WorldWideScience

Sample records for wave local oscillator

  1. Conversion of localized lower hybrid oscillations and fast magnetosonic waves at a plasma density cavity

    International Nuclear Information System (INIS)

    Hall, J.O.

    2004-01-01

    Analytic expressions are presented for conversion of localized lower hybrid oscillations and magnetosonic waves by scattering off a small scale density cavity. The governing equations are solved in slab geometry with wave vectors perpendicular to both the ambient magnetic field and the density gradient associated with density cavity using a scale length separation method. The theory predicts strong excitation of localized lower hybrid oscillations for a set of frequencies between the lower hybrid frequency of the ambient plasma and the minimum lower hybrid frequency inside the cavity. The theory is relevant for the lower hybrid solitary structures observed in space plasmas

  2. Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

    Directory of Open Access Journals (Sweden)

    Changhoon Lee

    2010-06-01

    Full Text Available In this paper, we developed a local oscillator (LO system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI receiver and single dish radio astronomy receiver at the 3 mm frequency band.

  3. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    Science.gov (United States)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  4. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  5. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  6. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  7. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  8. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  9. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  10. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  11. Waves and Oscillations in Plasmas

    CERN Document Server

    Pecseli, Hans L

    2012-01-01

    The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d

  12. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  13. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  14. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  15. Neutrino wave function and oscillation suppression

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Lychkovskiy, O.V.; Mamonov, A.A.; Okun, L.B.; Schepkin, M.G.

    2005-01-01

    We consider a thought experiment, in which a neutrino is produced by an electron on a nucleus in a crystal. The wave function of the oscillating neutrino is calculated assuming that the electron is described by a wave packet. If the electron is relativistic and the spatial size of its wave packet is much larger than the size of the crystal cell, then the wave packet of the produced neutrino has essentially the same size as the wave packet of the electron. We investigate the suppression of neutrino oscillations at large distances caused by two mechanisms: (1) spatial separation of wave packets corresponding to different neutrino masses; (2) neutrino energy dispersion for given neutrino mass eigenstates. We resolve the contributions of these two mechanisms. (orig.)

  16. Waves and oscillations in plasma crystals

    International Nuclear Information System (INIS)

    Piel, A; Homann, A; Klindworth, M; Melzer, A; Zafiu, C; Nosenko, V; Goree, J

    2003-01-01

    An overview of the properties of plasma crystals and clusters is given with emphasis on oscillations of particles in the plasma trap, instabilities associated with the solid-liquid phase transition and the propagation of waves. It is demonstrated how laser manipulation can be used to stimulate particle motion and waves. From characteristic resonance frequencies and from wave dispersion the particle charge and shielding length parameters, which determine the interparticle forces, can be quantitatively measured

  17. Noncommuting limits of oscillator wave functions

    International Nuclear Information System (INIS)

    Daboul, J.; Pogosyan, G. S.; Wolf, K. B.

    2007-01-01

    Quantum harmonic oscillators with spring constants k > 0 plus constant forces f exhibit rescaled and displaced Hermite-Gaussian wave functions, and discrete, lower bound spectra. We examine their limits when (k, f) → (0, 0) along two different paths. When f → 0 and then k → 0, the contraction is standard: the system becomes free with a double continuous, positive spectrum, and the wave functions limit to plane waves of definite parity. On the other hand, when k → 0 first, the contraction path passes through the free-fall system, with a continuous, nondegenerate, unbounded spectrum and displaced Airy wave functions, while parity is lost. The subsequent f → 0 limit of the nonstandard path shows the dc hysteresis phenomenon of noncommuting contractions: the lost parity reappears as an infinitely oscillating superposition of the two limiting solutions that are related by the symmetry

  18. Flashing coupled density wave oscillation

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin; Zhang Youjie

    1997-07-01

    The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The phenomenon and mechanism of different kinds of two-phase flow instabilities, namely geyser instability, flashing instability and flashing coupled density wave instability are described. The especially interpreted flashing coupled density wave instability has never been studied well, it is analyzed by using a one-dimensional non-thermo equilibrium two-phase flow drift model computer code. Calculations are in good agreement with the experiment results. (5 refs.,5 figs., 1 tab.)

  19. Wave oscillations in colloid oxyhydrates wave oscillations in colloid oxyhydrates

    CERN Document Server

    Sucharev, Yuri I

    2010-01-01

    The importance of coherent chemistry, that is, the chemistry of periodic oscillatory processes, is increasing at a rapid rate in specific chemical disciplines. While being perfectly understood and highly developed in the fields of physical chemistry, chemical physics and biological chemistry, the periodic developmental paradigm of processes and phenomena still remains poorly developed and misunderstood in classical inorganic chemistry and related branches, such as colloid chemistry. The probability is that we miss subtle colloid chemical phenomena that could be of utmost importance if taken into consideration when catalysis or adsorption is involved. The author here reveals all of the astonishing vistas that periodic wave paradigms open up to researchers in certain colloid chemical systems, and will doubtless stimulate researchers to look at them in a new light.Review from Book News Inc.: Coherent chemistry, the chemistry of periodical oscillatory processes, is well established in physical chemistry, chemical...

  20. Charge Analyzer Responsive Local Oscillations

    Science.gov (United States)

    Krause, Linda Habash; Thornton, Gary

    2015-01-01

    The first transatlantic radio transmission, demonstrated by Marconi in December of 1901, revealed the essential role of the ionosphere for radio communications. This ionized layer of the upper atmosphere controls the amount of radio power transmitted through, reflected off of, and absorbed by the atmospheric medium. Low-frequency radio signals can propagate long distances around the globe via repeated reflections off of the ionosphere and the Earth's surface. Higher frequency radio signals can punch through the ionosphere to be received at orbiting satellites. However, any turbulence in the ionosphere can distort these signals, compromising the performance or even availability of space-based communication and navigations systems. The physics associated with this distortion effect is analogous to the situation when underwater images are distorted by convecting air bubbles. In fact, these ionospheric features are often called 'plasma bubbles' since they exhibit some of the similar behavior as underwater air bubbles. These events, instigated by solar and geomagnetic storms, can cause communication and navigation outages that last for hours. To help understand and predict these outages, a world-wide community of space scientists and technologists are devoted to researching this topic. One aspect of this research is to develop instruments capable of measuring the ionospheric plasma bubbles. Figure 1 shows a photo of the Charge Analyzer Responsive to Local Oscillations (CARLO), a new instrument under development at NASA Marshall Space Flight Center (MSFC). It is a frequency-domain ion spectrum analyzer designed to measure the distributions of ionospheric turbulence from 1 Hz to 10 kHz (i.e., spatial scales from a few kilometers down to a few centimeters). This frequency range is important since it focuses on turbulence scales that affect VHF/UHF satellite communications, GPS systems, and over-the-horizon radar systems. CARLO is based on the flight-proven Plasma Local

  1. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  2. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  3. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  4. Rayleigh oscillations localized near free surface of a fcc crystal

    International Nuclear Information System (INIS)

    Kosevich, A.M.; Matsokin, D.V.; Savotchenko, S.E.

    1997-01-01

    The waves, which are localized near the free (001) surface of a fcc crystal and propagate in the [110] direction, are described using the model of central interaction of the nearest neighbors. The frequencies of these waves come into the gaps within the frequency spectrum of bulk harmonic oscillations with a fixed wave vector k component along the surface. The long-wave limit and the case of wave vectors close to the Brillouin band boundary are studied analytically. These limit dependences are in agreement with other authors results which were obtained by numerical methods. Analytical calculations in the limit intervals of k are supplemented by numerical calculations for any values of the wave vector. It is essential that these waves have a displacement component which is perpendicular to the crystal surface and can, therefore, be studied by methods of He atoms inelastic scattering

  5. Integrated flux-flow oscillators for submillimeter wave receivers

    International Nuclear Information System (INIS)

    Koshelets, V.P.; Shchukin, A.V.; Shitov, S.V.; Filippenko, L.V.; Fischer, G.M.; Mygind, J.

    1994-01-01

    A superconducting Flux-Flow Oscillator (FFO) integrated on the same chip with a small Josephson junction detector has been experimentally investigated in the frequency range 100 - 450 GHz. Both the emitted power and the frequency of the FFO can be varied by adjusting the dc bias current and/or the applied dc magnetic field. Microwave powers as high as 0.3 μW have been measured at 375 GHz. The spectral width of the FFO is about 1 MHz as estimated from harmonic mixing experiments. Also a fully integrated superconducting submillimeter wave receiver using the FFO as local oscillator has been successfully tested. The circuit included coupling transformers, a superconducting variable attenuator and a detector junction with tuned-out capacitance. (orig.)

  6. Nonlinear transient waves in coupled phase oscillators with inertia.

    Science.gov (United States)

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  7. An Alternative Millimeter Wave Oscillator using a Dielectric Puck in the Whispering Gallery Mode, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A majority of millimeter wave based systems used for space exploration, communications and research, require a millimeter wave oscillator. These oscillators have...

  8. Linear theory of plasma filled backward wave oscillator

    Indian Academy of Sciences (India)

    An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.

  9. Nonstationary oscillation of gyrotron backward wave oscillators with cylindrical interaction structure

    International Nuclear Information System (INIS)

    Chen, Shih-Hung; Chen, Liu

    2013-01-01

    The nonstationary oscillation of the gyrotron backward wave oscillator (gyro-BWO) with cylindrical interaction structure was studied utilizing both steady-state analyses and time-dependent simulations. Comparisons of the numerical results reveal that the gyro-BWO becomes nonstationary when the trailing field structure completely forms due to the dephasing energetic electrons. The backward propagation of radiated waves with a lower resonant frequency from the trailing field structure interferes with the main internal feedback loop, thereby inducing the nonstationary oscillation of the gyro-BWO. The nonstationary gyro-BWO exhibits the same spectral pattern of modulated oscillations with a constant frequency separation between the central frequency and sidebands throughout the whole system. The frequency separation is found to be scaled with the square root of the maximum field amplitude, thus further demonstrating that the nonstationary oscillation of the gyro-BWO is associated with the beam-wave resonance detuning

  10. Ion Acoustic Waves in the Presence of Langmuir Oscillations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    The dielectric function for long-wavelength, low-frequency ion acoustic waves in the presence of short-wavelength, high-frequency electron oscillations is presented, where the ions are described by the collision-free Vlasov equation. The effect of the electron oscillations can be appropriately...

  11. Chirality oscillation of primordial gravitational waves during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Wang, Yu-Tong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-03-06

    We show that if the gravitational Chern-Simons term couples to a massive scalar field (m>H), the primordial gravitational waves (GWs) will show itself the chirality oscillation, i.e., the amplitudes of the left- and right-handed GWs modes will convert into each other and oscillate in their propagations. This oscillation will eventually develop a permanent difference of the amplitudes of both modes, which leads to nearly opposite oscillating shapes in the power spectra of the left- and right-handed primordial GWs. We discuss its implication to the CMB B-mode polarization.

  12. Development of a 2 MW relativistic backward wave oscillator

    Indian Academy of Sciences (India)

    In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an ...

  13. Scattering of electromagnetic waves into plasma oscillations via plasma particles

    International Nuclear Information System (INIS)

    Lin, A.T.; Dawson, J.M.

    1975-01-01

    A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations

  14. Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz

    Science.gov (United States)

    Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd; hide

    2010-01-01

    In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems

  15. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...

  16. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    Science.gov (United States)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  17. Wecpos - Wave Energy Coastal Protection Oscillating System: A Numerical Assessment

    Science.gov (United States)

    Dentale, Fabio; Pugliese Carratelli, Eugenio; Rzzo, Gianfranco; Arsie, Ivan; Davide Russo, Salvatore

    2010-05-01

    In recent years, the interest in developing new technologies to produce energy with low environmental impact by using renewable sources has grown exponentially all over the world. In this context, the experiences made to derive electricity from the sea (currents, waves, etc.) are of particular interest. At the moment, due to the many existing experiments completed or still in progress, it is quite impossible explain what has been obtained but it is worth mentioning the EMEC, which summarizes the major projects in the world. Another important environmental aspect, also related to the maritime field, is the coastal protection from the sea waves. Even in this field, since many years, the structural and non-structural solutions which can counteract this phenomenon are analyzed, in order to cause the least possible damage to the environment. The studies in development by the researchers of the University of Salerno are based on these two aspect previously presented. Considering the technologies currently available, a submerged system has been designed, WECPOS (Wave Energy Coastal Protection Oscillating System), to be located on relatively shallow depths, to can be used simultaneously for both electricity generation and for the coastal protection using the oscillating motion of the water particles. The single element constituting the system is realized by a fixed base and three movable panels that can fluctuate in a fixed angle. The waves interact with the panels generating an alternative motion which can be exploited to produce electricity. At the same time, the constraint movement imposed for the rotation of the panels is a barrier to the wave propagation phenomena, triggering the breaking in the downstream part of the device. So the wave energy will be dissipated obtaining a positive effect for the coastal protection. Currently, the efficiency and effectiveness of the system (WECPOS single module) has been studied by using numerical models. Using the FLOW-3D

  18. Studies of hydromagnetic waves and oscillations in plasmas

    International Nuclear Information System (INIS)

    Sawley, M.L.

    1980-10-01

    Small amplitude magnetoacoustic oscillations in a partially ionized, non-uniform, current carrying plasma column of finite beta are considered. The linearized magnetohydrodynamic equations are used to develop a theory describing both free and forced magnetoacoustic oscillations. The results of numerical calculations are given for the specific case of diffuse pinch equilibrium configurations. In an experimental study the amplitude of the oscillating axial magnetic flux is determined for several frequencies in the vicinity of the first magnetoacoustic resonance. Accurate determination of the plasma density profile is shown to be possible. Finite-amplitude effects on the propagation of axisymmetric hydromagnetic waves are examined. A nonlinear theory is developed which describes the second-order perturbation that accompanies the primary wave. The influence of Hall currents and the presence of neutral atoms on the second-order fields is treated. In an investigation on the propagation of torsional waves the observed second-order fields are shown to exhibit good quantitative agreement with theoretical calculations for moderate primary wave amplitudes. The re-ionization of the plasma by a torsional wave is investigated. A theoretical description is given of the nonlinear excitation of magnetoacoustic oscillations by means of an oscillating axial current

  19. Weak localization of seismic waves

    International Nuclear Information System (INIS)

    Larose, E.; Margerin, L.; Tiggelen, B.A. van; Campillo, M.

    2004-01-01

    We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity

  20. An Introduction to Waves and Oscillations in the Sun

    CERN Document Server

    Narayanan, A Satya

    2013-01-01

    Astrophysicists and others studying the Sun will find this expansive coverage of what we know about waves and oscillations in our nearest star an informative introduction to a hot contemporary topic. After a section summarizing the Sun's physical characteristics, the volume moves on to explore the basics of electrodynamics, which in turn facilitate a discussion of magnetohydrodynamics (MHD). The material also details the often complex nature of waves and oscillations in uniform and non-uniform media, before categorizing the observational signatures of oscillations and exploring the instabilities in fluid, dealing with a range of known forms. Lastly, a section on helioseismology explores our growing familiarity with the internal structure of the Sun. This book is a unified portal to a thorough grounding in solar waves that includes a wealth of explanatory vignettes demystifying concepts such as flux tubes, current-free and force-free magnetic fields, the prominences, and the relationship between the vorticity ...

  1. Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2008-01-01

    By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.

  2. Investigation of density-wave oscillation in parallel boiling channels under high pressure

    International Nuclear Information System (INIS)

    Ming Xiao; Xuejun Chen; Mingyuan Zhang

    1992-01-01

    This paper presents experimental results on density-wave instability in parallel boiling channels. Experiments have been done in a high pressure steam-water loop. Different types of two-phase flow instabilities have been observed, including density-wave oscillation, pressure-drop type oscillation, thermal oscillation and secondary density-wave oscillation. The secondary density-wave oscillation appears at very low exit steam quality (less than 0.1) and at the positive portion of Δ P-G curves with both channels' flow rate oscillating in phase. Density-wave oscillation can appear at pressure up to 192 bar and disappear over 207 bar. (6 figures) (Author)

  3. Towards local oscillators based on arrays of niobium Josephson junctions

    International Nuclear Information System (INIS)

    Galin, M A; Klushin, A M; Kurin, V V; Seliverstov, S V; Finkel, M I; Goltsman, G N; Müller, F; Scheller, T; Semenov, A D

    2015-01-01

    Various applications in the field of terahertz technology are in urgent need of compact, wide-tunable solid-state continuous wave radiation sources with a moderate power. However, satisfactory solutions for the THz frequency range are scarce yet. Here we report on coherent radiation from a large planar array of Josephson junctions (JJs) in the frequency range between 0.1 and 0.3 THz. The external resonator providing the synchronization of JJ array is identified as a straight fragment of a single-strip-line containing the junctions themselves. We demonstrate a prototype of the quasioptical heterodyne receiver with the JJ array as a local oscillator and a hot-electron bolometer mixer. (paper)

  4. Evidence of localized wave transmission

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    LLNL [Lawrence Livermore National Lab.] experiments to test the feasibility of launching an acoustic, directed-energy pulse train (ADEPT) in water have demonstrated localized transmission of wave energy far beyond the classical Rayleigh length that defines the boundary between near-field and far-field transmission for Gaussian (diffraction-limited) pulses. The results of the experiments are in excellent agreement with computer simulations

  5. Equatorial Oscillation and Planetary Wave Activity in Saturn's Stratosphere Through the Cassini Epoch

    Science.gov (United States)

    Guerlet, S.; Fouchet, T.; Spiga, A.; Flasar, F. M.; Fletcher, L. N.; Hesman, B. E.; Gorius, N.

    2018-01-01

    Thermal infrared spectra acquired by Cassini/Composite InfraRed Spectrometer (CIRS) in limb-viewing geometry in 2015 are used to derive 2-D latitude-pressure temperature and thermal wind maps. These maps are used to study the vertical structure and evolution of Saturn's equatorial oscillation (SEO), a dynamical phenomenon presenting similarities with the Earth's quasi-biennal oscillation (QBO) and semi-annual oscillation (SAO). We report that a new local wind maximum has appeared in 2015 in the upper stratosphere and derive the descent rates of other wind extrema through time. The phase of the oscillation observed in 2015, as compared to 2005 and 2010, remains consistent with a ˜15 year period. The SEO does not propagate downward at a regular rate but exhibits faster descent rate in the upper stratosphere, combined with a greater vertical wind shear, compared to the lower stratosphere. Within the framework of a QBO-type oscillation, we estimate the absorbed wave momentum flux in the stratosphere to be on the order of ˜7 × 10-6 N m-2. On Earth, interactions between vertically propagating waves (both planetary and mesoscale) and the mean zonal flow drive the QBO and SAO. To broaden our knowledge on waves potentially driving Saturn's equatorial oscillation, we searched for thermal signatures of planetary waves in the tropical stratosphere using CIRS nadir spectra. Temperature anomalies of amplitude 1-4 K and zonal wave numbers 1 to 9 are frequently observed, and an equatorial Rossby (n = 1) wave of zonal wave number 3 is tentatively identified in November 2009.

  6. Injection locking of optomechanical oscillators via acoustic waves

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  7. Plasma-filled rippled wall rectangular backward wave oscillator

    Indian Academy of Sciences (India)

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...

  8. Limit cycle analysis of nuclear coupled density wave oscillations

    International Nuclear Information System (INIS)

    Ward, M.E.

    1985-01-01

    An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened

  9. Remarks to the local power oscillation phenomenon at BWRs

    International Nuclear Information System (INIS)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio

    2011-01-01

    In the framework of BWR stability analysis, local neutron-flux oscillation events have attracted the attention of a number of researchers. In 1996, an unusual instability event occurred at Forsmark-1 in which superimposed on the classical, spatial mode oscillations, there were relatively large-amplitude, highly localised oscillations. Subsequent time-series analysis of the local power range monitor (LPRM) signals resulted in a space-dependent decay ratio, an inexplicable result. Furthermore, noise analysis-based localization techniques pointed towards the existence of two strong 'perturbation sources' in the two halves of the core, one of them coinciding with the radial position of an unseated bundle. In the scope of a theoretical work, the possibility of a space-dependent decay ratio was discussed but not comprehensively understood. Motivated by these findings the effect of local neutron-flux oscillations on the BWR stability behaviour is discussed and one possible interpretation is proposed which is able to explain the space dependent decay ratio and the long term oscillation pattern as well. The effect of the local neutron flux oscillating sources on the space and time dependent neutron field is described by a rigorous application of the mode expansion approach. The consequences to signal analysis are then discussed. It will be pointed out in the paper that when a BWR system is stable regarding power oscillations but driven by local neutron-flux oscillating sources, the decay ratio is on the one hand not space-dependent and on the other hand it does not indicate the real BWR stability behaviour. The RAM-ROM method is applied to the Forsmark case M2 and an operational point (KKB-B8) of NPP Brunsbüttel, where a local neutron-flux oscillation is superimposed on an unstable global power oscillation. The results of the bifurcation analysis, using BIFDD, and of the numerical integration are presented for KKB-B8 and Forsmark M2. (author)

  10. 'Oscillator-wave' model: properties and heuristic instances

    International Nuclear Information System (INIS)

    Damgov, Vladimir; Trenchev, Plamen; Sheiretsky, Kostadin

    2003-01-01

    The article considers a generalized model of an oscillator, subjected to the influence of an external wave. It is shown that the systems of diverse physical background, which this model encompasses by their nature, should belong to the broader, proposed in previous works class of 'kick-excited self-adaptive dynamical systems'. The theoretical treatment includes an analytic approach to the conditions for emergence of small and large amplitudes, i.e. weak and strong non-linearity of the system. Derived also are generalized conditions for the transition of systems of this 'oscillator-wave' type to non-regular and chaotic behaviour. For the purpose of demonstrating the heuristic properties of the generalized oscillator-wave model from this point of view are considered the relevant systems and phenomena of the quantized cyclotron resonance and the megaquantum resonance-wave model of the Solar System. We point to a number of other natural and scientific phenomena, which can be effectively analyzed from the point of view of the developed approach. In particular we stress on the possibility for development and the wide applicability of specific wave influences, for example for the improvement and the speeding up of technological processes

  11. Oscillations in the wake of a flare blast wave

    Science.gov (United States)

    Tothova, D.; Innes, D. E.; Stenborg, G.

    2011-04-01

    Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif

  12. Optical distribution of local oscillators in future telecommunication satellite payloads

    Science.gov (United States)

    Benazet, Benoît; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    The distribution of high spectral purity reference signals over optical fibre in future telecommunication satellite payloads is presented. Several types of applications are considered, including the distribution of a reference frequency at 10 MHz (Ultra-Stable Reference Oscillator) as well as the distribution of a radiofrequency oscillator around 800 MHz (Master Local Oscillator). The results of both experimental and theoretical studies are reported. In order to meet phase noise requirements for the USRO distribution, the use of an optimised receiver circuit based on an optically synchronised oscillator is investigated. Finally, the optical distribution of microwave local oscillators at frequencies exceeding 20 GHz is described. Such a scheme paves the way to more advanced sub-systems involving optical frequency-mixing and optical transmission of microwave signals, with applications to multiple-beam active antennas.

  13. Injection locking of optomechanical oscillators via acoustic waves.

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  14. Comparison of heaving buoy and oscillating flap wave energy converters

    Science.gov (United States)

    Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.

    2013-04-01

    Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.

  15. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt

  16. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt

  17. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Fiuza, K.

    2004-01-01

    Resonant active-to-active (ν a →ν a ), as well as active-to-sterile (ν a →ν s ) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti ν) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν species, the large mass-squared difference between the species (ν a →ν s ) implies a huge amount of energy to be given off as gravitational waves (L GW ∝10 49 erg s -1 ), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α∝0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino ν s that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  18. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  19. Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT

    Science.gov (United States)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.

  20. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  1. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  2. Zonal Wave Number 2 Rossby Wave (3.5-day oscillation) Over The Martian Lower Atmosphere

    Science.gov (United States)

    Ghosh, P.; Thokuluwa, R. K.

    2013-12-01

    Over the Mars, height (800-50 Pascal pressure coordinate) profiles of temperature (K), measured by radio occultation technique during the MGS (Mars Global Surveyor) mission, obtained for the period of 1-10 January 2006 at the Martian latitude of ~63N in almost all the longitudes are analyzed to study the characteristics of the 3.5-day oscillation. To avoid significant data gaps in a particular longitude sector, we selected a set of 7 Mars longitude regions with ranges of 0-30E, 35-60E, 65-95E, 190-230E, 250-280E, 290-320E, and 325-360E to study the global characteristics of the 3.5-day oscillation. The 3.5-day oscillation is not selected as a-priori but observed as a most significant oscillation during this period of 1-10 January 2006. It is observed that in the longitude of 0-30E, the 3.5-day oscillation shows statistically significant power (above the 95% confidence level white noise) from the lowest height (800 Pascal, 8 hPa) itself and up to the height of 450 Pascal level with the maximum power of ~130 K^2 at the 600 & 650 Pascal levels. It started to grow from the power of ~ 50 K^2 at the lowest height of 800 Pascal level and reached the maximum power in the height of 600-650 Pascal level and then it started to get lessened monotonously up to the height of 450 Pascal level where its power is ~ 20 K^2. Beyond this height and up to the height of 50 Pascal level, the wave amplitude is below the white noise level. As the phase of the wave is almost constant at all the height levels, it seems that the observed 3.5-day oscillation is a stationary wave with respect to the height. In the 35-60 E longitude sector, the vertical structure of the 3.5-day oscillation is similar to what observed for the 0-30 E longitude region but the power is statistically insignificant at all the heights. However in the 65-95E longitude sector, the wave grows from the lowest level (70 K^2) of 800 Pascal to its maximum power of 280 K^2 in the height of 700 Pascal level and then it started

  3. Spatially Localized Chemical Patterns around an A + B → Oscillator Front.

    Science.gov (United States)

    Budroni, M A; Lemaigre, L; Escala, D M; Muñuzuri, A P; De Wit, A

    2016-02-18

    When two gels, each loaded with a different set of reactants A and B of an oscillatory reaction, are brought into contact, reaction-diffusion patterns such as waves or Turing patterns can develop in the reactive contact zone. The initial condition which separates the reactants at the beginning leads to a localization in space of the different dynamical regimes accessible to the chemical oscillator. We study here both numerically and experimentally the composite traveling structures resulting from the interaction between chemical fronts and localized waves in the case in which the reactants of such an A + B → oscillator system are those of the canonical Belousov-Zhabotinsky (BZ) oscillating reaction. A transition between different dynamics is obtained by varying the initial concentration of the organic substrate of the BZ reactants, which is one of the parameters controlling the local excitability. We show that the dynamical regime (excitable or oscillatory) characterizing the BZ oscillator in the initial contact area is the key feature which determines the spatiotemporal evolution of the system. The experimental results are in qualitative agreement with the theoretical predictions.

  4. Wave propagation in a non-isothermal atmosphere and the solar five-minute oscillations. [Acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi, C; Giovanardi, C [Florence Univ. (Italy). Istituto di Astronomia

    1979-11-01

    This paper presents a detailed discussion of the properties of linear, periodic acoustic waves that propagate vertically in a non-isothermal atmosphere. In order to retain the basic feature of the solar atmosphere we have chosen a temperature profile presenting a minimum. An analytical solution of the problem is possible if T/..mu.., ..mu.. being the mean molecular weight, varies parabolically with height. The purpose of this study is to point out the qualitative differences existing between the case treated here and the customary analysis based on a locally isothermal treatment. The computed velocity amplitude and the temperature-perturbation as functions of the wave period exhibit a sharp peak in the region between 180 and 300 s, thus showing the possibility of interpreting the five-minute oscillations as a resonant phenomenon. The propagating or stationary nature of the waves is investigated by a study of the phase of the proposed analytical solution.

  5. Experimental high power plasma-filled backward wave oscillator results

    International Nuclear Information System (INIS)

    Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.

    1988-01-01

    Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations

  6. Energy localization in the phi4 oscillator chain.

    Science.gov (United States)

    Ponno, A; Ruggiero, J; Drigo, E; De Luca, J

    2006-05-01

    We study energy localization in a finite one-dimensional phi(4) oscillator chain with initial energy in a single oscillator of the chain. We numerically calculate the effective number of degrees of freedom sharing the energy on the lattice as a function of time. We find that for energies smaller than a critical value, energy equipartition among the oscillators is reached in a relatively short time. On the other hand, above the critical energy, a decreasing number of particles sharing the energy is observed. We give an estimate of the effective number of degrees of freedom as a function of the energy. Our results suggest that localization is due to the appearance, above threshold, of a breather-like structure. Analytic arguments are given, based on the averaging theory and the analysis of a discrete nonlinear Schrödinger equation approximating the dynamics, to support and explain the numerical results.

