WorldWideScience

Sample records for wave mixing technique

  1. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    Science.gov (United States)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear

  2. Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heeung; Lee, Jaesun; Cho, Younho [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In this study, the Lamb wave mixing technique, which is basised on advanced research on the nonlinear bulk wave mixing technique, is applied for corrosion detection. To demonstrate the validity of the Lamb wave mixing technique, an experiment was performed with normal and corroded specimens. Comparison group in an experimentation are selected to mode and frequency with dominant in-plane displacement and out-of-plane displacement of Lamb waves. The results showed that the Lamb wave mixing technique can monitor corrosion defects, and it has a trend similar to that of the conventional Lamb wave technique. It was confirmed that the dominant displacement and mode matching the theory were generated. Flaw detectability is determined depending on displacement ratio instead of using the measurement method and mode selection.

  3. Feasibility study on diagnosis of material damage using bulk wave mixing technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Seok; Cho, Youn Ho [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

  4. Nondestructive evaluation of differently doped InP wafers by time-resolved four-wave mixing technique

    International Nuclear Information System (INIS)

    Kadys, A.; Sudzius, M.; Jarasiunas, K.; Mao Luhong; Sun Niefeng

    2006-01-01

    Photoelectric properties of semi-insulating, differently doped, and undoped indium phosphide wafers, grown by the liquid encapsulation Czochralski method, have been investigated by time-resolved picosecond four-wave mixing technique. Deep defect related carrier generation, recombination, and transport properties were investigated experimentally by measuring four-wave mixing kinetics and exposure characteristics. The presence of deep donor states in undoped InP was confirmed by a pronounced effect of a space charge electric field to carrier transport. On the other hand, the recharging dynamics of electrically active residual impurities was observed in undoped and Fe-doped InP through the process of efficient trapping of excess carriers. The bipolar diffusion coefficients and mobilities were determined for the all wafers

  5. Wave mixing spectroscopy

    International Nuclear Information System (INIS)

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr +3 :LaF 3 verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the 3 H 4 , 3 H 6 , and 3 P 0 levels of the praseodymium ions

  6. Multi-Wave Mixing Processes

    CERN Document Server

    Zhang, Yanpeng

    2009-01-01

    "Multi-Wave Mixing Processes - From Ultrafast Polarization Beats to Electromagnetically Induced Transparency" discusses the interactions of efficient multi-wave mixing (MWM) processes enhanced by atomic coherence in multilevel atomic systems. It covers topics in five major areas: attosecond and femtosecond polarization beats of four-wave mixing (FWM) processes; heterodyne detection of FWM, six-wave mixing (SWM) and eight-wave mixing (EWM) processes; Raman and Rayleigh enhanced polarization beats; coexistence and interactions of MWM processes via electromagnetically induced transparency(EIT); multi-dressing MWM processes. The book is intended for researchers, advanced undergraduate and graduate students in Nonlinear Optics. Dr. Yanpeng Zhang is a professor at the Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University. Dr. Min Xiao is a professor of Physics at University of Arkansas, Fayetteville, U.S.A.

  7. The phase mixing of shear Alfven waves

    International Nuclear Information System (INIS)

    Uberoi, C.

    1993-04-01

    The phase mixing of shear Alfven waves is discussed as a current sheets crossover phenomena by using the well-behaved time dependent solution of the Alfven wave equation. This method is a more direct approach than the initial value problem technique to find the collisionless damping time of the surface waves, which as it represents the coherency loss is argued to be the phase mixing time. The phase mixing time obtained by both the methods compares well. The direct method however, has an advantage that no particular profile for the magnetic field variation need to be chosen and secondly the phase mixing time and the time scale for which the resistivity effects become important can be expressed conveniently in terms of Alfven transit times before crossover. (author). 11 refs

  8. Quantum control of multi-wave mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2013-01-01

    Multi-wave mixing gives rise to new frequency components due to the interaction of light signals with a suitable nonlinear medium. In this book a systematic framework for the control of these processes is used to lead readers through a plethora of related effects and techniques.

  9. Coherent Control of Four-Wave Mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2011-01-01

    "Coherent Control of Four-Wave Mixing" discusses the frequency, temporal and spatial domain interplays of four-wave mixing (FWM) processes induced by atomic coherence in multi-level atomic systems. It covers topics in five major areas: the ultrafast FWM polarization beats due to interactions between multi-color laser beams and multi-level media; coexisting Raman-Rayleigh-Brillouin-enhanced polarization beats due to color-locking noisy field correlations; FWM processes with different kinds of dual-dressed schemes in ultra-thin, micrometer and long atomic cells; temporal and spatial interference between FWM and six-wave mixing (SWM) signals in multi-level electromagnetically induced transparency (EIT) media; spatial displacements and splitting of the probe and generated FWM beams, as well as the observations of gap soliton trains, vortex solitons, and stable multicomponent vector solitons in the FWM signals. The book is intended for scientists, researchers, advanced undergraduate and graduate students in Nonlin...

  10. Four Wave Mixing using Intermodal Nonlinearities

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard

    The nonlinear process of four-wave mixing (FWM) enables coupling of energy between wavelengths. This is useful for both optical amplification and wavelength conversion. A crucial prerequisite for the process is phase matching. This PhD project investigates how higher order modes (HOMs) in fibers...

  11. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  12. Competition between Dispersion and Absorption of Doubly-Dressed Four-Wave Mixing and Dressed Six-Wave Mixing

    International Nuclear Information System (INIS)

    Lei-Jian, Shen; Chuang-She, Li; Yi-Gang, Du; Cui-Cui, Zuo; Zhi-Qiang, Nie; Yan-Peng, Zhang; Yuan-Yuan, Li; Chen-Li, Gan; Ke-Qing, Lu

    2008-01-01

    We study the competition between dispersion and absorption of doubly-dressed four-wave mixing (DDFWM) and dressed six-wave mixing. In the case of weak coupling fields limit, we find DDFWM signal is affected by destructive interference between four-wave mixing(FWM) and six-wave mixing as well as constructive interference between FWM and eight-wave mixing. By analysing the difference between two kinds of doubly dressing mechanisms (parallel cascade and nested cascade) in this opening five-level system, we can further understand the generated high-order nonlinear optical signal dressed by multi-fields

  13. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  14. Interfering Waves of Adaptation Promote Spatial Mixing

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Hallatschek, Oskar

    2011-01-01

    A fundamental problem of asexual adaptation is that beneficial substitutions are not efficiently accumulated in large populations: Beneficial mutations often go extinct because they compete with one another in going to fixation. It has been argued that such clonal interference may have led...... to the evolution of sex and recombination in well-mixed populations. Here, we study clonal interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection pressure. Clonal interference is much more prevalent with spatial structure than without......, due to the slow wave-like spread of beneficial mutations through space. We find that the adaptation speed of asexuals saturates when the linear habitat size exceeds a characteristic interference length, which becomes shorter with smaller migration and larger mutation rate. The limiting speed...

  15. Isotropic and anisotropic surface wave cloaking techniques

    International Nuclear Information System (INIS)

    McManus, T M; Spada, L La; Hao, Y

    2016-01-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques. (paper)

  16. Isotropic and anisotropic surface wave cloaking techniques

    Science.gov (United States)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  17. Light storage via slow-light four-wave mixing

    International Nuclear Information System (INIS)

    Fan, Yun-Fei; Wang, Hai-Hua; Wei, Xiao-Gang; Li, Ai-Jun; Kang, Zhi-Hui; Wu, Jin-Hui; Zhang, Han-Zhuang; Xu, Huai-Liang; Gao, Jin-Yue

    2012-01-01

    We experimentally demonstrate a light storage via slow-light four-wave mixing in a solid-state medium with a four-level double lambda scheme. Using slow light based on electromagnetically induced transparency, we obtain a slowed four-wave mixing signal pulse together with the slowed probe pulse. During the propagation of light pulses, the storage and retrieval of both the slowed four-wave mixing pulse and the slowed probe pulse are studied by manipulating the intensities of the control fields. -- Highlights: ► A light storage via slow-light four-wave mixing is observed in a solid. ► The probe pulse is slowed under electromagnetically induced transparency. ► A slowed four-wave mixing pulse is obtained by slow light. ► The storage of slowed double pulses is studied.

  18. Applying Mixed Methods Techniques in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    In its most basic form, strategic planning is a process of anticipating change, identifying new opportunities, and executing strategy. The use of mixed methods, blending quantitative and qualitative analytical techniques and data, in the process of assembling a strategic plan can help to ensure a successful outcome. In this article, the author…

  19. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    Science.gov (United States)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  20. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  1. Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-05-01

    Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  2. Near-inertial waves and deep ocean mixing

    Science.gov (United States)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  3. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  4. Wave Telescope Technique for MMS Magnetometer

    Science.gov (United States)

    Narita, Y.; Plaschke, F.; Nakamura, R.; Baumjojann, W.; Magnes, W.; Fischer, D.; Voros, Z.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; hide

    2016-01-01

    Multipoint measurements are a powerful method in studying wavefields in space plasmas.The wave telescope technique is tested against magnetic field fluctuations in the terrestrial magnetosheath measured by the four Magnetospheric Multiscale (MMS) spacecraft on a spatial scale of about 20 km.The dispersion relation diagram and the wave vector distribution are determined for the first time in the ion-kinetic range. Moreover, the dispersion relation diagram is determined in a proxy plasma restframe by regarding the low-frequency dispersion relation as a Doppler relation and compensating for the apparent phase velocity. Fluctuations are highly compressible, and the wave vectors have an angle of about 60 from the mean magnetic field. We interpret that the measured fluctuations represent akinetic-drift mirror mode in the magnetosheath which is dispersive and in a turbulent state accompanied by a sideband formation.

  5. Alfvén wave mixing and non-JWKB waves in stellar winds

    International Nuclear Information System (INIS)

    Webb, G M; McKenzie, J F; Hu, Q; Zank, G P

    2013-01-01

    Alfvén wave mixing equations used in locally incompressible turbulence transport equations in the solar wind contain as a special case, non-Jeffreys–Wentzel–Kramers–Brouillon (non-JWKB) wave equations used in models of Alfvén wave driven winds. We discuss the canonical wave energy equation; the physical wave energy equation, and the JWKB limit of the wave interaction equations. Lagrangian and Hamiltonian variational principles for the waves are developed. Noether’s theorem is used to derive the canonical wave energy equation which is associated with the linearity symmetry of the equations. A further conservation law associated with time translation invariance of the action, applicable for steady background wind flows is also derived. In the latter case, the conserved density is the Hamiltonian density for the waves, which is distinct from the canonical wave energy density. The canonical wave energy conservation law is a special case of a wider class of conservation laws associated with Green’s theorem for the wave mixing system and the adjoint wave mixing system, which are related to Noether’s second theorem. In the sub-Alfvénic flow, inside the Alfvén point of the wind, the backward and forward waves have positive canonical energy densities, but in the super-Alfvénic flow outside the Alfvén critical point, the backward Alfvén waves are negative canonical energy waves, and the forward Alfvén waves are positive canonical energy waves. Reflection and transmission coefficients for the backward and forward waves in both the sub-Alfvénic and super-Alfvénic regions of the flow are discussed. (paper)

  6. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    International Nuclear Information System (INIS)

    Chernodub, M.N.

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  7. Four-wave mixing and phase conjugation in plasmas

    International Nuclear Information System (INIS)

    Federici, J.F.

    1989-01-01

    Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma

  8. On the Chemical Mixing Induced by Internal Gravity Waves

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-10-10

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.

  9. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  10. Magnetic moment investigation by frequency mixing techniques.

    Science.gov (United States)

    Teliban, I; Thede, C; Chemnitz, S; Bechtold, C; Quadakkers, W J; Schütze, M; Quandt, E

    2009-11-01

    Gas turbines and other large industrial equipment are subjected to high-temperature oxidation and corrosion. Research and development of efficient protective coatings is the main task in the field. Also, knowledge about the depletion state of the coating during the operation time is important. To date, practical nondestructive methods for the measurement of the depletion state do not exist. By integrating magnetic phases into the coating, the condition of the coating can be determined by measuring its magnetic properties. In this paper, a new technique using frequency mixing is proposed to investigate the thickness of the coatings based on their magnetic properties. A sensor system is designed and tested on specific magnetic coatings. New approaches are proposed to overcome the dependency of the measurement on the distance between coil and sample that all noncontact techniques face. The novelty is a low cost sensor with high sensibility and selectivity which can provide very high signal-to-noise ratios. Prospects and limitations are discussed for future use of the sensor in industrial applications.

  11. Low-pressure degenerate four-wave mixing spectroscopy with flam atomization

    International Nuclear Information System (INIS)

    Nolan, T.G.; Koutny, L.B.; Blazewicz, P.R.; Whitten, W.B.; Ramsey, J.M.

    1988-01-01

    A combination of degenerate four-wave mixing spectroscopy and a low-pressure sampling technique has been studied for isotopic analysis in an air-acetylene flame. Hyperfine spectra of D lines of sodium and several mixtures of lithium isotopes obtained in this way are presented

  12. Autoresonant four-wave mixing in optical fibers

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.

    2010-01-01

    A theory of autoresonant four-wave mixing in tapered fibers is developed in application to optical parametric amplification (OPA). In autoresonance, the interacting waves (two pump waves, a signal, and an idler) stay phase-locked continuously despite variation of system parameters (spatial tapering). This spatially extended phase-locking allows complete pump depletion in the system and uniform amplification spectrum in a wide frequency band. Different aspects of autoresonant OPA are described including the automatic initial phase-locking, conditions for autoresonant transition, stability, and spatial range of the autoresonant interaction.

  13. Four-wave mixing and six-wave mixing in a four-level confined atomic system

    International Nuclear Information System (INIS)

    Chang-Biao, Li; Yan-Peng, Zhang; Zhi-Qiang, Nie; Huai-Bin, Zheng; Mei-Zhen, Shi; Dong-Ning, Liu; Jian-Ping, Song; Ke-Qing, Lu

    2009-01-01

    We have investigated coexisting four-wave mixing and six-wave mixing (SWM) in ultra-thin, micrometre and long vapour cells. There exists competition between Dicke-narrowing features and polarization interference in the micrometre cell. The oscillation behaviour of SWM signal intensities and linewidths results from destructive interference. With a larger destructive interference, the SWM signal in ultra-thin cells shows a narrow spectrum, in contrast to the long cell case. Due to the Dicke-narrowing features, a narrow spectrum can be obtained, and such spectra can be used for high precision measurements and metrological standards. (classical areas of phenomenology)

  14. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  15. Theory of fidelity measure in degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Bochove, E.J.

    1983-01-01

    Phase-conjugate beam fidelity is studied in degenerate four-wave mixing with spatially varying pump beams. The analysis includes the effects of probe depletion, diffracting non-linear phase variation focussing, and finally that of losses. Relatively simple algebraic expressions are found for the phase conjugate reflectivity for the cases of collinear and near-collinear beam gemetries. It is found that by focussing the probe beam into the mixing medium, the fraction of energy in the phase conjugate beam which was transferred to other modes, may typically be reduced by one order of magnitude. (Author) [pt

  16. Advanced Control Techniques for WEC Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.

    2007-01-01

    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...... of the full scale Wave Dragon....

  17. Resonant four-wave mixing processes in xenon

    International Nuclear Information System (INIS)

    Yiu, Y.M.; Bonin, K.D.; McIlrath, T.J.

    1982-01-01

    Two-photon resonantly enhanced four-wave mixing processes in xenon involving the intermediate states were utilized to generate coherent VUV radiation at several discrete wavelengths between 125.9 nm and 101.8 nm. Maximum efficiencies of the order of 10-4 were achieved. The use of these processes for producing tunable VUV output with Xe is given and generation of tunable VUV using two-photon resonances in other rare gases is discussed

  18. Two-wave mixing in a broad-area semiconductor amplifier

    DEFF Research Database (Denmark)

    Chi, M.; Jensen, S.B.; Huignard, J.P.

    2006-01-01

    The two-wave mixing in the broad-area semiconductor amplifier was investigated, both theoretically and experimentally. In detail we investigated how the optical gain is affected by the presence of the two-wave mixing interference grating. In the experimental setup we are able to turn on and off...... the interference pattern in the semiconductor amplifier. This arrangement allows us to determine the two-wave mixing gain. The coupled-wave equations of two-wave mixing were derived based on the Maxwell’s wave equation and rate equation of the carrier density. The analytical solutions of the coupled-wave equations...

  19. Theoretical analysis of four wave mixing in quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing.......The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....

  20. A general theory of two-wave mixing in nonlinear media

    DEFF Research Database (Denmark)

    Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael

    2009-01-01

    A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...

  1. Particle dispersion and mixing induced by breaking internal gravity waves

    Science.gov (United States)

    Bouruet-Aubertot, Pascale; Koudella, C.; Staquet, C.; Winters, K. B.

    2001-01-01

    The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D'Asaro, E.A., 1995. J. Fluid Mech. 289, 115-128; Winters, K.B., D'Asaro, E.A., 1996. J. Fluid Mech. 317, 179-193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265-301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41-63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999]. A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow. The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the

  2. Data analysis techniques for gravitational wave observations

    Indian Academy of Sciences (India)

    Astrophysical sources of gravitational waves fall broadly into three categories: (i) transient and bursts, (ii) periodic or continuous wave and (iii) stochastic. Each type of source requires a different type of data analysis strategy. In this talk various data analysis strategies will be reviewed. Optimal filtering is used for extracting ...

  3. Integral transform technique for meson wave functions

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Mikhajlov, S.V.

    1996-01-01

    In a recent paper [1] we proposed a new approach for extracting the wave function of the π-meson φ π (x) and the masses and wave functions of its first resonances from the new QCD sum rules for nondiagonal correlators obtained in [2]. Here, we test our approach using an exactly solvable toy model as an illustrating example. We demonstrate the validity of the method and suggest a pure algebraic procedure for extracting the masses and wave functions relating to the case under investigation. We also explore the stability of the procedure under perturbations of the theoretical part of the sum rule. In application to the pion case, this results not only in the mass and wave function of the first resonance (π'), but also in the estimation of π''-mass. 17 refs., 11 figs

  4. Pump depletion effects in thermal degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Guha, S.; Chen, W.

    1987-01-01

    Characteristics such as a large magnitude of nonlinearity, fast response, broadband operation, and easy availability make absorbing liquids attractive candidates for performing phase conjugation of optical beams by degenerate four-wave mixing. The coupled-wave equations describing the interaction of four optical fields in an absorbing medium have been solved previously for the case of no pump depletion and no self-action of any of the beams. When studying phase conjugation oscillation, however, the effect of depletion of the pump beams on the phase conjugate reflectivity must be considered. Moreover, in absorbing media the self-action effects are always present. The coupled-wave equations, including the self-action terms for all four waves involved, are derived here for the first time to the authors' knowledge. For the case of small absorption, these equations are solved analytically, and the effect of pump depletion on phase conjugate reflectivity R is determined. In the absence of the pump depletion, R is proportional to tan 2 (Ql), where Ql is a dimensionless gain parameter characterizing the nonlinear medium and the input pump power. When pump depletion and self-action are included, R does not go to infinity when Ql equals odd multiples of π2. Instead R takes on values dependent on the probe ratio q 1 , which is the ratio of the input probe irradiance to the input pump irradiance. The authors find that the maximum value for R is 1q 1 . They also find that for Ql close to odd multiples of π2, the reflectivity is significantly reduced from the value obtained by ignoring pump depletion, even for probe ratios as small as one-tenth of 1%. Experimental confirmation of this theory, using an argon-ion laser as the pump and carbon tetrachloride mixed with a dye as the absorbing medium, is in progress and is reported

  5. Controllable azimuthons of four-wave mixing and their applications

    International Nuclear Information System (INIS)

    Wang, R M; Che, J L; Wang, X P; Lan, H Y; Wu, Z K; Zhang, Y Q; Zhang, Y P

    2014-01-01

    We report controllable azimuthons of four-wave mixing (FWM), which can be modulated by several parameters in experiment. The spot number, splitting depth, rotation angular velocity and direction of such azimuthons can be controlled by the frequency and intensity of the FWM signal or the dressing field through the cross-phase modulation due to atomic coherence. The intensity gain of the azimuthons can be modulated by frequency detuning through quantum parametric amplification. The quantum correlated FWM vortex is observed in experiment. We also discuss the applications of such controllable azimuthons in all-optical circulators, multiplexers (demultiplexers), routers, cross-connects and optical amplifiers. (paper)

  6. Generating Far-Infrared Radiation By Two-Wave Mixing

    Science.gov (United States)

    Borenstain, Shmuel

    1992-01-01

    Far-infrared radiation 1 to 6 GHz generated by two-wave mixing in asymmetrically grown GaAs/AlxGa1-xAs multiple-quantum-well devices. Two near-infrared semiconductor diode lasers phase-locked. Outputs amplified, then combined in semiconductor nonlinear multiple-quantum-well planar waveguide. Necessary to optimize design of device with respect to three factors: high degree of confinement of electromagnetic field in nonlinear medium to maximize power density, phase matching to extend length of zone of interaction between laser beams in non-linear medium, and nonlinear susceptibility. Devices used as tunable local oscillators in heterodyne-detection radiometers.

  7. FPGA based mixed-signal circuit novel testing techniques

    International Nuclear Information System (INIS)

    Pouros, Sotirios; Vassios, Vassilios; Papakostas, Dimitrios; Hristov, Valentin

    2013-01-01

    Electronic circuits fault detection techniques, especially on modern mixed-signal circuits, are evolved and customized around the world to meet the industry needs. The paper presents techniques used on fault detection in mixed signal circuits. Moreover, the paper involves standardized methods, along with current innovations for external testing like Design for Testability (DfT) and Built In Self Test (BIST) systems. Finally, the research team introduces a circuit implementation scheme using FPGA

  8. Degenerate four-wave mixing with the phase diffusion field

    International Nuclear Information System (INIS)

    Anderson, M.H.; Chen, CE.; Elliott, D.S.; Cooper, J.; Smith, S.J.

    1993-01-01

    We report measurements of the effect of laser fluctuations on a strong-field degenerate four-wave mixing interaction, carried out in a nearly Doppler-free, two-level system using a single laser with statistically well-defined phase fluctuations. The counterpropagating pump beams and the probe beam, each split from this phase-noise-modulated source, were fully correlated. The nonlinear medium was an optically-pumped diffuse beam of atomic sodium. By time-delaying the probe with respect to the pump beams, the composite field becomes non-Markovian. Four-wave mixing results in the generation of a phase-conjugate beam anti-parallel to the probe beam. With the laser field spectrum nearly Lorentzian in shape, and with a field linewidth greater (and, for comparison, much narrower) than the natural linewidth of the sodium, we measured the intensity of the phase-conjugate beam as the pump and probe beams were tuned through the D2 resonance, as a function of intensity of die pump beam (up to intensities several times the saturation intensity), and for varying delay between the pump and probe fields. This experiment provides a cleaner measurement of this interaction than any previously available

  9. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  10. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    International Nuclear Information System (INIS)

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs

  11. Influence of Four-Wave Mixing and Walk-Off on the Self-Focusing of Coupled Waves

    DEFF Research Database (Denmark)

    Bergé, L.; Bang, Ole; Krolikowski, W.

    2000-01-01

    Four-wave mixing and walk-off between two optical beams are! investigated For focusing Kerr media. It is shown that four-wave mixing reinforces the self-focusing of mutually trapped waves by lowering their power threshold for collapse, only when their phase mismatch is small. On the contrary, walk......-off inhibits the collapse by detrapping the beams, whose partial centroids experience nonlinear oscillations....

  12. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  13. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors

    International Nuclear Information System (INIS)

    Lee, C.Y.

    2004-01-01

    Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the very important study of the collective excitations in these systems. One of the problem is still the exact form of the order parameter of unconventional superconductors. Among the possibilities there are extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states. I consider the mixed (1-γ)d x 2 -y 2 +iγd xy state in high temperature superconductors (HTSC) and derive for the first time a full set of equations for collective modes spectrum in mixed d-wave state with arbitrary admixture of d xy state. Obtained results allow to calculate the whole collective mode spectrum, which could be used for interpretation of the sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, they allow to estimate the extent of admixture of d xy state in a possible mixed state

  14. Nonlinear wave-mixing processes in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Misoguti, L.; Christov, I. P.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.

    2005-01-01

    We present data from two-color high-order harmonic generation in a hollow waveguide, that suggest the presence of a nonlinear-optical frequency conversion process driven by extreme ultraviolet light. By combining the fundamental and second harmonic of an 800 nm laser in a hollow-core fiber, with varying relative polarizations, and by observing the pressure and power scaling of the various harmonic orders, we show that the data are consistent with a picture where we drive the process of high-harmonic generation, which in turn drives four-wave frequency mixing processes in the extreme EUV. This work promises a method for extending nonlinear optics into the extreme ultraviolet region of the spectrum using an approach that has not previously been considered, and has compelling implications for generating tunable light at short wavelengths

  15. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P., E-mail: David.Pappas@NIST.gov [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2016-01-04

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  16. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    Science.gov (United States)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  17. Electromagnetically Induced Transparency in Four Wave Mixing Process

    International Nuclear Information System (INIS)

    Kucukkara, I.

    2008-01-01

    We have theoretically studied Four Wave Mixing (FWM) process in VUV (Vacuum Ultraviolet) region enhanced by Electromagnetically Induced Transparency in Krypton gas medium at room temperature. One of the mixing fields, in the ultraviolet region at 212.5 nm was in two-photon resonance with the 4p 6 1 S 0 -4p 5 5p[0,1/2] transition of Krypton and the second field (coupling field) at 759 nm was resonant with the 4p 5 5p[0,1/2]-4p 5 5s[1,1/2] transition in scheme. This coupling field produced an electromagnetically induced transparency and thus the efficiency of the generation of the field at 123.6 nm on the 4p 5 5s[1,1/2] to 4p 6 1 S 0 transition is enhanced. We modified the computer program previously written by changing some variables like pressure, interaction region length, UV energy, IR energy. As demonstrated by the intensity generated VUV light versus Krypton pressure graphic, the most efficient intensity value, which was approximately 4.2x10 1 6 arbitrary units, was obtained while IR energy was 3x10 - 4 J and the pressure was 2x10 - 3 bar

  18. Preparation of mixed oxides (Th,U)O2: an evaluation of different techniques

    International Nuclear Information System (INIS)

    Ayoub, Jamil Mahmoud Said

    1999-01-01

    An evaluation of different ways of obtaining (Th-U)O 2 mixed oxides is described. Coprecipitation, mechanical mixing of uranium and thorium powders, and the sol-gel technique were studied in order to get a large spectrum of knowledge of the process performance. The use of ultrasonic waves for the homogenization of the hydroxide mixture and microwave heating for powder drying was also investigated. Sol-gel showed the best results regarding the specific area for obtained samples. Oxide drying by microwave is an effective method to get mixed oxides for fuel fabrication. Neither coprecipitation nor mechanical mixing of the thorium and uranium oxide powders is suitable for the purpose. The obtained data are less than 70% than those achieved when sol-gel process is performed. Electronic microscopy, X-ray fluorescence and diffraction, thermogravimetry, specific gravidity and specific area determination (BET) used for sample characterization were convenient and accomplished good results. (author)

  19. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  20. Industrial mixing techniques for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks

  1. Internal wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides

    Science.gov (United States)

    van der Lee, E. M.; Umlauf, L.

    2011-10-01

    The dynamics of near-inertial motions, and their relation to mixing, is investigated here with an extensive data set, including turbulence and high-resolution velocity observations from two cruises conducted in 2008 (summer) and 2010 (winter) in the Bornholm Basin of the Baltic Sea. In the absence of tides, it is found that the basin-scale energetics are governed by inertial oscillations and low-mode near-inertial wave motions that are generated near the lateral slopes of the basin. These motions are shown to be associated with persistent narrow shear-bands, strongly correlated with bands of enhanced dissipation rates that are the major source of mixing inside the permanent halocline of the basin. In spite of different stratification, near-inertial wave structure, and atmospheric forcing during summer and winter conditions, respectively, the observed dissipation rates were found to scale with local shear and stratification in a nearly identical way. This scaling was different from the Gregg-Henyey-type models used for the open ocean, but largely consistent with the MacKinnon-Gregg scaling developed for the continental shelf.

  2. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-01-01

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells

  3. Experimental observation of strong mixing due to internal wave focusing over sloping terrain

    NARCIS (Netherlands)

    Swart, A.; Manders, A.; Harlander, U.; Maas, L.R.M.

    2010-01-01

    This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were

  4. Method of distinction of pure d-wave state from the mixed state in HTSC

    International Nuclear Information System (INIS)

    Filatova, Tatiana; Brusov, Peter; Brusov, Pavel; Lee, Chong; Chaudhury, Ranjan

    2009-01-01

    Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the study of the collective excitations in these systems very important. One remaining question is the exact form of the order parameter of unconventional superconductors. Extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states are among possibilities. We have considered the mixtures of d x 2 - y 2 and d xy states in high temperature superconductors (HTSC) and have, for the first time, derived the full set of equations for the collective mode spectrum in the mixed d-wave state with an arbitrary admixture of d xy state. The results we have obtained will allow us to calculate the whole collective mode spectrum, which may then be used for interpretation of sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, this will allow one to estimate the extent of admixture of d xy state in the possible mixed state.

  5. Mixing of nanosize particles by magnetically assisted impaction techniques

    Science.gov (United States)

    Scicolone, James V.

    approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  6. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  7. Quantum steering in cascaded four-wave mixing processes.

    Science.gov (United States)

    Wang, Li; Lv, Shuchao; Jing, Jietai

    2017-07-24

    Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.

  8. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  9. Technique for measurements of plane waves of uniaxial strain

    International Nuclear Information System (INIS)

    Graham, R.A.

    1977-01-01

    The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed

  10. Quantitative degenerate four-wave mixing spectroscopy: Probes for molecular species

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, R.; Rakestraw, D.; Paul, P.; Lucht, R.; Danehy, P.; Friedman-Hill, E.; Germann, G. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Resonant degenerate four-wave mixing (DFWM) is currently the subject of intensive investigation as a sensitive diagnostic tool for molecular species. DFWM has the advantage of generating a coherent (beam-like) signal which results in null-background detection and provides excellent immunity to background-light interference. Since multiple one-photon resonances are involved in the signal generation process, the DFWM technique can allow sensitive detection of molecules via electronic, vibrational or rotational transitions. These properties combine to make DFWM a widely applicable diagnostic technique for the probing of molecular species. The authors are conducting fundamental and applied investigations of DFWM for quantitative measurements of trace species in reacting gases. During the past year, efforts have been focussed in two areas: (1) understanding the effects of collisional processes on the DFWM signal generation process, and (2) exploring the applicability of infrared DFWM to detect polyatomic molecules via rovibrational transitions.

  11. Laser cavities with self-pumped phase conjugation by mixing of four waves in an amplifier

    International Nuclear Information System (INIS)

    Sillard, Pierre

    1998-01-01

    The purpose of this research thesis is to characterise a new type of cavities with self-pumped phase conjugation which uses a mixing of four waves degenerated in a solid amplifier. After a definition of phase conjugation and a brief overview of the history of this technique, the author describes and compares the different laser architectures with phase conjugation. He explains benefits and perspectives related to cavities with self-pumped phase conjugation using a mixing of four waves in an amplifier. He develops the necessary formalism for the resolution of the coupled equations of four wave mixing in transient regime for a resonant and saturated non-linearity. He shows how these results can be applied to solid amplifiers, in particularly to the Nd:YAG amplifier which is used in all experiments. In the next part, the author describes the principle and characteristics of cavity with self-pumped phase conjugation injected by another laser. An experiment is performed with two conventional Nd:YAG amplifiers pumped by flash lamps. The excellent performance of the cavity allows the study of cavity without this injection, but self-oscillating is to be envisaged, and a modelling of self-oscillating cavities is proposed and studied. Results are compared with those obtained with two N:YAG amplifiers pumped by flash lamps. Polarisation properties of the self-oscillating cavity are also studied. Finally, the author reports an experimental validation of a cavity with self-pumped phase conjugation all in solid state, pumped by laser diodes (a more efficient pumping) [fr

  12. Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates

    International Nuclear Information System (INIS)

    Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young

    2010-01-01

    Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters

  13. Langmuir wave phase-mixing in warm electron-positron-dusty plasmas

    Science.gov (United States)

    Pramanik, Sourav; Maity, Chandan

    2018-04-01

    An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.

