient sedimentary record. The emerging conclusion is that any interpretation of ancient strata as deposits of internal waves and internal tides is premature.

  2. Alternative approaches to research in physical therapy: positivism and phenomenology.

    Science.gov (United States)

    Shepard, K F; Jensen, G M; Schmoll, B J; Hack, L M; Gwyer, J

    1993-02-01

    This article presents philosophical approaches to research in physical therapy. A comparison is made to demonstrate how the research purpose, research design, research methods, and research data differ when one approaches research from the philosophical perspective of positivism (predominantly quantitative) as compared with the philosophical perspective of phenomenology (predominantly qualitative). Differences between the two approaches are highlighted by examples from research articles published in Physical Therapy. The authors urge physical therapy researchers to become familiar with the tenets, rigor, and knowledge gained from the use of both approaches in order to increase their options in conducting research relevant to the practice of physical therapy.

  3. Research on Technology and Physics Education

    Science.gov (United States)

    Bonham, Scott

    2010-10-01

    From Facebook to smart phones, technology is an integral part of our student's lives. For better or for worse, technology has become nearly inescapable in the classroom, enhancing instruction, distracting students, or simply complicating life. As good teachers we want to harness the power we have available to impact our students, but it is getting harder as the pace of technological change accelerates. How can we make good choices in which technologies to invest time and resources in to use effectively? Do some technologies make more of a difference in student learning? In this talk we will look at research studies looking at technology use in the physics classroom---both my work and that of others---and their impact on student learning. Examples will include computers in the laboratory, web-based homework, and different forms of electronic communication. From these examples, I will draw some general principles for effective educational technology and physics education. Technology is simply a tool; the key is how we use those tools to help our students develop their abilities and understanding.

  4. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  5. An Improved Coupling of Numerical and Physical Models for Simulating Wave Propagation

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shu-xue; Li, Jin-xuan

    2014-01-01

    An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used...... for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and....../or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show...

  6. Engaging community college students in physics research

    Science.gov (United States)

    Valentine, Megan; Napoli, Maria; Lubin, Arica; Kramer, Liu-Yen; Aguirre, Ofelia; Kuhn, Jens-Uwe; Arnold, Nicholas

    2013-03-01

    Recruiting talent and fostering innovation in STEM (Science, Technology, Engineering and Mathematics) disciplines demands that we attract, educate, and retain a larger and more diverse cohort of students. In this regard, Community Colleges (CC), serving a disproportionate number of underrepresented minority, female and nontraditional students, represent a pool of potential talent that, due to a misguided perception of its students as being less capable, often remains untapped. We will present our strategies to attract and support the academic advancement of CC students in the STEM fields through our NSF-sponsored Research Experience for Undergraduates program entitled Internships in Nanosystems Science Engineering and Technology (INSET). For more than a decade, INSET has offered a physics research projects to CC students. The key components of INSET success are: 1) the involvement of CC faculty with a strong interest in promoting student success in all aspects of program planning and execution; 2) the design of activities that provide the level of support that students might need because of lack of confidence and/or unfamiliarity with a university environment; and 3) setting clear goals and high performance expectations.

  7. International Physics Research Internships in an Australian University

    Science.gov (United States)

    Choi, Serene Hyun-Jin; Nieminen, Timo A.; Maucort, G.; Gong, Y. X.; Bartylla, C.; Persson, M.

    2013-01-01

    Research student internships in physics is one way that students can gain a broad range of research experience in a variety of research environments, and develop international contacts. We explore international physics research internships, focusing on the academic learning experiences, by interviewing four international research interns in a…

  8. Spiral-syllabus course in wave phenomena to introduce majors and nonmajors to physics

    Science.gov (United States)

    Touger, Jerold S.

    1981-09-01

    A single course to introduce physics to both nonscience and physics majors has been developed, dealing with light, sound, and signal, transmission and reception, and emphasizing wave aspects of these phenomena. Themes such as the observational basis of physics, the progression from qualitative observation to measurement, physical models, mathematical modeling, and the utility of models in developing technology are stressed. Modes of presentation, consistent with the notion of a spiral syllabus, are explained with reference to the cognitive and educational theories of Bruner and Piaget. Reasons are discussed for choosing this subject matter in preference to Newtonian mechanics as a starting point for physics majors.

  9. Landslide generated waves in dam reservoirs - Experimental investigation on a physical hydraulic model

    OpenAIRE

    Ponziani, Lorenza; Gardoni, Martina

    2017-01-01

    The impulse waves generated by landslides that occur in an artificial basin may have disastrous impacts on the surrounding environment. For Alpine lakes, impulse waves are particularly significant, because of steep shores, narrow reservoirs geometry, possible large slide masses, and high impact velocities. Catastrophic events, as the well-known Vajont disaster occurred in Italy in 1963 which led to the loss of more than 2000 human lives, promoted the study of the physical process and the poss...

  10. ReleQuant – Improving teaching and learning in quantum physics through educational design research

    Directory of Open Access Journals (Sweden)

    Berit Bungum

    2015-05-01

    Full Text Available Quantum physics and relativity are demanding for teachers and students, but have the potential for students to experience physics as fascinating and meaningful. Project ReleQuant engaged in educational design research to improve teaching and learning in these topics in Norwegian upper secondary schools. The paper focuses on the first cycle of development of a teaching module on quantum physics and how design principles were developed. We construct the design principles by reviewing relevant research literature and conducting three pilot studies. The process resulted in the following principles for designing the quantum physics teaching module: 1 clarify how quantum physics breaks with classical physics; 2 use simulations of phenomena that cannot be experienced directly; 3 provide students to use written and oral language; 4 address and discuss wave-particle duality and the uncertainty

  11. Physics of the Blues: Music, Fourier and Wave - Particle Duality

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. Murray (ANL)

    2003-10-15

    Art and science are intimately connected. There is probably no art that reveals this more than music. Music can be used as a tool to teach physics and engineering to non-scientists, illustrating such diverse concepts as Fourier analysis and quantum mechanics. This colloquium is aimed in reverse, to explain some interesting aspects of music to physicists. Topics include: What determines the frequency of notes on a musical scale? What is harmony and why would Fourier care? Where did the blues come from? (We' re talking the 'physics of the blues', and not 'the blues of physics' - that's another colloquium). Is there a musical particle? The presentation will be accompanied by live keyboard demonstrations. The presenter will attempt to draw tenuous connections between the subject of his talk and his day job as Director of the Advanced Photon Source at Argonne National Laboratory.

  12. Final Report: Particle Physics Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Karchin, Paul E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Harr, Robert F. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Mattson, Mark. E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  13. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  14. Transversality of electromagnetic waves in the calculus-based introductory physics course

    Energy Technology Data Exchange (ETDEWEB)

    Burko, Lior M [Department of Physics and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 38599 (United States)

    2008-11-15

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.

  15. ESMN / European Solar Physics Research Area

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    I briefly present the European Solar Magnetometry Network as a contemporary example of solar physics collaboration across European borders,and I place it in larger-scale context by discussing the past and future of Europe-wide solar physics organization.Solar physics from space is inherently

  16. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  17. Use of international space station for fundamental physics research

    Science.gov (United States)

    Israelsson, U.; Lee, M. C.

    2002-01-01

    NASA's research plans aboard the International Space Station (ISS) are discussed. Experiments in low temperature physics and atomic physics are planned to commence in late 2005. Experiments in gravitational physics are planned to begin in 2007. A low temperature microgravity physics facility is under development for the low temperature and gravitation experiments.

  18. What Can We Learn from PER: Physics Education Research?

    Science.gov (United States)

    Singh, Chandralekha

    2014-01-01

    Physics Education Research (PER) focuses on understanding how students learn physics at all levels and developing strategies to help students with diverse prior preparations learn physics more effectively. New physics instructors are encouraged to visit http://PhysPort.org, a website devoted to helping instructors find effective teaching resources…

  19. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  20. Increasing Physical Activity through Recess. Research Brief

    Science.gov (United States)

    Beighle, Aaron

    2012-01-01

    Regular physical activity promotes important health benefits, reduces risk for obesity and is linked with enhanced academic performance among students. The U.S. Surgeon General recommends that children engage in at least 60 minutes of moderate physical activity most days of the week, yet fewer than half of children ages 6 to 11 meet that…

  1. Physical Punishment and Delinquency: A Research Note.

    Science.gov (United States)

    Agnew, Robert

    1983-01-01

    Examines whether physical punishment and consistency of discipline interact in their effect on delinquency. Distinguishes between "intermittent discipline" and "inconsistent demands." Finds that if parental demands are consistent, physical punishment may reduce delinquency but cautions that these findings do not constitute a…

  2. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part II: Experimental validation in two-dimensions

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.

    2014-01-01

    performance is achieved by using the second-order correction. When controlling with a second-order coupling signal, two key points are notable: (i) The higher harmonics underlying the numerical waves are accurately captured and transferred into the physical model. (ii) The second-order behavior leads...... to an unwanted spurious freely propagating second harmonic that is substantially reduced when compared to an identical wave paddle operating with a first-order coupling signal. Using nonlinear regular (monochromatic), bichromatic and irregular wave cases as well as varying coupled wave tank bathymetries, both......This paper provides an experimental validation of the second-order coupling theory outlined by Yang et al. (Z. Yang, S. Liu, H.B. Bingham and J. Li., 2013. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties...

  3. Student Understanding of Light as an Electromagnetic Wave: Relating the Formalism to Physical Phenomena.

    Science.gov (United States)

    Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.

    1999-01-01

    Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)

  4. Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics

    Science.gov (United States)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-01-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…

  5. Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC

    NARCIS (Netherlands)

    Demcenko, A.; Akkerman, Remko; Nagy, P.B.; Loendersloot, Richard

    2012-01-01

    This work considers the characterization of linear PVC acoustic properties using a linear ultrasonic measurement technique and the non-collinear ultrasonic wave mixing technique for measurement of the physical ageing state in PVC. The immersion pulse-echo measurements were used to evaluate phase

  6. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  7. Facilitating Heliophysics Research by the Virtual Wave Observatory (VWO) Context Data Search Capability

    Science.gov (United States)

    Fung, Shing F.; Shao, Xi; Garcia, Leonard N.; Galkin, Ivan A.; Benson, Robert F.

    2009-01-01

    Wave phenomena, ranging from freely propagating electromagnetic radiation (e.g., solar radio bursts, AKR) to plasma wave modes trapped in various plasma regimes (e.g., whistlers, Langmuir and ULF waves) and atmospheric gravity waves, are ubiquitous in the heliosphere. Because waves can propagate, wave data obtained at a given observing location may pertain to wave oscillations generated locally or from afar. While wave data analysis requires knowledge of wave characteristics specific to different wave modes, the search for appropriate data for heliophysics wave studies also requires knowledge of wave phenomena. In addition to deciding whether the interested wave activity is electrostatic (i.e., locally trapped) or electromagnetic (with propagation over distances), considerations must be given to the dependence of the wave activity on observer's location or viewing geometry, propagating frequency range and whether the wave data were acquired by passive or active observations. Occurances of natural wave emissions i the magnetosphere (e.g, auroral kilometric radiation) are often dependent also on the state (e.e., context) of the magnetosphere that varies with the changing solar wind, IMF and geomagnetic conditions. Fung and Shao [2008] showed recently that magnetospheric state can be specified by a set of suitably time-shifted solar wind, IMF and the multi-scale geomagnetic response parameters. These parameters form a magnetospheric state vector that provides the basis for searching magnetospheric wave data by their context conditions. Using the IMAGE Radio Plasma Imager (RPI) data and the NASA Magnetospheric State Query System (MSOS) [Fung, 2004], this presentation demonstrates the VWO context data search capability under development and solicits feedback from the Heliophysics research community for improvements.

  8. Damping Profile Research for Corpower Ocean's Wave Energy Converter

    OpenAIRE

    Zhou, Tianzhi

    2016-01-01

    With increasing energy demanding and greenhouse gases from fossil fuel, the need to develop new ways to convert energy in sustainable methods is becoming more and more urgent. Corpower Ocean AB designed a point absorber type wave energy converter to harvest energy from surface wave. To maximize the energy output, phase and amplitude control of the converter are needed. Falnes and Budal proposed latching around 1980s which could deliver almost perfect phase and thusly boost power output, howev...

  9. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  10. Learning from Physics Education Research: Lessons for Economics Education

    CERN Document Server

    Simkins, Scott P

    2008-01-01

    We believe that economists have much to learn from educational research practices and related pedagogical innovations in other disciplines, in particular physics education. In this paper we identify three key features of physics education research that distinguish it from economics education research - (1) the intentional grounding of physics education research in learning science principles, (2) a shared conceptual research framework focused on how students learn physics concepts, and (3) a cumulative process of knowledge-building in the discipline - and describe their influence on new teaching pedagogies, instructional activities, and curricular design in physics education. In addition, we highlight four specific examples of successful pedagogical innovations drawn from physics education - context-rich problems, concept tests, just-in-time teaching, and interactive lecture demonstrations - and illustrate how these practices can be adapted for economic education.

  11. Impact of different wave physics parametrisations in ECMWF Earth System model

    Science.gov (United States)

    Bidlot, Jean-Raymond

    2017-04-01

    The global analyses and medium range forecasts from the European Centre for Medium range Weather Forecasts rely on a state of the art atmospheric model. In order to best represent the momentum exchange at the surface of the oceans, it is tightly coupled to an ocean wave model. Recently, an ocean model has been included as part of the operational medium range forecasting system. In this context, a first set of sea state effects on Upper Ocean mixing and dynamics was successfully added to the system. Impact of sea-state dependent momentum forcing, the Stokes-Coriolis force and the enhanced mixing by breaking ocean waves have been added. So far, the implementation of the coupled system was done with ECMWF own wave physics parametrisation, an evolution of the original WAM cycle-4 physics. The ST4 physics from WaveWatch 3 has already been implemented in ECWAM and is used by Météo France in their standalone configuration. Plans are to also introduce the ST6 version. A first assessment of the different parametrisations will be presented in the context of the fully coupled system.

  12. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries in the document describe the scope of the individual programs and detail the research performed during 1982 to 1983. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  13. Experimental Research of Machineless Energy Separation Effect Influenced by Shock Waves

    Directory of Open Access Journals (Sweden)

    S. S. Popovich

    2016-01-01

    Full Text Available The paper presents experimental research results of machineless energy separation effect with transversal ribs in supersonic channel. The energy separation effect assumes a physical division of the inlet flow into two or more flows, each having different stagnation temperature. Among well-known energy separation effects noted there are Ranque-Hilsch vortex tubes, Hartmann-Sprenger resonance tubes, pulsating tubes and some others.A working principle of device under study is based on thermal interaction between subsonic and supersonic gas flows through a heat-conducting division wall. This energy separation method was proposed by academician Leontiev and was patented in 1998. A number of references for PhD theses, articles, and conference proceedings devoted to the research of “Leontiev tube” have been mentioned in the paper. Efficiency factors for energy separation device performability have been analyzed in detail. The main attention was focused on the phenomenon of shock waves generation in supersonic channel of Leontiev tube.Experiment was carried out in the air prototype of energy separation device with supersonic flow Mach numbers 1.9 and 2.5, stagnation temperatures 40°С and 70°С, and for uni-flow and counter-flow air moving direction in subsonic and supersonic channels. Shock waves have been generated by means of circular ribs in supersonic channel of energy separation device. The research was carried out by means of infrared thermal imaging, thermocouples, total and static pressure probes, and modern National Insturments automation equipment. The work shows that shock waves have no negative influence on energy separation effect. A conclusion is made that unexpected shock wave generation in supersonic channel will not cause operability loss. It was gained that counter-flow regime is more efficient than uni-flow. Energy separation effect also appears to be higher with the rise of Mach number and flow initial stagnation temperature

  14. Final Report. Research in Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeffrey P. [San Francisco State Univ., CA (United States); Golterman, Maarten F.L. [San Francisco State Univ., CA (United States)

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  15. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  16. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  17. Research in the aerospace physical sciences

    Science.gov (United States)

    Whitehurst, R. N.

    1973-01-01

    Research efforts are reported in various areas including dynamics of thin films, polymer chemistry, mechanical and chemical properties of materials, radar system engineering, stabilization of lasers, and radiation damage of organic crystals. Brief summaries of research accomplished and literature citations are included.

  18. PHYSICAL PROPERTIES OF SOYBEAN (A RESEARCH REPORT ...

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. Physical properties of linear dimensions, sphericity and solid density of four different varieties of dry mature soybean were determined in this study. For the varieties - TGX1768-6F,. TGX-1681-3F, TGX-536-02D, and TGX-1740-3F, the mean sphericity are 0.745, 0.857, 0.830, and 0.829 respectively. It is shown ...

  19. Researchers defy the physical limits to computation.

    Science.gov (United States)

    Flam, F

    1993-04-16

    Each year's new computing technology, it seems, leaves the last year's in the dust. But physicists are now beginning to tell computer scientists that it can't go on this way. Sooner or later, as computers get smaller, faster, and more complex, the laws of physics will throw up roadblocks to further progress. There's only one way out of this bind: radically new strategies. And some of those strategies are starting to emerge.

  20. Research accomplishments and future goals in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-30

    This document presents our proposal to continue the activities of Boston University researchers in high energy physics research. We have a broad program of participation in both non-accelerator and accelerator-based efforts. High energy research at Boston University has a special focus on the physics program of the Superconducting Supercollider. We are active in research and development for detector subsystems, in the design of experiments, and in study of the phenomenology of the very high energy interactions to be observed at the SSC. The particular areas discussed in this paper are: colliding beams physics; accelerator design physics; MACRO project; proton decay project; theoretical particle physics; muon G-2 project; fast liquid scintillators; SSCINTCAL project; TRD project; massively parallel processing for the SSC; and physics analysis and vertex detector upgrade at L3.

  1. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  2. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  3. Applying Cluster Analysis to Physics Education Research Data

    Science.gov (United States)

    Springuel, R. Padraic

    2010-01-01

    One major thrust of Physics Education Research (PER) is the identification of student ideas about specific physics concepts, both correct ideas and those that differ from the expert consensus. Typically the research process of eliciting the spectrum of student ideas involves the administration of specially designed questions to students. One major…

  4. Methods to Measure Physical Activity Behaviors in Health Education Research

    Science.gov (United States)

    Fitzhugh, Eugene C.

    2015-01-01

    Regular physical activity (PA) is an important concept to measure in health education research. The health education researcher might need to measure physical activity because it is the primary measure of interest, or PA might be a confounding measure that needs to be controlled for in statistical analysis. The purpose of this commentary is to…

  5. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    Science.gov (United States)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  6. Wave motion as inquiry the physics and applications of light and sound

    CERN Document Server

    Espinoza, Fernando

    2017-01-01

    This undergraduate textbook on the physics of wave motion in optics and acoustics avoids presenting the topic abstractly in order to emphasize real-world examples. While providing the needed scientific context, Dr. Espinoza also relies on students' own experience to guide their learning. The book's exercises and labs strongly emphasize this inquiry-based approach. A strength of inquiry-based courses is that the students maintain a higher level of engagement when they are studying a topic that they have an internal motivation to know, rather than solely following the directives of a professor. "Wave Motion" takes those threads of engagement and interest and weaves them into a coherent picture of wave phenomena. It demystifies key components of life around us--in music, in technology, and indeed in everything we perceive--even for those without a strong math background, who might otherwise have trouble approaching the subject matter.

  7. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  8. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  9. Education Research in Physical Therapy: Visions of the Possible.

    Science.gov (United States)

    Jensen, Gail M; Nordstrom, Terrence; Segal, Richard L; McCallum, Christine; Graham, Cecilia; Greenfield, Bruce

    2016-12-01

    Education research has been labeled the "hardest science" of all, given the challenges of teaching and learning in an environment encompassing a mixture of social interactions, events, and problems coupled with a persistent belief that education depends more on common sense than on disciplined knowledge and skill. The American Educational Research Association specifies that education research-as a scientific field of study-examines teaching and learning processes that shape educational outcomes across settings and that a learning process takes place throughout a person's life. The complexity of learning and learning environments requires not only a diverse array of research methods but also a community of education researchers committed to exploring critical questions in the education of physical therapists. Although basic science research and clinical research in physical therapy have continued to expand through growth in the numbers of funded physical therapist researchers, the profession still lacks a robust and vibrant community of education researchers. In this perspective article, the American Council of Academic Physical Therapy Task Force on Education Research proposes a compelling rationale for building a much-needed foundation for education research in physical therapy, including a set of recommendations for immediate action. © 2016 American Physical Therapy Association.

  10. Research Quality in Physical Education and Sport Pedagogy

    Science.gov (United States)

    O'Sullivan, Mary

    2007-01-01

    This manuscript attempts to unpack a number of issues around the phrase "quality research in physical education and sport pedagogy". The following questions serve as the frame for discussion: What is the purpose of research? What is good research and who says it is good? What do we hope to accomplish with research? Who do we serve with…

  11. Physics Education Research efforts to promote diversity: Challenges and opportunities

    Science.gov (United States)

    Brahmia, Suzanne

    2015-04-01

    We begin this talk with a brief description of the gender and ethnic diversity of the physics community. We then discuss several current efforts within Physics Education Research that have the potential to further our understanding of issues surrounding underrepresentation. These efforts include research into (1) the role of community and strategies for developing effective communities; (2) physics identity and self-efficacy; (3) the affordances that students from underrepresented groups bring to physics learning; (4) socioeconomics and its impact on mathematization. One of the challenges to conducting this research is the relatively small proportion of underrepresented minority students in current physics classes, and the small number of women in physics and engineering majors. In collaboration with Stephen Kanim, New Mexico State University.

  12. Contemporary state of fundamental physical research

    CERN Document Server

    Lokajicek, Milos V

    2016-01-01

    The contemporary scientific and technological progress has been given fully by the results of classical mechanics from the 19th century when the so called European values were accepted practically by the whole educated world. The given results and conclusions were gained on the basis of causal ontological approach proposed in principle by Socrates and developed further by Aristotle. This approach has been, however, fully extruded by phenomenological approach in the 20th century, which has disallowed practically any other actually scientific progress; three very different theories having been applied to physical reality now: classical mechanics in standard macroscopic region, Copenhagen quantum mechanics in microscopic region, and special theory of reality in both the regions in the case of systems consisting of objects having higher velocity values. Any explanation or description of transitions between different regions and between different theories have not been provided until now. The corresponding evoluti...

  13. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    ERDA supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric and solar sciences which relate to ERDA's many missions. This research may be conducted in the major ERDA laboratories, industry, universities and other government agencies. Such support provides for payment of salaries, purchase of equipment and other materials, an allowance for overhead costs, and is formalized by a contract between ERDA and the organization performing the work. The summaries in this document, prepared by the investigators, describe the work performed during 1976, include the scope of the work to be performed in 1977 and provide information regarding some of the research planned for 1978. The Division of Basic Energy Sciences, through its Geosciences Program, supports research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary relationships, as well as their relationship to ERDA's technological needs.

  14. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  15. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  16. Integrated tokamak modeling: when physics informs engineering and research planning

    Science.gov (United States)

    Poli, Francesca

    2017-10-01

    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.

  17. Teaching and physics education research: bridging the gap.

    Science.gov (United States)

    Fraser, James M; Timan, Anneke L; Miller, Kelly; Dowd, Jason E; Tucker, Laura; Mazur, Eric

    2014-03-01

    Physics faculty, experts in evidence-based research, often rely on anecdotal experience to guide their teaching practices. Adoption of research-based instructional strategies is surprisingly low, despite the large body of physics education research (PER) and strong dissemination effort of PER researchers and innovators. Evidence-based PER has validated specific non-traditional teaching practices, but many faculty raise valuable concerns toward their applicability. We address these concerns and identify future studies required to overcome the gap between research and practice.

  18. Synthesis of discipline-based education research in physics

    Science.gov (United States)

    Docktor, Jennifer L.; Mestre, José P.

    2014-12-01

    This paper presents a comprehensive synthesis of physics education research at the undergraduate level. It is based on work originally commissioned by the National Academies. Six topical areas are covered: (1) conceptual understanding, (2) problem solving, (3) curriculum and instruction, (4) assessment, (5) cognitive psychology, and (6) attitudes and beliefs about teaching and learning. Each topical section includes sample research questions, theoretical frameworks, common research methodologies, a summary of key findings, strengths and limitations of the research, and areas for future study. Supplemental material proposes promising future directions in physics education research.

  19. Synthesis of discipline-based education research in physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2014-09-01

    Full Text Available This paper presents a comprehensive synthesis of physics education research at the undergraduate level. It is based on work originally commissioned by the National Academies. Six topical areas are covered: (1 conceptual understanding, (2 problem solving, (3 curriculum and instruction, (4 assessment, (5 cognitive psychology, and (6 attitudes and beliefs about teaching and learning. Each topical section includes sample research questions, theoretical frameworks, common research methodologies, a summary of key findings, strengths and limitations of the research, and areas for future study. Supplemental material proposes promising future directions in physics education research.