  7. Magnetization oscillations and waves driven by pure spin currents

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, V.E. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Urazhdin, S. [Department of Physics, Emory University, Atlanta, GA 30322 (United States); Loubens, G. de [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France); Demokritov, S.O., E-mail: demokrit@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Institute of Metal Physics, Ural Division of RAS, Yekaterinburg 620041 (Russian Federation)

    2017-02-23

    Recent advances in the studies of pure spin currents–flows of angular momentum (spin) not accompanied by the electric currents–have opened new horizons for the emerging technologies based on the electron’s spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.

  8. Surface plasmon quantum cascade lasers as terahertz local oscillators

    NARCIS (Netherlands)

    Hajenius, M.; Khosropanah, P.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Barbieri, S.; Dhillon, S.; Filloux, P.; Sirtori, C.; Ritchie, D. A.; Beere, H. E.

    2008-01-01

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto

  9. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  10. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  11. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  12. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Choiniere, Michael [University of Maine; Thiagarajan, Krish P. [University of Maine

    2017-08-01

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. This ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.

  13. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-08-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  14. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters.

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-01-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  15. Waves of El Nino-southern Oscillation and Influenza Pandemics

    Directory of Open Access Journals (Sweden)

    Olusegun Steven Ayodele Oluwole

    2016-04-01

    Full Text Available Influenza pandemics have occurred at irregular intervals for over 500 years, unlike seasonal influenza epidemics which occur annually. Although the risk factors are known, the basis for the timing of influenza pandemic waves are unknown. Coherence of peaks of El Niño and influenza pandemic in 2009–2010, however, suggests that both waves are coupled. This study was done to determine the relation of influenza pandemics to the peaks and waveforms of El Niño southern oscillation (ENSO. ENSO cycles from 1871–2015 which had El Niño phases were windowed from Multivariate El Niño Index. Influenza pandemic peaks were mapped to ENSO monthly time series. ENSO waveforms were compared graphically, and fitted to nonstationary cosinor models. Second order polynomial regression model was fitted to the peak and duration of El Niño. Agglomerative hierarchical cluster of ENSO waveforms was performed. All influenza pandemic peaks mapped to El Niño peaks, with lags of 0–5 months. ENSO waveforms during influenza pandemics share parameters of oscillation. Nonstationary cosinor models showed that ENSO cycles are complex waves. There was second order polynomial relationship between peak and duration of El Niños, p < 0.0001. ENSO waveforms clustered into four distinct groups. ENSO waveforms during influenza pandemics of 1889–1900, 1957–1958, and 1968–1969 linked closely. ENSO indices were significantly high from 7–16 months after onset of cycles, p < 0.0001. Surveillance for El Niño events to forecast periods of maximal transmission and survival of influenza A viruses is, therefore, crucial for public health control strategies.

  16. Nonlinear theory of localized standing waves

    OpenAIRE

    Denardo, Bruce; Larraza, Andrés; Putterman, Seth; Roberts, Paul

    1992-01-01

    An investigation of the nonlinear dispersive equations of continuum mechanics reveals localized standing-wave solutions that are domain walls between regions of different wave number. These states can appear even when the dispersion law is a single-valued function of the wave number. In addition, we calculate solutions for kinks in cutoff and noncutoff modes, as well as cutoff breather solitons. Division of Engineering and Geophysics of the Office of Basic Energy Science of U.S. DOE for su...

  17. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    Science.gov (United States)

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  18. Synchronization of three electrochemical oscillators: From local to global coupling

    Science.gov (United States)

    Liu, Yifan; Sebek, Michael; Mori, Fumito; Kiss, István Z.

    2018-04-01

    We investigate the formation of synchronization patterns in an oscillatory nickel electrodissolution system in a network obtained by superimposing local and global coupling with three electrodes. We explored the behavior through numerical simulations using kinetic ordinary differential equations, Kuramoto type phase models, and experiments, in which the local to global coupling could be tuned by cross resistances between the three nickel wires. At intermediate coupling strength with predominant global coupling, two of the three oscillators, whose natural frequencies are closer, can synchronize. By adding even a relatively small amount of local coupling (about 9%-25%), a spatially organized partially synchronized state can occur where one of the two synchronized elements is in the center. A formula was derived for predicting the critical coupling strength at which full synchronization will occur independent of the permutation of the natural frequencies of the oscillators over the network. The formula correctly predicts the variation of the critical coupling strength as a function of the global coupling fraction, e.g., with local coupling the critical coupling strength is about twice than that required with global coupling. The results show the importance of the topology of the network on the synchronization properties in a simple three-oscillator setup and could provide guidelines for decrypting coupling topology from identification of synchronization patterns.

  19. Multiple sine wave excitation of a hard spring oscillator

    International Nuclear Information System (INIS)

    Curreri, J.R.; Bezler, P.

    1976-06-01

    The vibration testing of non-linear systems has not received much attention in the literature. Frequently, linear procedures are used in the hope that large differences between the linear and non-linear responses will not occur. This may be valid for certain small ranges of the non-linearity and for a single harmonic component excitation. However, for multi-component periodic inputs, there is very little guidance in the literature for even a qualitative evaluation of the probable response. With multi-component periodic inputs, it has been shown that sub-combination frequencies can occur in cubic non-linear systems. Under these conditions, large responses can develop. The critical nature of the development of the large response has not been discussed. This is the subject of this paper. The qualitative response of a two component sine wave applied to a hard spring oscillator is shown

  20. Design of an electronically tunable millimeter wave Gyrotron Backward Wave Oscillator

    International Nuclear Information System (INIS)

    Caplan, M.

    1987-01-01

    A non-linear self-consistent computer simulation code is used to analyze the saturated output of the Gyrotron Backward Wave Oscillator (Gyro BWO) which can be used as a tunable driver for a 250 GHz FEL amplifier. Simulations show that the Gyrotron BWO using a Pierce/Wiggler gun configuration can produce at least 10 kW of microwave power over the range 249 GHz to 265 GHz by varying beam voltage alone

  1. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  2. Local Tensor Radiation Conditions For Elastic Waves

    DEFF Research Database (Denmark)

    Krenk, S.; Kirkegaard, Poul Henning

    2001-01-01

    A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...

  3. Phase locked 270-440 GHz local oscillator based on flux flow in long Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Filippenko, L.V.

    2000-01-01

    The combination of narrow linewidth and wide band tunability makes the Josephson flux flow oscillator (FFO) a perfect on-chip local oscillator for integrated sub-mm wave receivers for, e.g., spectral radio astronomy. The feasibility of phase locking the FFO to an external reference oscillator......-running tunnel junction. The results of residual FFO phase noise measurements are also presented. Finally, we propose a single-chip fully superconductive receiver with two superconductor–insulator–superconductor mixers and an integrated phase-locked loop. ©2000 American Institute of Physics....

  4. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  5. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    NARCIS (Netherlands)

    Kloosterman, J.L.; Hayton, D.J.; Ren, Y.; Kao, T.Y.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Hu, Q.; Walker, C.K.; Reno, J.L.

    2013-01-01

    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448?THz. The local oscillator is a third-order distributed feedback quantum cascade laser operating in continuous wave mode at 4.741?THz. A quasi-optical, superconducting NbN

  6. Localization of waves in a fluctuating plasma

    International Nuclear Information System (INIS)

    Escande, D.F.; Souillard, B.

    1984-01-01

    We present the first application of localization theory to plasma physics: Density fluctuations induce exponential localization of longitudinal and transverse electron plasma waves, i.e., the eigenmodes have an amplitude decreasing exponentially for large distances without any dissipative mechanism in the plasma. This introduces a new mechanism for converting a convective instability into an absolute one. Localization should be observable in clear-cut experiments

  7. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    Science.gov (United States)

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  8. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.

    Directory of Open Access Journals (Sweden)

    Stewart Heitmann

    2017-01-01

    Full Text Available Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.

  9. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, Iver H.

    2001-01-01

    Localized bursty plasma waves are detected by spacecraft in many space plasmas. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the system, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it far longer than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. These mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing and power-law distributed in strong turbulence. Recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type III solar radio sources, the Earth's foreshock, magnetosheath, and polar cap regions. It is shown that when combined with wave-wave processes, SGT also accounts for associated radio emissions

  10. Localization of Waves in Fractals : Spatial Behavior

    NARCIS (Netherlands)

    Vries, Pedro de; Raedt, Hans De; Lagendijk, Ad

    1989-01-01

    Localization of a quantum particle on two-dimensional percolating networks is investigated numerically. Solving the time-dependent Schrödinger equation for particular initial wave packets we study the spatial behavior of eigenstates for two tight-binding models: the quantum percolation model and the

  11. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    Science.gov (United States)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  12. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-01-01

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier–Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier–Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier–Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier–Zeeman states. (paper)

  13. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.

    Science.gov (United States)

    Vandecasteele, Marie; Varga, Viktor; Berényi, Antal; Papp, Edit; Barthó, Péter; Venance, Laurent; Freund, Tamás F; Buzsáki, György

    2014-09-16

    Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.

  14. FIRST SIMULTANEOUS OBSERVATION OF AN H{alpha} MORETON WAVE, EUV WAVE, AND FILAMENT/PROMINENCE OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Ayumi; Isobe, Hiroaki [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin' ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shiota, Daikou [Advanced Science Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Oi, Akihito [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Akioka, Maki, E-mail: asai@kwasan.kyoto-u.ac.jp [Hiraiso Solar Observatory, National Institute of Information and Communications Technology, Hitachinaka, Ibaraki 311-1202 (Japan)

    2012-02-15

    We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.

  15. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, I.H.

    2000-01-01

    Full text: Localized bursty plasma waves occur in many natural systems, where they are detected by spacecraft. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the wave-driver interaction, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; observed bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it for much longer times and distances than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. Growth mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing, power-law distributed in strong turbulence, and uniformly distributed in log under secular growth. After delineating stochastic growth and strong-turbulence regimes, recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type II and III solar radio sources, foreshock regions upstream of the bow shocks of Earth and planets, and Earth's magnetosheath, auroras, and polar-caps. It is shown that when combined with wave-wave processes, SGT accounts for type II and III solar radio emissions. SGT thus removes longstanding problems in understanding persistent unstable distributions, bursty fields, and radio emissions observed in space

  16. Localization of Cortical Oscillations Induced by SCS Using Coherence

    Directory of Open Access Journals (Sweden)

    P. Sovka

    2007-12-01

    Full Text Available This paper suggests a method based on coherence analysis and scalp mapping of coherence suitable for more accurate localization of cortical oscillations induced by electric stimulation of the dorsal spinal cord (SCS, which were previously detected using spectral analysis. While power spectral density shows the increase of power during SCS only at small number of electrodes, coherence extends this area and sharpens its boundary simultaneously. Parameters of the method were experimentally optimized to maximize its reliability. SCS is applied to suppress chronic, intractable pain by patients, whom pharmacotherapy does not relieve. In our study, the pain developed in lower back and lower extremity as the result of unsuccessful vertebral discotomy, which is called failed-back surgery syndrome (FBSS. Our method replicated the results of previous analysis using PSD and extended them with more accurate localization of the area influenced by SCS.

  17. Local electromagnetic waves in layered superconductors

    International Nuclear Information System (INIS)

    Gvozdikov, V.M.; Vega-Monroy, R.

    1999-01-01

    A dispersion equation for electromagnetic waves localized on a defect layer of a layered superconductor is obtained in the frame of a model which neglects electron hopping between layers but assumes an arbitrary current-current response function within the layers. The defect layer differs from the rest of the layers by density and mass of charge carriers. It is shown that near the critical temperature in the London limit the local mode lies within the superconducting gap and has a wave vector threshold depending on the layered crystal and defect layer parameters. In the case of highly anisotropic layered superconductors, like Bi- or Tl-based high-T c cuprates, the local mode exists within a narrow range of positive variations of the mass and charge carriers. (author)

  18. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology

    International Nuclear Information System (INIS)

    Yan Dong; Mao Luhong; Su Qiujie; Xie Sheng; Zhang Shilin

    2014-01-01

    This paper presents a millimeter wave (mm-wave) oscillator that generates signal at 36.56 GHz. The mm-wave oscillator is realized in a UMC 0.18 μm CMOS process. The linear superposition (LS) technique breaks through the limit of cut-off frequency (f T ), and realizes a much higher oscillation than f T . Measurement results show that the LS oscillator produces a calibrated −37.17 dBm output power when biased at 1.8 V; the output power of fundamental signal is −10.85 dBm after calibration. The measured phase noise at 1 MHz frequency offset is −112.54 dBc/Hz at the frequency of 9.14 GHz. This circuit can be properly applied to mm-wave communication systems with advantages of low cost and high integration density. (semiconductor integrated circuits)

  19. Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…

  20. Development of stochastic webs in a wave-driven linear oscillator

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira.

    1988-01-01

    We present developments of stochastic webs in a linear oscillator which is driven by a finite number (N) of external waves with frequency ω o (harmonic of the linear oscillator frequency). The expansion of the stochastic domain as functions of the number of waves and their amplitudes is studied numerically. The results with small amplitude waves compares well with the perturbation theory. When the amplitude of external waves is small a leaf structure which expands with N develops radially in the phase space. (author)

  1. An elementary introduction to the problem of density wave oscillations

    International Nuclear Information System (INIS)

    Svanholm, Kjell; Friedly, John C.

    1990-01-01

    In this paper we demonstrate a simple graphical method for analysis of density wave instability in two-phase channels. The objectives are to give the reader a basic knowledge of the physical mechanism behind the oscillations, an understanding of the effect of some of the channel parameters on instability, and a means of qualitatively analyzing for the effect of more complicated operating conditions. The methodology proposed should be useful in providing physical insight into the effect of design modifications, before extensive simulations are carried out, or understanding the physics of the problem enough to appreciate the results of mathematical stability analyses. In summary: a graphical analysis of the principal features of density wave instability has been suggested. The approach is approximate, but incorporates what is believed to be the most important aspects of the physics of the phenomenon. Furthermore, the elementary graphical analysis technique permits incorporation of other effect superimposed on those considered. This permits the designer to make a quick estimate of the effect of certain discrepancies between a real application and the idea cases considered here. Such an estimate may well be used to decide whether it is worthwhile to consider more detailed simulation of the effect. The above analysis can be used very rapidly to investigate qualitatively the effect of a number of parametric effects that may be important in a particular application. Because the analysis is approximative however the reader is cautioned to consider the results estimates only. A practical application may well include effects which tends to dominate those considered most important in the above discussion. The treatment considers the effect on the two-phase density by the inlet velocity (and the velocity of the boiling boundary) and its propagation the most important to determining stability. As presented here it does not include the effect of the varying velocities in the two

  2. Wave propagation in a strongly nonlinear locally resonant granular crystal

    Science.gov (United States)

    Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.

    2018-02-01

    In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.

  3. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    Science.gov (United States)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  4. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  5. Detection of the fast Kelvin wave teleconnection due to El Niño-Southern Oscillation

    Science.gov (United States)

    Meyers, Steven D.; Melsom, Arne; Mitchum, Gary T.; O'Brien, James J.

    1998-11-01

    Previous analyses of the ocean state along the western American coast have often indicated unexpectedly slow and limited propagation of coastally trapped Kelvin waves associated with the El Niño-Southern Oscillation. In contrast, theoretical and numerical ocean models demonstrate that these Kelvin waves are a rapid and long-range teleconnection between the low- and high-latitude Pacific Ocean, strongly impacting both the surface coastal currents and nutrient upwelling. Sea level variations along the western coast of North America are reexamined under the assumption that tropically forced Kelvin waves are produced in bursts of several months duration. A cross-correlation analysis, restricted to mid-1982 to mid-1983, is performed between Galapagos Island and stations along western Central and North America. A coastally trapped Kelvin wave is revealed to propagate at a speed of 2-3 m s-1 from the tropical Pacific to the Aleutian Island Chain. The observed phase speed agrees with the estimated speed of a Kelvin wave based on the average density profile of the ocean near the coast. Weaker El Niño events in 1986/1987 and 1991/1992 appear to contain a combination of this remote signal and local wind forcing. The wave propagation speed calculated from the spectral phase is shown to be sensitive to the presence of other (noise) processes in the observations. This is demonstrated through an analysis of a synthetic sea level data set that contains many of the essential features of the real sea level data. A relatively small level of red noise can give a 100% expected error in the estimated propagation speed. This suggests a new explanation for this important inconsistency within dynamical oceanography.

  6. Phase locking in backward-wave oscillators with strong end reflections

    International Nuclear Information System (INIS)

    Nusinovich, G. S.; Sinitsyn, O. V.; Rodgers, J.; Shkvarunets, A. G.; Carmel, Y.

    2007-01-01

    The theory of phase-locked oscillations in a backward-wave oscillator with strong end reflections is developed. Numerical results demonstrate that the locking bandwidth of such a device phase-locked by a prebunched electron beam can be twice the bandwidth of a resonator formed by a waveguide with strong end reflections. It is also shown that the device can operate with the efficiency exceeding 50% and that, in some cases, it can exhibit a hysteresis in the process of tuning the signal frequency. The applicability of the results obtained to the experiments with the plasma-assisted backward-wave oscillator currently underway at the University of Maryland is discussed

  7. Study on density wave oscillation in parallel channel by section form

    International Nuclear Information System (INIS)

    Huang Jun; Huang Yanping; Wang Yanlin

    2013-01-01

    Based on 170 density wave oscillation experimental data from parallel round tube and narrow rectangular channel, the experiment method, identification method of oscillation and analysis method of experimental data have be uniformed, and the oscillation boundary of round tube and narrow rectangular channel have be analyzed. The investigation results show that the oscillation boundary is not affected by the channel section forms with identical equivalent diameter with pressure l.0∼19.2 MPa, mass flux 101.9∼1200.0 kg·m-2·s -1 and inlet sub cooling 18.0∼85.2℃. (authors)

  8. Localization and solitary waves in solid mechanics

    CERN Document Server

    Champneys, A R; Thompson, J M T

    1999-01-01

    This book is a collection of recent reprints and new material on fundamentally nonlinear problems in structural systems which demonstrate localized responses to continuous inputs. It has two intended audiences. For mathematicians and physicists it should provide useful new insights into a classical yet rapidly developing area of application of the rich subject of dynamical systems theory. For workers in structural and solid mechanics it introduces a new methodology for dealing with structural localization and the related topic of the generation of solitary waves. Applications range from classi

  9. Surface plasmon quantum cascade lasers as terahertz local oscillators.

    Science.gov (United States)

    Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E

    2008-02-15

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.

  10. Dependence of oscillational instabilities on the amplitude of the acoustic wave in single-axis levitators

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente

    2007-01-01

    It is well known that acoustic waves exert forces on a boundary with which they interact; these forces can be so intense that they can compensate for the weight of small objects up to a few grams. In this way, it is possible to maintain solid or liquid samples levitating in a fluid, avoiding...... the use of containers, which may be undesirable for certain applications. Moreover, small samples can be manipulated by means of acoustic waves. In this paper, we report a study on the oscillational instabilities that can appear on a levitated solid sphere in single-axis acoustic devices. A theory...... proportional to the oscillation frequency of the levitated sample. We also present experimental results that show that the oscillational instabilities can be reduced if the amplitude of the acoustic wave is increased; as a result, stable conditions can be obtained where the oscillations of the sphere...

  11. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  12. Pneumatic Performance of a Non-Axisymmetric Floating Oscillating Water Column Wave Energy Conversion Device in Random Waves

    OpenAIRE

    Bull, Diana

    2014-01-01

    A stochastic approach is used to gain a sophisticated understanding of a non-axisymmetric floating oscillating water column's response to random waves. A linear, frequency-domain performance model that links the oscillating structure to air-pressure fluctuations with a Wells Turbine in 3-dimensions is used to study the device performance at a northern California deployment location. Both short-term, sea-state, and long-term, annual, predictions are made regarding the devices performance. U...

  13. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    DEFF Research Database (Denmark)

    Liang, Z.; Willatzen, Morten; Christensen, Johan

    2015-01-01

    for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated......We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled......, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena....

  14. Persistence of the planetary wave type oscillations in foF2 over Europe

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2003-07-01

    Full Text Available Planetary waves are oscillations of very predominantly tropospheric origin with typical periods of about 2–30 days. Their dominant zonal wave numbers are 1, 2 and 3, i.e. the waves are of large-scale (global character. The planetary wave type oscillations have been observed in the lower and middle atmosphere but also in the ionosphere, including the ionospheric F2-layer. Here, we deal only with the oscillations analyzed for four European stations over a solar cycle with the use of the Meyer and Morlet wavelet transforms. Waves with periods near 5, 10 and 16 days are studied. Only events with a duration of three wave-cycles and more are considered. The 5-day period wave events display a typical duration of 4 cycles, while 10- and 16-day wave events are less persistent, with a typical duration of about 3.5 cycles and 3 cycles, respectively. The persistence pattern in terms of number of cycles and in terms of number of days is different. In terms of number of cycles, the typical persistence of oscillations decreases with increasing period. On the other hand, in terms of number of days the typical persistence evidently increases with increasing period. The spectral distribution of event duration is too broad to allow for a reasonable prediction of event duration. Thus, the predictability of the planetary wave type oscillations in foF2 seems to be very questionable.Key words. Ionosphere (ionosphere-atmosphere interaction, mid-latitude ionosphere, ionospheric disturbances – Meteorology and atmospheric dynamics (waves and tides

  15. Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators

    Science.gov (United States)

    Manimala, James Mathew

    Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation

  16. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    Science.gov (United States)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  17. Multichannel heterodyne radiometers with fast-scanning backward-wave oscillators for ECE measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Poznyak, V.I.; Ploskirev, G.; Kalupin, D.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Gao, X.; Wan, B.N.; Zhang, X.D.; Wang, K.J.; Kuang, G.L.

    2001-01-01

    Two sets of fast-scanning heterodyne radiometer receiver systems employing backward-wave oscillators (BWOs) in 78-118 and 118-178 GHz were developed and installed for electron cyclotron emission (ECE) measurements on HT-7 superconducting tokamak. The double sideband (DSB) radiometer in 78-118 GHz measures 16 ECE frequency points with a scanning time period of 0.65 ms. The other radiometer in 118-178 GHz consists of one independent channel of DSB heterodyne receiver with intermediate frequency (IF) of 100-500 MHz and two channels of single sideband (SSB) heterodyne receiver that are sensitive to upper sideband and lower sideband individually; the IF frequency of the SSB channels are 1.5 GHz around the local oscillator frequencies with 1 GHz bandwidth. By employing a novel design, this unique radiometer measures 3 ECE frequency points at each of the 16 local oscillator frequency points in 118-178 GHz, and the full band can be swept in 0.65 ms period, thus the radiometer measures 48 ECE frequency points in 0.65 ms in principle. Each of the local oscillators' frequency points can be preset by program to meet specific physics interests. Horizontal view of ECE was installed to measure electron temperature profiles; vertically viewing optics along a perpendicular chord was also installed to study nonthermal ECE spectra. Preliminary measurement results were presented during ohmic and pellet injection plasmas

  18. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  19. Circuit Design to Stabilize the Reflectometer Local Oscillator Signals

    International Nuclear Information System (INIS)

    Kung CC; Kramer GJ; Johnson E; Solomon W; Nazikian R.

    2005-01-01

    Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations when the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver

  20. Electronically Tuned Local Oscillators for the NOEMA Interferometer

    Science.gov (United States)

    Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice

    2016-03-01

    We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.

  1. Circuit Design to Stabilize the Reflectometer Local Oscillator Signals

    Energy Technology Data Exchange (ETDEWEB)

    Kung, C. C.; Kramer, G. J.; Johnson, E.; Solomon, W.; Nazikian, R.

    2005-10-04

    Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations when the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver.

  2. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  3. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2002-01-01

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  4. Vacuum Rabi Oscillation of an Atom without Rotating-Wave Approximation

    International Nuclear Information System (INIS)

    Fa-Qiang, Wang; Wei-Ci, Liu; Rui-Sheng, Liang

    2008-01-01

    We have investigated vacuum Rabi oscillation of an atom coupled with single-mode cavity field exactly, and compared the results with that of the Jaynes–Cummings (J–C) model. The results show that for resonant case, there is no Rabi oscillation for an atom. For small detuning and weak coupling case, the probability for the atom in excited state oscillates against time with different frequencies and amplitudes from that of the J-C model. It exhibits that the counter-rotating wave interaction could significantly effect the dynamic behaviour of the atom, even under the condition in which the RWA is considered to be justified

  5. Density wave oscillations of a boiling natural circulation loop induced by flashing

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Masahiro; Inada, Fumio; Yasuo, Akira [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-09-01

    Experiments are conducted to investigate two-phase flow instabilities in a boiling natural circulation loop with a chimney due to flashing in the chimney at lower pressure. The test facility used in this experiment is designed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Stability maps in reference to the heat flux, the inlet subcooling, the system pressure are presented. This instability is suggested to be density wave oscillations due to flashing in the chimney, and the differences from other phenomena such as flow pattern oscillations and geysering phenomena are discussed by investigating the dynamic characteristics, the oscillation period, and the transient flow pattern.

  6. Traveling wave tube oscillator/amplifier with superconducting rf circuit

    International Nuclear Information System (INIS)

    Jasper, L.J. Jr.

    1989-01-01

    This patent describes a device comprising: an electron gun for producing an electron beam; a collector for collecting the electron beam; a vacuum housing surrounding the electron beam and having an integral slow wave circuit, the circuit being made from superconducting ceramic material; means for maintaining the temperature of the superconducting ceramic below its critical temperature; means for extracting an output signal from the slow wave circuit; means for creating a magnetic field within the vacuum housing so that interaction between the electron beam and the slow wave circuit produces the output signal

  7. Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators

    International Nuclear Information System (INIS)

    Lanford, O E III; Mintchev, S M

    2015-01-01

    Travelling waves are an important class of signal propagation phenomena in extended systems with a preferred direction of information flow. We study the generation of travelling waves in unidirectional chains of coupled oscillators communicating via a phase-dependent pulse-response interaction borrowed from mathematical neuroscience. Within the context of such systems, we develop a widely applicable, jointly numerical and analytical methodology for deducing existence and stability of periodic travelling waves. We provide careful numerical studies that support the existence of a periodic travelling wave solution as well as the asymptotic relaxation of a single oscillator to the wave when it is forced with the wave profile. Using this evidence as an assumption, we analytically prove global stability of waves in the infinite chain, with respect to initial perturbations of downstream sites. This rigorous stability result suggests that asymptotic relaxation to the travelling wave occurs even when the forcing is perturbed from the wave profile, a property of the motivating system that is supported by previous work as well as the convergence of the more sophisticated numerical algorithm that we propose in order to compute a high-precision approximation to the solution. We provide additional numerical studies that show that the wave is part of a one-parameter family, and we illustrate the structural robustness of this family with respect to changes in the coupling strength. (paper)

  8. Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations

    International Nuclear Information System (INIS)

    Lahey, R.T. Jr.; Yadigaroglu, G.

    1974-01-01

    The mathematical technique known as the ''method of characteristics'' has been used to construct an exact, analytical solution to predict the onset of density-wave oscillations in diabatic two-phase systems, such as Boiling Water Nuclear Reactors (BWR's). Specifically, heater wall dynamics, boiling boundary dynamics and nuclear kinetics have been accounted for in this analysis. Emphasis is placed on giving the reader a clear physical understanding of the phenomena of two-phase density-wave oscillations. Explanations are presented in terms of block diagram logic, and phasor representations of the various pressure drop perturbations are given. (U.S.)

  9. Dynamics of a nonlinear oscillator and a low-amplitude frequency-modulated wave

    International Nuclear Information System (INIS)

    White, R.C.; McNamara, B.

    1987-01-01

    When the frequency of a small amplitude plane wave is varied slowly over a large enough bandwidth and this wave is incident upon a nonlinear oscillator, the resulting perturbed motion can exhibit stochastic behavior. Applications for the study of this system are wide and varied. We apply Lie-transform perturbation theory and mapping techniques in the analysis of the stochastic transition and the consequent induced diffusion in the oscillator phase space. A constant of the motion to the first order in a peturbation parameter is calculated, a mapping approximation is derived, and diffusion calculations from the mapping are given. Copyright 1987 Academic Press, Inc

  10. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    Science.gov (United States)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  11. Global competition and local cooperation in a network of neural oscillators

    Science.gov (United States)

    Terman, David; Wang, DeLiang

    An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.

