WorldWideScience

Sample records for wave gas sensors

  1. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    Science.gov (United States)

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  2. Temperature-compensated Love wave based gas sensor on waveguide structure of SiO2/36° YX LiTaO3

    International Nuclear Information System (INIS)

    Wang, Wen; Xie, Xiao; Chen, Gui; Liu, Jiuling; He, Shitang

    2015-01-01

    A temperature-compensated Love wave device was proposed for gas sensing utilizing a waveguide structure of SiO 2 /36° YX LiTaO 3 . Significant improvement in the temperature stability of the hybrid Love wave device was implemented by varying the guiding layer thickness. The optimal values yielding low cross-sensitivity to temperature and high mass sensitivity in gas sorption were determined theoretically by solving the coupled electromechanical field equation in layered media. The theoretical analysis was confirmed experimentally in dimethylmethylphosphonate (DMMP) detection by using a fluoroalcoholpolysiloxane (SXFA) coated Love wave sensor. The experimental results indicate that better sensitivity and excellent temperature stability were obtained from the developed Love wave gas sensor over the Rayleigh surface acoustic wave (R-SAW) sensors. (paper)

  3. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  4. A Preliminary Test for Skin Gas Assessment Using a Porphyrin Based Evanescent Wave Optical Fiber Sensor

    Directory of Open Access Journals (Sweden)

    Roman SELYANCHYN

    2011-02-01

    Full Text Available An evanescent-wave optical fibre sensor modified with tetrakis-(4-sulfophenyl porphine (TSPP and poly(allylamine hydrochloride (PAH bilayers using layer-by-layer (LbL electrostatic self-assembly was tested to measure the gas emitted from human skin. Optical intensity changes at different wavelengths in the transmission spectrum of the porphyrin-based film were induced by the human skin gas and measured as sensor response. Influence of relative humidity, which can be a major interference to sensor response, was thoroughly studied and shown to be significantly different when compared to the influence of skin emanations. Responses of the current optical sensor system could be considered as composite sensor array, where different optical wavelengths act as channels that have selective response to specific volatile compounds. Data obtained from the sensor system was analyzed using principal component analysis (PCA. This approach enabled to distinguish skin odors of different people and their altered physiological conditions after alcohol consumption.

  5. Titanium Dioxide-Based 64∘ YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors

    Directory of Open Access Journals (Sweden)

    A. Z. Sadek

    2008-01-01

    Full Text Available Amorphous titanium dioxide (TiO2 and gold (Au doped TiO2-based surface acoustic wave (SAW sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64∘ YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310∘C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature.

  6. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  7. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  8. Acoustic sensor for in-pile fuel rod fission gas release measurement

    International Nuclear Information System (INIS)

    Fourmentel, D.; Villard, J. F.; Ferrandis, J. Y.; Augereau, F.; Rosenkrantz, E.; Dierckx, M.

    2009-01-01

    We have developed a specific acoustic sensor to improve the knowledge of fission gas release in Pressurized Water Reactor (PWR) fuel rods when irradiated in materials testing reactors. In order to perform experimental programs related to the study of the fission gas release kinetics, the CEA (French Nuclear Energy Commission) acquired the ability to equip a pre-irradiated PWR fuel rod with three sensors, allowing the simultaneous on-line measurements of the following parameters: - fuel temperature with a centre-line thermocouple type C, - internal pressure with a specific counter-pressure sensor, - fraction of fission gas released in the fuel rod with an innovative acoustic sensor. The third detector is the subject of this paper. This original acoustic sensor has been designed to measure the molar mass and pressure of the gas contained in the fuel rod plenum. For in-pile instrumentation, the fraction of fission gas, such as Krypton and Xenon, in Helium, can be deduced online from this measurement. The principle of this acoustical sensor is the following: a piezoelectric transducer generates acoustic waves in a cavity connected to the fuel rod plenum. The acoustic waves are propagated and reflected in this cavity and then detected by the transducer. The data processing of the signal gives the velocity of the acoustic waves and their amplitude, which can be related respectively to the molar mass and to the pressure of the gas. The piezoelectric material of this sensor has been qualified in nuclear conditions (gamma and neutron radiations). The complete sensor has also been specifically designed to be implemented in materials testing reactors conditions. For this purpose some technical points have been studied in details: - fixing of the piezoelectric sample in a reliable way with a suitable signal transmission, - size of the gas cavity to avoid any perturbation of the acoustic waves, - miniaturization of the sensor because of narrow in-pile experimental devices

  9. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  10. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  11. Nanocrystalline samarium oxide coated fiber optic gas sensor

    International Nuclear Information System (INIS)

    Renganathan, B.; Sastikumar, D.; Srinivasan, R.; Ganesan, A.R.

    2014-01-01

    Highlights: • This fiber optic gas sensor works at room temperature. • As-prepared and annealed Sm 2 O 3 nanoparticles are act as sensor materials. • Sm 2 O 3 clad modified fiber detect the ammonia, ethanol and methanol gases. • The response of evanescent wave loss has been studied for different concentrations. - Abstract: Nanocrystalline Sm 2 O 3 coated fiber optic sensor is proposed for detecting toxic gases such as ammonia, methanol and ethanol vapors. Sm 2 O 3 in the as prepared form as well as annealed form have been used as gas sensing materials, by making them as cladding of a PMMA fiber. The spectral characteristics of the Sm 2 O 3 gas sensor are presented for ammonia, methanol and ethanol gases with different concentrations ranging from 0 to 500 ppm. The sensor exhibits a linear variation in the output light intensity with the concentration. The enhanced gas sensitivity and selectivity of the sensor for ethanol is discussed briefly

  12. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors

    International Nuclear Information System (INIS)

    Rettig, Frank; Moos, Ralf

    2009-01-01

    Direct thermoelectric gas sensors are a promising alternative to conductometric gas sensors. For accurate results, a temperature modulation technique in combination with a regression analysis is advantageous. However, the thermal time constant of screen-printed sensors is quite large. As a result, up to now the temperature modulation frequency (20 mHz) has been too low and the corresponding principle-related response time (50 s) has been too high for many applications. With a special design, respecting the physical properties of thermal waves and the use of signal processing similar to a lock-in-amplifier, it is possible to achieve response times of about 1 s. As a result, direct thermoelectric gas sensors with SnO 2 as a gas-sensitive material respond fast and are reproducible to the propane concentration in the ambient atmosphere. Due to the path-independent behavior of the thermovoltage and the temperature, the measured thermopower of two sensors is almost identical

  13. Reading drift in flow rate sensors caused by steady sound waves

    International Nuclear Information System (INIS)

    Maximiano, Celso; Nieble, Marcio D.; Migliavacca, Sylvana C.P.; Silva, Eduardo R.F.

    1995-01-01

    The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs

  14. Polyvinylpyrrolidone/ Poly aniline Composite Based 36 degree YX LiTaO3 Surface Acoustic Wave H2 Gas Sensor

    International Nuclear Information System (INIS)

    Amir Sidek; Rashidah Arsat; Xiuli, He; Kalantar-zadeh, K.; Wlodarski, W.

    2013-01-01

    Poly-vinyl-pyrrolidone (PVP)/ poly aniline based surface acoustic wave (SAW) sensors were fabricated and characterized and their performances towards hydrogen gas were investigated. The PVP/ poly aniline fibers composite were prepared by electro spinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nano structure material was observed. From the dynamic response, frequency shifts of 6.243 kHz (1% H 2 ) and 8.051 kHz (1% H 2 ) were recorded for the sensors deposited with PVP/ ES and PVP/ EB, respectively. (author)

  15. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  16. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    Science.gov (United States)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  17. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  18. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    International Nuclear Information System (INIS)

    Kropelnicki, P; Mu, X J; Randles, A B; Cai, H; Ang, W C; Tsai, J M; Muckensturm, K-M; Vogt, H

    2013-01-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20–100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of −50 °C to 300 °C. By using the modified Butterworth–van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications. (paper)

  19. Reading drift in flow rate sensors caused by steady sound waves; Desvios de leitura em sensores de vazao provocados por ondas sonoras estacionarias

    Energy Technology Data Exchange (ETDEWEB)

    Maximiano, Celso; Nieble, Marcio D. [Coordenadoria para Projetos Especiais (COPESP), Sao Paulo, SP (Brazil); Migliavacca, Sylvana C.P.; Silva, Eduardo R.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs.

  20. Advances in SAW gas sensors based on the condensate-adsorption effect.

    Science.gov (United States)

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  1. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  2. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  3. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  4. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  5. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  6. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  7. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  8. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  9. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  10. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  11. Gas sensor

    International Nuclear Information System (INIS)

    Dorogan, V.; Korotchenkov, Gh.; Vieru, T.; Prodan, I.

    2003-01-01

    The invention relates to the gas sensors on base of metal-oxide films (SnO, InO), which may be used for enviromental control, in the fireextinguishing systema etc. The gas includes an insulating substrate, an active layer, a resistive layer with ohmic contacts. The resistive layer has two or more regions with dofferent resistances , and on the active layer are two or more pairs of ohmic contacts

  12. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    Science.gov (United States)

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High resolution gas volume change sensor

    International Nuclear Information System (INIS)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  14. [INVITED] Porphyrin-nanoassembled fiber-optic gas sensor fabrication: Optimization of parameters for sensitive ammonia gas detection

    Science.gov (United States)

    Korposh, Sergiy; Kodaira, Suguru; Selyanchyn, Roman; Ledezma, Francisco H.; James, Stephen W.; Lee, Seung-Woo

    2018-05-01

    Highly sensitive fiber-optic ammonia gas sensors were fabricated via layer-by-layer deposition of poly(diallyldimethylammonium chloride) (PDDA) and tetrakis(4-sulfophenyl)porphine (TSPP) onto the surface of the core of a hard-clad multimode fiber that was stripped of its polymer cladding. The effects of film thickness, length of sensing area, and depth of evanescent wave penetration were investigated to clearly understand the sensor performance. The sensitivity of the fiber-optic sensor to ammonia was linear in the concentration range of 0.5-50 ppm and the response and recovery times were less than 3 min, with a limit of detection of 0.5 ppm, when a ten-cycle PDDA/TSPP film was assembled on the surface of the core along a 1 cm-long stripped section of the fiber. The sensor's response towards ammonia was also checked under different relative humidity conditions and a simple statistical data treatment approach, principal component analysis, demonstrated the feasibility of ammonia sensing in environmental relative humidity ranging from dry 7% to highly saturated 80%. Penetration depths of the evanescent wave for the optimal sensor configuration were estimated to be 30 and 33 nm at wavelengths of 420 and 706 nm, which are in a good agreement with the thickness of the 10-cycle deposited film (ca. 30 nm).

  15. Wave effects on a pressure sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; DeSa, E; Desa, E; McKeown, J.; Peshwe, V.B.