  14. Wave-mixing with high-order harmonics in extreme ultraviolet region

    International Nuclear Information System (INIS)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-01

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process

  15. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  16. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    Science.gov (United States)

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.

  17. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    Science.gov (United States)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882

  18. Four-wave mixing and parametric four-wave mixing near the 4P-4S transition of the potassium atom

    International Nuclear Information System (INIS)

    Katharakis, M; Merlemis, N; Serafetinides, A; Efthimiopoulos, T

    2002-01-01

    Potassium 4S 1/2 -6S 1/2 two-photon excitation initiates the emission of several internally generated photons. For the first time two emission lines, one close to and one below the potassium 4P 3/2 level, are reported for low pumping intensity. Radiation emitted below the 4P 3/2 level is due to a parametric four-wave mixing process that uses the photons emitted at the 5P 3/2 -4S 1/2 transition and a two-step four-wave mixing process generates the line emitted close to the 4P 3/2 level

  19. Control techniques for an automated mixed traffic vehicle

    Science.gov (United States)

    Meisenholder, G. W.; Johnston, A. R.

    1977-01-01

    The paper describes an automated mixed traffic vehicle (AMTV), a driverless low-speed tram designed to operate in mixed pedestrian and vehicular traffic. The vehicle is a six-passenger electric tram equipped with sensing and control which permit it to function on existing streets in an automatic mode. The design includes established wire-following techniques for steering and near-IR headway sensors. A 7-mph cruise speed is reduced to 2 mph or a complete stop in response to sensor (or passenger) inputs. The AMTV performance is evaluated by operation on a loop route and by simulation. Some necessary improvements involving sensors, sensor pattern, use of an audible signal, and control lag are discussed. It is suggested that appropriate modifications will eliminate collision incidents.

  20. Laser diode self-mixing technique for liquid velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrova, A., E-mail: a.alexandrova@liverpool.ac.uk [Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); University of Liverpool, Department of Physics, Liverpool L69 7ZE (United Kingdom); Welsch, C.P. [Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); University of Liverpool, Department of Physics, Liverpool L69 7ZE (United Kingdom)

    2016-09-11

    Using the self-mixing technique, or optical feedback interferometry, fluid velocity measurements of water seeded with titanium dioxide have been performed using a laser diode to measure the effect of the seeding particle concentration and also the pump speed of the flow. The velocimeter utilises commercially available laser diodes with a built-in photodiode for detection of the self-mixing effect. The device has demonstrated an accuracy better than 10% for liquid flow velocities up to 1.5 m/s with a concentration of scattering particles in the range of 0.8–0.03%. This is an improvement of one order of magnitude compared to previous experiments. The proposed velocimeter is to be developed further for application in gas-jet measurements.

  1. Observed mixed standing-wave signatures in Cochin Estuary on the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; Muraleedharan, K.R.; Thottam, T.J.

    Study of the characteristics of currents and water-level variations in the Cochin estuary reveals, for the first time, unique signatures of mixed standing-waves in the southern region. Analysis of the simultaneous water-level data generated...

  2. Photon-Pair Sources Based on Intermodal Four-Wave Mixing in Few-Mode Fibers

    Directory of Open Access Journals (Sweden)

    Karsten Rottwitt

    2018-05-01

    Full Text Available Four-wave mixing in optical fibers has been proven to have many applications within processing of classical optical signals. In addition, recent developments in multimode fibers have made it possible to achieve the necessary phase-matching for efficient four-wave mixing over a very wide bandwidth. Thus, the combination of multimode fiber optics and four-wave mixing is very attractive for various applications. This is especially the case for applications in quantum communication, for example in photon-pair generation. This is the subject of this work, where we discuss the impact of fluctuations in core radius on the quality of the heralded single-photon states and demonstrate experimental results of intermodal spontaneous four-wave mixing for photon-pair generation.

  3. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  4. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  5. Polarization Insensitive Wavelength Conversion Based on Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements....

  6. Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Yvind, Kresten

    2014-01-01

    Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....

  7. Quantum Frequency Conversion by Four-wave Mixing Using Bragg Scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Rottwitt, Karsten; McKinstrie, C. J.

    2012-01-01

    Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection.......Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection....

  8. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  9. Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence

    Science.gov (United States)

    Mussot, Arnaud; Naveau, Corentin; Conforti, Matteo; Kudlinski, Alexandre; Copie, Francois; Szriftgiser, Pascal; Trillo, Stefano

    2018-05-01

    In optical fibres, weak modulations can grow at the expense of a strong pump to form a triangular comb of sideband pairs, until the process is reversed. Repeated cycles of such conversion and back-conversion constitute a manifestation of the universal nonlinear phenomenon known as Fermi-Pasta-Ulam recurrence. However, it remains a major challenge to observe the coexistence of different types of recurrences owing to the spontaneous symmetry-breaking nature of such a phenomenon. Here, we implement a novel non-destructive technique that allows the evolution in amplitude and phase of frequency modes to be reconstructed via post-processing of the fibre backscattered light. We clearly observe how control of the input modulation seed results in different recursive behaviours emerging from the phase-space structure dictated by the spontaneously broken symmetry. The proposed technique is an important tool to characterize other mixing processes and new regimes of rogue-wave formation and wave turbulence in fibre optics.

  10. Wave propagation in fluids models and numerical techniques

    CERN Document Server

    Guinot, Vincent

    2012-01-01

    This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite

  11. A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

    2011-01-01

    We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...

  12. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    Energy Technology Data Exchange (ETDEWEB)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.

  13. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  14. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    We demonstrate a new detection scheme for pump-probe and four-wave mixing heterodyne experiments, using balanced detection and a dual-phase lock-in for spectral filtering. The technique allows the use of low repetition-rate laser systems, as is demonstrated on an InGaAsP/InP bulk optical amplifier...... at 1.53 mym. Ultrafast pump-induced changes in the amplitude and phase of the transmitted probe signal are simultaneously measured, going from small to large signal changes and with no need of an absolute phase calibration, showing the versatility and the sensitivity of this detection scheme....... The results for small perturbations are consistent with previous pump-probe experiments reported in literature. Time-resolved four-wave mixing in the absorption regime of the device is measured, and compared with numerical simulations, indicating a 100 fs dephasing time....

  15. Stimulated emission pumping of NH in flames by using two-color resonant four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P P; Frey, H M; Mischler, B; Tzannis, A P; Beaud, P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In this work we examine the analytical potential of two-color resonant four-wave mixing for the determination and characterization of trace elements in a combustion environment. Experimental results for NH in flames at atmospheric pressure are presented. The selectivity of the technique is used to simplify the Q-branch region of the (0-0)A{sup 3}{Pi}-X{sup 3}{Sigma} vibronic transition of NH. In addition, we demonstrate that the technique is sensitive to state changing collisions. (author) 2 figs., 5 refs.

  16. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  17. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    International Nuclear Information System (INIS)

    Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references

  18. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  19. All-optical switching via four-wave mixing Bragg scattering in a silicon platform

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2017-02-01

    Full Text Available We employ the process of non-degenerate four-wave mixing Bragg scattering to demonstrate all-optical control in a silicon platform. In our configuration, a strong, non-information-carrying pump is mixed with a weak control pump and an input signal in a silicon-on-insulator waveguide. Through the optical nonlinearity of this highly confining waveguide, the weak pump controls the wavelength conversion process from the signal to an idler, leading to a controlled depletion of the signal. The strong pump, on the other hand, plays the role of a constant bias. In this work, we show experimentally that it is possible to implement this low-power switching technique as a first step towards universal optical logic gates, and test the performance with random binary data. Even at very low powers, where the signal and control pump levels are almost equal, the eye-diagrams remain open, indicating a successful operation of the logic gates.

  20. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  1. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.

    Science.gov (United States)

    Mickadeit, Fritz K; Berniolles, Sandrine; Kemp, Helen R; Tong, William G

    2004-03-15

    Nonlinear laser wave mixing in a common graphite furnace atomizer is presented as a zeptomole-level, sub-Doppler, high-resolution atomic absorption spectrophotometric method. A nonplanar three-dimensional wave-mixing optical setup is used to generate the signal beam in its own space. Signal collection is efficient and convenient using a template-based optical alignment. The graphite furnace atomizer offers advantages including fast and convenient introduction of solid, liquid, or gas analytes, clean atomization environment, and minimum background noise. Taking advantage of the unique features of the wave-mixing optical method and those of the graphite furnace atomizer, one can obtain both excellent spectral resolution and detection sensitivity. A preliminary concentration detection limit of 0.07 parts-per-quadrillion and a preliminary mass detection limit of 0.7 ag or 8 zmol are determined for rubidium using a compact laser diode as the excitation source.

  2. A New Approach to Concrete Mix Design Using Computer Techniques

    African Journals Online (AJOL)

    In addition such a model can be used to generate data on mix proportions and their corresponding compressive strength, thereby furnishing useful information for general purpose, safe-ready-to-use mix design. Such data were generated and checked against values obtainable from standard mix design practice and found ...

  3. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    Science.gov (United States)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  4. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  5. Generation of two-temporal-mode photon states by vector four-wave mixing

    DEFF Research Database (Denmark)

    Mckinstrie, C. J.; Christensen, J. B.; Rottwitt, Karsten

    2017-01-01

    Photon pair states and multiple-photon squeezed states have many applications in quantum information science. In this paper, Green functions are derived for spontaneous four-wave mixing in the low-and high-gain regimes. Nondegenerate four-wave mixing in a strongly-birefringent medium generates...... signal and idler photons that are associated with only one pair of temporal (Schmidt) modes, for a wide range of pump powers and arbitrary pump shapes. The Schmidt coefficients (expected photon numbers) depend sensitively on the pump powers, and the Schmidt functions (shapes of the photon wavepackets...

  6. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Zhou, Hao; Gu, Tingyi; McMillan, James F.; Wong, Chee Wei; Petrone, Nicholas; Zande, Arend van der; Hone, James C.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan

    2014-01-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  7. Determining influence of four-wave mixing effect on quantum key distribution

    International Nuclear Information System (INIS)

    Vavulin, D N; Egorov, V I; Gleim, A V; Chivilikhin, S A

    2014-01-01

    We consider the possibility of multiplexing the classical and quantum signals in a quantum cryptography system with optical fiber used as a transmission medium. If the quantum signal is located at a frequency close to the frequency of classical signals, a set of nonlinear effects such as FWM (four-wave mixing) and Raman scattering is observed. The impact of four-wave mixing (FWM) effect on error level is described and analyzed in this work in case of large frequency diversity between classical and quantum signals. It is shown that the influence of FWM is negligible for convenient quantum key distribution

  8. Polarisation independent bi-directional four wave mixing for mid span spectral inversion

    DEFF Research Database (Denmark)

    Clausen, Anders; Buxens, Alvaro A.; Poulsen, Henrik Nørskov

    1999-01-01

    Polarisation independent Four Wave Mixing in a Semiconductor Optical Amplifier used for Mid Span Spectral Inversion (MSSI) is implemented and introduce only 0.9 dB penalty compared to polarisation dependent MSSI. The polarisation dependence in receiver sensitivity is 1 dB.......Polarisation independent Four Wave Mixing in a Semiconductor Optical Amplifier used for Mid Span Spectral Inversion (MSSI) is implemented and introduce only 0.9 dB penalty compared to polarisation dependent MSSI. The polarisation dependence in receiver sensitivity is 1 dB....

  9. Self-diffraction oscillations of two-wave mixing in a acrylamide photopolymer film

    CERN Document Server

    Kwak, C H; Sung, G Y; Choe, O S; Lee, Y W; Lee, I W

    1999-01-01

    Degenerate two-wave energy-coupling experiments were performed on a thick photopolymer film. It was found that the observed periodic oscillations of the energy couplings between the two pump beams were closely related to mixed gratings of the phase and the absorption gratings and to nonzero spatial phase shifts of the gratings with respect to the intensity interference patterns. A simple theory based on coupled wave theory was developed in conjunction with nonlocal responses of the mixed gratings and was compared with the experimental data.

  10. Atmospheric Transport and Mixing linked to Rossby Wave Breaking in GFDL Dynamical Core

    Science.gov (United States)

    Liu, C.; Barnes, E. A.

    2015-12-01

    Atmospheric transport and mixing plays an important role in the global energy balance and the distribution of health-related chemical constituents. Previous studies suggest a close linkage between large-scale transport and Rossby wave breaking (RWB). In this work, we use the GFDL spectral dynamical core to investigate this relationship and study the response of RWB-related transport in different climate scenarios. In a standard control run, we quantify the contribution of RWB to the total transport and mixing of an idealized tracer. In addition, we divide the contribution further into the two types of RWB - anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB) -- and contrast their efficiency at transport and mixing. Our results are compared to a previous study in which the transport ability of the two types of RWB is studied for individual baroclinic wave life-cycles. In a series of sensitivity runs, we study the response of RWB-related transport and mixing to various states of the jet streams. The responses of the mean strength, frequency, and the efficiency of RWB-related transport are documented and the implications for the transport and mixing in a warmer climate are discussed.

  11. Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2015-02-01

    The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.

  12. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    International Nuclear Information System (INIS)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-01-01

    In the cold-fluid dispersion relation ω=ω p /[1+(k perpendicular /k z ) 2 ] 1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k perpendicular /k z . As a result, for any frequency ω p , there are infinitely many degenerate waves, all having the same value of k perpendicular /k z . On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr=±(ω p 2 /ω 2 -1) 1/2 . Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  13. Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerge; McKinstrie, C. J.; Rottwitt, Karsten

    2016-01-01

    We study the preparation of heralded single-photon states using dual-pump spontaneous four-wave mixing. The dual-pump configuration, which in our case employs cross-polarized pumps, allows for a gradual variation of the nonlinear interaction strength enabled by a birefringence-induced walk...

  14. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  15. Dispersion-Flattened Composite Highly Nonlinear Fibre Optimised for Broadband Pulsed Four-Wave Mixing

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Oxenløwe, Leif Katsuo

    2016-01-01

    We present a segmented composite HNLF optimised for mitigation of dispersion-fluctuation impairments for broadband pulsed four-wave mixing. The HNLF-segmentation allows for pulsed FWMprocessing of a 13-nm wide input WDM-signal with -4.6-dB conversion efficiency...

  16. Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier

    Science.gov (United States)

    Erickson, R. P.; Pappas, D. P.

    2017-03-01

    We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).

  17. Transient four-wave mixing in T-shaped GaAs quantum wires

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Gislason, Hannes; Hvam, Jørn Märcher

    1999-01-01

    The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement. In thi...

  18. Spectrally resolved four-wave mixing in semiconductors: Influence of inhomogeneous broadening

    DEFF Research Database (Denmark)

    Erland, J.; Pantke, K.-H.; Mizeikis, V.

    1994-01-01

    We study the influence of inhomogeneous broadening on results obtained from spectrally resolved transient four-wave mixing. In particular, we study the case where more resonances are coherently excited, leading to polarization interference or quantum beats, depending on the microscopic nature of ...

  19. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    1996-01-01

    We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrall...

  20. Response of wave-dominated and mixed-energy barriers to storms

    NARCIS (Netherlands)

    Masselink, G.; Heteren, S. van

    2014-01-01

    Wave-dominated and mixed-energy barriers are extremely dynamic landforms, responding to processes operating over a spectrum of time scales, ranging from daily-to-monthly fluctuations related to storm and post-storm conditions, to century-to-millennium-scale evolution driven by relative sea-level

  1. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  2. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  3. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    Science.gov (United States)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  4. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Science.gov (United States)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-10-01

    In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  5. Nondegenerate Four-Wave Mixing in Gold Nanocomposites Formed by Ion Implantation

    International Nuclear Information System (INIS)

    Saonov, V.P.; Zhu, J.G.; Lepeshkin, N.N.; Armstrong, R.L.; Shalaev, V.M.; Ying, Z.C.; White, C.W.; Zuhr, R.A.

    1999-01-01

    Nondegenerate four-wave mixing technique has been used to investigate the third-order nonlinear susceptibility for nanocomposite material with Au nanocrystals formed inside a SiO 2 glass matrix. High concentrations of encapsulated Au nanocrystals are formed by implantation of Au ions into fused silica glass substrates and thermal annealing. The size distribution and the depth profiles of the Au nanoparticles can be controlled by the implantation dose, energy and annealing temperatures. The high value of the third-order susceptibility - (0.26--1.3)x10 -7 esu was found in the range of the frequency detunings near the surface plasmon resonance. Two characteristic relaxation times, 0.66 ps and 5.3 ps, have been extracted from the detuning curve of the third-order susceptibility as the probe-beam frequency changes and the pump-beam frequency fixed at the plasmon resonance. The first relaxation time was attributed to electron-phonon relaxation, and the second to thermal diffusion to the host medium. The efficient nondegenerate conversion is attractive for optical processing

  6. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide

    International Nuclear Information System (INIS)

    Danehy, P.M.; Paul, P.H.; Farrow, R.L.

    1995-01-01

    We report investigations of degenerate four-wave mixing (DFWM) line intensities in the A 2 Σ + left-arrow X 2 Π electronic transitions of nitric oxide. Contributions from population gratings (spatially varying perturbations in the level populations of absorbing species) and thermal gratings (spatially varying perturbations in the overall density) were distinguished and compared by several experimental and analytical techniques. For small quantities of nitric oxide in a strongly quenching buffer gas (carbon dioxide), we found that thermal-grating contributions dominated at room temperature for gas pressures of ∼0.5 atm and higher. In a nearly nonquenching buffer (nitrogen) the population-grating mechanism dominated at pressures of ∼1.0 atm and lower. At higher temperatures in an atmospheric-pressure methane/air flame, population gratings of nitric oxide also dominated. We propose a simple model for the ratio of thermal- to population-grating scattering intensities that varies as P 4 T -4.4 . Preliminary investigations of the temperature dependence and detailed studies of the pressure dependence are in agreement with this model. Measurements of the temporal evolution and the peak intensity of isolated thermal-grating signals are in detailed agreement with calculations based on a linearized hydrodynamic model [J. Opt. Soc. Am. B 12, 384 (1995)]. copyright 1995 Optical Society of America

  7. Three wave mixing test of hyperelasticity in highly nonlinear solids: sedimentary rocks.

    Science.gov (United States)

    D'Angelo, R M; Winkler, K W; Johnson, D L

    2008-02-01

    Measurements of three-wave mixing amplitudes on solids whose third order elastic constants have also been measured by means of the elasto-acoustic effect are reported. Because attenuation and diffraction are important aspects of the measurement technique results are analyzed using a frequency domain version of the KZK equation, modified to accommodate an arbitrary frequency dependence to the attenuation. It is found that the value of beta so deduced for poly(methylmethacrylate) (PMMA) agrees quite well with that predicted from the stress-dependent sound speed measurements, establishing that PMMA may be considered a hyperelastic solid, in this context. The beta values of sedimentary rocks, though they are typically two orders of magnitude larger than, e.g., PMMA's, are still a factor of 3-10 less than those predicted from the elasto-acoustic effect. Moreover, these samples exhibit significant heterogeneity on a centimeter scale, which heterogeneity is not apparent from a measurement of the position dependent sound speed.

  8. Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Jung, Y.; Begleris, I.

    2016-01-01

    We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups.......We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups....

  9. Femtosecond stimulated Raman spectroscopy by six-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Molesky, Brian P.; Guo, Zhenkun; Moran, Andrew M., E-mail: ammoran@email.unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-06-07

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that “forbidden” steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in

  10. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  11. Generation of higher-order squeezing of quantum electromagnetic fields by degenerate four-wave mixing and other processes

    International Nuclear Information System (INIS)

    Li Xizeng; Shan Ying; Mandel, L.

    1988-11-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of degenerate four-wave mixing exhibits higher-order squeezing to all even order. The degree of squeezing increases with the order N, and the higher-order squeeze parameter q N may approach -1. (author). 3 refs, 2 figs

  12. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    Science.gov (United States)

    2015-09-30

    measured by R/V Lance ( black solid line) and predicted by SWAN ( black dashed line) and the ship velocity (grey solid line). (c) BFI ( black solid line) and...and potential future trends; and WAVEWATCH-III® and SWAN wave models with new physics, adapted and validated for the Beaufort and Chukchi Seas...nondimensional spectral width ν ( black dashed line). (d–i) Selected photographs from the ship show local sea ice state. Fig. 6 illustrates a

  13. Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations

    Science.gov (United States)

    Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.

    2018-02-01

    We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.

  14. Instrumentation techniques for monitoring shock and detonation waves

    Science.gov (United States)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  15. Parametrically tunable soliton-induced resonant radiation by three-wave mixing

    DEFF Research Database (Denmark)

    Zhou, Binbin; Liu, Xing; Guo, Hairun

    2017-01-01

    We show that a temporal soliton can induce resonant radiation by three-wave mixing nonlinearities. This constitutes a new class of resonant radiation whose spectral positions are parametrically tunable. The experimental verification is done in a periodically poled lithium niobate crystal, where...... a femtosecond near-IR soliton is excited and resonant radiation waves are observed exactly at the calculated soliton phasematching wavelengths via the sum- and difference-frequency generation nonlinearities. This extends the supercontinuum bandwidth well into the mid IR to span 550–5000 nm, and the mid-IR edge...

  16. Routing of high data rate signals using degenerate four wave mixing in BSO

    Science.gov (United States)

    West, C. L.; Hazell, M. S.

    Non-linear optical phase conjugation can be directly applied to real time spatial and/or temporal information processing of electromagnetic waves. In photorefractive materials the process may be described in terms of dynamic holography. The speed at which grating formation takes place is limited by the physical properties of the crystal and the intensities of the optical beams used to write the grating. The speed at which diffraction may occur from this grating does not, however, suffer such limitations and in this memorandum we demonstrate the use of degenerate four wave mixing in BSO to direct the flow of data whose information bandwidth exceeds 1MHz.

  17. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques

    Science.gov (United States)

    Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross

    1997-01-01

    Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...

  18. a new approach to concrete mix design using computer techniques

    African Journals Online (AJOL)

    Engr. Vincent okoloekwe

    required for a specified grade of concrete. 26 ... terms of the grade of the concrete required, its durability and ... experiments involves the use of a planned ..... machinery or vehicles. Nominal mix; 1:1:2. ½. 1. 1½. 2. 4½. 9. 1. 2. 3. 3¾. 82/3. 171/3.

  19. Infrared and millimeter waves v.14 millimeter components and techniques, pt.V

    CERN Document Server

    Button, Kenneth J

    1985-01-01

    Infrared and Millimeter Waves, Volume 14: Millimeter Components and Techniques, Part V is concerned with millimeter-wave guided propagation and integrated circuits. In addition to millimeter-wave planar integrated circuits and subsystems, this book covers transducer configurations and integrated-circuit techniques, antenna arrays, optoelectronic devices, and tunable gyrotrons. Millimeter-wave gallium arsenide (GaAs) IMPATT diodes are also discussed. This monograph is comprised of six chapters and begins with a description of millimeter-wave integrated-circuit transducers, focusing on vario

  20. Phase dispersion of Raman and Rayleigh-enhanced four-wave mixings in femtosecond polarization beats

    International Nuclear Information System (INIS)

    Yan, Zhao; Zhi-Qiang, Nie; Chang-Biao, Li; Yan-Peng, Zhang; Chen-Li, Gan; Huai-Bin, Zheng; Yuan-Yuan, Li; Ke-Qing, Lu

    2009-01-01

    Based on color-locking noisy field correlation in three Markovian stochastic models, phase dispersions of the Raman- and Rayleigh-enhanced four-wave mixing (FWM) have been investigated. The phase dispersions are modified by both linewidth and time delay for negative time delay, but only by linewidth for positive time delay. Moreover, the results under narrowband condition are close to the nonmodified nonlinear dispersion and absorption of the material. Homodyne and heterodyne detections of the Raman, the Rayleigh and the mixing femtosecond difference-frequency polarization beats have also been investigated, separately

  1. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.

    2016-01-01

    We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain is charac......We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....

  2. Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings

    International Nuclear Information System (INIS)

    Lee, K.-H.; Lin, M.-W.; Pai, C.-H.; Ha, L.-C.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings is demonstrated in the near-infrared regime. The quadratic dependence of the reflectivity of the probe pulse on plasma density indicates that the mixing is caused by the quasineutral plasma grating driven by the laser ponderomotive force. The experiment verifies that ponderomotive force is an effective means to produce a large-amplitude short-period plasma grating, which has many important applications in ultrahigh-intensity optics. In particular, such a grating is a crucial element for the development of plasma phase-conjugate mirrors that can be used to restore the wave-front distortion that is ubiquitous in nonlinear propagation

  3. Modulation of energetic particle fluxes by a mixed mode of transverse and compressional waves

    International Nuclear Information System (INIS)

    Lin, C.S.; Parks, G.K.

    1982-01-01

    Modulation characteristics of particle fluxes in the presence of a mixed mode of compressional and transverse magnetic waves at hydromagnetic frequencies have been studied by means of kinetic perturbation of the distribution function. The magnetospheric medium in which the particles are modulated contains both the magnetic and pressure gradients. It is found that the modulation features are strongly dependent on the energy and pitch angle of the particles. Drifting particles can resonate with waves whose phase velocities are near their drift velocities. When this happens, the amplitude of the modulations become significantly large and large phase shifts will occur. Resonance is important for particles with mid pitch angles (40 0 --70 0 ). The phase shift between the particle modulations and the magnetic field oscillations are strongly controlled by combined effects of transverse and compressional wave components and/or the occurrence of drift resonance. We have performed numerical calculations by using the dispersion relation of drift mirror Alfven waves as an example of waves with both compressional and transverse components. The results derived in this study may be of importance in studying the relationship of particles and Pc 4--5 waves that are observed during magnetically disturbed times

  4. Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    Directory of Open Access Journals (Sweden)

    M. Drivdal

    2014-12-01

    Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.

  5. Quantum properties of a parametric four-wave mixing in a Raman type atomic system

    Directory of Open Access Journals (Sweden)

    Sharypov A.V.

    2017-01-01

    Full Text Available We present a study of the quantum properties of two light fields used to parametric four-wave mixing in a Raman type atomic system. The system realizes an effective Hamiltonian of beamsplitter type coupling between the light fields, which allows to control squeezing and amplitude distribution of the light fields, as well as realizing their entanglement. The scheme can be feasibly applied to engineer the quantum properties of two single-mode light fields in properly chosen input states.

  6. Enhancement of four-wave mixing induced by interacting dark resonances

    International Nuclear Information System (INIS)

    Yang Weifeng; Gong Shangqing; Niu Yueping; Jin Shiqi; Xu Zhizhan

    2005-01-01

    We analyse a four-wave mixing (FWM) scheme in a five-level atomic system in which double-dark resonances are present. It is found that the enhancement of FWM in both electromagnetically induced transparency (EIT) windows can be obtained even without the condition of multiphoton resonance. Moreover, the conversion efficiency of FWM in one EIT window can be much larger than that in the other due to the presence of interacting dark resonances

  7. Mixed field dosimetry with the twin chamber technique

    International Nuclear Information System (INIS)

    Burger, G.; Maier, E.

    1974-04-01

    For the separate dosimetry of the neutron- and gamma-component in a mixed beam it is principally possible to use two ionization chambers with different ratios of neutron- to gamma sensitivity. Several authors proposed for this purpose the use of a homogenious TE-chamber filled with the TE-gas and of a carbon-chamber filled with CO 2 -gas. This chamber combination is also commercially available in several countries. The chambers are normally equipped with a continuous gas-flow provision and with a waterproof-housing for the use within liquid phantoms. The application of such chambers for mixed field dosimetry in the intercomparison project of the ICRU at the RARAF-facility in Brookhaven (International Neutron Dosimetry Intercomparison - INDI) is described. (orig./HP) [de

  8. Optimal Design of a Traveling-Wave Kinetic Inductance Amplifier Operated in Three-Wave Mixing Mode

    Science.gov (United States)

    Erickson, Robert; Bal, Mustafa; Ku, Ksiang-Sheng; Wu, Xian; Pappas, David

    In the presence of a DC bias, an injected pump, of frequency fP, and a signal, of frequency fS, undergo parametric three-way mixing (3WM) within a traveling-wave kinetic inductance (KIT) amplifier, producing an idler product of frequency fI =fP -fS . Periodic frequency stops are engineered into the coplanar waveguide of the device to enhance signal amplification. With fP placed just above the first frequency stop gap, 3WM broadband signal gain is achieved with maximum gain at fS =fP / 2 . Within a theory of the dispersion of traveling waves in the presence of these engineered loadings, which accounts for this broadband signal gain, we show how an optimal frequency-stop design may be constructed to achieve maximum signal amplification. The optimization approach we describe can be applied to the design of other nonlinear traveling-wave parametric amplifiers. This work was supported by the Army Research Office and the Laboratory for Physical Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowledges Grant 60NANB14D024 from the US Department of Commerce, NIST.

  9. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    Science.gov (United States)

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.

  10. Perturbative theory of higher-order collision-enhanced wave mixing

    International Nuclear Information System (INIS)

    Trebino, R.; Rahn, L.A.

    1989-01-01

    This paper reports on collision-enhanced resonances which represent an interesting class of nonlinear- optical processes. They occur because collisional dephasing can rephase quantum-mechanical amplitudes that ordinarily cancel out exactly, thereby allowing otherwise unobservable wave-mixing resonances to be seen. This is an especially interesting phenomenon because these resonances are coherent effects that are induced by an incoherent process (collisional dephasing). First predicted in the late 1970s and eventually observed in 1981, these novel effects have now been seen in a wide variety of four-wave-mixing experiments, ranging from self-focusing to coherent anti-Stokes Raman spectroscopy. Recently, the authors have extended these observations to higher order, where the authors have shown both experimentally and theoretically the higher-order, collision-enhanced effects exist in nonlinear optics, appearing as subharmonics of two-photon resonances. Indeed, the authors have found that collision-enhanced processes are ideal systems for studying higher-order, nonlinear-optical effects because very high orders can be made to contribute with little or no saturation braodening. Experiments on sodium in a flame using six- and eight-wave-mixing geometries have revealed still higher-order effects (at least as high- order as χ (13) )

  11. Collisional Processes Probed by using Resonant Four-Wave Mixing Spectroscopy

    Science.gov (United States)

    McCormack, E. F.; Stampanoni, A.; Hemmerling, B.

    2000-06-01

    Collisionally-induced decay processes in excited-state nitric oxide (NO) have been measured by using time-resolved two-color, resonant four-wave mixing (TC-RFWM) spectroscopy and polarization spectroscopy (PS). Markedly different time dependencies were observed in the data obtained by using TC-RFWM when compared to PS. Oscillations in the PS signal as a function of delay between the pump and probe laser pulses were observed and it was determined that their characteristics depend very sensitively on laser polarization. Analysis reveals that the oscillations in the decay curves are due to coherent excitation of unresolved hyperfine structure in the A state of NO. A comparison of beat frequencies obtained by taking Fourier transforms of the time data to the predicted hyperfine structure of the A state support this explanation. Further, based on a time-dependent model of PS as a FWM process, the signal’s dependence as a function of time on polarization configuration and excitation scheme can be predicted. By using the beat frequency values, fits of the model results to experimental decay curves for different pressures allows a study of the quenching rate in the A state due to collisional processes. A comparison of the PS data to laser-induced fluorescence decay measurements reveals different decay rates which suggests that the PS signal decay depends on the orientation and alignment of the excited molecules. The different behavior of the decay curves obtained by using TC-RFWM and PS can be understood in terms of the various contributions to the decay as described by the model and this has a direct bearing on which technique is preferable for a given set of experimental parameters.