  12. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  13. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  14. Construction of localized atomic wave packets

    International Nuclear Information System (INIS)

    Ranjani, S Sree; Kapoor, A K; Panigrahi, P K

    2010-01-01

    It is shown that highly localized solitons can be created in lower dimensional Bose-Einstein condensates (BECs), trapped in a regular harmonic trap, by temporally varying the trap frequency. A BEC confined in such a trap can be effectively used to construct a pulsed atomic laser emitting coherent atomic wave packets. In addition to having a complete control over the spatio-temporal dynamics of the solitons, we can separate the equation governing the Kohn mode (centre of mass motion). We investigate the effect of the temporal modulation of the trap frequency on the spatio-temporal dynamics of the bright solitons and also on the Kohn mode. The dynamics of the solitons and the variations in the Kohn mode with time are compared with those in a BEC confined in a trap with unmodulated trap frequency.

  15. Locally excitatory, globally inhibitory oscillator networks: theory and application to scene segmentation

    Science.gov (United States)

    Wang, DeLiang; Terman, David

    1995-01-01

    A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated analytically and by computer simulation. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. We show analytically that with the selective gating mechanism the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate LEGION's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding, and may provide an effective computational framework for scene segmentation and figure/ground segregation.

  16. Effects Of Local Oscillator Errors On Digital Beamforming

    Science.gov (United States)

    2016-03-01

    processor EF element factor EW electronic warfare FFM flicker frequency modulation FOV field-of-view FPGA field-programmable gate array FPM flicker...frequencies and also more difficult to measure [15]. 2. Flicker frequency modulation The source for flicker frequency modulation ( FFM ) is attributed to...a physical resonance mechanism of an oscillator or issues controlling electronic components. Some oscillators might not show FFM noise, which might

  17. Influence of cathode emission uniformity on microwave generation in relativistic backward wave oscillator

    Science.gov (United States)

    Wu, Ping; Sun, Jun; Teng, Yan

    2017-12-01

    The emission uniformity of explosive emission cathodes is important to the operation of high power microwave generators. Although this concept seems to be widely accepted, the concrete influence of cathode emission uniformity on microwave generation has not been researched in detail and many conclusions on this matter are ambiguous due to the lack of solid evidence. This paper makes an effort to research this issue with particle-in-cell simulations about an X-band relativistic backward wave oscillator. To keep the diode impedance unchanged, an emission model in which each emission cell is artificially assigned a specific current density is adopted. The emission non-uniformity is simulated in three ways: spaced emission, large-area no-emission, and local enhanced emission. The simulation results uncover three phenomena: first, no significant influence is found for the cathode emission uniformity on the microwave starting time as long as no obvious mode competition is excited by emission non-uniformity; second, bad emission uniformity may bring about reduction of microwave power, but this may not happen when the emission non-uniformity is just localized to a few discrete strong emission points; third, under specific circumstances, the emission non-uniformity may lead to the excitation of mode competition, which can significantly delay the starting time and lower the microwave power.

  18. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  19. Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability

    International Nuclear Information System (INIS)

    Uchida, Yutaka; Sakurai, Takashi.

    1975-01-01

    Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)

  20. A chemometric method to identify enzymatic reactions leading to the transition from glycolytic oscillations to waves

    Science.gov (United States)

    Zimányi, László; Khoroshyy, Petro; Mair, Thomas

    2010-06-01

    In the present work we demonstrate that FTIR-spectroscopy is a powerful tool for the time resolved and noninvasive measurement of multi-substrate/product interactions in complex metabolic networks as exemplified by the oscillating glycolysis in a yeast extract. Based on a spectral library constructed from the pure glycolytic intermediates, chemometric analysis of the complex spectra allowed us the identification of many of these intermediates. Singular value decomposition and multiple level wavelet decomposition were used to separate drifting substances from oscillating ones. This enabled us to identify slow and fast variables of glycolytic oscillations. Most importantly, we can attribute a qualitative change in the positive feedback regulation of the autocatalytic reaction to the transition from homogeneous oscillations to travelling waves. During the oscillatory phase the enzyme phosphofructokinase is mainly activated by its own product ADP, whereas the transition to waves is accompanied with a shift of the positive feedback from ADP to AMP. This indicates that the overall energetic state of the yeast extract determines the transition between spatially homogeneous oscillations and travelling waves.

  1. Enhancing propagation characteristics of truncated localized waves in silica

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  2. On the Quantum Potential and Pulsating Wave Packet in the Harmonic Oscillator

    International Nuclear Information System (INIS)

    Dubois, Daniel M.

    2008-01-01

    A fundamental mathematical formalism related to the Quantum Potential factor, Q, is presented in this paper. The Schroedinger equation can be transformed to two equations depending on a group velocity and a density of presence of the particle. A factor, in these equations, was called ''Quantum Potential'' by D. Bohm and B. Hiley. In 1999, I demonstrated that this Quantum Potential, Q, can be split in two Quantum Potentials, Q 1 , and Q 2 , for which the relation, Q=Q 1 +Q 2 , holds. These two Quantum Potentials depend on a fundamental new variable, what I called a phase velocity, u, directly related to the probability density of presence of the wave-particle, given by the modulus of the wave function. This paper gives some further developments for explaining the Quantum Potential for oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator. It is shown that the two Quantum Potentials play a central role in the interpretation of quantum mechanics. A breakthrough in the formalism of the Quantum Mechanics could be provoked by the physical properties of these Quantum Potentials. The probability density of presence of the oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator is directly depending on the ratio Q 2 /Q 1 of the two Quantum Potentials. In the general case, the energy of these Gaussian wave packets is not constant, but is oscillating. The energy is given by the sum of the kinetic energy, T, the potential energy, V, and the two Quantum Potentials: E=T+V+Q 1 +Q 2 . For some conditions, given in the paper, the energy can be a constant. The first remarkable result is the fact that the first Quantum Potential, Q 1 , is related to the ground state energy, E 0 , of the Quantum Harmonic Oscillator: Q 1 =h-bar ω/2=E 0 . The second result is related to the property of the second Quantum Potential, Q 2 , which plays the role of an anti-potential, Q 2 =-V(x), where V is the harmonic oscillator potential. This Quantum Potential

  3. Quantum oscillation amplification of the ultrasound polarization parameters in tungsten during coupling with the spiral wave

    International Nuclear Information System (INIS)

    Gudkov, V.V.; Zhevstovskikh, I.V.; Zimbovskaya, N.A.; Okulov, V.I.

    1991-01-01

    The quantum oscillations are studied of ellipcity, the rotation angle of the ultrasound polarization plane, the velocity and absorption of waves polarized circularly at the 196 MHz frequency in a tungsten single crystal in magnetic field of 30-80 kOe at temperature 1,8 K. The oscillation amplitudes of ellipticity and rotation angle of the ultrasound polarization plane beyond the Doppler-shifted cyclotron resonance are found to vary nonmonotonously with field and to be large enough, so that they are not described by the simple expressions for high fields. The explanation for the oscillation amplification of the polarization parameters is given within the theory involving the ultrasound-spiral wave coupling predicted by Kaner and Skobov. The quantitative comparison in details demonstrates a good agreement in the theory and experimental data and allows to find the numerical values of new parameters characterizing the Fermi surface, electron relaxation frequency, and deformation potential

  4. The Inter Facility Testing of a Standard Oscillating Water Column (OWC) Type Wave Energy Converter (WEC)

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Thomsen, Jonas Bjerg

    This report describes the behavior and preliminary performance of a simplified standard oscillating water column (OWC) wave energy converter (WEC). The same tests will be conducted at different scales at 6 different test facilities and the results obtained will be used for comparison. This project...

  5. Spiral wave chimera states in large populations of coupled chemical oscillators

    Science.gov (United States)

    Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald

    2018-03-01

    The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.

  6. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    Science.gov (United States)

    Kumar, Prashant; Gulshan

    2017-12-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  7. Planetary and tidal wave-type oscillations in the ionospheric sporadic E layers over Tehran region

    Science.gov (United States)

    Karami, K.; Ghader, S.; Bidokhti, A. A.; Joghataei, M.; Neyestani, A.; Mohammadabadi, A.

    2012-04-01

    It is believed that in the lower ionosphere, particularly in the ionospheric sporadic E (Es) layers (90-130 km), the planetary and tidal wave-type oscillations in the ionized component indicate the planetary and tidal waves in the neutral atmosphere. In the present work, the presence of wave-type oscillations, including planetary and tidal waves in the ionospheric sporadic E layers over Tehran region is examined. Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran, from July 2006 to June 2007 are used to investigate seasonal variations of planetary and tidal waves activities. For the purpose of accurate comparison between different seasons, wavelet transform is applied to time series of foEs and h‧Es, namely, the critical frequency and virtual height of Es layers, respectively. The results show that the sporadic E layers over Tehran region are strongly under the influence of upward propagation of waves from below. More specifically, among diverse range of periodicities in the sporadic E layers, we found that diurnal (24 hours) and semidiurnal (12 hours) oscillations in all seasons for both parameters. Moreover, terdiurnal (8 hours) tide-like variation is observed during spring and summer for foEs parameter and summer and winter for h‧Es. Furthermore, the results show that diurnal tidal waves obtain their maximum activities during autumn and winter seasons, and their activities decrease during the late spring and summer. In addition, periods of about 2, 4, 6, 10, 14, and 16 days in our observation verifies the hypothesis of upward propagation of planetary waves from lower atmosphere to the ionosphere. Moreover, planetary waves have their maximum activities during equinox.

  8. Local Dynamics of a Laser with Rapidly Oscillating Parameters

    Directory of Open Access Journals (Sweden)

    E. V. Grigorieva

    2013-01-01

    Full Text Available The dynamics of class B lasers with the incoherent optical feedback formed by quickly vibrating external mirrors is viewed. The problem of the stability of equilibrium in a model system with rapidly oscillating coefficients is studied. The averaged system with the distributed delay is received. It is determined that in the presence of fast delay oscillation the limit of instability of a balance state moves towards significantly greater values of the feedback coefficient. The dependence of the shift with increasing the amplitude modulation has a band structure, so the rapid oscillations of delay can stabilize or destabilize the equilibrium. Normal forms which show changes of the sign of Lyapunov quantityalong border are constructed. They describe characteristics of periodic and quasiperiodic modes close to the balance state.

  9. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  10. Strong shock wave and areal mass oscillations associated with impulsive loading of planar laser targets

    International Nuclear Information System (INIS)

    Velikovich, A.L.; Schmitt, A.J.; Metzler, N.; Gardner, J.H.

    2003-01-01

    When a rippled surface of a planar target is irradiated with a short (subnanosecond) laser pulse, the shock wave launched into the target and the mass distribution of the shocked plasma will oscillate. These oscillations are found to be surprisingly strong compared, for example, to the case when the laser radiation is not turned off but rather keeps pushing the shock wave into the target. Being stronger than the areal mass oscillations due to ablative Richtmyer-Meshkov instability and feedout in planar targets, which have recently been observed at the Naval Research Laboratory (NRL) [Aglitskiy et al., Phys. Plasmas 9, 2264 (2002)], these oscillations should therefore be directly observable with the same diagnostic technique. Irradiation of a target with a short laser pulse represents a particular case of an impulsive loading, a fast release of finite energy in a thin layer near the surface of a target. Renewed interest to the impulsive loading in the area of direct-drive laser fusion is due to the recent proposals of using a short pulse prior to the drive pulse to make the target more resistant to laser imprint and Rayleigh-Taylor growth. Impulsive loading produces a shock wave that propagates into the target and is immediately followed by an expansion wave, which gradually reduces the shock strength. If the irradiated surface is rippled, then, while the shock wave propagates through the target, its modulation amplitude grows, exceeding the initial ripple amplitude by a factor of 2 or more. The oscillating areal mass reaches the peak values that exceed the initial mass modulation amplitude (density times ripple height) by a factor of 5-7 or more, and reverses its phase several times after the laser pulse is over. The oscillatory growth is more pronounced in fluids with higher shock compressibility and is probably related to the Vishniac's instability of a blast wave. Frequency of the oscillations is determined by the speed of sound in the shocked material, and

  11. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.

    Science.gov (United States)

    Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun

    2018-04-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  12. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors

    Directory of Open Access Journals (Sweden)

    Keum-Won Ha

    2018-04-01

    Full Text Available Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs, the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  13. Experiment on a large-diameter plasma-filled backward-wave oscillator

    International Nuclear Information System (INIS)

    Ogura, K.; Minami, K.; Kurashina, K.I.; Kim, W.; Watanabe, T.; Ishii, K.; Sugito, S.

    1995-01-01

    A large-diameter plasma-filled backward-wave oscillator (BWO) is investigated experimentally. The parameters of slow wave structure are chosen so that the oscillation frequency is about 20GHz at 60keV beam energy. Plasma is produced by the beam and has favorable effects for beam propagation and Cerenkov oscillations. The output power of the BWO with plasma is observed to be three to six times that of vacuum BWO. The power level is several kilowatts and the efficiency is about 0.01%. For Cerenkov oscillations of a large-diameter BWO, the beam energy mainly determines the starting conditions for oscillation. The output power is strongly enhanced when the guiding magnetic field approaches the fundamental electron cyclotron resonance. This mechanism is closely related to the anomalous Doppler cyclotron resonance. The maximum power of 480kW with an efficiency of 5% is achieved even for a relatively low beam energy of 60keV. ((orig.))

  14. Quantum theory of single events: Localized de Broglie-wavelets, Schroedinger waves and classical trajectories

    International Nuclear Information System (INIS)

    Barut, A.O.

    1990-06-01

    For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs

  15. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.

    Science.gov (United States)

    Villalobos, Claudio; Maldonado, Pedro E; Valdés, José L

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples' lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory.

  16. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  17. Prolongation of the deployment and monitoring of a multiple oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Chudley, J.; Dai, Y.M.

    2003-07-01

    This report summarises the findings of a project to prolong the sea trials of a multiple oscillating water column wave energy converter (MOWC) device for another 12 months to obtain further data. The objectives of the project include the evaluation of the ability of the MOWC to generate reliable energy to produce electricity, the estimation of the conversion efficiency, and the identification of improvements to increase the conversion efficiency, Details are given of the analysis of the sea trials data, and the performance of the broadband oscillating water column prototype.

  18. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    Science.gov (United States)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  19. Study of the wave packet treatment of neutrino oscillation at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    An, F.P. [East China Univ. of Science and Technology, Shanghai (China). Inst. of Modern Physics; Balantekin, A.B. [Wisconsin Univ., Madison, WI (United States); Band, H.R. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Collaboration: Daya Bay Collaboration; and others

    2017-09-15

    The disappearance of reactor anti ν{sub e} observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ{sub rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of anti ν{sub e} acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 x 10{sup -17} < σ{sub rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10{sup -14} or similar 10{sup -11} cm) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin{sup 2}2θ{sub 13} and Δm{sup 2}{sub 32} within the plane wave model. (orig.)

  20. Study of the wave packet treatment of neutrino oscillation at Daya Bay

    Science.gov (United States)

    Daya Bay Collaboration

    2017-09-01

    The disappearance of reactor \\bar{ν }_e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ _{rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of \\bar{ν }_e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 × 10^{-17}< σ _{rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10^{-14} ≲ σ _ {rel} < 0.23, and an upper limit of σ _ {rel}<0.20 (which corresponds to σ _x ≳ 10^{-11} {cm }) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin ^22θ _{13} and Δ m^2_{32} within the plane wave model.

  1. The Evolution and Revival Structure of Localized Quantum Wave Packets

    OpenAIRE

    Bluhm, Robert; Kostelecky, Alan; Porter, James

    1995-01-01

    Localized quantum wave packets can be produced in a variety of physical systems and are the subject of much current research in atomic, molecular, chemical, and condensed-matter physics. They are particularly well suited for studying the classical limit of a quantum-mechanical system. The motion of a localized quantum wave packet initially follows the corresponding classical motion. However, in most cases the quantum wave packet spreads and undergoes a series of collapses and revivals. We pre...

  2. Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra

    Science.gov (United States)

    Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro

    2018-05-01

    Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.

  3. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.

    Science.gov (United States)

    Campbell, S; Wang, D

    1996-01-01

    A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.

  4. Helioseismology and asteroseismology: looking for gravitational waves in acoustic oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: ilopes@uevora.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)

    2014-10-10

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10{sup –20} h {sub –20} with h {sub –20} ∼ 1 or h {sub –20} ∼ 10{sup 3}, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10{sup –3}η {sub N} μHz, with η {sub N} ∼ 10{sup –3}-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h{sub −20}η{sub N}{sup −1}∼ 10{sup –9}-10{sup –3} cm s{sup –1}, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  5. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  6. Comparative analysis of gyrotron backward-wave oscillators operating at different cyclotron harmonics

    International Nuclear Information System (INIS)

    Yeh, Y.S.; Chang, T.H.; Wu, T.S.

    2004-01-01

    A comparative analysis between the fundamental and second cyclotron harmonics of gyrotron backward-wave oscillators (gyro-BWOs) is presented. The simulation results reveal that nonlinear field contraction is a common feature for both harmonic interactions. Besides, the electron transit angle, used to characterize the axial modes of the fundamental harmonic TE 11 mode at the start-oscillation conditions, is found to be applicable even for the second harmonic TE 21 mode. Each axial mode of either the fundamental harmonic TE 11 or the second harmonic TE 21 modes is maintained at a constant value of the electron transit angle while changing the operating parameters, such as magnetic field and beam voltage. Extensive numerical calculations are conducted for the start-oscillation currents and tuning properties. Moreover, single-mode operating regimes are suggested where the second harmonic TE 21 gyro-BWO could generate a considerable output power, comparing with the fundamental harmonic TE 11 gyro-BWO

  7. An analysis of density-wave oscillations in ventilated channels

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1982-01-01

    A mathematical model has been developed for the linear stability analyses of a system of ventilated parallel boiling channels. The model can accommodate phasic slip, arbitrary non-uniform axial power distributions, distributed local losses, heater wall dynamics, channel-to-channel radial power skews, discrete or continuous ventilation between the channels, turbulent mixing between the channels, various donor-cell options for the lateral transport of energy and momentum, and a transverse momentum equation, including storage and cross-flow inertia. A special matrix reduction scheme was developed to efficiently solve the system of linearized, Laplace transformed, nodal equations. The digital computer programs, MAZDA-1F, MAZDA-4S and MAZDA-4F, were written for the numerical evaluation of the mathematical model developed. MAZDA-1F is a frequency domain code which can be used for the study of linear stability of a single boiling channel. MAZDA-4S evaluates the steady-state flow and pressure fields in a system of ventilated parallel channels. The frequency domain code, MAZDA-4F, can then be used to assess the linear stability of the flow field obtained with MAZDA-4S. A parametric study using MAZDA-1F and MAZDA-4F revealed that phasic slip, axial power distribution, heater wall dynamics, local losses, lateral ventilation and radial power skew can have a significant effect on the stability characteristics of the system

  8. Chimera states in two-dimensional networks of locally coupled oscillators

    Science.gov (United States)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  9. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.

    Science.gov (United States)

    Roth, Fabian C; Beyer, Katinka M; Both, Martin; Draguhn, Andreas; Egorov, Alexei V

    2016-12-01

    The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Analysis of density-wave oscillations in ventilated channels

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; Podowski, M.; Lahey, R.T. Jr.

    1983-03-01

    A mathematical model has been developed for the linear stability analyses of a system of ventilated parallel boiling channels. The model can accomodate phasic slip, arbitrary non-uniform axial power distributions, distributed local losses, heater wall dynamics, channel-to-channel radial power skews, discrete or continuous ventilation between the channels, turbulent mixing between the channels, various donor-cell options for the lateral transport of energy and momentum, and a transverse momentum equation, including storage and crossflow inertia. A special matrix reduction scheme was developed to efficiently solve the system of linearized, Laplace transformed , nodal equations. The digital computer programs, MAZDA-1F, MAZDA-4S and MAZDA-4F, were written for the numerical evaluation of the mathematical model developed

  11. Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2016-12-01

    Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.

  12. Wave fronts and spatiotemporal chaos in an array of coupled Lorenz oscillators

    International Nuclear Information System (INIS)

    Pazo, Diego; Montejo, Noelia; Perez-Munuzuri, Vicente

    2001-01-01

    The effects of coupling strength and single-cell dynamics (SCD) on spatiotemporal pattern formation are studied in an array of Lorenz oscillators. Different spatiotemporal structures (stationary patterns, propagating wave fronts, short wavelength bifurcation) arise for bistable SCD, and two well differentiated types of spatiotemporal chaos for chaotic SCD (in correspondence with the transition from stationary patterns to propagating fronts). Wave-front propagation in the bistable regime is studied in terms of global bifurcation theory, while a short wavelength pattern region emerges through a pitchfork bifurcation

  13. Self-diffraction oscillations of two-wave mixing in a acrylamide photopolymer film

    CERN Document Server

    Kwak, C H; Sung, G Y; Choe, O S; Lee, Y W; Lee, I W

    1999-01-01

    Degenerate two-wave energy-coupling experiments were performed on a thick photopolymer film. It was found that the observed periodic oscillations of the energy couplings between the two pump beams were closely related to mixed gratings of the phase and the absorption gratings and to nonzero spatial phase shifts of the gratings with respect to the intensity interference patterns. A simple theory based on coupled wave theory was developed in conjunction with nonlocal responses of the mixed gratings and was compared with the experimental data.

  14. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    Science.gov (United States)

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  15. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  16. THz Backward-wave oscillators for plasma diagnostic in nuclear fusion

    OpenAIRE

    Paoloni, Claudio; Yue, Lingna; Tang, Xiaopin; Zhang, Fuzhi; Popovic, Branko; Himes, Logan; Barchfeld, Robert; Gamzina, Diana; Mineo, Mauro; Letizia, Rosa; Luhmann Jr., Neville C.

    2015-01-01

    Summary form only given. The understanding of plasma turbulence in nuclear fusion is related to the availability of powerful THz sources and the possibility to map wider plasma regions. A novel approach to realize compact THz sources to be implemented in the plasma diagnostic at NSTX experiment (Princeton Plasma Physics Laboratory, USA) is reported.Two novel 0.346 THz Backward-Wave Oscillators (BWOs) have been designed and are presently in the fabrication phase. One BWO is based on the Double...

  17. Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere

    Science.gov (United States)

    Mošna, Z.; Koucká Knížová, P.

    2012-12-01

    The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.

  18. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    Science.gov (United States)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  19. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  20. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  1. Simulation studies of plasma waves in the electron foreshock: The generation of downshifted oscillations

    International Nuclear Information System (INIS)

    Dum, C.T.

    1990-01-01

    The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beamvelocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially, a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely ironed out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out

  2. Simulation studies of plasma waves in the electron foreshock - The generation of downshifted oscillations

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.

  3. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zaigao; Wang, Jianguo [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Wang, Yue; Qiao, Hailiang; Zhang, Dianhui [Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Guo, Weijie [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  4. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  5. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed; Niver, Edip

    2011-01-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes

  6. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial

  7. Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    OpenAIRE

    Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall

    1998-01-01

    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...

  8. Analisa Kinerja Pneumatic Wave Energy Converter (WEC Dengan Menggunakan Oscillating Water Column(OWC

    Directory of Open Access Journals (Sweden)

    Rico Ary Sona

    2014-03-01

    Full Text Available Sistem konversi energi gelombang laut merupakan sistem yang menangkap energi gelombang laut untuk dikonversi menjadi energi lain seperti energi listrik. Salah satu jenis wave energy converter (WEC yang banyak digunakan diantaranya yaitu Oscillating Water Columnatau OWC. Prinsip kerja sistem WEC ini ialah mengubah pergerakan naik turunnya gelombang pada silinder kolom udara untuk menghasilkan udara bertekanan yang selanjutnya digunakan untuk menggerakkan turbin dan generator listrik. Penelitian ini ditujukan untuk dapat mengetahui kinerja dari Oscillating Water Column (OWC dalam menangkap energi gelombang laut. Untuk dapat melakukan penelitian ini diperlukan beberapa perlatan yaitu pembuatan konfigurasi peralatan pembuat dan penangkapan gelombang yang terdiri dari pelampung dan silinder Oscillating Water Column (OWC. Percobaan ini dilakukan dengan cara memvariasikan panjang dan tinggi gelombang pada flow water channel dengan mengatur bukaan pada pneumatic speed control. Dari hasil percobaan diperoleh bahwa kinerja paling efektif diperoleh pada panjang gelombang 0.9 m dan tinggi gelombang 0.23m. Pada karakteristik gelombang tersebut diperoleh tekanan, kecepatan dan volume pada silinder Oscillating Water Column (OWC sebesar  1.11 bar, 39.39 m/s dan 0.0057 m3. Dari hasil percobaan juga diperoleh waktu pengisian Pressure Vessel selama 100 menit dengan tekanan 3 Psi.

  9. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    Science.gov (United States)

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  10. Optimization of relativistic backward wave oscillator with non-uniform slow wave structure and a resonant reflector

    International Nuclear Information System (INIS)

    Chen, Zaigao; Wang, Jianguo; Wang, Yue

    2015-01-01

    This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM 020 mode of reflector to higher-order TM 021 mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device

  11. Resonance localization in tokamaks excited with ICRF waves

    International Nuclear Information System (INIS)

    Kerbel, G.D.; McCoy, M.G.

    1985-01-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. The non-local effects of rotational transform and toroidicity can play a significant role in both the propagation and the absorption physics. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. The most common approach is to use Maxwellian absorption rates. We have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field

  12. Direct measurement of density oscillation induced by a radio-frequency wave

    International Nuclear Information System (INIS)

    Yamada, T.; Ejiri, A.; Shimada, Y.; Oosako, T.; Tsujimura, J.; Takase, Y.; Kasahara, H.

    2007-01-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected

  13. Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator

    International Nuclear Information System (INIS)

    Cai Jin-Chi; Chen Huai-Bi; Hu Lin-Lin; Ma Guo-Wu; Chen Hong-Bin; Jin Xiao

    2015-01-01

    In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other. (paper)

  14. Backward wave oscillators with rippled wall resonators: Analytic theory and numerical simulation

    International Nuclear Information System (INIS)

    Swegle, J.A.; Poukey, J.W.

    1985-01-01

    The 3-D analytic theory is based on the approximation that the device is infinitely long. In the absence of an electron beam, the theory is exact and allows us to compute the dispersion characteristics of the cold structure. With the inclusion of a thin electron beam, we can compute the growth rates resulting from the interaction between a waveguide mode of the structure and the slower space charge wave on the beam. In the limit of low beam currents, the full dispersion relation based on an electromagnetic analysis can be placed in correspondence with the circuit theory of Pierce. Numerical simulations permit us to explore the saturated, large amplitude operating regime for TM axisymmetric modes. The scaling of operating frequency, peak power, and operating efficiency with beam and resonator parameters is examined. The analytic theory indicates that growth rates are largest for the TM 01 modes and decrease with both the radial and azimuthal mode numbers. Another interesting trend is that for a fixed cathode voltage and slow wave structure, growth rates peak for a beam current below the space charge limiting value and decrease for both larger and smaller currents. The simulations show waves that grow from noise without any input signal, so that the system functions as an oscillator. The TM 01 mode predominates in all simulations. While a minimum device length is required for the start of oscillations, it appears that if the slow wave structure is too long, output power is decreased by a transfer of wave energy back to the electrons. Comparisons have been made between the analytical and numerical results, as well as with experimental data obtained at Sandia National Laboratories

  15. Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants

    Directory of Open Access Journals (Sweden)

    Aitor J. Garrido

    2015-01-01

    Full Text Available Oscillating Water Column (OWC-based power take-off systems are one of the potential solutions to the current energy problems arising from the use of nuclear fission and the consumption of fossil fuels. This kind of energy converter turns wave energy into electric power by means of three different stages: firstly wave energy is transformed into pneumatic energy in the OWC chamber, and then a turbine turns it into mechanical energy and finally the turbogenerator module attached to the turbine creates electric power from the rotational mechanical energy. To date, capture chambers have been the least studied part. In this context, this paper presents an analytical model describing the dynamic behavior of the capture chamber, encompassing the wave motion and its interaction with the OWC structure and turbogenerator module. The model is tested for the case of the Mutriku wave power plant by means of experimental results. For this purpose, representative case studies are selected from wave and pressure drop input-output data. The results show an excellent matching rate between the values predicted by the model and the experimental measured data with a small bounded error in all cases, so that the validity of the proposed model is proven.

  16. Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter

    Science.gov (United States)

    Michele, Simone; Sammarco, Paolo; d'Errico, Michele

    2016-08-01

    We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency.