    Wave flume experiments indicated that for waves propagating on quiescent waters the sensor's performance improved (i.e. the difference Delta P between the average hydrostatic and measured pressures was small and positive) when the inlet...

  16. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  17. Solid state gas sensors. Industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Maximilian [Siemens AG, Muenchen (Germany). Corporate Technology; Lehmann, Mirko (eds.) [Innovative Sensor Technology (IST) AG, Wattwil (Switzerland)

    2012-11-01

    Written by experts. Richly illustrated. Encourages future research and investments in the fascinating field of gas sensors. Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.

  18. Characterization of Polymeric Chemiresistors for Gas Sensor

    Directory of Open Access Journals (Sweden)

    Hendro Juwono

    2012-06-01

    Full Text Available Composite polymer-carbon has resistance change if come into contact with gas. Composite polymer-carbon can be used as a gas sensor. This research will be characterized the sensor composite polymer-carbon that has been made from 6 types of polymer, which are; PEG6000, PEG20M, PEG200, PEG1540, Silicon and Squelene. The 6 sensors will be tested by 9 types of gas, which are; Aceton, Aceton Nitril, Benzene, Etanol, Methanol, Ethyl Aceton, Chloroform, n-Hexan and Toluene. This characterization will be grouped into 4 claster of characteristics, which are; the selectivity (influence type of gas, the sensitivity (influence volume of gas, the influence of temperature and the influence of humidity. Test using method testing sensors that paleced in an isolated chamber which is connected with data acquisition. variations of temperature, humidity, type and volume of gas will be condition in the chamber. Correspondence analysis and regression will be used to process the data. Test results found that each sensor of type of polymers have different sensitivity and selectivity towards a particular type of gas. Resistance sensors increases with rising temperature and humidity environment with a polynomial equation of order-2 and order-3

  19. Triboelectric Hydrogen Gas Sensor with Pd Functionalized Surface

    Directory of Open Access Journals (Sweden)

    Sung-Ho Shin

    2016-10-01

    Full Text Available Palladium (Pd-based hydrogen (H2 gas sensors have been widely investigated thanks to its fast reaction and high sensitivity to hydrogen. Various sensing mechanisms have been adopted for H2 gas sensors; however, all the sensors must be powered through an external battery. We report here an H2 gas sensor that can detect H2 by measuring the output voltages generated during contact electrification between two friction surfaces. When the H2 sensor, composed of Pd-coated ITO (indium tin oxide and PET (polyethylene Terephthalate film, is exposed to H2, its output voltage is varied in proportion to H2 concentration because the work function (WF of Pd-coated surface changes, altering triboelectric charging behavior. Specifically, the output voltage of the sensor is gradually increased as exposing H2 concentration increases. Reproducible and sensitive sensor response was observed up 1% H2 exposure. The approach introduced here can easily be adopted to development of triboelectric gas sensors detecting other gas species.

  20. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    Science.gov (United States)

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  1. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  2. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  3. Gas Composition Sensor for Natural Gas and Biogas

    NARCIS (Netherlands)

    Boersma, A.; Sweelsen, J.; Blokland, H.

    2016-01-01

    The calorific value of energetic gasses is an important parameter in the quality assessment of gas steams, and can be calculated from the chemical composition of the gas. An array of capacitive sensor electrodes was developed, each functionalized with a gas responsive coating to measure the

  4. Micro Coriolis Gas Density Sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; Ratering, Gijs; Kruijswijk, Wim; van der Wouden, E.J.; Groenesteijn, Jarno; Lötters, Joost Conrad

    2017-01-01

    In this paper we report on gas density measurements using a micro Coriolis sensor. The technology to fabricate the sensor is based on surface channel technology. The measurement tube is freely suspended and has a wall thickness of only 1 micron. This renders the sensor extremely sensitive to changes

  5. A Review of Carbon Nanotubes-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2009-01-01

    Full Text Available Gas sensors have attracted intensive research interest due to the demand of sensitive, fast response, and stable sensors for industry, environmental monitoring, biomedicine, and so forth. The development of nanotechnology has created huge potential to build highly sensitive, low cost, portable sensors with low power consumption. The extremely high surface-to-volume ratio and hollow structure of nanomaterials is ideal for the adsorption of gas molecules. Particularly, the advent of carbon nanotubes (CNTs has fuelled the inventions of gas sensors that exploit CNTs' unique geometry, morphology, and material properties. Upon exposure to certain gases, the changes in CNTs' properties can be detected by various methods. Therefore, CNTs-based gas sensors and their mechanisms have been widely studied recently. In this paper, a broad but yet in-depth survey of current CNTs-based gas sensing technology is presented. Both experimental works and theoretical simulations are reviewed. The design, fabrication, and the sensing mechanisms of the CNTs-based gas sensors are discussed. The challenges and perspectives of the research are also addressed in this review.

  6. Sensor platform for gas composition measurement

    NARCIS (Netherlands)

    De Graaf, G.; Bakker, F.; Wolffenbuttel, R.F.

    2011-01-01

    The gas sensor research presented here has a focus on the measurement of the composition of natural gas and gases from sustainable resources, such as biogas. For efficient and safe combustion, new sensor systems need to be developed to measure the composition of these new gases. In general about 6

  7. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  8. Laser-based gas sensors keep moisture out of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    Natural gas often contains contaminants that cause corrosion, and long-term deterioration, and must be cleaned and brought to pipeline standards before it can be delivered to high-pressure, long-distance pipelines. Many older sensors produce false data that can result in contaminated gas getting through. This article presented details of the SpectraSensor, a new laser-based sensor technology used by the El Paso Natural Gas Company (EPNG). The SpectraSensor is comprised of a tunable diode laser (TDL) based technology developed by the National American Space Agency (NASA). The gas analyzer provides non-contact measurement of moisture, carbon dioxide, and other corrosives in natural gas pipelines, and the tunable laser-based gas sensors are fast, accurate, and flexible. Producers can monitor El Paso's gas analyzer readings by capturing the electronic signal from El Paso's unit via a SCADA system and view the readings from control rooms. While initial purchase price is higher than more problematic surface-based gas sensors, an evaluation of the technology has indicated that maintenance savings alone may provide an almost immediate return on investments. Unlike electrochemical and crystal gas sensors, laser-based gas analyzers do not come into direct contact with any substances, a fact which practically eliminates maintenance and operational costs. Studies have shown that the cost of operating conventional electrochemical sensors can result in a cumulative annual expense exceeding $50,000 per unit including labour; recalibration and rebuilding; back-up sensor heads; and gas dehydration and tariffs. 1 fig.

  9. Sol-Gel Thin Films for Plasmonic Gas Sensors

    Science.gov (United States)

    Della Gaspera, Enrico; Martucci, Alessandro

    2015-01-01

    Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216

  10. Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity

    Directory of Open Access Journals (Sweden)

    Kuen-Lin Chen

    2015-06-01

    Full Text Available We have successfully observed the change in indium–gallium–zinc–oxide (IGZO gas sensor sensitivity by controlling the light emitting diode (LED power under the same gas concentrations. The light intensity dependence of sensor properties is discussed. Different LED intensities obviously affected the gas sensor sensitivity, which decays with increasing LED intensity. High LED intensity decreases not only gas sensor sensitivity but also the response time (T90, response time constant (τres and the absorption rate per second. Low intensity irradiated to sensor causes high sensitivity, but it needs larger response time. Similar results were also observed in other kinds of materials such as TiO2. According to the results, the sensing properties of gas sensors can be modulated by controlling the light intensity.

  11. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  12. Nanoparticle-based gas sensors and methods of using the same

    Science.gov (United States)

    Mickelson, William; Zettl, Alex

    2017-10-17

    Gas sensors are provided. The gas sensors include a gas sensing element having metal oxide nanoparticles and a thin-film heating element. Systems that include the gas sensors, as well as methods of using the gas sensors, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a gaseous sample.

  13. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.

    Science.gov (United States)

    Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K

    2015-03-27

    A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  14. Quartz Enhanced Photoacoustic Spectroscopy Based Trace Gas Sensors Using Different Quartz Tuning Forks

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2015-03-01

    Full Text Available A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS is reported. A 1.395 μm continuous wave (CW, distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs with a resonant frequency (f0 of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  15. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  16. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  17. Portable multi-sensor system for gas detection using the temporal window technique; Systeme multicapteurs de detection de gaz, portable, utilisant la technique du fenetrage temporel

    Energy Technology Data Exchange (ETDEWEB)

    Cazaubon, Ch. [Bordeaux-1 Univ., CRED, 33 - Talence (France); Levi, H.; Bordieu, Ch.; Rebiere, D.; Pistre, J. [Bordeaux-1 Univ., Lab. IXL, UMR CNRS 5818, 33 (France)

    1999-07-01

    An autonomous and portable multi-sensor system was constructed. It can drive four gas sensors (surface acoustic waves. SAW. for examples) and four voltage output gas sensors (semiconductor metal oxide sensors, for example). Two micro-controllers. MC68HC11F1 and MC68HC711E9, used as master and slave respectively, are mounted on two cards. The first card contains the signal processing treatment algorithm using a neural network and a shifting temporal window technique: it allows real time gas selection. The second card insure the overall temperature control by an auto-adaptive PID. GB gas SAW responses were applied to the device in order to test his performances. (authors)

  18. Metal oxide gas sensors on the nanoscale

    Science.gov (United States)

    Plecenik, A.; Haidry, A. A.; Plecenik, T.; Durina, P.; Truchly, M.; Mosko, M.; Grancic, B.; Gregor, M.; Roch, T.; Satrapinskyy, L.; Moskova, A.; Mikula, M.; Kus, P.

    2014-06-01

    Low cost, low power and highly sensitive gas sensors operating at room temperature are very important devices for controlled hydrogen gas production and storage. One of the disadvantages of chemosensors is their high operating temperature (usually 200 - 400 °C), which excludes such type of sensors from usage in explosive environment. In this report, a new concept of gas chemosensors operating at room temperature based on TiO2 thin films is discussed. Integration of such sensor is fully compatible with sub-100 nm semiconductor technology and could be transferred directly from labor to commercial sphere.

  19. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Amir Rabani

    2016-10-01

    Full Text Available The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  20. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    Science.gov (United States)

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  1. A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module

    Directory of Open Access Journals (Sweden)

    Xiaotao Yang

    2017-07-01

    Full Text Available A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS sensor and is reported for the first time. The acoustic detection module (ADM was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C2H2 was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.