  12. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing.

    Science.gov (United States)

    Abraham, Baxter; Fan, Hao; Galoppini, Elena; Gundlach, Lars

    2018-03-01

    Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO 2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.

  13. Direct measurement technique for shock wave velocity with irradiation drive

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun

    2011-01-01

    According to the ionization mechanism of transparent material under super high pressure, the direct diagnosis method of shock wave has been analyzed. With the Drude free electron model, the reflectivity difference of shock wave front under different pressures was analyzed. The blank effect in the detector was studied, which is caused by the X-ray ionization of transparent material, after analyzing the reflectivity data in space-time scale. The experiment shows that the beginning point and duration of blank effect are consistent with the start point and duration of laser pulse, respectively. And the reflectivity of shock wave front is about 35% when the shock velocity is 32 km/s. The reason and solution for blank effect was presented. The formula to calculate the shock wave velocity in transparent material was also deduced and verified. (authors)

  14. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  15. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  16. A Study on Techniques for Focusing Circumferential Array Guided Waves for Long Range Inspection of Pipes

    International Nuclear Information System (INIS)

    Kang, To; Kim, Hak Joon; Song, Sung Jin; Cho, Young Do; Lee, Dong Hoon; Cho, Hyun Joon

    2009-01-01

    Ultrasonic guided waves have been widely utilized for long range inspection of structures. Especially, development of array guided waves techniques and its application for long range gas pipe lines(length of from hundreds meters to few km) were getting increased. In this study, focusing algorithm for array guided waves was developed in order to improve long range inspectability and accuracy of the array guided waves techniques for long range inspection of gas pipes, and performance of the developed techniques was verified by experiments using the developed array guided wave system. As a result, S/N ratio of array guided wave signals obtained with the focusing algorithm was increased higher than that of signals without focusing algorithm

  17. Physical simulation technique on the behaviour of oil spills in grease ice under wave actions

    International Nuclear Information System (INIS)

    Li, Z.; Hollebone, B.; Fingas, M.; Fieldhouse, B.

    2008-01-01

    Light or medium oil spilled on ice tends to rise and remain the surface in unconsolidated frazil or grease ice. This study looked for a new system for studying the oil emulsion in grease ice under experimental conditions. A physical simulation technique was designed to test the effect of wave energy on the spilled oil grease ice emulsion. The newly developed test system has the ability to perform simulation tests in wave, wave-ice, wave-oil and wave-ice-oil. This paper presented the design concept of the developed test system and introduced the experimental certifications of its capability in terms of temperature control, wave-making and grease ice-making. The key feature of the technique is a mini wave flume which derives its wave making power from an oscillator in a chemical laboratory. Video cameras record the wave action in the flume in order to obtain wave parameters. The wave making capability tests in this study were used to determine the relation of wave height, length and frequency with oscillator power transfer, oscillator frequency and the depth of the water flume. 16 refs., 10 figs

  18. Wave-induced ripple development in mixed clay-sand substrates

    Science.gov (United States)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results

  19. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    International Nuclear Information System (INIS)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F.; Matthaeus, W. H.

    2015-01-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d p may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d p and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained

  20. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036, Rende (CS) (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States)

    2015-12-10

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  1. Production of narrowband tunable extreme-ultraviolet radiation by noncollinear resonance-enhanced four-wave mixing

    NARCIS (Netherlands)

    Hannemann, S.; Hollenstein, U.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    Fourier-transform-limited extreme-ultraviolet (XUV) radiation (bandwidth ≲300 MHz) tunable around 91 nm is produced by use of two-photon resonance-enhanced four-wave mixing on the Kr resonance at 94 093 cm

  2. Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites

    Science.gov (United States)

    Martin, A. J.; Yong, A.; Salomone, L.

    2014-12-01

    Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible

  3. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  4. Broadband Polarization-Insensitive Wavelength Conversion Based on Non-Degenerate Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2012-01-01

    We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements....

  5. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  6. Sound topology, duality, coherence and wave-mixing an introduction to the emerging new science of sound

    CERN Document Server

    Deymier, Pierre

    2017-01-01

    This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing).  The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time revers al symmetry of acoustic waves. Symmetry brea...

  7. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  8. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  9. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    Science.gov (United States)

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2011-10-30

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  10. Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas

    Science.gov (United States)

    Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John

    2014-10-01

    When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  11. Accelerated two-wave mixing response in erbium-doped fibers with saturable optical absorption

    Science.gov (United States)

    Hernandez, Eliseo; Stepanov, Serguei; Plata Sanchez, Marcos

    2016-08-01

    The contribution of the spatially uniform variation of average optical absorption to the dynamics of the transient two-wave mixing (TWM) response is considered. It is shown theoretically and confirmed experimentally that this transient effect, via dynamic population gratings in erbium-doped fibers (EDFs) can ensure a response nearly two times faster in such gratings as compared to the growth rate of fluorescence uniformly excited under similar conditions, and can also result in an additional overshot in the tail of the TWM response. This additional ‘accelerating’ contribution is of even type, and does not influence the odd transient TWM response for the refractive index component of such gratings in the EDFs reported earlier. It is also shown that this effect can be utilized to monitor the formation of the dynamic grating with an auxiliary probe wave of the essentially different non-Bragg wavelength.

  12. Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise

    International Nuclear Information System (INIS)

    Chatterji, Shourov; Lazzarini, Albert; Stein, Leo; Sutton, Patrick J.; Searle, Antony; Tinto, Massimo

    2006-01-01

    The sensitivity of current searches for gravitational-wave bursts is limited by non-Gaussian, nonstationary noise transients which are common in real detectors. Existing techniques for detecting gravitational-wave bursts assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal. These techniques often fail in the presence of noise nonstationarities by incorrectly identifying such transients as possible gravitational-wave bursts. Furthermore, consistency tests currently used to try to eliminate these noise transients are not applicable to general networks of detectors with different orientations and noise spectra. In order to address this problem we introduce a fully coherent consistency test that is robust against noise nonstationarities and allows one to distinguish between gravitational-wave bursts and noise transients in general detector networks. This technique does not require any a priori knowledge of the putative burst waveform

  13. SPREADING LAYERS IN ACCRETING OBJECTS: ROLE OF ACOUSTIC WAVES FOR ANGULAR MOMENTUM TRANSPORT, MIXING, AND THERMODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M., E-mail: sashaph@princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2016-01-20

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  14. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Woo [Dept. of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2016-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  15. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung Woo [Dept. of of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2014-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  16. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    Science.gov (United States)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  17. Optical rectification, circular photogalvanic effect, and five-wave mixing in optically active liquids

    Science.gov (United States)

    Koroteev, Nikolai I.

    1996-05-01

    A phenomenological analysis is carried out of novel nonlinear optical processes taking place in macroscopically noncentrosymmetric isotropic solutions of chiral (lift-ring mirror asymmetric) macromolecules, which are the primary elements of living organisms and their metabolic products. Among the most interesting and potentially useful for spectroscopic purposes are: optical rectification/photogalvanic effects consisting in electrostatic field/direct electrical current generation in such liquids under irradiation with the intense circularly polarized laser beam and the five-wave mixing phase-matched process of BioCARS to selectively record, background-free, vibrational spectra of chiral molecules.

  18. Four-wave mixing in InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Birkedal, Dan; Hvam, Jørn Märcher

    2001-01-01

    broadening strongly reduce the interaction with the electromagnetic field. Until now, four-wave mixing (FWM) in III-V quantum dots has only been reported in optical amplifiers at room temperature, where the interaction length is increased by waveguiding in the quantum dot plane. We have carried out...... degenerate FWM experiments in a slab geometry on a sample containing 10 layers of MBE-grown In0.5Al0.04Ga0.46As quantum dots (QDs) with 50-nm Al0.08Ga0.92As barriers. Ground state photoluminescence emission was measured....

  19. Split-step scheme for photon-pair generation through spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    The rapid development of quantum information technology requires the ability to reliably create and distribute single photons [1]. Photon-pair production through spontaneous four-wave mixing (SpFWM) allows heralded single photons to be generated at communication wavelengths and in fiber, compatible...... with conventional communication systems, with small losses. Creating single photons in desired quantum states require careful design of waveguide structures. This is greatly facilitated by a general numerical approach as presented here. Additionally, such a numerical approach allows detailed analysis of real...... systems where all relevent effects are included....

  20. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects

    International Nuclear Information System (INIS)

    Yu-Zhu, Zhu; Xiang-Ming, Hu; Fei, Wang; Jing-Yan, Li

    2010-01-01

    We explore the effects of atomic memory on quantum correlations of two-mode light fields from four-wave mixing. A three-level atomic system in Λ configuration is considered, in which the atomic relaxation times are comparable to or longer than the cavity relaxation times and thus there exists the atomic memory. The quantum correlation spectrum in the output is calculated without the adiabatic elimination of atomic variables. It is shown that the continuous variable entanglement is enhanced over a wide range of the normalized detuning in the intermediate and bad cavity cases compared with the good cavity case. In some situations more significant enhancement occurs at sidebands

  1. Surface solitons of four-wave mixing in an electromagnetically induced lattice

    International Nuclear Information System (INIS)

    Zhang, Yanpeng; Yuan, Chenzhi; Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Xiao, Min

    2013-01-01

    By creating lattice states with two-dimensional spatial periodic atomic coherence, we report an experimental demonstration of generating two-dimensional surface solitons of a four-wave mixing signal in an electromagnetically induced lattice composed of two electromagnetically induced gratings with different orientations in an atomic medium, each of which can support a one-dimensional surface soliton. The surface solitons can be well controlled by different experimental parameters, such as probe frequency, pump power, and beam incident angles, and can be affected by coherent induced defect states. (letter)

  2. Fluorescence and Four-Wave Mixing in Electromagnetically Induced Transparency Windows

    International Nuclear Information System (INIS)

    Wang Zhi-Guo; Li Cheng; Zhang Zhao-Yang; Che Jun-Ling; Qin Meng-Zhe; He Jia-Nan; Zhang Yan-Peng

    2013-01-01

    We simultaneously compare the probe transmission, Four-Wave Mixing (FWM) and fluorescence signals with dressing effects in a four-level atomic system. The variation rules of three types of signals are exhibited by changing the frequency detuning and power of incident laser beams. The interplay between two ladder subsystems is investigated in the Y-type atomic system. In particular, the fluorescence signal with ultra-narrow linewidth is obtained due to being sheared twice by the electromagnetically induced transparency window. Such fluorescence with very high coherence and monochromaticity can be used for the quantum correlation and narrow linewidth laser

  3. Turbulent mixing and wave radiation in non-Boussinesq internal bores

    DEFF Research Database (Denmark)

    Borden, Zac; Koblitz, Tilman; Meiburg, Eckart

    2012-01-01

    Bores, or hydraulic jumps, appear in many natural settings and are useful in many industrial applications. If the densities of the two fluids between which a bore propagates are very different (i.e., water and air), the less dense fluid can be neglected when modeling a bore analytically-a single...... ratio, defined as the ratio of the density of the lighter fluid to the heavier fluid, is greater than approximately one half. For smaller density ratios, undular waves generated at the bore's front dominate over the effects of turbulent mixing, and the expanding layer loses energy across the bore. Based...

  4. Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2007-01-01

    Roč. 107, č. 1 (2007), s. 56-62 ISSN 0020-7608 R&D Projects: GA AV ČR IAA100400501; GA AV ČR 1ET400400413 Grant - others:European Science Foundation (EIPAM)(XE) PESC7-20; U.S. National Science Foundation(US) OISE-0532040 Institutional research plan: CEZ:AV0Z40400503 Keywords : two- electron integrals * mixed plane-wave and Gaussian basis sets * Coulomb integrals Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 1.368, year: 2007

  5. A universal quantum frequency converter via four-wave-mixing processes

    Science.gov (United States)

    Cheng, Mingfei; Fang, Jinghuai

    2016-06-01

    We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.

  6. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    Science.gov (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  7. Geological structure analysis in Central Java using travel time tomography technique of S waves

    International Nuclear Information System (INIS)

    Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.

    2016-01-01

    Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho. (paper)

  8. Application of the cylindrically guided wave technique for bolt and pump shaft inspections

    International Nuclear Information System (INIS)

    Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Joshi, N.R.; Tsai, Y.M.; Liu, S.N.

    1993-01-01

    Elastic wave propagation in a bounded medium significantly differs from that in an unbounded medium. The bounded medium in the form of a cylinder acts like a solid waveguide directing the wave with its geometry. A continuous or a pulsed wave interacts with cylindrical boundaries producing mode-converted signals in addition to the backwall echo. The signals are received at constant time intervals directly proportional to the diameter of a solid cylindrical object such as a bolt or an anchor stud. The Cylindrically Guided Wave Technique (CGWT) makes intelligent use of the mode-converted signals, or trailing pulses, to detect corrosion wastages and cracks in cylindrical objects. (orig.)

  9. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  10. Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms

    Science.gov (United States)

    Juo, Jz-Yuan; Lin, Jia-Kang; Cheng, Chin-Yao; Liu, Zi-Yu; Yu, Ite A.; Chen, Yong-Fan

    2018-05-01

    Long-distance quantum optical communications usually require efficient wave-mixing processes to convert the wavelengths of single photons. Many quantum applications based on electromagnetically induced transparency (EIT) have been proposed and demonstrated at the single-photon level, such as quantum memories, all-optical transistors, and cross-phase modulations. However, EIT-based four-wave mixing (FWM) in a resonant double-Λ configuration has a maximum conversion efficiency (CE) of 25% because of absorptive loss due to spontaneous emission. An improved scheme using spatially modulated intensities of two control fields has been theoretically proposed to overcome this conversion limit. In this study, we first demonstrate wavelength conversion from 780 to 795 nm with a 43% CE by using this scheme at an optical density (OD) of 19 in cold 87Rb atoms. According to the theoretical model, the CE in the proposed scheme can further increase to 96% at an OD of 240 under ideal conditions, thereby attaining an identical CE to that of the previous nonresonant double-Λ scheme at half the OD. This spatial-light-modulation-based FWM scheme can achieve a near-unity CE, thus providing an easy method of implementing an efficient quantum wavelength converter for all-optical quantum information processing.

  11. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    Science.gov (United States)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer

  12. Investigation of interfacial wave structure using time-series analysis techniques

    International Nuclear Information System (INIS)

    Jayanti, S.; Hewitt, G.F.; Cliffe, K.A.

    1990-09-01

    The report presents an investigation into the interfacial structure in horizontal annular flow using spectral and time-series analysis techniques. Film thickness measured using conductance probes shows an interesting transition in wave pattern from a continuous low-frequency wave pattern to an intermittent, high-frequency one. From the autospectral density function of the film thickness, it appears that this transition is caused by the breaking up of long waves into smaller ones. To investigate the possibility of the wave structure being represented as a low order chaotic system, phase portraits of the time series were constructed using the technique developed by Broomhead and co-workers (1986, 1987 and 1989). These showed a banded structure when waves of relatively high frequency were filtered out. Although these results are encouraging, further work is needed to characterise the attractor. (Author)

  13. Optical Techniques for Millimeter-Wave Phased Array Communications Antennas

    National Research Council Canada - National Science Library

    Edge, Colin

    1998-01-01

    The scope of this program was to study the application of optical techniques to signal distribution and beamforming networks in phased array antennas for Army mobile tactical communications systems...

  14. Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach

    Science.gov (United States)

    Thomas, C.; Lark, R. M.

    2013-12-01

    Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second

  15. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  16. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  17. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  18. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material.

    Science.gov (United States)

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-09-01

    The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. E. coli counts were higher in hand-mixed materials (P 2.394). The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface.

  19. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

    OpenAIRE

    Nemade, K. R.; Waghuley, S. A.

    2014-01-01

    Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with a...

  20. A Note on the Effect of Wind Waves on Vertical Mixing in Franks Tract, Sacramento–San Joaquin Delta, California

    Directory of Open Access Journals (Sweden)

    Nicole L. Jones

    2008-06-01

    Full Text Available A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations. The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level, and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1, and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.

  1. Mic it! microphones, microphone techniques, and their impact on the final mix

    CERN Document Server

    Corbett, Ian

    2014-01-01

    Capture great sound in the first place, and spend less time ""fixing it in the mix"" with Ian Corbett's Mic It! Microphones, Microphone Techniques, and Their Impact on the Final Mix. With his expert guidance, you'll quickly understand essential audio concepts as they relate to microphones and mic techniques, and learn how to apply them to your recording situation. Whether you only ever buy one microphone, are equipping a studio on a budget, or have a vast selection of great mics to use, you'll learn to better use whatever tools you have. Mic It! gives you the background to design and discover

  2. Preparation of mixed oxides (Th,U)O{sub 2}: an evaluation of different techniques; Estudos de diferentes rotas de preparacao de oxidos binarios de torio e uranio

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Jamil Mahmoud Said

    1999-07-01

    An evaluation of different ways of obtaining (Th-U)O{sub 2} mixed oxides is described. Coprecipitation, mechanical mixing of uranium and thorium powders, and the sol-gel technique were studied in order to get a large spectrum of knowledge of the process performance. The use of ultrasonic waves for the homogenization of the hydroxide mixture and microwave heating for powder drying was also investigated. Sol-gel showed the best results regarding the specific area for obtained samples. Oxide drying by microwave is an effective method to get mixed oxides for fuel fabrication. Neither coprecipitation nor mechanical mixing of the thorium and uranium oxide powders is suitable for the purpose. The obtained data are less than 70% than those achieved when sol-gel process is performed. Electronic microscopy, X-ray fluorescence and diffraction, thermogravimetry, specific gravidity and specific area determination (BET) used for sample characterization were convenient and accomplished good results. (author)

  3. Rotational spectroscopy and three-wave mixing of 4-carvomenthenol: A technical guide to measuring chirality in the microwave regime

    International Nuclear Information System (INIS)

    Shubert, V. Alvin; Schmitz, David; Medcraft, Chris; Krin, Anna; Patterson, David; Doyle, John M.; Schnell, Melanie

    2015-01-01

    We apply chirality sensitive microwave three-wave mixing to 4-carvomenthenol, a molecule previously uncharacterized with rotational spectroscopy. We measure its rotational spectrum in the 2-8.5 GHz range and observe three molecular conformers. We describe our method in detail, from the initial step of spectral acquisition and assignment to the final step of determining absolute configuration and enantiomeric excess. Combining fitted rotational constants with dipole moment components derived from quantum chemical calculations, we identify candidate three-wave mixing cycles which were further tested using a double resonance method. Initial optimization of the three-wave mixing signal is done by varying the duration of the second excitation pulse. With known transition dipole matrix elements, absolute configuration can be directly determined from a single measurement

  4. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash

    2018-04-01

    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  5. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to 24Mg

    International Nuclear Information System (INIS)

    Valor, A.; Heenen, P.-H.; Bonche, P.

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment

  6. Electric field measurements in near-atmospheric pressure nitrogen and air based on a four-wave mixing scheme

    International Nuclear Information System (INIS)

    Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe; Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi

    2010-01-01

    Electric fields are measured for the first time in molecular nitrogen at atmospheric pressures. Measurements are performed in either pure nitrogen or air. The laser spectroscopic technique applied here is based on a CARS-like four-wave mixing scheme originally developed for measurements in molecular hydrogen by Ochkin and Tskhai in 1995. The technique is ideal for investigation of microdischarges at atmospheric pressures. The frequencies of two focussed laser beams in the visible are tuned to match the energy difference between the two lowest vibrational levels in nitrogen. The presence of a static electric field then leads to the emission of coherent IR radiation at this difference frequency. The signal intensity scales with the square of the static electric field strength. Parallel to this process also anti-Stokes radiation by the standard CARS process is generated. Normalization of the IR signal by the CARS signal provides a population independent measurement quantity. Experimental results at various pressures and electric field strengths are presented.

  7. Determination of the electric field strength of filamentary DBDs by CARS-based four-wave mixing

    Science.gov (United States)

    Böhm, P.; Kettlitz, M.; Brandenburg, R.; Höft, H.; Czarnetzki, U.

    2016-10-01

    It is demonstrated that a four-wave mixing technique based on coherent anti-Stokes Raman spectroscopy (CARS) can determine the electric field strength of a pulsed-driven filamentary dielectric barrier discharge (DBD) of 1 mm gap, using hydrogen as a tracer medium in nitrogen at atmospheric pressure. The measurements are presented for a hydrogen admixture of 10%, but even 5% H2 admixture delivers sufficient infrared signals. The lasers do not affect the discharge by photoionization or by other radiation-induced processes. The absolute values of the electric field strength can be determined by the calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. This procedure also enables the determination of the applied breakdown voltage. The alteration of the electric field is observed during the internal polarity reversal and the breakdown process. One advantage of the CARS technique over emission-based methods is that it can be used independently of emission, e.g. in the pre-phase and in between two consecutive discharges, where no emission occurs at all.

  8. Wavelength dependence four-wave mixing spectroscopy in a micrometric atomic vapour

    International Nuclear Information System (INIS)

    Yuan-Yuan, Li; Li, Li; Yan-Peng, Zhang; Si-Wen, Bi

    2010-01-01

    This paper presents a theoretical study of wavelength dependence four-wave-mixing (FWM) spectroscopy in a micrometric thin atomic vapour. It compares three cases termed as mismatched case I, matched case and mismatched case II for the probe wavelength less, equal and greater than the pump wavelength respectively. It finds that Dicke-narrowing can overcome width broadening induced by Doppler effects and polarisation interference of thermal atoms, and high resolution FWM spectra can be achieved both in matched and mismatched wavelength for many cases. It also finds that the magnitude of the FWM signal can be dramatically modified to be suppressed or to be enhanced in comparison with that of matched wavelength in mismatched case I or II. The width narrowing and the magnitude suppression or enhancement can be demonstrated by considering enhanced contribution of slow atoms induced by atom-wall collision and transient effect of atom-light interaction in a micrometric thin vapour. (general)

  9. Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy

    Science.gov (United States)

    Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi

    2013-06-01

    Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.

  10. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    Science.gov (United States)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-01-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032

  11. Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process

    International Nuclear Information System (INIS)

    Yu, Y. B.; Sheng, J. T.; Xiao, M.

    2011-01-01

    We propose an experimentally feasible scheme to produce bright quadricolor continuous-variable (CV) entanglement by a four-wave mixing process (FWM) with four-level atoms inside the optical ring cavities operating above threshold. The Stokes and anti-Stokes beams are generated via the pump beam (tuned close to one atomic transition) and the coupling beam (tuned to the resonance of another atomic transition), respectively. The quadruply resonant and narrowed linewidth of the cavity fields with different frequencies are achieved and quadricolor CV entanglement among the four cavity fields is demonstrated according to the criterion proposed by van Loock and Furusawa [Phys. Rev. A 67, 052315 (2003)]. This scheme provides a way to generate bright quadricolor CV entanglement and will be significant for applications in quantum information processing and quantum networks.

  12. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    Science.gov (United States)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  13. Q-factor improvement of degenerate four-wave-mixing regenerators for ASE degraded signals

    Science.gov (United States)

    Lu, Hang; Wu, Bao-jian; Geng, Yong; Zhou, Xing-yu; Sun, Fan

    2017-11-01

    All-optical regenerators can be used to suppress amplified spontaneous emission (ASE) noise introduced by cascaded erbium doped fiber amplifiers (EDFAs) in optical fiber communication systems and lead to the improvement of optical receiver sensitivity. By introducing the Q-factor transfer function (QTF), we evaluate the Q-factor performance of degenerate four-wave mixing (DFWM) regenerators with clock pump and reveal the differences between the optimal input powers determined from the static and dynamic power tranfer function (PTF) and the QTF curves. Our simulation shows that the clock-pump regnerator is capable of improving the Q-facor and receiver sensitivity for 40 Gbit/s ASE-degraded return-to-zero on-off keying (RZ-OOK) signal by 2.58 dB and 4.2 dB, respectively.

  14. Effects of noninstantaneous nonlinear processes on photon-pair generation by spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-production rate depends weakly on the waveguide temperature, due to higher-order Raman scattering events, and more strongly on pump-pair frequency detuning. From the analytical model, a numerical scheme is derived, based on the well-known split-step method. This scheme allows computation of joint states where......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....

  15. Optimisation of spontaneous four-wave mixing in a ring microcavity

    Science.gov (United States)

    Chuprina, I. N.; An, P. P.; Zubkova, E. G.; Kovalyuk, V. V.; Kalachev, A. A.; Gol'tsman, G. N.

    2017-11-01

    A theory of spontaneous four-wave mixing in a ring microcavity is developed. The rate of emission of biphotons for pulsed and monochromatic pumping with allowance for the dispersion of group velocities is analytically calculated. In the first case, pulses in the form of an increasing exponential are considered, which are optimal for excitation of an individual resonator mode. The behaviour of the group velocity dispersion as a function of the width and height of the waveguide is studied for a specific case of a ring microcavity made of silicon nitride. The results of the numerical calculation are in good agreement with the experimental data. The ring microcavity is made of two types of waveguides: completely etched and half etched. It is found that the latter allow for better control over the parameters in the manufacturing process, making them more predictable. Presented at the Russian - British Symposium on Quantum Technologies (Moscow, 20 - 23 March 2017)

  16. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    Science.gov (United States)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  17. Eliminating four-wave-mixing crosstalk in wavelength-division-multiplexing systems

    Science.gov (United States)

    Kwong, Wing C.; Yang, Guu-Chang

    1996-11-01

    To reduce four-wave-mixing crosstalk in long-haul wavelength-division multiplexing (WDM) lightwave systems, the use of unequally spaced channels has recently been proposed. Instead of being solved y integer linear programming, the unequal-spaced channel-allocation problem is here treated as constructing suitable optical orthogonal codes in optical code-division multiple-access (CDMA). Three 'algebraic' algorithms on finding the frequency locations of unequally spaced WDM channels are reported. The constructions are based on generating optical CDMA codewords with a predetermined pulse separation and 'aperiodic' autocorrelation sidelobes no greater than one. The algorithms potentially provide a fast and simple alternative to solve the problem, besides the recently reported computer-search method.

  18. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  19. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  20. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    Science.gov (United States)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  1. Controllable ultra-narrow fluorescence and six-wave mixing under double electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Wang, Z G; Zhang, Z Y; Che, J L; Zhang, Y Z; Li, C B; Zheng, H B; Zhang, Y P

    2013-01-01

    We report the first observation of six-wave mixing (SWM) and fluorescence signals in an electromagnetically induced transparency (EIT) window. Several remarkable advantages are described. First, multiple bright and dark states are simultaneously observed due to enhancement or suppression of the SWM signal. Second, ultra-narrow fluorescence, much narrower than the EIT window, is experimentally obtained. Third, the ultra-narrow fluorescence can also generate Autler–Townes splitting on scanning the coupling beam. Fourth, a double-peak EIT window is obtained using the nest-dressing scheme. Such studies concerning SWM and fluorescence have applications in optical switching, multi-channel communication and narrowband and long-range quantum communication. (letter)

  2. Four-wave mixing of Nd3+-doped crystals and glasses

    International Nuclear Information System (INIS)

    Powell, R.C.; Payne, S.A.; Chase, L.L.; Wilke, G.D.

    1990-01-01

    Degenerate four-wave-mixing measurements have been performed on a wide variety of Nd 3+ -doped oxide and fluoride glasses and crystals. Crossed beams from a cw argon-ion laser were used to excite the Nd 3+ ions directly and establish population gratings. Absolute measurements of the signal strengths were made, and their magnitudes were found to be sensitively influenced by the composition of the host. A theoretical model was developed to interpret the results, and it was found that the dominant contribution to the signal is associated with the difference in polarizability of the Nd 3+ ions in the metastable state versus the ground state. The magnitude of the observed change in the polarizability indicates that the 4f→5d transitions are responsible for this effect, and as a result, the value of the left-angle 4f|r|5d right-angle radial integral sensitively affects the calculated polarizability change

  3. Conversion efficiency in the process of copolarized spontaneous four-wave mixing

    International Nuclear Information System (INIS)

    Garay-Palmett, Karina; U'Ren, Alfred B.; Rangel-Rojo, Raul

    2010-01-01

    We study the process of copolarized spontaneous four-wave mixing in single-mode optical fibers, with an emphasis on an analysis of the conversion efficiency. We consider both the monochromatic-pump and pulsed-pump regimes, as well as both the degenerate-pump and nondegenerate-pump configurations. We present analytical expressions for the conversion efficiency, which are given in terms of double integrals. In the case of pulsed pumps we take these expressions to closed analytical form with the help of certain approximations. We present results of numerical simulations, and compare them to values obtained from our analytical expressions, for the conversion efficiency as a function of several key experimental parameters.

  4. Degenerate four-wave mixing in a resonant homogeneously broadened system

    International Nuclear Information System (INIS)

    Lind, R.C.; Steel, D.G.

    1979-01-01

    Detailed measurements have been made of degenerate four-wave mixing (DFWM) in a resonant homogeneously broadened gas. The measurements were performed in SF 6 using a CO 2 laser operated on the 10.4-μm branch. The experimental results were compared to a two-level theory for a resonant saturable absorber developed by Abrams and Lind. The measured value of 7% reflectivity on the P(20) line was in excellent agreement with Abrams and Lind when corrected for thermal motion. A peak reflectivity of 38% was observed for off-resonant operation on the P(8) line. In addition to the usual two-level nonlinear response, discussion and measurement of the coherent three-level nonlinearity is also presented. A two-photon contribution in SF 6 using the P(16) line of CO 2 equals the one-photon response. Initial observations of coherent propagation effects are also presented

  5. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    OpenAIRE

    Riccardo Cucini; Andrea Battistoni; Filippo Bencivenga; Alessandro Gessini; Riccardo Mincigrucci; Erika Giangrisostomi; Emiliano Principi; Flavio Capotondi; Emanuele Pedersoli; Michele Manfredda; Maya Kiskinova; Claudio Masciovecchio

    2015-01-01

    Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first resu...

  6. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  7. A Study on the Guided Wave Mode Conversion using Self-calibrating Technique

    International Nuclear Information System (INIS)

    Park, Jung Chul; Cho, Youn Ho

    2000-01-01

    The guided wave mode conversion phenomena were investigated for the NDE of a plate-like structure with thickness variation. The ratios of reflection and transmission (R/T) were measured via the self-calibrating procedure which allows us to obtain experimental guided wave data in a more reliable way regardless of the coupling uncertainty between transducer and specimen. The results on R/T could be used to determine the thickness reduction of the structure. It was shown that not only the incident modes but also the converted ones need to be considered in the self-calibrating guided wave inspection to extract a reasonable correlation between experimental data and the thickness variation. Through this study, the potential of guided wave inspection as a quantitative NDE technique was explored based on the combined concept of self-calibration and multi-mode conversion in guided wave scattering problems

  8. A Temporal Millimeter Wave Propagation Model for Tunnels Using Ray Frustum Techniques and FFT

    Directory of Open Access Journals (Sweden)

    Choonghyen Kwon

    2014-01-01

    Full Text Available A temporal millimeter wave propagation model for tunnels is presented using ray frustum techniques and fast Fourier transform (FFT. To directly estimate or simulate effects of millimeter wave channel properties on the performance of communication services, time domain impulse responses of demodulated signals should be obtained, which needs rather large computation time. To mitigate the computational burden, ray frustum techniques are used to obtain frequency domain transfer function of millimeter wave propagation environment and FFT of equivalent low pass signals are used to retrieve demodulated waveforms. This approach is numerically efficient and helps to directly estimate impact of tunnel structures and surfaces roughness on the performance of millimeter wave communication services.