  17. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution

    Directory of Open Access Journals (Sweden)

    W. Song

    2012-03-01

    Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.

  18. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Michael [South Dakota School of Mines

    2017-07-25

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  19. Reduce the start current of Smith-Purcell backward wave oscillator by sidewall grating

    International Nuclear Information System (INIS)

    Li, D.; Imasaki, K.; Gao, X.; Yang, Z.; Park, Gun-Sik

    2007-01-01

    A sidewall grating for the Smith-Purcell device is proposed to enhance the coupling of the optical mode with the electron beam and, consequently, relax the stringent requirements to the electron beam. With the help of three-dimensional particle-in-cell simulations, it has been shown that, comparing with the general grating, the usage of a sidewall grating improves the growth rate and dramatically shortens the time for the device to reach saturation. It is also found that the sidewall grating holds the potential to reduce the start current for the operation of a Smith-Purcell backward wave oscillator

  20. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    Science.gov (United States)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  1. Source localization with an advanced gravitational wave detector network

    International Nuclear Information System (INIS)

    Fairhurst, Stephen

    2011-01-01

    We derive an expression for the accuracy with which sources can be localized using a network of gravitational wave detectors. The result is obtained via triangulation, using timing accuracies at each detector and is applicable to a network with any number of detectors. We use this result to investigate the ability of advanced gravitational wave detector networks to accurately localize signals from compact binary coalescences. We demonstrate that additional detectors can significantly improve localization results and illustrate our findings with networks comprised of the advanced LIGO, advanced Virgo and LCGT. In addition, we evaluate the benefits of relocating one of the advanced LIGO detectors to Australia.

  2. Phase coherence of 0.1 Hz microvascular tone oscillations during the local heating

    Science.gov (United States)

    Mizeva, I. A.

    2017-06-01

    The origin of the mechanisms of blood flow oscillations at low frequencies is discussed. It is known that even isolated arteriole demonstrates oscillations with the frequency close to 0.1 Hz, which is caused by the synchronous activity of myocyte cells. On the other hand, oscillations with close frequency are found in the heart rate, which are associated with quite different mechanism. The main purpose of this work is to study phase coherence of the blood flow oscillations in the peripheral vessels under basal and perturbed conditions. Local heating which locally influences the microvascular tone, as one of currently elucidated in sufficient detail physiological test, was chosen. During such provocation blood flow though the small vessels significantly increases because of vasodilation induced by the local synthesis of nitric oxide. In the first part of the paper microvascular response to the local test is quantified in healthy and pathological conditions of diabetes mellitus type 1. It is obtained that regardless of the pathology, subjects with high basal perfusion had lower reserve for vasodilation, which can be caused by the low elasticity of microvascular structure. Further synchronization of pulsations of the heated and undisturbed skin was evaluated on the base of wavelet phase coherency analysis. Being highly synchronised in basal conditions 0.1 Hz pulsations became more independent during heating, especially during NO-mediated vasodilation.

  3. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    KAUST Repository

    Kavulich, Michael J.; Szunyogh, Istvan; Gyarmati, Gyorgyi; Wilson, R. John

    2013-01-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  4. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    KAUST Repository

    Kavulich, Michael J.

    2013-11-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  5. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  6. MODELING OBSERVED DECAY-LESS OSCILLATIONS AS RESONANTLY ENHANCED KELVIN–HELMHOLTZ VORTICES FROM TRANSVERSE MHD WAVES AND THEIR SEISMOLOGICAL APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, P.; De Moortel, I. [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife KY16 9SS (United Kingdom); Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Yokoyama, T., E-mail: patrick.antolin@st-andrews.ac.uk [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-10-20

    In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfvén waves. Due to its localized nature, direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction are recent observations that indicate that in the low-amplitude regime such transverse MHD waves can also appear decay-less, a still unsolved phenomenon. Recent numerical work has shown that Kelvin–Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modeling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant absorption. Such an effect is especially clear in emission lines forming at temperatures that capture the boundary dynamics rather than the core, and reflects the low damping character of the local azimuthal Alfvén waves resonantly coupled to the kink mode. Due to phase mixing, the detected period can vary depending on the emission line, with those sensitive to the boundary having shorter periods than those sensitive to the loop core. This allows us to estimate the density contrast at the boundary.

  7. An overmoded relativistic backward wave oscillator with efficient dual-mode operation

    International Nuclear Information System (INIS)

    Xiao, Renzhen; Li, Jiawei; Bai, Xianchen; Song, Zhimin; Teng, Yan; Ye, Hu; Li, Xiaoze; Sun, Jun; Chen, Changhua; Zhang, Xiaowei

    2014-01-01

    A dual-mode operation mechanism in an overmoded relativistic backward wave oscillator is presented. The electron beam interacts with the −1st space harmonic of TM 01 mode synchronously in the slow wave structure. Then the backward propagating TM 01 mode is converted to the forward propagating TM 02 mode. As the phase velocity of the volume harmonic of TM 02 mode is about twice that of the surface harmonic of TM 01 mode, the TM 02 mode also plays an important role in the high-power microwave generation. Particle-in-cell simulation shows that an efficiency of 48% and a significant improvement of the power capacity have been obtained

  8. Oscillations and waves in a spatially distributed system with a 1/f spectrum

    Science.gov (United States)

    Koverda, V. P.; Skokov, V. N.

    2018-02-01

    A spatially distributed system with a 1/f power spectrum is described by two nonlinear stochastic equations. Conditions for the formation of auto-oscillations have been found using numerical methods. The formation of a 1/f and 1/k spectrum simultaneously with the formation and motion of waves under the action of white noise has been demonstrated. The large extreme fluctuations with 1/f and 1/k spectra correspond to the maximum entropy, which points to the stability of such processes. It is shown that on the background of formation and motion of waves at an external periodic action there appears spatio-temporal stochastic resonance, at which one can observe the expansion of the region of periodic pulsations under the action of white noise.

  9. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  10. Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal.

    Science.gov (United States)

    Li, Zhongyang; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan

    2015-06-20

    Terahertz wave (THz-wave) parametric oscillations with a noncollinear phase-matching scheme at polariton resonance using a MgO:LiNbO3 crystal with a surface-emitted configuration are investigated. We investigate frequency tuning characteristics of a THz-wave via varying the wavelength of the pump wave and phase-matching angle. The effective parametric gain length under the noncollinear phase-matching condition is calculated. Parametric gain and absorption characteristics of a THz-wave in the vicinity of polariton resonances are analyzed.

  11. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    Science.gov (United States)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  12. Local energy decay for linear wave equations with variable coefficients

    Science.gov (United States)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  13. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    Science.gov (United States)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  14. Investigation of the density wave oscillation in ocean motions with reduced order models

    International Nuclear Information System (INIS)

    Yan, B.H.; Li, R.

    2018-01-01

    Highlights: •The parameter about the degree of instability is defined. •The results are in satisfactory agreement with experimental results. •The effect of ocean motions on DWO is analyzed quantitatively. •The results are of good universality and generality. -- Abstract: The two phase flow instability is an important phenomenon in nuclear power and thermal systems. In the research and design of small modular reactor, the effect of ocean motions on the two phase flow instability should be evaluated. In this work, the density wave oscillation in a uniformly heated channel in ocean motions is investigated with reduced order model by transforming the partial differential equations to ordinary differential equations. This kind of frequency domain method is complementary to the time domain analysis with system codes, not as alternatives. The parameter about the degree of instability is defined for the quantitative analysis of two phase flow instability. The results are in satisfactory agreement with experimental results. The effect of ocean motions on density wave oscillation in a uniformly heated channel is analyzed quantitatively. The parametric study is also carried out.

  15. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of ≥10 5 G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of ∼2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.

  16. Numerical analysis of regular waves over an onshore oscillating water column

    Energy Technology Data Exchange (ETDEWEB)

    Davyt, D.P.; Teixeira, P.R.F. [Universidade Federal do Rio Grande (FURG), RS (Brazil)], E-mail: pauloteixeira@furg.br; Ramalhais, R. [Universidade Nova de Lisboa, Caparica (Portugal). Fac. de Ciencias e Tecnologia; Didier, E. [Laboratorio Nacional de Engenharia Civil, Lisboa (Portugal)], E-mail: edidier@lnec.pt

    2010-07-01

    The potential of wave energy along coastal areas is a particularly attractive option in regions of high latitude, such as the coasts of northern Europe, North America, New Zealand, Chile and Argentina where high densities of annual average wave energy are found (typically between 40 and 100 kW/m of wave front). Power estimated in the south of Brazil is 30kW/m, creating a possible alternative of source energy in the region. There are many types and designs of equipment to capture energy from waves under analysis, such as the oscillating water column type (OWC) which has been one of the first to be developed and installed at sea. Despite being one of the most analyzed wave energy converter devices, there are few case studies using numerical simulation. In this context, the numerical analysis of regular waves over an onshore OWC is the main objective of this paper. The numerical models FLUINCO and FLUENT are used for achieving this goal. The FLUINCO model is based on RANS equations which are discretized using the two-step semi-implicit Taylor-Galerkin method. An arbitrary Lagrangian Eulerian formulation is used to enable the solution of problems involving free surface movements. The FLUENT code (version 6.3.26) is based on the finite volume method to solve RANS equations. Volume of Fluid method (VOF) is used for modeling free surface flows. Time integration is achieved by a second order implicit scheme, momentum equations are discretized using MUSCL scheme and HRIC (High Resolution Interface Capturing) scheme is used for convective term of VOF transport equation. The case study consists of a 10.m deep channel with a 10 m wide chamber at its end. One meter high waves with different periods are simulated. Comparisons between FLUINCO and FLUENT results are presented. Free surface elevation inside the chamber; velocity distribution and streamlines; amplification factor (relation between wave height inside the chamber and incident wave height); phase angle (angular

  17. Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Dezhi Ning

    2017-09-01

    Full Text Available The performance of a dual-chamber Oscillating Water Column (OWC Wave Energy Converter (WEC is considered in the present study. The device has two sub-chambers with a shared orifice. A two-dimensional (2D fully nonlinear numerical wave flume based on the potential-flow theory and the time-domain higher-order boundary element method (HOBEM is applied for the simulation. The incident waves are generated by using the immerged sources and the air-fluid coupling influence is considered with a simplified pneumatic model. In the present study, the variation of the surface elevation and the water column volume in the two sub-chambers are investigated. The effects of the chamber geometry (i.e., the draft and breadth of two chambers on the surface elevation and the air pressure in the chamber are investigated, respectively. It is demonstrated that the surface elevations in the two sub-chambers are strongly dependent on the wave conditions. The larger the wavelength, the more synchronous motion of the two water columns in the two sub-chambers, thus, the lager the variation of the water column volume.

  18. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  19. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  20. Overmoded subterahertz surface wave oscillator with pure TM01 mode output

    International Nuclear Information System (INIS)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang; Wang, Jianguo; Li, Shuang

    2016-01-01

    Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM 01 mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM 01 mode. Moreover, the modified device here has the same power capacity as the previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM 01 mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave

  1. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    International Nuclear Information System (INIS)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-01-01

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited

  2. The North Atlantic Oscillation Influence on the Wave Regime in Portugal: An Extreme Wave Event Analysis

    Science.gov (United States)

    2005-03-01

    picture at 22/00Z.............50 x Figure 24. Case 5 – wave parameters........................51 Figure 25. Evolution of energy density (arrow...equation or energy balance equation: . in nl ds F v F S S S S t ∂ + ∇ = ≡ + + ∂ r (1) where ( , ; , )F f x tθ r is the two dimensional...collected from an offshore directional Seawatch buoy, in the vicinity of Cape Silleiro, Rayo Silleiro 19 (“E1”), (Figure 3), was provided by the

  3. Collision broadened resonance localization in tokamaks excited with ICRF waves

    International Nuclear Information System (INIS)

    Kerbel, G.D.; McCoy, M.G.

    1985-08-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of rf energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field

  4. Exact Time-Dependent Wave Functions of a Confined Time-Dependent Harmonic Oscillator with Two Moving Boundaries

    International Nuclear Information System (INIS)

    Lo, C.F.

    2009-01-01

    By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schroedinger equation describing a quantum one-dimensional harmonic oscillator of time-dependent frequency confined in an infinite square well with the two walls moving along some parametric trajectories. Based upon the orthonormal basis of quasi-stationary wave functions, the exact propagator of the system has also been analytically derived. Special cases like (i) a confined free particle, (ii) a confined time-independent harmonic oscillator, and (iii) an aging oscillator are examined, and the corresponding time-dependent wave functions are explicitly determined. Besides, the approach has been extended to solve the case of a confined generalized time-dependent harmonic oscillator for some parametric moving boundaries as well. (general)

  5. Coherent patterning of matter waves with subwavelength localization

    International Nuclear Information System (INIS)

    Mompart, J.; Ahufinger, V.; Birkl, G.

    2009-01-01

    We propose the subwavelength localization via adiabatic passage (SLAP) technique to coherently achieve state-selective patterning of matter waves well beyond the diffraction limit. The SLAP technique consists in coupling two partially overlapping and spatially structured laser fields to three internal levels of the matter wave yielding state-selective localization at those positions where the adiabatic passage process does not occur. We show that by means of this technique matter wave localization down to the single nanometer scale can be achieved. We analyze in detail the potential implementation of the SLAP technique for nanolithography with an atomic beam of metastable Ne* and for coherent patterning of a two-component 87 Rb Bose-Einstein condensate.

  6. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, Matthias; Omel' chenko, Oleh E. [Weierstrass Institute, Mohrenstrasse 39, Berlin 10117 (Germany); Sieber, Jan [College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF (United Kingdom)

    2015-05-15

    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

  7. Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2013-01-01

    In this letter we present an intracavity pumped continuous wave (CW) doubly resonant optical parametric oscillator (OPO) based on Cr 3+ :LiCaAlF 6 (Cr:LiCAF) as the material generating the OPO pump wave and periodically poled stoichiometric lithium tantalate (PPSLT) as the nonlinear material. The OPO pump wave is spectrally narrowed and tuned by means of an external cavity, thus allowing self-injection locking of the OPO pump wavelength. When operated near degeneracy, the constructed OPO enables a fast tuning of the parametrically generated wavelengths in response to small perturbations of the phase-matching condition. The Cr:LiCAF emission band is especially well suited to provide dual-wavelength oscillation in the optical communications 1550 nm band as a result of the parametric oscillation in PPSLT. (letter)

  8. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)

    2016-06-15

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)

  9. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    Science.gov (United States)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  10. A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Gimara Rajapakse

    2017-10-01

    Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.

  11. Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries

    Science.gov (United States)

    Titarchuk, Lev

    2002-01-01

    Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the

  12. Localization Problem in the 5D Standing Wave Braneworld

    OpenAIRE

    Gogberashvili, Merab; Midodashvili, Pavle; Midodashvili, Levan

    2012-01-01

    We investigate the problem of pure gravitational localization of matter fields within the 5D standing wave braneworld generated by gravity coupled to a phantom-like scalar field. We show that in the case of increasing warp factor there exist normalizable zero modes of spin-0, -1/2, -1, and -2 fields on the brane.

  13. ''Localized'' tachyonic wavelet-solutions of the wave equation

    International Nuclear Information System (INIS)

    Barut, A.O.; Chandola, H.C.

    1993-05-01

    Localized-nonspreading, wavelet-solutions of the wave equation □φ=0 with group velocity v>c and phase velocity u=c 2 /v< c are constructed explicitly by two different methods. Some recent experiments seem to find evidence for superluminal group velocities. (author). 7 refs, 2 figs

  14. Localized atomic basis set in the projector augmented wave method

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Vanin, Marco; Mortensen, Jens Jørgen

    2009-01-01

    We present an implementation of localized atomic-orbital basis sets in the projector augmented wave (PAW) formalism within the density-functional theory. The implementation in the real-space GPAW code provides a complementary basis set to the accurate but computationally more demanding grid...

  15. Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators

    Science.gov (United States)

    Shinjo, Ami; Hashiyama, Naoyuki; Koshio, Akane; Eto, Yujiro; Hirano, Takuya

    2016-10-01

    The continuous-variable (CV) Einstein-Podolsky-Rosen (EPR) paradox and steering are demonstrated using a pulsed light source and waveguides. We shorten the duration of the local oscillator (LO) pulse by using parametric amplification to improve the temporal mode-matching between the entangled pulse and the LO pulse. After correcting for the amplifier noise, the product of the measured conditional variance of the quadrature-phase amplitudes is 0.74 EPR-Reid criterion.

  16. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    International Nuclear Information System (INIS)

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-01-01

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio (α) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant α will be discussed in depth.

  17. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    Science.gov (United States)

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-01

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio (α) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant α will be discussed in depth.

  18. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations.

    Science.gov (United States)

    Hawking, Thomas G; Gerdjikov, Todor V

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.

  19. Plasma oscillations and sound waves in collision-dominated two-component plasmas

    International Nuclear Information System (INIS)

    Hansen, J.P.; Sjoegren, L.

    1982-01-01

    Charge, mass, and electron density fluctuation spectra of strongly correlated, fully ionized two-component plasmas within the framework of the Mori--Zwanzig memory function formalism are analyzed. All dynamical correlation functions are expressed in terms of the memory functions of the ion and electron velocity autocorrelation functions by a generalized effective field approximation which preserves the exact initial values (i.e., static correlations). The theory reduces correctly to the mean field (or collisionless Vlasov) results in the weak coupling limit, and yields charge density fluctuation spectra in good agreement with available computer simulation data, as well as reasonable estimates of the transport coefficients. The collisional damping and frequency shift of the plasma oscillation mode are sizeable, even in the long wavelength limit. The theory also predicts the propagation of well-defined sound waves in dense plasmas in thermal equilibrium

  20. Physics. Examples and problems. Mechanics, heat, electricity and magnetism, oscillations and waves, atomic and nuclear physics

    International Nuclear Information System (INIS)

    Stroppe, Heribert; Streitenberger, Peter; Specht, Eckard; Zeitler, Juergen; Langer, Heinz

    2017-01-01

    The present book is the unification of the proved problem collections for the basic physical training of studyings of especially engineering courses at technical colleges and universities. The book contains - didactically prepared and structured in the style of a textbook as well as with increasing difficulty - a total of 960 exemplary and additional tasks from the fields mechanics, heat, electricity and magnetism, oscillations and waves, as well as atomic and nuclear physics. For the exemplary problems the whole solution path and the complete calculation process with explanation of the relevant physical laws are extensively presented, for the additional problems for the self-control only the solutions and, if necessary, intermediate calculations are given. The examples and problems with mostly practice-oriented content are selected in such a way that they largely cover the matter treated in courses and exercises and make by their didactical preparation an effective repetition and optimal examination-preparation possible.

  1. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    Science.gov (United States)

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  2. Collisional drag may lead to disappearance of wave-breaking phenomenon of lower hybrid oscillations

    International Nuclear Information System (INIS)

    Maity, Chandan; Chakrabarti, Nikhil

    2013-01-01

    The inhomogeneity in the magnetic field in a cold electron-ion non-dissipative homogeneous plasma leads to the breaking of lower hybrid modes via phase mixing phenomenon [Maity et al. Phys. Plasmas 19, 102302 (2012)]. In this work, we show that an inclusion of collisional drag force in fluid equations may lead to the disappearance of the wave-breaking phenomenon of lower hybrid oscillations. The nonlinear analysis in Lagrangian variables provides an expression for a critical value of damping rate, above which spikes in the plasma density profile may disappear. The critical damping rate depends on the perturbation and magnetic field inhomogeneity amplitudes as well as the ratio of the magnetic field inhomogeneity and perturbation scale lengths.

  3. Cantilever-detected high-frequency ESR measurement using a backward travelling wave oscillator

    International Nuclear Information System (INIS)

    Tokuda, Y; Hirano, S; Ohmichi, E; Ohta, H

    2012-01-01

    Our cantilever-detected electron spin resonance (ESR) technique is motivated for terahertz ESR spectroscopy of a tiny single crystal at low temperature. In this technique, ESR signal is detected as deflection of a sample-mounted cantilever, which is sensitively detected by built-in piezoresistors. So far, ESR detection at 315 GHz was succeeded using Gunn oscillator. In this study, we combine our ESR technique with a backward traveling wave oscillator (BWO), which can cover a wide frequency range 120-1200 GHz, to achieve better spectral resolution. Experiments were carried out at 4.2 K for a single crystal of Co Tutton salt with a newly constructed optical system. We successfully observed two ESR absorption lines in BWO frequencies up to 370 GHz. From multi-frequency measurements, the observed ESR lines shifted linearly with BWO frequency, being consistent with paramagnetic resonance. The estimated g values are g 1 = 3.00 and g 2 = 3.21. The spin sensitivity was estimated to ∼10 12 spins/gauss at 370 GHz.

  4. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  5. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    Science.gov (United States)

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  6. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)

    International Nuclear Information System (INIS)

    Schütz, Martin

    2015-01-01

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a

  7. Localized modulated wave solutions in diffusive glucose–insulin systems

    Energy Technology Data Exchange (ETDEWEB)

    Mvogo, Alain, E-mail: mvogal_2009@yahoo.fr [Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, University of Yaounde (Cameroon); Centre d' Excellence Africain en Technologies de l' Information et de la Communication, University of Yaounde I (Cameroon); Tambue, Antoine [The African Institute for Mathematical Sciences (AIMS) and Stellenbosch University, 6-8 Melrose Road, Muizenberg 7945 (South Africa); Center for Research in Computational and Applied Mechanics (CERECAM), and Department of Mathematics and Applied Mathematics, University of Cape Town, 7701 Rondebosch (South Africa); Ben-Bolie, Germain H. [Centre d' Excellence Africain en Technologies de l' Information et de la Communication, University of Yaounde I (Cameroon); Laboratory of Nuclear Physics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, University of Yaounde (Cameroon); Kofané, Timoléon C. [Centre d' Excellence Africain en Technologies de l' Information et de la Communication, University of Yaounde I (Cameroon); Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, University of Yaounde (Cameroon)

    2016-06-03

    We investigate intercellular insulin dynamics in an array of diffusively coupled pancreatic islet β-cells. The cells are connected via gap junction coupling, where nearest neighbor interactions are included. Through the multiple scale expansion in the semi-discrete approximation, we show that the insulin dynamics can be governed by the complex Ginzburg–Landau equation. The localized solutions of this equation are reported. The results suggest from the biophysical point of view that the insulin propagates in pancreatic islet β-cells using both temporal and spatial dimensions in the form of localized modulated waves. - Highlights: • The dynamics of an array of diffusively coupled pancreatic islet beta-cells is investigated. • Through the multiple scale expansion, we show that the insulin dynamics can be governed by the complex Ginzburg–Landau equation. • Localized modulated waves are obtained for the insulin dynamics.

  8. Coupled Josephson local oscillator and detector experiments in the terahertz regime

    International Nuclear Information System (INIS)

    Robertazzi, R.P.; Hallen, H.D.; Buhrman, R.A.

    1988-01-01

    Recent coupled Josephson junction experiments in the authors' laboratory have demonstrated that high critical current density tunnel junctions can serve as effective local oscillators at frequencies up to and in excess of the gap sum frequency of the junction, i.e. well above 1 Terahertz for a niobium or niobium compound tunnel junction. While the details of the behavior of such a THz. oscillator were found not to be in accord with the predictions of the accepted theory of the A.C. Josephson effect in the gap region significant radiation could be capacitively coupled from the oscillator junction to an adjacent junction, sufficient for SIS mixer experiments at Terahertz frequencies. Research efforts are now under way to further extend and expand these studies. A high critical current density all NbN tunnel junction system is now under development for Terahertz applications and a new set of coupled Josephson oscillator - SIS detector experiments is being initiated using NbN tunnel junctions. In this paper the authors review the original coupled junction high frequency experiments and report on the recent progress of the current NbN tunnel junction experiments

  9. Gravity waves observed from the Equatorial Wave Studies (EWS campaign during 1999 and 2000 and their role in the generation of stratospheric semiannual oscillations

    Directory of Open Access Journals (Sweden)

    V. Deepa

    2006-10-01

    Full Text Available The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO is estimated.

  10. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  11. Improved distorted wave theory with the localized virial conditions

    Science.gov (United States)

    Hahn, Y. K.; Zerrad, E.

    2009-12-01

    The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.

  12. Rapid and sensitive trace gas detection with continuous wave Optical Parametric Oscillator-based Wavelength Modulation Spectroscopy

    NARCIS (Netherlands)

    Arslanov, D.D.; Spunei, M.; Ngai, A.K.Y.; Cristescu, S.M.; Lindsay, I.D.; Lindsay, I.D.; Boller, Klaus J.; Persijn, S.T.; Harren, F.J.M.

    2011-01-01

    A fiber-amplified Distributed Bragg Reflector diode laser is used to pump a continuous wave, singly resonant Optical Parametric Oscillator (OPO). The output radiation covers the 3–4 μm with ability of rapid (100 THz/s) and broad mode-hop-free tuning (5 cm−1). Wavelength Modulation Spectroscopy is

  13. Equation of state with scale-invariant hidden local symmetry and gravitational waves

    Directory of Open Access Journals (Sweden)

    Lee Hyun Kyu

    2018-01-01

    Full Text Available The equation of state (EoS for the effective theory proposed recently in the frame work of the scale-invariant hidden local symmetry is discussed briefly. The EoS is found to be relatively stiffer at lower density and but relatively softer at higher density. The particular features of EoS on the gravitational waves are discussed. A relatively stiffer EoS for the neutron stars with the lower density induces a larger deviation of the gravitational wave form from the point-particle-approximation. On the other hand, a relatively softer EoS for the merger remnant of the higher density inside might invoke a possibility of the immediate formation of a black hole for short gamma ray bursts or the appearance of the higher peak frequency for gravitational waves from remnant oscillations. It is anticipated that this particular features could be probed in detail by the detections of gravitational waves from the binary neutron star mergers.

  14. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Su, Jiancang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Liang, Xu; Ning, Qi [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-07-15

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reduced gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.

  15. On forced oscillations of a simple model for a novel wave energy converter

    KAUST Repository

    Orazov, Bayram

    2011-05-11

    The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.

  16. A standing pressure wave hypothesis of oscillating forces generated during a steam line break

    International Nuclear Information System (INIS)

    Tinoco, H.

    2001-01-01

    A rapid glance at the figure depicting the net forces acting on the reactor vessel and internals, as obtained through a CFD simulation of a BWR steam line break, reveals an amazing oscillating regularity of these forces which is in glaring contrast to the chaotic behaviour of the steam pressure field in the steam annulus. Assuming that the decompression process excites and maintains standing pressure waves in the annular cylindrical region constituted by the steam annulus, it is possible to reconstruct the net forces acting on the reactor vessel and internals through the contribution of almost only the first dispersive mode. If a Neumann boundary condition is assumed at the section connecting the steam annulus to the steam dome, the frequency predicted is approximately % 5.9 higher than that of the CFD simulations. However, this connecting section allows wave transmission, and a more appropriate boundary condition should be one of the Robin type. Therefore, this section is modelled as an absorbing wall, and the corresponding normal impedance is calculated using the CFD simulations. Week non-linear effects can also be observed in the calculated forces through the presence of the first subharmonic. By the methodology described above, an estimate of the forces acting on the reactor vessel and internals of unit 3 of Forsmark Nuclear Power Plant has been obtained. (author)

  17. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus

    Science.gov (United States)

    Bliokh, Yu. P.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  18. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  19. An approach to the damping of local modes of oscillations resulting from large hydraulic transients

    Energy Technology Data Exchange (ETDEWEB)

    Dobrijevic, D.M.; Jankovic, M.V.

    1999-09-01

    A new method of damping of local modes of oscillations under large disturbance is presented in this paper. The digital governor controller is used. Controller operates in real time to improve the generating unit transients through the guide vane position and the runner blade position. The developed digital governor controller, whose control signals are adjusted using the on-line measurements, offers better damping effects for the generator oscillations under large disturbances than the conventional controller. Digital simulations of hydroelectric power plant equipped with low-head Kaplan turbine are performed and the comparisons between the digital governor control and the conventional governor control are presented. Simulation results show that the new controller offers better performances, than the conventional controller, when the system is subjected to large disturbances.

  20. Phase-locked Josephson flux flow local oscillator for sub-mm integrated receivers

    DEFF Research Database (Denmark)

    Mygind, Jesper; Mahaini, C.; Dmitriev, P.