  2. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

    Science.gov (United States)

    Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar

    2018-03-01

    Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

  3. Porous Silicon Structures as Optical Gas Sensors.

    Science.gov (United States)

    Levitsky, Igor A

    2015-08-14

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  4. Metal oxide-based gas sensor and microwave broad-band measurements: an innovative approach to gas sensing

    International Nuclear Information System (INIS)

    Jouhannaud, J; Rossignol, J; Stuerga, D

    2007-01-01

    We outline the development of a gas sensor using microwave technology (0.3 MHz to 3 GHz). The sensor is a coaxial structure into which is introduced a sensitive material. An electromagnetic field (microwave), sent out through the sensor by a vectorial network analyzer, solicits the sensitive material exposed to a gas. The observed variation in the sensor response is due to the variation in the adsorption of this gas. SrTiO 3 , demonstrated to be the highly sensitive to water vapour, is exposed to different gases (saturated vapour of water, ethanol and toluene). The response of the sensor is quantitative and typical for each gas. This method of measurement leads to the development of an alternative to the current gas sensor

  5. Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure

    Directory of Open Access Journals (Sweden)

    Ming-Yau Su

    2009-02-01

    Full Text Available Surface acoustic wave (SAW devices are key components for sensing applications. SAW propagation under a periodic grating was investigated in this work. The theoretical method used here is the space harmonic method. We also applied the results of SAW propagation studied in this work to design a two-port resonator with an Al grating on ST-cut quartz. The measured frequency responses of the resonator were similar to the simulation ones. Then, the chemical interface of polyaniline/WO3 composites was coated on the SAW sensor for ammonia detection. The SAW sensor responded to ammonia gas and could be regenerated using dry nitrogen.

  6. Calibration of low-cost gas sensors for an urban air quality monitoring network

    Science.gov (United States)

    Scott, A.; Kelley, C.; He, C.; Ghugare, P.; Lehman, A.; Benish, S.; Stratton, P.; Dickerson, R. R.; Zuidema, C.; Azdoud, Y.; Ren, X.

    2017-12-01

    In a warming world, environmental pollution may be exacerbated by anthropogenic activities, such as climate change and the urban heat island effect, as well as natural phenomena such as heat waves. However, monitoring air pollution at federal reference standards (approximately 1 part per billion or ppb for ambient ozone) is cost-prohibitive in heterogeneous urban areas as many expensive devices are required to fully capture a region's geo-spatial variability. Innovation in low-cost sensors provide a potential solution, yet technical challenges remain to overcome possible imprecision in the data. We present the calibrations of ozone and nitrous dioxide from a low-cost air quality monitoring device designed for the Baltimore Open Air Project. The sensors used in this study are commercially available thin film electrochemical sensors from SPEC Sensor, which are amperometric, meaning they generate current proportional to volumetric fraction of gas. The results of sensor calibrations in the laboratory and field are presented.

  7. Sensors for online determination of CNG gas quality; Sensorer foer onlinebestaemnning av fordonsgaskvalitet

    Energy Technology Data Exchange (ETDEWEB)

    Stenlaaaas, Ola; Roedjegaard, Henrik

    2012-07-01

    Swedish automotive gas has until now been a very uniform, high quality automotive fuel. Elsewhere in Europe the quality of automotive gas varies significantly. Gas from different sources with different flammability require engine settings adjusted to the chosen gas' unique composition. The prospects for a vehicle-mounted sensor based on infrared technology for gas quality measurement has been studied and solutions are presented with questions that must be answered in a possible future work. The proposed vehicle mounted sensor is based on two channels, one of which measures the partial pressure of methane and the other measures the partial pressure of heavier hydrocarbons in 'equivalents of butane'. Ethane produces a signal of about 0.6 equivalents of butane and propane about 0.8 equivalents. The sensor can be accommodated in a cube with 5 cm side and should be equipped with nipple connections to the existing system. The sensor is expected to work throughout their entire lifetime without manual calibration, through continuous automatic calibration, so-called ABC (Automatic Baseline Compensation). The sensor will have to meet tough quality and environmental standards in which primarily contact ring, vibration and prevention of leakage are identified as extra difficult. Working temperatures and the electrical conditions of power supply and communication interface is considered less challenging. In one million volumes, the cost per sensor could be 200 to 300 SEK.

  8. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  9. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    Science.gov (United States)

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  10. Porous Silicon Structures as Optical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Igor A. Levitsky

    2015-08-01

    Full Text Available We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  11. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  12. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  13. Membrane gas sensors for fermentation monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F

    1987-12-01

    Results of a study on membrane gas sensors are presented to show their general applicability to fermentation monitoring of volatiles, such as alcohols, organic acids and aldehydes under various process and reactor conditions. Permeable silicone (Noax AB) and teflon (fluorcarbon AB) are tested as material for a gas sensor. The silicone tubing method is mainly used and ethanolic fermentation is performed in the study. Investigation is made to determine the dependence of the sensitivity of the sensors on the temperature, pH, concentration and other properties of fermentation liquid. The effect of temperature on the ethanol response is investigated in the temperature range of 7-50/sup 0/C to reveal that the response time decreases while the sensor's sensitivity increases with an increasing temperature. Comparison among methanol, ethyl acetate, acetaldehyde and ethanol is made with respect to the effect of their concentration on the sensitivity of a sensor. Results of a three-month measurement with the sensor immersed in fermentation liquid are compared with those of GC analysis to investigate the correlation between the sensor's sensitivity and GC analysis data. (11 figs, 17 refs)

  14. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor.

    Science.gov (United States)

    Oh, Se Yeon; Shin, Hyun Du; Kim, Sung Jean; Hong, Jongki

    2008-03-07

    A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.

  15. Electrospray-printed nanostructured graphene oxide gas sensors

    Science.gov (United States)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  16. Development of application technology of ultrasonic wave sensor; Choonpa sensor oyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, H; Hikita, N; Sasaki, H; Kore, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We have developed parking assist system, which informs a driver the closing point and distance to the objects such as other vehicle, wall and pole around the own vehicle at parking area and makes parking maneuverability easy. This system is based on the range detection technology using ultrasonic wave sensor. We have improved the detecting ability in short range of about 20cm by reducing the reverberation of transmitting wave signal and controlling sensitivities of signal intensity and threshold line. We will show mainly the improvement of short range detection of ultrasonic wave sensor, and briefly the performance of parking assist system. 1 ref., 14 figs., 1 tab.

  17. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application.

    Science.gov (United States)

    Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho

    2010-03-01

    Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.

  18. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  19. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems

    Science.gov (United States)

    Helwig, Andreas; Hackner, Angelika; Zappa, Dario; Sberveglieri, Giorgio

    2018-01-01

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R0, and under gas exposure, Rgas, to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response Resp=(R0−Rgas)/R0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors. PMID:29401673

  20. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems.

    Science.gov (United States)

    Helwig, Andreas; Hackner, Angelika; Müller, Gerhard; Zappa, Dario; Sberveglieri, Giorgio

    2018-02-03

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R 0 , and under gas exposure, R g a s , to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response R e s p = ( R 0 - R g a s ) / R 0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors.

  1. DNA sensor cGAS-mediated immune recognition

    Directory of Open Access Journals (Sweden)

    Pengyan Xia

    2016-09-01

    Full Text Available Abstract The host takes use of pattern recognition receptors (PRRs to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate–adenosine monophosphate (cGAMP from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.

  2. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  3. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  4. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    Directory of Open Access Journals (Sweden)

    Ye Chang

    2018-01-01

    Full Text Available In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET and a film bulk acoustic resonator (FBAR. We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  5. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  6. Modeling of a Surface Acoustic Wave Strain Sensor

    Science.gov (United States)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  7. First Fifty Years of Chemoresistive Gas Sensors

    Directory of Open Access Journals (Sweden)

    Giovanni Neri

    2015-01-01

    Full Text Available The first fifty years of chemoresistive sensors for gas detection are here reviewed, focusing on the main scientific and technological innovations that have occurred in the field over the course of these years. A look at advances made in fundamental and applied research and leading to the development of actual high performance chemoresistive devices is presented. The approaches devoted to the synthesis of novel semiconducting materials with unprecedented nanostructure and gas-sensing properties have been also presented. Perspectives on new technologies and future applications of chemoresistive gas sensors have also been highlighted.

  8. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ping Feng

    2014-09-01

    Full Text Available One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.

  9. Test Structures for Rapid Prototyping of Gas and Pressure Sensors

    Science.gov (United States)

    Buehler, M.; Cheng, L. J.; Martin, D.

    1996-01-01

    A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.

  10. Electrospray-printed nanostructured graphene oxide gas sensors

    International Nuclear Information System (INIS)

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-01-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%–60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10"−"4 T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems. (paper)

  11. Combustion Sensors: Gas Turbine Applications

    Science.gov (United States)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  12. THE GAS SENSORS BASED ON ZINC OXIDE (THE REVIEW)

    OpenAIRE

    Bugayova, M. E.; Koval, V. M.; Lashkarev, G. V.; Lazorenko, V. I.; Karpina, V. A.; Khranovskyy, V. D.

    2017-01-01

    The wide range of gas sensor application, in particular, in a mining industry for detection of outflow of gases, the control of gas emissions over an atmosphere at the industrial enterprises, in housing and communal services, in home appliances makes actual the review. As the systematized analysis of gas sensor based on ZnO has not being carried out — this work is of interest for development of chemical sensors based on zinc compound with high sensitivity, selectivity and stability. The resis...

  13. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  14. Selectivity enhancement of indium-doped SnO2 gas sensors

    International Nuclear Information System (INIS)

    Salehi, A.

    2002-01-01

    Indium doping was used to enhance the selectivity of SnO 2 gas sensor. Both indium-doped and undoped SnO 2 gas sensors fabricated with different deposition techniques were investigated. The changes in the sensitivity of the sensors caused by selective gases (hydrogen and wood smoke) ranging from 500 to 3000 ppm were measured at different temperatures from 50 to 300 deg. C. The sensitivity peaks of the samples exhibit different values for selective gases with a response time of approximately 0.5 s. Thermally evaporated indium-doped SnO 2 gas sensor shows a considerable increase in the sensitivity peak of 27% in response to wood smoke, whereas it shows a sensitivity peak of 7% to hydrogen. This is in contrast to the sputter deposited indium-doped SnO 2 gas sensor, which exhibits a much lower sensitivity peak of approximately 2% to hydrogen and wood smoke compared to undoped SnO 2 gas sensors fabricated by chemical vapor deposition and spray pyrolysis. Scanning electron microscopy shows that different deposition techniques result in different porosity of the films. It is observed that the thermally evaporated indium-doped SnO 2 gas sensor shows high porosity, while the sputtered sample exhibits almost no porosity

  15. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  16. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2016-01-01

    Full Text Available A new room temperature supra-molecular cryptophane A (CrypA-coated surface acoustic wave (SAW sensor for sensing methane gas is presented. The sensor is composed of differential resonator-oscillators, a supra-molecular CrypA coated along the acoustic propagation path, and a frequency signal acquisition module (FSAM. A two-port SAW resonator configuration with low insertion loss, single resonation mode, and high quality factor was designed on a temperature-compensated ST-X quartz substrate, and as the feedback of the differntial oscillators. Prior to development, the coupling of modes (COM simulation was conducted to predict the device performance. The supramolecular CrypA was synthesized from vanillyl alcohol using a double trimerisation method and deposited onto the SAW propagation path of the sensing resonators via different film deposition methods. Experiential results indicate the CrypA-coated sensor made using a dropping method exhibits higher sensor response compared to the unit prepared by the spinning approach because of the obviously larger surface roughness. Fast response and excellent repeatability were observed in gas sensing experiments, and the estimated detection limit and measured sensitivity are ~0.05% and ~204 Hz/%, respectively.