  9. Diagnostics of gas behind shock waves by refractive optical techniques

    International Nuclear Information System (INIS)

    Blaha, J.

    In a brief outline of optical methods for measuring neutral gas and plasma parameters, techniques are specifically dealt with based on the interferometric measurement of the refractive index. The investigation is shown of gas density changes in a shock tube using the optical Mach-Zehnder interferometer. While in a neutral gas the refractive index is determined by gas density, in a plasma the effects of all components, ie., electrons, ions and atoms are additive. The contributions to refraction from the various components may, in view of the different character and frequencies of the components, be resolved by measurement on more than one wavelength. (J.U.)

  10. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    Science.gov (United States)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  11. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  12. Degenerate four-wave mixing and phase conjugation in a collisional plasma

    International Nuclear Information System (INIS)

    Federici, J.F.; Mansfield, D.K.

    1986-06-01

    Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10μm. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed

  13. Broadband Enhancement of Optical Frequency Comb Using Cascaded Four-Wave Mixing in Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Tawfig Eltaif

    2017-01-01

    Full Text Available A cascaded intensity modulator (IM and phase modulator (PM are used to modulate a continuous-wave (CW laser and generate an optical frequency comb (OFC. Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM in photonic crystal fiber (PCF. Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively.

  14. Four-wave mixing in an asymmetric double quantum dot molecule

    Science.gov (United States)

    Kosionis, Spyridon G.

    2018-06-01

    The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.

  15. Measurement of Mixing Rate between Fuel Subchannels: Development of a new Experimental Technique

    International Nuclear Information System (INIS)

    Silin, Nicolas; Barbero, Jose; Bubach, Ernesto; Juanico, Luis

    2000-01-01

    A superficial heater of nickel applied over a ceramic substrate was designed and constructed, together with a system of high sensitivity to measure temperature differentials. The use of both techniques was evaluated and it might allow for the wider use of the method of differential thermal analysis to quantify the turbulent mixing between coupled hydraulic subchannels in fuel elements. Even more, the method presents important advantages as compared to the more complicated techniques known (laser Doppler anemometry)

  16. Infrared and millimeter waves v.15 millimeter components and techniques, pt.VI

    CERN Document Server

    Button, Kenneth J

    1986-01-01

    Infrared and Millimeter Waves, Volume 15: Millimeter Components and Techniques, Part VI is concerned with millimeter-wave guided propagation and integrated circuits. This book covers low-noise receiver technology for near-millimeter wavelengths; dielectric image-line antennas; EHF satellite communications (SATCOM) terminal antennas; and semiconductor antennas for millimeter-wave integrated circuits. A scanning airborne radiometer for 30 and 90 GHz and a self-oscillating mixer are also described. This monograph is comprised of six chapters and begins with a discussion on the design of low-n

  17. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  18. Microscale Shock Wave Physics Using Photonic Driver Techniques; TOPICAL

    International Nuclear Information System (INIS)

    SETCHELL, ROBERT E.; TROTT, WAYNE M.; CASTANEDA, JAIME N.; FARNSWORTH JR.,A. V.; BERRY, DANTE M.

    2002-01-01

    This report summarizes a multiyear effort to establish a new capability for determining dynamic material properties. By utilizing a significant reduction in experimental length and time scales, this new capability addresses both the high per-experiment costs of current methods and the inability of these methods to characterize materials having very small dimensions. Possible applications include bulk-processed materials with minimal dimensions, very scarce or hazardous materials, and materials that can only be made with microscale dimensions. Based on earlier work to develop laser-based techniques for detonating explosives, the current study examined the laser acceleration, or photonic driving, of small metal discs (''flyers'') that can generate controlled, planar shockwaves in test materials upon impact. Sub-nanosecond interferometric diagnostics were developed previously to examine the motion and impact of laser-driven flyers. To address a broad range of materials and stress states, photonic driving levels must be scaled up considerably from the levels used in earlier studies. Higher driving levels, however, increase concerns over laser-induced damage in optics and excessive heating of laser-accelerated materials. Sufficiently high levels require custom beam-shaping optics to ensure planar acceleration of flyers. The present study involved the development and evaluation of photonic driving systems at two driving levels, numerical simulations of flyer acceleration and impact using the CTH hydrodynamics code, design and fabrication of launch assemblies, improvements in diagnostic instrumentation, and validation experiments on both bulk and thin-film materials having well-established shock properties. The primary conclusion is that photonic driving techniques are viable additions to the methods currently used to obtain dynamic material properties. Improvements in launch conditions and diagnostics can certainly be made, but the main challenge to future applications

  19. Development and application of a novel technique for the measurement of mixing between subchannels

    International Nuclear Information System (INIS)

    Silin, Nicolas

    2004-01-01

    In this thesis we present the development of an experimental method for the measurement of mixing between coupled subchannels through the use of thermal traces.As this method can be applied to compact heterogeneous subchannels with high water flows and with presence of inserts and appendages, it is specially suited for the development of nuclear fuel elements, while showing advantages over other mixing measurement methods.The development of the method included the conceptual analysis of feasibility and application frame.Then the components necessary for the application of the technique to an experimental rig were developed and constructed, the most relevant being the high heat flux superficial heaters and a robust, low intrusivity, and a temperature measurement system with a precision better than 3mK.Preliminary tests were carried out to verify the technique, these included sensibility studies to flow rate and input power changes, settling time measurements, long term stability measurements and so forth. Also different error sources and their relative importance were analyzed.First, the method was applied to a channel of annular flow and then to a channel with three parallel rods generating four subchannels.Latter, measurements of inter subchannel mixing and mixing promoter performance assessment were carried out.The method developed allowed the proper measurement of the main parameters related to mixing, showing great potential as a design tool for nuclear fuel elements

  20. 320-to-40-Gb/s optical demultiplexing using four-wave mixing in a quantum-dot soa

    NARCIS (Netherlands)

    Matsuura, M.; Gomez-Agis, F.; Calabretta, N.; Raz, O.; Dorren, H.J.S.

    2012-01-01

    We report, for the first time, the optical demultiplexing of a 320-Gb/s intensity-modulated signal using four-wave mixing in a quantum-dot semiconductor optical amplifier. Error-free operations were successfully achieved for all the 40-Gb/s channels extracted by the optical demultiplexer.

  1. Spatial Splitting and Intensity Suppression of Four-Wave Mixing in V-Type Three-Level Atomic System

    International Nuclear Information System (INIS)

    Chuang-She, Li; Wei-Tao, Yin; Chen-Zhi, Yuan; Mei-Zhen, Shi; Yan, Zhao; Yan-Peng, Zhang

    2010-01-01

    We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density

  2. Nanoroughness localization of excitons in GaAs multiple quantum wells studied by transient four-wave mixing

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Pantke, Karl-Heinz

    1995-01-01

    The interface roughness on a nanometer scale plays a decisive role in dephasing of excitons in GaAs multiple quantum wells. The excitonic four-wave mixing signal shows a free polarization decay and a corresponding homogeneously broadened line from areas with interface roughness on a scale larger...

  3. Study of inter-modal four wave mixing in two few-mode fibres with different phase matching properties

    DEFF Research Database (Denmark)

    Parmigiani, F.; Jung, Y.; Friis, Søren Michael Mørk

    2016-01-01

    We experimentally study inter-modal four-wave mixing (FWM) in few-mode fibres with different phase matching properties. The possibility of transmitting two spatial modes without intermodal FWM cross-talk in the C-band is presented....

  4. Characterization of Spectral Magnification based on Four-Wave Mixing in Nonlinear Fibre for Advanced Modulation Formats

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Corcoran, B.; Galili, Michael

    2017-01-01

    We characterize the performance of 4× spectral magnification based on four-wave mixing in optimized nonlinear fibres, for 4/8/16-QAM formats, and report >19-nm operational bandwidth. Predominantly OSNR penalties of ~1 dB per bit/QAM-symbol from aberrations non-intrinsic to time lenses are observed....

  5. Spectrally pure heralded single photons by spontaneous four-wave mixing in a fiber: reducing impact of dispersion fluctuations

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge

    2017-01-01

    We model the spectral quantum-mechanical purity of heralded single photons from a photon-pair source based on nondegenerate spontaneous four-wave mixing taking the impact of distributed dispersion fluctuations into account. The considered photon-pair-generation scheme utilizes pump-pulse walk...

  6. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    DEFF Research Database (Denmark)

    Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko

    1997-01-01

    We present a theoretical investigation of ultrafast transient four-wave mixing (FWM) of GaAs quantum wells for coherent excitation of excitons and a large number of continuum states. It is shown that in this case the line shape of the FWM signal is drastically altered due to an interaction-induce...

  7. Four-wave-mixing spectroscopy of peridinin in solution and in the peridinin-chlorophyll-a protein

    Czech Academy of Sciences Publication Activity Database

    Christensson, N.; Chábera, P.; Hiller, R.G.; Pullerits, T.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 15-22 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridinin * four-wave mixing spectroscopy * excited-state dynamics Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  8. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena

    2014-01-01

    -to-noise ratio. The two detectors are compared for the detection of a coherent degenerate four-wave mixing (DFWM) signal in the mid-infrared, and applied to measure trace-level acetylene in a gas flow at atmospheric pressure, probing its fundamental rovibrational transitions. In addition to lower noise...

  9. Optimisation of 40 Gb/s wavelength converters based on four-wave mixing in a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Schulze, K.; Petersen, Martin Nordal; Herrera, J.

    2007-01-01

    The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor 14 optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optim...

  10. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  11. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    Science.gov (United States)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  12. An evaluation of directional analysis techniques for multidirectional, partially reflected waves .1. numerical investigations

    DEFF Research Database (Denmark)

    Ilic, C; Chadwick, A; Helm-Petersen, Jacob

    2000-01-01

    , non-phased locked methods are more appropriate. In this paper, the accuracy of two non-phased locked methods of directional analysis, the maximum likelihood method (MLM) and the Bayesian directional method (BDM) have been quantitatively evaluated using numerical simulations for the case...... of multidirectional waves with partial reflections. It is shown that the results are influenced by the ratio of distance from the reflector (L) to the length of the time series (S) used in the spectral analysis. Both methods are found to be capable of determining the incident and reflective wave fields when US > 0......Recent studies of advanced directional analysis techniques have mainly centred on incident wave fields. In the study of coastal structures, however, partially reflective wave fields are commonly present. In the near structure field, phase locked methods can be successfully applied. In the far field...

  13. Suppression of Spiral Waves by Voltage Clamp Techniques in a Conductance-Based Cardiac Tissue Model

    International Nuclear Information System (INIS)

    Lian-Chun, Yu; Guo-Yong, Zhang; Yong, Chen; Jun, Ma

    2008-01-01

    A new control method is proposed to control the spatio-temporal dynamics in excitable media, which is described by the Morris–Lecar cells model. It is confirmed that successful suppression of spiral waves can be obtained by spatially clamping the membrane voltage of the excitable cells. The low voltage clamping induces breakup of spiral waves and the fragments are soon absorbed by low voltage obstacles, whereas the high voltage clamping generates travel waves that annihilate spiral waves through collision with them. However, each method has its shortcomings. Furthermore, a two-step method that combines both low and high voltage clamp techniques is then presented as a possible way of out this predicament. (cross-disciplinary physics and related areas of science and technology)

  14. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  15. Random-Access Technique for Self-Organization of 5G Millimeter-Wave Cellular Communications

    Directory of Open Access Journals (Sweden)

    Jasper Meynard Arana

    2016-01-01

    Full Text Available The random-access (RA technique is a key procedure in cellular networks and self-organizing networks (SONs, but the overall processing time of this technique in millimeter-wave (mm-wave cellular systems with directional beams is very long because RA preambles (RAPs should be transmitted in all directions of Tx and Rx beams. In this paper, two different types of preambles (RAP-1 and RAP-2 are proposed to reduce the processing time in the RA stage. After analyzing the correlation property, false-alarm probability, and detection probability of the proposed RAPs, we perform simulations to show that the RAP-2 is suitable for RA in mm-wave cellular systems with directional beams because of the smaller processing time and high detection probability in multiuser environments.

  16. Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Farrell, Gerald; Hou, Lantian

    2013-12-15

    Based on degenerate four-wave mixing (FWM), the broadband Stokes waves are efficiently generated at the mid-infrared wavelength above 2 μm, for the first time to our knowledge, by coupling the femtosecond pulses into the fundamental mode of a silica photonic crystal fiber designed and fabricated in our laboratory. Influences of the power and wavelength of pump pulses on the phase-matched frequency conversion process are discussed. When pump pulses with central wavelength of 815 nm and average power of 300 mW are used, the output power ratio of the Stokes wave generated at 2226 nm and the residual pump wave P(s)/P(res) is estimated to be 10.8:1, and the corresponding conversion efficiency η(s) and bandwidth B(s) of the Stokes wave can be up to 26% and 33 nm, respectively. The efficient and broadband Stokes waves can be used as the ultrashort pulse sources for mid-infrared photonics and spectroscopy.

  17. Time-resolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2000-01-01

    Time-resolved four-wave mixing in an InAs/InGaAs/GaAs electrically pumped quantum-dot amplifier is measured at room temperature for different applied bias currents going from optical absorption to gain of the device. The four-wave mixing signal from 140 fs pulses shows a transition from a delayed...

  18. Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics

    Science.gov (United States)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-01-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…

  19. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.

    Science.gov (United States)

    Zhang, Xiaoming; Zhou, Boran; Kalra, Sanjay; Bartholmai, Brian; Greenleaf, James; Osborn, Thomas

    2018-02-01

    Systemic sclerosis (SSc) is a multi-organ connective tissue disease characterized by immune dysregulation and organ fibrosis. Severe organ involvement, especially of the skin and lung, is the cause of morbidity and mortality in SSc. Interstitial lung disease (ILD) includes multiple lung disorders in which the lung tissue is fibrotic and stiffened. The purpose of this study was to translate ultrasound surface wave elastography (USWE) for assessing patients with SSc and/or ILD via measuring surface wave speeds of both skin and superficial lung tissue. Forty-one patients with both SSc and ILD and 30 healthy patients were enrolled in this study. An external harmonic vibration was used to generate the wave propagation on the skin or lung. Three excitation frequencies of 100, 150 and 200 Hz were used. An ultrasound probe was used to measure the wave propagation in the tissue non-invasively. Surface wave speeds were measured on the forearm and upper arm of both left and right arm, as well as the upper and lower lungs, through six intercostal spaces of patients and healthy patients. Viscoelasticity of the skin was calculated by the wave speed dispersion with frequency using the Voigt model. The magnitudes of surface wave speed and viscoelasticity of patients' skin were significantly higher than those of healthy patients (p wave speeds of patients' lung were significantly higher than those of healthy patients (p ionizing technique for measuring both skin and lung surface wave speed and may be useful for quantitative assessment of SSc and/or ILD. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong

    2016-01-01

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  1. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  2. Efficient four-wave mixing by usage of resonances in mercury; Effizientes Vierwellenmischen durch Ausnutzen von Resonanzen in Quecksilber

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Daniel

    2011-05-05

    A continuous, coherent radiation source in the vacuum ultraviolet spectral region is presented. It is based on four-wave-mixing in mercury vapor with fundamental beams at 253.7 nm, 407.9 nm und 545.5 nm wavelength. The fundamental beams are produced by frequency doubling and quadrupling of beams from solid-state laser-systems respectively. Due to the 6{sup 1}S-7{sup 1}S two-photon resonance and additionally the 6{sup 1}S-6{sup 3}P one-photon resonance the efficiency can be increased compared to former sources. A near one-photon resonance reduces the optimal phasematching temperature of the four-wave-mixing process. This leads to smaller Doppler and pressure broadening resulting in a higher four-wave-mixing efficiency. A maximum power of 0.3 nW at 121.56 nm wavelength, the 1S-2P Lyman-{alpha} transition in hydrogen, can be obtained. This Lyman-{alpha} source is needed for future laser cooling of antihydrogen. Apart from the Lyman-{alpha} generation, four-wave-mixing with a slightly different third fundamental wavelength results in radiation near a one-photon resonance in the VUV at the 6{sup 1}S-12{sup 1}P transition in mercury. Due to this additional one-photon resonance the nonlinear susceptibility, responsible for the four-wave-mixing, can be strongly increased without an influence on the phasematching. With such a mixing process the efficiency can be enlarged by three orders of magnitude and powers up to 6 {mu}W in the VUV could be realised. This is an improvement of a factor of 30 to former laser sources in this VUV regime. Furthermore the two-photon resonance of mercury could be investigated in detail. We observed a velocity-selective double resonance at small Rabi frequencies of the fundamental beams, which has the same origin as dark resonances in {lambda}-systems. At high Rabi frequencies excitation to the two-photon level can be high enough to initiate a laser process on the 7{sup 1}S-6{sup 1}P transition. This process could be observed with continuouswave

  3. Advanced Integration Techniques on Broadband Millimeter-Wave Beam Steering for 5G Wireless Networks and Beyond

    NARCIS (Netherlands)

    Cao, Zizheng; Ma, Qian; Smolders, Bart; Jiao, Yuqing; Wale, Mike; Oh, Joanne; wu, hequan; Koonen, Ton

    2015-01-01

    Recently, the desired very high throughput of 5G wireless networks drives millimeter-wave (mm-wave) communication into practical applications. A phased array technique is required to increase the effective antenna aperture at mm-wave frequency. Integrated solutions of beamforming/beam steering are

  4. Sensitivity Enhancement for Fiber Bragg Grating Sensors by Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Jiangbing Du

    2015-04-01

    Full Text Available All-optical signal processing based on four wave mixing (FWM in a highly nonlinear fiber (HNLF to enhance the sensitivity of a fiber sensor is demonstrated and comprehensively reviewed in this paper. The principle is based on the frequency chirp magnification (FCM by FWM. Degenerated FWM, cascaded two-stage FWM and pump-pulsed FWM with optical parametric amplification (OPA are experimentally utilized for magnifying the frequency chirp. By using the pump pulse modulation to increase the peak power, OPA can be induced with the use of a dispersion-optimized HNLF. Therefore, ultra-highly efficient FWM can be realized due to the high peak power and OPA. By using the fiber Bragg grating (FBG laser as the FWM pump, the wavelength drift of the FBG can thus be magnified due to the FCM. We obtain a sensing performance of 13.3 pm/με strain sensitivity and 141.2 pm/°C temperature sensitivity for a conventional FBG, which has an intrinsic strain sensitivity of only ~1 pm/με and an intrinsic temperature sensitivity of only ~10 pm/°C, respectively.

  5. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  6. Refracted arrival waves in a zone of silence from a finite thickness mixing layer.

    Science.gov (United States)

    Suzuki, Takao; Lele, Sanjiva K

    2002-02-01

    Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.

  7. Entanglement near the optical instability point in damped four wave mixing systems

    Science.gov (United States)

    Chiangga, S.; Temnuch, W.; Frank, T. D.

    2018-06-01

    Entanglement of electromagnetic field modes of signal and idler photons generated by four-wave mixing (FWM) devices is a quantum phenomenon that has been examined in various experimental and theoretical studies. The focus of this theoretical study is on two aspects of this phenomenon: the emergence of signal and idler photons due to an optical instability and the entanglement of the signal and idler modes above the instability threshold. For simple FWM devices that are subjected to damping it is shown that the signal and idler modes are entangled close to the point of optical instability at which the signal and idler photons emerges. The degree of entanglement as measured by a particular entanglement function proposed earlier in the literature assumes at the point of optical instability a unique value that is independent of the model parameters of the devices. The value is slightly higher than the value reported in a FWM experiment by Boyer et al (2008 Science 321 544). Numerical simulations suggest that the aforementioned entanglement function is U-shaped such that the degree of entanglement at the instability point is the maximal possible one and represents the optimal value. A similar U-shaped pattern was observed in an FWM experiment conducted by Lawrie et al (2016 Appl. Phys. Lett. 108 151107). Our semi-analytical findings are derived within the framework of the positive P representation of quantum optical processes and are compared with the aforementioned experimental observations by Boyer et al and Lawrie et al.

  8. Optical imaging through turbid media with a degenerate four wave mixing correlation time gate

    International Nuclear Information System (INIS)

    Sappey, A.D.

    1994-01-01

    A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imaging through turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detection of ballistic light in optical mammography appears to hold great promise for improving the current state of the art

  9. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    Science.gov (United States)

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  10. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology.

    Science.gov (United States)

    Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E

    2016-03-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P Physiological Society.

  11. Microstructure investigations of Ba-Sr mixed ferrites, using SEM technique

    International Nuclear Information System (INIS)

    Amighian, J.; Mozaffari, M.

    1996-01-01

    A series of isotropic Ba-Sr mixed ferrites were prepared, using a conventional dry technique. The starting materials were hematite by product of Isfahan steel factory, strontium carbonate from Merck company and barium carbonate obtained from local source. The principle phase of the samples was chosen to have a composition in the form of (BaO) sub 1-x (SrO) sub x nFe sub 2 O sub 3, in which x varied between 0 to l and n was varied between 5 to 6. The raw materials were thoroughly mixed and fired in an electrical furnace for 2 hours. They were then milled in an vibrating ball mill, in which the optimum milling time for each sample was obtained. After annealing at 750 degree C, the powders were compacted in a cylindrical die under 5 tons/cm sup 2. The compacts were then mixed with a binder and sintered in air for 10 minutes at their optimum temperatures. Using SEM technique, the microstructure of the samples were investigated. Using a permeameter, the coercive force Hc and remanent induction Br were measured. The microstructures obtained from SEM technique can be used to control the sintering stage in ferrite fabrication

  12. An experimental technique to measure the capillary waves in electrified microjets

    Directory of Open Access Journals (Sweden)

    Rebollo-Muñoz Noelia

    2012-04-01

    Full Text Available Backlight optical imaging is an experimental technique with an enormous potential in microfluidics to study very varied fluid configurations and phenomena. In this paper, we show the capability of this technique to precisely characterize the capillary waves growing in electrified microjets. For this purpose, images of electrified liquid jets formed by electrospray were acquired and processed using a sub-pixel resolution technique. Our results reflect the validity and usefulness of optical imaging for this type of application.

  13. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.

    Science.gov (United States)

    Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R

    2018-02-01

    High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.

  14. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    Directory of Open Access Journals (Sweden)

    Riccardo Cucini

    2015-01-01

    Full Text Available Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first results from extreme ultra violet transient grating experiments is also discussed.

  15. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves

    Science.gov (United States)

    Hetényi, G.; Colavitti, L.

    2017-12-01

    A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of

  16. High Efficiency of Mixed Th-U Fuel Utilisation in Innovative Nuclear Burning Wave Reactor

    International Nuclear Information System (INIS)

    Fomin, Sergii; Fomin, A.; Mel’nik, Yu.; Pilipenko, V.; Shul’ga, N.

    2013-01-01

    The presentation provides information about nuclear fuel reproduction and the U-Pu fuel cycle; the history of the Breed and Burn concept and the traveling wave concept; the non-stationary theory of nuclear burning wave; the Nuclear Burning Wave in Fast Reactor with U-Pu Fuel; nuclear burning wave in 5m length cylindrical FR for different reactor radius R and about the Reactor Power Control by Reflector Efficiency

  17. Wall thinning inspection technique for large-diameter piping using guided wave

    International Nuclear Information System (INIS)

    Miki, Masahiro; Nagashima, Yoshiaki; Endou, Masao; Kodaira, Kojiro; Maniwa, Kazuhiko

    2009-01-01

    Guided wave inspection technique is effective for detecting defects like corrosion in piping, because it can perform long range inspection. It is possible to expect this inspection as a method that leads to the decrease of the inspection process and its cost, because the incidental work can be reduced. Especially, the contraction effect of the inspection work is extensive in large-diameter piping inspection. In this paper, we introduce the guided wave inspection system to large-diameter piping. The feature is a guided wave sensor that can freely transform according to the curvature of inspection object, and portable inspection equipment. We discuss the result of detection examination for artificial wall-thinning in large-diameter piping using this system. (author)

  18. Comparing the Titrations of Mixed-Acid Solutions Using Dropwise and Constant-Flow Techniques

    Science.gov (United States)

    Charlesworth, Paul; Seguin, Matthew J.; Chesney, David J.

    2003-11-01

    A mixed-acid solution containing hydrochloric and phosphoric acids was used to determine the error associated with performing a real-time titration. The results were compared against those obtained by performing the titration in a more traditional dropwise addition of titrant near the equivalence points. It was found that the real-time techniques resulted in significantly decreased analysis times while maintaining a low experimental error. The constant-flow techniques were implemented into two different levels of chemistry. It was found that students could successfully utilize the modified experiments. Problems associated with the techniques, major sources of error, and their solutions are discussed. In both cases, the use of the constant-flow setup has increased student recollection of key concepts, such as pKa determination, proper indicator choice, and recognizing the shape of specific titration curves by increasing student interest in the experiment.

  19. Broadband and efficient dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Pu, Minhao; Ottaviano, Luisa

    2016-01-01

    We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as −8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth.......We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as −8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth....

  20. Broadband and Efficient Dual-Pump Four-Wave Mixing in AlGaAs-On-Insulator Nano-Waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Pu, Minhao; Ottaviano, Luisa

    2016-01-01

    We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as -8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth.......We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as -8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth....

  1. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    Science.gov (United States)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  2. Fundamentals of Highly Non-Degenerate Cascaded Four-Wave Mixing

    Directory of Open Access Journals (Sweden)

    Rosa Weigand

    2015-09-01

    Full Text Available By crossing two intense ultrashort laser pulses with different colors in a transparent medium, like a simple piece of glass, a fan of multicolored broadband light pulses can be simultaneously generated. These newly generated pulses are emitted in several well-defined directions and can cover a broad spectral range, from the infrared to the ultraviolet and beyond. This beautiful phenomenon, first observed and described 15 years ago, is due to highly-nondegenerate cascaded four-wave mixing (cascaded FWM, or CFWM. Here, we present a review of our work on the generation and measurement of multicolored light pulses based on third-order nonlinearities in transparent solids, from the discovery and first demonstration of highly-nondegenerate CFWM, to the coherent synthesis of single-cycle pulses by superposition of the multicolored light pulses produced by CFWM. We will also present the development and main results of a dedicated 2.5-D nonlinear propagation model, i.e., with propagation occurring along a two-dimensional plane while assuming cylindrically symmetric pump beam profiles, capable of adequately describing noncollinear FWM and CFWM processes. A new method for the generation of femtosecond pulses in the deep-ultraviolet (DUV based on FWM and CFWM will also be described. These experimental and theoretical results show that highly-nondegenerate third-order nonlinear optical processes are formally well understood and provide broader bandwidths than other nonlinear optical processes for the generation of ultrashort light pulses with wavelengths extending from the near-infrared to the deep-ultraviolet, which have many applications in science and technology.

  3. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  4. High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Steinvurzel, P. E.; Chen, Y.

    2012-01-01

    We demonstrate, for the first time, four-wave mixing, in the 1-μm spectral regime, in an LMA silica fiber. Pumping a 618-μm2 LP07 mode (λo = 1038.4 nm) with a 1064.6-nm Nd:YAG laser results in the generation of modulation instability, and multiple Stokes/anti-Stokes lines, opening up the prospect...

  5. Suppression of the four-wave-mixing background noise in a quantum memory retrieval process by channel blocking

    Science.gov (United States)

    Zhang, Kai; Guo, Jinxian; Chen, L. Q.; Yuan, Chunhua; Ou, Z. Y.; Zhang, Weiping

    2014-09-01

    In a quantum memory scheme with the Raman process, the read process encounters noise from four-wave mixing (FWM), which can destroy the nonclassical properties of the generated quantum fields. Here we demonstrate experimentally that the noise from FWM can be greatly suppressed by simply reducing the FWM transition channels with a circularly polarized read beam while at the same time retaining relatively high retrieval efficiency.

  6. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing.

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-06-10

    We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4)  W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9)  W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

  7. Renormalization-group decimation technique for spectra, wave-functions and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1983-09-01

    The Renormalization Group decimation technique is very useful for problems described by 1-d nearest neighbour tight-binding model with or without translational invariance. We show how spectra, wave-functions and density of states can be calculated with little numerical work from the renormalized coefficients upon iteration. The results of this new procedure are verified using the model of Soukoulis and Economou. (author)

  8. Stratospheric Influence on Summer Monsoon and Associated Planetary Wave Breaking and Mixing in the Subtropical Tropopause Region

    Science.gov (United States)

    Lubis, S. W.; Nakamura, N.

    2017-12-01

    Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify

  9. Performance of a data-driven technique to changes in wave height and its effect on beach response

    Directory of Open Access Journals (Sweden)

    Jose M. Horrillo-Caraballo

    2016-01-01

    Full Text Available In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morphological response, which is primarily driven by the intermittent larger storm waves.

  10. Performance of a data-driven technique applied to changes in wave height and its effect on beach response

    Directory of Open Access Journals (Sweden)

    José M. Horrillo-Caraballo

    2016-01-01

    Full Text Available In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morphological response, which is primarily driven by the intermittent larger storm waves.

  11. Analysis of Defective Pipings in Nuclear Power Plants and Applications of Guided Ultrasonic Wave Techniques

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.

    2006-07-01

    In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up

  12. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  13. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    Science.gov (United States)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  14. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    Science.gov (United States)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  15. Simulating propagation of decomposed elastic waves using low-rank approximate mixed-domain integral operators for heterogeneous transversely isotropic media

    KAUST Repository

    Cheng, Jiubing; Wu, Zedong; Alkhalifah, Tariq Ali

    2014-01-01

    decomposition in anisotropic media is costly as the operators involved is dependent on the velocity, and thus not stationary. In this abstract, we propose an efficient approach to directly extrapolate the decomposed elastic waves using lowrank approximate mixed

  16. Mixed lump-kink and rogue wave-kink solutions for a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics

    Science.gov (United States)

    Hu, Cong-Cong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang; Du, Zhong

    2018-02-01

    Under investigation is a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves in a fluid. Via the Hirota method and symbolic computation, we obtain the mixed lump-kink and mixed rogue wave-kink solutions. Through the mixed lump-kink solutions, we observe three different phenomena between a lump and one kink. For the fusion phenomenon, a lump and a kink are merged with the lump's energy transferring into the kink gradually, until the lump merges into the kink completely. Fission phenomenon displays that a lump separates from a kink. The last phenomenon shows that a lump travels together with a kink with their amplitudes unchanged. In addition, we graphically study the interaction between a rogue wave and a pair of the kinks. It can be observed that the rogue wave arises from one kink and disappears into the other kink. At certain time, the amplitude of the rogue wave reaches the maximum.