  20. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  1. Develop and Test Coupled Physical Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM

    Science.gov (United States)

    2013-09-30

    disk the following wave input fields: Stokes drift current ( SDC ), wave-to-ocean momentum flux (WOMF), bottom orbital wave current (OWC). (b) Add SDC ...Earth System Modeling Framework) layer in HYCOM to import SDC , WOMF and OWC fields and export SSC (surface current) and SSH (surface height) fields

  2. Research on U.S. physics teacher education

    Science.gov (United States)

    Meltzer, David E.

    2014-03-01

    College and university physics departments have long been the primary source of physics-specific education received by the nation's high school physics teachers, who now number nearly 30,000. Since the 1880s, U.S. physicists have set out specific expectations and recommendations for the education of physics teachers, and various methods and programs have been utilized to prepare these teachers. However, relatively little research has been done regarding the effectiveness of the various instructional methods. Only rarely have there been investigations of links between physics teacher education programs, and the learning outcomes of students taught by teachers who were educated in those programs. The available evidence suggests that physics teacher education programs that utilize materials and methods developed and validated through physics education research (PER) have been particularly effective in preparing well-qualified teachers. I will give an up-to-date review of the research in this area, and discuss relevant details of the investigation recently reported by the APS/AAPT/AIP Task Force on Teacher Education in Physics (T-TEP) [D. Meltzer, M. Plisch, and S. Vokos, editors, Transforming the Preparation of Physics Teachers: A Call to Action (APS, College Park, 2012)].

  3. From students to researchers: The education of physics graduate students

    Science.gov (United States)

    Lin, Yuhfen

    This dissertation aims to make two research contributions: (1) In physics education research, this work aims to advance our understanding of physics student learning at the graduate level. This work attempts to better understand how physics researchers and teachers are produced, and what factors support or encourage the process of becoming a researcher and a teacher. (2) In cognitive science research in the domain of expert/novice differences, researchers are interested in defining and understanding what expertise is. This work aims to provide some insight into some of the components of expertise that go into becoming a competent expert researcher in the domain of physics. This in turn may contribute to our general understanding of expertise across multiple domains. Physics graduate students learn in their classes as students, teach as teaching assistants, and do research with research group as apprentices. They are expected to transition from students to independent researchers and teachers. The three activities of learning, teaching, and research appear to be very different and demand very different skill-sets. In reality, these activities are interrelated and have subtle effects on each other. Understanding how students transition from students to researchers and teachers is important both to PER and physics in general. In physics, an understanding of how physics students become researchers may help us to keep on training physicists who will further advance our understanding of physics. In PER, an understanding of how graduate students learn to teach will help us to train better physics teachers for the future. In this dissertation, I examine physics graduate students' approaches to teaching, learning, and research through semi-structured interviews. The collected data is interpreted and analyzed through a framework that focuses on students' epistemological beliefs and locus of authority. The data show how students' beliefs about knowledge interact with their

  4. Integration and Physical Education: A Review of Research

    Science.gov (United States)

    Marttinen, Risto Harri Juhani; McLoughlin, Gabriella; Fredrick, Ray, III; Novak, Dario

    2017-01-01

    The Common Core State Standards Initiative has placed an increased focus on mathematics and English language arts. A relationship between physical activity and academic achievement is evident, but research on integration of academic subjects with physical education is still unclear. This literature review examined databases for the years…

  5. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Suid-Afrikaanse Tydskrif vir Navorsing in Sport, Liggaamlike Opvoedkunde en Ontspanning / The South African Journal for Research in Sport, Physical Education and Recreation is published by the Southern African Alliance for Sport Science, Physical Education and Recreation. Contributions from the fields of Sport ...

  6. Cultural relevance of physical activity intervention research with underrepresented populations

    OpenAIRE

    Conn, Vicki S.; Chan, Keith; Banks, Joanne; Ruppar, Todd M.; Scharff, Jane

    2013-01-01

    This paper describes cultural relevance in physical activity intervention research with underrepresented populations. Seventy-one extant studies which tested interventions to increase physical activity among underrepresented adults were included. Verbatim descriptions of efforts to enhance cultural relevance of study designs and interventions were extracted and then content analyzed. We found strategies to enhance cultural relevance of interventions as soliciting input from population members...

  7. Physics education research: Resources for graduate student instructors

    OpenAIRE

    Krusberg, Zosia A. C.

    2008-01-01

    This resource letter intends to provide physics instructors - particularly graduate student teaching assistants - at the introductory university level with a small but representative collection of resources to acquire a familiarity with research in physics education for guidance in everyday instruction. The resources are in the form of books, articles, websites, journals, and organizations.

  8. Collaboration between physical activity researchers and transport planners

    DEFF Research Database (Denmark)

    Crist, Katie; Bolling, Khalisa; Schipperijn, Jasper

    2018-01-01

    Collaboration between physical activity (PA) researchers and transport planners is a recommended strategy to combat the physical inactivity epidemic. Data collected by PA researchers could be used to identify, implement and evaluate active transport (AT) projects. However, despite aligned interests...... expertise in health or transport planning. A thematic analysis was conducted following structural coding by two researchers. The analysis revealed that geographic and physical activity data that are current, local, objective and specific to individual AT trips would improve upon currently available data...... sources. Informants believed that research collaboration could increase capacity by providing unbiased data and access to students to assist with targeted research. Collaboration could also increase the relevance of academic research in applied settings. Identified barriers included: setting up contracts...

  9. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Principal Contact. Prof Hanlie Moss Editor Physical Activity, Sport and Recreation Research Focus Area North-West University, Potchefstroom South Africa Phone: +27 (0)18 299-1821. Email: sajrsper@nwu.ac.za ...

  10. Theoretical high energy physics research at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1990-09-01

    This report discusses research being done at the University of Chicago in High Energy Physics. Some topic covered are: CP violation; intermediate vector bosons; string models; supersymmetry; and rare decay of kaons. (LSP)

  11. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    South African Journal for Research in Sport, Physical Education and Recreation. ... urrent status and assessment of quantitative and qualitative one leg balancing ... African runners: an exploratory study · EMAIL FULL TEXT EMAIL FULL TEXT

  12. Semiconductor surface physics research in the Space Shuttle orbit

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, I.; Spicer, W.E.

    1977-11-01

    The prospects for surface physics research on semiconductors with the Space Shuttle are summarized. The effect of residual gases and solar radiation outside the Shuttle on the semiconductor-surface electronic properties are assessed.

  13. Physical Attractiveness Research. Toward a Developmental Social Psychology of Beauty

    Science.gov (United States)

    Adams, G. R.

    1977-01-01

    This paper reviews research on physical attractiveness from a dialectical-interactional perspective and attempts to examine the relationship between outer appearance and inner psychological characteristics from a developmental perspective. (BD)

  14. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  15. Radiotherapy physics research in the UK: challenges and proposed solutions.

    Science.gov (United States)

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-10-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research.

  16. Radiotherapy physics research in the UK: challenges and proposed solutions

    Science.gov (United States)

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-01-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research. PMID:22972972

  17. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  18. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  19. The Use of Numerical Modeling in the Planning of Physical Model Tests in a Multidirectional Wave Basin

    DEFF Research Database (Denmark)

    Carci, Enric; Rivero, Francisco J.; Burcharth, Hans Falk

    2003-01-01

    For the development of a new port of the A Coruña Port Authority, an extensive and careful analysis of wave propagation had to be done to determine design wave characteristics along the main breakwater, placed behind an irregular shoal. Preliminary numerical simulations showed that wave focusing...... improved the knowledge on the problem studied. Read More: http://www.worldscientific.com/doi/abs/10.1142/9789812791306_0042?prevSearch=The+Use+of+Numerical+Modeling+in+the+Planning+of+Physical+Model+Tests+in+a+Multidirectional+Wave+Basin&searchHistoryKey=...

  20. ANALYTICAL AND NUMERICAL RESEARCH OF WAVE LOADS ON A SHORT VERTICAL WALL

    Directory of Open Access Journals (Sweden)

    Kantarzhi Igor' Grigor'evich

    2012-10-01

    Full Text Available The problem of wave loads on a relatively short wall is related to the issue of the general design of the structure at the stage of its construction, particularly, if the structure is build offshore. The physical nature of interaction between waves and vertical walls that have different lengths is the subject matter of this paper. It is assumed that the wall is absolutely rigid. The comparison of numerical test results and an analytical calculation based on a short wall model is made. As a result, wave forces identified through the employment of the above two models demonstrate their satisfactory convergence. The difference is substantial for longer walls, and it increases along with the increase of the wall length. The conclusion is that a short wall is exposed to the wave load that is not accompanied by any diffraction, therefore, a related method of design may be recommended. Numerical models may be considered as the universal ones.

  1. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  2. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  3. High temperature science: future needs and anticipated development in high-density shock-wave research

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M.; Ahrens, T.J.; Nellis, W.J.

    1979-03-07

    Shock-wave experiments on condensed matter currently achieve pressures up to 5 Mbar, and temperatures over 20,000/sup 0/K. In this report we survey a number of experimental methods that, in the next decade, may increase the conditions by an order of magnitude. These advanced experiments will allow us to investigate a new range of physics problems.

  4. Investigation on the geological structures obstructing the propagation of seismic waves - Based on physical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Yul; Hyun, Hye ja; Kim, Yoo Sung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    In petroleum exploration seismic reflection method is by far the most widely used. The resulting seismogram or seismic trace consists of many wavelets with different strengths and arrival times, due to the wavefront that have traveled different source-to receiver paths. In this sense, the seismic trace may be represented as a convolution of a wavelet with an impulse response denoting the various wavelet amplitudes and arrival times present in the trace. However, the wavelet suffers different attenuations while traveling through the earth layers. For example, the weathered layer (near-surface structure : e.g. valley) affect the propagating seismic wave in ways that cannot be simply modeled, but rather described in terms of an overall time delay and significant distortion of the source wavelet as it travels downward. Of course, the weathered layer will also affect the upgoing wave. Thus, the reflection method does not always lead to a desirable resolution in reflection section, because some specific constraints on the illumination of the deeper reflectors can be often imposed by the near-surface effect. Among other things, the mechanism for attenuation in many types of rocks is not very well understood. The present work is then mostly focussed on studying problems of wave propagation especially dealing with the near-surface structure problem by using physical modeling. An attempt was made to compare the measured data in detail with those from numerical method (ray theory). Besides, various kinds of physical models were additionally built to simulate the complex geological structures comprising wavy layer, coal seam structure, absorbing inhomogeneities, gradient layer that are not simply amenable to theory. Hereby, an attention was given on the reflection and transmission responses. The results illustrated in this work will provide a basis for the future oil exploration in Korea and demonstrate the potential of physical modeling as well. (author). 7 refs., 4 tabs., 62

  5. Relevance of Researches in Physical Science for National ...

    African Journals Online (AJOL)

    Research is carefully planned and performed investigation, searching for previously unknown facts. It's the bedrock of all national developments. This paper explain the role of research in physical sciences in national building arguing that Nigeria is blessed with human and natural resources' which if properly utilized will ...

  6. Subject Didactic Studies of Research Training in Biology and Physics.

    Science.gov (United States)

    Lybeck, Leif

    1984-01-01

    The objectives and design of a 3-year study of research training and supervision in biology and physics are discussed. Scientific problems arising from work on the thesis will be a focus for the postgraduate students and their supervisors. Attention will be focused on supervisors' and students' conceptions of science, subject range, research,…

  7. Workshop on Energy Research for Physics Graduate Students and Postdocs

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Ken

    2015-03-01

    One-day workshop for a small group of graduate students and post-docs to hear talks and interact with experts in a variety of areas of energy research. The purpose is to provide an opportunity for young physicists to learn about cutting-edge research in which they might find a career utilizing their interest and background in physics.

  8. Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves

    Directory of Open Access Journals (Sweden)

    Llanes-Estrada Felipe J.

    2017-01-01

    Full Text Available The finding of Gravitational Waves (GW by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f (R gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.

  9. Integrating research evidence and physical activity policy making

    DEFF Research Database (Denmark)

    Aro, Arja R.; Bertram, Maja; Hämäläinen, Riitta-Maija

    2016-01-01

    Evidence shows that regular physical activity is enhanced by supporting environment. Studies are needed to integrate research evidence into health enhancing, cross-sector physical activity (HEPA) policy making. This article presents the rationale, study design, measurement procedures...... and the initial results of the first phase of six European countries in a five-year research project (2011-2016), REsearch into POlicy to enhance Physical Activity (REPOPA). REPOPA is programmatic research; it consists of linked studies; the first phase studied the use of evidence in 21 policies in implementation...... to learn more in depth from the policy making process and carried out 86 qualitative stakeholder interviews. The second, ongoing phase builds on the central findings of the first phase in each country; it consists of two sets of interventions: game simulations to study cross-sector collaboration...

  10. Comparative Effectiveness Research: A Roadmap for Physical Activity and Lifestyle.

    Science.gov (United States)

    Jakicic, John M; Sox, Harold; Blair, Steven N; Bensink, Mark; Johnson, William G; King, Abby C; Lee, I-Min; Nahum-Shani, Inbal; Sallis, James F; Sallis, Robert E; Craft, Lynette; Whitehead, James R; Ainsworth, Barbara E

    2015-08-01

    Comparative effectiveness research (CER) is designed to support informed decision making at both the individual, population, and policy levels. The American College of Sports Medicine and partners convened a conference with the focus of building an agenda for CER within the context of physical activity and nonpharmacological lifestyle approaches in the prevention and treatment of chronic disease. This report summarizes the conference content and consensus recommendations that culminated in a CER roadmap for physical activity and lifestyle approaches to reducing the risk of chronic disease. This conference focused on presentations and discussion around the following topic areas: 1) defining CER, 2) identifying the current funding climate to support CER, 3) summarizing methods for conducting CER, and 4) identifying CER opportunities for physical activity. This conference resulted in consensus recommendations to adopt a CER roadmap for physical activity and lifestyle approaches to reducing the risk of chronic disease. In general, this roadmap provides a systematic framework by which CER for physical activity can move from a planning phase to a phase of engagement in CER related to lifestyle factors with particular emphasis on physical activity to a societal change phase that results in changes in policy, practice, and health. It is recommended that physical activity researchers and health care providers use the roadmap developed from this conference as a method to systematically engage in and apply CER to the promotion of physical activity as a key lifestyle behavior that can be effective at making an impact on a variety of health-related outcomes.

  11. Promoting equal opportunity within the transregional Collabortive Research Center "Waves to Weather" (W2W)

    Science.gov (United States)

    Laurian, Audine; Craig, George

    2017-04-01

    The promotion of equal opportunity (EO) is a central commitment of the transregional Collaborative Research Center "Waves to Weather" (W2W) funded by the DFG. Intense efforts are made to promote EO measures and to support female scientists and parents of young children throughout their career within the consortium. Since the start of W2W in July 2015, the following actions have been undertaken: - an EO committee has been created, which consists of parents of young children and a PhD student from the main partner institutions in Munich, in Mainz and in Karlsruhe. The EO committee has agreed on a list of EO measures to be offered within the consortium and a flyer advertising these measures has been designed, produced and distributed - childcare has been organized during the meetings organized by W2W - outreach events addressed to school girls and promoting the study of physics and mathematics at the university (e.g. Girls' Day) has been organized in Munich, in Mainz and in Karlsruhe - student helpers have been hired to reduce the workload of female principal investigators with young children - efforts are made to invite female keynote speakers to the annual meetings of W2W - regular meetings with the Women's Officer for the Faculty of Physics at the LMU are taking place, e..g to setup a parent-child office. These measures have received very positive feedback from the W2W community and from the partner institutions. Discussions and exchanges of experience with colleagues from other research programs and institutions regarding EO measures would be greatly beneficial to promote EO further.

  12. Physical activity, physical fitness, gross motor coordination, and metabolic syndrome: focus of twin research in Portugal.

    Science.gov (United States)

    Maia, José António Ribeiro; Santos, Daniel; de Freitas, Duarte Luis; Thomis, Martine

    2013-02-01

    A very brief history of Portuguese twin research in sport and human movement sciences is presented. Recruitment procedures, zygosity determination, and phenotypes are given for twins and their parents from the mainland, and Azores and Madeira archipelagos. Preliminary findings are mostly related to physical activity, health-related physical fitness, gross motor coordination, neuromotor development, and metabolic syndrome traits.

  13. High-Frequency Gravitational Wave research and application to exoplanet studies

    Science.gov (United States)

    Baker, R. M. L., Jr.

    2017-10-01

    A discussion of the history of High-Frequency Gravitational Wave (HFGW) research is first presented. Over the years until modern times, starting with the first mention of Gravitational Waves by Poincaré in 1905 and the definition of HFGWs in 1961 by Robert L. Forward, the discussion continues concerning the international research efforts to detect HFGWs. The article highlights the accomplishments of HFGW researchers in China, Russia, Ukraine, England, Australia, Japan, Germany, Spain, Italy, and the United States. Comparisons are made with Low-Frequency Gravitational Wave (LFGW) research, especially concerning the Laser Interferometer Gravitational Observatory or LIGO. In fine, there are presented several interesting perspectives concerning cosmology, the speed of time and, especially, exoplanet applications of HFGWs.

  14. What Can Learn from PER: Physics Education Research?

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    I believe that most teachers develop a belief in a set of pedagogical practices. As we teach, we try different ways to teach topics and then judge how successful the methods were. After several years, we have a compilation of techniques in our teaching toolbox. New teachers are at a disadvantage because they have fewer prior experiences to draw upon. Luckily, there is a group of physicists and physics educators who are researching how students learn physics, and have been able to show evidence of effective education practices in physics. They field of study is called PER: Physics Education Research. I asked Chandralekha Singh, one of the leaders in PER, to summarize some of the most relevant PER findings and her response follows.

  15. Physical oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, C.S.; Murty, V.S.N.

    The chapter on physical oceanography of the Indian Ocean is written keeping in mind the graduate students and researchers. It starts with a brief introduction (citing latest expeditions) followed by the coastal and near processes (wave climate...

  16. Engaging undergraduate students in hadron physics research and instrumentation

    Science.gov (United States)

    Horn, Tanja

    2017-09-01

    Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program

  17. ElectroEncephaloGraphics: Making waves in computer graphics research.

    Science.gov (United States)

    Mustafa, Maryam; Magnor, Marcus

    2014-01-01

    Electroencephalography (EEG) is a novel modality for investigating perceptual graphics problems. Until recently, EEG has predominantly been used for clinical diagnosis, in psychology, and by the brain-computer-interface community. Researchers are extending it to help understand the perception of visual output from graphics applications and to create approaches based on direct neural feedback. Researchers have applied EEG to graphics to determine perceived image and video quality by detecting typical rendering artifacts, to evaluate visualization effectiveness by calculating the cognitive load, and to automatically optimize rendering parameters for images and videos on the basis of implicit neural feedback.

  18. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul(Korea, Republic of)

    2017-02-15

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10{sup 14} to 10{sup 18} in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

  19. An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems

    Directory of Open Access Journals (Sweden)

    Masoud Shafiei

    2015-12-01

    Full Text Available In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams. The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, adaptive points are determined using the wavelet theory. This part is done employing the Deslauries-Dubuc (D-D wavelets. By solving the problem in the first step, the domain of the problem is discretized by the same cells taking into consideration the load and characteristics of the structure. After the first trial solution, the D-D interpolation shows the lack and redundancy of points in the domain. These points will be added or eliminated for the next solution. This process may be repeated for obtaining an adaptive mesh for each step. Also, the smoothing spline fit is used to eliminate the noisy portion of the solution. Finally, the results of the proposed method are compared with the results available in the literature. The comparison shows excellent agreement between the obtained results and those already reported.

  20. UCLA Particle Physics Research Group annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end.

  1. The Use of Microsoft Excel to Illustrate Wave Motion and Fraunhofer Diffraction in First Year Physics Courses

    Directory of Open Access Journals (Sweden)

    Garry Robinson

    2011-07-01

    Full Text Available In this paper we present an Excel package that can be used to demonstrate physical phenomena in which variables may be automatically adjusted in real-time. This is accomplished by interrogating the system clock through the use of an appropriate macro, and using the clock reading to update the relevant variable. The package has been used for a number of years in first year physics courses to illustrate two phenomena: i waves, including travelling waves, standing waves, the addition of waves and the interference of waves in general, and also Lissajous figures, and ii Fraunhofer diffraction and the effects of varying such quantities as the wavelength of the incoming light, the number of slits, the slit width and the slit separation. A number of illustrative examples, generated by the package and taken from a fist year physics course, are presented graphically. The package, which is available for downloading from the web, may be used interactively by the student and is easily modified by them. The use of Excel has the advantage that it is accessible to a much wider audience than if it were written in, say, Matlab. We envisage that it may be useful for first year university courses in wave motion and optics, and may also be useful in physics courses in the last year of secondary school. The package has been tested under Excel 2003, 2007 and 2010, and runs satisfactorily in all three versions.

  2. Physics Education Research: A Research Subfield of Physics with Gender Parity

    Science.gov (United States)

    Barthelemy, Ramón S.; Van Dusen, Ramón S.; Henderson, Charles

    2015-01-01

    Women currently outnumber men in obtaining undergraduate degrees but are underrepresented within STEM fields. However, women's representation varies by STEM field, and even further by STEM subfield. One field that has held a persistent low representation of women is physics. This paper seeks to uncover the truth behind an anecdotal claim that the…

  3. Using Visualization of Seismic Waves in Teaching Earth Science Informed by Cognitive Science Research

    Science.gov (United States)

    Engelmann, C. A.; Waite, G. P.; Huntoon, J. E.; Hungwe, K.

    2011-12-01

    Seismologists have found visualization of scientific data to be useful in analysis and therefore expect that using visualizations as a pedagogical tool will increase student understanding of seismic waves. This project examines how seismic wave visualization activities should be designed to best take advantage of how students think and learn science as determined by research in cognitive science. Student activities using visualization and auditization of seismic waves as they propagate through the earth and activities using real-time seismometry, the Quake Catcher Network sensors, have been designed or modified for use in 7-12 Earth System Science classrooms, taking into account how students learn science. The activities will incorporate three visualizations introduced at the 2011 On the Cutting Edge workshop, Visualizing Seismic Waves for Teaching and Research: the USArray Visualizations developed by Dr. Charles Ammon, Penn State University; the Quake Catcher Network sensors in conjunction with IRIS's Exploring Seismic Data with Accelerometers; and The Sound of Seismic, John N. Louie's auditization of seismic waves. As part of the Michigan Teacher Excellence Program, a NSF funded Math Science Partnership between Michigan Tech University and Michigan public schools, these activities are being implemented and tested to determine in what ways and to what extent these visualizations impact student learning and understanding of seismic waves.

  4. Bringing Earth Magnetism Research into the High School Physics Classroom

    Science.gov (United States)

    Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.

    2015-12-01

    We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely

  5. Historical Survey of Research in Physics Teacher Preparation

    Science.gov (United States)

    Meltzer, David E.

    2017-01-01

    There have been efforts to provide specialized preparation for prospective physics teachers for over 100 years, both in the U.S. and elsewhere. However, systematic research investigations of these efforts are much more scarce, particularly in the U.S. I will review some highlights of research in physics teacher preparation reported in the U.S. and in several other countries as early as the 1920s. The more recent investigations (beginning around 1970) reveal a pattern of teacher preparation practices emphasizing multiple, extended experiences in analyzing physical systems-and making and testing hypotheses of experimental outcomes-by developing and reflecting on laboratory-based physics activities that are often subsequently taught (as simulated ``micro-teaching'' or in actual classrooms), all under close guidance and intensive coaching from expert physics-teacher educators. Outcomes reported include improvements in the quality of experiment design (emphasizing student-generated explanations rather than rote procedures), and in ability to communicate, better awareness of physics teachers' pedagogical knowledge, and improved learning gains by the teachers' students on tests of conceptual understanding. Supported in part by NSF DUE #1256333.

  6. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)

    2016-09-07

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  7. Steps toward validity in active living research: research design that limits accusations of physical determinism.

    Science.gov (United States)

    Riggs, William

    2014-03-01

    "Active living research" has been accused of being overly "physically deterministic" and this article argues that urban planners must continue to evolve research and address biases in this area. The article first provides background on how researchers have dealt with the relationship between the built environment and health over years. This leads to a presentation of how active living research might be described as overly deterministic. The article then offers lessons for researchers planning to embark in active-living studies as to how they might increase validity and minimize criticism of physical determinism. © 2013 Published by Elsevier Ltd.

  8. Prevention Research Matters-Communities Working to Improve Physical Activity

    Centers for Disease Control (CDC) Podcasts

    2018-02-15

    We know that children who are physically active every day are less likely to develop chronic diseases as adults, including obesity. Dr. Sandy Slater, a researcher with the University of Illinois, Chicago Prevention Research Center, discusses how a park improvement project in Chicago helped engage communities to improve areas for play and activity.  Created: 2/15/2018 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 2/15/2018.