  17. A Study on Detection of Elastic Wave Using Patch Type Piezo-Polymer Sensor

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Yoon, Dong Jin; Kueon, Jae Hwa; Lee, Young Seop

    2004-01-01

    Patch type piezo-polymer sensors for smart structures were experimented to detect elastic wave. The pencil lead braking test was performed to analyze the characteristics of patch-type piezo-polymer sensors such as polyvinyliden fluoride (PVDF) and polyvinylidene fluoride trifluorethylene (P(VDF-TrFE)) for several test specimens with various elastic wave velocities and acoustical impedances. The characteristics of the patch-type piezo-polymer sensor were compared with the commercial PZT acoustic emission (AE) sensor. The vacuum grease and epoxy resin were used as a couplant for the acoustic impedance matching between the sensor and specimen. The peak amplitude of elastic wave increased as the diameter of piezo-film and acoustical impedance of the specimen increased. The frequency detection range of the piezo-film sensors decreased with increasing diameter of the piezo-film sensor. The P(VDF-TrFE) sensor was more sensitive than the PVDF sensor

  18. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  19. Nanowire-based gas sensors

    NARCIS (Netherlands)

    Chen, X.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.

    2013-01-01

    Gas sensors fabricated with nanowires as the detecting elements are powerful due to their many improved characteristics such as high surface-to-volume ratios, ultrasensitivity, higher selectivity, low power consumption, and fast response. This paper gives an overview on the recent process of the

  20. Towards realization of quantitative atmospheric and industrial gas sensing using THz wave electronics

    Science.gov (United States)

    Tekawade, Aniket; Rice, Timothy E.; Oehlschlaeger, Matthew A.; Mansha, Muhammad Waleed; Wu, Kefei; Hella, Mona M.; Wilke, Ingrid

    2018-06-01

    The potential of THz wave electronics for miniaturized non-intrusive sensors for atmospheric, environmental, and industrial gases is explored. A THz wave spectrometer is developed using a radio-frequency multiplier source and a Schottky-diode detector. Spectral absorption measurements were made in a gas cell within a frequency range of 220-330 GHz at room temperature and subatmospheric pressures. Measurements are reported for pure acetonitrile (CH3CN), methanol (CH3OH), and ethanol (C2H5OH) vapors at 5 and 10 Torr and for methanol dilute in the air (0.75-3.0 mol%) at a pressure of 500 Torr. An absorbance noise floor of 10-3 was achieved for a single 10 s scan of the 220-330 GHz frequency domain. Measured absorption spectra for methanol/air agree well at collisional-broadened conditions with spectral simulations carried out using literature spectroscopic parameters. In contrast to the previous submillimeter wave research that has focused on spectral absorbance at extremely low pressures (mTorr), where transitions are in the Doppler limit, and the present study illustrates the applicability of THz electronics for gas sensing at pressures approaching those found in atmospheric and industrial environments.

  1. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  2. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  3. The coexistence of pressure waves in the operation of quartz-crystal shear-wave sensors

    OpenAIRE

    Reddy, SM; Jones, JP; Lewis, TJ

    1998-01-01

    It is demonstrated that an AT-cut quartz crystal driven in the thickness-shear-wave mode and typically used as a sensor to monitor the viscoelastic shear-wave properties of a fluid also produce longitudinal pressure waves. Unlike the shear wave, these waves are capable of long-range propagation through the fluid and of reflection at its boundaries, notably at an outer fluid–air interface. They introduce a component into the measured electrical impedance and resonance frequency shift of the cr...

  4. A Smart Gas Sensor Insensitive to Humidity and Temperature Variations

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, Mohammadreza; Ghafarinia, Vahid

    2011-01-01

    The accuracy of the quantitative sensing of volatile organic compounds by chemoresistive gas sensors suffers from the fluctuations in the background atmospheric conditions. This is caused by the drift-like terms introduced in the responses by these instabilities, which should be identified and compensated. Here, a mathematical model is presented for a specific chemoresistive gas sensor, which facilitates these identification and compensation processes. The resistive gas sensor was considered as a multi-input-single-output system. Along with the steady state value of the measured sensor resistance, the ambient humidity and temperature are the inputs to the system, while the concentration level of the target gas is the output. The parameters of the model were calculated based on the experimental database. The model was simulated by the utilization of an artificial neural network. This was connected to the sensor and could deliver the correct contamination level upon receiving the measured gas response, ambient humidity and temperature.

  5. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Rosamaria Capuano

    2015-04-01

    Full Text Available Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays.

  6. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  7. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class II...

  8. Chemical Gas Sensors for Aeronautic and Space Applications

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  9. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zainab Yunusa

    2015-02-01

    Full Text Available A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%.

  10. Ether gas-sensor based on Au nanoparticles-decorated ZnO microstructures

    Directory of Open Access Journals (Sweden)

    Roberto López

    Full Text Available An ether gas-sensor was fabricated based on gold nanoparticles (Au-NPs decorated zinc oxide microstructures (ZnO-MS. Scanning electron microscope (SEM and high-resolution transmission electron microscope (HRTEM measurements were performed to study morphological and structural properties, respectively, of the ZnO-MS. The gas sensing response was evaluated in a relatively low temperature regime, which ranged between 150 and 250 °C. Compared with a sensor fabricated from pure ZnO-MS, the sensor based on Au-NPs decorated ZnO-MS showed much better ether gas response at the highest working temperature. In fact, pure ZnO-MS based sensor only showed a weak sensitivity of about 25%. The improvement of the ether gas response for sensor fabricated with Au-NPs decorated ZnO-MS was attributed to the catalytic activity of the Au-NPs. Keywords: ZnO microstructures, Au nanoparticles, Ether, Gas sensor

  11. Data-driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  12. Data–driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  13. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    Science.gov (United States)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  14. Solid State Gas Sensor Research in Germany – a Status Report

    Directory of Open Access Journals (Sweden)

    Udo Weimar

    2009-06-01

    Full Text Available This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor.

  15. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  16. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  17. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    Science.gov (United States)

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-07

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

  18. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  19. Ce doped NiO nanoparticles as selective NO2 gas sensor

    Science.gov (United States)

    Gawali, Swati R.; Patil, Vithoba L.; Deonikar, Virendrakumar G.; Patil, Santosh S.; Patil, Deepak R.; Patil, Pramod S.; Pant, Jayashree

    2018-03-01

    Metal oxide gas sensors are promising portable gas detection devices because of their advantages such as low cost, easy production and compact size. The performance of such sensors is strongly dependent on material properties such as morphology, structure and doping. In the present study, we report the effect of cerium (Ce) doping on nickel oxide (NiO) nano-structured thin film sensors towards various gases. Bare NiO and Ce doped NiO nanoparticles (Ce:NiO) were synthesized by sol-gel method. To understand the effect of Ce doping in nickel oxide, various molar percentages of Ce with respect to nickel were incorporated. The structure, phase, morphology and band-gap energy of as-synthesized nanoparticles were studied by XRD, SEM, EDAX and UV-vis spectroscopy. Thin film gas sensors of all the samples were prepared and subjected to various gases such as LPG, NH3, CH3COCH3 and NO2. A systematic and comparative study reveals an enhanced gas sensing performance of Ce:NiO sensors towards NO2 gas. The maximum sensitivity for NO2 gas is around 0.719% per ppm at moderate operating temperature of 150 °C for 0.5% Ce:NiO thin film gas sensor. The enhanced gas sensing performance for Ce:NiO is attributed to the distortion of crystal lattice caused by doping of Ce into NiO.

  20. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  1. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.; Meuse, Curtis W.

    2002-01-01

    To address the chemical sensing needs of DOE, a new class of chemical sensors is being developed that enables qualitative and quantitative, remote, real-time, optical diagnostics of chemical species in hazardous gas, liquid, and semi-solid phases by employing evanescent wave cavity ringdown spectroscopy (EW-CRDS). The sensitivity of EW-CRDS was demonstrated previously under Project No.60231. The objective of this project is to enhance the range of application and selectivity of the technique by combining EW-CRDS with refractive-index-sensitive nanoparticle optics, molecular recognition (MR) chemistry, and by utilizing the polarization-dependence of EW-CRDS. Research Progress and Implications

  2. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  3. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  4. A 35 GHz wireless millimeter-wave power sensor based on GaAs micromachining technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2012-01-01

    A novel MEMS wireless millimeter-wave power sensor based on GaAs MMIC technology is presented in this paper. The principle of this wireless millimeter-wave power sensor is explained. It is designed and fabricated using MEMS technology and the GaAs MMIC process. With the millimeter-wave power range from 0.1 to 80 mW, the sensitivity of the wireless millimeter-wave power sensor is about 0.246 mV mW −1 at 35 GHz. In order to verify the power detection capability, this wireless power sensor is mounted on a PCB which influences the microwave performance of the CPW-fed antenna including the return loss and the radiation pattern. The frequency-dependent characteristic and the degree-dependent characteristic of this wireless power sensor are researched. Furthermore, in addition to the combination of the advantages of CPW-fed antenna with the advantages of the thermoelectric power sensor, another significant advantage of this wireless millimeter-wave power sensor is that it can be integrated with MMICs and other planar connecting circuit structures with zero dc power consumption. These features make it suitable for various applications ranging from the environment or space radiation detection systems to radar receiver and transmitter systems. (paper)

  5. Wide Band Low Noise Love Wave Magnetic Field Sensor System.

    Science.gov (United States)

    Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard

    2018-01-10

    We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

  6. SnO2/PPy Screen-Printed Multilayer CO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    S.A. WAGHULEY

    2007-05-01

    Full Text Available Tin dioxide (SnO2 plays a dominant role in solid state gas sensors and exhibit sensitivity towards oxidizing and reducing gases by a variation of its electrical properties. The electrical conducting polymer-polypyrrole (PPy has high anisotropy of electrical conduction and used as a gas sensor. SnO2/PPy multilayer, pure SnO2, pure PPy sensors were prepared by screen-printing method on Al2O3 layer followed by glass substrate. The sensors were used for different concentration (ppm of CO2 gas investigation at room temperature (303 K. The sensitivity of SnO2/PPy multilayer sensor was found to be higher, compared with pure SnO2 and pure PPy sensors. The multilayer sensor exhibited improved stability. The response and recovery time of multilayer sensor were found to be ~2 min and ~10 min respectively.