    2002-01-01

    The Josephson flux flow oscillator (FFO) has proven to be one of the best on-chip local oscillators for heterodyne detection in integrated sub-mm receivers based on SIS mixers. Nb-AlOx-Nb FFOs have been successfully tested from about 120 to 700 GHz (gap frequency of Nb) providing enough power...... to pump an SIS mixer (about 1 muW at 450 GHz). Both the frequency and the power of the FFO can be dc-tuned. Extensive measurements of the dependence of the free-running FFO linewidth on the differential resistances associated with both the bias current and the control-line current (applied magnetic field......) have been performed. The FFO line is Lorentzian both in the resonant regime, on Fiske steps (FSs), and on the flux flow step (FFS). This indicates that internal wide-band noise is dominant. A phenomenological noise model can account for the FFO linewidth dependence on experimental parameters...

  1. Axial motion of collector plasma in a relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Renzhen; Chen, Changhua; Deng, Yuqun; Cao, Yibing; Sun, Jun; Li, Jiawei [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-06-15

    In this paper, it is proposed that plasma formed at the collector may drift back to the cathode and cause pulse shortening of the relativistic backward wave oscillator. Theoretical analysis shows that the axial drift velocity of plasma ions can be up to 5 mm/ns due to the presence of space charge potential provided by an intense relativistic electron beam. Particle-in-cell simulations indicate that the plasma electrons are initially trapped around the collector surface. With the accumulation of the plasma ions, a large electrostatic field forms and drives the plasma electrons to overcome the space charge potential and enter the beam-wave interaction region along the magnetic field lines. As a result, the beam current modulation is disturbed and the output microwave power falls rapidly. The plasma ions move in the beam-wave interaction region with an average axial velocity of 5–8 mm/ns. After the plasma ions reach the diode region, the emitted current at the cathode rises due to the charge neutralizations by the ions. The impedance collapse leads to further decrease of the microwave power. In experiments, when the diode voltage and beam current were 850 kV and 9.2 kA, and the collector radius was 2.15 cm, the output microwave power was 2.4 GW with a pulse width of less than 20 ns. The ion drift velocity was estimated to be about 5 mm/ns. After an improved collector with 3.35 cm radius was adopted, the pulse width was prolonged to more than 30 ns.

  2. Mass spectra and wave functions of meson systems and the covariant oscillator quark model as an expansion basis

    International Nuclear Information System (INIS)

    Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo

    1999-01-01

    We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)

  3. Numerical hydrodynamic analysis of an offshore stationary–floating oscillating water column–wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2017-01-01

    Full Text Available Offshore oscillating water columns (OWC represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements. Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave–pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

  4. Full-wave modeling of ICRF waves: global and quasi-local descriptions

    International Nuclear Information System (INIS)

    Dumont, R. J.

    2007-01-01

    Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes

  5. Hanbury Brown and Twiss correlations of Anderson localized waves

    International Nuclear Information System (INIS)

    Lahini, Y.; Bromberg, Y.; Silberberg, Y.; Shechtman, Y.; Szameit, A.; Christodoulides, D. N.; Morandotti, R.

    2011-01-01

    When light waves propagate through disordered photonic lattices, they can eventually become localized due to multiple scattering effects. Here we show experimentally that while the evolution and localization of the photon density distribution is similar in the two cases of diagonal and off-diagonal disorder, the density-density correlation carries a distinct signature of the type of disorder. We show that these differences reflect a symmetry in the spectrum and eigenmodes that exists in off-diagonally disordered lattices but is absent in lattices with diagonal disorder.

  6. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  7. Statistical lamb wave localization based on extreme value theory

    Science.gov (United States)

    Harley, Joel B.

    2018-04-01

    Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.

  8. Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated into a Fixed Box-Type Breakwater

    Directory of Open Access Journals (Sweden)

    Xuanlie Zhao

    2017-01-01

    Full Text Available An oscillating buoy wave energy converter (WEC integrated to an existing box-type breakwater is introduced in this study. The buoy is installed on the existing breakwater and designed to be much smaller than the breakwater in scale, aiming to reduce the construction cost of the WEC. The oscillating buoy works as a heave-type WEC in front of the breakwater towards the incident waves. A power take-off (PTO system is installed on the topside of the breakwater to harvest the kinetic energy (in heave mode of the floating buoy. The hydrodynamic performance of this system is studied analytically based on linear potential-flow theory. Effects of the geometrical parameters on the reflection and transmission coefficients and the capture width ratio (CWR of the system are investigated. Results show that the maximum efficiency of the energy extraction can reach 80% or even higher. Compared with the isolated box-type breakwater, the reflection coefficient can be effectively decreased by using this oscillating buoy WEC, with unchanged transmission coefficient. Thus, the possibility of capturing the wave energy with the oscillating buoy WEC integrated into breakwaters is shown.

  9. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation

    International Nuclear Information System (INIS)

    Macia, Ferran; Kent, Andrew D; Hoppensteadt, Frank C

    2011-01-01

    Magnetization dynamics in nanomagnets has attracted broad interest since it was predicted that a dc current flowing through a thin magnetic layer can create spin-wave excitations. These excitations are due to spin momentum transfer, a transfer of spin angular momentum between conduction electrons and the background magnetization, that enables new types of information processing. Here we show how arrays of spin-torque nano-oscillators can create propagating spin-wave interference patterns of use for memory and computation. Memristic transponders distributed on the thin film respond to threshold tunnel magnetoresistance values, thereby allowing spin-wave detection and creating new excitation patterns. We show how groups of transponders create resonant (reverberating) spin-wave interference patterns that may be used for polychronous wave computation and information storage.

  10. Chimera regimes in a ring of oscillators with local nonlinear interaction

    Science.gov (United States)

    Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.

    2017-03-01

    One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.

  11. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  12. The wave attenuation mechanism of the periodic local resonant metamaterial

    Science.gov (United States)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  13. Mehler's formulae for isotropic harmonic oscillator wave functions and application in the Green function calculus

    International Nuclear Information System (INIS)

    Caetano Neto, E.S.

    1976-01-01

    A stationary Green function is calculated for the Schroedinger Hamiltonian of the multidimensional isotropic harmonic oscillator and for physical systems, which may, somehow, have their Hamiltonian reduced to one in the form of a harmonic oscillator, for any dimension [pt

  14. Quantum harmonic oscillators with wave functions having a fixed logarithmic derivative at the equilibrium position

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ley Koo, E.

    The exact solution of the Schrodinger equation for the systems and the boundary condition stated in the title is constructed. The familiar cases of the ordinary harmonic oscillator and the half oscillator are immediately identified. The connection with the double oscillator is also established and is helpful to understand the energy spectrum of the latter. Similar connections can be used to study other partial oscillators. (Author) [pt

  15. Surface Waves and Flow-Induced Oscillations along an Underground Elliptic Cylinder Filled with a Viscous Fluid

    Science.gov (United States)

    Sakuraba, A.

    2015-12-01

    I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the

  16. Traveling waves and their tails in locally resonant granular systems

    International Nuclear Information System (INIS)

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    2015-01-01

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely the avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise

  17. Localization of gravitational wave sources with networks of advanced detectors

    International Nuclear Information System (INIS)

    Klimenko, S.; Mitselmakher, G.; Pankow, C.; Vedovato, G.; Drago, M.; Prodi, G.; Mazzolo, G.; Salemi, F.; Re, V.; Yakushin, I.

    2011-01-01

    Coincident observations with gravitational wave (GW) detectors and other astronomical instruments are among the main objectives of the experiments with the network of LIGO, Virgo, and GEO detectors. They will become a necessary part of the future GW astronomy as the next generation of advanced detectors comes online. The success of such joint observations directly depends on the source localization capabilities of the GW detectors. In this paper we present studies of the sky localization of transient GW sources with the future advanced detector networks and describe their fundamental properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector noise, we study the accuracy of the source localization and its dependence on the strength of injected signals, waveforms, and network configurations.

  18. The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xingjun; Zhang, Jun; Zhong, Huihuang; Qian, Baoliang; Wang, Haitao [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-03

    The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator (RBWO) are presented. The operation frequency tuning can be easily achieved by merely altering the inner-conductor length. The key effects of the inner-conductor length contributing to the mechanical frequency tunability are investigated theoretically and experimentally. There is a specific inner-conductor length where the operation frequency can jump from one mode to another mode, which belongs to a different operation band. In addition, the operation frequency is tunable within each operation band. During simulation, the L-band microwave with a frequency of 1.61 GHz is radiated when the inner-conductor length is 39 cm. Meanwhile, the S-band microwave with a frequency of 2.32 GHz is radiated when the inner-conductor length is 5 cm. The frequency adjustment bandwidths of L-band and S-band are about 8.5% and 2%, respectively. Moreover, the online mechanical tunability process is described in detail. In the initial experiment, the generated microwave frequencies remain approximately 1.59 GHz and 2.35 GHz when the inner-conductor lengths are 39 cm and 5 cm. In brief, this technical route of the band-agile coaxial RBWO is feasible and provides a guide to design other types of band-agile high power microwaves sources.

  19. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    Science.gov (United States)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  20. Numerical study of the air-flow in an oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Paixao Conde, J.M. [Department of Mechanical and Industrial Engineering, Faculty of Sciences and Technology, New University of Lisbon, Monte de Caparica, 2829-516 Caparica (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal)

    2008-12-15

    The paper presents a numerical study of the air-flow in a typical pneumatic chamber geometry of an oscillating water column (OWC)-type wave energy converter (WEC), equipped with two vertical-axis air turbines, asymmetrically placed on the top of the chamber. Outwards and inwards, steady and periodic, air-flow calculations were performed to investigate the flow distribution at the turbines' inlet sections, as well as the properties of the air-jet impinging on the water free-surface. The original design of the OWC chamber is likely to be harmful for the operation of the turbines due to the possible air-jet-produced water-spray at the water free-surface subsequently ingested by the turbine. A geometry modification of the air chamber, using a horizontal baffle-plate to deflect the air from the turbines, is proposed and proved to be very effective in reducing the risk of water-spray production from the inwards flow. The flow distribution at the turbines' inlet sections for the outwards flow was found to be fairly uniform for the geometries considered, providing good inlet flow conditions for the turbines. Steady flow was found to be an acceptable model to study the air-flow inside the pneumatic chamber of an OWC-WEC. (author)

  1. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes are obtained by the method of matching, taking advantage of the modal power orthogonality relations. The necessary excitation of modes provided by a number of coaxial loop antennas inserted inside the waveguide section. The antennas currents are computed from the solution of the waveguide excitation inverse problem. The accuracy of the synthesized wave field (compared to the mathematical model) and the power efficiency of the generation technique are evaluated in order to practically realize a launcher for LWs in the microwave regime. © 2011 IEEE.

  2. Is wave-particle objectivity compatible with determinism and locality?

    Science.gov (United States)

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B; Terno, Daniel R

    2014-09-26

    Wave-particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions.

  3. Frequency hopping due to acousto-electric interaction in ZnO based surface acoustic wave oscillator

    Science.gov (United States)

    Dasgupta, Daipayan; Sreenivas, K.

    2011-08-01

    A 36 MHz surface acoustic wave delay line based oscillator has been used to study the effect of acousto-electric interaction due to photo generated charge carriers in rf sputtered ZnO film under UV illumination (λ = 365 nm, 20-100 μW/cm2). Design aspects for developing a delay line based SAW oscillator are specified. The observed linear downshift in frequency (2.2 to 19.0 kHz) with varying UV intensity (20-100 μW/cm2) is related to the fractional velocity change due to acousto-electric interaction. UV illumination level of 100 μW/cm2 leads to a characteristic frequency hopping behavior arising due to a change in the oscillation criteria, and is attributed to the complex interplay between the increased attenuation and velocity shift.

  4. Expressions for neutrino wave functions and transition probabilities at three-neutrino oscillations in vacuum and some of their applications

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2006-01-01

    I have considered three-neutrino vacuum transitions and oscillations in the general case and obtained expressions for neutrino wave functions in three cases: with CP violation, without CP violation and in the case when direct ν e - ν τ transitions are absent β(θ 13 ) = 0 (some works indicate this possibility). Then using the existing experimental data some analysis has been fulfilled. This analysis definitely has shown that direct transitions ν e - ν τ cannot be closed for the Solar neutrinos, i. e., β(θ 13 ) ≠ 0. It is also shown that the possibility that β(θ 13 ) = 0 cannot be realized by using the mechanism of resonance enhancement of neutrino oscillations in matter (the Sun). It was found out that the probability of ν e - ν e neutrino transitions is a positive defined value, if in reality neutrino oscillations take place, only if the angle of ν e , ν τ mixing β ≤ 15 - 17 deg

  5. Localizing gravitational wave sources with single-baseline atom interferometers

    Science.gov (United States)

    Graham, Peter W.; Jung, Sunghoon

    2018-02-01

    Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. We show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization. The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.

  6. Output-Mirror-Tuning Terahertz-Wave Parametric Oscillator with an Asymmetrical Porro-Prism Resonator Configuration

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2017-06-01

    We demonstrate a terahertz-wave parametric oscillator (TPO) with an asymmetrical porro-prism (PP) resonator configuration, consisting of a close PP corner reflector and a distant output mirror relative to the MgO:LiNbO3 crystal. Based on this cavity, frequency tuning of Stokes and the accompanied terahertz (THz) waves is realized just by rotating the plane mirror. Furthermore, THz output with high efficiency and wide tuning range is obtained. Compared with a conventional TPO employing a plane-parallel resonator of the same cavity length and output loss, the low end of the frequency tuning range is extended to 0.96 THz from 1.2 THz. The highest output obtained at 1.28 THz is enhanced by about 25%, and the oscillation threshold pump energy measured at 1.66 THz is reduced by about 4.5%. This resonator configuration also shows some potential to simplify the structure and application for intracavity TPOs.

  7. Synchronization of propagating spin-wave modes in a double-contact spin-torque oscillator: A micromagnetic study

    International Nuclear Information System (INIS)

    Puliafito, V.; Consolo, G.; Lopez-Diaz, L.; Azzerboni, B.

    2014-01-01

    This work tackles theoretical investigations on the synchronization of spin-wave modes generated by spin-transfer-torque in a double nano-contact geometry. The interaction mechanisms between the resulting oscillators are analyzed in the case of propagating modes which are excited via a normal-to-plane magnetic bias field. To characterize the underlying physical mechanisms, a multi-domain analysis is performed. It makes use of an equivalent electrical circuit, to deduce the output electrical power, and of micromagnetic simulations, through which information on the frequency spectra and on the spatial distribution of the wavefront of the emitted spin-waves is extracted. This study provides further and intriguing insights into the physical mechanisms giving rise to synchronization of spin-torque oscillators

  8. A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration

    International Nuclear Information System (INIS)

    Wang, Y Y; Xu, D G; Jiang, H; Zhong, K; Yao, J Q

    2013-01-01

    A high-energy, low-threshold THz-wave output has been experimentally demonstrated with an intracavity terahertz-wave parametric oscillator based on a surface-emitted configuration, which was pumped by a diode-side-pumped Q-switched Nd:YAG laser. Different beam sizes and repetition rates of the pump light have been investigated for high-energy and high-efficiency THz-wave generation. The maximum THz-wave output energy of 283 nJ/pulse was obtained at 1.54 THz under an intracavity 1064 nm pump energy of 59 mJ. The conversion efficiency was 4.8 × 10 −6 , corresponding to a photon conversion efficiency of 0.088%. The pump threshold was 12.9 mJ/pulse. A continuously tunable range from 0.75 to 2.75 THz was realized. (paper)

  9. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    Science.gov (United States)

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  10. Enhancement of terahertz radiation in a Smith-Purcell backward-wave oscillator by an inverse wet-etched grating

    International Nuclear Information System (INIS)

    Kim, Jung-Il; Jeon, Seok-Gy; Kim, Geun-Ju; Kim, Jaehong

    2011-01-01

    A terahertz (THz) Smith-Purcell (SP) backward-wave oscillator with an inverse wet-etched grating based on silicon has been proposed to enhance radiation intensity. This grating strengthens the interactions between an electron beam and the evanescent wave due to the adjacent surface structure between gratings that improves the magnitude of the electric field up to 1.7 times compared to the conventional rectangular gratings. A two-dimensional particle-in-cell (PIC) simulation shows that the radiated power is increased up to 2.3 times higher at the radiated frequency of 0.66 THz for an electron-beam energy of 30 keV.

  11. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  12. Mittag-Leffler functions as solutions of relaxation-oscillation and diffusion-wave fractional order equation

    International Nuclear Information System (INIS)

    Sandev, D. Trivche

    2010-01-01

    The fractional calculus basis, Mittag-Leffler functions, various relaxation-oscillation and diffusion-wave fractional order equation and systems of fractional order equations are considered in this thesis. To solve these fractional order equations analytical methods, such as the Laplace transform method and method of separation of variables are employed. Some applications of the fractional calculus are considered, particularly physical system with anomalous diffusive behavior. (Author)

  13. Formation of periodic and localized patterns in an oscillating granular layer.

    Energy Technology Data Exchange (ETDEWEB)

    Aranson, I.; Tsimring, L. S.; Materials Science Division; Bar Ilan Univ.; Univ. of California at San Diego

    1998-02-01

    A simple phenomenological model for pattern formation in a vertically vibrated layer of granular particles is proposed. This model exhibits a variety of stable cellular patterns including standing rolls and squares as well as localized excitations (oscillons and worms), similar to recent experimental observations (Umbanhowar et al., 1996). The model is an order parameter equation for the parametrically excited waves coupled to the mass conservation law. The structure and dynamics of the solutions resemble closely the properties of patterns observed in the experiments.

  14. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  15. Up-Wave and Autoregressive Methods for Short-Term Wave Forecasting for an Oscillating Water Column

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, M.F.P.; Conley, Daniel; Ringwood, John

    2015-01-01

    The real-time control of wave energy converters (WECs) requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation up-wave of the WEC. As an application example, this paper focuses on the prediction of the wave elevation inside the chamber of the...

  16. Impact of boreal summer intraseasonal oscillation on heat wave occurrence in Asia and Europe during the summer of 2016

    Science.gov (United States)

    Lee, June-Yi; Hsu, Pang-Chi; ha, Kyung-Ja; Kim, Hae-Jeong; Jung, Yoo-Rim

    2017-04-01

    The summer of 2016 was the earth's hottest summer on record since 1880. Especially, in August, the global mean temperature was 1.66 degree higher than normal and heat waves set records across Asia, Europe, and North America. This study proposes that boreal summer intraseasonal oscillation (BSISO) played an important role in heat wave outbreaks over many regions of the Northern Hemisphere (NH) extratropics in the summer 2016 in addition to other factors including global warming, atmosphere-land interaction, and Africa-Pakistan heavy rainfall. By utilizing the real-time multivariate BSISO indices recently proposed, it has been demonstrated that the two dominant BSISO modes significantly modulate occurrence probability and spatial distributions of extreme rainfall and heat wave over Asia and Europe depending on their phases. The BSISO1 represents the canonical northward propagating variability that often occurs in conjunction with the eastward propagating Madden-Julian Oscillation with quasi-oscillating periods of 30-60 days. The BSISO2 represents the northward/northwestward propagating variability with periods of 10-30 days during primarily the pre-monsoon and monsoon-onset season. In August of 2016, BSISO1 was very active with amplitude up to 2 standard deviation and stayed at phase 7 state for about 20 days. During the phase 7 of BSISO1, extreme convective activity over the South China Sea and western North Pacific typically exerts significant global teleconnection leading to heat wave occurrence over East Asia including Korea and Japan, some part of Russia and Europe, and the western and eastern part of North America. In particular, anticyclonic circulation anomaly tends to be developed over East Asia inducing enhanced adiabatic and diabatic warming over Korea and Japan providing a favorable condition for extreme heat wave occurrence. The August of 2016 exhibited the typical global teleconnection pattern of BSISO1 associated with active convection over the western

  17. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.

    1995-08-01

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  18. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    Science.gov (United States)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  19. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    International Nuclear Information System (INIS)

    Rodrigues, Serafim; Terry, John R.; Breakspear, Michael

    2006-01-01

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling

  20. Relationship Between the Parameters of the Linear and Nonlinear Wave Generation Stages in a Magnetospheric Cyclotron Maser in the Backward-Wave Oscillator Regime

    Science.gov (United States)

    Demekhov, A. G.

    2017-03-01

    By using numerical simulations we generalize certain relationships between the parameters of quasimonochromatic whistler-mode waves generated at the linear and nonlinear stages of the cyclotron instability in the backward-wave oscillator regime. One of these relationships is between the wave amplitude at the nonlinear stage and the linear growth rate of the cyclotron instability. It was obtained analytically by V.Yu.Trakhtengerts (1984) for a uniform medium under the assumption of constant frequency and amplitude of the generated wave. We show that a similar relationship also holds for the signals generated in a nonuniform magnetic field and having a discrete structure in the form of short wave packets (elements) with fast frequency drift inside each element. We also generalize the formula for the linear growth rate of absolute cyclotron instability in a nonuniform medium and analyze the relationship between the frequency drift rate in the discrete elements and the wave amplitude. These relationships are important for analyzing the links between the parameters of chorus emissions in the Earth's and planetary magnetospheres and the characteristics of the energetic charged particles generating these signals.

  1. Splitting and oscillation of Majorana zero modes in the p-wave BCS-BEC evolution with plural vortices

    International Nuclear Information System (INIS)

    Mizushima, T.; Machida, K.

    2010-01-01

    We investigate how the vortex-vortex separation changes Majorana zero modes in the vicinity of the BCS-BEC (Bose-Einstein condensation) topological phase transition of p-wave resonant Fermi gases. By analytically and numerically solving the Bogoliubov-de Gennes equation for spinless p-wave superfluids with plural vortices, it is demonstrated that the quasiparticle tunneling between neighboring vortices gives rise to the quantum oscillation of the low-lying spectra on the scale of the Fermi wavelength in addition to the exponential splitting. This rapid oscillation, which appears in the weak-coupling regime as a consequence of quantum oscillations of quasiparticle wave functions, disappears in the vicinity of the BCS-BEC topological phase transition. This is understandable from that the wave function of the Majorana zero modes is described by the modified Bessel function in the strong-coupling regime, and thus it becomes spread over the vortex core region. Due to the exponential divergence of the modified Bessel function, the concrete realization of the Majorana zero modes near the topological phase transition requires the neighboring vortices to be separated beyond the length scale defined by the coherence length and the dimensionless coupling constant. All these behaviors are also confirmed by carrying out the full numerical diagonalization of the nonlocal Bogoliubov-de Gennes equation in a two-dimensional geometry. Furthermore, this argument is expanded into the case of three-vortex systems, where a pair of core-bound and edge-bound Majorana states survive at zero-energy state regardless of the vortex separation.

  2. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator

    Science.gov (United States)

    Kumar, N.; Lamba, R. P.; Hossain, A. M.; Pal, U. N.; Phelps, A. D. R.; Prakash, R.

    2017-11-01

    The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ˜71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ˜10 kW for ˜50 ns.

  3. Gravitational Waves in Locally Rotationally Symmetric (LRS Class II Cosmologies

    Directory of Open Access Journals (Sweden)

    Michael Bradley

    2017-10-01

    Full Text Available In this work we consider perturbations of homogeneous and hypersurface orthogonal cosmological backgrounds with local rotational symmetry (LRS, using a method based on the 1 + 1 + 2 covariant split of spacetime. The backgrounds, of LRS class II, are characterised by that the vorticity, the twist of the 2-sheets, and the magnetic part of the Weyl tensor all vanish. They include the flat Friedmann universe as a special case. The matter contents of the perturbed spacetimes are given by vorticity-free perfect fluids, but otherwise the perturbations are arbitrary and describe gravitational, shear, and density waves. All the perturbation variables can be given in terms of the time evolution of a set of six harmonic coefficients. This set decouples into one set of four coefficients with the density perturbations acting as source terms, and another set of two coefficients describing damped source-free gravitational waves with odd parity. We also consider the flat Friedmann universe, which has been considered by several others using the 1 + 3 covariant split, as a check of the isotropic limit. In agreement with earlier results we find a second-order wavelike equation for the magnetic part of the Weyl tensor which decouples from the density gradient for the flat Friedmann universes. Assuming vanishing vector perturbations, including the density gradient, we find a similar equation for the electric part of the Weyl tensor, which was previously unnoticed.

  4. Fatigue crack localization using laser nonliner wave modulation spectroscopy (LNWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peipei; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kundu, Tribikram [Dept. of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson (United States)

    2016-12-15

    Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference(MSPCD), which is extracted from the spectral plot, measures the degree of crack- induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

  5. Fatigue crack localization using laser nonlinear wave modulation spectroscopy (LNWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peipei; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kundu, Tribikram [Dept. of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson (United States)

    2014-12-15

    Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

  6. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    International Nuclear Information System (INIS)

    Lu Li; Liu Zhenxing; Cao Jinbin

    2002-01-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere

  7. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity

    Science.gov (United States)

    Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K.; Larger, Laurent

    2017-11-01

    We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.

  8. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity.

    Science.gov (United States)

    Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K; Larger, Laurent

    2017-11-01

    We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.

  9. Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Kim, Daehyun; Grant, William E.; Cairns, David M.

    2013-01-01

    Long-term eustatic sea-level variation has been recognized as a primary factor affecting the hydrological and geomorphic dynamics of salt marshes. However, recent studies suggest that wind waves influenced by atmospheric oscillations also may play an important role in many coastal areas. Although...... this notion has been conceptually introduced for the Wadden Sea, no modeling attempts have been made yet. As a proof of concept, this study developed a simulation model using the commercially available STELLAA (R) software, based on long-term data on water level and sedimentation collected at a back......-barrier marsh on the Skallingen peninsula in Denmark. In the model, the frequency (number year(-1)) of wind-driven extreme high water level (HWL) events (> 130 cm Danish Ordnance Zero) was simulated in terms of the North Atlantic Oscillation (NAO) index. Then, surface accretion (cm year(-1)) and submergence...

  10. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks.

    Science.gov (United States)

    Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.

  11. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks

    Science.gov (United States)

    Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020

  12. Oscillations of the positive column plasma due to ionization wave propagation and two-dimensional structure of striations

    International Nuclear Information System (INIS)

    Golubovskii, Yu B; Kozakov, R V; Wilke, C; Behnke, J; Nekutchaev, V O

    2004-01-01

    Time and space resolved measurements of the plasma potential in axial and radial directions in S- and P-striations in neon are performed. The measurements in different radial positions were carried out with high spatial resolution by means of simultaneous displacement of electrodes relative to the stationary probe. The plasma potential was found to be a superposition of the potentials of ionization wave and plasma oscillations relative to the electrodes. A method of decomposition of the measured spatio-temporal structure of the potential in components associated with the plasma oscillations and ionization wave propagation is proposed. A biorthogonal decomposition of the spatio-temporal structure of the potential is performed. A comparison of the decomposition results obtained by the two methods is made. The experiments revealed a two-dimensional structure of the potential field in an ionization wave. Qualitative discussions of the reasons for the occurrence of this two-dimensional structure are presented based on the analysis of the kinetic equation and the equation for the potential

  13. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    International Nuclear Information System (INIS)

    Kuwahara, D.; Shinohara, S.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.

    2015-01-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA

  14. Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator

    Science.gov (United States)

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua

    2018-01-01

    We propose a pilot-multiplexed continuous-variable quantum key distribution (CVQKD) scheme based on a local local oscillator (LLO). Our scheme utilizes time-multiplexing and polarization-multiplexing techniques to dramatically isolate the quantum signal from the pilot, employs two heterodyne detectors to separately detect the signal and the pilot, and adopts a phase compensation method to almost eliminate the multifrequency phase jitter. In order to analyze the performance of our scheme, a general LLO noise model is constructed. Besides the phase noise and the modulation noise, the photon-leakage noise from the reference path and the quantization noise due to the analog-to-digital converter (ADC) are also considered, which are first analyzed in the LLO regime. Under such general noise model, our scheme has a higher key rate and longer secure distance compared with the preexisting LLO schemes. Moreover, we also conduct an experiment to verify our pilot-multiplexed scheme. Results show that it maintains a low level of the phase noise and is expected to obtain a 554-Kbps secure key rate within a 15-km distance under the finite-size effect.

  15. Propagation of a linear wave created by a spatially localized perturbation in a regular lattice and punctured Lagrangian manifolds

    Science.gov (United States)

    Dobrokhotov, S. Yu.; Nazaikinskii, V. E.