  17. Integrated Sources of Polarization Entangled Photon Pair States via Spontaneous Four-Wave Mixing in AlGaAs Waveguides

    Science.gov (United States)

    Kultavewuti, Pisek

    Polarization-entangled photon pair states (PESs) are indispensable in several quantum protocols that should be implemented in an integrated photonic circuit for realizing a practical quantum technology. Preparing such states in integrated waveguides is in fact a challenge due to polarization mode dispersion. Unlike other conventional ways that are plagued with complications in fabrication or in state generation, in this thesis, the scheme based on parallel spontaneous four-wave mixing processes of two polarization waveguide modes is thoroughly studied in theory and experimentation for the polarization entanglement generation. The scheme in fact needs the modal dispersion, contradictory to the general perception, as revealed by a full quantum mechanical framework. The proper modal dispersion balances the effects of temporal walk-off and state factorizability. The study also shows that the popular standard platform such as a silicon-on-insulator wafer is far from suitable to implement the proposed simple generation technique. Proven by the quantum state tomography, the technique produces a highly-entangled state with a maximum concurrence of 0.97 +/- 0:01 from AlGaAs waveguides. In addition, the devices directly generated Bell states with an observed fidelity of 0.92 +/- 0:01 without any post-generation compensating steps. Novel suspended device structures, including their components, are then investigated numerically and experimentally characterized in pursuit of finding the geometry with the optimal dispersion property. The 700 nm x 1100 nm suspended rectangular waveguide is identified as the best geometry with a predicted maximum concurrence of 0.976 and a generation bandwidth of 3.3 THz. The suspended waveguide fabrication procedure adds about 15 dB/cm and 10 dB/cm of propagation loss to the TE and TM mode respectively, on top of the loss in corresponding full-cladding waveguides. Bridges, which structurally support the suspended waveguides, are optimized using

  18. Molecular energy transfer by fluid mixing. Progress report, 1 January 1968--1 January 1971

    International Nuclear Information System (INIS)

    Cool, T.A.

    1971-01-01

    Highlights are discussed of a program on the use of rapid mixing techniques and high speed flows for laser power enhancement. Three tasks are reviewed: (1) continuous wave chemical laser development, (2) N 2 --CO 2 electrically excited fluid mixing laser techniques, and (3) gas dynamic mixing behind shock waves. Purely chemical HF and DF laser operation is also discussed

  19. Full-Wave Techniques for the Analysis of Electrodynamics and Coherent Quantum Transport in Graphene Nanodevices.

    Directory of Open Access Journals (Sweden)

    Luca Pierantoni

    2012-11-01

    Full Text Available We report on full-wave techniques in the frequency (energy-domain and the time-domain, aimed at the investigation of the combined electromagnetic-coherent transport problem in carbon based nanostructured materials and devices viz. graphene nanoribbons. The frequency-domain approach is introduced in order to describe a Poisson-Schrödinger / Dirac system in a quasi static framework. Thetime-domain approach deals with the full-wave solution of the combined Maxwell-Schrödinger / Dirac system of equations. From the above theoretical platforms, home-made solvers are provided, aimed atdealing with challenging problems in realistic devices / systems environments, typical of the area of radio-frequency nanoelectronics.

  20. Application of the Guided Wave Technique to the Heat Exchanger Tube in NPP

    International Nuclear Information System (INIS)

    Yang, Dong Soon; Kim, Hyung Nam; Yoo, Hyun Joo

    2005-01-01

    The heat exchanger tube is examined by the method of eddy current test(ECT) to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the application of the guided wave technique to heat exchanger tube in NPP

  1. Feasibility study on the guided wave technique for condenser tube in NPP

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Young Ho; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, W. G.

    2004-01-01

    The condenser tube is examined by the eddy current test (ECT) method to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the feasibility of applying the guided wave technique to condenser tube in NPP

  2. Numerical Study of Mixed Convective Peristaltic Flow through Vertical Tube with Heat Generation for Moderate Reynolds and Wave Numbers

    Science.gov (United States)

    Javed, Tariq; Ahmed, B.; Sajid, M.

    2018-04-01

    The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.

  3. Short wave infrared hyperspectral imaging for recovered post-consumer single and mixed polymers characterization

    Science.gov (United States)

    Bonifazi, Giuseppe; Palmieri, Roberta; Serranti, Silvia

    2015-03-01

    Postconsumer plastics from packing and packaging represent about the 60% of the total plastic wastes (i.e. 23 million of tons) produced in Europe. The EU Directive (2014/12/EC) fixes as target that the 60%, by weight, of packaging waste has to be recovered, or thermally valorized. When recovered, the same directive established that packaging waste has to be recycled in a percentage ranging between 55% (minimum) and 60% (maximum). The non-respect of these rules can produce that large quantities of end-of-life plastic products, specifically those utilized for packaging, are disposed-off, with a strong environmental impact. The application of recycling strategies, finalized to polymer recovery, can represent an opportunity to reduce: i) not renewable raw materials (i.e. oil) utilization, ii) carbon dioxide emissions and iii) amount of plastic waste disposed-off. Aim of this work was to perform a full characterization of different end-of-life polymers based products, constituted not only by single polymers but also of mixtures, in order to realize their identification for quality control and/or certification assessment. The study was specifically addressed to characterize the different recovered products as resulting from a recycling plant where classical processing flow-sheets, based on milling, classification and separation, are applied. To reach this goal, an innovative sensing technique, based on the utilization of a HyperSpectral[b] I[/b]maging (HSI) device working in the SWIR region (1000-2500 nm), was investigated. Following this strategy, single polymers and/or mixed polymers recovered were correctly recognized. The main advantage of the proposed approach is linked to the possibility to perform "on-line" analyses, that is directly on the different material flow streams, as resulting from processing, without any physical sampling and classical laboratory "off-line" determination.

  4. χ{sup (3)} measurements of axial ligand modified high valent tin(IV) porphyrins using degenarete four wave mixing at 532nm

    Energy Technology Data Exchange (ETDEWEB)

    Narendran, N. K. Siji, E-mail: sijinarendran@gmail.com; Chandrasekharan, K. [Laser and nonlinear optics laboratory, Department of Physics, National Institute of Technology Calicut, Calicut-673601, Kerala (India); Soman, Rahul; Arunkumar, Chellaiah [Bioinorganic materials laboratory, Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala (India); Sudheesh, P. [Department of Physics, VTM NSS College, Dhanuvachapuram, Thiruvananthapuram (India)

    2014-10-15

    Porphyrins and metalloporphyrins are unique class of molecules for Nonlinear Optical applications because of their unique structure of altering the central metal atom, large extended π-system, high thermal stability, tunable shape, symmetry and synthetic versatility Here, we report χ{sup (3)} Measurements of a simple phenyl porphyrins and its highvalent tin(IV) porphyrins with Bromination characterized by UV-Visible spectroscopic method. In this study, we employed the Degenerate Four Wave Mixing technique using forward Boxcar geometry with an Nd:YAG nano second pulsed laser as source and it was found that the tin(IV) porphyrin with Bromination exhibits good χ{sup (3)} value and figure of merit.

  5. Exact modelling of the optical bistability in ferroelectics via two-wave mixing: A system with full nonlinearity

    Science.gov (United States)

    Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.

    2018-05-01

    In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.

  6. Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal

    International Nuclear Information System (INIS)

    Smetanin, Sergei N; Fedin, Aleksandr V; Shurygin, Anton S

    2013-01-01

    The possibilities of implementing four-wave mixing (FWM) phase matching at stimulated Raman scattering (SRS) in a birefringent SRS-active crystal placed in a cavity with highly reflecting mirrors have been theoretically and experimentally investigated. Phase-matching angles providing conditions for five types of phase matching are determined for a calcite crystal. These types are characterised by different combinations of polarisation directions for the interacting waves and ensure FWM generation of either an anti-Stokes wave or the second Stokes SRS component. In agreement with the calculation results, low-threshold generation of the second Stokes SRS component with a wavelength 0.602 μm was observed at angles of incidence on a calcite crystal of 4.8° and 18.2°, under SRS pumping at a wavelength of 0.532 μm. This generation is due to the FWM coupling of the first and second Stokes SRS components with the SRS-pump wave. (nonlinear optical phenomena)

  7. THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ((2)).

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-07-14

    Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.

  8. Development of a nonresonant perturbation technique and its application to multicell traveling-wave deflectors

    International Nuclear Information System (INIS)

    Tan, Jianhao; Tong, Dechun; Gu, Qiang; Fang, Wencheng; Zhao, Zhentang

    2016-01-01

    A tuning method augmented by the bead-pull technique based on nonresonant perturbation field distribution measurements has been widely applied for traveling-wave (TW) accelerating structures. The method is also suitable for deflecting structures, but some key considerations of the field components of the HEM_1_1 mode and the selection of bead merit discussion. A “cage”-type perturbing object has been designed, fabricated and applied in nonresonant perturbation measurements. Measurements on an S-band TW deflecting structure are carried out, and the measurement and tuning method will be used on the newly developed X-band deflecting structure at Shanghai Institute of Applied Physics.

  9. Development of a nonresonant perturbation technique and its application to multicell traveling-wave deflectors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jianhao [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China); Shanghai Science Research Center, Chinese Academy of Science, Shanghai 201204 (China); Tong, Dechun [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Gu, Qiang; Fang, Wencheng [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China); Shanghai Science Research Center, Chinese Academy of Science, Shanghai 201204 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China); Shanghai Key Laboratory of Cryogenics & Superconducting RF Technology, Shanghai 201800 (China); Shanghai Science Research Center, Chinese Academy of Science, Shanghai 201204 (China)

    2016-11-01

    A tuning method augmented by the bead-pull technique based on nonresonant perturbation field distribution measurements has been widely applied for traveling-wave (TW) accelerating structures. The method is also suitable for deflecting structures, but some key considerations of the field components of the HEM{sub 11} mode and the selection of bead merit discussion. A “cage”-type perturbing object has been designed, fabricated and applied in nonresonant perturbation measurements. Measurements on an S-band TW deflecting structure are carried out, and the measurement and tuning method will be used on the newly developed X-band deflecting structure at Shanghai Institute of Applied Physics.

  10. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  11. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques

    Science.gov (United States)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.

  12. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  13. Four-Wave Mixing of a Laser and Its Frequency-Doubled Version in a Multimode Optical Fiber

    Directory of Open Access Journals (Sweden)

    Hamed Pourbeyram

    2015-08-01

    Full Text Available It is shown that it is possible to couple a laser beam and its frequency-doubled daughter into a multimode optical fiber through the four-wave mixing nonlinear process and generate a new wavelength. The frequency-doubled daughter can be generated in an external crystal with a large second order nonlinearity. It is argued that while this possibility is within the design parameter range of conventional multimode optical fibers, it necessitates a lower-bound for the core-cladding refractive index contrast of the multimode optical fiber.

  14. Phase-matched light amplification by three-wave mixing process in a birefringent fiber due to externally applied stress

    International Nuclear Information System (INIS)

    Ohashi, M.; Kitayama, K.; Ishida, Y.; Uchida, N.

    1982-01-01

    A novel method to achieve phase-matched light amplification in a birefringent fiber via the three-wave mixing is proposed by using frequency shift change due to the stress applied to the fiber. It is confirmed that the signal power from a cw laser diode at lambda = 1.292 μm is amplified by 6.1 x 10 3 times in the birefringent fiber pumped with a Q-switched Nd: yttrium aluminum garnet laser at lambda = 1.064 μm. This will provide a new fiber-optic light signal amplifier having a good tolerance for variation of signal wavelengths

  15. Density fitting for derivatives of Coulomb integrals in ab initio calculations using mixed Gaussian and plane-wave basis

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2009-01-01

    Roč. 109, č. 620 (2009), s. 1237-1242 ISSN 0020-7608 R&D Projects: GA ČR GA203/07/0070; GA ČR GA202/08/0631; GA AV ČR 1ET400400413; GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : Derivatives of Coulomb integrals * mixed Gaussian and plane-wave basis sets * electron scattering * computer time saving Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2009

  16. Signal-Pressure Curves of Cascaded Four-Wave Mixing in Gas-Filled Capillary by fs Pulses

    International Nuclear Information System (INIS)

    Chen Baozhen; Huang Zuqia

    2005-01-01

    The theoretical framework for the cascaded four waves mixing (CFWM) in gas-filled capillary by fs pulses is constructed. Based on the theoretical framework, the signal-pressure curves (SPC) of the CFWM in gas-filled capillary by fs pulses are calculated. With a comparison between the theoretical and experimental SPC we have discussed the influence of the walk-off and phase modulation on the SPC. At the same time, we have discussed the possible origin of the first three peaks of the SPC.

  17. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides

    DEFF Research Database (Denmark)

    Guo, Kai; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge

    2017-01-01

    We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers......, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new...

  18. Estimation of the four-wave mixing noise probability-density function by the multicanonical Monte Carlo method.

    Science.gov (United States)

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2005-01-01

    The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.

  19. Upconversion enhanced degenerate four-wave mixing in the mid-infrared for sensitive detection of acetylene in gas flows

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena

    2014-01-01

    We present a new background free method for in situ gas detection that combines degenerate four-wave mixing with an infra-red light detector based on parametric frequency upconversion of infra-red light. The system is demonstrated at mid infrared wavelengths for low concentration measurements...... of acetylene diluted in a N2 gas flow at ambient conditions. It is demonstrated that the system is able to cover more than 100 nm in scanning range and detect concentrations as low as 3 ppm based on the R9e line. A major issue in small signal measurements is scattered light and it is showed how a spatial...

  20. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  1. Numerical study on air turbines with enhanced techniques for OWC wave energy conversion

    Science.gov (United States)

    Cui, Ying; Hyun, Beom-Soo; Kim, Kilwon

    2017-10-01

    In recent years, the oscillating water column (OWC) wave energy converter, which can capture wave energy from the ocean, has been widely applied all over the world. As the essential part of the OWC system, the impulse and Wells turbines are capable of converting the low pressure pneumatic energy into the mechanical shaft power. As an enhanced technique, the design of endplate or ring attached to the blade tip is investigated numerically in this paper. 3D numerical models based on a CFD-software FLUENT 12.0 are established and validated by the corresponding experimental results from the reports of Setoguchi et al. (2004) and Takao et al. (2001). Then the flow fields and non-dimensional evaluating coefficients are calculated and analyzed under steady conditions. Results show that the efficiency of impulse turbine with ring can reach up to 0.49 when ϕ=1, which is 4% higher than that in the cases for the endplate-type and the original one. And the ring-type Wells turbine with fixed guide vanes shows the best performance with the maximal efficiency of 0.55, which is 22% higher than that of the original one. In addition, the quasi-steady analysis is used to calculate the mean efficiency and output-work of a wave cycle under sinusoidal flow condition. Taking all together, this study provides support for structural optimization of impulse turbine and Wells turbine in the future.

  2. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  3. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  4. Performance evaluation of compounding and directional beamforming techniques for carotid strain imaging using plane wave transmissions

    DEFF Research Database (Denmark)

    Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando

    2014-01-01

    Carotid strain imaging in 3D is not possible with conventional focused imaging, because the frame rate is too low. Plane wave ultrasound provides sufficiently high frame rates, albeit at t he cost of image quality, especially in the off - axis direction due to the lack of focusing . Multiple...... techniques have been developed to cope with the low off - axis image quality when performing 2D (and in future 3D) motion estimation: cross correlation with directional beamforming (with or without RF (coherent) compounding) and displacement compounding. This study compares the precision of these techniques...... with RF compounding and 2D displacement compounding with θ = ~20 ° per formed equally and best with a relative root - mean - squared error of ~2% with respect to the analytical solution . The mean and standard deviation of the estimated motion direction for 2D displacement compounding with θ = 20 ° was 0...

  5. Effect of the upper-level decay on the resonantly enhanced four-wave mixing in a modified double-Λ system

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K.

    2004-01-01

    We study the continuous resonant four-wave mixing in a medium of atoms with a modified double-Λ level configuration. Under the far-off-resonance condition for a pair of levels, we reduce the five-level scheme to an effective three-level scheme, with a two-photon coupling between the two lower levels. We derive the exact steady-state solution to the density-matrix equations for the reduced scheme and obtain the wave-mixing equations for the fields in the continuous-wave regime. We show that the upper-level decay may substantially affect the resonantly enhanced wave-mixing process. We demonstrate that this decay shortens the conversion cycle rather than prolongs it

  6. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    Science.gov (United States)

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  7. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  8. Use of the cylindrically guided wave technique for the inspection of stud bolts, valve stems and pump shafts

    International Nuclear Information System (INIS)

    Light, G.M.; Bloom, E.A.; Ruescher, E.H.; Lui, S.N.

    1989-01-01

    Over the last several years, nuclear power plants have expressed concern about failures of bolting, valve stems, and pump shafts. This paper reports on the development of an ultrasonic technique to inspect these components. The authors have successfully demonstrated the cylindrically guided wave technique (CGWT) on a wide range of stud bolts. The CGWT employs zero-degree longitudinal waves constrained to travel within the boundary of the cylindrically shaped components during inspection. Theoretically explained, mode conversion occurs because the ultrasonic wave is guided down the length of the component. These mode-converted signals are dependent upon the diameter of the component under inspection and the longitudinal- and shear-wave velocities of the component material. This technique has also been successfully used on valve stems in the field. The geometry of the valve stem is very similar to that of the stud bolt

  9. Observational evidence of mixed rossby gravity waves at the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.; Mohankumar, K.; Sijikumar, S.; Sivakumar, K.U.; Mathew, T.

    –920. Zangvil A (1975b) Upper tropospheric waves in the tropics and their association with clouds in the wavenumber-frequency domain. Ph.D. thesis, Meteor. Pap. Nos. 13 and 14, University of California, Los Angeles, pp131. Zangvil A, Yanai M (1980) Upper...

  10. Electric field measurements on plasma bullets in N2 using four-wave mixing

    NARCIS (Netherlands)

    van der Schans, M.; Böhm, P.; Nijdam, S.; IJzerman, W.L.; Czarnetzki, U.

    2015-01-01

    Atmospheric pressure plasma jets driven by pulsed DC or kHz AC voltages typically consist of discrete guided ionisation waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated. Electric field measurements in N2

  11. Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.

    2002-01-01

    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part that is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief, our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high-efficiency conversion. With appropriate phase matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states vertical bar 0> and vertical bar 2> is always very small

  12. Developing a Virtual Teach-To-Goal™ Inhaler Technique Learning Module: A Mixed Methods Approach.

    Science.gov (United States)

    Wu, Meng; Woodrick, Nicole M; Arora, Vineet M; Farnan, Jeanne M; Press, Valerie G

    Most hospitalized patients with asthma or chronic obstructive pulmonary disease misuse respiratory inhalers. An in-person educational strategy, teach-to-goal (TTG), improves inpatients' inhaler technique. To develop an effective, portable education intervention that remains accessible to hospitalized patients postdischarge for reinforcement of proper inhaler technique. A mixed methods approach at an urban academic hospital was used to iteratively develop, modify, and test a virtual teach-to-goal ™ (V-TTG ™ ) educational intervention using patient end-user feedback. A survey examined access and willingness to use technology for self-management education. Focus groups evaluated patients' feedback on access, functionality, and quality of V-TTG ™ . Forty-eight participants completed the survey, with most reporting having Internet access; 77% used the Internet at home and 82% used the Internet at least once every few weeks. More than 80% reported that they were somewhat or very likely to use V-TTG ™ to gain skills to improve their health. Most participants reported smartphone access (73%); half owned laptop computers (52%). Participants with asthma versus chronic obstructive pulmonary disease were more likely to own a smartphone, have a data plan, and have daily Internet use (P platform and delivery, Internet access, and technological literacy; functionality-usefulness, content, and teaching strategy; and quality-clarity, ease of use, length, and likability. V-TTG ™ is a promising educational tool for improving patients' inhaler technique, iteratively developed and refined with patient input. Patients in our urban, academic hospital overwhelmingly reported access to platforms and willingness to use V-TTG ™ for health education. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Spectrally-isolated violet to blue wavelength generation by cascaded degenerate four-wave mixing in a photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A

    2016-06-01

    Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.

  14. Development of a Tomography Technique for Assessment of the Material Condition of Concrete Using Optimized Elastic Wave Parameters

    Directory of Open Access Journals (Sweden)

    Hwa Kian Chai

    2016-04-01

    Full Text Available Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.

  15. Wavelength conversion by use of four-wave mixing in a novel optical loop configuration

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2000-01-01

    and the signal waves. By use of the novel loop configuration, nonreturn-to-zero wavelength conversion at 10 Gbits/s is achieved. The FWM-to-pump ratio, the FWM-to-signal ratio, and the signal-to-noise ratio are improved by 17.9, 18.8, and 8.2 dB, respectively. A principle experiment of wavelength conversion...

  16. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  17. What's the Matter with Waves?; An introduction to techniques and applications of quantum mechanics

    Science.gov (United States)

    Parkinson, William

    2017-12-01

    Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a convention or conundrum, an answer or question. Authors have run the gamut from hand waving to heavy handed in the hope to dispel the common beliefs about quantum mechanics, but perhaps they continue to promulgate the stigma. The focus of this particular effort is to give the reader an introduction, if not at least an appreciation, of the role that linear algebra techniques play in the practical application of quantum mechanical methods. It interlaces aspects of the classical and quantum picture, including a number of both worked and parallel applications. Students with no prior experience in quantum mechanics, motivated graduate students, or researchers in other areas attempting to gain some introduction to quantum theory will find particular interest in this book. Part of Series on wave phenomena in the physical sciences

  18. The coupling technique: A two-wave acoustic method for the study of dislocation dynamics

    Science.gov (United States)

    Gremaud, G.; Bujard, M.; Benoit, W.

    1987-03-01

    Progress in the study of dislocation dynamics has been achieved using a two-wave acoustic method, which has been called the coupling technique. In this method, the attenuation α and the velocity v of ultrasonic waves are measured in a sample submitted simultaneously to a harmonic stress σ of low frequency. Closed curves Δα(σ) and Δv/v(σ) are drawn during each cycle of the applied stress. The shapes of these curves and their evolution are characteristic of each dislocation motion mechanism which is activated by the low-frequency applied stress. For this reason, the closed curves Δα(σ) and Δv/v(σ) can be considered as signatures of the interaction mechanism which controls the low-frequency dislocation motion. In this paper, the concept of signature is presented and explained with some experimental examples. It will also be shown that theoretical models can be developed which explain very well the experimental results.

  19. Carbon storage as affected by different site preparation techniques two years after mixed forest stand installation

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, F.; Figueiredo, T. de; Martins, A.

    2014-06-01

    Aim of study: This study aims at evaluating the impact of site preparation techniques prior to plantation on carbon storage and distribution in a young mixed stand of Pseudotsuga menziesii (PM) and Castanea sativa (CS). Area of study: The experimental field was established near Macedo de Cavaleiros, Northern Portugal, at 700 m elevation, mean annual temperature 12 degree centigrade and mean annual rainfall 678 mm. Material and methods: The experimental layout includes three replicates, where the different treatments corresponding to different tillage intensities were randomly distributed (high, moderate and slight intensity), in plots with an area of 375 m{sup 2} each. Twenty six months after forest stand installation, samples of herbaceous vegetation (0.49 m{sup 2} quadrat), forest species (8 PM and 8 CS) and mineral soil (at 0-5, 5-15, 15-30 and 30-60 cm depth) were collected in 15 randomly selected points in each treatment, processed in laboratory and analyzed for carbon by elemental carbon analyzer. Main results: The results obtained showed that: (i) more than 90% of the total carbon stored in the system is located in the soil, increasing in depth with tillage intensity; (ii) the contribution of herbaceous vegetation and related roots to the carbon storage is very low; (iii) the amount of carbon per tree is higher in CS than in PM; (iv) the global carbon storage was affected by soil tillage generally decreasing with the increase of tillage intensity. Accordingly, carbon storage capacity as affected by the application of different site preparation techniques should be a decision support tool in afforestation schemes. (Author)

  20. A scaled underwater launch system accomplished by stress wave propagation technique

    International Nuclear Information System (INIS)

    Wei Yanpeng; Wang Yiwei; Huang Chenguang; Fang Xin; Duan Zhuping

    2011-01-01

    A scaled underwater launch system based on the stress wave theory and the slip Hopkinson pressure bar (SHPB) technique is developed to study the phenomenon of cavitations and other hydrodynamic features of high-speed submerged bodies. The present system can achieve a transient acceleration in the water instead of long-time acceleration outside the water. The projectile can obtain a maximum speed of 30 m/s in about 200 μs by the SHPB launcher. The cavitation characteristics in the stage of acceleration and deceleration are captured by the high-speed camera. The processes of cavitation inception, development and collapse are also simulated with the business software FLUENT, and the results are in good agreement with experiment. There is about 20-30% energy loss during the launching processes, the mechanism of energy loss is also preliminary investigated by measuring the energy of the incident bar and the projectile. (authors)

  1. Square Wave Voltammetry: An Alternative Technique to Determinate Piroxicam Release Profiles from Nanostructured Lipid Carriers.

    Science.gov (United States)

    Otarola, Jessica; Garrido, Mariano; Correa, N Mariano; Molina, Patricia G

    2016-08-04

    A new, simple, and fast electrochemical (EC) method has been developed to determine the release profile of piroxicam, a nonsteroidal anti-inflammatory drug, loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). For the first time, the samples were analyzed by using square wave voltammetry, a sensitive EC technique. The piroxicam EC responses allow us to propose a model that explains the experimental results and to subsequently determine the amount of drug loaded into the NLCs formulation as a function of time. In vitro drug release studies showed prolonged drug release (up to 5 days), releasing 60 % of the incorporated drug. The proposed method is a promising and stable alternative for the study of different drug delivery systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improvement of the tetrachloromercurate absorption technique for measuring low atmospheric SO2 mixing ratios

    Science.gov (United States)

    Jaeschke, W.; Beltz, N.; Haunold, W.; Krischke, U.

    1997-07-01

    During the Gas-Phase Sulfur Intercomparison Experiment (GASIE) in 1994 an analytical system for measuring sulfur dioxide mixing ratios at low parts per trillion (pptv) levels was employed. It is based on the absorption of SO2 on a tetrachloromercurate(II)-impregnated filter. The subsequent analysis uses a chemiluminescence reaction by treating the resulting disulfitomercurate(II) complex with an acidic cerium sulfate solution. An improved sampling device has been introduced that increases the maximum sampling volume from 200 L to 500 L. It is also possible to determine the blank value accurately for each sample. The absorption efficiency of the sampling system is 98.7±6.4% at a nominal flow rate of 10 L/min. The calculated (3σ) detection limit is 3±1 pptv SO2. The sample solution is stable for up to 30 days, which allows the samples to be safely stored or shipped before analysis. This permits the use of a sensitive, compact, and reliable sampling system in the field with subsequent analysis under optimal conditions in the laboratory. A continuous flow chemiluminescence (CFCL) analyzer for on-line measurements is also presented. The system is based on the same chemical principles as the described filter technique.

  3. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  4. Ultrafast streak and framing technique for the observation of laser driven shock waves in transparent solid targets

    International Nuclear Information System (INIS)

    Van Kessel, C.G.M.; Sachsenmaier, P.; Sigel, R.

    1975-01-01

    Shock waves driven by laser ablation in plane transparent plexiglass and solid hydrogen targets have been observed with streak and framing techniques using a high speed image converter camera, and a dye laser as a light source. The framing pictures have been made by mode locking the dye laser and using a wide streak slit. In both materials a growing hemispherical shock wave is observed with the maximum velocity at the onset of laser radiation. (author)

  5. Application of one-sided stress wave velocity measurement technique to evaluate freeze-thaw damage in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Park, Won Su

    1998-01-01

    It is well recognized that damage resulting from freeze-thaw cycles is a serious problems causing deterioration and degradation of concrete. In general, freeze-thaw cycles change the microstructure of the concrete ultimately leading to internal stresses and cracking. In this study, a new method for one-sided stress wave velocity measurement has been applied to evaluate freeze-thaw damage in concrete by monitoring the velocity change of longitudinal and surface waves. The freeze-thaw damage was induced in a 400 x 150 x 100 mm concrete specimen in accordance with ASTM C666 using s commercial testing apparatus. A cycle consisted of a variation of the temperature from -14 to 4 degrees Celsius. A cycle takes 4-5 hours with approximately equal times devoted to freezing-thawing. Measurement of longitudinal and surface wave velocities based on one-sided stress wave velocity measurement technique was made every 5 freeze-thaw cycle. The variation of longitudinal and surface wave velocities due to increasing freeze-thaw damage is demonstrated and compared to determine which one is more effective to monitor freeze-thaw cyclic damage progress. The variation in longitudinal wave velocity measured by one-sided technique is also compared with that measured by the conventional through transmission technique.

  6. Stratospheric gravity wave activities inferred through the GPS radio occultation technique

    International Nuclear Information System (INIS)

    Wrasse, Cristiano Max; Takahashi, Hisao; Fechine, Joaquim; Denardini, Clezio Marcos; Wickert, Jens

    2007-01-01

    Stratospheric gravity wave activities were deduced from GPS radio occultation temperature profiles obtained by CHAMP satellite between 2001 and 2005. Potential energy profiles are used to analyze the gravity wave activity over South America. The results showed an inter-annual variation of the potential energy integrated between 24 and 34 km of altitude. The gravity wave activity is more concentrated around the equatorial region. In order to evaluate the seasonal variation of the gravity wave activity, a mean potential energy was determined over (10 deg N-10 deg S) and (100 deg W-20 deg W). The results showed a lower gravity wave activity during winter time, while during spring time the mean potential energy showed an increase in the wave activity. The results of the mean potential energy also showed that the gravity wave activity in the lower stratosphere exhibits a higher wave activity during 2002 and 2004 and a lower wave activity during 2003 and 2005. (author)

  7. Applications and Optimization of Optical Time Lenses based on Four-Wave Mixing in Highly Nonlinear Fibre

    DEFF Research Database (Denmark)

    Lillieholm, Mads

    2017-01-01

    Optical Fourier transformations enabled by the versatile time lens (quadratic phase modulator), have been demonstrated for numerous optical signal processing applications. Applications include ultrafast optical oscilloscopes, high resolution spectralanalysers, and the processing of ultrahigh......-speed communication signals, to enable e.g. such varied applications as phase regeneration for wavelength-division multiplexing (WDM) signals, conversion between spectrally efficient formats and receivers with reduced complexity for advanced optical multiplexing formats. Four-wave mixing (FWM) is showing promise...... of HNLF for different applications, and to a novel generic method based on only two tunable CW lasers, which allows for accurate prediction of the FWM performance in HNLF with chirped pump pulses.Then, a composite dispersion-flattened HNLF (DF-HNLF) is proposed and assembled to mitigate the effects...

  8. Short-time fourth-order squeezing effects in spontaneous and stimulated four- and six-wave mixing processes

    International Nuclear Information System (INIS)

    Giri, Dilip Kumar; Gupta, P S

    2003-01-01

    The concept of fourth-order squeezing of the electromagnetic field is investigated in the fundamental mode in spontaneous and stimulated four- and six-wave mixing processes under the short-time approximation based on a fully quantum mechanical approach. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The possibility of obtaining fourth-order squeezing is studied. The dependence of fourth-order squeezing on the number of photons is also investigated. It is shown that fourth-order squeezing, which is a higher-order squeezing, allows a much larger fractional noise reduction than lower-order squeezing. It is shown that squeezing is greater in a stimulated process than the corresponding squeezing in spontaneous interaction. The conditions for obtaining maximum and minimum squeezing are obtained. We have also established the non-classical nature of squeezed radiation using the Glauber-Sudarshan representation

  9. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  10. Identification of a new low energy 1u state in dicopper with resonant four-wave mixing.

    Science.gov (United States)

    Visser, B; Beck, M; Bornhauser, P; Knopp, G; van Bokhoven, J A; Marquardt, R; Gourlaouen, C; Radi, P P

    2017-12-07

    The low energy electronic structure of the copper dimer has been re-investigated using non-linear four-wave mixing spectroscopy and high level ab initio calculations. In addition to the measurement of the previously reported A, B, and C electronic states, a new state denoted A' is identified with T 0 = 20 100.4090(16) cm -1 ( 63 Cu 2 ). Rotational analysis of the A'-X (0,0) and (1,0) transitions leads to the assignment of A' 1 u . Ab initio calculations present the first theoretical description of the low energy states of the copper dimer in Hund's case (c) and confirm the experimental assignment. The discovery of this new low energy excited state emphasizes that spin-orbit coupling is significant in states with d-hole electronic configurations and resolves a decades-long mystery in the initial assignment of the A state.