  7. Novel gas sensors based on carbon nanotube networks

    International Nuclear Information System (INIS)

    Sayago, I; Aleixandre, M; Horrillo, M C; Fernandez, M J; Gutierrez, J; Terrado, E; Lafuente, E; Maser, W K; Benito, A M; Martinez, M T; Munoz, E; Urriolabeitia, E P; Navarro, R

    2008-01-01

    Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) networks as the active sensing element nave been investigated for gas detection. SWNTs networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-decorated SWNT materials were used as sensitive layers for the detection of NO 2 and H 2 , respectively. The studied sensors provided good response to NO 2 and H 2 as well as excellent selectivities to interfering gases.

  8. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  9. Novel bacterial gas sensor proteins with transition metal-containing prosthetic groups as active sites.

    Science.gov (United States)

    Aono, Shigetoshi

    2012-04-01

    Gas molecules function as signaling molecules in many biological regulatory systems responsible for transcription, chemotaxis, and other complex physiological processes. Gas sensor proteins play a crucial role in regulating such biological systems in response to gas molecules. New sensor proteins that sense oxygen or nitric oxide have recently been found, and they have been characterized by X-ray crystallographic and/or spectroscopic analysis. It has become clear that the interaction between a prosthetic group and gas molecules triggers dynamic structural changes in the protein backbone when a gas sensor protein senses gas molecules. Gas sensor proteins employ novel mechanisms to trigger conformational changes in the presence of a gas. In gas sensor proteins that have iron-sulfur clusters as active sites, the iron-sulfur clusters undergo structural changes, which trigger a conformational change. Heme-based gas sensor proteins reconstruct hydrogen-bonding networks around the heme and heme-bound ligand. Gas sensor proteins have two functional states, on and off, which are active and inactive, respectively, for subsequent signal transduction in response to their physiological effector molecules. To fully understand the structure-function relationships of gas sensor proteins, it is vital to perform X-ray crystal structure analyses of full-length proteins in both the on and off states.

  10. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  11. Application of a sensor array based on capillary-attached conductive gas sensors for odor identification

    International Nuclear Information System (INIS)

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambali, Zarida

    2010-01-01

    An electronic nose based on an array of capillary-attached conductive gas sensors was fabricated. The identification ability of the developed structure was investigated by employing different categories of simple and complex odor databases. Feature data sets were generated from the dynamic and steady state responses of the sensor array to the applied odor databases. Combinations of different feature extraction and classification methods were used to detect target gases. Validation of each technique was evaluated. Achievements of the study proved high classification rates of the fabricated e-nose in odor identification. It was indicated that gas identification is possible by applying the early selected portion of transient responses of the developed sensor array. The ability of the mentioned structure in analyzing gas mixtures was also investigated. The results presented high accuracy in the classification of gas mixtures

  12. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  13. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  14. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    Science.gov (United States)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  15. A physicochemical mechanism of chemical gas sensors using an AC analysis.

    Science.gov (United States)

    Moon, Jaehyun; Park, Jin-Ah; Lee, Su-Jae; Lee, Jeong-Ik; Zyung, Taehyong; Shin, Eui-Chol; Lee, Jong-Sook

    2013-06-21

    Electrical modeling of the chemical gas sensors was successfully applied to TiO2 nanofiber gas sensors by developing an equivalent circuit model where the junction capacitance as well as the resistance can be separated from the comparable stray capacitance. The Schottky junction impedance exhibited a characteristic skewed arc described by a Cole-Davidson function, and the variation of the fit and derived parameters with temperature, bias, and NO2 gas concentration indicated definitely a physicochemical sensing mechanism based on the Pt|TiO2 Schottky junctions against the conventional supposition of the enhanced sensitivity in nanostructured gas sensors with high grain boundary/surface area. Analysis on a model Pt|TiO2|Pt structure also confirmed the characteristic impedance response of TiO2 nanofiber sensors.

  16. MEMS device for mass market gas and chemical sensors

    Science.gov (United States)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air

  17. Thermosensitive gas flow sensor

    International Nuclear Information System (INIS)

    Berlicki, T.; Osadnik, S.; Prociow, E.

    1997-01-01

    Results of investigations on thermal gas flow sensor have been presented. The sensor consists of three thin film resistors Si+Ta. The circuit was designed in the form of two bridges; one of them serves for measurement of the heater temperature, the second one for the measurement of temperature difference of peripheral resistors. The measurement of output voltage versus the rate of nitrogen flow at various power levels dissipated at the heater and various temperatures have been made. The measurements were carried out in three versions; (a) at constant temperature of the heater, (b) at constant power dissipated in the heater, controlled by the power of the heater, (c) at constant temperature of the heater controlled by the power dissipated in the peripheral resistors of the sensor. Due to measurement range it is advantageous to stabilize the temperature of the heater, especially by means of the power supplied to the peripheral resistors. In this case the wider measurement range can be obtained. (author)

  18. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a

  19. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  20. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    Science.gov (United States)

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. SnO2 Nanostructure as Pollutant Gas Sensors: Synthesis, Sensing Performances, and Mechanism

    Directory of Open Access Journals (Sweden)

    Brian Yuliarto

    2015-01-01

    Full Text Available A significant amount of pollutants is produced from factories and motor vehicles in the form of gas. Their negative impact on the environment is well known; therefore detection with effective gas sensors is important as part of pollution prevention efforts. Gas sensors use a metal oxide semiconductor, specifically SnO2 nanostructures. This semiconductor is interesting and worthy of further investigation because of its many uses, for example, as lithium battery electrode, energy storage, catalyst, and transistor, and has potential as a gas sensor. In addition, there has to be a discussion of the use of SnO2 as a pollutant gas sensor especially for waste products such as CO, CO2, SO2, and NOx. In this paper, the development of the fabrication of SnO2 nanostructures synthesis will be described as it relates to the performances as pollutant gas sensors. In addition, the functionalization of SnO2 as a gas sensor is extensively discussed with respect to the theory of gas adsorption, the surface features of SnO2, the band gap theory, and electron transfer.

  2. The quality of our drinking water: aluminium determination with an acoustic wave sensor.

    Science.gov (United States)

    Veríssimo, Marta I S; Gomes, M Teresa S R

    2008-06-09

    A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.

  3. Potential use of gas sensors in beef manure nutrient content ...

    African Journals Online (AJOL)

    The purpose of this study was to develop a gas sensor array to estimate the manure nutrient contents. Three metal-oxide gas sensors including methane, ammonia and hydrogen sulfide were used. Forty manure samples were collected from four beef operations in Southwest North Dakota. Manure samples were sent to be ...

  4. Analysis of Simulated Output Characteristics of Gas Sensor Based on Graphene Nanoribbon

    Directory of Open Access Journals (Sweden)

    A. Mahmoudi

    2016-01-01

    Full Text Available This work presents simulated output characteristics of gas sensor transistors based on graphene nanoribbon (GNRFET. The device studied in this work is a new generation of gas sensing devices, which are easy to use, ultracompact, ultrasensitive, and highly selective. We will explain how the exposure to the gas changes the conductivity of graphene nanoribbon. The equations of the GNRFET gas sensor model include the Poisson equation in the weak nonlocality approximation with proposed sensing parameters. As we have developed this model as a platform for a gas detection sensor, we will analyze the current-voltage characteristics after exposure of the GNRFET nanosensor device to NH3 gas. A sensitivity of nearly 2.7% was indicated in our sensor device after exposure of 1 ppm of NH3. The given results make GNRFET the right candidate for use in gas sensing/measuring appliances. Thus, we will investigate the effect of the channel length on the ON- and OFF-current.

  5. Nanostructured ZnO films for potential use in LPG gas sensors

    Science.gov (United States)

    Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.

    2017-05-01

    The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.

  6. Analysis of nanowire transistor based nitrogen dioxide gas sensor – A simulation study

    Directory of Open Access Journals (Sweden)

    Gaurav Saxena

    2015-06-01

    Full Text Available Sensors sensitivity, selectivity and stability has always been a prime design concern for gas sensors designers. Modeling and simulation of gas sensors aids the designers in improving their performance. In this paper, different routes for the modeling and simulation of a semiconducting gas sensor is presented. Subsequently, by employing one of the route, the response of Zinc Oxide nanowire transistor towards nitrogen dioxide ambient is simulated. In addition to the sensing mechanism, simulation study of gas species desorption by applying a recovery voltage is also presented.

  7. Comparison of information content of temporal response of chemoresistive gas sensor under three different temperature modulation regimes for gas detection of different feature reduction methods

    Science.gov (United States)

    Hosseini-Golgoo, S. M.; Salimi, F.; Saberkari, A.; Rahbarpour, S.

    2017-12-01

    In the present work the feature extraction of transient response of a resistive gas sensor under temperature cycling, temperature transient, and temperature combination methods were compared. So, the heater were stimulated by three pulse (cycling), ramp (transient) and staircase (combination) waveforms. The period or duration of all waves was equal to 40 s. Methanol, ethanol, 1-propanol, 1-butanol, toluene and acetone each at 11 different concentration levels in the range of 100 to 2000 ppm were used as the target gases. The utilized sensor was TGS-813 that made by Figaro Company. Recorded results were studied and heuristic features such as peak, rise time, slope and curvature of recorded responses were extracted for each heater waveform. Results showed that although application of this feature extraction method to all waveforms led to gas diagnoses, best results were achieved in the case of staircase waveform. The combination waveform had enough information to separate all examined target gases.

  8. Coded acoustic wave sensors and system using time diversity

    Science.gov (United States)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  9. Study on the inside gas flow visualization of oxygen sensor cover; Kashika ni yoru O2 sensor cover nai no gas nagare hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Hocho, S; Mitsuishi, Y; Inagaki, M [Nippon Soken, Inc., Tokyo (Japan); Hamaguchi, S; Mizusawa, K [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to make clear the difference of the response time between the oxygen sensors with different protection covers, we visualized gas flow inside of sensor covers by means of two experimental methods: One is `Smoke Suspension Method` using liquid paraffin vapor as the smoke. With smoke suspension method, we detected the streamlines inside of the covers. The other is `Color Reaction Method` using the reaction of phenolphthalein and NH3 gas. With color reaction method, we confirmed the streamline inside of the cover and furthermore detected the difference of the response time of each sensor. 3 refs., 7 figs., 1 tab.

  10. Chemoresistive gas sensor

    Science.gov (United States)

    Hirschfeld, T.B.

    1987-06-23

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.

  11. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  12. Long Wave Infrared Cavity Enhanced Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2005-12-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.

  13. Highly versatile fiber-based optical Fabry-Pérot gas sensor.

    Science.gov (United States)

    Liu, Jing; Sun, Yuze; Fan, Xudong

    2009-02-16

    We develop a versatile, compact, and sensitive fiber-based optical Fabry-Pérot (FP) gas sensor. The sensor probe is composed of a silver layer and a vapor-sensitive polymer layer that are sequentially deposited on the cleaved fiber endface, thus forming an FP cavity. The interference spectrum resulting from the reflected light at the silver-polymer and polymer-air interfaces changes when the polymer is exposed to gas analytes. This structure enables using any polymer regardless of the polymer refractive index (RI), which significantly enhances the sensor versatility. In experiments, we use polyethylene glycol (PEG) 400 (RI=1.465-1.469) and Norland Optical Adhesive (NOA) 81 (RI=1.53-1.56) as the gas sensing polymer and show drastically different sensor response to hexanol, methanol, and acetone. The estimated sensitivity for methanol vapor is 3.5 pm/ppm and 0.1 pm/ppm for PEG 400 and NOA 81, respectively, with a detection limit on the order of 1-10 ppm. Gas sensing for the analytes delivered in both continuous flow mode and pulsed mode is demonstrated.