  9. Experimental And Theoretical High Energy Physics Research At UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Robert D. [University of California Los Angeles

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  10. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    Science.gov (United States)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  11. Grand Challenges in Physics Education Research: Teacher Preparation

    Science.gov (United States)

    Heron, Paula

    2015-04-01

    The courses, curricula and programs that produce new K-12 teachers have been the subject of research in the physics education community for many years. In terms of recruitment, curricula, and mentoring, programs and pathways vary considerably from institution to institution. Each program addresses many different aspects of teaching including knowledge of the content and familiarity with best teaching practices. At the same time, even within physics (or physical science) there is a broad range of student outcomes that are considered important, including acquisition of factual knowledge, development of skill with disciplinary practices, and positive attitudes toward the discipline and one's own abilities. Given the broad range of both input and outcome variables it is no surprise that there are very few clear answers about the impact of teacher preparation on teachers, students and society. In this talk I will summarize some of the main findings to date, and identify some areas where much more research is needed.

  12. Cultural relevance of physical activity intervention research with underrepresented populations

    Science.gov (United States)

    Conn, Vicki S.; Chan, Keith; Banks, JoAnne; Ruppar, Todd M.; Scharff, Jane

    2015-01-01

    This paper describes cultural relevance in physical activity intervention research with underrepresented populations. Seventy-one extant studies which tested interventions to increase physical activity among underrepresented adults were included. Verbatim descriptions of efforts to enhance cultural relevance of study designs and interventions were extracted and then content analyzed. We found strategies to enhance cultural relevance of interventions as soliciting input from population members, linking intervention content with values, addressing language and literacy challenges, incorporating population media figures, using culturally relevant forms of physical activity, and addressing specific population linked barriers to activity. Methodological approaches included specialized recruitment and study locations, culturally relevant measures, underrepresented personnel, and cost-awareness study procedures to prevent fiscal barriers to participation. Most reported activities were surface matching. Existing research neither compared the effectiveness of cultural relevance approaches to standardized interventions nor addressed economic, education, geographic, or cultural heterogeneity among groups. PMID:25228486

  13. Present Status of Physics Research in Spain: Some Impressionistic Remarks,

    Science.gov (United States)

    1985-03-08

    vocal mem- survey some areas of physics research in bers of many governmental committees on Spain, CAPT Harry H. Burks (Defense In- reform. " o . . o...Asesora de eration and Development (OECD) publica- Investigacion Cientffica y Tecnica tion, "Science and Technology Indica- (CAICYT), which is an

  14. New chair for the Particle Physics and Astronomy Research Council

    CERN Multimedia

    2001-01-01

    Peter Warry has been appointed as Chair of PPARC for the next 4 years. Chairman of Victrex plc, whose business is in speciality chemicals, he has been an Industrial Professor at the University of Warwick since 1993. PPARC pursues a programme of high quality basic research in particle physics, astronomy, cosmology and space science and its budget for 2002 is approximately 220 million GBP.

  15. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  16. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    South African Journal for Research in Sport, Physical Education and Recreation Private Bag X6001 North-West University, POTCHEFSTROOM Republic of South Africa. Tel.: +27 (0)18-299 1821. E-mail: sajrsper@nwu.ac.za. CONDITIONS. Each manuscript must be accompanied by a covering letter in which the following is ...

  17. Advanced Quantitative Measurement Methodology in Physics Education Research

    Science.gov (United States)

    Wang, Jing

    2009-01-01

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and…

  18. New Research Programmes in Physical Education and Sport Pedagogy

    Science.gov (United States)

    Kirk, David; Haerens, Leen

    2014-01-01

    During the past decades, significant progress has been made in the development of physical education and sport pedagogy (PESP) research with the field reaching a level of maturity and critical mass. In light of this development, it seems worthwhile to take an overarching view on existing evidence in order to identify a number of emerging…

  19. My 50 years of research in particle physics.

    Science.gov (United States)

    Sugawara, Hirotaka

    2010-01-01

    Some of my work of the last 50 years in the field of theoretical particle physics is described with particular emphasis on the motivation, the process of investigation, relationship to the work of others, and its impact. My judgment is unavoidably subjective, although I do present the comments of other researchers as much as possible.

  20. Synthesis of Discipline-Based Education Research in Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Mestre, José P.

    2014-01-01

    This paper presents a comprehensive synthesis of physics education research at the undergraduate level. It is based on work originally commissioned by the National Academies. Six topical areas are covered: (1) conceptual understanding, (2) problem solving, (3) curriculum and instruction, (4) assessment, (5) cognitive psychology, and (6) attitudes…

  1. Educational Trajectories of Graduate Students in Physics Education Research

    Science.gov (United States)

    Van Dusen, Ben; Barthelemy, Ramón S.; Henderson, Charles

    2014-01-01

    Physics education research (PER) is a rapidly growing area of PhD specialization. In this article we examine the trajectories that led respondents into a PER graduate program as well as their expected future trajectories. Data were collected in the form of an online survey sent to graduate students in PER. Our findings show a lack of visibility of…

  2. Physical activity parenting measurement and research: Challenges, explanations, and solutions

    Science.gov (United States)

    Physical activity (PA) parenting research has proliferated over the past decade, with findings verifying the influential role that parents play in children's emerging PA behaviors. This knowledge, however, has not translated into effective family-based PA interventions. During a preconference worksh...

  3. Authentic student research projects on physics and the human body

    NARCIS (Netherlands)

    Heck, A.; Ellermeijer, T.; Kędzierska, E.

    2010-01-01

    Students in Dutch senior secondary education are obliged to perform their own research project of approximately 80 hours. They are stimulated to choose the topic themselves (preferably with relations to two subjects, like physics and mathematics) and have a lot of freedom in the design of the

  4. Research on Self-Determination in Physical Education: Key Findings and Proposals for Future Research

    Science.gov (United States)

    Van den Berghe, Lynn; Vansteenkiste, Maarten; Cardon, Greet; Kirk, David; Haerens, Leen

    2014-01-01

    Background: During the last 30 years, several theories of motivation have generated insights into the motives underlying learners' behavior in physical education. Self-determination theory (SDT), a general theory on social development and motivation, has enjoyed increasing popularity in physical education research during the past decade. SDT…

  5. Physical sciences research plans for the International Space Station

    Science.gov (United States)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  6. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  7. The second wave of violence scholarship: South African synergies with a global research agenda.

    Science.gov (United States)

    Bowman, Brett; Stevens, Garth; Eagle, Gillian; Langa, Malose; Kramer, Sherianne; Kiguwa, Peace; Nduna, Mzikazi

    2015-12-01

    Violence is a serious public health and human rights challenge with global psychosocial impacts across the human lifespan. As a middle-income country (MIC), South Africa experiences high levels of interpersonal, self-directed and collective violence, taking physical, sexual and/or psychological forms. Careful epidemiological research has consistently shown that complex causal pathways bind the social fabric of structural inequality, socio-cultural tolerance of violence, militarized masculinity, disrupted community and family life, and erosion of social capital, to individual-level biological, developmental and personality-related risk factors to produce this polymorphic profile of violence in the country. Engaging with a concern that violence studies may have reached something of a theoretical impasse, 'second wave' violence scholars have argued that the future of violence research may not lie primarily in merely amassing more data on risk but rather in better theorizing the mechanisms that translate risk into enactment, and that mobilize individual and collective aspects of subjectivity within these enactments. With reference to several illustrative forms of violence in South Africa, in this article we suggest revisiting two conceptual orientations to violence, arguing that this may be useful in developing thinking in line with this new global agenda. Firstly, the definition of our object of enquiry requires revisiting to fully capture its complexity. Secondly, we advocate for the utility of specific incident analyses/case studies of violent encounters to explore the mechanisms of translation and mobilization of multiple interactive factors in enactments of violence. We argue that addressing some of the moral and methodological challenges highlighted in revisiting these orientations requires integrating critical social science theory with insights derived from epidemiology and, that combining these approaches may take us further in understanding and addressing the

  8. ASYMPTOTICAL CALCULATION OF ELECTROMAGNETIC WAVES SCATTERED FROM A DIELECTRIC COATED CYLINDRICAL SURFACE WITH PHYSICAL OPTICS APPROACH

    Directory of Open Access Journals (Sweden)

    Uğur YALÇIN

    2004-02-01

    Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.

  9. Experimental and theoretical high energy physics research. [UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Charles D.; Cline, David B.; Byers, N.; Ferrara, S.; Peccei, R.; Hauser, Jay; Muller, Thomas; Atac, Muzaffer; Slater, William; Cousins, Robert; Arisaka, Katsushi

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.

  10. Progress and Prospect of Physics Research and Education in Taiwan

    Science.gov (United States)

    Raynien Kwo, J.

    2010-03-01

    Started about two decades ago, the global trend of shifting industrial manufacture power from western developed countries toward developing countries in Asia has in turn become the impetus in building up physical science and research in these areas. A very good example is the remarkable progress of physical research and education in Taiwan, in terms of quantity and quality. The continuous elevation of Taiwan's high education into graduate level plus the government's strong commitment to research and development on a level of 2.62 % GDP have led to an impressive physics program with an annual budget ˜32 million USD from National Science Council in supporting 568 PIs. The investigation scope encompasses high energy and astrophysics, nano and condensed matter, and semiconductor, optoelectronic physics, etc. The former is vigorously conducted via international collaborative efforts of LHC, KEK, ALMA, Pan-STARRS, etc. The latter is driven by vital Taiwan high tech industry mostly semiconductor IC and optoelectronics flourished during this period. The early trend of outflows of BS physics majors to western world for advanced studies has reversed dramatically. Nearly 80% of the BS students continue their MS and PhD degrees in Taiwan, attracted by lucrative job markets of high tech industry. In addition, healthy inflow of high-quality science manpower of well trained PhDs and senior scholars returning to homeland has strengthened the competitiveness. Overall, the physics community in Taiwan is thriving. The annual Physical Society meeting is expanding at a rate of 6%, reaching ˜1800 attendants and 1200 papers, and dedicated to promotions of female physicists and students. The publication quantity of Taiwan in top journals of PRs and PRL is ranked among top 20^th for all fields of physics, and ranked the 6^th in APL. Clearly Taiwan has now emerged as a strong power in applied science, not limited by its population size. Concerted efforts on scientific exchanges are being

  11. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of {sup 3}H and {sup 3}He. Special attention is given to the eta meson, its production using photons, electrons, {pi}{sup {plus_minus}}, and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4{pi} acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us.

  12. A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina.

    Science.gov (United States)

    Till, S J; Milsom, P K; Rowlands, G

    2004-07-01

    Shock waves have been proposed in the literature as a mechanism for retinal damage induced by ultra-short laser pulses. For a spherical absorber, we derive a set of linear equations describing the propagation of pressure waves. We show that the formation of shock fronts is due to the form of the absorber rather than the inclusion of nonlinear terms in the equations. The analytical technique used avoids the need for a Laplace transform approach and is easily applied to other absorber profiles. Our analysis suggests that the 'soft' nature of the membrane surrounding retinal melanosomes precludes shock waves as a mechanism for the retinal damage induced by ultra-short pulse lasers. The quantitative estimates of the pressure gradients induced by laser absorption which are made possible by this work, together with detailed meso-scale or molecular modelling, will allow alternative damage mechanisms to be identified.

  13. On a set of 20th century monumental events that shaped the modern discipline of ocean wind wave's research

    Science.gov (United States)

    Liu, P.

    2012-04-01

    History is made up of individual events. The modern ocean wind waves research has been active for nearly 70 years since the early years of the decade of 1940's while the World War II was still fighting in earnest and Sverdrup and Munk were embarked on an unprecedented attempt to make wave condition prediction for Navy Amphibious forces carrying out landing operation. That was certainly a monumental event that started the modern ocean wind wave's research. Here I wish to present a set of other monumental events in the intervening years which, in my personal view, are vital to the formation of our present day conventional ocean wind wave's research: • Circa 1945: The war time invention of underwater pressure wave gage that measures pressure fluctuations induced by surface waves and also marked as the start of single-point wave measurements prevalent today. • Circa 1950: When oceanographer Pierson met statistician Tukey and ocean wave spectrum analysis was thereby born. • Circa 1952: Something old something new - Longuet-Higgins introduced the distribution function of Load Rayleigh to the emerging ocean wave data analysis and Rayleigh distribution has been the mainstay of ocean wind wave's research ever since. • Circa 1953: Neumann started the quest to formulate a wind wave spectrum with his impressive first empirical spectrum before spectrum was widely measured. • Circa 1957: Phillips worked out the resonance theory for wind wave's generation. • Circa 1957: Miles simultaneously developed the shear flow model for wind wave's generation, complementary to Phillips theory. • Circa 1959: Hasselmann formulated the source function to start the first framework of comprehensive wind wave modeling. These are all the basic innovative milestones that the bulk of the conventional ocean wind wave research studies today were evolved from. While the monumental status of these works may represent merely the personal opinion of a single aficionado, I do feel that they

  14. Sexuality and physical contact in National Social Life, Health, and Aging Project Wave 2.

    Science.gov (United States)

    Galinsky, Adena M; McClintock, Martha K; Waite, Linda J

    2014-11-01

    Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) includes new measures of sexual interest and behavior, as well as new measures of the context of sexual experience and the frequency and appeal of physical contact. This is the first time many of these constructs have been measured in a nationally representative sample. We describe the new measures and compare the distributions of each across gender and age groups, in some cases by partnership status. Two components of sexuality decrease with age among both men and women: frequency of finding an unknown person sexually attractive and receptivity to a partner's sexual overtures. In contrast, the inclination to make one's self sexually attractive to others was a more complicated function of partner status, gender, and age: partnered women and unpartnered men made the most effort, with the more effortful gender's effort decreasing with age. Both men and women find nonsexual physical contact appealing but sexual physical contact is more appealing to men than women. Finally, two fifths of men and women report dissatisfaction with their partner's frequency of caring behaviors that make later sexual interactions pleasurable, and a fifth of women and a quarter of men who had vaginal sex in the past year report dissatisfaction with amount of foreplay. These data offer the opportunity to characterize sexual motivation in older adulthood more precisely and richly and to examine how the context of sexual experience and the nonsexual aspects of physical intimacy correlate with sexual behavior, enjoyment, and problems. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Workshop on Energy Research Opportunities for Physics Graduates & Postdocs

    Energy Technology Data Exchange (ETDEWEB)

    Kate Kirby

    2010-03-14

    Young people these days are very concerned about the environment. There is also a great deal of interest in using technology to improve energy efficiency. Many physics students share these concerns and would like to find ways to use their scientific and quantitative skills to help overcome the environmental challenges that the world faces. This may be particularly true for female students. Showing physics students how they can contribute to environmental and energy solutions while doing scientific research which excites them is expected to attract more physicists to work on these very important problems and to retain more of the best and the brightest in physical science. This is a major thrust of the 'Gathering Storm' report, the 'American Competitiveness Initiative' report, and several other studies. With these concerns in mind, the American Physical Society (APS) and more specifically, the newly formed APS Topical Group on Energy Research and Applications (GERA), organized and conducted a one-day workshop for graduate students and post docs highlighting the contributions that physics-related research can make to meeting the nation's energy needs in environmentally friendly ways. A workshop program committee was formed and met four times by conference call to determine session topics and to suggest appropriate presenters for each topic. Speakers were chosen not only for their prominence in their respective fields of energy research but also for their ability to relate their work to young people. The workshop was held the day before the APS March Meeting on March 14, 2009 in Portland, OR. The workshop was restricted to approximately 80 young physicists to encourage group discussion. Talks were planned and presented at a level of participants with a physics background but no special knowledge of energy research. Speakers were asked to give a broad overview of their area of research before talking more specifically about their own work. The

  16. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the {mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  17. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [PI; Goshaw, Al [Co-PI; Kruse, Mark [Co-PI; Oh, Seog [Co-PI; Scholberg, Kate [Co-PI; Walter, Chris [Co-PI

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water- lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  18. Research and analyze of physical health using multiple regression analysis

    Directory of Open Access Journals (Sweden)

    T. S. Kyi

    2014-01-01

    Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.

  19. Solid state physics advances in research and applications

    CERN Document Server

    Turnbull, David

    1991-01-01

    The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.

  20. Commercial Scholarship: Spinning Physics Research into a Business Enterprise

    Science.gov (United States)

    Butler, Orville

    2013-03-01

    The American Institute of Physics' Center for History of Physics has conducted a three year NSF funded study of physicist entrepreneurs during which we interviewed 140 physicists who have founded ninety-one startups. Forty of those companies have spun research out of twenty-some universities. Startups spun out of university research tend to be technology push companies, creating new potentially disruptive technologies for which markets do not yet clearly exist, in contrast to market pull companies founded to address innovations responding to market demands. This paper addresses the unique issues found in university spinout companies and their responses to them. While technology push companies are generally considered to be higher risk compared to market pull companies, the university spinouts in our study had a higher rate of both SBIR and venture capital funding than did the market pull companies in our study.

  1. Advanced physical-chemical life support systems research

    Science.gov (United States)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  2. Quantitative Methodology: A Guide for Emerging Physical Education and Adapted Physical Education Researchers

    Science.gov (United States)

    Haegele, Justin A.; Hodge, Samuel R.

    2015-01-01

    Emerging professionals, particularly senior-level undergraduate and graduate students in kinesiology who have an interest in physical education for individuals with and without disabilities, should understand the basic assumptions of the quantitative research paradigm. Knowledge of basic assumptions is critical for conducting, analyzing, and…

  3. The Primary Schoolteacher and Physical Education: A Review of Research and Implications for Irish Physical Education

    Science.gov (United States)

    Fletcher, Tim; Mandigo, James

    2012-01-01

    This article reviews research on primary physical education (PE). In primary schools around the world PE is taught by the classroom teacher rather than by a PE specialist. Most classroom teachers feel poorly prepared to teach PE programmes that are meaningful to pupils and provide the types of experiences that lead to lifelong participation. This…

  4. Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...

  5. Experimental and Numerical Research on Cylindrical Tubes under Outer Cylindrical Explosive Waves

    Directory of Open Access Journals (Sweden)

    Sui Yaguang

    2017-01-01

    Full Text Available Cylindrical explosive loading has an important application in explosive working, researching on weapon damage, and explosive-driving load. This study uses experimental and numerical methods to study the response of long and thin tubes when subjected to cylindrical explosive loading. The flake-like charge and multipoint initiation technique were adopted to load cylindrical explosive waves. Experimental results showed that the method could produce uniform deformation in certain parts of the long tube, but partial spall injuries occurred after the explosion. The macroscopic and microscopic deformation of tubes were analyzed. Numerical simulations were conducted to investigate the detailed response of the tube subjected to a cylindrical explosive wave. The results indicate that the collision of explosive waves brought inconsistencies in pressure and velocity. The pressure and velocity in the collision region were significantly higher than those of other parts, which caused the collision region to be easily damaged.

  6. Canberra semiconductor, an industrial partner for physics research

    Energy Technology Data Exchange (ETDEWEB)

    Verplancke, J.; Burger, P.; Schoenmaekers, W. (Canberra Semiconductor NV, Olen (Belgium))

    1990-03-01

    Canberra semiconductor produces germanium and silicon solid state detectors for nuclear radiation. Its business domain covers the production of standard detectors on an industrial basis, for industrial and applied physics applications, as well as the development of special detectors and electronics, tailored to the needs of a particular application, in science and research. There exists an important and beneficial interaction between these two activities. (orig.).

  7. Coffee research using optical methods of physical and chemical analysis

    OpenAIRE

    Tikhonov B.; Kuznetsov V.

    2016-01-01

    The paper discusses aspects of application of optical methods of physical and chemical analysis to determine the identity of the functional groups of substances extraction at different ways of making coffee. Infrared spectroscopy, diffusion reflectance spectrophotometry and refractometry methods were used for the researches. A comparison of coffee preparation methods was conducted in cupping and aeropresse Aerobie Aeropress Coffee Maker. Temperature of the water used to brew, and the punc...

  8. Research and Education in Physics and Astronomy at Haverford College

    Science.gov (United States)

    Gollub, Jerry

    2010-02-01

    This talk focuses on special features of research and education in physics and astronomy at Haverford. These include: (a) The involvement of students in research for many decades, both locally and at national facilities. At least 60 students have been co-authors of scientific papers in the last 30 years, of which many contain significant new science. (b) A noteworthy Astronomy program that has produced a surprising number of active astronomers, many of whom have been recognized by national awards. (c) A physics senior seminar that helps students to make the transition from an undergraduate education to the world of graduate education or work. (d) A network of interdisciplinary interactions and concentrations that enables the physics program to appeal to students with broad interests, e.g. in biology, computer science, education, or engineering. (e) A tradition of outreach courses to students not majoring in science. (f) Curricular coordination with neighboring Bryn Mawr College. (g) Notable laboratory courses that prepare students for research and independent learning. )

  9. Experimental Research about Shock Wave in a 1+1/2 Counter-Rotating Turbine

    Directory of Open Access Journals (Sweden)

    Li Chao

    2018-01-01

    Full Text Available To investigate the internal distribution regularities of shock wave structure in 1+1/2 counter-rotating turbine, numerical simulation and experimental research about the shock wave structure were conducted by using the schlieren apparatus under different working conditions.From the point of the unsteady results, the unsteady effect has few influence on the flow field of high pressure guide vane, but the wake of the high pressure guide leaves periodically sweeps through the front edge of the high pressure blade and there presents strong unsteady effect on flow field of high pressure rotor. Because of periodic influence of external wake and shock wave, the unsteadiness of flow in low pressure rotor is still strong but not that drastic compared to the high pressure rotor. 50% height section of the blade of the three types of blades are extracted respectively to make plane cascades which are conducted blowing experiments in supersonic wind tunnel. The final photograph were analyzed by comparing with the CFD results. Results show that with the increase of expansion ratio, the wave structures in blade channel move toward the exit and the caudal interference between the outer tail wave and is strengthened gradually.

  10. Developing a physics expert identity in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis; Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird H.

    2015-06-01

    We investigate the development of expert identities through the use of the sociocultural perspective of learning as participating in a community of practice. An ethnographic case study of biophysics graduate students focuses on the experiences the students have in their research group meetings. The analysis illustrates how the communities of practice-based identity constructs of competencies characterize student expert membership. A microanalysis of speech, sound, tones, and gestures in video data characterize students' social competencies in the physics community of practice. Results provide evidence that students at different stages of their individual projects have opportunities to develop social competencies such as mutual engagement, negotiability of the repertoire, and accountability to the enterprises as they interact with group members. The biophysics research group purposefully designed a learning trajectory including conducting research and writing it for publication in the larger community of practice as a pathway to expertise. The students of the research group learn to become socially competent as specific experts of their project topic and methodology, ensuring acceptance, agency, and membership in their community of practice. This work expands research on physics expertise beyond the cognitive realm and has implications for how to design graduate learning experiences to promote expert identity development.

  11. Application of a Reference Framework for Integration of Web Resources in Dotlrn--Case Study of Physics--Topic: Waves

    Science.gov (United States)

    Gomez, Fabinton Sotelo; Ordóñez, Armando

    2016-01-01

    Previously a framework for integrating web resources providing educational services in dotLRN was presented. The present paper describes the application of this framework in a rural school in Cauca--Colombia. The case study includes two web resources about the topic of waves (physics) which is oriented in secondary education. Web classes and…

  12. The Applied Behavior Analysis Research Paradigm and Single-Subject Designs in Adapted Physical Activity Research.

    Science.gov (United States)

    Haegele, Justin A; Hodge, Samuel Russell

    2015-10-01

    There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.

  13. High school student physics research experience yields positive results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  14. Future Research on Cyber-Physical Emergency Management Systems

    Directory of Open Access Journals (Sweden)

    Fang-Jing Wu

    2013-06-01

    Full Text Available Cyber-physical systems that include human beings and vehicles in a built environment, such as a building or a city, together with sensor networks and decision support systems have attracted much attention. In emergencies, which also include mobile searchers and rescuers, the interactions among civilians and the environment become much more diverse, and the complexity of the emergency response also becomes much greater. This paper surveys current research on sensor-assisted evacuation and rescue systems and discusses the related research issues concerning communication protocols for sensor networks, as well as several other important issues, such as the integrated asynchronous control of large-scale emergency response systems, knowledge discovery for rescue and prototyping platforms. Then, we suggest directions for further research.

  15. Evolving research misconduct policies and their significance for physical scientists

    Science.gov (United States)

    Dooley, James J.; Kerch, Helen M.