  11. Performance analysis of incoherent multi-wavelength OCDMA systems under the impact of four-wave mixing.

    Science.gov (United States)

    Dang, Ngoc T; Pham, Anh T

    2010-05-10

    In this paper, we comprehensively analyze the impact of four wave mixing (FWM) on the performance of incoherent multi-wavelength optical code-division multiple-access (MW-OCDMA) systems. We also consider many other interferences and noises, including multiple access interference, optical beating interference, and receiver noise, in the analysis. From the numerical results, we can find the power ranges of different MW-OCDMA systems, in which the impact of FWM is dominant and consequently results in an increase in the bit-error rate of the systems. We also find that the impact of FWM becomes more severe when the frequency spacing is small and/or dispersion-shifted fiber is used. In addition, we quantitatively discuss the impact of FWM on the number of supportable users and power penalty in the MW-OCDMA systems. (c) 2010 Optical Society of America.

  12. Polarization-resolved degenerate four-wave mixing of CdS nanocrystals in a nonresonant region

    International Nuclear Information System (INIS)

    Ma, S.M.; Seo, J.T.; Yang, Q.; Creemore, L.; Battle, R.; Tabibi, B.; Yu, W.

    2006-01-01

    The third-order susceptibilities of various concentrations of TOPO-passivated CdS nanocrystals (NCs) with the size near the Bohr radius were investigated using polarization-resolved degenerate four-wave mixing (DFWM) in a nonresonant excitation region with 532 nm wavelength and 8 ns pulse width. The second hyperpolarizabilities left angle γ h xxxx right angle and left angle γ h xyyx right angle of the CdS NCs were ∝1.25 x 10 -42 m 5 /V 2 and ∝3.66 x 10 -43 m 5 /V 2 , respectively. The ratio (left angle γ h xyyx right angle / left angle γ h xxxx right angle) of the hyperpolarizabilities was ∝0.29 that indicated a large contribution of electronic polarization process to the third-order nonlinearity of CdS NCs. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity.

    Science.gov (United States)

    Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun

    2017-10-16

    We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.

  14. Dynamic analysis of optical soliton pair and four-wave mixing via Fano interference in multiple quantum wells

    International Nuclear Information System (INIS)

    Yan, Wei; Qu, Junle; Niu, H B

    2014-01-01

    We perform a time-dependent analysis of the formation and stable propagation of an ultraslow optical soliton pair, and four-wave mixing (FWM) via tunable Fano interference in double-cascade type semiconductor multiple quantum wells (SMQWs). By using the probability amplitude method to describe the interaction of the system, we demonstrate that the electromagnetically induced transparency (EIT) can be controlled by Fano interference in the linear case and the strength of Fano interference has an important effect on the group velocity and amplitude of the soliton pair in the nonlinear case. Then, when the signal field is removed, the dynamic FWM process is analyzed in detail, and we find that the strength of Fano interference also has an important effect on the FWM’s efficiency: the maximum FWM efficiency is ∼28% in appropriate conditions. The investigations are promising for practical applications in optical devices and optical information processing for solid systems. (paper)

  15. EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing.

    Science.gov (United States)

    Lee, Meng-Jung; Chen, Yi-Hsin; Wang, I-Chung; Yu, Ite A

    2012-05-07

    All-optical switching (AOS) or cross-phase modulation (XPM) based on the effect of electromagnetically induced transparency (EIT) makes one photon switched or phase-modulated by another possible. The existence of four-wave mixing (FWM) process greatly diminishes the switching or phase-modulation efficiency and hinders the single-photon operation. We proposed and experimentally demonstrated an idea that with an optimum detuning the EIT-based AOS can be completely intact even under the influence of FWM. The results of the work can be directly applied to the EIT-based XPM. Our work makes the AOS and XPM schemes more flexible and the single-photon operation possible in FWM-allowed systems.

  16. Application of non-intrusive geophysical techniques at the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Peace, J.L.; Goering, T.J.

    1996-03-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessment and remediation of the Mixed Waste Landfill in Technical Area 3. The Mixed Waste Landfill is an inactive radioactive and mixed waste disposal site. The landfill contains disposal pits and trenches of questionable location and dimension. Non-intrusive geophysical techniques were utilized to provide an effective means of determining the location and dimension of suspected waste disposal trenches before Resource Conservation and Recovery Act intrusive assessment activities were initiated. Geophysical instruments selected for this investigation included a Geonics EM-31 ground conductivity meter, the new Geonics EM-61 high precision, time-domain metal detector, and a Geometrics 856 total field magnetometer. The results of these non-intrusive geophysical techniques were evaluated to enhance the efficiency and cost-effectiveness of future waste-site investigations at Environmental Restoration Project sites

  17. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    Science.gov (United States)

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  18. Highly Efficient Four-Wave Mixing in an AlGaAs-On-Insulator (AlGaAsOI) Nano-Waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2015-01-01

    We propose an AlGaAs-on-insulator platform for nonlinear integrated photonics. We demonstrate highly efficient four-wave mixing in a 3-mm long AlGaAs-on-insulator nanowaveguide. A conversion efficiency of -21.1 dB is obtained with only a 45-mW pump......We propose an AlGaAs-on-insulator platform for nonlinear integrated photonics. We demonstrate highly efficient four-wave mixing in a 3-mm long AlGaAs-on-insulator nanowaveguide. A conversion efficiency of -21.1 dB is obtained with only a 45-mW pump...

  19. An Analysis of the Guided Wave Patterns in a Small-bore Titanium Tube by a Magnetostrictive Sensor Technique

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Kim, Shin

    2007-01-01

    The presence of damage or defects in pipes or tubes is one of the major problems in nuclear power plants. However, in many cases, it is difficult to inspect all of them by the conventional ultrasonic methods, because of their geometrical complexity and inaccessibility. The magnetostrictive guided wave technique has several advantages for practical applications, such as a 100- percent volumetric coverage of a long segment of a structure, a reduced inspection time and its cost effectiveness, as well as its' relatively simple structure. One promising feature of the magnetostrictive sensor technique is that the wave patterns are relatively clear and simple compared to the conventional piezoelectric ultrasonic transducer. If we can characterize the evolution of the defect signals, it can be a promising tool for a structural health monitoring of pipes for a long period as well as the identification of flaws. An in-bore guided wave probe was developed for an application to small bore heat exchanger tubes. The magnetostrictive probe installed on the hollow cylindrical waveguide generates and detects torsional waves in the waveguide. This waveguide is expanded by the draw bar to create an intimate mechanical contact between the waveguide and the inside surface of the tube being tested. In this paper, we analyzed the wave patterns reflected from various artificial holes in a titanium tube, which is used in the condenser in a nuclear power plant. The torsional guided waves were generated and received by a coil and a DC magnetized nickel strip as well as an inbore guided wave probe. The wave patterns from various defects were compared with two different sensor techniques and a detectable limit of the defected was estimated

  20. Waves and instabilities in plasmas

    International Nuclear Information System (INIS)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations

  1. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  2. Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit

    Science.gov (United States)

    Balsa, Thomas F.; Gartside, James

    1995-01-01

    The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.

  3. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  4. Investigation of soot by two-color four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Stampanoni-Panariello, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A novel, non-intrusive technique has been used for the temporally resolved investigation of the interaction of laser radiation and soot in a flame. While there is a fairly good agreement between measurement and simulation remaining discrepancies indicate some shortcomings of the model employed. (author) 2 figs., 2 refs.

  5. Crack-depth effects in the cylindrically guided wave technique for bolt and pump-shaft inspections

    International Nuclear Information System (INIS)

    Tsai, Y.M.; Liu, S.N.; Light, G.M.

    1991-01-01

    Nuclear power plants have experienced the failures of bolts and pump shafts. The industry is concerned about nondestructive evaluation (NDE) techniques that can be applied to these components. The cylindrically guided wave technique (CGWT) has been developed to detect the simulated circumferential defects in long bolts and studs. The ultrasonic CGWT employs the zero-degree longitudinal waves constrained to travel within the boundary of the components with cylindrical shape during inspection. When longitudinal waves are guided to travel along a cylinder, and impinge onto a circumferential defect, the waves are scattered at the crack on the cylinder surface. In this work, the wave scattering at the circumferential crack on a long cylinder is investigated. The transfer factor of the scattered waves is calculated for a wide range of frequency spectra. The scattered waveform at a distance away from a crack is calculated. The effect that crack depth exerts to the waveform in CGWT is shown. CGWT signals, waveform calculation and so on are reported. (K.I.)

  6. Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms

    Science.gov (United States)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2018-03-01

    We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.

  7. Raman and IR spectroscopic structural characterization of LiAlO2 powders prepared using a liquid mix technique

    International Nuclear Information System (INIS)

    Cornilsen, B.C.; Loyselle, P.L.; Saporta, J.D.

    1990-01-01

    γ-LiAlO 2 and β-LiAlO 2 have been characterized using Raman and infrared spectroscopy. Powders have been prepared using two different preparation techniques: a solution method known as the liquid mix technique (LMT) and the traditional ceramic method. The authors find that the LMT allows direct production of single phase γ-LiAlO 2 at 600 degrees C, below that found using other preparation methods. Furthermore, this solution technique appears to avoid formation of the β-LiAlO 2 intermediate phase. At lower temperatures, the LMT product is a disordered precursor of γ- LiAlO 2

  8. Bioprinting of Cartilage and Skin Tissue Analogs Utilizing a Novel Passive Mixing Unit Technique for Bioink Precellularization

    Science.gov (United States)

    Thayer, Patrick Scott; Orrhult, Linnea Stridh; Martínez, Héctor

    2018-01-01

    Bioprinting is a powerful technique for the rapid and reproducible fabrication of constructs for tissue engineering applications. In this study, both cartilage and skin analogs were fabricated after bioink pre-cellularization utilizing a novel passive mixing unit technique. This technique was developed with the aim to simplify the steps involved in the mixing of a cell suspension into a highly viscous bioink. The resolution of filaments deposited through bioprinting necessitates the assurance of uniformity in cell distribution prior to printing to avoid the deposition of regions without cells or retention of large cell clumps that can clog the needle. We demonstrate the ability to rapidly blend a cell suspension with a bioink prior to bioprinting of both cartilage and skin analogs. Both tissue analogs could be cultured for up to 4 weeks. Histological analysis demonstrated both cell viability and deposition of tissue specific extracellular matrix (ECM) markers such as glycosaminoglycans (GAGs) and collagen I respectively. PMID:29364216

  9. Seismic Interferometry of Gulf of Mexico Basin Opening (GUMBO) Data: Extraction of Body and Surface Waves with a Mixed-Mode Array

    Science.gov (United States)

    Thangraj, J. S.; Quiros, D.; Pulliam, J.

    2017-12-01

    The Gulf of Mexico (GoM) is a relative small oceanic basin that formed by rifting between the continental blocks of North America and Yucatan in the Middle to Late Jurassic. Following the breakup, seafloor spreading continued until the Early Cretaceous. Since then, subsidence and sedimentation have shaped the GoM margin that we see today. To better understand the opening of the GoM, a long-offset (307 km) seismic refraction line was acquired in 2010. The transect was located on the northwest GoM margin, and consisted of several types of instruments. This mixed-mode array combined 31 ocean bottom seismographs (OBS), 412 high-frequency instruments (4.5 Hz geophones with RefTek 125A "Texan" digitizers) and 12 broadband stations. The R/V Iron Cat provided the airgun source used in the refraction experiment. The airgun generated 2028 shots in a period of 2.5 days which were recorded by the entire array. The airgun-generated seismic energy was clearly visible on the OBS recordings, however its amplitude was too low to be discerned on most of the onshore stations. In fact, this energy was only visible on Texan stations 1-50 (station 1 is located at the coast), extending 18 km inland, limiting the extend of the velocity model that can be obtained. Here, we apply seismic interferometry techniques to the 2.5 days of continuous data recorded by the Texan array with the goal of extending the spatial range for which the airgun-generated seismic energy can be observed. Preliminary results show that by treating the 2.5 days of continuously recorded airgun data as ambient noise, and applying time-domain cross-correlation, we can observe energy propagating 50 to 70 km inland with apparent velocities of 1800 - 2200 ms-1. These velocities agree with the compressional seismic velocity for the top 5 km of sediments under the GoM obtained from the OBS records, suggesting that we are observing compressional energy in the virtual source gathers (VSG). We also observe arrivals in the VSG

  10. A non-intrusive and continuous-in-space technique to investigate the wave transformation and breaking over a breakwater

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2016-01-01

    Full Text Available To design longshore breakwaters, the evaluation of the wave motion transformations over the structures and of the energy they are able to absorb, dissipate and reflect is necessary. To characterize features and transformations of monochromatic wave trains above a breakwater, both submerged and emerged, we have designed and developed a non-intrusive and continuous-in-space technique, based on Image Analysis, and carried out an experimental campaign, in a laboratory flume equipped with a wave-maker, in order to test it. The investigation area was lighted with a light sheet and images were recorded by a video-camera. The working fluid was seeded with non buoyant particles to make it bright and clearly distinct from dark background and breakwater. The technique, that is based on a robust algorithm to identify the free surface, has showed to properly work also in prohibitive situations for traditional resistive probes (e.g., very shallow waters and/or breaking waves and to be able to measure the free surface all over the investigation field in a non-intrusive way. Two kind of analysis were mainly performed, a statistical and a spectral one. The peculiarities of the measurement technique allowed to describe the whole wave transformation and to supply useful information for design purposes.

  11. Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Song, Won Joon; Popovics, J. S.; Achenbach, J. D.

    1997-01-01

    A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  12. Nonlinear Kirchhoff-Carrier wave equation in a unit membrane with mixed homogeneous boundary conditions

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Long

    2005-12-01

    Full Text Available In this paper we consider the nonlinear wave equation problem $$displaylines{ u_{tt}-Big(|u|_0^2,|u_{r}|_0^2ig(u_{rr}+frac{1}{r}u_{r} =f(r,t,u,u_{r},quad 0less than r less than 1,; 0 less than t less than T, ig|lim_{ro 0^+}sqrt{r}u_{r}(r,tig| less than infty, u_{r}(1,t+hu(1,t=0, u(r,0=widetilde{u}_0(r, u_{t}(r,0=widetilde{u}_1(r. }$$ To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on $u_{r}$ and a coefficient function $B$ of the form $B=B(|u|_0^2=b_0+|u|_0^2$ with $b_0$ greater than 0.

  13. Evaluation of the Efficacy of Different Mixing Techniques and Disinfection on Microbial Colonization of Polyether Impression Materials: A Comparative Study.

    Science.gov (United States)

    Singla, Youginder; Pachar, Renu B; Poriya, Sangeeta; Mishra, Aalok; Sharma, Rajni; Garg, Anshu

    2018-03-01

    This study aims to determine the role of mixing techniques of polyether impression materials and efficacy of disinfection on microbial colonization of these impression materials. Polyether impression material was mixed using two methods: First by hand mixing (group I) and second using an automixer (group II) with a total of 100 samples. Four microbial strains were studied, which included Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. After incubation, the bacterial colonies were counted, and then, disinfectant solution was applied. The effect of disinfection solution was evaluated for each specimen. The surface of polyether impression materials mixed with an automixer has less number of voids and overall a smoother surface as compared with the hand-mixed ones. On comparing the disinfection procedures, i.e., specimens without any disinfection and specimens after disinfection, statistically highly significant difference was seen between all the groups. We can conclude that impression mixing procedures are important in determining the surface characteristics of the impression and ultimately the colonization of bacteria and also determine the importance of disinfection on microbial colonization. This study emphasises the deleterious role of nosocomial infections and specific measures that should be taken regarding the prevention of such diseases. Dental impressions are proved to be a source of such infections and may lead to transmission of such diseases. Thus, proper measures should be taken right from the first step of impression taking to minimizing and preventing such kind of contaminations in clinical practice.

  14. Detection of Chorus Elements and other Wave Signatures Using Geometric Computational Techniques in the Van Allen radiation belts

    Science.gov (United States)

    Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.

  15. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  16. One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2011-01-01

    We present WDM multicasting based on dual-pump four-wave mixing in a 3-mm long dispersion engineered silicon waveguide. One-to-six phase-preserving WDM multicasting of 10-Gb/s differential phase-shiftkeying (DPSK) data is experimentally demonstrated with bit-error rate measurements. All the six...

  17. QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Dalgaard, Kjeld; Lei, Lei

    2013-01-01

    A phase-sensitive four-wave mixing (FWM) scheme enabling the simultaneous conversion of the two orthogonal quadratures of an optical signal to different wavelengths is demonstrated for the first time under dynamic operation using a highly nonlinear optical fiber (HNLF) as the nonlinear medium...

  18. Bidirectional Four-Wave Mixing in Semiconductor Optical Amplifiers: Theory and Experiment

    DEFF Research Database (Denmark)

    Bischoff, Svend; Buxens, Alvaro A.; Poulsen, Henrik Nørskov

    1999-01-01

    ) is theoretically predicted for bit rates of 10, 20 and 40 Gb/s and is shown to be in agreement with measurements performed at 10 and 20 Gb/s. Measurements of the clear/drop functionality using the bidirectional technique show excellent performance for a 4 x 10 Gb/s signal and is again in good agreement...... with simulations. The clear/drop functionality is also simulated for 4 x 20 Gb/s and 4 x 40 Gb/s signals....

  19. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...

  20. Application of the cylindrically guided wave technique for bolt and pump-shaft inspections

    International Nuclear Information System (INIS)

    Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Tsai, Y.M.

    1990-01-01

    Southwest Research Institute (SwRI) has been working with the cylindrically guided wave technique (CGWT) since late 1982. The initial work was aimed at inspecting reactor pressure vessel hold-down studs. The CGWT was shown to be able to detect defects as small as 0.060 inch (1.5 mm) deep through metal paths up to 120 inches (304 cm) in stud bolt carbon steel. Later developments in the application of CGWT were aimed at inspecting reactor coolant pump (RCP) shafts. The RCP shafts are usually approximately 2 meters long and have changing diameters along the length, from approximately 12 cm to 23 cm in discrete steps. The pump shafts have been susceptible to small cracks and can be inspected most cost-effectively from the top of the shaft. A matrix transducer composed of six 1-inch (2.54-cm) diameter transducers along with pulsing and receiving electronics (EPRI Pump-Shaft Inspection System) was developed during 1988. A patent application for this technology has been made. This report describes the work conducted during 1989 and the results obtained

  1. Comparative study of electromechanical impedance and Lamb wave techniques for fatigue crack detection and monitoring in metallic structures

    Science.gov (United States)

    Lim, Say Ian; Liu, Yu; Soh, Chee Kiong

    2012-04-01

    Fatigue cracks often initiate at the weld toes of welded steel connections. Usually, these cracks cannot be identified by the naked eyes. Existing identification methods like dye-penetration test and alternating current potential drop (ACPD) may be useful for detecting fatigue cracks at the weld toes. To apply these non-destructive evaluation (NDE) techniques, the potential sites have to be accessible during inspection. Therefore, there is a need to explore other detection and monitoring techniques for fatigue cracks especially when their locations are inaccessible or cost of access is uneconomical. Electro-mechanical Impedance (EMI) and Lamb wave techniques are two fast growing techniques in the Structural Health Monitoring (SHM) community. These techniques use piezoelectric ceramics (PZT) for actuation and sensing. Since the monitoring site is only needed to be accessed once for the instrumentation of the transducers, remote monitoring is made possible. The permanent locations of these transducers also translate to having consistent measurement for monitoring. The main focus of this study is to conduct a comparative investigation on the effectiveness and efficiency of the EMI technique and the Lamb wave technique for successful fatigue crack identification and monitoring of welded steel connections using piezoelectric transducers. A laboratory-sized non-load carrying fillet weld specimen is used in this study. The specimen is subjected to cyclic tensile load and data for both techniques are acquired at stipulated intervals. It can be concluded that the EMI technique is sensitive to the crack initiation phase while the Lamb wave technique correlates well with the crack propagation phase.

  2. Advantages of active love wave techniques in geophysical characterizations of seismographic station - Case studies in California and the central and eastern United States

    Science.gov (United States)

    Martin, Antony; Yong, Alan K.; Salomone, Larry A.

    2014-01-01

    Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.

  3. Dissection of Rovibronic Structure by Polarization-Resolved Two-Color Resonant Four-Wave Mixing Spectroscopy

    Science.gov (United States)

    Murdock, Daniel; Burns, Lori A.; Vaccaro, Patrick H.

    2009-08-01

    A synergistic theoretical and experimental investigation of stimulated emission pumping (SEP) as implemented in the coherent framework of two-color resonant four-wave mixing (TC-RFWM) spectroscopy is presented, with special emphasis directed toward the identification of polarization geometries that can distinguish spectral features according to their attendant changes in rotational quantum numbers. A vector-recoupling formalism built upon a perturbative treatment of matter-field interactions and a state-multipole expansion of the density operator allowed the weak-field signal intensity to be cast in terms of a TC-RFWM response tensor, RQ(K)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Jf), which separates the transverse characteristics of the incident and generated electromagnetic waves (ɛ4*ɛ3ɛ2*ɛ1) from the angular momentum properties of the PUMP and DUMP resonances (Jg,Je,Jh,Jf). For an isolated SEP process induced in an isotropic medium, the criteria needed to discriminate against subsets of rovibronic structure were encoded in the roots of a single tensor element, R0(0)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Je). By assuming all optical fields to be polarized linearly and invoking the limit of high quantum numbers, specific angles of polarization for the detected signal field were found to suppress DUMP resonances selectively according to the nature of their rotational branch and the rotational branch of the meshing PUMP line. These predictions were corroborated by performing SEP measurements on the ground electronic potential energy surface of tropolone in two distinct regimes of vibrational excitation, with the near-ultraviolet Ã1B2-X˜1A1 (π* ← π) absorption system affording the requisite PUMP and DUMP transitions.

  4. Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires

    Science.gov (United States)

    Noor, A. K.; Andersen, C. M.; Tanner, J. A.

    1984-01-01

    An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.

  5. Least-squares wave-front reconstruction of Shack-Hartmann sensors and shearing interferometers using multigrid techniques

    International Nuclear Information System (INIS)

    Baker, K.L.

    2005-01-01

    This article details a multigrid algorithm that is suitable for least-squares wave-front reconstruction of Shack-Hartmann and shearing interferometer wave-front sensors. The algorithm detailed in this article is shown to scale with the number of subapertures in the same fashion as fast Fourier transform techniques, making it suitable for use in applications requiring a large number of subapertures and high Strehl ratio systems such as for high spatial frequency characterization of high-density plasmas, optics metrology, and multiconjugate and extreme adaptive optics systems

  6. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    International Nuclear Information System (INIS)

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report

  7. Development of a new technique for experimental evaluation of the fuel element's subchannel mixing

    International Nuclear Information System (INIS)

    Silin, Nicolas; Delmastro, Dario; Juanico, Luis

    2004-01-01

    In this work, the development of a new experimental method for the measurement of mixing between the cooling subchannels of nuclear fuel elements by using thermal traces, is presented.The method has been proved on a reduced test section with very positive results, having demonstrated its simplicity and low cost.Because it is suitable for heterogeneous and compact subchannels (asArgentinean fuels) with high water flows in simple and affordable tests at atmospheric pressure, this new method is specially well suited for the design of fuel elements, while it offers advantages over other methods of mixing measurement [es

  8. Acoustic waves in transversely excited atmospheric CO2 laser discharges: effect on performance and reduction techniques

    CSIR Research Space (South Africa)

    von Bergmann, HM

    2008-08-01

    Full Text Available Results are presented on the influence of acoustic waves on the performance of high-repetition-rate TEA CO2 lasers. It is shown that acoustic waves generated inside the laser cavity lead to nonuniform discharges, resulting in a deterioration...

  9. Novel IQ imbalance and offset compensation techniques for quadrature mixing radio transceivers

    CSIR Research Space (South Africa)

    De Witt, JJ

    2006-09-01

    Full Text Available Despite the advantages that quadrature mixing offers to radio front-ends, its practical use has been limited due to its sensitivity towards gain and phase mismatches between its in-phase and quadrature channels. DC offsets are also a problem when a...

  10. Accuracy of Single-Step versus 2-Step Double-Mix Impression Technique

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; da Cunha, Leonardo Fernandes; Herrera, Francyle Simões

    2011-01-01

    Objective. To investigate the accuracy of dies obtained from single-step and 2-step double-mix impressions. Material and Methods. Impressions (n = 10) of a stainless steel die simulating a complete crown preparation were performed using a polyether (Impregum Soft Heavy and Light body) and a vinyl...

  11. Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.

    2016-12-01

    Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.

  12. Liver failure after hepatectomy: A risk assessment using the pre-hepatectomy shear wave elastography technique

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hong, E-mail: han.hong@zs-hospital.sh.cn [Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China); Hu, Hao; Xu, Ya Dan [Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China); Wang, Wen Ping, E-mail: puguang61@126.com [Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China); Ding, Hong; Lu, Qing [Department of Ultrasound, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032 (China)

    2017-01-15

    Objective: To determine the efficacy of liver stiffness (LS) measurements utilizing the Shear Wave Elastography (SWE) technique for predicting post-hepatectomy liver failure (PHLF) among patients with hepatocellular carcinoma (HCC). Methods: Data from eighty consecutive patients who were undergoing hepatectomy for HCC were prospectively identified and evaluated with preoperative SWE. The SWE was measured with advanced ultrasound equipment (Philips EPIQ7; Philips Healthcare, Seattle, WA, USA). PHLF classification was defined according to the International Study Group of Liver Surgery Recommendations (ISGLS). Results: SWE was successfully performed in 77 patients. According to the ISGLS criteria, PHLF occurred in 35.1% of patients (27 patients), including 2/25 patients with Grade A/B, respectively. Elevated SWE values (P = 0.002) and histological cirrhosis (P = 0.003) were independent predictors of PHLF according to the multivariate analysis. Patients with SWE values higher than or equal to 6.9 kPa were identified at higher risk of PHLF (area under the curve: 0.843, sensitivity: 77.8% and specificity: 78.0%). Postoperative dynamic course of the median the Model For End-stage Liver Disease (MELD) score showed irregular changes among patients with an SWE >6.9 kPa. Patients with an SWE <6.9 kPa, postoperative dynamic course of the median MELD score gradually decreased. Conclusion: LS measured with SWE is a valid and reliable method for the prediction of PHLF grade A/B among patients with HCC. SWE could become a routine examination for the preoperative evaluation of PHLF.

  13. The Effect of a Twisted Magnetic Field on the Phase Mixing of the Kink Magnetohydrodynamic Waves in Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Zanyar; Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of); Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2017-08-10

    There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model and the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.

  14. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    Science.gov (United States)

    El Sayed, K.; Birkedal, D.; Lyssenko, V. G.; Hvam, J. M.

    1997-01-01

    We present a theoretical investigation of ultrafast transient four-wave mixing (FWM) of GaAs quantum wells for coherent excitation of excitons and a large number of continuum states. It is shown that in this case the line shape of the FWM signal is drastically altered due to an interaction-induced coupling of the exciton to all the excited continuum states. The signal is dominantly emitted at the spectral position of the exciton and decays, as a function of delay, on a time scale set by the duration of the laser pulse rather than by the intrinsic dephasing time. Nevertheless, the spectral width of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of ~ 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange interaction, while for even shorter pulses this behavior is dominantly caused by nonlinear polarization decay.

  15. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow

    International Nuclear Information System (INIS)

    Di Stefano, C. A.; Kuranz, C. C.; Klein, S. R.; Drake, R. P.; Malamud, G.; Henry de Frahan, M. T.; Johnsen, E.; Shimony, A.; Shvarts, D.; Smalyuk, V. A.; Martinez, D.

    2014-01-01

    In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description

  16. Application of Synthetic Aperture Focusing Technique for inspection of plate-like structures using EMAT generated Lamb waves

    Directory of Open Access Journals (Sweden)

    Mirchev Yordan

    2018-01-01

    Full Text Available The main challenge for guided wave inspection is exact defect characterization and sizing. EMAT generated Lamb waves usually have low signal-to-noise ratio which reduces the defect detection, characterization and sizing capabilities. That's why in most cases the method is used only as a screening tool. The Synthetic Aperture Focusing Technique is a process that increases the signal-to-noise ratio by numerically focusing the acoustic fields. In this paper the application of SAFT is tested over EMAT generated Lamb waves. The improvement of lateral resolution and signal-to-noise ratio is evaluated. Results are presented as a comparison between standard B-scan and SAFT processed data.

  17. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques

    Directory of Open Access Journals (Sweden)

    Shaffer Jean M

    2010-05-01

    Full Text Available Abstract Background The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV. Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR, including transit-time (TT, flow-area (QA, and cross-correlation (XC methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. Methods Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. Results The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD inter-observer/intra-observer PWV differences were -0.12(1.3/-0.04(0.4 for TT, 0.2(1.3/0.09(0.9 for XC, and 0.6(1.6/0.2(1.4 m/s for QA methods, respectively. The correlation coefficients (r for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated

  18. Detection of defects and evaluation of material deterioration using surface wave technique

    International Nuclear Information System (INIS)

    Yokono, Yoshikazu; Yoshiara, Toshikatsu; Suetsugu, Jun; Imanaka, Takuichi

    1996-01-01

    It is very important to detect surface damage and evaluate deterioration of material surface because of their influences on mechanical properties of materials. In general, magnetic particle testing, liquid penetrant testing and eddy current testing are commonly used for detecting surface flaws. These methods, however, are neither effective for estimating flaw height nor for evaluating material deterioration. In this paper the authors apply surface wave propagating along the test surface for these purposes. The surface wave (Rayleigh wave) propagates only near the surface layer in the order of one wave length. In other words, the lower the frequency, the deeper the penetration depth of the surface wave. Accordingly, they can select the frequency considering the inspection purpose. On the other hand, when surface wave having broad-band frequency propagates along the surface of a specimen, higher frequency ultrasound propagates very close to the surface and lower frequency ultrasound propagates deeper in the specimen. Hence, frequency analysis is expected to be effective for estimating upper edge of flaw. Surface wave is also very sensitive to material surface properties such as existence of voids or micro cracks. Acoustic characteristics such as sound velocity, attenuation and other feature parameters are influenced by the variation of the material properties. Hence, material deterioration can be evaluated by the acoustic features

  19. Effects of four-wave mixing on four-photon resonance excitation and ionization in the presence of a three-photon intermediate state resonance enhancement

    International Nuclear Information System (INIS)

    Payne, M.G.; Miller, J.C.; Hart, R.C.; Garrett, W.R.