  14. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  15. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Walied A. Moussa

    2010-02-01

    Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  16. Steady-state modelling of the universal exhaust gas oxygen (UEGO) sensor

    International Nuclear Information System (INIS)

    Collings, N; Hegarty, K; Ramsander, T

    2012-01-01

    The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan–Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. (paper)

  17. Omnidirectional piezo-optical ring sensor for enhanced guided wave structural health monitoring

    International Nuclear Information System (INIS)

    Giurgiutiu, Victor; Roman, Catalin; Lin, Bin; Frankforter, Erik

    2015-01-01

    This paper presents a novel method for the detection of ultrasonic waves from acoustic emission events using piezoelectric wafer ac3tive sensors (PWAS) and optical fiber Bragg grating (FBG) sensing combined with mechanical resonance amplification principles. The method is best suited for detecting the out-of-plane motion of the AE wave with preference for a certain frequency that can be adjusted by design. Several issues are discussed: (a) study the mode shapes of the sensors under different resonance frequencies in order to understand the behavior of the ring in a frequency band of interest; (b) comparison of analytical results and mode shapes with FEM predictions; (c) choice of the final piezo-optical ring sensor shape; (d) testing of the piezo-optical ring sensor prototype; (e) discussion of the ring-sensor test results in comparison with conventional results from PWAS and FBG sensors mounted directly on the test structure. The paper ends with summary, conclusions, and suggestions for further work. (paper)

  18. Characterization and calibration of gas sensor systems at ppb level—a versatile test gas generation system

    Science.gov (United States)

    Leidinger, Martin; Schultealbert, Caroline; Neu, Julian; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monitoring or breath analysis. In the design and the setup of the system, several issues regarding handling of trace gas concentrations have been considered, addressed and tested. This concerns not only the active fluidic components (flow controllers, valves), which have been chosen specifically for the task, but also the design of the fluidic tubing regarding dead volumes and delay times, which have been simulated for the chosen setup. Different tubing materials have been tested for their adsorption/desorption characteristics regarding naphthalene, a highly relevant gas for indoor air quality monitoring, which has generated high gas exchange times in a previous gas mixing system due to long time adsorption/desorption effects. Residual gas contaminations of the system and the selected carrier air supply have been detected and quantified using both an analytical method (GC-MS analysis according to ISO 16000-6) and a metal oxide semiconductor gas sensor, which detected a maximum contamination equivalent to 28 ppb of carbon monoxide. A measurement strategy for suppressing even this contamination has been devised, which allows the system to be used for gas sensor and gas sensor system characterization and calibration in the low ppb concentration range.

  19. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  20. Compact portable QEPAS multi-gas sensor

    Science.gov (United States)

    Dong, Lei; Kosterev, Anatoliy A.; Thomazy, David; Tittel, Frank K.

    2011-01-01

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) based multi-gas sensor was developed to quantify concentrations of carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen chloride (HCl), and carbon dioxide (CO2) in ambient air. The sensor consists of a compact package of dimensions 25cm x 25cm x 10cm and was designed to operate at atmospheric pressure. The HCN, CO2, and HCl measurement channels are based on cw, C-band telecommunication-style packaged, fiber-coupled diode lasers, while the CO channel uses a TO can-packaged Sb diode laser as an excitation source. Moreover, the sensor incorporates rechargeable batteries and can operate on batteries for at least 8 hours. It can also operate autonomously or interact with another device (such as a computer) via a RS232 serial port. Trace gas detection limits of 7.74ppm at 4288.29cm-1 for CO, 450ppb at 6539.11 cm-1 for HCN, 1.48ppm at 5739.26 cm-1 for HCl and 97ppm at 6361.25 cm-1 for CO2 for a 1sec average time, were demonstrated.

  1. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    Directory of Open Access Journals (Sweden)

    David W. Greve

    2013-05-01

    Full Text Available Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  2. Flexible Graphene-Based Wearable Gas and Chemical Sensors.

    Science.gov (United States)

    Singh, Eric; Meyyappan, M; Nalwa, Hari Singh

    2017-10-11

    Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO 2 ), ammonia (NH 3 ), hydrogen (H 2 ), hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.

  3. On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2017-09-01

    Full Text Available Semiconductor metal oxide nanowires (SMO-NWs show great potential for novel gas sensor applications because of their distinct properties, such as a high surface area to volume aspect ratio, high crystallinity and perfect pathway for electron transfer (length of NW. SMO-NW sensors can be configured as resistors or field-effect transistors for gas detection and different configurations, such as a single NW, multiple NWs, and networked NW films, have been established. Surface-functionalizing NWs with catalyst elements and self-heating NWs provide additional advantages for highly selective and low-power consumption gas sensors. However, an appropriate design of SMO-NWs is of practical importance in enhancing the gas-sensing performance of SMO-NW sensors. The on-chip growth of SMO-NWs possesses many advantages which can thus be effectively used for the large-scale fabrication of SMO-NW sensors with improved gas response and stability. This review aims to provide up-to-date information on the on-chip fabrication of SnO2, ZnO, WO3, CuO, and other SMO-NW sensors. It also discusses a variety of promising approaches that help advance the on-chip fabrication of SMO-NW-based gas sensors and other NW-based devices.

  4. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  5. Spin wave differential circuit for realization of thermally stable magnonic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Okajima, Shingo; Hasegawa, Takashi [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Granovsky, Alexander B. [Faculty of Physics, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Sekiguchi, Koji [Department of Physics, Keio University, Yokohama 223-8522 (Japan); JST-PRESTO, Kawaguchi, Saitama 332-0012 (Japan); Ross, Caroline A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-03-30

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K{sup −1}, which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K{sup −1}. The SWDC architecture opens the way to design YIG-based magnonic devices.

  6. Spin wave differential circuit for realization of thermally stable magnonic sensors

    International Nuclear Information System (INIS)

    Goto, Taichi; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru; Okajima, Shingo; Hasegawa, Takashi; Granovsky, Alexander B.; Sekiguchi, Koji; Ross, Caroline A.

    2015-01-01

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K −1 , which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K −1 . The SWDC architecture opens the way to design YIG-based magnonic devices

  7. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-04-01

    Full Text Available The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors.

  8. Development of a detection sensor for lethal H2S gas.

    Science.gov (United States)

    Park, Young-Ho; Kim, Yong-Jae; Lee, Chang-Seop

    2012-07-01

    The gas which may be lethal to human body with short-term exposure in common industrial fields or workplaces in LAB may paralyze the olfactory sense and impose severe damages to central nervous system and lung. This study is concerned with the gas sensor which allows individuals to avoid the toxic gas that may be generated in the space with residues of organic wastes under 50 degrees C or above. This study investigates response and selectivity of the sensor to hydrogen sulfide gas with operating temperatures and catalysts. The thick-film semiconductor sensor for hydrogen sulfide gas detection was fabricated WO3/SnO2 prepared by sol-gel and precipitation methods. The nanosized SnO2 powder mixed with the various metal oxides (WO3, TiO2, and ZnO) and doped with transition metals (Au, Ru, Pd Ag and In). Particle sizes, specific surface areas and phases of sensor materials were investigated by SEM, BET and XRD analyses. The metal-WO3/SnO2 thick films were prepared by screen-printing method. The measured response to hydrogen sulfide gas is defined as the ratio (Ra/R,) of the resistance of WO3ISnO2 film in air to the resistance of WO3/SnO2 film in a hydrogen sulfide gas. It was shown that the highest response and selectivity of the sensor for hydrogen sulfide by doping with 1 wt% Ru and 10 wt% WO3 to SnO2 at the optimum operating temperature of 200 degrees C.

  9. Analysis and optimization of Love wave liquid sensors.

    Science.gov (United States)

    Jakoby, B; Vellekoop, M J

    1998-01-01

    Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.

  10. Influence of Gas-Liquid Interface on Temperature Wave of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available The influence of the interface on the amplitude and phase of the temperature wave and the relationship between the attenuation of the temperature wave and the gas-liquid two-phase physical parameters are studied during the operation of the pulsating heat pipe. The numerical simulation shows that the existence of the phase interface changes the direction of the temperature gradient during the propagation of the temperature wave, which increases the additional “thermal resistance.” The relative size of the gas-liquid two-phase thermal conductivity affects the propagation direction of heat flow at phase interface directly. The blockage of the gas plug causes hysteresis in the phase of the temperature wave, the relative size of the gas-liquid two-phase temperature coefficient will gradually increase the phase of the temperature wave, and the time when the heat flow reaches the peak value is also advanced. The attenuation of the temperature wave is almost irrelevant to the absolute value of the density, heat capacity, and thermal conductivity of the gas-liquid two phases, and the ratio of the thermal conductivity of the gas-liquid two phases is related. When the temperature of the heat pipe was changed, the difference of heat storage ability between gas and liquid will lead to the phenomenon of heat reflux and becomes more pronounced with the increases of the temperature wave.

  11. Nanostructured Gas Sensors for Health Care: An Overview

    Science.gov (United States)

    Kaushik, Ajeet; Kumar, Rajesh; Jayant, Rahul Dev; Nair, Madhavan

    2015-01-01

    Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here. PMID:26491544

  12. Optical Graphene Gas Sensors Based on Microfibers: A Review

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2018-03-01

    Full Text Available Graphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature, this atomically thick film with full flexibility has been widely incorporated with optical waveguides such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the graphene-based optical devices, sensor is one of the most important branch, especially for gas sensing, as rapid progress has been made in both sensing structures and devices in recent years. This article presents a comprehensive and systematic overview of graphene-based microfiber gas sensors regarding many aspects including sensing principles, properties, fabrication, interrogating and implementations.