    2000-03-01

    Scientific misconduct includes the fabrication, falsification, and plagiarism (FFP) of concepts, data or ideas; some institutions in the United States have expanded this concept to include "other serious deviations (OSD) from accepted research practice." It is the absence of this OSD clause that distinguishes scientific misconduct policies of the past from the "research misconduct" policies that should be the basis of future federal policy in this area. This paper introduces a standard for judging whether an action should be considered research misconduct as distinguished from scientific misconduct: by this standard, research misconduct must involve activities unique to the practice of science and must have the potential to negatively affect the scientific record. Although the number of cases of scientific misconduct is uncertain (only the NIH and the NSF keep formal records), the costs are high in terms of the integrity of the scientific record, diversions from research to investigate allegations, ruined careers of those eventually exonerated, and erosion of public confidence in science. Existing scientific misconduct policies vary from institution to institution and from government agency to government agency; some have highly developed guidelines that include OSD, others have no guidelines at all. One result has been that the federal False Claims Act has been used to pursue allegations of scientific misconduct. As a consequence, such allegations have been adjudicated in federal courts, rather than judged by scientific peers. The federal government is now establishing a first-ever research misconduct policy that would apply to all research funded by the federal government regardless of which agency funded the research or whether the research was carried out in a government, industrial or university laboratory. Physical scientists, who up to now have only infrequently been the subject of scientific misconduct allegations, must none! theless become active in the

  16. Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media

    Digital Repository Service at National Institute of Oceanography (India)

    Zhu, Y.; Tsvankin, I.; Dewangan, P.; Van Wijk, K.

    , weakly anisotropic media H20849for more details, see Zhu and Ts- vankin, 2006H20850. Hereafter, we assume that wave propagation is homo- geneous and k? = nH20849k - ikIH20850, where n is the unit slowness vector. As discussed in Carcione H208492001H20850..., and type-II S waves in anelastic solids; Inhomogeneous wave fields in low-loss solids: Bulletin of the Seismological Society ofAmerica, 75, 1729?1763. Carcione, J. M., 2001, Wave fields in real media: Wave propagation in aniso- tropic, anelastic, and porous...

  17. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Mark B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kapustin, Anton N. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Schwarz, John Henry [California Inst. of Technology (CalTech), Pasadena, CA (United States); Carroll, Sean [California Inst. of Technology (CalTech), Pasadena, CA (United States); Ooguri, Hirosi [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gukov, Sergei [California Inst. of Technology (CalTech), Pasadena, CA (United States); Preskill, John [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hitlin, David G. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Porter, Frank C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Patterson, Ryan B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Newman, Harvey B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Spiropulu, Maria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Golwala, Sunil [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhu, Ren-Yuan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-08-26

    effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the

  18. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  19. Experimental and Numerical Research on Cylindrical Tubes under Outer Cylindrical Explosive Waves

    OpenAIRE

    Sui Yaguang; Zhang Dezhi; Tang Shiying; Chen Bo

    2017-01-01

    Cylindrical explosive loading has an important application in explosive working, researching on weapon damage, and explosive-driving load. This study uses experimental and numerical methods to study the response of long and thin tubes when subjected to cylindrical explosive loading. The flake-like charge and multipoint initiation technique were adopted to load cylindrical explosive waves. Experimental results showed that the method could produce uniform deformation in certain parts of the lon...

  20. Design and development of physics simulations in the field of oscillations and waves suitable for k-12 and undergraduate instruction using video game technology

    Science.gov (United States)

    Tomesh, Trevor; Price, Colin

    2011-03-01

    Using the scripting language for the Unreal Tournament 2004 Engine, Unreal Script, demonstrations in the field of oscillations and waves were designed and developed. Variations on Euler's method and the Runge-Kutta method were used to numerically solve the equations of motion for seven different physical systems which were visually represented in the immersive environment of Unreal Tournament 2004. Data from each system was written to an output file, plotted and analyzed. The over-arching goal of this research is to successfully design and develop useful teaching tools for the k-12 and undergraduate classroom which, presented in the form of a video game, is immersive, engaging and educational.

  1. Applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: Imaging and tomography with multiply scattered classical waves. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shechao Charles

    1995-02-01

    This is the final report on the grant, entitled `applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves`, which expired on September 14, 1994. The author summarizes the highlights of this research program, and lists the publications supported by this grant. The report is divided into sections, titled: application of mesoscopic fluctuations theory to correlations and fluctuations of multiply scattered light; quantum transport in localized electronic systems; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; high frequency quantum transport in quantum well devices.

  2. Physical rehabilitation of sportsmen after fractures of foot joint with the help of power-waved therapy

    Directory of Open Access Journals (Sweden)

    Sydorchenko K.

    2010-06-01

    Full Text Available The complex program of improvement of quality and acceleration of renewal of sportsmen are developed after the breaks of talocrural joint. In experiment took part 40 sportsmen-footballers in age of 20-25 years. The program plugged in itself: morning sanitary gymnastics, medical physical culture, massage, hydrokinesitherapy, hydromassage, employments on trainers, physiotherapy, power-waved therapy. It is well-proven that the use of power-waved therapy accelerates the processes of renewal on the average on 2-3 months.

  3. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    Science.gov (United States)

    Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.

    2017-07-01

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

  4. A diffusing wave spectroscopy study of pharmaceutical emulsions for physical stability assessment.

    Science.gov (United States)

    Niederquell, Andreas; Machado, Alexandra H E; Kuentz, Martin

    2017-09-15

    Emulsions are broadly used in pharmaceutics either as intermediate products or as final dosage forms. Such disperse systems are only kinetically stabilized and therefore early detection of physical instability is highly desirable. This work employed diffusing wave spectroscopy (DWS) to study a series of model emulsions that were categorized, based on their composition, as either "simple" or "complex". DWS data were compared with results of droplet size imaging, apparent viscosity obtained by microfluidics, and near-infrared (NIR) analytical centrifugation. A mathematical model of the droplet mean square displacement (MSD) was modified by us regarding improved fitting of experimental data. Although the emulsions showed different types of instability like creaming and sedimentation, a good rank correlation was found between the DWS parameters and results from the comparative stability methods. Our findings indicate that DWS provides a highly attractive method for stability analysis of pharmaceutical emulsions because it requires only low sample volumes, is rapid and non-invasive. The proposed data modeling provides the means for a better understanding of emulsion microstructure that in turn will help designing quality into pharmaceutical dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Childhood physical maltreatment, perceived social isolation, and internalizing symptoms: a longitudinal, three-wave, population-based study.

    Science.gov (United States)

    Sheikh, Mashhood Ahmed

    2017-11-29

    A number of cross-sectional studies have consistently shown a correlation between childhood physical maltreatment, perceived social isolation and internalizing symptoms. Using a longitudinal, three-wave design, this study sought to assess the mediating role of perceived social isolation in adulthood in the association between childhood physical maltreatment and internalizing symptoms in adulthood. The study has a three-wave design. We used data collected from 1994 to 2008 within the framework of the Tromsø Study (N = 4530), a representative prospective cohort study of men and women. Perceived social isolation was measured at a mean age of 54.7 years, and internalizing symptoms were measured at a mean age of 61.7 years. The difference-in-coefficients method was used to assess the indirect effects and the proportion (%) of mediated effects. Childhood physical maltreatment was associated with an up to 68% [relative risk (RR) = 1.68, 95% confidence interval (CI): 1.33-2.13] higher risk of perceived social isolation in adulthood. Childhood physical maltreatment and perceived social isolation in adulthood were associated with greater levels of internalizing symptoms in adulthood (p childhood physical maltreatment and internalizing symptoms in adulthood (p childhood physical maltreatment and internalizing symptoms in adulthood. The results of this study indicate the need to take perceived social isolation into account when considering the impact of childhood physical maltreatment on internalizing symptoms.

  6. A Summer Research Experience in Particle Physics Using Skype

    Science.gov (United States)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  7. NATO Advanced Research Workshop on Physical Properties of Nano systems

    CERN Document Server

    Bonca, Janez

    2011-01-01

    Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena are found when systems are reduced to sizes comparable to the fundamental microscopic length scales of the material investigated. There has been great interest in this research due, in particular, to its role in the development of spintronics, molecular electronics and quantum information processing. The contributions to this volume describe new advances in many of these fundamental and fascinating areas of nanophysics, including carbon nanotubes, graphene, magnetic nanostructures, transport through coupled quantum dots, spintronics, molecular electronics, and quantum information processing.

  8. Research of the Relationship Between Body Composition and Physical Fitness

    Directory of Open Access Journals (Sweden)

    Dainius Taraškevičius

    2016-04-01

    Full Text Available The article deals with importance and adaptation options of body composition and physical fitness. Measurement methodology of body composition and physical fitness was done. Skinfold caliper and bioelectrical impedance analysis techniques was used to obtain body composition parameters. Physical fitness was measured using veloergometry, sit-ups, sit-and-reach, flamingo balance, plate tapping and back muscle dynamometer tests. After research relationship was established between: muscle mass and maximum oxygen uptake (for female, r = −0,635, p 0,05, bone mass and maximum oxygen uptake (for female, r = −0,636, p < 0,05, body fat mass and maximum oxygen uptake (for male, 0,580 r = − , 0,05 p < , body fat mass and sit-and-reach results (for male, r = − 0,601, p < 0,05, total body water and maximum oxygen uptake (for male, r = 0,537 , p < 0,05 , total body water and sit-and-reach results (for male, r = 0,559 , p < 0,05.

  9. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States)

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  10. Towards Reproducible Research Data Analyses in LHC Particle Physics

    CERN Document Server

    Simko, Tibor

    2017-01-01

    The reproducibility of the research data analysis requires having access not only to the original datasets, but also to the computing environment, the analysis software and the workflow used to produce the original results. We present the nascent CERN Analysis Preservation platform with a set of tools developed to support particle physics researchers in preserving the knowledge around analyses so that capturing, sharing, reusing and reinterpreting data becomes easier. The presentation will focus on three pillars: (i) capturing structured knowledge information about data analysis processes; (ii) capturing the computing environment, the software code, the datasets, the configuration and other information assets used in data analyses; (iii) re-instantiating of preserved analyses on a containerised computing cloud for the purposes of re-validation and re-interpretation.

  11. Towards Primary School Physics Teaching and Learning: Design Research Approach. Research Report 256

    Science.gov (United States)

    Juuti, Kalle

    2005-01-01

    This thesis describes a project to design a primary school physics learning environment which takes into account teachers' needs, design procedures, properties of the learning environment, and pupil learning outcomes. The project's design team has wide experience in research and development work in relation to science education, the use of ICT in…

  12. Human responses to wave slamming vibration on a polar supply and research vessel.

    Science.gov (United States)

    Omer, H; Bekker, A

    2018-02-01

    A polar supply and research vessel is pre-disposed to wave slamming which has caused complaints among crew and researchers regarding interference with sleep, equipment use and research activities. The present work undertook to survey passenger claims of sleep interference, disturbed motor tasks and equipment damage as a result of wave slamming during normal operations of this vessel. The hypothesis was investigated that whole-body vibration metrics from ISO 2631-1 are potentially suitable for the prediction of human slamming complaints. Full-scale acceleration measurements were performed and wave slamming events were subsequently identified from the human weighted acceleration time histories. A daily diary survey was also conducted to gather the human response. The vibration caused by wave slamming was found to be strongly correlated with sleep disturbances and activity interference. Sleep and equipment use were found to be the most affected parameters by slamming. Daily vibration dose values were determined by accumulating the vibration as a result of slamming over 24 h periods. This metric accounted for increased magnitudes and frequency of slamming incidents and proved to be the best metric to represent human responses to slamming vibration. The greatest percentage of activities affected by slamming related to sleep regardless of daily cumulative VDV magnitude. More than 50% of the recorded responses related to sleep when the daily cumulative VDV ranged between 8.0 m/s1.75-10.0 m/s1.75. The peak vertical vibration levels recorded on the vessel reach magnitudes which are associated with sleep disturbance in environments where acoustic noise is present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evidence for Nonlinear VLF Wave Physics from Van Allen Probe Data

    Science.gov (United States)

    Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Hospodarsky, G. B.; Kletzing, C.

    2015-12-01

    VLF waves in the whistler mode branch in the Earth's radiation belts play a critical role in both the acceleration and loss of energetic electrons. VLF waves are often observed with magnetic field amplitudes that are a significant fraction of the background magnetic field suggesting that nonlinear effects may be important. We develop new Bayesian time-series analysis tools to investigate magnetic and electric field data from the EMFISIS instrument on board the Van Allen Probes. We also validate the analysis techniques through laboratory experiments. We apply these tools to Chorus waves to show that the picture of a single coherent plane wave is insufficient to explain EMFISIS data and that nonlinear collective wave interactions play an important role in moderating Chorus wave growth. We also apply these techniques to show that nonlinear induced scattering by thermal electrons can play a significant role in controlling the propagation of large amplitude lightning generated whistlers inside the plasmasphere.

  14. How do they get here?: Paths into physics education research

    Science.gov (United States)

    Barthelemy, Ramón S.; Henderson, Charles; Grunert, Megan L.

    2013-12-01

    Physics education research (PER) is a relatively new and rapidly growing area of Ph.D. specialization. To sustain the field of PER, a steady pipeline of talented scholars needs to be developed and supported. One aspect of building this pipeline is understanding how students come to graduate and postdoctoral work in PER and what their career goals are. This paper presents the first study on the experiences and career pathways of students in PER. Data were collected through open-ended interviews with 13 graduate students and postdoctoral scholars in PER. Results show that many of these PER graduate students and postdoctoral scholars were not aware of PER as undergraduates. PER graduate students that were aware of PER as undergraduates chose to study PER as they were applying to graduate schools. The graduate school experiences of the interviewees were overwhelmingly positive, with participants reporting a positive climate that was facilitated by communicative and productive relationships with their advisors. However, some participants reported concerns about the acceptance of PER within some departments, including open hostility towards the field. The majority of participants were interested in pursuing a career as a university faculty member, with more participants preferring a position at a research-intensive university. These results suggest that a further large-scale study of graduate students in PER may be able to highlight the field as being a leader in student mentoring and community development while collecting important demographic information that could show PER to have more gender diversity than other subfields of physics.

  15. Small Research Balloons in a Physics Course for Education Majors

    Science.gov (United States)

    Bruhweiler, F. C.; Verner, E.; Long, T.; Montanaro, E.

    2013-12-01

    At The Catholic Univ. of America, we teach an experimental physics course entitled Physics 240: The Sun-Earth Connection, which is designed for the undergraduate education major. The emphasis is on providing hands-on experience and giving the students an exciting experience in physics. As part of this course, in the Spring 2013 semester, we instituted a project to plan, build, launch, and retrieve a small (~1.3 kg) research balloon payload. The payload flown was a small GPS unit that sent its position to an Internet site, a small wide-angle high-resolution video camera, and an analog refrigerator thermometer placed in the field of view of the camera. All data were stored on the camera sim-card. Students faced the problems of flying a small research balloon in the congested, densely populated Northeast Corridor of the US. They used computer simulators available on the Web to predict the balloon path and flight duration given velocities for the Jet Stream and ground winds, as well as payload mass and amount of helium in the balloon. The first flight was extremely successful. The balloon was launched 140 km NW of Washington DC near Hagerstown, MD and touched down 10 miles (16 km) NW of York, PA, within 1.6 km of what was predicted. The balloon reached 73,000 ft (22,000 m) and the thermometer indicated temperatures as low as -70 degrees Fahrenheit (-57 C) during the flight. Further balloon flights are planned in conjunction with this course. Additional exercises and experiments will be developed centered around these flights. Besides learning that science can be exciting, students also learn that science is not always easily predictable, and that these balloon flights give an understanding of many of problems that go into real scientific space missions. This project is supported in part by an educational supplement to NASA grant NNX10AC56G

  16. The First Big Wave of Astronomy Education Research Dissertations and Some Directions for Future Research Efforts

    Science.gov (United States)

    Slater, Timothy F.

    2008-01-01

    The past several years have presented the astronomy education research community with a host of foundational research dissertations in the teaching and learning of astronomy. These PhD candidates have been studying the impact of instructional innovations on student learning and systematically validating astronomy learning assessment instruments,…

  17. Physical mechanism of centrifugal-gravity wave resonant instability in azimuthally symmetric swirling flows

    Science.gov (United States)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2017-10-01

    We present an explicit analysis of wave-resonant instability of swirling flows inside fast rotating cylindrical containers. The linear dynamics are decomposed into the interaction between the horizontal inner centrifugal edge waves and the outer vertical gravity waves with the aim of understanding the dynamics of the centrifugal waves. We show how the far field velocity induced respectively by the centrifugal and the gravity waves affect each other's propagation rates and amplitude growth. We follow this with an analysis of the instability in terms of a four-wave interaction, two centrifugal and two gravity ones, and explain why the resonant instability can be obtained only between a pair of two counterpropagating waves, one centrifugal and one gravity. Furthermore, a near resonant regime which does not yield instability is shown to result from a phase-locking configuration between a pair of a counterpropagating centrifugal wave and a propropagating gravity one, where the interaction affects the waves' propagation rates but not the amplitude growth.

  18. Experimental research of shock wave processes influence on machineless gas flow energy separation effect

    Science.gov (United States)

    Vinogradov, Y. A.; Zditovets, A. G.; Leontiev, A. I.; Popovich, S. S.; Strongin, M. M.

    2017-11-01

    Experimental results for artificially initiated shock wave influence on machineless gas flow energy separation effect are presented. The working principle of the technique is based on interaction of supersonic and subsonic flows through the heat-conducting wall. In result at output there are two flows with different temperature – heated supersonic air flow and cooled subsonic one. Shock waves were initiated by conic ribs placed along the supersonic channel. During the research varied parameters included uni-flow and counter-flow air moving direction in subsonic and supersonic channels, subsonic flow rate divided by supersonic one (from 0 to 0.9), stagnation flow temperature (298, 313 and 343K) and initial Mach number (1.9, 2.5). The research was carried out with the use of infrared thermal imaging, thermocouples, total and static pressure probes, National Instruments automation equipment. Energy separation effect is increasing with the growth of Mach number and stagnation flow temperature. Rib placement in supersonic channel causes rise of static pressure and wall temperature and results in decreasing of energy separation effect at output of the device by less than 12%. Operability of the device with shock wave generation is remained.

  19. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  20. Evolution of accelerometer methods for physical activity research.

    Science.gov (United States)

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. A transportable hybrid antenna-transmitter system for the generation of elliptically polarized waves for NVIS propagation research

    NARCIS (Netherlands)

    Witvliet, Ben A.; Laanstra, Geert J.; van Maanen, Erik; Alsina-Pagès, Rosa M.; Bentum, Marinus Jan; Slump, Cornelis H.; Schiphorst, Roelof

    2016-01-01

    For empirical research on Near Vertical Incidence Skywave (NVIS) characteristic wave propagation, a beacon transmitter system is needed that can be programmed to emit precisely defined elliptically and circularly polarized waves at high elevation angles. This paper proposes a novel hybrid

  2. Applying cluster analysis to physics education research data

    Science.gov (United States)

    Springuel, R. Padraic

    One major thrust of Physics Education Research (PER) is the identification of student ideas about specific physics concepts, both correct ideas and those that differ from the expert consensus. Typically the research process of eliciting the spectrum of student ideas involves the administration of specially designed questions to students. One major analysis task in PER is the sorting of these student responses into thematically coherent groups. This process is one which has previously been done by eye in PER. This thesis explores the possibility of using cluster analysis to perform the task in a more rigorous and less time-intensive fashion while making fewer assumptions about what the students are doing. Since this technique has not previously been used in PER, a summary of the various kinds of cluster analysis is included as well as a discussion of which might be appropriate for the task of sorting student responses into groups. Two example data sets (one based on the Force and Motion Conceptual Evaluation (DICE) the other looking at acceleration in two-dimensions (A2D) are examined in depth to demonstrate how cluster analysis can be applied to PER data and the various considerations which must be taken into account when doing so. In both cases, the techniques described in this thesis found 5 groups which contained about 90% of the students in the data set. The results of this application are compared to previous research on the topics covered by the two examples to demonstrate that cluster analysis can effectively uncover the same patterns in student responses that have already been identified.

  3. Big Data Meets Physics Education Research: From MOOCs to University-Led High School Programs

    Science.gov (United States)

    Seaton, Daniel

    2017-01-01

    The Massive Open Online Course (MOOC) movement has catalyzed discussions of digital learning on campuses around the world and highlighted the increasingly large, complex datasets related to learning. Physics Education Research can and should play a key role in measuring outcomes of this most recent wave of digital education. In this talk, I will discuss big data and learning analytics through multiple modes of teaching and learning enabled by the open-source edX platform: open-online, flipped, and blended. Open-Online learning will be described through analysis of MOOC offerings from Harvard and MIT, where 2.5 million unique users have led to 9 million enrollments across nearly 300 courses. Flipped instruction will be discussed through an Advanced Placement program at Davidson College that empowers high school teachers to use AP aligned, MOOC content directly in their classrooms with only their students. Analysis of this program will be highlighted, including results from a pilot study showing a positive correlation between content usage and externally validated AP exam scores. Lastly, blended learning will be discussed through specific residential use cases at Davidson College and MIT, highlighting unique course models that blend open-online and residential experiences. My hope for this talk is that listeners will better understand the current wave of digital education and the opportunities it provides for data-driven teaching and learning.

  4. Feasibility analysis of real-time physical modeling using WaveCore processor technology on FPGA

    NARCIS (Netherlands)

    Verstraelen, Martinus Johannes Wilhelmina; Pfeifle, Florian; Bader, Rolf

    2015-01-01

    WaveCore is a scalable many-core processor technology. This technology is specifically developed and optimized for real-time acoustical modeling applications. The programmable WaveCore soft-core processor is silicon-technology independent and hence can be targeted to ASIC or FPGA technologies. The

  5. Writing and representation in liquid crystal physics research

    Science.gov (United States)

    Wickman, Chad; Haas, Christina; Palffy-Muhoray, Peter

    2008-03-01

    Public understanding of science is often shaped by semiotic systems---linguistic, mathematic, graphic, pictorial---deployed in the textual presentation of scientific findings. Nowhere is this more apparent, perhaps, than in recent debates over climate change where non-linguistic communication has played an integral role in shaping policy decisions. This is one example of many, but it speaks to the need for research that examines how working scientists disseminate knowledge to expert and non-expert alike. Based on the study of text production in liquid crystal physics research, I will discuss the way in which physicists utilize multiple semiotic systems in their research and publications. Findings suggest that shared meanings are often created through a variety of semiotic forms---from linguistic script to equations to graphs to diagrams---and that these forms offer specific meaning potentials for communicating knowledge to different audiences. Ultimately, I argue that an improved understanding of scientific literacy practices is key to the effective communication of science to various constituencies.

  6. Physics Basis and Simulation of Burning Plasma Physics for the Fusion Ignition Research Experiment (FIRE)

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel; D. Meade; S.C. Jardin

    2002-01-18

    The FIRE [Fusion Ignition Research Experiment] design for a burning plasma experiment is described in terms of its physics basis and engineering features. Systems analysis indicates that the device has a wide operating space to accomplish its mission, both for the ELMing H-mode reference and the high bootstrap current/high beta advanced tokamak regimes. Simulations with 1.5D transport codes reported here both confirm and constrain the systems projections. Experimental and theoretical results are used to establish the basis for successful burning plasma experiments in FIRE.

  7. History of Physics Education Research as a Model for Geoscience Education Research Community Progress

    Science.gov (United States)

    Slater, T. F.

    2011-12-01

    Discipline-based Education Research (DBER) is a research field richly combining a deep understanding of how to teach a particular discipline with an evolving understanding how people learn that discipline. At its center, DBER has an overarching goal of improving the teaching and learning of a discipline by focusing on understanding the underlying mental mechanisms learners use as they develop expertise. Geoscience Education Research, or GER, is a young but rapidly advancing field which is poised to make important contributions to the teaching and learning of earth and space science. Nascent geoscience education researchers could accelerate their community's progress by learning some of the lessons from the more mature field of Physics Education Research, PER. For the past three decades, the PER community has been on the cutting edge of DBER. PER started purely as an effort among traditionally trained physicists to overcome students' tenaciously held misconceptions about force, motion, and electricity. Over the years, PER has wrestled with the extent to which they included the faculty from the College of Education, the value placed on interpretive and qualitative research methods, the most appropriate involvement of professional societies, the nature of its PhD programs in the College of Science, and how to best disseminate the results of PER to the wider physics teaching community. Decades later, as a more fully mature field, PER still struggles with some of these aspects, but has learned important lessons in how its community progresses and evolves to be successful, valuable, and pertinent.

  8. CLOUD EDUCATIONAL RESOURCES FOR PHYSICS LEARNING RESEARCHES SUPPORT

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Merzlykin

    2015-10-01

    Full Text Available The definition of cloud educational resource is given in paper. Its program and information components are characterized. The virtualization as the technological ground of transforming from traditional electronic educational resources to cloud ones is reviewed. Such levels of virtualization are described: data storage device virtualization (Data as Service, hardware virtualization (Hardware as Service, computer virtualization (Infrastructure as Service, software system virtualization (Platform as Service, «desktop» virtualization (Desktop as Service, software user interface virtualization (Software as Service. Possibilities of designing the cloud educational resources system for physics learning researches support taking into account standards of learning objects metadata (accessing via OAI-PMH protocol and standards of learning tools interoperability (LTI are shown. The example of integration cloud educational resources into Moodle learning management system with use of OAI-PMH and LTI is given.