    1991-01-01

    We consider effects which occur when four-wave sum frequency generation and multiphoton ionization are induced by lasers tuned near a three-photon resonance and simultaneously near or at a dipole allowed four-photon resonance. In studies with unfocused laser beams, if the phase mismatch of the generated four-wave-mixing field is large and the related two-photon resonance for the absorption of a four-wave-mixing photon and a laser photon results in strong absorption of the four-wave-mixing field, a coherent cancellation occurs between the pumping of the resonance by two- and four-photon processes. This interference effect occurs when the first laser is tuned on either side of the three-photon resonance and |Δk rL |much-gt 1, where Δk r is the mismatch and L is the length of the path of the laser beams in the gas. With focused laser beams large differences occur between ionization with unidirectional beams and with counterpropagating laser beams when |Δk rb |much-gt 1, where b is the confocal parameter of the focused laser beams. Strong absorption of the four-wave-mixing field is shown not to be necessary for strong destructive interference with focused laser beams when the phase mismatch is large. This work also suggests an explanation for earlier experiments where the presence of a four-photon resonance enabled the generation of third-harmonic light in a positively dispersive wavelength region. We argue that this process can occur when the laser used to achieve the four-photon resonance is focused on the small z (z is the coordinate in the direction of propagation) side of the focal point of the laser responsible for the third-harmonic generation

  20. Experimental approach to investigate the dynamics of mixing coolant flow in complex geometry using PIV and PLIF techniques

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2015-01-01

    Full Text Available The aim of this work is to investigate experimentally the increase of mixing phenomenon in a coolant flow in order to improve the heat transfer, the economical operation and the structural integrity of Light Water Reactors-Pressurized Water Reactors (LWRs-PWRs. Thus the parameters related to the heat transfer process in the system will be investigated. Data from a set of experiments, obtained by using high precision measurement techniques, Particle Image Velocimetry and Planar Laser-Induced Fluorescence (PIV and PLIF, respectively are to improve the basic understanding of turbulent mixing phenomenon and to provide data for CFD code validation. The coolant mixing phenomenon in the head part of a fuel assembly which includes spacer grids has been investigated (the fuel simulator has half-length of a VVER 440 reactor fuel. The two-dimensional velocity vector and temperature fields in the area of interest are obtained by PIV and PLIF technique, respectively. The measurements of the turbulent flow in the regular tube channel around the thermocouple proved that there is rotation and asymmetry in the coolant flow caused by the mixing grid and the geometrical asymmetry of the fuel bundle. Both PIV and PLIF results showed that at the level of the core exit thermocouple the coolant is homogeneous. The discrepancies that could exist between the outlet average temperature of the coolant and the temperature at in-core thermocouple were clarified. Results of the applied techniques showed that both of them can be used as good provider for data base and to validate CFD results.

  1. Single-centre review of radiologically guided percutaneous nephrostomy using 'mixed' technique: Success and complication rates

    Energy Technology Data Exchange (ETDEWEB)

    Montvilas, Paulius, E-mail: paulmont@rm.dk [Department of Radiology, Aarhus University Hospital, Skejby, Brendstrupgardsvej 100, 8200 Aarhus N (Denmark); Solvig, Jan, E-mail: jansolvi@rm.dk [Department of Radiology, Aarhus University Hospital, Skejby, Brendstrupgardsvej 100, 8200 Aarhus N (Denmark); Bjerklund Johansen, Truls Erik, E-mail: tebj@skejby.rm.dk [Department of Urology, Aarhus University Hospital, Skejby, Brendstrupgardsvej 100, 8200 Aarhus N (Denmark)

    2011-11-15

    Aim: A review of complication and success rates of the 'mixed' technique in percutaneous nephrostomy using both the Seldinger and one-step techniques in dilated and non-dilated systems. Materials and methods: We retrospectively analysed 500 percutaneous nephrostomies in dilated an non-dilated systems in 353 patients from 2006 to 2007 (208 males (range 19-95 years), 127 females (range 27-91 years) and 21 children (range 3 months-16 years: 6 females, 15 males)). Percutaneous nephrostomy was considered successful if catheter was placed in renal pelvis and drained urine spontaneously. Successful percutaneous nephrostomies were classified as primary (renal system drained instantly) or postponed (drainage achieved within 24 h after initial failure). Number of complications was registered. Results: All of the 500 nephrostomies were successful within 24 h (96.2% primary; 3.8% postponed). The success rate of primary nephrostomy in dilated and non-dilated systems was 98.2% and 82%, respectively. Major complications occurred in 0.45% and minor complications in 14.2%. Conclusion: Percutaneous nephrostomy using the 'mixed' technique is very successful in dilated systems, is not superior to other PCN techniques in non-dilated systems and has a very low rate of major complications.

  2. Computational Intelligence Techniques Applied to the Day Ahead PV Output Power Forecast: PHANN, SNO and Mixed

    Directory of Open Access Journals (Sweden)

    Emanuele Ogliari

    2018-06-01

    Full Text Available An accurate forecast of the exploitable energy from Renewable Energy Sources is extremely important for the stability issues of the electric grid and the reliability of the bidding markets. This paper presents a comparison among different forecasting methods of the photovoltaic output power introducing a new method that mixes some peculiarities of the others: the Physical Hybrid Artificial Neural Network and the five parameters model estimated by the Social Network Optimization. In particular, the day-ahead forecasts evaluated against real data measured for two years in an existing photovoltaic plant located in Milan, Italy, are compared by means both new and the most common error indicators. Results reported in this work show the best forecasting capability of the new “mixed method” which scored the best forecast skill and Enveloped Mean Absolute Error on a yearly basis (47% and 24.67%, respectively.

  3. A method for detecting crack wave arrival time and crack localization in a tunnel by using moving window technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Park, Tae Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Source localization in a dispersive medium has been carried out based on the time-of-arrival-differences (TOADs) method: a triangulation method and a circle intersection technique. Recent signal processing advances have led to calculation TOAD using a joint time-frequency analysis of the signal, where a short-time Fourier transform(STFT) and wavelet transform can be included as popular algorithms. The time-frequency analysis method is able to provide various information and more reliable results such as seismic-attenuation estimation, dispersive characteristics, a wave mode analysis, and temporal energy distribution of signals compared with previous methods. These algorithms, however, have their own limitations for signal processing. In this paper, the effective use of proposed algorithm in detecting crack wave arrival time and source localization in rock masses suggest that the evaluation and real-time monitoring on the intensity of damages related to the tunnels or other underground facilities is possible. Calculation of variances resulted from moving windows as a function of their size differentiates the signature from noise and from crack signal, which lead us to determine the crack wave arrival time. Then, the source localization is determined to be where the variance of crack wave velocities from real and virtual crack localization becomes a minimum. To validate our algorithm, we have performed experiments at the tunnel, which resulted in successful determination of the wave arrival time and crack localization.

  4. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    International Nuclear Information System (INIS)

    Kuchynka, D.

    1995-01-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. Versatility of the treatment technology, volume reduction and containment of the radioactive component of the mixed waste streams are three criteria to be considered when evaluating potential treatment technologies. The ChemChar thermolytic detoxification process being developed under this R and D contract is a thermal, chemically reductive technology that converts the organic portion of a mixed waste stream to an energy-rich synthesis gas while simultaneously absorbing volatile inorganic species (metals and acid gases) on a macroporous, carbon-based char. The latter is mixed with the waste stream prior to entering the reactor. Substoichiometric amounts of oxidant are fed into the top portion of the cylindrical reactor generating a thin, radial thermochemical reaction zone. This zone generates all the necessary heat to promote the highly endothermic reduction of the organic components in the waste in the lower portion of the reactor, producing, principally, hydrogen and carbon monoxide. The solid by-product is a regenerated carbon char that, depending on the inorganic loading, is capable for reuse. The in situ scrubbing of contaminants by the char within the reactor coupled with a char filter for final polishing produce an exceptionally clean synthesis gas effluent suitable for on-site generation of heat, steam or electricity. Despite the elevated temperatures in the thermochemical reaction zone, the reductive nature of the process precludes formation of nitrogen oxides and halogenated organic compound by-products

  5. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D.

    1995-12-31

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. Versatility of the treatment technology, volume reduction and containment of the radioactive component of the mixed waste streams are three criteria to be considered when evaluating potential treatment technologies. The ChemChar thermolytic detoxification process being developed under this R and D contract is a thermal, chemically reductive technology that converts the organic portion of a mixed waste stream to an energy-rich synthesis gas while simultaneously absorbing volatile inorganic species (metals and acid gases) on a macroporous, carbon-based char. The latter is mixed with the waste stream prior to entering the reactor. Substoichiometric amounts of oxidant are fed into the top portion of the cylindrical reactor generating a thin, radial thermochemical reaction zone. This zone generates all the necessary heat to promote the highly endothermic reduction of the organic components in the waste in the lower portion of the reactor, producing, principally, hydrogen and carbon monoxide. The solid by-product is a regenerated carbon char that, depending on the inorganic loading, is capable for reuse. The in situ scrubbing of contaminants by the char within the reactor coupled with a char filter for final polishing produce an exceptionally clean synthesis gas effluent suitable for on-site generation of heat, steam or electricity. Despite the elevated temperatures in the thermochemical reaction zone, the reductive nature of the process precludes formation of nitrogen oxides and halogenated organic compound by-products.

  6. Comparison of measured and predicted thermal mixing tests using improved finite difference technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Rice, J.G.; Kim, J.H.

    1983-01-01

    The numerical diffusion introduced by the use of upwind formulations in the finite difference solution of the flow and energy equations for thermal mixing problems (cold water injection after small break LOCA in a PWR) was examined. The relative importance of numerical diffusion in the flow equations, compared to its effect on the energy equation was demonstrated. The flow field equations were solved using both first order accurate upwind, and second order accurate differencing schemes. The energy equation was treated using the conventional upwind and a mass weighted skew upwind scheme. Results presented for a simple test case showed that, for thermal mixing problems, the numerical diffusion was most significant in the energy equation. The numerical diffusion effect in the flow field equations was much less significant. A comparison of predictions using the skew upwind and the conventional upwind with experimental data from a two dimensional thermal mixing text are presented. The use of the skew upwind scheme showed a significant improvement in the accuracy of the steady state predicted temperatures. (orig./HP)

  7. Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles.

    Science.gov (United States)

    Peeters, Marloes M; van Grinsven, Bart; Foster, Christopher W; Cleij, Thomas J; Banks, Craig E

    2016-04-26

    A novel procedure is developed for producing bulk modified Molecularly Imprinted Polymer (MIP) screen-printed electrodes (SPEs), which involves the direct mixing of the polymer particles within the screen-printed ink. This allowed reduction of the sample preparation time from 45 min to 1 min, and resulted in higher reproducibility of the electrodes. The samples are measured with a novel detection method, namely, thermal wave transport analysis (TWTA), relying on the analysis of thermal waves through a functional interface. As a first proof-of-principle, MIPs for dopamine are developed and successfully incorporated within a bulk modified MIP SPE. The detection limits of dopamine within buffer solutions for the MIP SPEs are determined via three independent techniques. With cyclic voltammetry this was determined to be 4.7 × 10(-6) M, whereas by using the heat-transfer method (HTM) 0.35 × 10(-6) M was obtained, and with the novel TWTA concept 0.26 × 10(-6) M is possible. This TWTA technique is measured simultaneously with HTM and has the benefits of reducing measurement time to less than 5 min and increasing effect size by nearly a factor of two. The two thermal methods are able to enhance dopamine detection by one order of magnitude compared to the electrochemical method. In previous research, it was not possible to measure neurotransmitters in complex samples with HTM, but with the improved signal-to-noise of TWTA for the first time, spiked dopamine concentrations were determined in a relevant food sample. In summary, novel concepts are presented for both the sensor functionalization side by employing screen-printing technology, and on the sensing side, the novel TWTA thermal technique is reported. The developed bio-sensing platform is cost-effective and suitable for mass-production due to the nature of screen-printing technology, which makes it very interesting for neurotransmitter detection in clinical diagnostic applications.

  8. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    Science.gov (United States)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  9. The technique of the modified hamiltonian for construction of the spin-projected wave function

    International Nuclear Information System (INIS)

    Tsaune, A.Ya.; Glushkov, V.N.

    1991-01-01

    A method is suggested to construct the wave function, which is an eigenfunction for operator S 2 . A combination of Lowdin's projection operators and the method of taking into account the orthogonality conditions in variational problems previously developed by the authors is used for determination of the spin-current wave functions component. It is shown that the suggested method gives better results for the energies that the traditional restricted Hartee-Fock scheme

  10. Emission computer tomography on a Dodewaard mixed oxide fuel pin. Comparative PIE work with non-destructive and destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buurveld, H.A.; Dassel, G.

    1993-12-01

    A nondestructive technique as well as a destructive PIE technique have been used to verify the results obtained with a newly 8-e computer tomography (GECT) system. Multi isotope Scanning (MIS), electron probe micro analysis (EPMA) and GECT were used on a mixed oxide (MOX) fuel rod from the Dodewaard reactor with an average burnup of 24 MWd/kg fuel. GECT shows migration of Cs to the periphery of fuel pellets and to radial cracks and pores in the fuel, whereas MIS shows Cs migration to pellet interfaces. The EPMA technique appeared not to be useful to show migration of Cs but, it shows the distribution of fission products from Pu. EPMA clearly shows the distribution of fission products from Pu, but did not reveal the Cs-migration. (orig./HP)

  11. 2D and 3D modeling of wave propagation in cold magnetized plasma near the Tore Supra ICRH antenna relying on the perfecly matched layer technique

    International Nuclear Information System (INIS)

    Jacquot, J; Colas, L; Clairet, F; Goniche, M; Hillairet, J; Lombard, G; Heuraux, S; Milanesio, D

    2013-01-01

    A novel method to simulate ion cyclotron wave coupling in the edge of a tokamak plasma with the finite element technique is presented. It is applied in the commercial software COMSOL Multiphysics. Its main features include the perfectly matched layer (PML) technique to emulate radiating boundary conditions beyond a critical cutoff layer for the fast wave (FW), full-wave propagation across the inhomogeneous cold peripheral plasma and a detailed description of the wave launcher geometry. The PML technique, while widely used in numerical simulations of wave propagation, has scarcely been used for magnetized plasmas, due to specificities of this gyrotropic material. A versatile PML formulation, valid for full dielectric tensors, is summarized and interpreted as wave propagation in an artificial medium. The behavior of this technique has been checked for plane waves on homogeneous plasmas. Wave reflection has been quantified and compared to analytical predictions. An incompatibility issue for adapting the PML for forward (FW) and backward (slow wave (SW)) propagating waves simultaneously has been evidenced. In a tokamak plasma, this critical issue is overcome by taking advantage of the inhomogeneous density profile to reflect the SW before it reaches the PML. The simulated coupling properties of a Tore Supra ion cyclotron resonance heating (ICRH) antenna have been compared to experimental values in a situation of good single-pass absorption. The necessary antenna elements to include in the geometry to recover the coupling properties obtained experimentally are also discussed. (paper)

  12. Inversion of Love wave phase velocity using smoothness-constrained least-squares technique; Heikatsuka seiyakutsuki saisho jijoho ni yoru love ha iso sokudo no inversion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, S [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)

    1996-10-01

    Smoothness-constrained least-squares technique with ABIC minimization was applied to the inversion of phase velocity of surface waves during geophysical exploration, to confirm its usefulness. Since this study aimed mainly at the applicability of the technique, Love wave was used which is easier to treat theoretically than Rayleigh wave. Stable successive approximation solutions could be obtained by the repeated improvement of velocity model of S-wave, and an objective model with high reliability could be determined. While, for the inversion with simple minimization of the residuals squares sum, stable solutions could be obtained by the repeated improvement, but the judgment of convergence was very hard due to the smoothness-constraint, which might make the obtained model in a state of over-fitting. In this study, Love wave was used to examine the applicability of the smoothness-constrained least-squares technique with ABIC minimization. Applicability of this to Rayleigh wave will be investigated. 8 refs.

  13. Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point J. A. ...

    Indian Academy of Sciences (India)

    nar Alfvén wavefront remains planar, despite the varying equilibrium ..... Since the wave is so stretched where it forms the 'reflection point' in the wave- .... Thus, we find that the Alfvén wave is again distorted from its initially planar shape,.

  14. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  15. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  16. The use of deconvolution techniques to identify the fundamental mixing characteristics of urban drainage structures.

    Science.gov (United States)

    Stovin, V R; Guymer, I; Chappell, M J; Hattersley, J G

    2010-01-01

    Mixing and dispersion processes affect the timing and concentration of contaminants transported within urban drainage systems. Hence, methods of characterising the mixing effects of specific hydraulic structures are of interest to drainage network modellers. Previous research, focusing on surcharged manholes, utilised the first-order Advection-Dispersion Equation (ADE) and Aggregated Dead Zone (ADZ) models to characterise dispersion. However, although systematic variations in travel time as a function of discharge and surcharge depth have been identified, the first order ADE and ADZ models do not provide particularly good fits to observed manhole data, which means that the derived parameter values are not independent of the upstream temporal concentration profile. An alternative, more robust, approach utilises the system's Cumulative Residence Time Distribution (CRTD), and the solute transport characteristics of a surcharged manhole have been shown to be characterised by just two dimensionless CRTDs, one for pre- and the other for post-threshold surcharge depths. Although CRTDs corresponding to instantaneous upstream injections can easily be generated using Computational Fluid Dynamics (CFD) models, the identification of CRTD characteristics from non-instantaneous and noisy laboratory data sets has been hampered by practical difficulties. This paper shows how a deconvolution approach derived from systems theory may be applied to identify the CRTDs associated with urban drainage structures.

  17. Alfvén wave filamentation and dispersive phase mixing in a high-density channel: Landau fluid and hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Borgogno, D.; Hellinger, Petr; Passot, T.; Sulem, P. L.; Trávníček, Pavel M.

    2009-01-01

    Roč. 16, č. 2 (2009), s. 275-285 ISSN 1023-5809 R&D Projects: GA AV ČR IAA300420702 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Alfven wave * phase mixing * filamentation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.152, year: 2009 http://www.nonlin-processes-geophys.net/16/275/2009/npg-16-275-2009.pdf

  18. Observation of interior and boundary-layer mixing processes due to near-inertial waves in a stratified basin without tides

    Science.gov (United States)

    van der Lee, Eefke; Umlauf, Lars

    2010-05-01

    Near-inertial waves form an important contribution to oceanic energy and shear spectra, and thus play a major role in mixing the ocean's interior. Here, we compare internal-wave mixing processes in the interior of a stratified basin to those occurring on the sloping boundaries. We use the virtually tideless Baltic Sea as a natural laboratory, allowing us to isolate the effect of near-inertial waves that is otherwise (often) overshadowed by internal tides. The measurements presented here consist of moored ADCPs and CTD loggers in the center of the basin and on the slopes, combined with densely spaced shear-microstructure and ADCP cross-slope transects. During summer stratification, a three-layer density structure, with a thermocline and a deeper halocline, was observed with clear signals of downward near-inertial energy propagation after a short wind event. These motions are interpreted as near-inertial wave modes interacting with the sloping topography. Dissipation rates observed in the center of the basin scale with shear and stratification parameters in the way suggested by MacKinnon and Gregg (2003) for the shelf. On the slopes, microstructure transects reveal a periodic near-bed dissipation rate signal and a growing and decaying bottom boundary layer (BBL) thickness; both signals are triggered by near-bottom currents oscillating with a near-inertial frequency. Near-bottom dissipation rates are greatly enhanced compared to the interior, and, due to the straining of lateral density gradients by the cross-slope velocity, mixing is rather efficient, and contributes significantly to the basin-scale mixing.

  19. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    Science.gov (United States)

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  20. Human mixed lymphocyte cultures. Evaluation of microculture technique utilizing the multiple automated sample harvester (MASH)

    Science.gov (United States)

    Thurman, G. B.; Strong, D. M.; Ahmed, A.; Green, S. S.; Sell, K. W.; Hartzman, R. J.; Bach, F. H.

    1973-01-01

    Use of lymphocyte cultures for in vitro studies such as pretransplant histocompatibility testing has established the need for standardization of this technique. A microculture technique has been developed that has facilitated the culturing of lymphocytes and increased the quantity of cultures feasible, while lowering the variation between replicate samples. Cultures were prepared for determination of tritiated thymidine incorporation using a Multiple Automated Sample Harvester (MASH). Using this system, the parameters that influence the in vitro responsiveness of human lymphocytes to allogeneic lymphocytes have been investigated. PMID:4271568

  1. A Sparse Stochastic Collocation Technique for High-Frequency Wave Propagation with Uncertainty

    KAUST Repository

    Malenova, G.; Motamed, M.; Runborg, O.; Tempone, Raul

    2016-01-01

    We consider the wave equation with highly oscillatory initial data, where there is uncertainty in the wave speed, initial phase, and/or initial amplitude. To estimate quantities of interest related to the solution and their statistics, we combine a high-frequency method based on Gaussian beams with sparse stochastic collocation. Although the wave solution, uϵ, is highly oscillatory in both physical and stochastic spaces, we provide theoretical arguments for simplified problems and numerical evidence that quantities of interest based on local averages of |uϵ|2 are smooth, with derivatives in the stochastic space uniformly bounded in ϵ, where ϵ denotes the short wavelength. This observable related regularity makes the sparse stochastic collocation approach more efficient than Monte Carlo methods. We present numerical tests that demonstrate this advantage.

  2. A Sparse Stochastic Collocation Technique for High-Frequency Wave Propagation with Uncertainty

    KAUST Repository

    Malenova, G.

    2016-09-08

    We consider the wave equation with highly oscillatory initial data, where there is uncertainty in the wave speed, initial phase, and/or initial amplitude. To estimate quantities of interest related to the solution and their statistics, we combine a high-frequency method based on Gaussian beams with sparse stochastic collocation. Although the wave solution, uϵ, is highly oscillatory in both physical and stochastic spaces, we provide theoretical arguments for simplified problems and numerical evidence that quantities of interest based on local averages of |uϵ|2 are smooth, with derivatives in the stochastic space uniformly bounded in ϵ, where ϵ denotes the short wavelength. This observable related regularity makes the sparse stochastic collocation approach more efficient than Monte Carlo methods. We present numerical tests that demonstrate this advantage.

  3. Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique.

    Science.gov (United States)

    Avetisyan, Yuri H

    2010-08-01

    A scheme of terahertz (THz)-wave surface-emitted difference-frequency generation (SEDFG), which lacks the drawbacks associated with the usage of periodically orientation-inverted structures, is proposed. It is shown that both material birefringence of the bulk LiNbO(3) crystal and modal birefringence of GaAs/AlAs waveguide are sufficient to obtain SEDFG up to a frequency of approximately 3THz. The simplicity of the proposed scheme, along with the fact that there is a much smaller THz-wave decay in nonlinear crystal, makes it a good candidate for the practical realization of efficient THz generation. The use of a GaAs waveguide with an oxidized AlAs layer is proposed for enhanced THz-wave SEDFG in the vicinity of the GaAs polariton resonance at 8THz.

  4. Determination of stability constants of iron(III and chromium(III-nitrilotriacetate-methyl cysteine mixed complexes by electrophoretic technique

    Directory of Open Access Journals (Sweden)

    Brij Bhushan Tewari

    2004-06-01

    Full Text Available The stability constants of Fe(III and Cr(III with methyl cysteine and nitrilotriacetate (NTA were determined by paper electrophoretic technique. Beside binary ternary complexes have also been studied, in which nitrilotriacetate and methyl cysteine acts as primary and secondary ligand, respectively. The stability constants of mixed ligand complexes metal (M-nitrilotriacetate-methyl cysteine have been found to be 5.72 plus or minus 0.09 and 5.54 plus or minus 0.11 (log K values for Fe(III and Cr(III complexes, respectively, at 35 oC and ionic strength 0.1 M.

  5. A review of micro-wave techniques in plasma studies; Survol des techniques micro-ondes pour l'etude des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Consoli, T [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The problem of the application of micro-wave techniques to the study of plasma properties is considered in this report. In section I, the author summarizes a few fundamental laws concerning the theory of waves in an ionised medium as well as measurable effects of transverse and longitudinal propagation. Section II is a rapid review of the experimental methods and of the various measurements which may be effected in very high frequency plasmas. Only recent experimental work carried out since the last U. R.S.I. Assembly is considered. Section III is devoted to micro-wave techniques developed during this period in the laboratories of the Applied Physics Service. These techniques deal with longitudinal propagation and in particular with the propagation along a right mode. Section IV is a general view of similar studies undertaken in European Research Centres working on plasma physics or controlled fusion. Section V is a contribution concerning three particular topics from the Juelich and Max Planck Institute laboratories. (author) [French] On etudie dans ce rapport le probleme de l'application des techniques micro-ondes a l'etude des proprietes d'un plasma. Dans la section I, l'auteur rappelle rapidement quelques lois fondamentales de la theorie des ondes dans un milieu ionise ainsi que les effets mesurables en propagation transversale et longitudinale. La section II est une revue rapide des methodes experimentales et des diverses mesures qui peuvent etre faites dans les plasmas aux tres hautes frequences. On ne considere seulement que les etudes experimentales recentes depuis la derniere assemblee de l'U.R.S.I. La section III est consacree aux techniques hyperfrequences developpees durant la meme periode dans les laboratoires des Services de Physique Appliquee. Ces techniques se rapportent a la propagation longitudinale et particulierement a la propagation suivant le mode droit. La section IV est un panorama de travaux similaires entrepris dans les centres europeens

  6. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    International Nuclear Information System (INIS)

    Hinders, Mark K.; Miller, Corey A.

    2014-01-01

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crosshole tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy

  7. Effects of Temperature and Axial Strain on Four-Wave Mixing Parametric Frequencies in Microstructured Optical Fibers Pumped in the Normal Dispersion Regime

    Directory of Open Access Journals (Sweden)

    Javier Abreu-Afonso

    2014-10-01

    Full Text Available A study of the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. Degenerate four-wave mixing was generated in the fibers by pumping at normal dispersion, near the zero-dispersion wavelength, causing the appearance of two widely-spaced four-wave mixing spectral bands. Temperature changes, and/or axial strain applied to the fiber, affects the dispersion characteristics of the fiber, which can result in the shift of the parametric wavelengths. We show that the increase of temperature causes the signal and idler wavelengths to shift linearly towards shorter and longer wavelengths, respectively. For the specific fiber of the experiment, the band shift at rates ­–0.04 nm/ºC and 0.3 nm/ºC, respectively. Strain causes the parametric bands to shift in the opposite way. The signal band shifted 2.8 nm/me and the idler -5.4 nm/me. Experimental observations are backed by numerical simulations.

  8. Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events

    Science.gov (United States)

    Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.

    2012-01-01

    The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.

  9. Low-cost regeneration techniques for mixed-species management – 20 years later

    Science.gov (United States)

    Thomas A. Waldrop; Helen H. Mohr

    2012-01-01

    Four variations of the fell-and-burn technique, a low-cost regeneration system developed for pine-hardwood mixtures in the Southern Appalachian Mountains, were tested in the Piedmont of South Carolina. All variations successfully improved the commercial value of low-quality hardwood stands by introducing a pine component. After 20 years, pines were almost as numerous...

  10. Observation of the dispersion of wedge waves propagating along cylinder wedge with different truncations by laser ultrasound technique

    Science.gov (United States)

    Jia, Jing; Zhang, Yu; Han, Qingbang; Jing, Xueping

    2017-10-01

    The research focuses on study the influence of truncations on the dispersion of wedge waves propagating along cylinder wedge with different truncations by using the laser ultrasound technique. The wedge waveguide models with different truncations were built by using finite element method (FEM). The dispersion curves were obtained by using 2D Fourier transformation method. Multiple mode wedge waves were observed, which was well agreed with the results estimated from Lagasse's empirical formula. We established cylinder wedge with radius of 3mm, 20° and 60°angle, with 0μm, 5μm, 10μm, 20μm, 30μm, 40μm, and 50μm truncations, respectively. It was found that non-ideal wedge tip caused abnormal dispersion of the mode of cylinder wedge, the modes of 20° cylinder wedge presents the characteristics of guide waves which propagating along hollow cylinder as the truncation increasing. Meanwhile, the modes of 60° cylinder wedge with truncations appears the characteristics of guide waves propagating along hollow cylinder, and its mode are observed clearly. The study can be used to evaluate and detect wedge structure.

  11. Analysis of the validity of the asymptotic techniques in the lower hybrid wave equation solution for reactor applications

    International Nuclear Information System (INIS)

    Cardinali, A.; Morini, L.; Castaldo, C.; Cesario, R.; Zonca, F.

    2007-01-01

    Knowing that the lower hybrid (LH) wave propagation in tokamak plasmas can be correctly described with a full wave approach only, based on fully numerical techniques or on semianalytical approaches, in this paper, the LH wave equation is asymptotically solved via the Wentzel-Kramers-Brillouin (WKB) method for the first two orders of the expansion parameter, obtaining governing equations for the phase at the lowest and for the amplitude at the next order. The nonlinear partial differential equation (PDE) for the phase is solved in a pseudotoroidal geometry (circular and concentric magnetic surfaces) by the method of characteristics. The associated system of ordinary differential equations for the position and the wavenumber is obtained and analytically solved by choosing an appropriate expansion parameter. The quasilinear PDE for the WKB amplitude is also solved analytically, allowing us to reconstruct the wave electric field inside the plasma. The solution is also obtained numerically and compared with the analytical solution. A discussion of the validity limits of the WKB method is also given on the basis of the obtained results

  12. Comparison of two extracorporeal shock wave therapy techniques for the treatment of painful subcalcaneal spur. A randomized controlled study.

    Science.gov (United States)

    Tornese, Davide; Mattei, Enrico; Lucchesi, Giampaolo; Bandi, Marco; Ricci, Gabriele; Melegati, Gianluca

    2008-09-01

    To describe and compare two extracorporeal shock wave therapy techniques for the treatment of painful subcalcaneal spur. Random assignment to two groups of treatment with two and eight months follow-up. The data were collected in outpatients. Forty-five subjects with a history of at least six months of heel pain were studied. Each subject received a three-session ultrasound-guided extracorporeal shock wave therapy (performed weekly). Perpendicular technique was used in group A (n=22, mean age 59.3 +/- 12 years) and tangential technique was used in group B (n= 23, mean age 58.8 +/- 12.3 years). Mayo Clinical Scoring System was used to evaluate each subject before the treatment and at two and eight months follow-up. Mayo Clinical Scoring System pretreatment scores were homogeneous between the groups (group A 55.2 +/-18.7; group B 53.5 +/- 20; P>0.05). In both groups there was a significant (Pwave therapy. The tangential technique was found to be better tolerated as regards treatment-induced pain, allowing higher energy dosages to be used.

  13. Measurement Verification of Plane Wave Synthesis Technique Based on Multi-probe MIMO-OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum

    2012-01-01

    Standardization work for MIMO OTA testing methods is currently ongoing, where a multi-probe anechoic chamber based solution is an important candidate. In this paper, the probes located on an OTA ring are used to synthesize a plane wave field in the center of the OTA ring. This paper investigates...

  14. Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques

    International Nuclear Information System (INIS)

    Carretero-González, R; Frantzeskakis, D J; Kevrekidis, P G

    2008-01-01

    The aim of this review is to introduce the reader to some of the physical notions and the mathematical methods that are relevant to the study of nonlinear waves in Bose–Einstein condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyse some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g. the linear or the nonlinear limit or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools. (invited article)

  15. Application of a Magnetostrictive Guided wave Technique to Monitor the Evolution of Defect Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that wave patterns are clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaw. Of course, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. Once the magnetostrictive sensors are attached in the pipe permanently and the signal shape and phase can be compared to the signals before and after, we can monitor the evolution of the flow for the given period. We developed a program to subtract the guided wave signal. The program has a capability of adjusting the time scale and can minimize the noise level after subtraction. By applying the newly developed program, a notch with 2% of CSA can be detected with increased accuracy with noise reduction.

  16. Wave propagation method as an accurate technique for effective refractive index retrieving

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    An effective parameters retrieval method based on the wave propagation simulation is proposed and compared with the standard S-parameter procedure. The method is free from possible mistakes originated by the multiple branching of solutions in the S-parameter procedure and shows high accuracy. The...

  17. Stress wave techniques for determining quality of dimensional lumber from switch ties

    Science.gov (United States)

    K. C. Schad; D. E. Kretschmann; K. A. McDonald; R. J. Ross; D. W. Green

    1995-01-01

    Researchers at the Forest Products Laboratory, USDA Forest Service, have been studying nondestructive techniques for evaluating the strength of wood. This report describes the results of a pilot study on using these techniques to determine the quality of large dimensional lumber cut from switch ties. First, pulse echo and dynamic (transverse vibration) techniques were...