    2017-01-01

    The following results are obtained for the Cauchy problem with localized initial data for the crystal lattice vibration equations with continuous and discrete time: (i) the asymptotics of the solution is determined by Lagrangian manifolds with singularities ("punctured" Lagrangian manifolds); (ii) Maslov's canonical operator is defined on such manifolds as a modification of a new representation recently obtained for the canonical operator by the present authors together with A. I. Shafarevich (Dokl. Ross. Akad. Nauk 46 (6), 641-644 (2016)); (iii) the projection of the Lagrangian manifold onto the configuration plane specifies a bounded oscillation region, whose boundary (which is naturally referred to as the leading edge front) is determined by the Hamiltonians corresponding to the limit wave equations; (iv) the leading edge front is a special caustic, which possibly contains stronger focal points. These observations, together with earlier results, lead to efficient formulas for the wave field in a neighborhood of the leading edge front.

  16. Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials.

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín-Vázquez

    Full Text Available Fluctuations in successive waves of oscillatory local field potentials (LFPs reflect the ongoing processing of neuron populations. However, their amplitude, polarity and synaptic origin are uncertain due to the blending of electric fields produced by multiple converging inputs, and the lack of a baseline in standard AC-coupled recordings. Consequently, the estimation of underlying currents by laminar analysis yields spurious sequences of inward and outward currents. We devised a combined analytical/experimental approach that is suitable to study laminated structures. The approach was essayed on an experimental oscillatory LFP as the Schaffer-CA1 gamma input in anesthetized rats, and it was verified by parallel processing of model LFPs obtained through a realistic CA1 aggregate of compartmental units. This approach requires laminar LFP recordings and the isolation of the oscillatory input from other converging pathways, which was achieved through an independent component analysis. It also allows the spatial and temporal components of pathway-specific LFPs to be separated. While reconstructed Schaffer-specific LFPs still show spurious inward/outward current sequences, these were clearly stratified into distinct subcellular domains. These spatial bands guided the localized delivery of neurotransmitter blockers in experiments. As expected, only Glutamate but not GABA blockers abolished Schaffer LFPs when applied to the active but not passive subcellular domains of pyramidal cells. The known chemical nature of the oscillatory LFP allowed an empirical offset of the temporal component of Schaffer LFPs, such that following reconstruction they yield only sinks or sources at the appropriate sites. In terms of number and polarity, some waves increased and others decreased proportional to the concomitant inputs in native multisynaptic LFPs. Interestingly, the processing also retrieved the initiation time for each wave, which can be used to discriminate

  17. Investigation on the performance of an optically generated RF local oscillator signal in Ku-band DVB-S systems

    NARCIS (Netherlands)

    Khan, M.R.H.; Marpaung, D.A.I.; Burla, M.; Roeloffzen, C.G.H.; Bernhardi, Edward; de Ridder, R.M.

    2011-01-01

    We investigate a way to externally generate the local oscillator (LO) signal used for downconversion of the Ku-band (10.7 − 12.75 GHz) RF signal received from a phased array antenna (PAA). The signal is then translated to an intermediate frequency (950 − 2150 MHz) at the output of the mixer of

  18. Asymmetric systems described by a pair of local covariant wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1979-07-16

    A class of asymmetric solutions of the integrability conditions for systems obeying the Leutwyler-Stern pair of covariant wave equations is obtained. The class of unequal-mass systems described by these solutions does not embed the particle-antiparticle system behaving as a relativistic harmonic oscillator.

  19. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  20. Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential

    International Nuclear Information System (INIS)

    Zhu Yun; Zheng Zhi-Gang; Yang Jun-Zhong

    2013-01-01

    Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott—Antonsen ansatz. (general)

  1. Localization and Retrieval of an Eyelid Metallic Foreign Body With an Oscillating Magnet and High-Resolution Ultrasonography.

    Science.gov (United States)

    Yoo, Sylvia H; Rootman, Dan B; Goh, Alice; Savar, Aaron; Goldberg, Robert A

    2016-01-01

    A patient was found to have a metallic foreign body in the left anterior orbit on CT imaging, but the foreign body was not evident on clinical examination. On high-resolution ultrasonography, an object was identified in the left upper eyelid; however, the typical shadow with metallic foreign bodies was not seen. A high-power oscillating magnet was then applied to the eyelid, which revealed a subcutaneous metallic foreign body in the left upper eyelid. When used in conjunction, the high-resolution ultrasound and oscillating magnet successfully localized and facilitated retrieval of the metallic foreign body from the left upper eyelid.

  2. Locking the local oscillator phase to the atomic phase via weak measurement

    International Nuclear Information System (INIS)

    Shiga, N; Takeuchi, M

    2012-01-01

    A new method is proposed to reduce the frequency noise of a local oscillator to the level of white phase noise by maintaining (not destroying by projective measurement) the coherence of the ensemble pseudo-spin of atoms over many measurement cycles. This method, which we call ‘atomic phase lock (APL)’, uses weak measurement to monitor the phase in the Ramsey method and repeat the cycle without initialization of the phase. APL will achieve white phase noise as long as the noise accumulated during dead time and the decoherence are smaller than the measurement noise. A numerical simulation confirmed that with APL, the Allan deviation is averaged down at a maximum rate that is proportional to the inverse of the total measurement time, τ -1 . In contrast, current atomic clocks that use projection measurement suppress the noise only to the white frequency noise level, in which case the Allan deviation scales as τ -1/2 . Faraday rotation is one way to achieve weak measurement for APL. The strength of Faraday rotation with 171 Yb + ions trapped in a linear rf-trap is evaluated, and the performance of APL is discussed. The main source of decoherence is a spontaneous emission, induced by the probe beam for Faraday rotation measurement. The Faraday rotation measurement can be repeated until the decoherence becomes comparable to the signal-to-noise ratio of the measurement. The number of cycles for a realistic experimental parameter is estimated to be ∼100. (paper)

  3. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    Science.gov (United States)

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  4. Experimental research on density wave oscillation of steam-water two-phase flow in parallel inclined internally ribbed pipes

    International Nuclear Information System (INIS)

    Gao Feng; Chen Tingkuan; Luo Yushan; Yin Fei; Liu Weimin

    2005-01-01

    At p=3-10 MPa, G=300-600 kg/(m 2 ·s), Δt sub =30-90 degree C, and q=0-190 kW/m 2 , the experiments on steam-water two-phase flow instabilities have been performed. The test sections are parallel inclined internally ribbed pipes with an outer diameter of φ38.1 mm, a wall thinkness of 7.5 mm, a obliquity of 19.5 and a length more than 15 m length. Based on the experimental results, the effects of pressure, mass velocity, inlet subcooling and asymmetrical heat flux on steam-water two-phase flow density wave oscillation were analyzed. The experimental results showed that the flow system were more stable as pressure increased. As an increase in mass velocity, critical heat flux increased but critical steam quality decreased. Inlet subcooling had a monotone effect on density wave oscillation, when inlet subcooling decreased, critical heat flux decreased. Under a certain working condition, critical heat flux on asymmetrically heating parallel pipes is higher than that on symmetrically heating parallel pipes, that means the system with symmetrically heating parallel pips was more stable. (authors)

  5. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    Science.gov (United States)

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls. © 2013 European Sleep Research Society.

  6. The submm wave Josephson flux flow oscillator; Linewidth measurements and simple theory

    DEFF Research Database (Denmark)

    Mygind, Jesper; Koshelets, V. P.; Samuelsen, Mogens Rugholm

    2005-01-01

    The Flux Flow Oscillator (FFO) is a long Josephson junction in which a DC bias current and a DC magnetic field maintain a unidirectional viscous flow of magnetic flux quanta. The theoretical linewidth of the electromagnetic radiation generated at the end boundary is due to internal current...

  7. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  8. Particle in a standing wave field; beyond the oscillation center approximation

    International Nuclear Information System (INIS)

    Schmidt, G.

    1982-01-01

    The ponderomotive force arises in plasma physics as a weak field approximation on particle dynamics. Recent advances in stochasticity theory lead to the conclusion that for sufficiently strong fields, the ponderomotive potential well disappears, and significant portions of phase space are filled with stochastic trajectories. This is illustrated by numerically studying the phase space behavior of the oscillation center. (author)

  9. The theory of magnetohydrodynamic wave generation by localized sources. I - General asymptotic theory

    Science.gov (United States)

    Collins, William

    1989-01-01

    The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.

  10. Localized instability on the route to disorder in Faraday waves.

    Science.gov (United States)

    Shani, Itamar; Cohen, Gil; Fineberg, Jay

    2010-05-07

    We experimentally investigate how disorder comes about in parametrically excited waves on a fluid surface (Faraday waves). We find that the transition from an ordered pattern to disorder corresponding to "defect-mediated turbulence" is mediated by a spatially incoherent oscillatory phase. This phase consists of highly damped waves that propagate through the effectively elastic lattice defined by the pattern. They have a well-defined frequency, velocity, and transverse polarization. As these waves decay within a few lattice spaces, they are spatially and temporally uncorrelated at larger scales.

  11. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  12. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    Science.gov (United States)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  13. Possible Experiment for the Demonstration of Neutron Waves Interaction with Spatially Oscillating Potential

    Directory of Open Access Journals (Sweden)

    Miloi Mădălina Mihaela

    2018-01-01

    Full Text Available A wide range of problems in neutron optics is well described by a theory based on application of the effective potential model. It was assumed that the concept of the effective potential in neutron optics have a limited region of validity and ceases to be correct in the case of the giant acceleration of a matter. To test this hypothesis a new Ultra Cold neutron experiment for the observation neutron interaction with potential structure oscillating in space was proposed. The report is focused on the model calculations of the topography of sample surface that oscillate in space. These calculations are necessary to find an optimal parameters and geometry of the planned experiment.

  14. On the wave forcing of the semi-annual zonal wind oscillation

    Science.gov (United States)

    Nagpal, O. P.; Raghavarao, R.

    1991-01-01

    Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.

  15. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    Science.gov (United States)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  16. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX

    Energy Technology Data Exchange (ETDEWEB)

    Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Wang, X. [Saitama University, Saitama 338-8570 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [National Institute of Technology, Ube College, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [National Institute of Fusion Science, Toki, Gifu 509-5292 (Japan); Mase, A. [Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2016-11-15

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.

  17. Land surface anomalies preceding the 2010 Russian heat wave and a link to the North Atlantic oscillation

    International Nuclear Information System (INIS)

    Wright, Christopher K; Henebry, Geoffrey M; De Beurs, Kirsten M

    2014-01-01

    The Eurasian wheat belt (EWB) spans a region across Eastern Ukraine, Southern Russia, and Northern Kazakhstan; accounting for nearly 15% of global wheat production. We assessed land surface conditions across the EWB during the early growing season (April–May–June; AMJ) leading up to the 2010 Russian heat wave, and over a longer-term period from 2000 to 2010. A substantial reduction in early season values of the normalized difference vegetation index occurred prior to the Russian heat wave, continuing a decadal decline in early season primary production in the region. In 2010, an anomalously cold winter followed by an abrupt shift to a warmer-than-normal early growing season was consistent with a persistently negative phase of the North Atlantic oscillation (NAO). Regression analyses showed that early season vegetation productivity in the EWB is a function of both the winter (December–January–February; DJF) and AMJ phases of the NAO. Land surface anomalies preceding the heat wave were thus consistent with highly negative values of both the DJF NAO and AMJ NAO in 2010. (letter)

  18. Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

    Directory of Open Access Journals (Sweden)

    Eun-Hwa Kim

    2015-12-01

    Full Text Available By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

  19. Introduction to wave scattering, localization, and mesoscopic phenomena

    CERN Document Server

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  20. Sub-half-wavelength atom localization via two standing-wave fields

    International Nuclear Information System (INIS)

    Jin Luling; Sun Hui; Niu Yueping; Gong Shangqing

    2008-01-01

    We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization

  1. Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Dumitru Baleanu

    2014-01-01

    Full Text Available We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  2. A time-localized response of wave growth process under turbulent winds

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2007-06-01

    Full Text Available Very short time series (with lengths of approximately 40 s or 5~7 wave periods of wind velocity fluctuations and wave elevation were recorded simultaneously and investigated using the wavelet bispectral analysis. Rapid changes in the wave and wind spectra were detected, which were found to be intimately related to significant energy transfers through transient quadratic wind-wave and wave-wave interactions. A possible pattern of energy exchange between the wind and wave fields was further deduced. In particular, the generation and variation of the strong wave-induced perturbation velocity in the wind can be explained by the strengthening and diminishing of the associated quadratic interactions, which cannot be unveiled by linear theories. On small time scales, the wave-wave quadratic interactions were as active and effective in transferring energy as the wind-wave interactions. The results also showed that the wind turbulence was occasionally effective in transferring energy between the wind and the wave fields, so that the background turbulence in the wind cannot be completely neglected. Although these effects are all possibly significant over short times, the time-localized growth of the wave spectrum may not considerably affect the long-term process of wave development.

  3. Extreme localization of light with femtosecond subwavelength rogue waves

    KAUST Repository

    Liu, Changxu

    2015-01-01

    By using theory and experiments, we investigate a new mechanism based on spontaneous synchronization of random waves which generates ultrafast subwavelength rare events in integrated photonic chips. © 2014 Optical Society of America.

  4. Introduction to wave scattering, localization, and mesoscopic phenomena

    National Research Council Canada - National Science Library

    Sheng, Ping

    1995-01-01

    ... Extension of the CPA to the Intermediate Frequency Regime Problems and Solutions References 73 77 82 84 85 87 113 4. Diffusive Waves 115 4.1 Beyond the Effective Medium 4.2 Pulse Intensity Evolution...

  5. Experimental signatures of localization in Langmuir wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rose, H.A.; DuBois, D.F.; Russell, D.; Bezzerides, B.

    1988-01-01

    Features in certain laser-plasma and ionospheric experiments are identified with the basic properties of Langmuir wave turbulence. Also, a model of caviton nucleation is presented which leads to certain novel scaling predictions. 12 refs., 19 figs.

  6. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.

    2016-01-01

    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  7. Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae

    Science.gov (United States)

    Marek, A.; Janka, H.-T.; Müller, E.

    2009-03-01

    We present two-dimensional (axisymmetric) neutrino-hydrodynamic simulations of the long-time accretion phase of a 15 M_⊙ progenitor star after core bounce and before the launch of a supernova explosion, when non-radial hydrodynamic instabilities like convection occur in different regions of the collapsing stellar core and the standing accretion shock instability (SASI) leads to large-amplitude oscillations of the stalled shock with a period of tens of milliseconds. Our simulations were performed with the Prometheus-Vertex code, which includes a multi-flavor, energy-dependent neutrino transport scheme and employs an effective relativistic gravitational potential. Testing the influence of a stiff and a soft equation of state for hot neutron star matter, we find that the non-radial mass motions in the supernova core impose a time variability on the neutrino and gravitational-wave signals with larger amplitudes, as well as higher frequencies in the case of a more compact nascent neutron star. After the prompt shock-breakout burst of electron neutrinos, a more compact accreting remnant produces higher neutrino luminosities and higher mean neutrino energies. The observable neutrino emission in the SASI sloshing direction exhibits a modulation of several ten percent in the luminosities and around 1 MeV in the mean energies with most power at typical SASI frequencies between roughly 20 and 100 Hz. The modulation is caused by quasi-periodic variations in the mass accretion rate of the neutron star in each hemisphere. At times later than ~50-100 ms after bounce, the gravitational-wave amplitude is dominated by the growing low-frequency (⪉200 Hz) signal associated with anisotropic neutrino emission. A high-frequency wave signal results from nonradial gas flows in the outer layers of the anisotropically accreting neutron star. Right after bounce such nonradial mass motions occur due to prompt post-shock convection in both considered cases and contribute mostly to the early

  8. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  9. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    Science.gov (United States)

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  11. Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.

    2004-01-01

    Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate

  12. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  13. Oscillator and system development on the VULCAN glass laser system for the plasma beat-wave program

    International Nuclear Information System (INIS)

    Danson, C.N.

    1990-03-01

    This thesis describes the oscillator and system development on the VULCAN glass laser undertaken in support of the RAL Plasma Beat-wave experiments. This program seeks to evaluate advanced particle acceleration schemes for a new generation of machines for fundamental research in high energy physics. The experiments required two synchronised high power laser pulses of slightly different wavelength. These pulses were generated using two different laser media; Nd:YAG and Nd:YLF operating at 1.064 and 1.053 microns respectively. The first oscillator system developed operated with both lasing media housed in the same laser cavity. Problems with the stability of the optical output required the development of a second system which housed the two lasing media in separate cavities. The second aspect of the development work, described in this thesis, was the reconfiguration of the VULCAN glass laser system to amplify the two laser pulses to power levels of 0.5 TW per pulse. The first scheduled experiment required the two pulses to be propagated co-linearly. To amplify the pulses to the high output powers required two amplifying media to be used which preferentially amplify the two lasing wavelengths. For the later experiments the two laser pulses were amplified in separate amplifier chains which required the design of an efficient beam combiner. (author)

  14. Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere

    Czech Academy of Sciences Publication Activity Database

    Mošna, Zbyšek; Koucká Knížová, Petra

    90-91, SI (2012), s. 172-178 ISSN 1364-6826. [IAGA/ICMA/CAWSES-II TG4 Workshop on Vertical Coupling in the Atmosphere-Ionosphere System /4./. Prague, 14.02.2011-18.02.2011] R&D Projects: GA AV ČR IAA300420704 Institutional support: RVO:68378289 Keywords : Sporadic E * Planetary waves * Tidal waves * Mid-latitude ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.417, year: 2012 http://www.sciencedirect.com/science/article/pii/S1364682612001186

  15. A phase-plane analysis of localized frictional waves

    Science.gov (United States)

    Putelat, T.; Dawes, J. H. P.; Champneys, A. R.

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  16. Temperature oscillations in the upper thermocline region- A case study on internal waves off Kalpeni Island in the southern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Charyulu, R.J.K.; Sarma, Y.V.B.; Sarma, M.S.S.; Rao, L.V.G.

    characteristics of the temperature oscillations. The power spectra of temperature fluctuations at 11 depths in the upper thermocline from 80 to 100 m with 2 m interval, were computed for studying the short period internal waves. Power spectra density was higher...

  17. A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Won; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook Nat' l Univ., Daegu (Korea, Republic of); Jeon, Heung Kyun [Daegu Health College, Daegu (Korea, Republic of)

    2014-03-15

    In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of α=0 .deg., the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of M{sub ∞}=0.87 and φ{sub 0}=60%, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of φ{sub 0}=30% amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in C{sub D} become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

  18. A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow

    International Nuclear Information System (INIS)

    Kim, In Won; Kwon, Young Doo; Kwon, Soon Bum; Jeon, Heung Kyun

    2014-01-01

    In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of α=0 .deg., the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of M ∞ =0.87 and φ 0 =60%, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of φ 0 =30% amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in C D become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher

  19. Investigation of a diode-pumped intracavity optical parametric oscillator in pulsed and continuous wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Balle-Petersen, O.

    2001-01-01

    Summary form only given. CW and pulsed compact tunable laser sources in the infrared have widespread scientific, medical and industrial applications. Such a laser source can be obtained by use of a diode-pumped intracavity optical parametric oscillator (IOPO). We report on a IOPO based on a Yb......:YAG laser incorporating a periodically poled LiNbO3 (PPLN) crystal inside the laser cavity to take advantage of the high circulating intracavity field. The Yb:YAG crystal is pumped by a reliable 940 nm fibre-coupled diode laser. The IOPO consists of a Yb:YAG crystal coated for HR at 1030 nm, an intracavity...... lens to generate a beam waist in the PPLN crystal, a dichroic mirror to separate the laser and signal fields and two end mirrors...

  20. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  1. Quantum oscillations and key theoretical issues in high temperature superconductors from the perspective of density waves

    International Nuclear Information System (INIS)

    Chakravarty, Sudip

    2011-01-01

    High temperature superconductivity in cuprate superconductors remains an unsolved problem in theoretical physics. The same statement can also be made about a number of other superconductors that have been dubbed novel. What makes these superconductors so elusive is an interesting question in itself. This paper focuses on the recent magnetic oscillation experiments and how they fit into the broader picture. Many aspects of these experiments can be explained by Fermi liquid theory; the key issue is the extent to which this is true. If true, the entire paradigm developed over the past three decades must be reexamined. A critical analysis of this issue has necessitated a broader analysis of questions about distinct ground states of matter, which may be useful in understanding other novel superconductors.

  2. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module

    Directory of Open Access Journals (Sweden)

    Yichen Liu

    2017-12-01

    Full Text Available We demonstrate here a compact optical parametric oscillator module for mid-infrared generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within a small volume of 220 × 60 × 55 mm3. The module can be easily aligned to various pump laser sources, and here we use a 50 W ytterbium (Yb-doped fiber laser as an example. With a two-channel MgO-doped periodically poled lithium niobate crystal (MgO:PPLN, our module covers a tuning range of 2416.17–2932.25 nm and 3142.18–3452.15 nm. The highest output power exceeds 10.4 W at 2.7 μm, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root Meat Square (RMS for a 10 h duration under outdoor conditions.

  3. Pacific centre of the Arctic Oscillation: product of high local variability rather than teleconnectivity

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan

    58A, č. 5 (2006), s. 601-604 ISSN 0280-6495 R&D Projects: GA ČR GA205/05/2282 Institutional research plan: CEZ:AV0Z30420517 Keywords : Arctic Oscillation * Pacific centre * principal component analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.245, year: 2006

  4. Optimization of power take-off equipment for an oscillating water column wave energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C.; Falcao, Antonio de F.O. [Dept. de Engenharia Mecanica do IST, Lisboa (Portugal); Paulo Alexandre Justino [INETI/DER, Lisboa (Portugal)

    2005-07-01

    The paper reports the optimization study of the electro-mechanical power take-off equipment for the OWC plant whose structure is a caisson forming the head of the new Douro breakwater. The stochastic approach is employed to model the wave-to-wire energy conversion. The optimization includes rotational speed (for each sea state), turbine geometry and size, and generator rated power. The procedure is implemented into a fully integrated computer code, that yields numerical results for the multi-variable optimization process and for the electrical power output (annual average and for different sea states) with modest computing time (much less than if a time-domain model were used instead). Although focused into a particular real case, the paper is intended to outline a design method that can be applied to a wider class of wave energy converters.

  5. Semilinear damped wave equation in locally uniform spaces

    Czech Academy of Sciences Publication Activity Database

    Michálek, Martin; Pražák, D.; Slavík, J.

    2017-01-01

    Roč. 16, č. 5 (2017), s. 1673-1695 ISSN 1534-0392 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : damped wave equations * nonlinear damping * unbounded domains Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.801, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14110

  6. Importance of quantification of local site effects based on wave ...

    Indian Academy of Sciences (India)

    This paper presents the three most important aspects of seismic microzonation namely prediction of fundamental frequency (F0) of soil deposit, aggravation factor (aggravation factor is ... We recommend the use of analytical or numerical methods to predict such an important parameter based on wave propagation effects.

  7. Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators

    Science.gov (United States)

    Glyzin, S. D.; Kolesov, A. Yu; Rozov, N. Kh

    2017-12-01

    Proposed is a mathematical model of a continuous annular chain of unidirectionally coupled generators given by certain nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. It is shown that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.

  8. Persistence of the planetary wave type oscillations in foF2 for four European stations

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter; Šauli, Petra; Novotná, Dagmar

    2003-01-01

    Roč. 21, - (2003), s. 1543-1552 ISSN 0992-7689 R&D Projects: GA AV ČR KSK3012103; GA ČR GP205/02/P077; GA MŠk OC 271.10 Institutional research plan: CEZ:AV0Z3042911 Keywords : ionosphere ionosphere-atmosphere interaction * mid-latitude ionosphere, ionospheric disturbances) * meteorology and atmospheric dynamics (waves and tides ) Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.031, year: 2003

  9. Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations

    Science.gov (United States)

    Tsurutani, B.

    1993-01-01

    Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.

  10. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Afanasyev, A. N. [Institute of Solar-Terrestrial Physics SB RAS, P.O. Box 291, Lermontov St. 126A, Irkutsk 664033 (Russian Federation); Kumar, S.; Moon, Y.-J., E-mail: V.Nakariakov@warwick.ac.uk [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2017-11-01

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. This effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.

  11. Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC, V-Shaped Floating Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    John V. Ringwood

    2013-08-01

    Full Text Available Combining offshore wind and wave energy converting apparatuses presents a number of potentially advantageous synergies. To facilitate the development of a proposed floating platform combining these two technologies, proof of concept scale model testing on the wave energy converting component of this platform has been conducted. The wave energy component is based on the well-established concept of the oscillating water column. A numerical model of this component has been developed in the frequency domain, and the work presented here concerns the results of this modelling and testing. The results of both are compared to assess the validity and usefulness of the numerical model.

  12. Localization of fluctuation measurement by wave scattering close to a cut off layer

    International Nuclear Information System (INIS)

    Zou, X.L.; Laurent, L.; Rax, J.M.; Lehner, T.

    1990-01-01

    The diagnostic of plasma fluctuations in tokamaks based on the scattering of an electromagnetic wave close to a cut off layer is investigated. A linear density profile is considered. An one-dimensional exact analysis is performed. Spatial and spectral localization of scattering process close to the cut off layer is studied and a modified Bragg rule is derived. The structure of pump and of scattered waves is analyzed. The diagnostic seems to be local and sensitive for low R fluctuations

  13. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    Science.gov (United States)

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  14. An alternative approach to exact wave functions for time-dependent coupled oscillator model of charged particle in variable magnetic field

    International Nuclear Information System (INIS)

    Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol

    2010-01-01

    The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.

  15. Sharp wave/ripple network oscillations and learning-associated hippocampal maps.

    Science.gov (United States)

    Csicsvari, Jozsef; Dupret, David

    2014-02-05

    Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.

  16. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian plasmas for parallel wave vectors

    Science.gov (United States)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-05-01

    The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .

  17. Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model

    International Nuclear Information System (INIS)

    Chen, Aiyong; Zhu, Wenjing; Qiao, Zhijun; Huang, Wentao

    2014-01-01

    In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained

  18. Surface/state correspondence and bulk local operators in pp-wave holography

    Directory of Open Access Journals (Sweden)

    Nakwoo Kim

    2015-12-01

    Full Text Available We apply the surface/state correspondence proposal of Miyaji et al. to IIB pp-waves and propose that the bulk local operators should be instantonic D-branes. In line with ordinary AdS/CFT correspondence, the bulk local operators in pp-waves also create a hole, or a boundary, in the dual gauge theory as pointed out by H. Verlinde, and by Y. Nakayama and H. Ooguri. We also present simple calculations which illustrate how to extract the spacetime metric of pp-waves from instantonic D-branes in boundary state formalism.

  19. Distribution patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local environmental characteristics

    Science.gov (United States)

    Zipkin, Elise F.; Gardner, Beth; Gilbert, Andrew T.; O'Connell, Allan F.; Royle, J. Andrew; Silverman, Emily D.

    2010-01-01

    Twelve species of North American sea ducks (Tribe Mergini) winter off the eastern coast of the United States and Canada. Yet, despite their seasonal proximity to urbanized areas in this region, there is limited information on patterns of wintering sea duck habitat use. It is difficult to gather information on sea ducks because of the relative inaccessibility of their offshore locations, their high degree of mobility, and their aggregated distributions. To characterize environmental conditions that affect wintering distributions, as well as their geographic ranges, we analyzed count data on five species of sea ducks (black scoters Melanitta nigra americana, surf scoters M. perspicillata, white-winged scoters M. fusca, common eiders Somateria mollissima, and long-tailed ducks Clangula hyemalis) that were collected during the Atlantic Flyway Sea Duck Survey for ten years starting in the early 1990s. We modeled count data for each species within ten-nautical-mile linear survey segments using a zero-inflated negative binomial model that included four local-scale habitat covariates (sea surface temperature, mean bottom depth, maximum bottom slope, and a variable to indicate if the segment was in a bay or not), one broad-scale covariate (the North Atlantic Oscillation), and a temporal correlation component. Our results indicate that species distributions have strong latitudinal gradients and consistency in local habitat use. The North Atlantic Oscillation was the only environmental covariate that had a significant (but variable) effect on the expected count for all five species, suggesting that broad-scale climatic conditions may be directly or indirectly important to the distributions of wintering sea ducks. Our results provide critical information on species-habitat associations, elucidate the complicated relationship between the North Atlantic Oscillation, sea surface temperature, and local sea duck abundances, and should be useful in assessing the impacts of climate

  20. Local increase of anticyclonic wave activity over northern Eurasia under amplified Arctic warming: WAVE ACTIVITY RESPONSE TO ARCTIC MELTING

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Daokai [School of Atmospheric Sciences, Nanjing University, Nanjing China; Lu, Jian [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Sun, Lantao [CIRES, University of Colorado Boulder, Boulder Colorado USA; PSD, ESRL, NOAA, Boulder Colorado USA; Chen, Gang [Department of Earth and Atmospheric Sciences, UCLA, Los Angeles California USA; Zhang, Yaocun [School of Atmospheric Sciences, Nanjing University, Nanjing China

    2017-04-10

    In an attempt to resolve the controversy as to whether Arctic sea ice loss leads to more mid-latitude extremes, a metric of finite-amplitude wave activity is adopted to quantify the midlatitude wave activity and its change during the observed period of the drastic Arctic sea ice decline in both ERA Interim reanalysis data and a set of AMIP-type of atmospheric model experiments. Neither the experiment with the trend in the SST or that with the declining trend of Arctic sea ice can simulate the sizable midlatitude-wide reduction in the total wave activity (Ae) observed in the reanalysis, leaving its explanation to the atmospheric internal variability. On the other hand, both the diagnostics of the flux of the local wave activity and the model experiments lend evidence to a possible linkage between the sea ice loss near the Barents and Kara seas and the increasing trend of anticyclonic local wave activity over the northern part of the central Eurasia and the associated impacts on the frequency of temperature extremes.