  9. Researchers Who Surf: Riding the Waves of Analysis in Self-Study Research

    Science.gov (United States)

    Conley, Matthew D.; Colabucci, Lesley

    2009-01-01

    In this paper, two beginning qualitative researchers describe the challenges and successes of conducting a collaborative self-study. For two academic years, the authors wrote and analyzed personal narratives related to their experiences as a lesbian and a gay man, respectively, in educational contexts. This article addresses the data analysis…

  10. Experimental imaging research on continuous-wave terahertz in-line digital holography

    Science.gov (United States)

    Huang, Haochong; Wang, Dayong; Rong, Lu; Wang, Yunxin

    2014-09-01

    The terahertz (THz) imaging is an advanced technique on the basis of the unique characteristics of terahertz radiation. Due to its noncontact, non-invasive and high-resolution capabilities, it has already shown great application prospects in biomedical observation, sample measurement, and quality control. The continuous-wave terahertz in-line digital holography is a combination of terahertz technology and in-line digital holography of which the source is a continuous-wave terahertz laser. Over the past decade, many researchers used different terahertz sources and detectors to undertake experiments. In this paper, the pre-process of the hologram is accomplished after the holograms' recording process because of the negative pixels in the pyroelectric detector and the air vibration caused by the chopper inside the camera. To improve the quality of images, the phase retrieval algorithm is applied to eliminate the twin images. In the experiment, the pin which terahertz wave can't penetrate and the TPX slice carved letters "THz" are chosen for the samples. The amplitude and phase images of samples are obtained and the twin image and noise in the reconstructed images are suppressed. The results validate the feasibility of the terahertz in-line digital holographic imaging technique. This work also shows the terahertz in-line digital holography technique's prospects in materials science and biological samples' detection.

  11. High Energy Physics: Report of research accomplishments and future goals, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1983-12-31

    Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC, FERMILAB, and DESY.

  12. High Energy Physics: Report of research accomplishments and furture goals, FY1983

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1981-05-08

    Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC and FERMILAB.

  13. Reference earth orbital research and applications investigations (blue book). Volume 3: Physics

    Science.gov (United States)

    1971-01-01

    The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.

  14. Measurement of perceived barriers to physical activities: Proposed research instrument

    Directory of Open Access Journals (Sweden)

    Edio Luiz Petroski

    2000-12-01

    Full Text Available Currently, one of the most-investigated subjects that Physical Education scientists are researching consists of themes related to human behavior (change of patterns, habits related to the health, lifestyle, beliefs and attitudes, motivation for physical activity, perception of barriers. The aim of the present article is to propose an objective instrument (questionnaire to be used in research into human behavior, especially related to the perception of barriers to the practice of physical activity. The study used a sample of 42 adults (22 women and 20 men and had the following methodological design: preliminary test-retest with one week interval, reformulation of the instrument, final test-retest with one week interval. The reliability of the proposed barriers was initially evaluated using the Kappa index and Pearson Product Moment correlations. Testing of the instrument demonstrated that the proposed questionnaire (a list of nineteen barriers evaluated in ordinal scale can be easily employed, due to its applicability and quite satisfactory clarity, in addition to offering a reproducibility index of adequate reliability. RESUMO Atualmente, temas relacionados a comportamento (mudança de padrões, hábitos relacionados à saúde, estilo de vida, crenças e atitudes, motivação para a prática, percepção de barreiras estão entre os assuntos mais investigados pelos cientistas da área da Educação Física. O presente trabalho tem o intuito de propor um instrumento (questionário objetivo a ser utilizado em pesquisas sobre comportamento humano, especialmente relacionado à percepção de barreiras para a prática de atividades físicas. Participaram do estudo 42 indivíduos adultos (22 mulheres e 20 homens, com o seguinte design metodológico: teste-reteste preliminar com intervalo de uma semana, reformulação do instrumento, teste-reteste final, com intervalo de uma semana. A reprodutibilidade das barreiras propostas foi avaliada inicialmente

  15. Electromagnetic Waves

    OpenAIRE

    Blok, H.; van den Berg, P.M.

    2011-01-01

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc.

  16. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  17. Applications of nuclear physics to interdisciplinary research and to industry

    Science.gov (United States)

    Schweitzer, Jeffrey

    2000-04-01

    Techniques that have been developed to understand nuclear structure can be used for interdisciplinary research and to determine useful properties. Both microscopic and macroscopic techniques can be used. The introduction discusses the diversity of fields that can benefit from applying nuclear physics techniques. Three current areas of research are used as illustrations. The use of gamma-ray spectroscopy following thermal neutron capture to better understand the formation and evolution of planetary bodies. Such measurements can be performed from orbit, on landers or on rovers, but each type of measurement puts different constraints on the instrument design. Nuclear resonant reaction analysis has recently been used to better understand the chemical kinetics in the curing of cement. Elemental concentrations of hydrogen have been measured with a spatial resolution of a few nanometers at the grain surface and about 20 nanometers at a depth of about two microns as a function of time during the reaction. Finally, x-ray techniques are being developed to provide an x-ray fluorescence instrument that can be used safely and reliably at a crime scene for investigative purposes. Unique problems of applying laboratory techniques to random, human-occupied locations and the requirements for providing a technically viable analysis that will be accepted by our legal system will be discussed.

  18. Top 10 Research Questions Related to Physical Activity in Preschool Children

    Science.gov (United States)

    Pate, Russell R.; O'Neill, Jennifer R.; Brown, William H.; McIver, Kerry L.; Howie, Erin K.; Dowda, Marsha

    2013-01-01

    The purpose of this article was to highlight important research needs related to physical activity in 3-to 5-year-old children. We identified research needs in 3 major categories: health effects, patterns of physical activity, and interventions and policies. The top research needs include identifying the health effects of physical activity, the…

  19. Experimental particle physics research at Texas Tech University

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, Nural [Texas Tech Univ., Lubbock, TX (United States); Lee, Sung-Won [Texas Tech Univ., Lubbock, TX (United States); Volobouev, Igor [Texas Tech Univ., Lubbock, TX (United States); Wigmans, Richard [Texas Tech Univ., Lubbock, TX (United States)

    2016-06-22

    The high energy physics group at Texas Tech University (TTU) concentrates its research efforts on the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) and on generic detector R&D for future applications. Our research programs have been continuously supported by the US Department of Energy for over two decades, and this final report summarizes our achievements during the last grant period from May 1, 2012 to March 31, 2016. After having completed the Run 1 data analyses from the CMS detector, including the discovery of the Higgs boson in July 2012, we concentrated on commissioning the CMS hadron calorimeter (HCAL) for Run 2, performing analyses of Run 2 data, and making initial studies and plans for the second phase of upgrades in CMS. Our research has primarily focused on searches for Beyond Standard Model (BSM) physics via dijets, monophotons, and monojets. We also made significant contributions to the analyses of the semileptonic Higgs decays and Standard Model (SM) measurements in Run 1. Our work on the operations of the CMS detector, especially the performance monitoring of the HCAL in Run 1, was indispensable to the experiment. Our team members, holding leadership positions in HCAL, have played key roles in the R&D, construction, and commissioning of these detectors in the last decade. We also maintained an active program in jet studies that builds on our expertise in calorimetry and algorithm development. In Run 2, we extended some of our analyses at 8 TeV to 13 TeV, and we also started to investigate new territory, e.g., dark matter searches with unexplored signatures. The objective of dual-readout calorimetry R&D was intended to explore (and, if possible, eliminate) the obstacles that prevent calorimetric detection of hadrons and jets with a comparable level of precision as we have grown accustomed to for electrons and photons. The initial prototype detector was successfully tested at the SPS/CERN in 2003-2004 and evolved over the

  20. Morphological changes at Godavari delta region due to waves, currents and the associated physical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Sastry, J.S.; Vethamony, P.; Swamy, G.N.

    Wave conditions, the most important in coastal modification, prevailing in the region of Godavari Delta for different seasons are illustrated. The analysis of GEOSAT altimeter data for the period November 1986 to October 1987 shows that only during...

  1. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  2. Nonlinear physics of electrical wave propagation in the heart: a review

    Science.gov (United States)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas

    2016-09-01

    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  3. Educational analysis of a first year engineering physics experiment on standing waves: based on the ACELL approach

    Energy Technology Data Exchange (ETDEWEB)

    Bhathal, Ragbir [School of Engineering, University of Western Sydney, NSW1797 (Australia); Sharma, Manjula D; Mendez, Alberto [School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: r.bhathal@uws.edu.au

    2010-01-15

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The experiment is likely to be found in many physics departments, hence is appropriate to illustrate the ACELL approach in physics. The concepts associated with standing waves are difficult; however, they are underpinned by mathematical formulation which lend themselves to be visualized in experiments. The challenge is to strike a balance between these two for the particular student cohort. In this study, this balance is achieved by using simple equipment and providing appropriate scaffolds for students to associate abstract concepts with concrete visuals. In essence the experiment is designed to adequately manage cognitive resources. Students work in pairs and are questioned and assisted by demonstrators and academic staff during a 2 h practical class. Students were surveyed using the ACELL instrument. Analysis of the data showed that by completing the practical students felt that their understanding of physics had increased. Furthermore, students could see the relevance of this experiment to their engineering studies and that it provided them with an opportunity to take responsibility for their own learning. Overall they had a positive learning experience. In short there is a lot of dividend from a small outlay of resources.

  4. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  5. Top 10 Research Questions Related to Children Physical Activity Motivation

    Science.gov (United States)

    Chen, Ang

    2013-01-01

    Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity…

  6. Effect of Indoor Temperature on Physical Performance in Older Adults during Days with Normal Temperature and Heat Waves.

    Science.gov (United States)

    Lindemann, Ulrich; Stotz, Anja; Beyer, Nina; Oksa, Juha; Skelton, Dawn A; Becker, Clemens; Rapp, Kilian; Klenk, Jochen

    2017-02-14

    Indoor temperature is relevant with regard to mortality and heat-related self-perceived health problems. The aim of this study was to describe the association between indoor temperature and physical performance in older adults. Eighty-one older adults (84% women, mean age 80.9 years, standard deviation 6.53) were visited every four weeks from May to October 2015 and additionally during two heat waves in July and August 2015. Indoor temperature, habitual gait speed, chair-rise performance and balance were assessed. Baseline assessment of gait speed was used to create two subgroups (lower versus higher gait speed) based on frailty criteria. The strongest effect of increasing temperature on habitual gait speed was observed in the subgroup of adults with higher gait speed (-0.087 m/s per increase of 10 °C; 95% confidence interval (CI): -0.136; -0.038). The strongest effects on timed chair-rise and balance performance were observed in the subgroup of adults with lower gait speed (2.03 s per increase of 10 °C (95% CI: 0.79; 3.28) and -3.92 s per increase of 10 °C (95% CI: -7.31; -0.52), respectively). Comparing results of physical performance in absentia of a heat wave and during a heat wave, habitual gait speed was negatively affected by heat in the total group and subgroup of adults with higher gait speed, chair-rise performance was negatively affected in all groups and balance was not affected. The study provides arguments for exercise interventions in general for older adults, because a better physical fitness might alleviate impediments of physical capacity and might provide resources for adequate adaptation in older adults during heat stress.

  7. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  8. Ionosphere Waves Service (IWS – a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Directory of Open Access Journals (Sweden)

    Ferencz Csaba

    2014-05-01

    Full Text Available In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  9. An ethnographic study: Becoming a physics expert in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research

  10. Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset

    Science.gov (United States)

    Rae, I. J.; Murphy, K. R.; Watt, Clare E. J.; Mann, Ian R.; Yao, Zhonghua; Kalmoni, Nadine M. E.; Forsyth, Colin; Milling, David K.

    2017-12-01

    Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of "auroral beads". At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the "Tamao travel time" from near-earth neutral line reconnection and formation of the SCW.

  11. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Female consumers\\' evaluations of sponsorship and their response to sponsorship · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ... Sport tourism event impacts on the host community – a case study of Red Bull Big Wave Africa · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ...

  12. Physics of Laser in Contemporary Visual Arts: the research protocol

    Directory of Open Access Journals (Sweden)

    Diaa Ahmedien

    2016-11-01

    Full Text Available This protocol articulates an ongoing PhD thesis in Laser Art as an independent artistic trend including its history, classification criteria, philosophical and aesthetical aspects. Via several analytical studies theoretically and practically, the thesis is going to prove that laser art actively contributes, as an independent artistic trend, to change the conceptual definition of the artistic material. On the other hand, it bridges the gap between the artistic context and the technical issues, in which the conceptual values became fully integrated into the physical properties of the medium (laser beam, therefore it became impossible to separate the idea and the material of the artwork from each other. Besides, the thesis reveals the potential hidden conceptual and philosophical dimensions of the holographic art as one of the most important branches of laser art. In advanced step, the research suggestes a new model of interactive holographic art based on neural controlling system, and how this advanced approach can lead us towards a new kind of the aesthetic values, in which participants effectively contribute neurologically to constituting the artwork.

  13. Physics of Laser in Contemporary Visual Arts: the research protocol

    Directory of Open Access Journals (Sweden)

    Diaa Ahmedien

    2017-07-01

    Full Text Available This protocol articulates an ongoing PhD thesis in Laser Art as an independent artistic trend including its history, classification criteria, philosophical and aesthetical aspects. Via several analytical studies theoretically and practically, the thesis is going to prove that laser art actively contributes, as an independent artistic trend, to change the conceptual definition of the artistic material. On the other hand, it bridges the gap between the artistic context and the technical issues, in which the conceptual values became fully integrated into the physical properties of the medium (laser beam, therefore it became impossible to separate the idea and the material of the artwork from each other. Besides, the thesis reveals the potential hidden conceptual and philosophical dimensions of the holographic art as one of the most important branches of laser art. In advanced step, the research suggestes a new model of interactive holographic art based on neural controlling system, and how this advanced approach can lead us towards a new kind of the aesthetic values, in which participants effectively contribute neurologically to constituting the artwork.

  14. Physical optics and full-wave simulations of transmission of electromagnetic fields through electrically large planar meta-sheets

    Science.gov (United States)

    Öziş, Ezgi; Osipov, Andrey V.; Eibert, Thomas F.

    2017-09-01

    Ultra-thin metamaterials, called meta-surfaces or meta-sheets, open up new opportunities in designing microwave radomes, including an improved transmission over a broader range of antenna scan angles, tailorable and reconfigurable frequency bands, polarization transformations, one-way transmission and switching ability. The smallness of the unit cells combined with the large electrical size of microwave radomes significantly complicates full-wave numerical simulations as a very fine sampling over an electrically large area is required. Physical optics (PO) can be used to approximately describe transmission through the radome in terms of the homogenized transmission coefficient of the radome wall. This paper presents the results of numerical simulations of electromagnetic transmission through planar meta-sheets (infinite and circularly shaped) obtained by using a full-wave electromagnetic field simulator and a PO-based solution.

  15. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  16. Gravitational waves as cosmological probes for new physics between the electroweak and the grand-unification scale

    Energy Technology Data Exchange (ETDEWEB)

    Sagunski, Laura

    2013-04-15

    Relic gravitational waves, generated by strongly first-order phase transitions in the early Universe, can serve as cosmological probes for new physics beyond the Standard Model. We investigate phase transitions at temperatures between the electroweak and the GUT scale in two extensions of the Standard Model for their possibility to provide detectable gravitational radiation. First, we study the Z{sub 2} symmetry breaking phase transition in the Standard model extended by a real gauge singlet. The analysis yields that the gravitational wave amplitude of the first-order phase transition with a thermally induced barrier is several orders too small for being detectable. The second model we discuss is a left-right symmetric model based on the gauge group SU(2){sub L} x SU(2){sub R} x U(1){sub B-L} generating a first-order phase transition already due to the emergence of a barrier in the tree-level potential. We derive an upper bound on the peak amplitude of the gravitational wave spectrum of the order h{sub o}{sup 2}{Omega}{sub GW} {approx_equal} 3 . 10{sup -11}. Hence, for very strong phase transitions a detection with the spaceborne interferometer LISA will be possible, whereas the sensitivity of the (cross-correlated) BBO detector will even allow to observe the gravitational wave spectrum within the whole parameter range of the model. By using the correlation between the characteristic parameters {alpha} and {beta} of the gravitational wave spectrum, we finally compute the lower bounds on {alpha}(T{sub *}) in dependence of the tunneling temperature T{sub *} which are necessary for a detection of the model spectrum by the specific detectors.

  17. Astronomy's New Messengers: A traveling exhibit on gravitational-wave physics

    Science.gov (United States)

    Cavaglià, Marco; Hendry, Martin; Márka, Szabolcs; Reitze, David H.; Riles, Keith

    2010-01-01

    The Laser Interferometer Gravitational-wave Observatory exhibit Astronomy's New Messengers: Listening to the Universe with Gravitational Waves is traveling to colleges, universities, museums and other public institutions throughout the United States. Astronomy's New Messengers primarily communicates with an adolescent and young adult audience, potentially inspiring them into the field of science. Acknowledging that this audience is traditionally a difficult one to attract, the exhibit publicly announces itself in a charismatic fashion to reach its principal goals of broadening the community of people interested in science and encouraging interest in science among young people.

  18. The matter-wave laser interferometer gravitation antenna (MIGA: New perspectives for fundamental physics and geosciences

    Directory of Open Access Journals (Sweden)

    Canuel B.

    2014-01-01

    Full Text Available We are building a hybrid detector of new concept that couples laser and matter-wave interferometry to study sub Hertz variations of the strain tensor of space-time and gravitation. Using a set of atomic interferometers simultaneously manipulated by the resonant optical field of a 200 m cavity, the MIGA instrument will allow the monitoring of the evolution of the gravitational field at unprecedented sensitivity, which will be exploited both for geophysical studies and for Gravitational Waves (GWs detection. This new infrastructure will be embedded into the LSBB underground laboratory, ideally located away from major anthropogenic disturbances and benefitting from very low background noise.

  19. Solitons: interactions, theoretical and experimental challenges and perspectives (physics research and technology)

    CERN Document Server

    2013-01-01

    In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of non-linear and dispersive effects in the medium. In this book, the authors discuss the interactions and theoretical and experimental challenges of solitons. Topics include soliton motion of electrons and its physical properties in coupled electron-phonon systems and ionic crystals; soliton excitations and its experimental evidence in molecular crystals; shapes and dynamics of semi-discrete solitons in arrayed and stacked waveguiding systems; ion-acoustic super solitons in plasma; diamond-controlled solitons and turbulence in extracellular matrix and lymphatic dynamics; and non-linear waves in strongly interacting relativistic fluids.

  20. Researches of health and level of physical development for students.

    Directory of Open Access Journals (Sweden)

    Turchina N.I

    2010-12-01

    Full Text Available The level of physical development and peculiarities of health in student were studied. 50 students of humanitarian specialties with two groups for health states: general and special medical was diagnostics. The study are showed that states of cardio-vascular system and physical performance are changes of structure of health in students of special groups. This data are indicate on improve of cardio-vascular system of students with differ level of health as need of attention of physical education as general factors of physical performance formed.

  1. Research the dynamical characteristics of slow deformation waves as a rock massif response to explosions during its outworking

    Science.gov (United States)

    Hachay, Olga; Khachay, Oleg; Shipeev, Oleg

    2015-04-01

    mine to estimate the changing state of the rock burst in the massif by its outworking. As a result we have selected a typical morphology of massif response phase trajectories, which were locally, over time, in a stable state: on the phase plane the local area presented as a ball of twisted trajectories with some not far removed points from the ball, which had not exceeded energy of more than 105 joules. For some time intervals those removed points exceeded 105 joules, achieving 106 joules and even 109 joules (Hachay et al., 2010). Introduction of the additional velocity parameter of slow deformation wave propagation allowed us, with the use of phase diagrams, to identify the hierarchic structure. Further, we can use that information for the modelling and interpretation of seismic and deformation waves in hierarchic structures (Hachay et al., 2012). That method can be useful in building-up an understanding of the resonance outshooting of catastrophic dynamic events and prevent these events. References 1.Chulichkov A. (2003) Mathematical models of nonlinear dynamics. Moscow: Phismatlit. 294p. 2.Hachay O., Khachay O.Yu., Klimko V., et al. (2010) Reflection of synergetic features of rock massif state under the man-caused influence from the data of a seismological catalogue. Mining Information-Analytic Bulletin, Moscow, Mining book, 6, pp.259-271. 3.Hachay O., Khachay A.Yu. (2012) Research of stress-deforming state of hierarchic medium. Proceedings of the Third Tectonics and Physics Conference at the Institute of the Physics of the Earth 8-12 October 2012, Moscow, IFZ RAS, pp.114-117. 4.Kurlenja M., Oparin V., Vostrikov V. (1993) About forming elastic wave trains by impulse excitation of block medium. Waves of pendulum type Uμ. DAN USSR, V.133, 4, pp.475-481. 5.Naimark Yu., Landa P. (2009). Stochastic and chaotic oscillations. Moscow, Knigniy dom ,'LIBROKOM', 424 p. 7.Oparin V., Vostrikov V., Tapsiev A. et al. (2006) About one kinematic criterion of forecasting of the

  2. Improving Physics Teaching through Action Research: The Impact of a Nationwide Professional Development Programme

    Science.gov (United States)

    Grace, Marcus; Rietdijk, Willeke; Garrett, Caro; Griffiths, Janice

    2015-01-01

    This article presents an independent evaluation of the Action Research for Physics (ARP) programme, a nationwide professional development programme which trains teachers to use action research to increase student interest in physics and encourage them to take post-compulsory physics. The impact of the programme was explored from the perspective of…

  3. High Energy Physics Division semiannual report of research activities, January 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1 - June 30, 1996. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. List of Division publications and colloquia are included.

  4. High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. (eds.)

    1992-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  5. High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

    1999-03-09

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  6. High Energy Physics Division semiannual report of research activities, January 1, 1992--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. (eds.)

    1992-11-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1992--June 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  7. High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

    1993-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  8. High Energy Physics Division semiannual report of research activities, July 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Moonier, P.; Schoessow, P.; Talaga, R.

    1994-05-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1993--December 31, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  9. High Energy Physics Division semiannual report of research activities, January 1, 1993--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

    1993-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1993--June 30, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  10. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R. [eds.

    1998-08-11

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  11. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  12. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  13. Estimation of Directional Surface Wave Spectra from a Towed Research Catamaran

    National Research Council Canada - National Science Library

    Hanson, Kurt

    1997-01-01

    During the High Resolution Remote Sensing Main Experiment, wave height was estimated from a moving catamaran using pitch rate and roll rate sensors, a three axis accelerometer, and a capacitive wave wire...

  14. The Web Option and Research in Physics | Asiegbu | Global Journal ...

    African Journals Online (AJOL)

    Various options and opportunities offered by the web to the study and practice of physics have been reviewed. Rather than work individually the web provides the option of working as a team. Rather than go from place to place in search of physics information the browsing technique of the web is seen to provide the option ...

  15. Computer - based modeling in extract sciences research -II. Physics ...

    African Journals Online (AJOL)

    One important area of application of molecular modeling is in the physics discipline. It has been used extensively in understudying some physics based principles which have often proved difficult to unravel by laboratory experimental studies. Use is made of theories and models like density functional theory, molecular ...

  16. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Exploring the relationship between physical activity, psychological well-being and physical self- perception in different exercise groups · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Stephen D Edwards, Humphrey SB Ngcobo, David J Edwards, Kevin Palavar, 59-74.

  17. Symposium "Research on wave action" : Proceedings, Delft Hydraulics Laboratory, Delft, The Netherlands, July 1969

    NARCIS (Netherlands)

    Battjes, J.A.; Bijker, E.W.

    1969-01-01

    Contains papers and discussions of the symposium: de Jong, J. - New wind waves flumes; Wiegel, R.L. - Waves and their effects on pile-supported structures; Svasek, J.N. - Statistical evaluation of wave conditions in deltaic areas; d'Angremond, K. and Van Oorschot, J.H. - Generation of irregular

  18. Physical and Chemical Sciences Center - research briefs. Volume 1-96

    Energy Technology Data Exchange (ETDEWEB)

    Mattern, P.L.

    1994-12-31

    This report provides brief summaries of research performed in chemical and physical sciences at Sandia National Laboratories. Programs are described in the areas of advanced materials and technology, applied physics and chemistry, lasers, optics, and vision, and resources and capabilities.