  13. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  14. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    International Nuclear Information System (INIS)

    Amini, Amir; Ghafarinia, Vahid

    2011-01-01

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  15. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Amir [Jannatabad College, Sama Organization, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghafarinia, Vahid, E-mail: amir.amini.elec@gmail.com, E-mail: ghafarinia@ee.kntu.ac.ir [Electrical Engineering Department, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  16. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  17. THIN FILM-BASED SENSOR FOR MOTOR VEHICLE EXHAUST GAS, NH3, AND CO DETECTION

    Directory of Open Access Journals (Sweden)

    S. Sujarwata

    2016-10-01

    Full Text Available A copper phthalocyanine (CuPc thin film based gas sensor with FET structure and channel length 100 μm has been prepared by VE method and lithography technique to detect NH3, motor cycle exhaust gases and CO. CuPc material layer was deposited on SiO2 by the vacuum evaporator (VE method at room temperature and pressure of 8 x10-4 Pa. The stages of manufacturing gas sensor were Si/SiO2 substrate blenching with ethanol in an ultrasonic cleaner, source, and drain electrodes deposition on the substrate by using a vacuum evaporator, thin film deposition between the source/drain and gate deposition. The sensor response times to NH3, motorcycle exhaust gases and CO were 75 s, 135 s, and 150, respectively. The recovery times were 90 s, 150 s and 225, respectively. It is concluded that the CuPc thin film-based gas sensor with FET structure is the best sensor to detect the NH3 gas.Sensor gas berbasis film tipis copper phthalocyanine (CuPc berstruktur FET dengan panjang channel 100 μm telah dibuatdengan metode VE dan teknik lithography untuk mendeteksi NH3 gas buang kendaraan bermotor dan CO. Lapisan bahan CuPc dideposisikan pada permukaan silikon dioksida (SiO2 dengan metode vacuum evaporator (VE pada temperatur ruang dengan tekanan 8 x10-4 Pa. Tahapan pembuatan sensor gas adalah pencucian substrat Si/SiO2 dengan etanol dalam ultrasonic cleaner, deposisi elektroda source dan drain di atas substrat dengan metode vacuum evaporator, deposisi film tipis diantara source/drain dan deposisi gate. Waktu tanggap sensor terhadap NH3, gas buang kendaraan bermotor dan CO berturut-turut adalah 75 s, 135 s,dan 150 s. Waktu pemulihan berturut-turut adalah 90 s, 150 s,dan 225 s. Disimpulkan bahwa sensor gas berstruktur FET berbasis film tipis CuPc merupakan sensor paling baik untuk mendeteksi adanya gas NH3.

  18. Smart gas sensors for mitigating environments

    International Nuclear Information System (INIS)

    Azad, A.M.

    1997-01-01

    From the viewpoint of industrial and automobile exhaust pollution control sensors capable of detecting and metering the concentration of harmful gasers such as carbon monoxide, hydrogen, hydrocarbons, NO sub x, SO sub x, etc, in the ambient are desired. Solid state gas sensors based on semiconducting metal oxides have been widely used for the detection and metering of a host of reducing gases, albeit with varying degrees of success. In this presentation, development aspects of new solid-state CO and H2 sensors are described. Benevolent effect of second phases and catalyst on the sensing characteristics, and the possible sensing mechanism are discussed. In the case of titania-based CO sensors, test results in a Ford V6 engine under programmed near-stoichiometric combustion conditions are also presented. Some new concepts in the area of reliable metering of humidity (water content) in the ambient are briefly highlighted. (author)

  19. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    Science.gov (United States)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood

  20. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  1. Mechanical Drawing of Gas Sensors on Paper

    OpenAIRE

    Esser, Birgit; Mirica, Katherine; Weis, Jonathan Garrett; Schnorr, Jan Markus; Swager, Timothy Manning

    2012-01-01

    This communication describes a simple solvent-free method for fabricating chemoresistive gas sensors on the surface of paper. The method involves mechanical abrasion of compressed powders of sensing materials on the fibers of cellulose. We illustrate this approach by depositing conductive layers of several forms of carbon (e.g., single-walled carbon nanotubes [SWCNTs], multi-walled carbon nanotubes, and graphite) on the surface of different papers (Figure 1, Figure S1). The resulting sensors ...

  2. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  3. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-03-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  4. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-05-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  5. A smart microelectromechanical sensor and switch triggered by gas

    KAUST Repository

    Bouchaala, Adam M.; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a

  6. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  7. Multi-electrode gas sensor system - MEGAS. Final report; Multi-Elektroden-Gassensorsystem - MEGAS. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heidtkamp, C.

    2002-07-01

    A tungsten/titanium - mixed-oxide based sensor for selective exhaust gas measurement of e.g. diesel engines (NO{sub x}, CO, hydrocarbons, NH{sub 3},..) is described. The special design of the used sensors should allow operation at high ambient temperature with the potential of quantitative determination of different exhaust gas components with only one sensor. Several batches of sensor prototypes are characterised according to sensitivity and stability. (orig.)

  8. An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor.

    Science.gov (United States)

    Oh, Se Yeon

    2015-06-03

    Fast gas chromatography-surface acoustic wave sensor (GC/SAW) has been applied for the detection of the pharmacological volatiles emanated from Houttuynia cordata Thunb which is from South Korea. H. cordata Thunb with unpleasant and fishy odors shows a variety of pharmacological activities such as anti-microbial, anti-inflammatory, anti-cancer, and insect repellent. The aim of this study is to show a novel quality control by GC/SAW methodology for the discrimination of the three different parts of the plant such as leaves, aerial stems, and underground stems for H. cordata Thunb. Sixteen compounds were identified. β-Myrcene, cis-ocimene and decanal are the dominant volatiles for leaves (71.0%) and aerial stems (50.1%). While, monoterpenes (74.6%) are the dominant volatiles for underground stems. 2-Undecanone (1.3%) and lauraldehyde (3.5%) were found to be the characteristic components for leaves. Each part of the plant has its own characteristic fragrance pattern owing to its individual chemical compositions. Moreover, its individual characteristic fragrance patterns are conducive to discrimination of the three different parts of the plant. Consequently, fast GC/SAW can be a useful analytical method for quality control of the different parts of the plant with pharmacological volatiles as it provides second unit analysis, a simple and fragrant pattern recognition.

  9. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  10. Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring.

    Science.gov (United States)

    Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco

    2017-07-13

    A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios.

  11. Approach for Self-Calibrating CO₂ Measurements with Linear Membrane-Based Gas Sensors.

    Science.gov (United States)

    Lazik, Detlef; Sood, Pramit

    2016-11-17

    Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO₂ in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO₂ analysis in dry air with tubular PDMS membranes for various CO₂ concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (sensor response, and comparable statistical uncertainty.

  12. Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36 deg. YX LiTaO3 Surface Acoustic Wave For Hydrogen Gas Sensing Applications

    International Nuclear Information System (INIS)

    Chee, Pei Song; Arsat, Rashidah; He Xiuli; Arsat, Mahyuddin; Wlodarski, Wojtek; Kalantar-zadeh, Kourosh

    2011-01-01

    Poly-vinyl-pyrrolidone (PVP)/Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1%H 2 ) and 11.322 kHz (0.25%H 2 ) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

  13. A Robust and Low-Complexity Gas Recognition Technique for On-Chip Tin-Oxide Gas Sensor Array

    Directory of Open Access Journals (Sweden)

    Farid Flitti

    2008-01-01

    Full Text Available Gas recognition is a new emerging research area with many civil, military, and industrial applications. The success of any gas recognition system depends on its computational complexity and its robustness. In this work, we propose a new low-complexity recognition method which is tested and successfully validated for tin-oxide gas sensor array chip. The recognition system is based on a vector angle similarity measure between the query gas and the representatives of the different gas classes. The latter are obtained using a clustering algorithm based on the same measure within the training data set. Experimented results on our in-house gas sensors array show more than 98% of correct recognition. The robustness of the proposed method is tested by recognizing gas measurements with simulated drift. Less than 1% of performance degradation is noted at the worst case scenario which represents a significant improvement when compared to the current state-of-the-art.

  14. Multipath ultrasonic gas flow-meter based on multiple reference waves.

    Science.gov (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen

    2018-01-01

    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  16. A theoretical study on Love wave sensors in a structure with multiple viscoelastic layers on a piezoelectric substrate

    International Nuclear Information System (INIS)

    Liu, Jiansheng

    2014-01-01

    A theoretical method is used to analyze the performance of Love wave sensors with multiple viscoelastic guiding layers on a piezoelectric substrate. The method is based upon the theoretical model for multi-elastic-layer piezoelectric Love waves and the Maxwell–Weichert model for viscoelastic materials. The relationship between sensor performance and the characteristics of Love waves is discussed. Numerical calculation is completed for a Love wave delay line consisting of a viscoelastic SU-8 layer, an elastic SiO 2 layer, an ST-90°X quartz substrate and two interdigital transducers (IDTs) with a period of 40 μm deposited on the substrate surface. The calculated results prove that a Love wave sensor with such a two-layer structure can achieve better performance than a Love wave sensor with only one (visco)elastic or elastic guiding layer. Some interesting abnormal phenomena, such as an oscillation in mass velocity sensitivity (S mv ), are predicted at the area where tail-raising occurs in the propagation velocity. The method and the numerical results presented in this work may help in the development of a high-performing Love wave sensor with multiple layers. (papers)

  17. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  18. MAPLE activities and applications in gas sensors

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Remsa, Jan; Kocourek, Tomáš; Kubešová, B.; Schůrek, J.; Myslík, V.

    2011-01-01

    Roč. 105, č. 3 (2011), 643-649 ISSN 0947-8396 Institutional research plan: CEZ:AV0Z10100522 Keywords : MAPLE * gas sensors * biomedicine * thin films Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.630, year: 2011

  19. Chemical Gas Sensors for Aeronautic and Space Applications 2

    Science.gov (United States)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  20. Chemical Gas Sensors for Aeronautics and Space Applications III

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; hide

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  1. Application of Gas Sensor Arrays in Assessment of Wastewater Purification Effects

    Directory of Open Access Journals (Sweden)

    Łukasz Guz

    2014-12-01

    Full Text Available A gas sensor array consisting of eight metal oxide semiconductor (MOS type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR. A comparison of the gas sensor array (electronic nose response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose—gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I chemical oxygen demand (COD (r = 0.988; (II total suspended solids (TSS (r = 0.938; (III turbidity (r = 0.940; (IV pH (r = 0.554; (V nitrogen compounds: N-NO3 (r = 0.958, N-NO2 (r = 0.869 and N-NH3 (r = 0.978; (VI and volatile organic compounds (VOC (r = 0.987. Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  2. Application of Notched Long-Period Fiber Grating Based Sensor for CO2 Gas Sensing

    Science.gov (United States)

    Wu, Chao-Wei; Chiang, Chia-Chin

    2016-01-01

    An inductively coupled plasma etching process to fabricate notched long-period fiber gratings for CO2 gas sensing is proposed in this article. In the gas sensing test, the 15% mixed CO2 gas was used for characterization of CO2 adsorption by the amine-modified nanoporous silica foams of the notched long-period fiber grating sensor. The results shows the spectra were changed with the CO2 gas flow within 13 min. During the absorption process, the transmission of the resonant dip was decreased by 2.884 dB. Therefore, the proposed notched long-period fiber grating gas sensor shows good performance and is suitable as a gas sensor for monitoring the CO2 adsorption process.