  18. Fast neutron and gamma-ray transmission technique in mixed samples. MCNP calculations

    International Nuclear Information System (INIS)

    Perez, N.; Padron, I.

    2001-01-01

    In this paper the moisture in sand and also the sulfur content in toluene have been described by using the simultaneous fast neutron/gamma transmission technique (FNGT). Monte Carlo calculations show that it is possible to apply this technique with accelerator-based and isotopic neutron sources in the on-line analysis to perform the product quality control, specifically in the building materials industry and the petroleum one. It has been used particles from a 14MeV neutron generator and also from an Am-Be neutron source. The estimation of optimal system parameters like the efficiency, detection time, hazards and costs were performed in order to compare both neutron sources

  19. Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks.

    Science.gov (United States)

    Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan

    2017-06-26

    Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H²RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H²RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.

  20. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)

    2015-09-21

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  1. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.

    1986-01-01

    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  2. Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Yuhua Cheng

    2013-11-01

    Full Text Available In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE , structure health monitoring (SHM and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions.

  3. Linear Optimization Techniques for Product-Mix of Paints Production in Nigeria

    Directory of Open Access Journals (Sweden)

    Sulaimon Olanrewaju Adebiyi

    2014-02-01

    Full Text Available Many paint producers in Nigeria do not lend themselves to flexible production process which is important for them to manage the use of resources for effective optimal production. These goals can be achieved through the application of optimization models in their resources allocation and utilisation. This research focuses on linear optimization for achieving product- mix optimization in terms of the product identification and the right quantity in paint production in Nigeria for better profit and optimum firm performance. The computational experiments in this research contains data and information on the units item costs, unit contribution margin, maximum resources capacity, individual products absorption rate and other constraints that are particular to each of the five products produced in the company employed as case study. In data analysis, linear programming model was employed with the aid LINDO 11 software to analyse the data. The result has showed that only two out of the five products under consideration are profitable. It also revealed the rate to which the company needs to reduce cost incurred on the three other products before making them profitable for production.

  4. Lagrangian Observations of Nonlinear Internal Waves and Turbulence Mixing in Luzon Strait and South China Sea and Internal Wave in the Vicinity of the Kuroshio Path

    National Research Council Canada - National Science Library

    Lien, Ren-Chieh; D'Asaro, Eric A

    2008-01-01

    ... mixing in the northern South China Sea. Results are reported. The second was to analyze observations of data taken in the vicinity of the Kuroshio path from Luzon Strait to the southern East China Sea...

  5. Exploration of deep S-wave velocity structure using microtremor array technique to estimate long-period ground motion

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Higashi, Sadanori; Sato, Kiyotaka

    2007-01-01

    In this study, microtremor array measurements were conducted at 9 sites in the Niigata plain to explore deep S-wave velocity structures for estimation of long-period earthquake ground motion. The 1D S-wave velocity profiles in the Niigata plain are characterized by 5 layers with S-wave velocities of 0.4, 0.8, 1.5, 2.1 and 3.0 km/s, respectively. The depth to the basement layer is deeper in the Niigata port area located at the Japan sea side of the Niigata plain. In this area, the basement depth is about 4.8 km around the Seirou town and about 4.1 km around the Niigata city, respectively. These features about the basement depth in the Niigata plain are consistent with the previous surveys. In order to verify the profiles derived from microtremor array exploration, we estimate the group velocities of Love wave for four propagation paths of long-period earthquake ground motion during Niigata-ken tyuetsu earthquake by multiple filter technique, which were compared with the theoretical ones calculated from the derived profiles. As a result, it was confirmed that the group velocities from the derived profiles were in good agreement with the ones from long-period earthquake ground motion records during Niigata-ken tyuetsu earthquake. Furthermore, we applied the estimation method of design basis earthquake input for seismically isolated nuclear power facilities by using normal mode solution to estimate long-period earthquake ground motion during Niigata-ken tyuetsu earthquake. As a result, it was demonstrated that the applicability of the above method for the estimation of long-period earthquake ground motion were improved by using the derived 1D S-wave velocity profile. (author)

  6. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    Energy Technology Data Exchange (ETDEWEB)

    Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.

  7. Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks

    Directory of Open Access Journals (Sweden)

    Mihai-Victor Micea

    2017-06-01

    Full Text Available Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H2RTS, which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU utilization factor. From the detailed, integrated schedulability analysis of the H2RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.

  8. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser

    International Nuclear Information System (INIS)

    Kim, Sung; Lee, Kyoung Yong; Kim, Joon Hyung; Kim, Jin Hyuk; Jung, Uk Hee; Choi, Young Seok

    2015-01-01

    In this paper, we describe a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE). The design variables of impeller and diffuser in the vane plane development were defined with a fixed meridional plane. The design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffuser. The vane plane development was controlled using the blade-angle in a fixed meridional plane. The blade shape of the impeller and diffuser were designed using a traditional method in which the inlet and exit angles are connected smoothly. First, the impeller optimum design was performed with impeller design variables. The diffuser optimum design was performed with diffuser design variables while the optimally designed impeller shape was fixed. The importance of the impeller and diffuser design variables was analyzed using 2 k factorial designs, and the design optimization of the impeller and diffuser design variables was determined using the response surface method (RSM). The objective functions were defined as the total head (Ht) and the total efficiency (ηt) at the design flow rate. The optimally designed model was verified using numerical analysis, and the numerical analysis results for both the optimum model and the reference model were compared to determine the reasons for the improved pump performance. A pump performance test was carried out for the optimum model, and its reliability was proved by a comparative analysis of the results of the numerical analysis and an experiment using the optimum model.

  9. Investigation of the stationary state of parametric spin waves in antiferromagnetics by the modulation technique

    International Nuclear Information System (INIS)

    Andrienko, A.V.; Safonov, V.L.; Yakubovskij, A.Yu.

    1987-01-01

    The response of parametric electron and nuclear spin waves to weak modulation of a stationary magnetic field is investigated in the antiferromagnetics MnCO 3 and CsMnF 3 . The modulation response is calculated by taking into accout the phase mechanism of restriction of the parametric wave amplitude and positive nonlinear attenuation of the waves. Some characteristics of the stationary state of parametric electron and nuclear magnons are determined within the framework of the model by analysis of the experimental results: the nonlinear magnon interaction coefficient S k and the parameter κ which characterizes the relative contribution from positive nonlinear attenuation and the phase mechanism to the restriction of the number of parametric magnons. An anomaly in the behavior of the modulation response of the parametric nuclear magnons is observed in CsMnF 3 ; this is manifest in asubstantial decrease of the modulation response in a narrow supercriticality and modulation frequency range. A giant hexagonal anisotropy of the modulation response and nonlinear dynamic susceptibility of the nuclear magnons is observed in the same crystal. This may indicate a nonisotropic distribution of the magnons in k-space

  10. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; Lawrence, Keith St.

    2010-09-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79+/-0.06, an intercept of -2.2+/-2.5 ml/100 g/min, and an R2 of 0.810+/-0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.

  11. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    Science.gov (United States)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  12. On the Impact of using Mixed Integer Programming Techniques on Real-world Offshore Wind Parks

    DEFF Research Database (Denmark)

    Fischetti, Martina; Pisinger, David

    2017-01-01

    Wind power is a leading technology in the transition to sustainable energy. Being a new and still more competitive field, it is of major interest to investigate new techniques to solve the design challenges involved. In this paper, we consider optimization of the inter-array cable routing...... optimization problem considers two objectives: minimizing immediate costs (CAPEX) and minimizing costs due to power losses. This makes it possible to perform various what-if analyses to evaluate the impact of different preferences to CAPEX versus reduction of power losses. Thanks to the close collaboration...... with a leading energy company, we have been able to report results on a set of real-world instances, based on six existing wind parks, studying the economical impact of considering power losses in the cable routing design phase....

  13. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    Science.gov (United States)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  14. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    Science.gov (United States)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  15. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    Science.gov (United States)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  16. In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Zeman, J.; Horák, Vratislav; Hoffer, Petr; Poučková, P.; Holubová, Monika; Hosseini, S.H.R.; Akiyama, H.; Šunka, Pavel; Beneš, J.

    2015-01-01

    Roč. 103, June (2015), s. 103-110 ISSN 1567-5394 R&D Projects: GA MŠk ED2.1.00/03.0124 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 ; RVO:67985904 Keywords : Electrical discharge * Shock waves * Tumor damage * Necrosis * Apoptosis Subject RIV: BO - Biophysics Impact factor: 3.556, year: 2015 http://dx.doi.org/10.1016/j.bioelechem.2014.08.019

  17. 10-GHz return-to-zero pulse source tunable in wavelength with a single- or multiwavelength output based on four-wave mixing in a newly developed highly nonlinear fiber

    DEFF Research Database (Denmark)

    Clausen, A. T.; Oxenlowe, L.; Peucheret, Christophe

    2001-01-01

    In this letter, a novel scheme for a wavelength-tunable pulse source (WTPS) is proposed and characterized. It is based on four-wave mixing (FWM) in a newly developed highly nonlinear fiber between a return-to-zero (RZ) pulsed signal at a fixed wavelength and a continuous wave probe tunable...

  18. A Comparative Study of Dispersion Characteristics Determination of a Trapezoidally Corrugated Slow Wave Structure Using Different Techniques

    International Nuclear Information System (INIS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-01-01

    The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh–Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted appropriately. The dispersion characteristics obtained from numerical calculation, synthetic technique and cold test are compared, and an excellent agreement is achieved. (paper)

  19. Retrospective Study on Laser Treatment of Oral Vascular Lesions Using the "Leopard Technique": The Multiple Spot Irradiation Technique with a Single-Pulsed Wave.

    Science.gov (United States)

    Miyazaki, Hidetaka; Ohshiro, Takafumi; Romeo, Umberto; Noguchi, Tadahide; Maruoka, Yutaka; Gaimari, Gianfranco; Tomov, Georgi; Wada, Yoshitaka; Tanaka, Kae; Ohshiro, Toshio; Asamura, Shinichi

    2018-06-01

    This study aimed to retrospectively evaluate the efficacy and safety of laser treatment of oral vascular lesions using the multiple spot irradiation technique with a single-pulsed wave. In laser therapy for vascular lesions, heat accumulation induced by excessive irradiation can cause adverse events postoperatively, including ulcer formation, resultant scarring, and severe pain. To prevent heat accumulation and side effects, we have applied a multiple pulsed spot irradiation technique, the so-called "leopard technique" (LT) to oral vascular lesions. This approach was originally proposed for laser treatment of nevi. It can avoid thermal concentration at the same spot and spare the epithelium, which promotes smooth healing. The goal of the study was to evaluate this procedure and treatment outcomes. The subjects were 46 patients with 47 oral vascular lesions treated with the LT using a Nd:YAG laser (1064 nm), including 24 thick lesions treated using a combination of the LT and intralesional photocoagulation. All treatment outcomes were satisfactory without serious complications such as deep ulcer formation, scarring, bleeding, or severe swelling. Laser therapy with the LT is a promising less-invasive treatment for oral vascular lesions.

  20. Dynamics of internal waves on the Southeast Florida shelf: Implications for cross-shelf exchange and turbulent mixing on a barrier reef system

    Science.gov (United States)

    Davis, Kristen Alexis

    The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August

  1. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    Science.gov (United States)

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators. © 2015 Wiley Periodicals, Inc.

  2. Simulating propagation of decomposed elastic waves using low-rank approximate mixed-domain integral operators for heterogeneous transversely isotropic media

    KAUST Repository

    Cheng, Jiubing

    2014-08-05

    In elastic imaging, the extrapolated vector fields are decomposed into pure wave modes, such that the imaging condition produces interpretable images, which characterize reflectivity of different reflection types. Conventionally, wavefield decomposition in anisotropic media is costly as the operators involved is dependent on the velocity, and thus not stationary. In this abstract, we propose an efficient approach to directly extrapolate the decomposed elastic waves using lowrank approximate mixed space/wavenumber domain integral operators for heterogeneous transverse isotropic (TI) media. The low-rank approximation is, thus, applied to the pseudospectral extrapolation and decomposition at the same time. The pseudo-spectral implementation also allows for relatively large time steps in which the low-rank approximation is applied. Synthetic examples show that it can yield dispersionfree extrapolation of the decomposed quasi-P (qP) and quasi- SV (qSV) modes, which can be used for imaging, as well as the total elastic wavefields.

  3. A Stream Function Theory Based Calculation of Wave Kinematics for Very Steep Waves Using a Novel Non-linear Stretching Technique

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak

    2016-01-01

    A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...

  4. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique

    Science.gov (United States)

    Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li

    2018-05-01

    Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.

  5. Prefabricated Vertical Drain (PVD) and Deep Cement Mixing (DCM)/Stiffened DCM (SDCM) techniques for soft ground improvement

    Science.gov (United States)

    Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.

    2018-04-01

    Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements

  6. Effect of the coherent cancellation of the two-photon resonance on the generation of vacuum ultraviolet light by two-photon reasonantly enhanced four-wave mixing

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; Wunderlich, R.

    1988-11-01

    Many of the most impressive demonstrations of the efficient generation of vacuum ultraviolet (VUV) light have made use of two- photon resonantly enhanced four-wave mixing to generate light at ω/sub VUV/ = 2ω/sub L1/ +- ω/sub L2/. The two-photon resonance state is coupled to the ground state both by two photons from the first laser, or by a photon from the second laser and one from the generated VUV beam. We show here that these two coherent pathways destructively interfere once the second laser is made sufficiently intense, thereby leading to an important limiting effect on the achievable conversion efficiency. 4 refs

  7. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    OpenAIRE

    Oleg A. Louchev; Norihito Saito; Yu Oishi; Koji Miyazaki; Kotaro Okamura; Jumpei Nakamura; Masahiko Iwasaki; Satoshi Wada

    2016-01-01

    We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by genera...

  8. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2013-01-01

    Full Text Available Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM technologies capable of providing on-demand diagnosis of the structure without interrupting the aircraft operation are attracting increasing R&D efforts. Piezoelectric transducers play an essential role in these endeavors. This paper is set forth to review a variety of ingenious ways in which piezoelectric transducers are used in today’s SHM technologies as a means of generation and/or detection of diagnostic acoustic waves.

  9. Spatiotemporal evolution of a laser-induced shock wave measured by the background-oriented schlieren technique

    Science.gov (United States)

    Tagawa, Yoshiyuki; Yamamoto, Shota; Kameda, Masaharu

    2014-11-01

    We investigate the spatiotemporal evolution of a laser-induced shock wave in a liquid filled thin tube. In order to measure pressure distribution at shock front, we adopt the background-oriented schlieren (BOS) technique. This technique provides two- or three-dimensional pressure field in a small region with a simple setup. With an ultra high-speed video camera and a laser stroboscope, we successfully capture the spatial evolution of the shock every 0.2 μs. We find an angular variation of the pressure at the shock front. The maximum pressure is in the direction of the laser shot while the minimum value is in the perpendicular direction. We compare the temporal evolution of the pressure measured by BOS technique with those obtained by another method, i.e. pressure estimation from the shock front position. Overall trend from both methods show a good agreement. The pressure from the shock front position exists between the maximum and minimum values from BOS technique. It indicates that our quantification method can measure more detailed pressure field in two- or three-dimensions. Our results might be used for the efficient generation systems for the microjet, which can be applicable for needle free injection devices.

  10. A randomized controlled trial comparing two techniques for unilateral cleft lip and palate: Growth and speech outcomes during mixed dentition.

    Science.gov (United States)

    Ganesh, Praveen; Murthy, Jyotsna; Ulaghanathan, Navitha; Savitha, V H

    2015-07-01

    To study the growth and speech outcomes in children who were operated on for unilateral cleft lip and palate (UCLP) by a single surgeon using two different treatment protocols. A total of 200 consecutive patients with nonsyndromic UCLP were randomly allocated to two different treatment protocols. Of the 200 patients, 179 completed the protocol. However, only 85 patients presented for follow-up during the mixed dentition period (7-10 years of age). The following treatment protocol was followed. Protocol 1 consisted of the vomer flap (VF), whereby patients underwent primary lip nose repair and vomer flap for hard palate single-layer closure, followed by soft palate repair 6 months later; Protocol 2 consisted of the two-flap technique (TF), whereby the cleft palate (CP) was repaired by two-flap technique after primary lip and nose repair. GOSLON Yardstick scores for dental arch relation, and speech outcomes based on universal reporting parameters, were noted. A total of 40 patients in the VF group and 45 in the TF group completed the treatment protocols. The GOSLON scores showed marginally better outcomes in the VF group compared to the TF group. Statistically significant differences were found only in two speech parameters, with better outcomes in the TF group. Our results showed marginally better growth outcome in the VF group compared to the TF group. However, the speech outcomes were better in the TF group. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Multipulse technique exploiting the intermodulation of ultrasound waves in a nonlinear medium.

    Science.gov (United States)

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2009-03-01

    In recent years, the nonlinear properties of materials have attracted much interest in nondestructive testing and in ultrasound diagnostic applications. Acoustic nonlinear parameters represent an opportunity to improve the information that can be extracted from a medium such as structural organization and pathologic status of tissue. In this paper, a method called pulse subtraction intermodulation (PSI), based on a multipulse technique, is presented and investigated both theoretically and experimentally. This method allows separation of the intermodulation products, which arise when 2 separate frequencies are transmitted in a nonlinear medium, from fundamental and second harmonic components, making them available for improved imaging techniques or signal processing algorithms devoted to tissue characterization. The theory of intermodulation product generation was developed according the Khokhlov-Zabolotskaya-Kuznetsov (KZK) nonlinear propagation equation, which is consistent with experimental results. The description of the proposed method, characterization of the intermodulation spectral contents, and quantitative results coming from in vitro experimentation are reported and discussed in this paper.

  12. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    Science.gov (United States)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  13. Production of dried shrimp mixed with turmeric and salt by Spouted Bed technique enter the rectangular chamber.

    Science.gov (United States)

    Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.

    2017-09-01

    Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.

  14. A novel technique to measure intensity fluctuations in EUV images and to detect coronal sound waves nearby active regions

    Science.gov (United States)

    Stenborg, G.; Marsch, E.; Vourlidas, A.; Howard, R.; Baldwin, K.

    2011-02-01

    Context. In the past years, evidence for the existence of outward-moving (Doppler blue-shifted) plasma and slow-mode magneto-acoustic propagating waves in various magnetic field structures (loops in particular) in the solar corona has been found in ultraviolet images and spectra. Yet their origin and possible connection to and importance for the mass and energy supply to the corona and solar wind is still unclear. There has been increasing interest in this problem thanks to the high-resolution observations available from the extreme ultraviolet (EUV) imagers on the Solar TErrestrial RElationships Observatory (STEREO) and the EUV spectrometer on the Hinode mission. Aims: Flows and waves exist in the corona, and their signatures appear in EUV imaging observations but are extremely difficult to analyse quantitatively because of their weak intensity. Hence, such information is currently available mostly from spectroscopic observations that are restricted in their spatial and temporal coverage. To understand the nature and origin of these fluctuations, imaging observations are essential. Here, we present measurements of the speed of intensity fluctuations observed along apparently open field lines with the Extreme UltraViolet Imagers (EUVI) onboard the STEREO mission. One aim of our paper is to demonstrate that we can make reliable kinematic measurements from these EUV images, thereby complementing and extending the spectroscopic measurements and opening up the full corona for such an analysis. Another aim is to examine the assumptions that lead to flow versus wave interpretation for these fluctuations. Methods: We have developed a novel image-processing method by fusing well established techniques for the kinematic analysis of coronal mass ejections (CME) with standard wavelet analysis. The power of our method lies with its ability to recover weak intensity fluctuations along individual magnetic structures at any orientation , anywhere within the full solar disk , and

  15. Modeling seismic wave propagation across the European plate: structural models and numerical techniques, state-of-the-art and prospects

    Science.gov (United States)

    Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria

    2010-05-01

    beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We validate this new model through comparison of recorded seismograms with simulations based on numerical codes (SPECFEM3D). To ease and increase model usage, we also propose the adoption of a common exchange format for tomographic earth models based on JSON, a lightweight data-interchange format supported by most high-level programming languages, and provide tools for manipulating and visualising models, described in this standard format, in Google Earth and GEON IDV. In the next decade seismologists will be able to reap new possibilities offered by exciting progress in general computing power and algorithmic development in computational seismology. Structural models, still based on classical approaches and modeling just few parameters in each seismogram, will benefit from emerging techniques - such as full waveform fitting and fully nonlinear inversion - that are now just showing their potential. This will require extensive availability of supercomputing resources to earth scientists in Europe, as a tool to match the planned new massive data flow. We need to make sure that the whole apparatus, needed to fully exploit new data, will be widely accessible. To maximize the development, so as for instance to enable us to promptly model ground shaking after a major earthquake, we will also need a better coordination framework, that will enable us to share and amalgamate the abundant local information on earth structure - most often available but difficult to retrieve, merge and use. Comprehensive knowledge of earth structure and of best practices to model wave propagation can by all means be considered an enabling technology for further geophysical progress.

  16. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    Science.gov (United States)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  17. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    Energy Technology Data Exchange (ETDEWEB)

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bakule, Pavel [STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Yokoyama, Koji [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Ishida, Katsuhiko; Iwasaki, Masahiko [Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  18. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  19. Compact Liquid Crystal Based Tunable Band-Stop Filter with an Ultra-Wide Stopband by Using Wave Interference Technique

    Directory of Open Access Journals (Sweden)

    Longzhu Cai

    2017-01-01

    Full Text Available A wave interference filtering section that consists of three stubs of different lengths, each with an individual stopband of its own central frequency, is reported here for the design of band-stop filters (BSFs with ultra-wide and sharp stopbands as well as large attenuation characteristics. The superposition of the individual stopbands provides the coverage over an ultra-wide frequency range. Equations and guidelines are presented for the application of a new wave interference technique to adjust the rejection level and width of its stopband. Based on that, an electrically tunable ultra-wide stopband BSF using a liquid crystal (LC material for ultra-wideband (UWB applications is designed. Careful treatment of the bent stubs, including impedance matching of the main microstrip line and bent stubs together with that of the SMA connectors and impedance adaptors, was carried out for the compactness and minimum insertion and reflection losses. The experimental results of the fabricated device agree very well with that of the simulation. The centre rejection frequency as measured can be tuned between 4.434 and 4.814 GHz when a biased voltage of 0–20 Vrms is used. The 3 dB and 25 dB stopband bandwidths were 4.86 GHz and 2.51 GHz, respectively, which are larger than that of other recently reported LC based tunable BSFs.

  20. Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference.

    Science.gov (United States)

    Vijayakumar, A; Rosen, Joseph

    2017-06-12

    Recording digital holograms without wave interference simplifies the optical systems, increases their power efficiency and avoids complicated aligning procedures. We propose and demonstrate a new technique of digital hologram acquisition without two-wave interference. Incoherent light emitted from an object propagates through a random-like coded phase mask and recorded directly without interference by a digital camera. In the training stage of the system, a point spread hologram (PSH) is first recorded by modulating the light diffracted from a point object by the coded phase masks. At least two different masks should be used to record two different intensity distributions at all possible axial locations. The various recorded patterns at every axial location are superposed in the computer to obtain a complex valued PSH library cataloged to its axial location. Following the training stage, an object is placed within the axial boundaries of the PSH library and the light diffracted from the object is once again modulated by the same phase masks. The intensity patterns are recorded and superposed exactly as the PSH to yield a complex hologram of the object. The object information at any particular plane is reconstructed by a cross-correlation between the complex valued hologram and the appropriate element of the PSH library. The characteristics and the performance of the proposed system were compared with an equivalent regular imaging system.

  1. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  2. Demonstration and optimisation of an ultrafast all-optical AND logic gate using four-wave mixing in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Razaghi, M; Nosratpour, A; Das, N K

    2013-01-01

    We have proposed an all-optical AND logic gate based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) integrated with an optical filter. In the scheme proposed, the preferred logical function can be performed without using a continuous-wave (cw) signal. The modified nonlinear Schroedinger equation (MNLSE) is used for the modelling wave propagation in a SOA. The MNLSE takes into account all nonlinear effects relevant to pico- and sub-picosecond pulse durations and is solved by the finite-difference beam-propagation method (FD-BPM). Based on the simulation results, the optimal output signal with a 40-fJ energy can be obtained at a bit rate of 50 Gb s -1 . In the simulations, besides the nonlinearities included in the model, the pattern effect of the signals propagating in the SOA medium and the effect of the input signal bit rate are extensively investigated to optimise the system performance. (optical logic elements)

  3. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  4. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    International Nuclear Information System (INIS)

    Swafford, A.M.; Keller, J.M.

    1993-01-01

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences is necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU·Spec trademark column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable

  5. Security and reliability analysis of diversity combining techniques in SIMO mixed RF/FSO with multiple users

    KAUST Repository

    Abd El-Malek, Ahmed H.; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we investigate the impact of different diversity combining techniques on the security and reliability analysis of a single-input-multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic multiuser scheduling. In this model, the user of the best channel among multiple users communicates with a multiple antennas relay node over an RF link, and then, the relay node employs amplify-and-forward (AF) protocol in retransmitting the user data to the destination over an FSO link. Moreover, the authorized transmission is assumed to be attacked by a single passive RF eavesdropper equipped with multiple antennas. Therefore, the system security reliability trade-off analysis is investigated. Closed-form expressions for the system outage probability and the system intercept probability are derived. Then, the newly derived expressions are simplified to their asymptotic formulas at the high signal-to-noise- ratio (SNR) region. Numerical results are presented to validate the achieved exact and asymptotic results and to illustrate the impact of various system parameters on the system performance. © 2016 IEEE.

  6. Security and reliability analysis of diversity combining techniques in SIMO mixed RF/FSO with multiple users

    KAUST Repository

    Abd El-Malek, Ahmed H.

    2016-07-26

    In this paper, we investigate the impact of different diversity combining techniques on the security and reliability analysis of a single-input-multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic multiuser scheduling. In this model, the user of the best channel among multiple users communicates with a multiple antennas relay node over an RF link, and then, the relay node employs amplify-and-forward (AF) protocol in retransmitting the user data to the destination over an FSO link. Moreover, the authorized transmission is assumed to be attacked by a single passive RF eavesdropper equipped with multiple antennas. Therefore, the system security reliability trade-off analysis is investigated. Closed-form expressions for the system outage probability and the system intercept probability are derived. Then, the newly derived expressions are simplified to their asymptotic formulas at the high signal-to-noise- ratio (SNR) region. Numerical results are presented to validate the achieved exact and asymptotic results and to illustrate the impact of various system parameters on the system performance. © 2016 IEEE.

  7. The acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Douglas, S.R.

    1992-03-01

    Electron acceleration by relativistic large-amplitude electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This report presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator

  8. Transition to turbulence and effect of initial conditions on three-dimensional compressible mixing in planar blast-wave-driven systems

    International Nuclear Information System (INIS)

    Miles, A.R.; Blue, B.; Edwards, M.J.; Greenough, J.A.; Hansen, J.F.; Robey, H.F.; Drake, R.P.; Kuranz, C.; Leibrandt, D.R.

    2005-01-01

    Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, results from three-dimensional (3D) numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pretransition value and, in the case of the bubble front, relative to the 2D result. The post-transition spike front velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse supernovae are discussed

  9. Experimental generation of discrete ultraviolet wavelength by cascaded intermodal four-wave mixing in a multimode photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Mei, Chao; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Tam, Hwa Yaw; Wai, P K A

    2017-09-15

    In this Letter, we demonstrate experimentally for the first time, to the best of our knowledge, discrete ultraviolet (UV) wavelength generation by cascaded intermodal FWM when femtosecond pump pulses at 800 nm are launched into the deeply normal dispersion region of the fundamental guided mode of a multimode photonic crystal fiber (MPCF). For pump pulses at average input powers of P av =450, 550, and 650 mW, the first anti-Stokes waves are generated at the visible wavelength of 538.1 nm through intermodal phase matching between the fundamental and second-order guided mode of the MPCF. The first anti-Stokes waves generated then serve as the secondary pump for the next intermodal FWM process. The second anti-Stokes waves in the form of the third-order guided mode are generated at the UV wavelength of 375.8 nm. The maximum output power is above 10 mW for P av =650  mW. We also confirm that the influences of fiber bending and intermodal walk-offs on the cascaded intermodal FWM-based frequency conversion process are negligible.

  10. Arctic Mixed Layer Dynamics

    National Research Council Canada - National Science Library

    Morison, James

    2003-01-01

    .... Over the years we have sought to understand the heat and mass balance of the mixed layer, marginal ice zone processes, the Arctic internal wave and mixing environment, summer and winter leads, and convection...

  11. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-02-01

    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  12. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)

    2012-05-15

    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  13. On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: physical perspectives and theoretical analysis

    Science.gov (United States)

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Wu, Qisheng

    2018-05-01

    Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a

  14. Radiofrequency waves with filling and peeling substances: An innovative minimally invasive technique for facial rejuvenation.

    Science.gov (United States)

    Savoia, Antonella; Vannini, Fulvio; Baldi, Alfonso

    2011-09-01

    This study describes a pivotal clinical trial of a new minimally invasive cosmetic procedure for facial rejuvenation and for the treatment of scars and wrinkles. The procedure consisted of a combination of techniques such as fillers, biorevitalization, peeling, and intradermal radiofrequency, emitted from a new device denominated by Spherofill Medical Plus (SMP; Spherofill MD, PromoItalia Group S.p.A., Pozzuoli, Italy), for treating cutaneous regeneration, depressions, and striae. One hundred and twelve patients, divided into five groups, were treated. The results produced were statistically analyzed and resulted in significant and long-lasting effects for facial rejuvenation. Indeed, the analysis of the Global Aesthetic Improvement Scale (GAIS) scores in the five groups demonstrated statistically significant results between 3 and 9 months after the treatments. Evaluating the patients included in the study, it is possible to conclude that the treatment with SMP represents a safe and efficient solution for the treatment of wrinkles, acne lesions, striae, and of degenerated tissues caused by aging.

  15. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    Science.gov (United States)

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.

  16. Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Tarvainen, O.; Suominen, P.; Koivisto, H.

    2004-01-01

    In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen

  17. Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference

    NARCIS (Netherlands)

    Brogioli, D.; Ziano, R.; Rica, R.A.; Salerno, D.; Kozynchenko, O.; Hamelers, H.V.M.; Mantegazza, F.

    2012-01-01

    The "capacitive mixing" (CAPMIX) technique is aimed at the extraction of energy from the salinity difference between the sea and rivers. It is based on the voltage rise that takes place at the electrodes when changing the salt concentration of the solution in which the two electrodes are dipped. In

  18. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  19. Observation of the exciton and Urbach band tail in low-temperature-grown GaAs using four-wave mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Webber, D.; Yildirim, M.; Hacquebard, L.; March, S.; Mathew, R.; Gamouras, A.; Hall, K. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Liu, X.; Dobrowolska, M.; Furdyna, J. K. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-11-03

    Four-wave mixing (FWM) spectroscopy reveals clear signatures associated with the exciton, free carrier inter-band transitions, and the Urbach band tail in low-temperature-grown GaAs, providing a direct measure of the effective band gap as well as insight into the influence of disorder on the electronic structure. The ability to detect (and resolve) these contributions, in contrast to linear spectroscopy, is due to an enhanced sensitivity of FWM to the optical joint density of states and to many-body effects. Our experiments demonstrate the power of FWM for studying the near-band-edge optical properties and coherent carrier dynamics in low-temperature-grown semiconductors.

  20. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

    Science.gov (United States)

    Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng

    2014-12-01

    In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.