  19. Linking Physical Climate Research and Economic Assessments of Mitigation Policies

    Science.gov (United States)

    Stainforth, David; Calel, Raphael

    2017-04-01

    Evaluating climate change policies requires economic assessments which balance the costs and benefits of climate action. A certain class of Integrated Assessment Models (IAMS) are widely used for this type of analysis; DICE, PAGE and FUND are three of the most influential. In the economics community there has been much discussion and debate about the economic assumptions implemented within these models. Two aspects in particular have gained much attention: i) the costs of damages resulting from climate change - the so-called damage function, and ii) the choice of discount rate applied to future costs and benefits. There has, however, been rather little attention given to the consequences of the choices made in the physical climate models within these IAMS. Here we discuss the practical aspects of the implementation of the physical models in these IAMS, as well as the implications of choices made in these physical science components for economic assessments[1]. We present a simple breakdown of how these IAMS differently represent the climate system as a consequence of differing underlying physical models, different parametric assumptions (for parameters representing, for instance, feedbacks and ocean heat uptake) and different numerical approaches to solving the models. We present the physical and economic consequences of these differences and reflect on how we might better incorporate the latest physical science understanding in economic models of this type. [1] Calel, R. and Stainforth D.A., "On the Physics of Three Integrated Assessment Models", Bulletin of the American Meteorological Society, in press.

  20. Research on aerobics classes influence on physical prepareduess of students.

    Directory of Open Access Journals (Sweden)

    Krasulia M. А.

    2011-04-01

    Full Text Available Physical skills of female students doing aerobics have been studied. 165 female students aged 17-18 divided into three groups of 55 each have taken part in the experiment. Groups have been trained according to different methods conventionally called 'power aerobics', 'dance aerobics' and 'jump aerobics'. Level of female students' physical skills has been determined by the results of seven tests in the beginning of an academic year and after six-months term. Mathematical treatment of the results has been carried out. The most preferable as to improving physical skills level method has been discovered to be the one aimed on power abilities development method.

  1. Quantum jumps: from foundational research to particle physics

    Science.gov (United States)

    Licata, Ignazio; Chiatti, Leonardo

    2017-08-01

    Since 1986 a vast body of experimental evidence has been accumulated of direct observation of quantum jumps in many physical systems. We can therefore assume that quantum jumps are genuine physical phenomena. On the other hand, substantial identity of ”quantum jumps” and ”collapses” induced by measurements can be admitted, both being represented by self-conjugate projection operators related to specific non-Hamiltonian aspects of micro-interactions. On this basis a model of quantum jump involving a single particle is discussed, and some consequences concerning hadronic physics (Hagedorn temperature, Regge trajectories) and quantum gravity are briefly sketched.

  2. 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 February 2015)

    Science.gov (United States)

    2015-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) celebrating the 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the RAS (IZMIRAN) was held in the IZMIRAN conference hall on 25 February 2015. The agenda of the session announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division contained the following reports: (1) Kuznetsov V D (IZMIRAN, Moscow) "N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, and tomorrow"; (2) Gvishiani A D (Geophysical Center, Moscow) "Studies of the terrestrial magnetic field and the network of Russian magnetic laboratories"; (3) Sokoloff D D (Faculty of Physics, Lomonosov Moscow State University, Moscow) "Magnetic dynamo questions"; (4) Petrukovich A A (Space Research Institute, RAS, Moscow) "Some aspects of magnetosphere-ionosphere relations"; (5) Lukin D S (Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region) "Current problems of ionospheric radio wave propagation"; (6) Safargaleev V V (Polar Geophysical Institute, Kola Scientific Center, RAS, Murmansk), Sergienko T I (Swedish Institute of Space Physics (IRF), Sweden), Kozlovskii A E (Sodankyl \\ddot a Geophysical Observatory, Finland), Safargaleev A V (St. Petersburg State University, St. Petersburg), Kotikov A L (St. Petersburg Branch of IZMIRAN, St. Petersburg) "Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity"; (7) Kuznetsov V D (IZMIRAN, Moscow) "Space solar research: achievements and prospects". Papers written on the basis of oral reports 1, 3, 4, 6, and 7 are given below. • N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow, V D Kuznetsov Physics-Uspekhi, 2015

  3. On the first direct detection of gravitational waves (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 March 2016)

    Science.gov (United States)

    2016-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "On the first direct detection of gravitational waves," was held in the conference hall of the Lebedev Physical Institute, RAS on 2 March 2016. The papers collected in this issue were written based on talks given at the session: (1) Pustovoit V I (Scientific and Technological Center of Unique Instrumentation, Moscow) "On the direct detection of gravitational waves"; (2) Braginsky V B, Bilenko I A, Vyatchanin S P, Gorodetsky M L, Mitrofanov V P, Prokhorov L G, Strigin S E, Khalili F Ya (Lomonosov Moscow State University, Moscow) "The road to the discovery of gravitational waves"; (3) Khazanov E A (Institute of Applied Physics, RAS, Nizhny Novgorod) "Thermooptics of magnetoactive media: Faraday isolators for high average power lasers"; (4) Cherepashchuk A M (Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Discovery of gravitational waves: a new chapter in black hole studies"; (5) Lipunov V M (Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Astrophysical meaning of the discovery of gravitational waves." Papers based on talks 2-5 are published in this issue of the journal. A paper based on talk 1 will be published in a forthcoming issue of Physics-Uspekhi. Additional information on the discovery of gravitational waves, the history of their theoretical prediction, and the advances in possible methods for their investigation can be found on the Physics-Uspekhi site www.ufn.ru, on the page http://ufn.ru/en/events/gravitational_waves_discovery.html dedicated to this outstanding discovery. • The road to the discovery of gravitational waves, V B Braginsky, I A Bilenko, S P Vyatchanin, M L Gorodetskii, V P Mitrofanov, L G Prokhorov, S E Strigin, F Ya Khalili Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 879-885 • Thermooptics of magnetoactive media: Faraday isolators for high average power lasers, E A Khazanov

  4. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China; Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Academy of Engineering Physics, PO Box 919-102, Mianyang 621900, ...

  5. Innovative quantum technologies for microgravity fundamental physics and biological research

    Science.gov (United States)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  6. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Association between leisure-time physical activities and obesity in a selected sample of korean adults · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JH Yoon, WY So, 165-171 ...

  7. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Relationship between maximal exercise parameters and individual time trial performance in elite cyclists with physical disabilities · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. P-H Boer, E Terblanche, 1-10 ...

  8. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Perceptions of physical education and sports teachers towards folk dance in Turkey · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Oguzhan Yoncalik, Mesut Demirel, Melike T. Yoncalik, 189-205 ...

  9. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Anthropometric and physical fitness characteristics of female basketball players in South Africa · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Lungile B. Mtsweni, Sacha J. West, Mogammad S. Taliep, 93-103 ...

  10. Temperament, Parenting, and South Korean Early Adolescents' Physical Aggression: A Five-Wave Longitudinal Analysis

    Science.gov (United States)

    Lee, Julie

    2014-01-01

    Objective: This study examined the growth pattern in physical aggression over a five-year period among South Korean early adolescents and the effects of temperament (anger/frustration and emotion regulation) and parenting (harsh parenting and parental monitoring) on early adolescents' physical aggression. Design: A five-year longitudinal design…

  11. Numerical modeling and characterization of blast waves for application in blast-induced mild traumatic brain injury research

    Science.gov (United States)

    Phillips, Michael G.

    Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.

  12. UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B M.K. [Principal Investigator, ed.; Goetz, J; Lapik, A; Korolija, M; Prakhov, S; Starostin, A [ed.

    2011-05-18

    This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup 0}, 2{pi}{sup }0, 3{pi}{sup 0}, {eta} , {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4 . It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G-parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta} ,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta} and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular

  13. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Corey C. (University of New Mexico, Albuquerque, NM); Taylor, Paul Allen

    2008-02-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  14. TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part II - Research of counterpropagating shock waves and triple shock wave configurations

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-03-01

    Full Text Available The paper deals with current issues of the interference theory development of gas-dynamic discontinuities as applied to a problem of propulsion refinement for the air-spacecrafts, designed for hypersonic flight speeds. In the first part of the review we have presented the history of detonation study and different concepts of detonation engines, as well as air intakes designed for hypersonic flight speeds. The second part provides an overview of works on the interference theory development for gas-dynamic discontinuities. We report about classification of the gas-dynamic discontinuities, shock wave propagation, shock-wave structures and triple configurations of shock waves. We have shown that many of these processes are accompanied by a hysteresis phenomenon, there are areas of ambiguity; therefore, in the design of engines and air intakes optimal shock-wave structures should be provided and their sustainability should be ensured. Much attention has recently been given to the use of the air intakes in the shock-wave structures with the rereflection of shock waves and the interference of shock waves in the opposite directions. This review provides increased focus on it, contains references to landmark works, the last calculated and experimental results. Unfortunately, foreign surveys missed many landmark works of the Soviet and Russian researchers, as they were not published in English. At the same time, it was the Soviet school of gas dynamics that has formulated the interference theory of gas-dynamic discontinuities in its present form. To fill this gap is one of this review scopes. The review may be recommended for professionals, engineers and scientists working in the field of aerospace engineering.

  15. Inclined periodic homoclinic breather and rogue waves for the (1+ 1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 4. Inclined ... Research Articles Volume 83 Issue 4 October 2014 pp 473-480 ... Rational homoclinic wave solution, a new family of two-wave solution, is obtained by inclined periodic homoclinic breather wave solution and is just a rogue wave solution.

  16. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  17. PS-wave moveout inversion for tilted TI media: A physical modeling study

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Tsvankin, I.; Batzle, M.; Van Wijk, K.; Haney, M.

    Acoustics Laboratory at Colorado School of Mines H20849CSMH20850. Measurements H20849reflection and transmission surveysH20850 were made only in the symmetry-axis plane of the sample, where the velocities and polarizations are described by TI equations, even... asymmetry is caused entirely by the oblique orientation of the sym- metry axis. Note that the moveout of converted waves is symmetric in any laterally homogeneous medium with a horizontal symmetry plane, including TI models with a vertical H20849VTIH20850...

  18. Basin Testing of Wave Energy Converters in Trondheim: Investigation of Mooring Loads and Implications for Wider Research

    Directory of Open Access Journals (Sweden)

    Vladimir Krivtsov

    2014-04-01

    Full Text Available This paper describes the physical model testing of an array of wave energy devices undertaken in the NTNU (Norwegian University of Science and Technology Trondheim basin between 8 and 20 October 2008 funded under the EU Hydralabs III initiative, and provides an analysis of the extreme mooring loads. Tests were completed at 1/20 scale on a single oscillating water column device and on close-packed arrays of three and five devices following calibration of instrumentation and the wave and current test environment. One wave energy converter (WEC was fully instrumented with mooring line load cells, optical motion tracker and accelerometers and tested in regular waves, short- and long-crested irregular waves and current. The wave and current test regimes were measured by six wave probes and a current meter. Arrays of three and five similar WECs, with identical mooring systems, were tested under similar environmental loading with partial monitoring of mooring forces and motions. The majority of loads on the mooring lines appeared to be broadly consistent with both logistic and normal distribution; whilst the right tail appeared to conform to the extreme value distribution. Comparison of the loads at different configurations of WEC arrays suggests that the results are broadly consistent with the hypothesis that the mooring loads should differ. In particular; the results from the tests in short crested seas conditions give an indication that peak loads in a multi WEC array may be considerably higher than in 1-WEC configuration. The test campaign has contributed essential data to the development of Simulink™ and Orcaflex™ models of devices, which include mooring system interactions, and data have also been obtained for inter-tank comparisons, studies of scale effects and validation of mooring system numerical models. It is hoped that this paper will help to draw the attention of a wider scientific community to the dataset freely available from the

  19. Research into the further development of the LIMPET shoreline wave energy plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report summarises the findings of a project focussing on technical issues associated with the design of the LIMPET shoreline oscillating water column (OWC) wave energy plant. Fifteen tasks are listed as the objectives of the project which was carried out to broaden the knowledge of the wave environment and the construction and operation of a wave energy plant. The experience gained in LIMPET instrumentation, control systems, and grid integration issues are discussed.

  20. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    The effect of urbanisation on the relationship between physical activity and obesity in 10-15 year old males in the North-West province of South Africa: Thusa Bana study · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Colette Underhay, JH (Hans) De Ridder, Johannes H Van ...

  1. Solid state physics advances in research and applications

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    The latest volume in the world renowned Solid State Physics series marks the fruition of Founding Editor David Turnbull''s outstanding tenure as series editor. Volume 47 presents five articles written by leadingexperts on areas including crystal-melt interfacial tension, order-disorder transformation in alloys, brittle matrix composites, surfaces and interfaces, and magnetoresistance.

  2. Human Nature and Research Paradigms: Theory Meets Physical Therapy Practice

    Science.gov (United States)

    Plack, Margaret M.

    2005-01-01

    Human nature is a very complex phenomenon. In physical therapy this complexity is enhanced by the need to understand the intersection between the art and science of human behavior and patient care. A paradigm is a set of basic beliefs that represent a worldview, defines the nature of the world and the individual's place in it, and helps to…

  3. Research in elementary particle physics. [Ohio State Univ. , Columbus

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  4. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Physical exercise and psychological wellness in health club members: a comparative and longitudinal study · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ... The contribution of self-efficacy and outcome expectations in the prediction of exercise adherence · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  5. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Effectiveness of martial arts training vs. other types of physical activity: differences in body height, body mass, BMI and motor abilities · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Robert Podstawski, Piotr Markowski, Dariusz Choszcz, Adam Lipiński, Krzysztof Borysławski ...

  6. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Relationship between Iranꞌs National Football Team results and citizensꞌ happiness · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL ... Combined associations of television viewing and physical activity with overweight/obesity in Taiwanese elderly adults · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  7. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Editor: Prof SJ (Hanlie) Moss Sub-editor: A/Prof Maya van Gent. Editorial board: https://www.sajrsper.com/editorial-board. Prof. C. BURNETT Department of Sport and Movement Studies, University of Johannesburg, P.O. Box 524, AUCKLAND PARK 2006. Sport Anthropology, Sport Sociology, Physical Education E-mail: ...

  8. Analysis of Doctoral research at the Department of Physical ...

    African Journals Online (AJOL)

    Twelve (12) studies were reviewed over the 25-year period which cut across a broad spectrum of areas of study in Physical Education and Sport ranging from Anthropology and Sports History, Didactics, Sports Administration, Outdoor Education, Social-Psychology of Sports, fitness and health-related aspects. Soccer ...

  9. Enriching Gender in Physics Education Research: A Binary Past and a Complex Future

    Science.gov (United States)

    Traxler, Adrienne L.; Cid, Ximena C.; Blue, Jennifer; Barthelemy, Ramón

    2016-01-01

    In this article, we draw on previous reports from physics, science education, and women's studies to propose a more nuanced treatment of gender in physics education research (PER). A growing body of PER examines gender differences in participation, performance, and attitudes toward physics. We have three critiques of this work: (i) it does not…

  10. Teaching Einsteinian physics at schools: part 3, review of research outcomes

    Science.gov (United States)

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-11-01

    This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics engendered by introducing the modern concepts that underpin technology today. Results showed that students easily coped with the concepts of Einsteinian physics, and considered that they were not too young for the material presented. Importantly, in all groups, girls improved their attitude to physics considerably more than the boys, generally achieving near parity with the boys.

  11. CALCULATION-EXPERIMENTAL METHOD OF RESEARCH IN A METALLIC CONDUCTOR WITH THE PULSE CURRENT OF ELECTRONIC WAVEPACKAGES AND DE BROGLIE ELECTRONIC HALF-WAVES

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2016-12-01

    Full Text Available Purpose. Development of calculation-experimental method for a discovery and study of electronic wavepackages (EWP and of de Broglie electronic half-waves in a metallic conductor with the pulse axial-flow current of high density. Methodology. Theoretical bases of the electrical engineering, bases of quantum physics, electrophysics bases of technique of high voltage and large pulsecurrents, and also bases of technique of measuring of permanent and variable electric value. Results. On the basis of generalization of results of research of features of the longitudinal wave periodic distributing of negatively charged transmitters of electric current of conductivity in the thin round continuous zincked steel wire offered and approved in the conditions of high-voltage laboratory method for a discovery and direct determination in him of geometrical parameters of «hot» and «cold» longitudinal areas quantized periodic longitudinal EWP and accordingly the mediated determination of values of the quantized lengths formative their de Broglie electronic half-waves. It is shown that results of close quantum mechanical calculations of EWP and quantized lengths λenz/2 of longitudinal de Broglie half-waves for the probed wire long l0 well comport with the results of the executed high temperature experiments on the powerful high-voltage generator of homopolar large pulse current of millisecond duration. Originality. First calculation-experimental a way the important for the theory of electricity fact of existence is set in a round metallic explorer with the impulsive axial-flow current of the quantized coherent de Broglie electronic half-waves, amplitudes of which at the quantum number of n=1,3,9 correspond the middles of «hot» longitudinal areas of EWP. Calculation quantum mechanical correlation of type of λenz/2=l0/n got experimental confirmation, in obedience to which on length of l0 conductor the integer of quantized electronic half-waves is always laid

  12. Students' Experimental Research Competences in the Study of Physics

    Science.gov (United States)

    Kurbanbekov, Bakytzhan A.; Turmambekov, Torebai A.; Baizak, Usen A.; Saidakhmetov, Pulat A.; Abdraimov, Rakhymzhan T.; Bekayeva, Aigerim E.; Orazbayeva, Kuldarkhan O.

    2016-01-01

    The actuality of the investigated problem is caused by the need for students' training at pedagogical high schools to meet the challenges of research activities and the insufficient development of the theoretical, content-technological, scientific and methodological aspects of the formation of their experimental research competencies at the…

  13. The Challenges of Intersectionality: Researching Difference in Physical Education

    Science.gov (United States)

    Flintoff, A.; Fitzgerald, H.; Scraton, S.

    2008-01-01

    Researching the intersection of class, race, gender, sexuality and disability raises many issues for educational research. Indeed, Maynard (2002, 33) has recently argued that "difference is one of the most significant, yet unresolved, issues for feminist and social thinking at the beginning of the twentieth century". This paper reviews…

  14. Nuclear physics with neutrons - fundamental and applied researches

    CERN Document Server

    Furman, V I

    2001-01-01

    The investigations in the field of the nuclear neutron physics in JINR are discussed briefly. The following problems are considered: realization of the project of a new source of resonance neutrons (IREN); development and testing the new perspective techniques for experiments at IREN; studying the symmetry breaking in fundamental interactions in nuclei and obtaining the actual technological nuclear data. The neutron energy is in the range of 10 sup - sup 9 eV-10 MeV

  15. Fluid Physics Research on the International Space Station

    Science.gov (United States)

    Corban, Robert

    2000-01-01

    This document is a presentation in viewgraph format which reviews the laboratory facilities and their construction for the International Space Station(ISS). Graphic displays of the ISS are included, with special interest in the facilities available on the US Destiny module and other modules which will be used in the study of fluid physics on the ISS. There are also pictures and descriptions of various components of the Fluids and Combustion Facility.

  16. Research program in nuclear and solid state physics

    Science.gov (United States)

    Stronach, C. E.

    1973-01-01

    The spectra of prompt gamma rays emitted following nuclear pion absorption were studied to determine the states of excited daughter nuclei, and the branching ratios for these states. Studies discussed include the negative pion absorption of C-12, S-32, and N-14; and the positive pion absorption on 0-16. Abstracts of papers submitted to the conference of the American Physical Society are included.

  17. Research of Simulation in Character Animation Based on Physics Engine

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Computer 3D character animation essentially is a product, which is combined with computer graphics and robotics, physics, mathematics, and the arts. It is based on computer hardware and graphics algorithms and related sciences rapidly developed new technologies. At present, the mainstream character animation technology is based on the artificial production of key technologies and capture frames based on the motion capture device technology. 3D character animation is widely used not only in the production of film, animation, and other commercial areas but also in virtual reality, computer-aided education, flight simulation, engineering simulation, military simulation, and other fields. In this paper, we try to study physics based character animation to solve these problems such as poor real-time interaction that appears in the character, low utilization rate, and complex production. The paper deeply studied the kinematics, dynamics technology, and production technology based on the motion data. At the same time, it analyzed ODE, PhysX, Bullet, and other variety of mainstream physics engines and studied OBB hierarchy bounding box tree, AABB hierarchical tree, and other collision detection algorithms. Finally, character animation based on ODE is implemented, which is simulation of the motion and collision process of a tricycle.

  18. Simplified Physics Based Models Research Topical Report on Task #2

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta; Ganesh, Priya

    2014-10-31

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.

  19. The research of teenager's physical development level in summer health tent camps.

    Directory of Open Access Journals (Sweden)

    Rybalko P.F.

    2011-05-01

    Full Text Available The problems of forming and content of physical-health work in scout camp organization are examined. In the research took part 230 pupils of 11 - 15 years old. The level of physical development and physical preparation of children is estimated; it is found out that majority of children have "lower that average level". The effectiveness of express-methodic that gives the estimation level of physical development and physical preparation of 11 - 15 years old schoolchildren is proved. Special complex of health physical training programmers for children summer camps is worked out.

  20. Research on linear driving of wave maker; Zoha sochi no linear drive ka kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, I.; Taniguchi, S.; Nohara, T. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1997-10-01

    The water tank test of marine structures or submarine structures uses a wave maker to generate waves. A typical flap wave maker uses the wave making flap penetrating a water surface whose bottom is fixed on a tank bottom through a hinge, and the top is connected with a rod driven by rotating servomotor for reciprocating motion of the flap. However, this driving gear using a rotating servomotor and a bowl- screw has some defects such as noise caused by bowl rotation, backlash due to wear and limited driving speed. A linear motor with less friction mechanisms was thus applied to the driving gear. The performance test result of the prototype driving gear using a linear motor showed the possibility of the linear driven wave maker. The linear driven wave maker could also achieve low noise and simple mechanism. The sufficient durability and applicability of the linear driven wave maker mechanism were confirmed through strength calculation necessary for improving the prototype wave maker. 1 ref., 5 figs., 2 tabs.

  1. RESEARCH OF INFLUENCE ON DISTRIBUTION OF RADIO WAVES IN CITY OF PROFILE OF HIS BUILDING

    Directory of Open Access Journals (Sweden)

    D. A. Zatuchny

    2015-01-01

    Full Text Available N this article influence is investigated on distribution of radio waves in the municipal terms of height and building closeness. A model over of distribution of radio waves is brought from an aircraft side. Charts over of dependence of probability of arrival of signal are brought from airship from the height of flight and middle number of building.

  2. High Energy Physics: Report of research accomplishments and future goals, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-09-05

    This report discusses high energy physics research in the following areas: Research in theoretical physics; phenomenology; experimental computer facility at Caltech; Beijing BES; MACRO; CLEO II; SLD; L3 at LEP; the B Factory R & D Program; SSC GEM Detector; and a high resolution barium fluoride calorimeter for the SSC.

  3. Towards an Activist Approach to Research and Advocacy for Girls and Physical Education

    Science.gov (United States)

    Oliver, Kimberly L.; Kirk, David

    2016-01-01

    Background: Much research and practice in the field of physical activity and physical education for girls has been trapped in a reproductive cycle of telling the "same old story" as if it is news over and over again, since at least the 1980s. A thread running through this narrative is that despite all of this research and related…

  4. Teaching Einsteinian Physics at Schools: Part 3, Review of Research Outcomes

    Science.gov (United States)

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-01-01

    This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics…

  5. Current Practices and Future Directions in Reporting Disability in School-Based Physical Education Research

    Science.gov (United States)

    Haegele, Justin Anthony; Hodge, Samuel

    2017-01-01

    The primary purpose of this study was to determine what trends exist in the identification and description of participants with disabilities used in school-based physical education research. A total of 60 research articles published in the "Journal of Teaching in Physical Education" from 2010-2014 which included school-aged individuals…

  6. Physical chemistry research for engineering and applied sciences

    CERN Document Server

    Pearce, Eli M; Pethrick, Richard A; Zaikov, Gennady E

    2015-01-01

    PrefaceRegularity of Oxidation of Waste Fibrous and Film Materials of Polyethylene and Polypropylene: A Research Note; M. V. Bazunova, S. V. Kolesov, R. F. Tukhvatullin, E. I. Kulish, G. E. ZaikovA Research Note on Creation of ?arbon-Polymer Nanocomposites with Polyethylene as a Binder; Sergei V. Kolesov, Marina V. Bazunova, Elena I. Kulish, Denis R. Valiev, and Gennady E. ZaikovA Research Note on the Influence of Hybrid Antioxidants Ichphans on the Structure of Liposome Lipid Bilayer; E. Yu. Parshina, L. Ya. Gendel', and A. B. RubinDynamically Vulcanized Thermoelastoplastics Based on Butadien

  7. Research on Maritime Radio Wave Multipath Propagation Based on Stochastic Ray Method

    Directory of Open Access Journals (Sweden)

    Han Wang

    2016-01-01

    Full Text Available Multipath effect in vessel communication is caused by a combination of reflections from the sea surface and vessels. This paper proposes employing stochastic ray method to analyze maritime multipath propagation properties. The paper begins by modeling maritime propagation environment of radio waves as random lattice grid, by utilizing maximum entropy principle to calculate the probability of stochastic ray undergoing k time(s reflection(s, and by using stochastic process to produce the basic random variables. Then, the paper constructs the multipath channel characteristic parameters, including amplitude gain, time delay, and impulse response, based on the basic random variables. Finally, the paper carries out a digital simulation in two-dimensional specific fishery fleet model environment. The statistical properties of parameters, including amplitude response, probability delay distribution, and power delay profiles, are obtained. Using these parameters, the paper calculates the root-mean-squared (rms delay spread value with the amount of 9.64 μs. It is a good reference for the research of maritime wireless transmission rate of the vessels. It contributes to a better understanding of the causes and effects of multipath effect in vessel communication.