  1. Drifts and Environmental Disturbances in Atomic Clock Subsystems: Quantifying Local Oscillator, Control Loop, and Ion Resonance Interactions.

    Science.gov (United States)

    Enzer, Daphna G; Diener, William A; Murphy, David W; Rao, Shanti R; Tjoelker, Robert L

    2017-03-01

    Linear ion trap frequency standards are among the most stable continuously operating frequency references and clocks. Depending on the application, they have been operated with a variety of local oscillators (LOs), including quartz ultrastable oscillators, hydrogen-masers, and cryogenic sapphire oscillators. The short-, intermediate-, and long-term stability of the frequency output is a complicated function of the fundamental performances, the time dependence of environmental disturbances, the atomic interrogation algorithm, the implemented control loop, and the environmental sensitivity of the LO and the atomic system components. For applications that require moving these references out of controlled lab spaces and into less stable environments, such as fieldwork or spaceflight, a deeper understanding is needed of how disturbances at different timescales impact the various subsystems of the clock and ultimately the output stability. In this paper, we analyze which perturbations have an impact and to what degree. We also report on a computational model of a control loop, which keeps the microwave source locked to the ion resonance. This model is shown to agree with laboratory measurements of how well the feedback removes various disturbances and also with a useful analytic approach we developed for predicting these impacts.

  2. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    Science.gov (United States)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  3. Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

    Science.gov (United States)

    Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.

    2018-01-01

    Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.

  4. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems

    International Nuclear Information System (INIS)

    Wang, Ken Kang-Hsin; Ye Zhen

    2003-01-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems

  5. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    Science.gov (United States)

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  6. The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation

    Science.gov (United States)

    Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.

    2018-03-01

    Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.

  7. On waves below the local proton gyrofrequency in auroral acceleration regions

    International Nuclear Information System (INIS)

    Gustafsson, G.; Andre, M.; Matson, L.; Koskinen, H.

    1990-01-01

    The Viking wave electric field and density fluctuation measurements together with simultaneous particle observations are used to study waves at frequencies below the local proton gyrofrequency. Such waves were observed during about 20% of nightside auroral field line crossings by Viking at altitudes between 2,000 and 10,000 km. The observations are different from earlier spacecraft observations of similar waves in such a way that the center frequency in about one out of four of the observed events was below the gyrofrequency of singly charged helium, which has not been reported previously. The waves were well correlated with precipitating electrons of energies of a few keV and with VLF auroral hiss. Detailed investigations of simultaneously observed wave emissions, particles, and total densities strongly suggest that secondary peaks at keV energies in the distributions of downgoing electrons can cause the emissions

  8. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming

    DEFF Research Database (Denmark)

    Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo

    2017-01-01

    load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beamto- flow angles from 45 to 90. The TO......-DB method estimates the angle with a bias and standard deviation (SD) less than 2, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2 to 17 and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger...

  9. Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2013-01-01

    Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.

  10. Local full-wave energy and quasilinear analysis in nonuniform plasmas

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1989-01-01

    The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetic analysis. An extension is presented to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character, it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern over the question of local energy for r.f.-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the r.f.-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities. (author)

  11. A continuous-wave optical parametric oscillator around 5-μm wavelength for high-resolution spectroscopy.

    Science.gov (United States)

    Krieg, J; Klemann, A; Gottbehüt, I; Thorwirth, S; Giesen, T F; Schlemmer, S

    2011-06-01

    We present a continuous-wave optical parametric oscillator (OPO) capable of high resolution spectroscopy at wavelengths between 4.8 μm and 5.4 μm. It is based on periodically poled lithium niobate (PPLN) and is singly resonant for the signal radiation around 1.35 μm. Because of the strong absorption of PPLN at wavelengths longer than 4.5 μm, the OPO threshold rises to the scale of several watts, while it produces idler powers of more than 1 mW and offers continuous tuning over 15 GHz. A supersonic jet spectrometer is used in combination with the OPO to perform measurements of the transient linear molecule Si(2)C(3) at 1968.2 cm(-1). Fifty rovibrational transition frequencies of the ν(3) antisymmetric stretching mode have been determined with an accuracy on the order of 10(-4) cm(-1), and molecular parameters for the ground and the v(3) = 1 state have been determined most precisely. © 2011 American Institute of Physics

  12. Barotropic Interactions Between Summertime Tropical Cyclones/Sub-Monthly Wave Patterns and Intraseasonal Oscillations over the Western North Pacific

    Directory of Open Access Journals (Sweden)

    Ken-Chung Ko Huang-Hsiung Hsu

    2014-01-01

    Full Text Available This study used the barotropic kinetic energy conversion to record the active eddy-mean flow interaction between the TC/sub-monthly wave pattern (TSM and the intraseasonal oscillation (ISO in the western North Pacific (WNP. Overall, the TSM extracted (lost kinetic energy from (to the cyclonic (anticyclonic circulation of the ISO, which is located in the South China Sea and the Philippine Sea, during the ISO westerly (easterly phase. The phase change in barotropic energy conversion was due to the opposite background flow set up by the ISO. When the climatological-mean southwesterly was retained as part of the background flow in both ISO westerly and easterly phases as in previous studies, the ISO along with the low-frequency background flow always provided kinetic energy to the TSM regardless of the phase. The stronger (weaker southwesterly in the ISO westerly (easterly phase, the stronger (weaker energy conversion to the TSM. Climatological mean flow exclusion showed an upscale feedback in the TSM to the ISO during the easterly phase. However, this feedback was weaker than the downscale conversion from the ISO to the TSM during the westerly phase.

  13. Impact localization in dispersive waveguides based on energy-attenuation of waves with the traveled distance

    Science.gov (United States)

    Alajlouni, Sa'ed; Albakri, Mohammad; Tarazaga, Pablo

    2018-05-01

    An algorithm is introduced to solve the general multilateration (source localization) problem in a dispersive waveguide. The algorithm is designed with the intention of localizing impact forces in a dispersive floor, and can potentially be used to localize and track occupants in a building using vibration sensors connected to the lower surface of the walking floor. The lower the wave frequencies generated by the impact force, the more accurate the localization is expected to be. An impact force acting on a floor, generates a seismic wave that gets distorted as it travels away from the source. This distortion is noticeable even over relatively short traveled distances, and is mainly caused by the dispersion phenomenon among other reasons, therefore using conventional localization/multilateration methods will produce localization error values that are highly variable and occasionally large. The proposed localization approach is based on the fact that the wave's energy, calculated over some time window, decays exponentially as the wave travels away from the source. Although localization methods that assume exponential decay exist in the literature (in the field of wireless communications), these methods have only been considered for wave propagation in non-dispersive media, in addition to the limiting assumption required by these methods that the source must not coincide with a sensor location. As a result, these methods cannot be applied to the indoor localization problem in their current form. We show how our proposed method is different from the other methods, and that it overcomes the source-sensor location coincidence limitation. Theoretical analysis and experimental data will be used to motivate and justify the pursuit of the proposed approach for localization in a dispersive medium. Additionally, hammer impacts on an instrumented floor section inside an operational building, as well as finite element model simulations, are used to evaluate the performance of

  14. Localization of Matter Waves in Two-Dimensional Disordered Optical Potentials

    International Nuclear Information System (INIS)

    Kuhn, R.C.; Miniatura, C.; Delande, D.; Sigwarth, O.; Mueller, C.A.

    2005-01-01

    We consider ultracold atoms in 2D disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the noninteracting regime. We derive the diffusion constant as a function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length

  15. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  16. The non-local Fisher–KPP equation: travelling waves and steady states

    International Nuclear Information System (INIS)

    Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya

    2009-01-01

    We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large

  17. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    Science.gov (United States)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  18. Localization of rf breakdowns in a standing wave cavity

    Directory of Open Access Journals (Sweden)

    Faya Wang

    2009-04-01

    Full Text Available At SLAC, a five-cell, normal-conducting, L-band (1.3 GHz, standing-wave (SW cavity was built as a prototype positron capture accelerator for the ILC. The structure met the ILC gradient goal but required extensive rf processing. When rf breakdowns occurred, a large variation was observed in the decay rate of the stored energy in the cavity after the input power was shut off. It appeared that the breakdowns were isolating sections of the cavity, and that the trapped energy in those sections was then partitioned among its natural modes, producing a distinct beating pattern during the decay. To explore this phenomenon further, an equivalent circuit model of cavity was created that reproduces well its normal operating characteristics. The model was then used to compute the spectra of trapped energy for different numbers of isolated cells. The resulting modal patterns agree well with those of the breakdown data, and thus such a comparison appears to provide a means of identifying the irises on which the breakdowns occurred.

  19. Evidence for new resonances in the K-barN system: A prima facie case for the even-wave harmonic-oscillator model

    International Nuclear Information System (INIS)

    Kamath, S.G.

    1978-01-01

    Arguments are presented to show that the new resonance parameters obtained by Alston-Garnjost et al. in a recent analysis of the K-barN system from 365 to 1320 MeV/c provide a prima facie case for the even-wave harmonic-oscillator theory of baryonic states in the framework of SU(6)/sub W/ x O(3). A new quantum classification of the Λ states belonging to the (70,1 - ) is also proposed

  20. Non-local coexistence of multiple spiral waves with independent frequencies

    International Nuclear Information System (INIS)

    Zhan Meng; Luo Jinming

    2009-01-01

    The interactions of several spiral waves with different independent rotation frequencies are studied in a model of two-dimensional complex Ginzburg-Laudau equation. We find a general coexistence phenomenon, non-local non-phase-locking-invasion coexistence, that is, the non-slowest spiral wave can survive and not be killed by the fastest spiral wave as it is insulated from the fastest one with the sacrifice of the slowest one, which stays in the spatial position between the fastest spiral and the non-slowest one. Both the parameter non-monotonicity and the non-phase-locking invasion between the fastest and the slowest spiral waves play key roles in this phenomenon. Importantly, the results could give a general idea for extensively observed coexistence of spiral waves in various inhomogeneous circumstances.

  1. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.; Prater, R.; Wong, S.K.

    1984-01-01

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed

  2. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  3. Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping

    Directory of Open Access Journals (Sweden)

    Jieqiong Wu

    2015-09-01

    Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.

  4. Path integral for spinning particle in the plane wave field: Global and local projections

    International Nuclear Information System (INIS)

    Boudiaf, N.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The Green function related to the problem of a Dirac particle interacting with a plane wave is calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two so-called global and local projections. With the help of the incorporation of two simple identities, it is shown that the contribution to the calculation of the integrals comes essentially from classical solutions projected along the direction of wave propagation. (orig.)

  5. Local and global bifurcations at infinity in models of glycolytic oscillations

    DEFF Research Database (Denmark)

    Sturis, Jeppe; Brøns, Morten

    1997-01-01

    We investigate two models of glycolytic oscillations. Each model consists of two coupled nonlinear ordinary differential equations. Both models are found to have a saddle point at infinity and to exhibit a saddle-node bifurcation at infinity, giving rise to a second saddle and a stable node...... at infinity. Depending on model parameters, a stable limit cycle may blow up to infinite period and amplitude and disappear in the bifurcation, and after the bifurcation, the stable node at infinity then attracts all trajectories. Alternatively, the stable node at infinity may coexist with either a stable...... sink (not at infinity) or a stable limit cycle. This limit cycle may then disappear in a heteroclinic bifurcation at infinity in which the unstable manifold from one saddle at infinity joins the stable manifold of the other saddle at infinity. These results explain prior reports for one of the models...

  6. Matter-wave localization in disordered cold atom lattices.

    Science.gov (United States)

    Gavish, Uri; Castin, Yvan

    2005-07-08

    We propose to observe Anderson localization of ultracold atoms in the presence of a random potential made of atoms of another species or spin state and trapped at the nodes of an optical lattice, with a filling factor less than unity. Such systems enable a nearly perfect experimental control of the disorder, while the possibility of modeling the scattering potentials by a set of pointlike ones allows an exact theoretical analysis. This is illustrated by a detailed analysis of the one-dimensional case.

  7. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2016-01-01

    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  8. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Science.gov (United States)

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  9. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-01-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 ± 1.3%, emissivity reduction 8.2 ± 1.4%, and local suppression 68.5 ± 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10 -5 rad s -1 .

  10. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  11. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Akutsu, T; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Ando, M; Appert, S; Arai, K; Araya, A; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Asada, H; Ascenzi, S; Ashton, G; Aso, Y; Ast, M; Aston, S M; Astone, P; Atsuta, S; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Awai, K; Babak, S; Bacon, P; Bader, M K M; Baiotti, L; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Fiore, L Di; Giovanni, M Di; Girolamo, T Di; Lieto, A Di; Pace, S Di; Palma, I Di; Virgilio, A Di; Doctor, Z; Doi, K; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Eda, K; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fujii, Y; Fujimoto, M-K; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hagiwara, A; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Hayama, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hirose, E; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Ioka, K; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Itoh, Y; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kagawa, T; Kajita, T; Kakizaki, M; Kalaghatgi, C V; Kalogera, V; Kamiizumi, M; Kanda, N; Kandhasamy, S; Kanemura, S; Kaneyama, M; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Kataoka, Y; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawai, N; Kawamura, S; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, H; Kim, J C; Kim, J; Kim, W; Kim, Y-M; Kimbrell, S J; Kimura, N; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Kojima, Y; Kokeyama, K; Koley, S; Komori, K; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kotake, K; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, Rahul; Kumar, Rakesh; Kuo, L; Kuroda, K; Kutynia, A; Kuwahara, Y; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mano, S; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marchio, M; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Matsumoto, N; Matsushima, F; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Michimura, Y; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyamoto, A; Miyamoto, T; Miyoki, S; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morii, W; Morisaki, S; Moriwaki, Y; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Nagano, S; Nakamura, K; Nakamura, T; Nakano, H; Nakano, Masaya; Nakano, Masayuki; Nakao, K; Napier, K; Nardecchia, I; Narikawa, T; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Ni, W-T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohashi, M; Ohishi, N; Ohkawa, M; Ohme, F; Okutomi, K; Oliver, M; Ono, K; Ono, Y; Oohara, K; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Peña Arellano, F E; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sago, N; Saijo, M; Saito, Y; Sakai, K; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sasaki, Y; Sassolas, B; Sathyaprakash, B S; Sato, S; Sato, T; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sekiguchi, T; Sekiguchi, Y; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shibata, M; Shikano, Y; Shimoda, T; Shoda, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somiya, K; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Sugimoto, Y; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Suzuki, T; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tagoshi, H; Takada, S; Takahashi, H; Takahashi, R; Takamori, A; Talukder, D; Tanaka, H; Tanaka, K; Tanaka, T; Tanner, D B; Tápai, M; Taracchini, A; Tatsumi, D; Taylor, R; Telada, S; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomaru, T; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Tsubono, K; Tsuzuki, T; Turconi, M; Tuyenbayev, D; Uchiyama, T; Uehara, T; Ueki, S; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Ushiba, T; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Putten, M H P M; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wakamatsu, T; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yamamoto, K; Yamamoto, T; Yancey, C C; Yano, K; Yap, M J; Yokoyama, J; Yokozawa, T; Yoon, T H; Yu, Hang; Yu, Haocun; Yuzurihara, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zeidler, S; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-01-01

    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  12. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  13. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Ando, M.; Appert, S.; Arai, K.; Araya, A.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Asada, H.; Ascenzi, S.; Ashton, G.; Aso, Y.; Ast, M.; Aston, S. M.; Astone, P.; Atsuta, S.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Awai, K.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baiotti, L.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Doctor, Z.; Doi, K.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Eda, K.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fujii, Y.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hagiwara, A.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hirose, E.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Ioka, K.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Itoh, Y.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kagawa, T.; Kajita, T.; Kakizaki, M.; Kalaghatgi, C. V.; Kalogera, V.; Kamiizumi, M.; Kanda, N.; Kandhasamy, S.; Kanemura, S.; Kaneyama, M.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kataoka, Y.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawai, N.; Kawamura, S.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, H.; Kim, J. C.; Kim, J.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; Kimura, N.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Kojima, Y.; Kokeyama, K.; Koley, S.; Komori, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kotake, K.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuo, L.; Kuroda, K.; Kutynia, A.; Kuwahara, Y.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mano, S.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marchio, M.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Matsumoto, N.; Matsushima, F.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Michimura, Y.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyamoto, A.; Miyamoto, T.; Miyoki, S.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morii, W.; Morisaki, S.; Moriwaki, Y.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Nagano, S.; Nakamura, K.; Nakamura, T.; Nakano, H.; Nakano, Masaya; Nakano, Masayuki; Nakao, K.; Napier, K.; Nardecchia, I.; Narikawa, T.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Ni, W.-T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohme, F.; Okutomi, K.; Oliver, M.; Ono, K.; Ono, Y.; Oohara, K.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Peña Arellano, F. E.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sago, N.; Saijo, M.; Saito, Y.; Sakai, K.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sasaki, Y.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Sato, T.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sekiguchi, T.; Sekiguchi, Y.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shibata, M.; Shikano, Y.; Shimoda, T.; Shoda, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somiya, K.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Sugimoto, Y.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Suzuki, T.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tagoshi, H.; Takada, S.; Takahashi, H.; Takahashi, R.; Takamori, A.; Talukder, D.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tatsumi, D.; Taylor, R.; Telada, S.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomaru, T.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Tsubono, K.; Tsuzuki, T.; Turconi, M.; Tuyenbayev, D.; Uchiyama, T.; Uehara, T.; Ueki, S.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Ushiba, T.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Putten, M. H. P. M.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wakamatsu, T.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yamamoto, K.; Yamamoto, T.; Yancey, C. C.; Yano, K.; Yap, M. J.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yu, Hang; Yu, Haocun; Yuzurihara, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zeidler, S.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.

    2018-04-01

    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 deg^2 requires at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  14. Instantaneous local wave vector estimation from multi-spacecraft measurements using few spatial points

    Directory of Open Access Journals (Sweden)

    T. D. Carozzi

    2004-07-01

    Full Text Available We introduce a technique to determine instantaneous local properties of waves based on discrete-time sampled, real-valued measurements from 4 or more spatial points. The technique is a generalisation to the spatial domain of the notion of instantaneous frequency used in signal processing. The quantities derived by our technique are closely related to those used in geometrical optics, namely the local wave vector and instantaneous phase velocity. Thus, this experimental technique complements ray-tracing. We provide example applications of the technique to electric field and potential data from the EFW instrument on Cluster. Cluster is the first space mission for which direct determination of the full 3-dimensional local wave vector is possible, as described here.

  15. Phase locking of a 1.5 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver.

    Science.gov (United States)

    Rabanus, D; Graf, U U; Philipp, M; Ricken, O; Stutzki, J; Vowinkel, B; Wiedner, M C; Walther, C; Fischer, M; Faist, J

    2009-02-02

    We demonstrate for the first time the closure of an electronic phase lock loop for a continuous-wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark-shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.

  16. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  17. Features of 3–7-day planetary-wave-type oscillations in F-layer vertical drift and equatorial spread F observed over two low-latitude stations in China

    Directory of Open Access Journals (Sweden)

    Z. Zhu

    2017-06-01

    Full Text Available Recent studies on the equatorial atmosphere–ionosphere coupling system have shown that planetary-wave-type oscillations, as an important seeding mechanism for equatorial spread F (ESF, play an important role in ESF irregularity development and its day-to-day variability in the equatorial latitudes. In this study, ionosonde virtual height and ESF measurements over Sanya (18.4° N, 109.6° E; 12.8° N dip latitude and meteor radar neutral-wind measurements over Fuke (19.5° N, 109.1° E; 14° N dip latitude during 2013 are used to investigate the features of planetary-wave-type oscillations in both the lower atmosphere and the ionosphere and their possible influences on ESF occurrence under the weak solar maximum year. The ∼ 3-day and ∼ 7-day planetary-wave-type oscillations have been observed in the neutral zonal winds and the time rate of change in F-layer virtual heights. According to the propagation characteristics, the 3-day and 7-day planetary-wave-type oscillations are basically recognized as ultrafast and fast Kelvin waves, respectively. With increasing heights, the 3-day wave oscillations are gradually amplified, while the 7-day wave oscillations are generally constant. By performing a cross-wavelet transform on the onsets of ESF and the vertical drifts of the F layer, we found that there are simultaneously occurring 7-day and 3-day common wave oscillations between them. The 7-day waves are mainly in the inversion phase, while the 3-day waves are mostly in an in-phase state, indicating that the 7-day waves may play a main role in ESF initiation. Approximate delays of 6 days for the 7-day waves and 5 days for the 3-day waves in their propagation upward from the lower atmosphere to the ionosphere are evaluated with wavelet power spectrum analysis. The estimated upward velocities from these time delays provide consistent evidence that the 7-day and 3-day waves propagate vertically upward with typical Kelvin wave

  18. A superconducting phase-locked local oscillator for a submillimetre integrated receiver

    International Nuclear Information System (INIS)

    Koshelets, V P; Shitov, S V; Filippenko, L V; Dmitriev, P N; Ermakov, A B; Sobolev, A S; Torgashin, M Yu; Pankratov, A L; Kurin, V V; Yagoubov, P; Hoogeveen, R

    2004-01-01

    Comprehensive measurements of the flux flow oscillator (FFO) radiation linewidth are performed using an integrated harmonic SIS mixer; the FFO linewidth and spectral line profile are compared to a theory. An essential dependence of the FFO linewidth on frequency is found; a possible explanation is proposed. The results of the numerical solution of the perturbed sine-Gordon equation qualitatively confirm this assumption. To optimize the FFO design, the influence of the FFO parameters on the radiation linewidth is studied. A novel FFO design at a moderate current density has resulted in a free-running FFO linewidth of about 10 MHz in the flux flow regime up to 712 GHz, limited only by the gap frequency of Nb. This relatively narrow free-running linewidth (along with implementation of a wide-band phase locking loop system) allows continuous phase locking of the FFO in the wide frequency range of 500-710 GHz. These results are the basis for the development of a 550-650 GHz integrated receiver for the terahertz limb sounder (TELIS) intended for atmosphere study and scheduled to fly on a balloon in 2005. We report here also on the design of the second generation of the phase-locked superconducting integrated receiver chip for TELIS

  19. Quantum oscillations and Dirac dispersion in the BaZnBi2 semimetal guaranteed by local Zn vacancy order

    Science.gov (United States)

    Zhao, K.; Golias, E.; Zhang, Q. H.; Krivenkov, M.; Jesche, A.; Gu, L.; Rader, O.; Mazin, I. I.; Gegenwart, P.

    2018-03-01

    We have synthesized single crystals of Dirac semimetal candidates A ZnBi2 with A =Ba and Sr. In contrast to A =Sr , the Ba material displays a local Zn vacancy ordering, which makes the observation of quantum oscillations in out-of-plane magnetic fields possible. As a Dirac semimetal candidate, BaZnBi2 exhibits a small cyclotron electron mass, high quantum mobility, and nontrivial Berry phases. Three Dirac dispersions are observed by angle-resolved photoemission spectroscopy and identified by first-principles band-structure calculations. Compared to A Mn(Bi/Sb) 2 systems which host Mn magnetic moments, BaZnBi2 acts as a nonmagnetic analog to investigate the intrinsic properties of Dirac fermions in this structure family.

  20. Nonlinearity, Viscosity and Air-Compressibility Effects on the Helmholtz Resonant Wave Motion Generated by an Oscillating Twin Body in a Free Surface

    Science.gov (United States)

    Ananthakrishnan, Palaniswamy

    2012-11-01

    The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.

  1. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    International Nuclear Information System (INIS)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2012-01-01

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f p and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f p by LW eigenmodes. The EM wave power emitted near f p is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f p radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  2. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  3. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    Science.gov (United States)

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  4. Investigation of 0.38 THz backward-wave oscillator based on slotted sine waveguide and pencil electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Luqi; Wei, Yanyu; Wang, Bing; Shen, Wenan; Xu, Jin; Gong, Yubin [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Park, Gun-Sik [The Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-03-15

    A novel backward wave oscillator (BWO) is presented by utilizing a slotted sine waveguide with a pencil electron beam to produce the high power terahertz wave. The high frequency characteristics including dispersion properties, interaction impedances, and transmission characteristics of the slotted sine waveguide are analyzed in detail. The high frequency system including the output coupler, slow wave structure (SWS), and reflector are designed properly. A 3-D particle-in-cell mode is applied to predict the device performance of the BWO based on the novel SWS. The investigation results demonstrate that this device can generate over 8.05 W output power in the frequency range of 363.4–383.8 GHz by using a 30 mA pencil electron beam and adjusting the beam voltage from 20 kV to 32 kV.

  5. Transition, coexistence, and interaction of vector localized waves arising from higher-order effects

    International Nuclear Information System (INIS)

    Liu, Chong; Yang, Zhan-Ying; Zhao, Li-Chen; Yang, Wen-Li

    2015-01-01

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.

  6. Transition, coexistence, and interaction of vector localized waves arising from higher-order effects

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chong [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China); Zhao, Li-Chen, E-mail: zhaolichen3@163.com [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xi’an 710069 (China)

    2015-11-15

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.

  7. One-dimensional arrays of oscillators: Energy localization in thermal equilibrium

    International Nuclear Information System (INIS)

    Reigada, R.; Romero, A.H.; Sarmiento, A.; Lindenberg, K.

    1999-01-01

    All systems in thermal equilibrium exhibit a spatially variable energy landscape due to thermal fluctuations. Thus at any instant there is naturally a thermodynamically driven localization of energy in parts of the system relative to other parts of the system. The specific characteristics of the spatial landscape such as, for example, the energy variance, depend on the thermodynamic properties of the system and vary from one system to another. The temporal persistence of a given energy landscape, that is, the way in which energy fluctuations (high or low) decay toward the thermal mean, depends on the dynamical features of the system. We discuss the spatial and temporal characteristics of spontaneous energy localization in 1D anharmonic chains in thermal equilibrium. copyright 1999 American Institute of Physics

  8. On the Modeling of Local Neutronically-Coupled Flow-Induced Oscillations in Advanced Boiling Water Reactors

    International Nuclear Information System (INIS)

    Aniel-Buchheit, Sylvie; Podowski, Michael Z.

    2006-01-01

    The purpose of this paper is to discuss the development in progress of a complete space- and time-dependent model of the coupled neutron kinetic and reactor thermal-hydraulics. The neutron kinetics model is based on two-group diffusion equations with Doppler and void reactivity feedback effects. This model is coupled with the model of two-phase flow and heat transfer in parallel coolant channels. The modeling concepts considered for this purpose include one-dimensional drift flux and two-fluid models, as well a CFD model implemented in the NPHASE advanced computational multiphase fluid dynamics (CMFD) computer code. Two methods of solution for the overall model are proposed. One is based on direct numerical integration of the spatially-discretized governing equations. The other approach is based on a quasi-analytical modal approach to the neutronics model, in which a complete set of eigenvectors is found for step-wise temporal changes of the cross-sections of core materials (fuel and coolant/moderator). The issues investigated in the paper include details of model formulation, as well as the results of calculations for neutronically-coupled density-wave oscillations. (authors)

  9. Vertical structure and characteristics of 23-60 day (zonal) oscillations over the tropical latitudes during the winter months of 1986 - Results of equatorial wave campaign-II

    Science.gov (United States)

    Raghavarao, R.; Suhasini, R.; Sridharan, R.; Krishnamurthy, B. V.; Nagpal, O. P.