  8. Two examples of industrial applications of shock physics research

    Science.gov (United States)

    Sanai, Mohsen

    1996-05-01

    An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.

  9. Estimation of directional surface wave spectra from a towed research catamaran

    Science.gov (United States)

    Hanson, K.A.; Hara, T.; Bock, E.J.; Karachintsev, A.B.

    1997-01-01

    During the High-Resolution Remote Sensing Main Experiment (1993), wave height was estimated from a moving catamaran using pitch-rate and roll-rate sensors, a three-axis accelerometer, and a capacitive wave wire. The wave spectrum in the frequency band ranging roughly from 0.08 to 0.3 Hz was verified by independent buoy measurements. To estimate the directional frequency spectrum from a wave-wire array, the Data-Adaptive Spectral Estimator is extended to include the Doppler shifting effects of a moving platform. The method is applied to data obtained from a fixed platform during the Ris?? Air-Sea Experiment (1994) and to data obtained from a moving platform during the Coastal Ocean Processes Experiment (1995). Both results show that the propagation direction of the peak wind waves compares well with the measured wind direction. When swells and local wind waves are not aligned, the method can resolve the difference of propagation directions. Using the fixed platform data a numerical test is conducted that shows that the method is able to distinguish two wave systems propagating at the same frequency but in two different directions.

  10. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    Science.gov (United States)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  11. Electromagnetic wave scattering from a forest or vegetation canopy - Ongoing research at the University of Texas at Arlington

    Science.gov (United States)

    Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.

    1993-01-01

    The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.

  12. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.

    2014-01-01

    and experimental validation. Coast. Eng. 71,37-511. We also correct several errors which unfortunately appeared in that manuscript. In the present part I, the full second-order coupling theory for irregular wave is described in detail. The new second-order coupling signal is presented including both superharmonics...... interpolation and the fourth-order Runge-Kutta scheme, with a numerical velocity time series which is decomposed by the Newton-Raphson iterative method. Analytical evaluations on the suppression of spurious free waves and the relative errors of the resultant bound waves have been conducted by considering a 2nd......-order, bi-chromatic wave over a range of dimensionless water depth and oscillation frequency combinations, indicating that the resultant wave quality is significantly improved using the second-order coupling theory. A separate verification combining numerical and experimental model of the theory...

  13. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    Science.gov (United States)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50

  14. Cognitive development in introductory physics: A research-based approach to curriculum reform

    Science.gov (United States)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish

  15. Ultrasonic Shear Wave Elasticity Imaging (SWEI) Sequencing and Data Processing Using a Verasonics Research Scanner.

    Science.gov (United States)

    Deng, Yufeng; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2016-10-03

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage.

  16. Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner.

    Science.gov (United States)

    Deng, Yufeng; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2017-01-01

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This paper presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation, is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage.

  17. The first Italian doctorate (PhD Course) in Physics Education Research

    Science.gov (United States)

    Michelini, Marisa; Santi, Lorenzo

    2008-05-01

    The first PhD Italian course in Physics Education Research in Udine aims to qualify young researchers and teachers coming from all the Italian groups of research in the field. It becomes a context for developing research projects carried out following parallel research lines on: Teaching/Learning paths for didactic innovation, cognitive research, ICT for strategies to overcome conceptual knots in physics; E-learning for personalization; d) Computer on-line experiments and modelling; e) Teacher formation and training; f) Informal learning in science.

  18. Learning to Be Researchers in Physical Education and Sport Pedagogy: The Perspectives of Doctoral Students and Early Career Researchers

    Science.gov (United States)

    Stylianou, Michalis; Enright, Eimear; Hogan, Anna

    2017-01-01

    Numerous academics have argued that if a field is to progress, attention needs to be paid to how future generations of researchers are being prepared. To date, data generated on research training in physical education and sport pedagogy (PESP) have primarily focused on students undertaking doctoral programmes with a formal coursework component,…

  19. Experimental Research at the Intensity Frontier in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, Marvin L. [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-06-30

    This Final Report describes DOE-supported Intensity Frontier research by the University of Minnesota during the interval April 1, 2011 to March 31, 2014. Primary activities included the MINOS, NOvA and LBNE Experiments and Heavy Quark studies at BES III.

  20. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  1. Developing a Physics Expert Identity in a Biophysics Research Group

    Science.gov (United States)

    Rodriguez, Idaykis; Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird H.

    2015-01-01

    We investigate the development of expert identities through the use of the sociocultural perspective of learning as participating in a community of practice. An ethnographic case study of biophysics graduate students focuses on the experiences the students have in their research group meetings. The analysis illustrates how the communities of…

  2. South African Journal for Research in Sport, Physical Education and ...

    African Journals Online (AJOL)

    The impact of tourist and travel activities on facets of psychological well-being : research article · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Sonja Steyn, Melville Saayman, Alida Nienaber, 97-106. http://dx.doi.org/10.4314/sajrs.v26i1.25880 ...

  3. Report on Research in Experimental High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rusack, Roger W. [Univ. of Minnesota, Minneapolis, MN (United States); Cushman, Priscilla [Univ. of Minnesota, Minneapolis, MN (United States); Poling, Ronald [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-01-06

    In the past three years the groups supported by the DOE have all made significant progress and posted major successes. The Minnesota CMS group has played leading roles in five data analyses and has had major roles in detector operations, the data management and the detector upgrades that are planned for for the LHC and those that are planned for the high-luminosity LHC. The CDMS-II experiment held the lead in WIMP sensitivity over the last decade, and is still the most sensitive detector in the world in the low WIMP mass region, with a recent 3σ hint of 8 GeV/c2 WIMP candidates in the silicon data. SuperCDMS, with three orders of magnitude better electron recoil background rejection, has been collecting data since October 2011. Since all dark matter experiments require a better understanding of neutron backgrounds to make further advances in sensitivity, Cushman has expanded the Minnesota effort on backgrounds to the national level, where she is leading a coordinated effort in neutron simulations for underground physics. The work of Mandic on 100 mm detectors both for Super-CDMS and beyond has advanced rapidly. Also at the Intensity Frontier, the BESIII experiment has had a successful year of operation largely focused on searches for and studies of new "charmonium-like" states above DD threshold. At least one new state has been observed so far, with hints of others. An intensive effort to understand their nature and gain new insight into the strong interaction continues. BESIII has also produced a large number of other results in charmonium decay and light-hadronic physics.

  4. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  5. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  6. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    Science.gov (United States)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  7. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    Science.gov (United States)

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.

  8. Research of the elastic waves generated by a pulse laser. Excitation mechanism of elastic waves and application to nondestructive testing; Pulse laser de reikishita danseiha ni kansuru kenkyu. Danseiha reiki no mechanism to hihakai kensa eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering

    1994-07-20

    A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.

  9. Metamaterials and wave control

    CERN Document Server

    Lheurette, Eric

    2013-01-01

    Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s

  10. Integrating Seismology into the Physics Curriculum: An Opportunity to Introduce High-School Students to Scientific Research

    Science.gov (United States)

    Sayers, J.

    2002-12-01

    High school physics provides a natural vehicle for introducing seismology and geophysics concepts into the secondary science curriculum. Fundamental principles of mechanics and wave motion can be studied through investigation of the real-world phenomena of earthquakes and the seismic waves they generate. In turn, the excitement of a major earthquake and news media coverage stimulates student interest and involvement, especially if students are able to record the event. Too often, students' exposure to science has been confined to textbook work or "cookbook" lab exercises and they develop a very limited understanding of how science works. The National Science Standards, as well as many state standards, have emphasized the importance of hands-on inquiry-based activities, the use of real data and the introduction of research as fundamental to improving students' understanding of science. Students who run their own seismic station have the opportunity to experience the rewards and frustrations that can result from real scientific work. At Northview High School (Brazil, Indiana) we have installed a PEPP broadband seismometer in an external vault. Physics students are responsible for the day-to-day operation of the station. They download data and produce and post seismograms of earthquakes that have been recorded by the station and identified by the students. A hallway display case provides students, faculty and staff with a continuous (nearly) live display of the data being collected. The operation of the station has generated a great deal of student and community interest in the study of earthquakes. In this presentation, I will describe how seismology has been incorporated into the physics curriculum at Northview High School, and how our students have benefited from the opportunity to take part in hands-on scientific research. I will describe our participation in a regional seismic network through seismic data acquisition, data analysis using seismological software

  11. Physics research opportunities with synchrotron x-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, D.E.

    1984-05-01

    New x-ray sources of substantially increased brilliance would be available from undulator magnets operating on a new-generation 6 GeV storage ring. To understand what research opportunities would be provided by such improved sources, a number of existing x-ray scattering techniques are briefly described with a qualitative analysis of their requirements for source brilliance. In addition to improvements of existing techniques which will permit application to a generally broader range of problems, new opportunities for magnetic and inelastic x-ray scattering are discussed. 25 references, 15 figures.

  12. Background of the completed research; relevances to solar physics

    Science.gov (United States)

    Sellin, I. A.

    1973-01-01

    Research activities reported consider the atomic structures of highly stripped heavy ions and their modes of formation and destruction in collisions. The lifetime of the metastable 2 3p1 state of the two electron ion F-7(+) was determined by measuring the radiative decay of an excited helium-like fluorine beam, Metastable state quenching measurements were performed on a helium-like ion to obtain the 1 1S0 to 2 3p2 transition probability. Exponential exchange state dependence of X-ray production cross sections was studied in heavy target atoms during collisions with light charged particles.

  13. Research in theoretical nuclear and neutrino physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevic, Ina [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2014-06-14

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  14. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  15. Wave Modelling - The State of the Art

    Science.gov (United States)

    2007-09-27

    Heverlee, Belgium q Universitt) di Torino, Dipartimento di Fisica Generale, Via P. Giuria 1, 10125 Torino, Italy A. M. Obukhov Institute for Physics of...and experimental research of physics of the spectral dissipation .................... 623 4.1.1. Spectral dissipation due to wave breaking...wave spectrum to a power law of the form of w-4 in agreement with experimental observations starting from Toba (1972). In paper (Lavrenov et al., 2002

  16. Application of the selected physical methods in biological research

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba

    2013-01-01

    Full Text Available This paper deals with the application of acoustic emission (AE, which is a part of the non-destructive methods, currently having an extensive application. This method is used for measuring the internal defects of materials. AE has a high potential in further research and development to extend the application of this method even in the field of process engineering. For that matter, it is the most elaborate acoustic emission monitoring in laboratory conditions with regard to external stimuli. The aim of the project is to apply the acoustic emission recording the activity of bees in different seasons. The mission is to apply a new perspective on the behavior of colonies by means of acoustic emission, which collects a sound propagation in the material. Vibration is one of the integral part of communication in the community. Sensing colonies with the support of this method is used for understanding of colonies biological behavior to stimuli clutches, colony development etc. Simulating conditions supported by acoustic emission monitoring system the illustrate colonies activity. Collected information will be used to represent a comprehensive view of the life cycle and behavior of honey bees (Apis mellifera. Use of information about the activities of bees gives a comprehensive perspective on using of acoustic emission in the field of biological research.

  17. STRUCTURE AND INTERFACE OF PROGRAM FACILITIES FOR RESEARCH OF PHYSICAL PROCESSES ON COMPUTER MODELS

    Directory of Open Access Journals (Sweden)

    Vitalii M. Bazurin

    2014-11-01

    Full Text Available Research of physical processes on computer models is the one of ways of research approach in the study of general physics in pedagogical universities. The basic elements of software for research of physical processes on computer models are certain in the article: structure of program mean and feature of interface. The author offers his vision of structure of program facilities by means which the computer models of the physical phenomena and processes are realized: block of registration, block of entrance background check, block of design of physical process and block of results verification. A structure of this kinds of software is given, in opinion of author, is universal. The program facilities developed by an author are described in the article.

  18. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.

    Science.gov (United States)

    Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence

    2005-03-01

    2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.

  19. Conceptualizing and Defining the Intention Construct for Future Physical Activity Research.

    Science.gov (United States)

    Rhodes, Ryan E; Rebar, Amanda L

    2017-10-01

    Intention has been an extremely important concept in physical activity theory and research but is complicated by a double-barreled definition of a decision to perform physical activity and the commitment to enact that decision. We put forth the hypothesis that these separate meanings have different measurement requirements, are situated in distinctly different intention-based models, and show discrete findings when explaining physical activity motives.

  20. Implementing Online Physical Education

    Science.gov (United States)

    Mohnsen, Bonnie

    2012-01-01

    Online physical education, although seemingly an oxymoron, appears to be the wave of the future at least for some students. The purpose of this article is to explore research and options for online learning in physical education and to examine a curriculum, assessment, and instructional model for online learning. The article examines how physical…

  1. Hydrodynamic Modeling of Free Surface Interactions and Implications for P and Rg Waves Recorded on the Source Physics Experiments

    Science.gov (United States)

    Larmat, C. S.; Rougier, E.; Knight, E.; Yang, X.; Patton, H. J.

    2013-12-01

    A goal of the Source Physics Experiments (SPE) is to develop explosion source models expanding monitoring capabilities beyond empirical methods. The SPE project combines field experimentation with numerical modelling. The models take into account non-linear processes occurring from the first moment of the explosion as well as complex linear propagation effects of signals reaching far-field recording stations. The hydrodynamic code CASH is used for modelling high-strain rate, non-linear response occurring in the material near the source. Our development efforts focused on incorporating in-situ stress and fracture processes. CASH simulates the material response from the near-source, strong shock zone out to the small-strain and ultimately the elastic regime where a linear code can take over. We developed an interface with the Spectral Element Method code, SPECFEM3D, that is an efficient implementation on parallel computers of a high-order finite element method. SPECFEM3D allows accurate modelling of wave propagation to remote monitoring distance at low cost. We will present CASH-SPECFEM3D results for SPE1, which was a chemical detonation of about 85 kg of TNT at 55 m depth in a granitic geologic unit. Spallation was observed for SPE1. Keeping yield fixed we vary the depth of the source systematically and compute synthetic seismograms to distances where the P and Rg waves are separated, so that analysis can be performed without concern about interference effects due to overlapping energy. We study the time and frequency characteristics of P and Rg waves and analyse them in regard to the impact of free-surface interactions and rock damage resulting from those interactions. We also perform traditional CMT inversions as well as advanced CMT inversions, developed at LANL to take into account the damage. This will allow us to assess the effect of spallation on CMT solutions as well as to validate our inversion procedure. Further work will aim to validate the developed

  2. Kirkham’s legacy and contemporary challenges in soil physics research

    Science.gov (United States)

    This paper, written by the winners of the Don and Betty Kirkham Award in Soil Physics, is dedicated to the legacy of Don Kirkham. It describes eight longstanding or emerging research areas in soil physics that contain key unsolved problems. All are field-oriented with applications to a number of imp...

  3. Physical Education PLC: Neoliberalism, Curriculum and Governance. New Directions for PESP Research

    Science.gov (United States)

    Evans, John; Davies, Brian

    2014-01-01

    How might Physical Education and Sport Pedagogy (PESP) communities in the UK, Europe, Australasia and elsewhere go about researching the implications of neoliberalism and increasing privatisation of Education for the entitlements of young people to a common, comprehensive, high quality, equitable Physical Education (PE)? Our analyses suggest that…

  4. Status and perspectives of atomic physics research at GSI : The new GSI accelerator project

    NARCIS (Netherlands)

    Stolker, T; Backe, H; Beyer, HF; Brauning-Demian, A; Hagmann, S; Ionescu, DC; Jungmann, K; Kluge, HJ; Kozhuharov, C; Kuhl, T; Liesen, D; Mann, R; Mokler, PH; Quint, W; Bosch, F.M.

    A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and

  5. CMS Young Researchers Award 2013 and Fundamental Physics Scholars Award from the CMS Experiment

    CERN Multimedia

    Lapka, Marzena

    2014-01-01

    Photo 2: CMS Fundamental Physics Scholars (FPSs) 1st prize: Joosep Pata, from Estonian National Institue of Chemical Physics and Biophysics / Photo 1 and 3: CMS Young Researchers Award. From left to right: Guido Tonelli, Colin Bernet, Andre David, Oliver Gutsche, Dmytro Kovalskyi, Andrea Petrucci, Joe Incandela and Jim Virdee

  6. A narrative review of research on the effects of physical activity on ...

    African Journals Online (AJOL)

    The article explores different types and effects of physical activity for people living with HIV. Considering the lack of studies done in African contexts and the disparity between research settings and natural settings, a narrative review of the literature was conducted and contextualised to South Africa. Various physical ...

  7. Examining Problem Solving in Physics-Intensive Ph.D. Research

    Science.gov (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-01-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically…

  8. Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving

    Science.gov (United States)

    Milbourne, Jeff; Bennett, Jonathan

    2017-01-01

    Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or…

  9. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  10. Research priorities for child and adolescent physical activity and sedentary behaviours

    DEFF Research Database (Denmark)

    Gillis, Lauren; Tomkinson, Grant; Olds, Timothy

    2013-01-01

    The quantity and quality of studies in child and adolescent physical activity and sedentary behaviour have rapidly increased, but research directions are often pursued in a reactive and uncoordinated manner....

  11. Analysis of post-graduate research in the department of physical ...

    African Journals Online (AJOL)

    graduate studies conducted in the department of physical education of Kenyatta University with a view to establishing their contribution to sports growth and development in Kenya. ... Keywords: research, post-graduate, sport growth and development

  12. Research in elementary particle physics. Technical progress report, June 1, 1991--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

    1992-08-01

    This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP).

  13. Summary of informal workshop on state of ion beam facilities for atomic physics research

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  14. Main achievements in research on Plasma Physics and Controlled Fusion in 2010 in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Grishina, I. A.; Ivanov, V. A.; Kovrizhnykh, L. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2011-12-15

    The key results presented at the XXXVIII International Zvenigorod Conference on Plasma Physics and Controlled Fusion, held February 14-18, 2011 are reviewed, and the main research directions are analyzed.

  15. [High energy physics research]: Annual performance report, December 1, 1991--November 30, 1992. [Northwestern Univ

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J; Block, M; Buchholz, D; Gobbi, B; Schellman, H; Buchholz, D; Rosen, J; Miller, D; Braaten, E; Chang, D; Oakes, R; Schellman, H

    1992-01-01

    The various segments of the Northwestern University high energy physics research program are reviewed. Work is centered around experimental studies done primarily at FNAL; associated theoretical efforts are included.

  16. Research on assessment of bolted joint state using elastic wave propagation

    Science.gov (United States)

    Kędra, R.; Rucka, M.

    2015-07-01

    The work contains results of experimental investigation of elastic wave propagation in a bolted single-lap joint. Tests were carried out for the excitation perpendicular to the connection plane. In experimental studies, PZT transducers were used for both excitation and registration of ultrasonic waves. The analyses took into account varying contact conditions between the elements of the connection depending on the value of the prestressing force. The influence of loosening/tightening of bolts on the energy dissipation was analysed. The experimental results proved the influence of bolt torque on quantitative characteristics of the signals. To improve the diagnostic possibilities only the initial parts of signals were analysed.

  17. Linking behavior in the physics education research coauthorship network

    Directory of Open Access Journals (Sweden)

    Katharine A. Anderson

    2017-05-01

    Full Text Available There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real time. In this paper, we use thirty years of data from an emerging scientific community to look at that crucial early stage in the development of a social network. We show that when the field was very young, islands of individual researchers labored in relative isolation, and the coauthorship network was disconnected. Thirty years later, rather than a cluster of individuals, we find a true collaborative community, bound together by a robust collaboration network. However, this change did not take place gradually—the network remained a loose assortment of isolated individuals until the mid 2000s, when those smaller parts suddenly knit themselves together into a single whole. In the rest of this paper, we consider the role of three factors in these observed structural changes: growth, changes in social norms, and the introduction of institutions such as field-specific conferences and journals. We have data from the very earliest years of the field, a period which includes the introduction of two different institutions: the first field-specific conference, and the first field-specific journals. We also identify two relevant behavioral shifts: a discrete increase in coauthorship coincident with the first conference, and a shift among established authors away from collaborating with outsiders, towards collaborating with each other. The interaction of these factors gives us insight into the formation of collaboration networks more broadly.

  18. Linking behavior in the physics education research coauthorship network

    Science.gov (United States)

    Anderson, Katharine A.; Crespi, Matthew; Sayre, Eleanor C.

    2017-06-01

    There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real time. In this paper, we use thirty years of data from an emerging scientific community to look at that crucial early stage in the development of a social network. We show that when the field was very young, islands of individual researchers labored in relative isolation, and the coauthorship network was disconnected. Thirty years later, rather than a cluster of individuals, we find a true collaborative community, bound together by a robust collaboration network. However, this change did not take place gradually—the network remained a loose assortment of isolated individuals until the mid 2000s, when those smaller parts suddenly knit themselves together into a single whole. In the rest of this paper, we consider the role of three factors in these observed structural changes: growth, changes in social norms, and the introduction of institutions such as field-specific conferences and journals. We have data from the very earliest years of the field, a period which includes the introduction of two different institutions: the first field-specific conference, and the first field-specific journals. We also identify two relevant behavioral shifts: a discrete increase in coauthorship coincident with the first conference, and a shift among established authors away from collaborating with outsiders, towards collaborating with each other. The interaction of these factors gives us insight into the formation of collaboration networks more broadly.

  19. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  20. Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics.

    Science.gov (United States)

    Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping

    2016-10-01

    The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.

  1. Waves in Motion

    Science.gov (United States)

    McGourty, L.; Rideout, K.

    2005-12-01

    "Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.

  2. Essay: the tau lepton and thirty years of changes in elementary particle physics research.

    Science.gov (United States)

    Perl, M L

    2008-02-22

    Starting with the 1975 discovery of the tau lepton, I look back on the last three decades of change in the substance and style of experimental and theoretical research in elementary particle physics. I recount the major accomplishments of those decades and predict a bright future for particle physics in the next two decades. Turning to three problems, I lament the change in theoretical style and taste, I discuss the growth in the complexity, size, and cost of particle physics experiments, and I conclude with a pessimistic comment on the size of particle physics collaborations.

  3. Increasing specificity of correlate research: exploring correlates of children's lunchtime and after-school physical activity.

    Science.gov (United States)

    Stanley, Rebecca M; Ridley, Kate; Olds, Timothy S; Dollman, James

    2014-01-01

    The lunchtime and after-school contexts are critical windows in a school day for children to be physically active. While numerous studies have investigated correlates of children's habitual physical activity, few have explored correlates of physical activity occurring at lunchtime and after-school from a social-ecological perspective. Exploring correlates that influence physical activity occurring in specific contexts can potentially improve the prediction and understanding of physical activity. Using a context-specific approach, this study investigated correlates of children's lunchtime and after-school physical activity. Cross-sectional data were collected from 423 South Australian children aged 10.0-13.9 years (200 boys; 223 girls) attending 10 different schools. Lunchtime and after-school physical activity was assessed using accelerometers. Correlates were assessed using purposely developed context-specific questionnaires. Correlated Component Regression analysis was conducted to derive correlates of context-specific physical activity and determine the variance explained by prediction equations. The model of boys' lunchtime physical activity contained 6 correlates and explained 25% of the variance. For girls, the model explained 17% variance from 9 correlates. Enjoyment of walking during lunchtime was the strongest correlate for both boys and girls. Boys' and girls' after-school physical activity models explained 20% variance from 14 correlates and 7% variance from the single item correlate, "I do an organised sport or activity after-school because it gets you fit", respectively. Increasing specificity of correlate research has enabled the identification of unique features of, and a more in-depth interpretation of, lunchtime and after-school physical activity behaviour and is a potential strategy for advancing the physical activity correlate research field. The findings of this study could be used to inform and tailor gender-specific public health messages and

  4. An Integrated Research Infrastructure for Validating Cyber-Physical Energy Systems

    DEFF Research Database (Denmark)

    Strasser, T. I.; Moyo, C.; Bründlinger, R.

    2017-01-01

    interconnected power grids, and their corresponding components, in a more effective way. As a consequence of these developments, the traditional power system is being transformed into a cyber-physical energy system, a smart grid. Previous and ongoing research have tended to mainly focus on how specific aspects...... of smart grids can be validated, but until there exists no integrated approach for the analysis and evaluation of complex cyber-physical systems configurations. This paper introduces integrated research infrastructure that provides methods and tools for validating smart grid systems in a holistic, cyber-physical...