    1990-01-01

    Results are presented of the equatorial wave campaign-II, a meteorological rocket study which was part of the Indian Middle Atmosphere Program. The equatorial wave campaign-II was conducted from Shar, India (13.7 deg N, 80.2 deg E) from January 15-February 28, 1986. By means of high altitude balloon and the RH-200 meteorological rocket, winds were measured from ground level up to 60 km altitude once each day during the 45-day period. The oscillation frequencies of the deviations in the east-west component of the winds from their mean at each 1-km height interval are obtained by the maximum entropy method. The phases and amplitudes of these frequencies are determined by use of the least squares method on the wind variation time series. Enhanced wave activity is shown to take place in the troposphere and lower mesosphere. The tropospheric waves observed suggest themselves to be Rossby waves of extratropical origin penetrating to tropical latitudes. The observed stratospheric/mesospheric waves appear to emanate from a source around the stratopause.

  10. Local anesthesia for extracorporeal shock wave lithotripsy: a study comparing eutetic mixture of local anesthetics cream and lidocaine infiltration

    DEFF Research Database (Denmark)

    Honnens de Lichtenberg, M; Miskowiak, J; Mogensen, P

    1992-01-01

    A study of the anesthetic efficacy of a eutetic mixture of local anesthetics (EMLA cream) versus lidocaine infiltration in extracorporeal shock wave lithotripsy (ESWL) was done. A total of 46 patients had 30 gm. of EMLA cream applied to the skin over the kidney and 45 had subcutaneous infiltration...... anesthesia with 20 ml. 1% lidocaine with epinephrine. All patients received an intravenous dose of morphine just before ESWL. The patients were comparable with regard to age, sex, weight, morphine dosage, number of shock waves given and duration of treatment. Median pain score and the amount of supplementary...... analgesics were not significantly different between the 2 groups. There were no significant differences between the groups with regard to post-ESWL skin changes. Therefore, EMLA cream can be recommended for ESWL provided it is applied correctly....

  11. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  12. The homotopic method of travelling wave solution for El Niño tropic sea–air coupled oscillator

    International Nuclear Information System (INIS)

    Mo Jiaqi; Lin Wantao

    2008-01-01

    The EI Niño and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea–air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model is proposed. And based on a class of oscillator of the ENSO model and by employing the method of homotopic mapping, the approximate solution of equations for the corresponding ENSO model is studied. It is proved from the results that homotopic method can be used for analysing the sea surface temperature anomaly in the equatorial Pacific of the sea–air oscillator for the ENSO model

  13. New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation

    International Nuclear Information System (INIS)

    Ma Hongcai; Ge Dongjie; Yu Yaodong

    2008-01-01

    Based on the Bäcklund method and the multilinear variable separation approach (MLVSA), this paper nds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+1)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution). (general)

  14. Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements

    International Nuclear Information System (INIS)

    Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail

    2007-01-01

    We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we consider objects with an internal structure consisting of a single ground state and several excited states. The transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simultaneous measurements allow both an increase in the measurement or localization precision in a single direction and the performance of multidimensional measurements or localization. Further, we show that multiple measurements may relax the experimental requirements for each individual measurement

  15. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    Science.gov (United States)

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  16. Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations

    Science.gov (United States)

    Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.

    1994-01-01

    Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.

  17. Iterated Local Search Algorithm with Strategic Oscillation for School Bus Routing Problem with Bus Stop Selection

    Directory of Open Access Journals (Sweden)

    Mohammad Saied Fallah Niasar

    2017-02-01

    Full Text Available he school bus routing problem (SBRP represents a variant of the well-known vehicle routing problem. The main goal of this study is to pick up students allocated to some bus stops and generate routes, including the selected stops, in order to carry students to school. In this paper, we have proposed a simple but effective metaheuristic approach that employs two features: first, it utilizes large neighborhood structures for a deeper exploration of the search space; second, the proposed heuristic executes an efficient transition between the feasible and infeasible portions of the search space. Exploration of the infeasible area is controlled by a dynamic penalty function to convert the unfeasible solution into a feasible one. Two metaheuristics, called N-ILS (a variant of the Nearest Neighbourhood with Iterated Local Search algorithm and I-ILS (a variant of Insertion with Iterated Local Search algorithm are proposed to solve SBRP. Our experimental procedure is based on the two data sets. The results show that N-ILS is able to obtain better solutions in shorter computing times. Additionally, N-ILS appears to be very competitive in comparison with the best existing metaheuristics suggested for SBRP

  18. Localization of binary neutron star mergers with second and third generation gravitational-wave detectors

    Science.gov (United States)

    Mills, Cameron; Tiwari, Vaibhav; Fairhurst, Stephen

    2018-05-01

    The observation of gravitational wave signals from binary black hole and binary neutron star mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing various aspects of astronomy. An important consideration for successive improvement of current detectors or establishment on new sites is knowledge of the minimum number of detectors required to perform precision astronomy. We attempt to answer this question by assessing the ability of future detector networks to detect and localize binary neutron stars mergers on the sky. Good localization ability is crucial for many of the scientific goals of gravitational wave astronomy, such as electromagnetic follow-up, measuring the properties of compact binaries throughout cosmic history, and cosmology. We find that although two detectors at improved sensitivity are sufficient to get a substantial increase in the number of observed signals, at least three detectors of comparable sensitivity are required to localize majority of the signals, typically to within around 10 deg2 —adequate for follow-up with most wide field of view optical telescopes.

  19. Interference of Locally Forced Internal Waves in Non-Uniform Stratifications

    Science.gov (United States)

    Supekar, Rohit; Peacock, Thomas

    2017-11-01

    Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.

  20. Kinetic Alfvén wave turbulence and formation of localized structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Modi, K. V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India)

    2013-08-15

    This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate β-plasma (m{sub e}/m{sub i}≪β≪1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup −3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.

  1. Influences of the ENSO, oscillation Madden-Julian, waves of the east, hurricanes and moon phases on the diurnal cycle of precipitation at the tropical Andes of Colombia

    International Nuclear Information System (INIS)

    Poveda, German; Mesa, Oscar; Agudelo, Paula; Alvarez, Juan; Arias, Paola; Moreno, Hernan; Salazar, Luis; Toro, Vladimir; Vieira, Sara

    2002-01-01

    We study the effects of large-scale ocean-atmospheric, astronomic phenomena on the diurnal cycle of precipitation at the tropical Andes of Colombia. Such phenomena include both phases of El Nino/Southern Oscillation (ENSO), namely El Nino and La Nina, the intra seasonal Madden-Julian oscillation, tropical easterly waves (4-8 days), moon phases and hurricanes over the Atlantic and eastern pacific oceans. We found a clear-cut effect of both ENSO phases: El Nino is associated with a diminished rainfall diurnal cycle, and La Nina intensifies it. Thus, ENSO modulates precipitation in Colombia at timescales ranging from hours to decades. We identified a close association with different phases of the Madden-Julian oscillation, as the diurnal cycle is intensified (larger amplitude) during its westerly phase, but it gets decreased during its easterly phase. For both ENSO and the Madden-Julian oscillation we identified a clear-cut influence on the amplitude of the diurnal cycle, yet the phase is conserved for the most part. Tropical easterly waves appear to affect the diurnal cycle, but no clear overall signal is pervasive throughout the region. We al so found a significant statistical association with hurricanes occurring over the northeastern pacific ocean with the diurnal cycle of precipitation at rain gages located over the eastern slope of the eastern range of the Colombian Andes. Rainfall at all the remaining slopes of the Andes is statistically associated with hurricanes occurring at the tropical north Atlantic and the Caribbean Sea. Moon phases are not statistically associated with the diurnal cycle and daily total rainfall

  2. Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations

    Science.gov (United States)

    Novruzov, Emil

    2017-11-01

    This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.

  3. Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization

    Science.gov (United States)

    Kitano, Ryuichiro; Li, Tianjun

    2003-06-01

    A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.

  4. Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization

    International Nuclear Information System (INIS)

    Kitano, Ryuichiro; Li Tianjun

    2003-01-01

    A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group

  5. The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators

    Science.gov (United States)

    Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.

    2017-05-01

    This paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the Lyapunov-Krasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the Lyapunov-Krasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the Hindmarsh-Rose neuron.

  6. Local Atomic Structure and Discommensurations in the Charge Density Wave of CeTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H J; Tomic, A T; Tessmer, S H; Billinge, S J.L. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Malliakas, C D; Kanatzidis, M G [Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)

    2006-06-09

    The local structure of CeTe{sub 3} in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function analysis of x-ray diffraction data. Local atomic distortions in the Te nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures is explained by the discommensurated nature of the CDW, since the pair distribution function is sensitive to the local displacements within the commensurate regions, whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system.

  7. Local Atomic Structure and Discommensurations in the Charge Density Wave of CeTe3

    International Nuclear Information System (INIS)

    Kim, H.J.; Tomic, A.T.; Tessmer, S.H.; Billinge, S.J.L.; Malliakas, C.D.; Kanatzidis, M.G.

    2006-01-01

    The local structure of CeTe 3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function analysis of x-ray diffraction data. Local atomic distortions in the Te nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures is explained by the discommensurated nature of the CDW, since the pair distribution function is sensitive to the local displacements within the commensurate regions, whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system

  8. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    Science.gov (United States)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  9. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... channels on the cell surface stimulating synchronized release of SR-calcium and inducing the shift from waves to whole-cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated...

  10. Efficient Long Wave IR Laser from Ho:YAG 2 {mu}m Pumped ZnGeP{sub 2} Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li-Gang,; Bao-Quan, Yao; Xiao-Ming, Duan; Guo-Li, Zhu; Yue-Zhu, Wang; You-Lun, Ju [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2010-01-15

    An efficient high power long wave infrared laser based on ZnGeP{sub 2} optical parametric oscillator pumped by a 2.09 {mu}m Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6 W Ho pump power level and a quantum efficiency of 31 % when the 1'idler wavelength is tuned at 8.08 {mu}m. The wavelength tuning range from 8-9.1 {mu}m is also achieved by rotating the ZGP crystal. (fundamental areas of phenomenology(including applications))

  11. Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed

  12. Modulation of propagation-invariant Localized Waves for FSO communication systems

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2012-01-01

    The novel concept of spatio-Temporal modulation of Nyquist pulses is introduced, and the resulting wave-packets are termed Nyquist Localized Waves (LWs). Ideal Nyquist LWs belong to the generic family of LW solutions and can propagate indefinitely in unbounded media without attenuation or chromatic dispersion. The possibility of modulating Nyquist LWs for free-space optical (FSO) communication systems is demonstrated using two different modulation techniques. The first technique is on-off keying (OOK) with alternate mark inversion (AMI) coding for 1-bit per symbol transmission, and the second one is 16-Ary quadrature amplitude modulation (16-QAM) for 4-bits per symbol transmission. Aspects related to the performance, detection and generation of the spatio-Temporally coupled wave-packets are discussed and future research directions are outlined. © 2012 Optical Society of America.

  13. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    Science.gov (United States)

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  14. Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M. M.; Economou, E. N.; Soukoulis, C. M.

    2000-01-01

    By using two ab initio numerical methods, we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vice versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ''nearly free'' photon and the ''strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and single scatterer resonances, and they qualitatively explain our results. (c) 2000 The American Physical Society

  15. Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope

    International Nuclear Information System (INIS)

    Landry, C; Favrel, A; Müller, A; Yamamoto, K; Avellan, F; Nicolet, C

    2014-01-01

    Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions

  16. Concealed object segmentation and three-dimensional localization with passive millimeter-wave imaging

    Science.gov (United States)

    Yeom, Seokwon

    2013-05-01

    Millimeter waves imaging draws increasing attention in security applications for weapon detection under clothing. In this paper, concealed object segmentation and three-dimensional localization schemes are reviewed. A concealed object is segmented by the k-means algorithm. A feature-based stereo-matching method estimates the longitudinal distance of the concealed object. The distance is estimated by the discrepancy between the corresponding centers of the segmented objects. Experimental results are provided with the analysis of the depth resolution.

  17. Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope

    Science.gov (United States)

    Landry, C.; Favrel, A.; Müller, A.; Nicolet, C.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.

  18. Frequency dependence of localization length of an electromagnetic wave in a one-dimensional system

    International Nuclear Information System (INIS)

    Vinogradov, A.P.; Merzlikin, A.M.

    2003-01-01

    It is shown that the existence in the high-frequency limit of the localization length of an electromagnetic wave in a randomly layered system requires the presence of an infinitely large number of layers with different incommensurable optical paths. Moreover, the measure of the layers with optical paths that are multiples of any real number should equal zero. The localization length in the high-frequency limit is determined by the mean value of the layer thickness and impedance distribution only. The scaling behavior L loc (k 0 )∼k 0 -2 is observed only if the mean value tends to zero (corresponding to a delta-correlated process)

  19. High-efficiency one-dimensional atom localization via two parallel standing-wave fields

    International Nuclear Information System (INIS)

    Wang, Zhiping; Wu, Xuqiang; Lu, Liang; Yu, Benli

    2014-01-01

    We present a new scheme of high-efficiency one-dimensional (1D) atom localization via measurement of upper state population or the probe absorption in a four-level N-type atomic system. By applying two classical standing-wave fields, the localization peak position and number, as well as the conditional position probability, can be easily controlled by the system parameters, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied. The proposed scheme may open up a promising way to achieve high-precision and high-efficiency 1D atom localization. (paper)

  20. Exact density functional and wave function embedding schemes based on orbital localization

    International Nuclear Information System (INIS)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály; Ferenczy, György G.

    2016-01-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  1. Exact density functional and wave function embedding schemes based on orbital localization

    Science.gov (United States)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  2. Exact density functional and wave function embedding schemes based on orbital localization

    Energy Technology Data Exchange (ETDEWEB)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu [MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest (Hungary); Ferenczy, György G. [Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest (Hungary); Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest (Hungary)

    2016-08-14

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  3. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xianchen; Zhang Jiande; Yang Jianhua; Jin Zhenxing [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.

  4. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Science.gov (United States)

    Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing

    2012-12-01

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.

  5. Using wave intensity analysis to determine local reflection coefficient in flexible tubes.

    Science.gov (United States)

    Li, Ye; Parker, Kim H; Khir, Ashraf W

    2016-09-06

    It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (R dI and R dI 0.5 ) and wave energy (R I and R I 0.5 ) as well as the measured pressure (R dP ) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, R dP , R dI 0.5 and R I 0.5 are the most reliable parameters to measure the mean reflection coefficient, whilst R dI and R I provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the

  6. The Influence of the Antarctic Oscillation (AAO on Cold Waves and Occurrence of Frosts in the State of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Maikon Passos A. Alves

    2017-03-01

    Full Text Available This paper examines the relationship between the Antarctic Oscillation (AAO, cold waves and occurrence of frosts in the state of Santa Catarina, Brazil, during the winter quarter. Research on this topic can assist different spheres of society, such as public health and agriculture, since cold waves can influence and/or aggravate health problems and frosts can inflict economic losses especially in the agricultural sector. For the purpose of this paper, cold wave is considered as the event in which the daily average surface air temperature was at least two standard deviations below the average value of the series on the day and for two consecutive days or more. The data on the average air temperature and frost occurrences are provided by the Company of Agricultural Research and Rural Extension of Santa Catarina/Center for Environmental Information and Hydrometeorology (EPAGRI/CIRAM. The AAO was subjected to statistical analysis using significance tests for the averages (Student’s t-test and variances (F-test with a significance level of α = 5%. The results show that cold waves are unevenly distributed in the agroecological zones of Santa Catarina. It is found that the AAO is associated with the occurrence of frosts (in the agroecological zones represented by the municipalities of Itajaí and São José in the state of Santa Catarina.

  7. High energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator with a deformed pump and optimal crystal location for angle tuning.

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei

    2017-03-20

    A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300  MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.

  8. The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin

    Science.gov (United States)

    Storlazzi, Curt D.; Reid, Jane A.

    2010-01-01

    Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.

  9. Linear analysis of an X-band backward wave oscillator with a circular-edge disk-loaded cylindrical waveguide driven by an annular electron beam

    Science.gov (United States)

    Hasan Sagor, Rakibul; Ruhul Amin, Md.

    2017-10-01

    An X-band backward wave oscillator (BWO) with a circular-edge disk-loaded periodic metallic slow wave structure (CDSWS) is proposed and studied numerically. The structure is the modified version of our previously modeled semi-circularly corrugated slow wave structure (SCCSWS). The CDSWS is energized by an intense relativistic electron beam (IREB) which is directed by a strong magnetic field. The electromagnetic (EM) wave of the slow wave structure (SWS) merges with the space charge wave of the beam under the guidance of the strong axial magnetic field. The inner wall contour of CDSWS is modeled by a finite Fourier series and the dispersion characteristics of different TM modes are solved by utilizing the linear Rayleigh-Fourier (R-F) technique, which is verified by a commercial EM solver. To study the temporal growth rate (TGR) for the fundamental TM01 mode, the dispersion equation is solved for the beam current of 0.1-1.0kA and the beam energy of 205-665kV. For the TM01 mode, the TGR that occurs at the unstable region, which provides a qualitative index of the strength of the microwave generation, is compared with those of the BWOs with sinusoidally corrugated SWS (SCSWS), disk-loaded SWS (DLSWS) and triangularly corrugated SWS (TrCSWS) for different beam parameters. The dimension of the CDSWS is determined by comparing the dispersion characteristics of fundamental TM01 mode with DLSWS and SCSWS. For the same set of beam parameters, an average of 3.5%, 7%, 1.5% and more than 50% higher TGR have been obtained with the proposed CDSWS than that of SCSWS, DLSWS, TrCSWS and SCCSWS respectively. Moreover, the presented structure also provides an advantage in the fabrication process and is less prone to RF breakdown since it has no sharp edges in the inner wall where the electric field intensity can be infinitely high.

  10. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  11. Hybrid Numerical-Analytical Scheme for Calculating Elastic Wave Diffraction in Locally Inhomogeneous Waveguides

    Science.gov (United States)

    Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.

    2018-01-01

    Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.

  12. Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study.

    Science.gov (United States)

    Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S

    2015-01-01

    A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed

  13. From plane waves to local Gaussians for the simulation of correlated periodic systems

    International Nuclear Information System (INIS)

    Booth, George H.; Tsatsoulis, Theodoros; Grüneis, Andreas; Chan, Garnet Kin-Lic

    2016-01-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  14. From plane waves to local Gaussians for the simulation of correlated periodic systems

    Energy Technology Data Exchange (ETDEWEB)

    Booth, George H., E-mail: george.booth@kcl.ac.uk [Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Chan, Garnet Kin-Lic [Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  15. Solvable model of spiral wave chimeras.

    Science.gov (United States)

    Martens, Erik A; Laing, Carlo R; Strogatz, Steven H

    2010-01-29

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.

  16. Solvable Model of Spiral Wave Chimeras

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.

    2010-01-01

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....

  17. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    International Nuclear Information System (INIS)

    Jan, Yih-Kuen; Liao, Fuyuan; Lee, Bernard; Foreman, Robert D

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague–Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = −10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. (paper)

  18. Horizon wave function for single localized particles: GUP and quantum black-hole decay

    International Nuclear Information System (INIS)

    Casadio, Roberto; Scardigli, Fabio

    2014-01-01

    A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle's energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts. (orig.)

  19. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    CERN Document Server

    Massobrio, C

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm sup - sup 1). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm sup - sup 1 to -300 cm sup - sup 1. The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and r...

  20. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    International Nuclear Information System (INIS)

    Massobrio, C.; Ruiz, E.

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm -1 ). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm -1 to -300 cm -1 . The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and rationalize the magnetic properties of molecular-based materials. (author)

  1. Design guidelines for flexural wave attenuation of slender beams with local resonators

    International Nuclear Information System (INIS)

    Liu, Yaozong; Yu, Dianlong; Li, Li; Zhao, Honggang; Wen, Jihong; Wen, Xisen

    2007-01-01

    The complex band structures and attenuation spectra of flexural waves in slender beams with periodically mounted local resonators are investigated with transfer matrix method. It is noteworthy that the frequency range and attenuation coefficient of the locally resonant gap become larger in complex band structures if larger resonators were used. But given the total add-on mass of resonators, the attenuation spectra of finite beams with large but few resonators do not demonstrate such phenomena because the attenuation needs several periods to establish. So with the view of application, a large number of small local resonators widely spread along the beam are preferred given the total add-on mass to the beam

  2. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa).

    Science.gov (United States)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong-Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  3. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    Energy Technology Data Exchange (ETDEWEB)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  4. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    International Nuclear Information System (INIS)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  5. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue

    International Nuclear Information System (INIS)

    Marcotte, Christopher D.; Grigoriev, Roman O.

    2015-01-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals

  6. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.

    Science.gov (United States)

    Marcotte, Christopher D; Grigoriev, Roman O

    2015-06-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  7. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    Science.gov (United States)

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  8. Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    International Nuclear Information System (INIS)

    Mota, R D; Xicotencatl, M A; Granados, V D

    2004-01-01

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse

  9. Jordan Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    Science.gov (United States)

    Mota, R. D.; Xicoténcatl, M. A.; Granados, V. D.

    2004-02-01

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.

  10. Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    Energy Technology Data Exchange (ETDEWEB)

    Mota, R D [Unidad Profesional Interdisciplinaria de IngenierIa y TecnologIas Avanzadas, IPN. Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico DF (Mexico); Xicotencatl, M A [Departamento de Matematicas del Centro de Investigacion y Estudios Avanzados del IPN, Mexico DF, 07000 (Mexico); Granados, V D [Escuela Superior de FIsica y Matematicas, Instituto Politecnico Nacional, Ed. 9, Unidad Profesional Adolfo Lopez Mateos, 07738 Mexico DF (Mexico)

    2004-02-20

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.

  11. Effect of wave-function localization on the time delay in photoemission from surfaces

    International Nuclear Information System (INIS)

    Zhang, C.-H.; Thumm, U.

    2011-01-01

    We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a latt of attractive Gaussian-shaped core potentials of width σ. The parameter σ/a latt thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of σ/a latt latt > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near σ/a latt =0.3 from relatively large values below σ/a latt ∼0.2 to much smaller delays above σ/a latt ∼0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.

  12. Quantum oscillations in vortex-liquids

    Science.gov (United States)

    Banerjee, Sumilan; Zhang, Shizhong; Randeria, Mohit

    2012-02-01

    Motivated by observations of quantum oscillations in underdoped cuprates [1], we examine the electronic density of states (DOS) in a vortex-liquid state, where long-range phase coherence is destroyed by an external magnetic field H but the local pairing amplitude survives. We note that this regime is distinct from that studied in most of the recent theories, which have focused on either a Fermi liquid with a competing order parameter or on a d-wave vortex lattice. The cuprate experiments are very likely in a resistive vortex-liquid state. We generalize the s-wave analysis of Maki and Stephen [2] to d-wave pairing and examine various regimes of the chemical potential, gap and field. We find that the (1/H) oscillations of the DOS at the chemical potential in a d-wave vortex-liquid are much more robust, i.e., have a reduced damping, compared to the s-wave case. We critically investigate the conventional wisdom relating the observed frequency to the area of an underlying Fermi surface. We also show that the oscillations in the DOS cross over to a √H behavior in the low field limit, in agreement with the recent specific heat measurements. [1] L. Taillefer, J. Phys. Cond. Mat. 21, 164212 (2009). [2] M. J. Stephen, Phys. Rev. B 45, 5481 (1992).

  13. Control Strategy of an Impulse Turbine for an Oscillating Water Column-Wave Energy Converter in Time-Domain Using Lyapunov Stability Method

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2016-10-01

    Full Text Available We present two control strategies for an oscillating water column-wave energy converter (OWC-WEC in the time domain. We consider a fixed OWC-WEC on the open sea with an impulse turbine module. This system mainly consists of a chamber, turbine and electric generator. For the time domain analysis, all of the conversion stages considering mutualities among them should be analyzed based on the Newtonian mechanics. According to the analysis of Newtonian mechanics, the hydrodynamics of wave energy absorption in the chamber and the turbine aerodynamic performance are directly coupled and share the internal air pressure term via the incompressible air assumption. The turbine aerodynamics and the dynamics of the electric generator are connected by torque load through the rotor shaft, which depends on an electric terminal load that acts as a control input. The proposed control strategies are an instant maximum turbine efficiency tracking control and a constant angular velocity of the turbine rotor control methods. Both are derived by Lyapunov stability analysis. Numerical simulations are carried out under irregular waves with various heights and periods in the time domain, and the results with the controllers are analyzed. We then compare these results with simulations carried out in the absence of the control strategy in order to prove the performance of the controllers.

  14. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal.

    Science.gov (United States)

    Wang, Yuye; Tang, Longhuang; Xu, Degang; Yan, Chao; He, Yixin; Shi, Jia; Yan, Dexian; Liu, Hongxiang; Nie, Meitong; Feng, Jiachen; Yao, Jianquan

    2017-04-17

    A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

  15. Intersubband Rabi oscillations in asymmetric nanoheterostructures: implications for a tunable continuous-wave source of a far-infrared and THz radiation.

    Science.gov (United States)

    Kukushkin, V A

    2012-06-01

    A tunable continuous-wave source of a far-infrared and THz radiation based on a semiconductor nanoheterostructure with asymmetric quantum wells is suggested. It utilizes Rabi oscillations at a transition between quantum well subbands excited by external femtosecond pulses of a mid-infrared electromagnetic field. Due to quantum well broken inversion symmetry the subbands possess different average dipole moments, which enables the creation of polarization at the Rabi frequency as the subband populations change. It is shown that if this polarization is excited so that it is periodic in space, then, though being pulsed, it can produce continuous-wave output radiation. Changing the polarization space period and the time intervals between the exciting pulses, one can tune the frequency of this radiation throughout the far-infrared and THz range. In the present work a concrete multiple quantum well heterostructure design and a scheme of its space-periodic polarization are suggested. It is shown that for existing sources of mid-infrared femtosecond pulses the proposed scheme can provide a continuous-wave output power of order the power of far-infrared and THz quantum cascade lasers. Being added to the possibility of its output frequency tuning, this can make the suggested device attractive for fundamental research and various applications.

  16. A local adaptive method for the numerical approximation in seismic wave modelling

    Directory of Open Access Journals (Sweden)

    Galuzzi Bruno G.

    2017-12-01

    Full Text Available We propose a new numerical approach for the solution of the 2D acoustic wave equation to model the predicted data in the field of active-source seismic inverse problems. This method consists in using an explicit finite difference technique with an adaptive order of approximation of the spatial derivatives that takes into account the local velocity at the grid nodes. Testing our method to simulate the recorded seismograms in a marine seismic acquisition, we found that the low computational time and the low approximation error of the proposed approach make it suitable in the context of seismic inversion problems.

  17. Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.

  18. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.

    Directory of Open Access Journals (Sweden)

    Reto Huber

    2007-03-01

    Full Text Available Sleep slow wave activity (SWA is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.To test this hypothesis directly, we used transcranial magnetic stimulation (TMS in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10. Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.These results provide direct evidence for a link between plastic changes and the local regulation of sleep need.

  19. Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications

    Science.gov (United States)

    Rappaport, Theodore S.; MacCartney, George R.; Sun, Shu; Yan, Hangsong; Deng, Sijia

    2017-12-01

    This paper studies radio propagation mechanisms that impact handoffs, air interface design, beam steering, and MIMO for 5G mobile communication systems. Knife edge diffraction (KED) and a creeping wave linear model are shown to predict diffraction loss around typical building objects from 10 to 26 GHz, and human blockage measurements at 73 GHz are shown to fit a double knife-edge diffraction (DKED) model which incorporates antenna gains. Small-scale spatial fading of millimeter wave received signal voltage amplitude is generally Ricean-distributed for both omnidirectional and directional receive antenna patterns under both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in most cases, although the log-normal distribution fits measured data better for the omnidirectional receive antenna pattern in the NLOS environment. Small-scale spatial autocorrelations of received voltage amplitudes are shown to fit sinusoidal exponential and exponential functions for LOS and NLOS environments, respectively, with small decorrelation distances of 0.27 cm to 13.6 cm (smaller than the size of a handset) that are favorable for spatial multiplexing. Local area measurements using cluster and route scenarios show how the received signal changes as the mobile moves and transitions from LOS to NLOS locations, with reasonably stationary signal levels within clusters. Wideband mmWave power levels are shown to fade from 0.4 dB/ms to 40 dB/s, depending on travel speed and surroundings.

  20. Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys

    Science.gov (United States)

    Yang, Zhiyong; Heeger, David J.; Blake, Randolph

    2014-01-01

    Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785