  5. Theoretical-research summer: For a new generation of experts on high energy physics

    Science.gov (United States)

    Ramos-Sánchez, Saúl

    2016-10-01

    Motivated by the need to strengthen the comprehensive training of young Mexican physicists interested in theoretical high energy physics, the Theoretical-research summer on high energy physics program was conceived. This program, that celebrates its sixth anniversary, consists in a yearly, nationwide challenging contest in which a board of experts identify the best undergraduate contestants to support them during short research stays in high-energy- theory groups of prestigious international institutions. Out of 80 contestants, the eight awarded students have demonstrated their skills, producing highly advanced (and publicly available) reviews on particle physics, field theory, cosmology and string theory, and a published paper.

  6. Characterising molecules for fundamental physics: an accurate spectroscopic model of methyltrioxorhenium derived from new infrared and millimetre-wave measurements.

    Science.gov (United States)

    Asselin, Pierre; Berger, Yann; Huet, Thérèse R; Margulès, Laurent; Motiyenko, Roman; Hendricks, Richard J; Tarbutt, Michael R; Tokunaga, Sean K; Darquié, Benoît

    2017-02-08

    Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CH3187ReO3 and CH3185ReO3 isotopologues in the gas phase with unprecedented precision. By extending the rotational spectra to the 150-300 GHz range, we characterize the ground state rotational and hyperfine structure up to J = 43 and K = 41, resulting in refinements to the rotational, quartic and hyperfine parameters, and the determination of sextic parameters and a centrifugal distortion correction to the quadrupolar hyperfine constant. We obtain rovibrational data for temperatures between 6 and 300 K in the 970-1015 cm-1 range, at resolutions down to 8 MHz and accuracies of 30 MHz. We use these data to determine more precise excited-state rotational, Coriolis and quartic parameters, as well as the ground-state centrifugal distortion parameter DK of the 187Re isotopologue. We also account for hyperfine structure in the rovibrational transitions and hence determine the upper state rhenium atom quadrupole coupling constant eQq'.

  7. The development and performance of a message-passing version of the PAGOSA shock-wave physics code

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, D.R.; Vaughan, C.T.

    1997-10-01

    A message-passing version of the PAGOSA shock-wave physics code has been developed at Sandia National Laboratories for multiple-instruction, multiple-data stream (MIMD) computers. PAGOSA is an explicit, Eulerian code for modeling the three-dimensional, high-speed hydrodynamic flow of fluids and the dynamic deformation of solids under high rates of strain. It was originally developed at Los Alamos National Laboratory for the single-instruction, multiple-data (SIMD) Connection Machine parallel computers. The performance of Sandia`s message-passing version of PAGOSA has been measured on two MIMD machines, the nCUBE 2 and the Intel Paragon XP/S. No special efforts were made to optimize the code for either machine. The measured scaled speedup (computational time for a single computational node divided by the computational time per node for fixed computational load) and grind time (computational time per cell per time step) show that the MIMD PAGOSA code scales linearly with the number of computational nodes used on a variety of problems, including the simulation of shaped-charge jets perforating an oil well casing. Scaled parallel efficiencies for MIMD PAGOSA are greater than 0.70 when the available memory per node is filled (or nearly filled) on hundreds to a thousand or more computational nodes on these two machines, indicating that the code scales very well. Thus good parallel performance can be achieved for complex and realistic applications when they are first implemented on MIMD parallel computers.

  8. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  9. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  10. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  11. Extending the Theoretical Framing for Physics Education Research: An Illustrative Application of Complexity Science

    Science.gov (United States)

    Forsman, Jonas; Moll, Rachel; Linder, Cedric

    2014-01-01

    The viability of using complexity science in physics education research (PER) is exemplified by (1) situating central tenets of student persistence research in complexity science and (2) drawing on the methods that become available from this to illustrate analyzing the structural aspects of students' networked interactions as an important dynamic…

  12. Physical Activity of Youth with Intellectual Disability: Review and Research Agenda

    Science.gov (United States)

    Frey, Georgia C.; Stanish, Heidi I.; Temple, Viviene A.

    2008-01-01

    This review characterizes physical activity behavior in youth with intellectual disability (ID) and identifies limitations in the published research. Keyword searches were used to identify articles from MEDLINE, EBSCOhost Research Databases, Psych Articles, Health Source, and SPORT Discus, and ProQuest Dissertations and Theses up to June 2007.…

  13. The Implementation of Models-Based Practice in Physical Education through Action Research

    Science.gov (United States)

    Casey, Ashley; Dyson, Ben

    2009-01-01

    The purpose of this study was to explore the use of action research as a framework to investigate cooperative learning and tactical games as instructional models in physical education (PE). The teacher/researcher taught a tennis unit using a combination of Cooperative Learning and Teaching Games for Understanding to three classes of boys aged…

  14. Using Heart Rate Monitors in Research on Fitness Levels of Children in Physical Education.

    Science.gov (United States)

    Strand, Brad; Reeder, Steve

    1993-01-01

    Demonstrates the use of heart rate monitors (HRMs) in fitness research and examines heart rate intensity levels of middle school students while they participated in a variety of physical education activities throughout a school year. Research shows the HRM has considerable potential in assessing fitness achievements in school-age children. (GLR)

  15. VII. The history of physical activity and academic performance research: informing the future.

    Science.gov (United States)

    Castelli, Darla M; Centeio, Erin E; Hwang, Jungyun; Barcelona, Jeanne M; Glowacki, Elizabeth M; Calvert, Hannah G; Nicksic, Hildi M

    2014-12-01

    The study of physical activity, physical fitness, and academic performance research are reviewed from a historical perspective, by providing an overview of existing publications focused on children and adolescents. Using rigorous inclusion criteria, the studies were quantified and qualified using both meta-analytic and descriptive evaluations analyses, first by time-period and then as an overall summary, particularly focusing on secular trends and future directions. This review is timely because the body of literature is growing exponentially, resulting in the emergence of new terminology, methodologies, and identification of mediating and moderating factors. Implications and recommendations for future research are summarized. © 2014 The Society for Research in Child Development, Inc.

  16. Budget projections - 1991 through 1996 for research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    This research program in high energy physics is carried out under the general supervision of a committee which is composed of G.W. Brandenburg, G.J. Feldman, M.E. Franklin, R.J. Glauber, K. Kinoshita, F.M. Pipkin, K. Strauch, R. Wilson, and H. Yamamoto. Professor G.J. Feldman currently serves as chair of this committee. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. In the fall of 1991 S. Mishra will join this committee. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting thirteen research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared proportionally by the experimental groups. Harvard financially supports this high energy physics research program in many ways.

  17. Research on sensor technology of Lamb-wave signal acquisition using optical low-coherence

    Science.gov (United States)

    Zhu, Y. K.; Yang, C.; Li, X. W.; Chong, B.

    2012-10-01

    Non-destructive testing of composite materials is a key technology issue in equipment testing. Among the emerging new testing methods, Lamb-wave technology is getting more and more attention. This paper proposed a sensing method to acquire the Lamb-wave signal in thin plate based on optical low-coherence principles. Methods to acquire Lamb-wave in thin plate using optical low-coherence technology were analyzed, and the technical path of non-contact, high-precision method was chosen. Complete in-line experimental system and methods were designed and built up for testing. A sensor system based on Michelson low-coherence interferometer was set up. The distributed optical fiber sensors were arranged on the top of sample materials for signal detection. Mirrors to enhance reflection intensity were attached on the sample. The phase of sensing arm was modulated by PZT vibration. Then signals were detected and processed by Daubechies10 wavelet and Gabor wavelet. In-line testing of thin plate with features of high-precision and high signal-noise-ratio was realized, which is meaningful to dynamic testing of large-scale structure.

  18. Community development corporations could potentially improve research on causal associations between environmental features and physical activity.

    Science.gov (United States)

    Suminski, Richard; Wasserman, Jason A; Mayfield, Carlene A; Kubic, Micah; Porter, Julie

    2014-09-01

    Community development corporations (CDC) are worldwide entities that create environments facilitating physical activity. At the same time, researchers face challenges conducting cost-effective, longitudinal studies on how environmental changes affect physical activity. To provide evidence suggesting that CDC initiatives could potentially be integrated into a research framework for examining the influence of environmental improvements on physical activity. Quality of Life Plans (QLP) developed by a CDC and stakeholders from 6 lower-income neighborhoods were systematically reviewed to obtain data about environmental features targeted for change and the strategies used to bring about those changes. Strategies were deemed pro-physical activity if previous studies suggested they have the potential to affect physical activity. A total of 348 strategies were proposed of which 164 were pro-physical activity. Six environmental features were targeted including crime (57 strategies), aesthetics (39), facilities (30), walkability (17), destinations (14), and programs (5). Strategies involved implementing (90 strategies), planning (33), assessing (26), and securing funding (13). Progress reports indicated that 37.4% of the pro-physical activity strategies were implemented 1 year following the development of the QLPs. These results suggest that activities of CDCs could potentially be systematically integrated into the scientific study of environmental influences on physical activity.

  19. Highlighting ten years of physics education research in the upper division

    Science.gov (United States)

    Ambrose, Bradley

    2015-04-01

    The field of Physics Education Research (PER) has for over thirty years provided insights into student thinking and guided the development and assessment of reformed teaching strategies and practices in introductory physics courses. In the last decade or so, researchers have expanded the domain of such investigations to upper-division courses where undergraduate majors study more advanced content and begin to see themselves as future physicists. The upcoming Focused Collection on Upper Division PER brings together work from researchers active in these new frontiers of PER. In this presentation we provide an overview of the studies in this collection, which offer to the PER and greater physics education communities: new insights about the thinking, behavior, and beliefs of students in the upper division; new tools to innovate instruction, assess student learning, and evaluate teaching effectiveness; and groundbreaking studies of identity development and ``thinking like a physicist'' among physics majors. In this session we also recognize the ten-year anniversary of Physical Review Special Topics: Physics Education Research, an occasion that we will celebrate with an informal reception immediately following the conclusion of this invited session.

  20. Design Of Instructional Objectives Of Undergraduate Solid State Physics Course: A First Step To Physics Education Research

    Science.gov (United States)

    Sharma, S.; Sastri, O.; Ahluwalia, P. K.

    2010-07-01

    It is well known that most of the undergraduate study in India is conducted through the affiliate system in which affiliated colleges run the courses prescribed by a Board of Studies of the affiliating University in the form of a syllabus, which happens to be the only academic link between the students, teachers and the examiners. This document is limited only to defining the contents of the course without any hint about the instructional/learning objectives. Given these limitations of the existing course structure an attempt has been made to define the instructional/learning objectives for an undergraduate course of study in Solid State Physics prescribed in B. Sc. (Honours and Pass Course) in Physics of Himachal Pradesh University, India. It is not only the first step to enhance learning but to make teaching research based as well, as has been practiced in US and West as a foundation of Physics Education Research. The instructional objectives/learning objectives are written using Mager's approach and classified using Bloom's taxonomy. An effort has also been made to make it ready for adoption in the classroom.

  1. Freshman year computer engineering students' experiences for flipped physics lab class: An action research

    Science.gov (United States)

    Akı, Fatma Nur; Gürel, Zeynep

    2017-02-01

    The purpose of this research is to determine the university students' learning experiences about flipped-physics laboratory class. The research has been completed during the fall semester of 2015 at Computer Engineering Department of Istanbul Commerce University. In this research, also known as a teacher qualitative research design, action research method is preferred to use. The participants are ten people, including seven freshman and three junior year students of Computer Engineering Department. The research data was collected at the end of the semester with the focus group interview which includes structured and open-ended questions. And data was evaluated with categorical content analysis. According to the results, students have some similar and different learning experiences to flipped education method for physics laboratory class.

  2. Employing a Participatory Research Approach to Explore Physical Activity among Older African American Women

    Directory of Open Access Journals (Sweden)

    Emerson Sebastião

    2014-01-01

    Full Text Available Introduction. Older African American women are particularly vulnerable to unhealthy lifestyle behaviors such as physical inactivity and the resultant chronic diseases and conditions. This study explored older African American women’s perception of physical activity as well as facilitators of and barriers to being physically active in their local environment. Methods. Using a participatory research approach, a total of 7 women aged 65 years and over had their PA level assessed objectively through accelerometry. In addition, physical activity was discussed through the photo-elicitation procedure, which was supplemented by semistructured interviews. Qualitative thematic analysis was used to identify patterns and themes emerging from participants’ interview. Results. Participants exhibited low levels of physical activity and viewed “physical activity” to be a broadly defined, nonspecific construct. Interviews revealed that many participants lack important knowledge about physical activity. A variety of personal, social, and environmental facilitators and barriers were reported by the participants. Conclusion. Efforts should be made towards clarifying information on physical activity in this population in order to help them incorporate physical activity into their routines, overcome barriers, and make use of opportunities to be active.

  3. Resource Letter RBAI-1: Research-Based Assessment Instruments in Physics and Astronomy

    Science.gov (United States)

    Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.

    2017-04-01

    This resource letter provides a guide to Research-Based Assessment Instruments (RBAIs) of physics and astronomy content. These are standardized assessments that were rigorously developed and revised using student ideas and interviews, expert input, and statistical analyses. RBAIs have had a major impact on physics and astronomy education reform by providing a universal and convincing measure of student understanding that instructors can use to assess and improve the effectiveness of their teaching. In this resource letter, we present an overview of all content RBAIs in physics and astronomy by topic, research validation, instructional level, format, and themes, to help faculty find the best assessment for their course. More details about each RBAI available in physics and astronomy are available at PhysPort: physport.org/assessments.

  4. Description of research design of articles published in four Brazilian physical therapy journals.

    Science.gov (United States)

    Saragiotto, Bruno T; Costa, Lucíola C M; Oliveira, Ronaldo F; Lopes, Alexandre D; Moseley, Anne M; Costa, Leonardo O P

    2014-01-01

    While the research design of articles published in medical journals and in some physical therapy journals has already been evaluated, this has not been investigated in Brazilian physical therapy journals. Objective : To describe the research design used in all articles published in Brazilian scientific journals that are freely available, have high Qualis rankings, and are relevant to physical therapy over a 7-year period. We extracted the bibliometric data, research design, research type (human or animal), and clinical area for all articles published. The articles were grouped into their level of evidence, and descriptive analyses were performed. We calculated the frequency, proportions of articles, and 95% confidence interval of these proportions with each research design in each journal. We cross-tabulated the clinical areas with research designs (expressed as number and percentages). A total of 1,458 articles from four Brazilian journals were found: Revista Brasileira de Fisioterapia, Revista Fisioterapia em Movimento, Revista Fisioterapia e Pesquisa, and Revista Acta Fisiátrica. The majority of articles were classified as level II of evidence (60%), followed by level III (29%) and level I (10%). The most prevalent research designs were cross-sectional studies (38%), single-case or case-series studies, and narrative reviews. Most articles reported human research and were in the musculoskeletal, neurologic, and cardiothoracic areas. Most of the research published in Brazilian physical therapy journals used levels II and III of evidence. Increasing the publication rate of systematic reviews and randomized controlled trials would provide more high-quality evidence to guide evidence-based physical therapy practice.

  5. Description of research design of articles published in four Brazilian physical therapy journals

    Directory of Open Access Journals (Sweden)

    Bruno T. Saragiotto

    2014-03-01

    Full Text Available Background : While the research design of articles published in medical journals and in some physical therapy journals has already been evaluated, this has not been investigated in Brazilian physical therapy journals. Objective : To describe the research design used in all articles published in Brazilian scientific journals that are freely available, have high Qualis rankings, and are relevant to physical therapy over a 7-year period. Method : We extracted the bibliometric data, research design, research type (human or animal, and clinical area for all articles published. The articles were grouped into their level of evidence, and descriptive analyses were performed. We calculated the frequency, proportions of articles, and 95% confidence interval of these proportions with each research design in each journal. We cross-tabulated the clinical areas with research designs (expressed as number and percentages. Results : A total of 1,458 articles from four Brazilian journals were found: Revista Brasileira de Fisioterapia, Revista Fisioterapia em Movimento, Revista Fisioterapia e Pesquisa, and Revista Acta Fisiátrica. The majority of articles were classified as level II of evidence (60%, followed by level III (29% and level I (10%. The most prevalent research designs were cross-sectional studies (38%, single-case or case-series studies, and narrative reviews. Most articles reported human research and were in the musculoskeletal, neurologic, and cardiothoracic areas. Conclusions : Most of the research published in Brazilian physical therapy journals used levels II and III of evidence. Increasing the publication rate of systematic reviews and randomized controlled trials would provide more high-quality evidence to guide evidence-based physical therapy practice.

  6. [Research state and prospect of modelling physical human and its applications].

    Science.gov (United States)

    Zhu, Xianfeng; Su, Yijin; Yu, Hui

    2014-12-01

    Along with the development of computer technologies and digitization of human body's information, the digital human entered into a new stage of modelling physical features from the stage of reconstructing anatomical structures. By summarizing domestic and abroad relevant documents, we in this paper present the general scheme of digital human and the location of physical human as well as its conception and applied value. We especially analyze the modeling process of physical human, core technologies and its research and applications in four main fields: electromagnetic radiation, ultrasound propagation, bioimpedance measurements and biomechanical analysis. We also analyze and summarize existing problems of present physical human model and point out the future development trends of physical human.

  7. A scientometrics and social network analysis of Malaysian research in physics

    Science.gov (United States)

    Tan, H. X.; Ujum, E. A.; Ratnavelu, K.

    2014-03-01

    This conference proceeding presents an empirical assessment on the domestic publication output and structure of scientific collaboration of Malaysian authors for the field of physics. Journal articles with Malaysian addresses for the subject area "Physics" and other sub-discipline of physics were retrieved from the Thomson Reuters Web of Knowledge database spanning the years 1980 to 2011. A scientometrics and social network analysis of the Malaysian physics field was conducted to examine the publication growth and distribution of domestic collaborative publications; the giant component analysis; and the degree, closeness, and betweenness centralisation scores for the domestic co-authorship networks. Using these methods, we are able to gain insights on the evolution of collaboration and scientometric dimensions of Malaysian research in physics over time.

  8. Budget projections 1990, 1991, and 1992 for research in high energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, M. Franklin, S. Geer, R. J. Glauber, K. Kinoshita, F. M. Pipkin, R. F. Schwitters, K. Strauch, M. E. Law, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F.Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard`s educational efforts are concentrated in graduate education. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

  9. 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research

    CERN Document Server

    2017-01-01

    The 18th edition of ACAT will bring together experts to explore and confront the boundaries of computing, automated data analysis, and theoretical calculation technologies, in particle and nuclear physics, astronomy and astrophysics, cosmology, accelerator science and beyond. ACAT provides a unique forum where these disciplines overlap with computer science, allowing for the exchange of ideas and the discussion of cutting-edge computing, data analysis and theoretical calculation technologies in fundamental physics research.

  10. Accelerating science and innovation societal benefits of European research in Particle Physics

    CERN Multimedia

    Radford, Tim; Jakobsson, Camilla; Marsollier, Arnaud; Mexner, Vanessa; O'Connor, Terry

    2013-01-01

    The story so far. Collaborative research in particle physics. The lesson for Europe: co-operation pays. Medicine and life sciences. The body of knowledge: particles harnessed for health. Energy and the environment. Think big: save energy and clean up the planet. Communication and new technologies. The powerhouse of invention. Society and skills. Power to the people. The European Strategy for Particle Physics. Update 2013.

  11. Budget projections 1989, 1990, and 1991 for research in high energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, S. Geer, R.J. Glauber, K. Kinoshita, R. Nickerson, F.M. Pipkin, R.F. Schwitters, M. Shapiro, K. Strauch, R. Vanelli, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F. Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world. Harvard`s educational efforts are concentrated in graduate education, where they are currently supporting 15 research students. These budget projections cover all of the Harvard based high energy physics experimental activities. The {open_quotes}umbrella{close_quotes} nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups.

  12. Design Research in Cyber-Physical Systems through Weak-Bisimulation

    Directory of Open Access Journals (Sweden)

    Roy Mccann

    2011-12-01

    Full Text Available Bisimulation methods for design and verification of complex digital electronics have become well established in engineering practice. Concurrently, there have been dramatic theoretical advances in the theory of hybrid dynamical systems. This paper explores the how these advances can be incorporated into research methods for the emerging area of cyber-physical systems from a cybernetics perspective. The results can be used in determining how design of engineered systems can be safely integrated into physical systems.

  13. Wave theory of information

    CERN Document Server

    Franceschetti, Massimo

    2017-01-01

    Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical informat...

  14. Impacts of Kelvin wave forcing in the Peru Humboldt Current system: Scenarios of spatial reorganizations from physics to fishers

    Science.gov (United States)

    Bertrand, Sophie; Dewitte, Boris; Tam, Jorge; Díaz, Erich; Bertrand, Arnaud

    2008-10-01

    Because climate change challenges the sustainability of important fish populations and the fisheries they support, we need to understand how large scale climatic forcing affects the functioning of marine ecosystems. In the Humboldt Current system (HCS), a main driver of climatic variability is coastally-trapped Kelvin waves (KWs), themselves originating as oceanic equatorial KWs. Here we (i) describe the spatial reorganizations of living organisms in the Humboldt coastal system as affected by oceanic KWs forcing, (ii) quantify the strength of the interactions between the physical and biological component dynamics of the system, (iii) formulate hypotheses on the processes which drive the redistributions of the organisms, and (iv) build scenarios of space occupation in the HCS under varying KW forcing. To address these questions we explore, through bivariate lagged correlations and multivariate statistics, the relationships between time series of oceanic KW amplitude (TAO mooring data and model-resolved baroclinic modes) and coastal Peruvian oceanographic data (SST, coastal upwelled waters extent), anchoveta spatial distribution (mean distance to the coast, spatial concentration of the biomass, mean depth of the schools), and fishing fleet statistics (trip duration, searching duration, number of fishing sets and catch per trip, features of the foraging trajectory as observed by satellite vessel monitoring system). Data sets span all or part of January 1983 to September 2006. The results show that the effects of oceanic KW forcing are significant in all the components of the coastal ecosystem, from oceanography to the behaviour of the top predators - fishers. This result provides evidence for a bottom-up transfer of the behaviours and spatial stucturing through the ecosystem. We propose that contrasting scenarios develop during the passage of upwelling versus downwelling KWs. From a predictive point of view, we show that KW amplitudes observed in the mid-Pacific can

  15. Research in Theoretical High-Energy Physics at Southern Methodist University

    Energy Technology Data Exchange (ETDEWEB)

    Olness, Fredrick [Southern Methodist Univ., Dallas, TX (United States); Nadolsky, Pavel [Southern Methodist Univ., Dallas, TX (United States)

    2016-08-05

    The SMU Theory group has developed a strong expertise in QCD, PDFs, and incisive comparisons between collider data and theory. The group pursues realistic phenomenological calculations for high-energy processes, the highly demanded research area driven by the LHC physics. Our field has seen major discoveries in recent years from a variety of experiments, large and small, including a number recognized by Nobel Prizes. There is a wealth of novel QCD data to explore. The SMU theory group develops the most advanced and innovative tools for comprehensive analysis in applications ranging from Higgs physics and new physics searches to nuclear scattering.

  16. Research on Novel High-Power Microwave/Millimeter Wave Sources and Applications

    Science.gov (United States)

    2010-08-28

    theoretical support for the experiments at UC Davis aimed at the development of a zero-drive stable W-band gyrotron traveling-wave amplifier (Gyro- TWT ). The...this gyro- TWT ; namely, a new type of electron gun based on the robust, long-lived, clean, low work function, high current density thermionic cathodes...recently developed at UC Davis under the sponsorship of MURI-04. This is an electron gun to be used for the zero-drive stable Gyro- TWT . Our

  17. The impact of regulations, safety considerations and physical limitations on research progress at maximum biocontainment.

    Science.gov (United States)

    Shurtleff, Amy C; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S; Bavari, Sina

    2012-12-01

    We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review.

  18. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  19. Progress in research, January 1, 1976--December 31, 1976. [Theoretical Nuclear Physics Group, Dept. of Physics, Univ. of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group of the Department of Physics of the University of Texas at Austin during the period January 1, 1976, to December 31, 1976, are described. Most of the work has already been published, or soon will be. 26 figures. (RWR)

  20. Preparing students for research: faculty/librarian collaboration in a pre-doctoral physical therapy research course.

    Science.gov (United States)

    Brooks, Salome V; Bigelow, Susan

    2015-12-01

    In this article, guest writers Susan Bigelow and Dr Salome Brooks from Springfield College, Massachusetts, present an overview of their evaluative research study in which a faculty professor and the liaison librarian collaborated to develop an information literacy course entitled Physical Therapy (PT) and Health care Research Skills, in order to teach necessary information literacy skills to upper-level undergraduate PT students. Triangulation of the Physical Therapy and Information Literacy standards in alignment with the course objectives strengthened the collaboration, course development and expectations of student performance. Student performance was assessed through formal and expected evaluative means, and the preliminary evidence suggests some key successes in the course outcomes. © 2015 Health Libraries Group.