  3. Analisis Pengaruh Konsentrasi Gas LPG Menggunakan Sensor TGS 2610 Berbasis Mikrokontroler AVR ATMega8535

    OpenAIRE

    Nurhalimah

    2011-01-01

    Telah dilakukan analisis kuantitatif gas dalam LPG. Penelitian ini dilakukan untuk mengukur konsentrasi gas LPG terhadap sensor. Metoda yang digunakan untuk mengukur konsentrasi gas LPG yaitu sensor gas semikonduktor jenis TGS 2610 keluaran Figaro yang digunakan untuk mendeteksi keberadaan gas. Sementara yang menjadi pusat pengendalian dari seluruh alat yang dirancang digunakan mikrokontroler AVR ATMega8535. Selain itu sistem yang dirancang dilengkapi LCD sebagai tampilan nilai konsentrasi ga...

  4. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  5. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    Science.gov (United States)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  6. Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator

    National Research Council Canada - National Science Library

    Welch, Gerard

    1999-01-01

    The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine...

  7. Amount of gas hydrate estimated from compressional- and shear-wave velocities at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lee, M.W.

    1999-01-01

    The amount of in situ gas hydrate concentrated in the sediment pore space at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well was estimated by using compressional-wave (P-wave) and shear-wave (S-wave) downhole log measurements. A weighted equation developed for relating the amount of gas hydrate concentrated in the pore space of unconsolidated sediments to the increase of seismic velocities was applied to the acoustic logs with porosities derived from the formation density log. A weight of 1.56 (W=1.56) and the exponent of 1 (n=1) provided consistent estimates of gas hydrate concentration from the S-wave and the P-wave logs. Gas hydrate concentration is as much as 80% in the pore spaces, and the average gas hydrate concentration within the gas-hydrate-bearing section from 897 m to 1110 m (excluding zones where there is no gas hydrate) was calculated at 39.0% when using P-wave data and 37.8% when using S-wave data.

  8. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  9. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  10. Fast response time alcohol gas sensor using nanocrystalline F ...

    Indian Academy of Sciences (India)

    been used in gas sensor applications, i.e. adsorption ability, catalytic ... sity, as well as grain boundary alteration (Yamazoe 1991;. 521 ... oxide surface using a catalyst layer or gas filter layer. Shukla .... mobility and sheet resistance were measured using resisti- .... ation considerably reduces the conversion efficiency in flat.

  11. A flexible, transparent and high-performance gas sensor based on layer-materials for wearable technology

    Science.gov (United States)

    Zheng, Zhaoqiang; Yao, Jiandong; Wang, Bing; Yang, Guowei

    2017-10-01

    Gas sensors play a vital role among a wide range of practical applications. Recently, propelled by the development of layered materials, gas sensors have gained much progress. However, the high operation temperature has restricted their further application. Herein, via a facile pulsed laser deposition (PLD) method, we demonstrate a flexible, transparent and high-performance gas sensor made of highly-crystalline indium selenide (In2Se3) film. Under UV-vis-NIR light or even solar energy activation, the constructed gas sensors exhibit superior properties for detecting acetylene (C2H2) gas at room temperature. We attribute these properties to the photo-induced charger transfer mechanism upon C2H2 molecule adsorption. Moreover, no apparent degradation in the device properties is observed even after 100 bending cycles. In addition, we can also fabricate this device on rigid substrates, which is also capable to detect gas molecules at room temperature. These results unambiguously distinguish In2Se3 as a new candidate for future application in monitoring C2H2 gas at room temperature and open up new opportunities for developing next generation full-spectrum activated gas sensors.

  12. Signal processing circuitry for CMOS-based SAW gas sensors with low power and area

    International Nuclear Information System (INIS)

    Mohd-Yasin, F.; Tye, K.F.; Reaz, M.B.I.

    2009-06-01

    The design and development of interface circuitries for CMOS-based SAW gas sensor is presented in this paper. The SAW gas sensor devices typically run at RF, requiring most designs to have complex signal conditioning circuitry. The proposed approach attempts to design a simple architecture with reduced power consumption. The SAW gas sensors operate at 354MHz. Simulation data show that the interface circuitries are ten times smaller with lower power supply, comparing to existing work. (author)

  13. Gas Detection Instrument Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ANSONG FENG

    2013-06-01

    Full Text Available The wireless sensor network is used to simulate poisonous gas generating system in the Fire-Fighting Simulated Training System. In the paper, we use the wireless signal to simulate the poisonous gas source and use received signal strength indicator (RSSI to simulate the distance between the fireman and the gas source. The gas detection instrument samples the temperature and sphygmus of the trainee and uses the wireless signal as poisonous gas signal. When the trainee enters into the poisonous gas area, the gas detection instrument warns with sound and light and sends the type, density value, the location of the poisonous gas and vital signs of the trainee to host. The paper discusses the software and hardware design of the gas detection instrument. The system has been used to the several of Fire-Fighting training systems.

  14. Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses

    Directory of Open Access Journals (Sweden)

    Thara Seesaard

    2015-01-01

    Full Text Available Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose. The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  15. Development of fabric-based chemical gas sensors for use as wearable electronic noses.

    Science.gov (United States)

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-16

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  16. Progress in the development of semiconducting metal oxide gas sensors: a review

    International Nuclear Information System (INIS)

    Moseley, Patrick T

    2017-01-01

    Since the first suggestion, during the 1950s, that high-surface-area metal oxides could be used as conductometric gas sensors enormous efforts have been made to enhance both the selectivity and the sensitivity of such devices, and to reduce their operational power requirements. This development has involved the exploration of response mechanisms, the selection of the most appropriate oxide compositions, the fabrication of two-phase ‘hetero-structures’, the addition of metallic catalyst particles and the optimisation of the manner in which the materials are presented to the gas—the structure and the nanostructure of the sensing elements. Far more of the scientific literature has been devoted to seeking such improvements in metal oxide gas sensors than has been directed at all other solid-state gas sensors together. Recent progress in the research and development of metal oxide gas sensor technology is surveyed in this invited review. The advances that have been made are quite spectacular and the results of individual pieces of work are drawn together here so that trends can be seen. Emerging features include: the significance of n-type/p-type switching, the enhancement of sensing performance of materials through the incorporation of secondary components and the advantages of interrogating sensors with alternating current rather than direct current. (topical review)

  17. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zampetti, E., E-mail: emiliano.zampetti@artov.imm.cnr.it; Macagnano, A.; Bearzotti, A. [Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR IMM) (Italy)

    2013-04-15

    An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were {approx}2.8 and 1.5 %, respectively.

  18. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  19. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    Science.gov (United States)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  20. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  1. Electrochemical cell with integrated hydrocarbon gas sensor for automobile exhaust gas; Elektrochemische Zelle mit integriertem Kohlenwasserstoff-Gassensor fuer das Automobilabgas

    Energy Technology Data Exchange (ETDEWEB)

    Biskupski, D.; Moos, R. [Univ. Bayreuth (Germany). Bayreuth Engine Research Center, Lehrstuhl fuer Funktionsmaterialien; Wiesner, K.; Fleischer, M. [Siemens AG, Corporate Technology, CT PS 6, Muenchen (Germany)

    2007-07-01

    In the future sensors will be necessary to control the compliance with hydrocarbon limiting values, allowing a direct detection of the hydrocarbons. Appropriate sensor-active functional materials are metal oxides, which have a hydrocarbon sensitivity but are also dependent on the oxygen partial pressure. It is proposed that the gas-sensing layer should be integrated into an electrochemical cell. The authors show that the integration of a resistive oxygen sensor into a pump cell allows a defined oxygen concentration level at the sensor layer in any exhaust gas.

  2. Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor

    OpenAIRE

    Massimiliano Rossi; Riccardo Maria Liberati; Marco Frasca; Mauro Angelini

    2018-01-01

    The paper investigates the theory of operation of a passive millimeter-wave seeker sensor using a fast electronic sequential-lobing technique and the experimental validation obtained through laboratory trials. The paper analyzes in detail the theoretical performance of a difference channel sensor and a pseudo-monopulse sensor deriving agile formulas for the estimation of target angular tracking accuracy and the subsequent experimental validation.

  3. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong; Morsy, Ahmed Mohamed Aly; Kosel, Jü rgen

    2012-01-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  4. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  5. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors

    Science.gov (United States)

    Choi, Seungbok; Bonyani, Maryam; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2018-02-01

    Pristine WO3 nanorods and Cr2O3-functionalized WO3 nanorods were synthesized by the thermal evaporation of WO3 powder in an oxidizing atmosphere, followed by spin-coating of the nanowires with Cr2O3 nanoparticles and thermal annealing in an oxidizing atmosphere. Scanning electron microscopy was used to examine the morphological features and X-ray diffraction was used to study the crystallinity and phase formation of the synthesized nanorods. Gas sensing tests were performed at different temperatures in the presence of test gases (ethanol, acetone, CO, benzene and toluene). The Cr2O3-functionalized WO3 nanorods sensor showed a stronger response to these gases relative to the pristine WO3 nanorod sensor. In particular, the response of the Cr2O3-functionalized WO3 nanorods sensor to 200 ppm ethanol gas was 5.58, which is approximately 4.4 times higher that of the pristine WO3 nanorods sensor. Furthermore, the Cr2O3-functionalized WO3 nanorods sensor had a shorter response and recovery time. The pristine WO3 nanorods had no selectivity toward ethanol gas, whereas the Cr2O3-functionalized WO3 nanorods sensor showed good selectivity toward ethanol. The gas sensing mechanism of the Cr2O3-functionalized WO3 nanorods sensor toward ethanol is discussed in detail.

  6. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    Science.gov (United States)

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  8. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  9. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  10. An electrochemical sensor for determining elemental iodine in gas media

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Shaimerdinov, B.U.; Kotelkin, I.M. [Institute of New Chemical Problems, Moscow (Russian Federation)] [and others

    1993-12-01

    The possibility of using solid-electrolyte Ag, AgI/AgI/Au cells as sensors for determining the concentration of elemental iodine in gas media is investigated. It is established that the sensor parameters are independent of oxygen content and radiation dose at different relative humidities.

  11. Earthquake Early Warning Management based on Client-Server using Primary Wave data from Vibrating Sensor

    Science.gov (United States)

    Laumal, F. E.; Nope, K. B. N.; Peli, Y. S.

    2018-01-01

    Early warning is a warning mechanism before an actual incident occurs, can be implemented on natural events such as tsunamis or earthquakes. Earthquakes are classified in tectonic and volcanic types depend on the source and nature. The tremor in the form of energy propagates in all directions as Primary and Secondary waves. Primary wave as initial earthquake vibrations propagates longitudinally, while the secondary wave propagates like as a sinusoidal wave after Primary, destructive and as a real earthquake. To process the primary vibration data captured by the earthquake sensor, a network management required client computer to receives primary data from sensors, authenticate and forward to a server computer to set up an early warning system. With the water propagation concept, a method of early warning system has been determined in which some sensors are located on the same line, sending initial vibrations as primary data on the same scale and the server recommended to the alarm sound as an early warning.

  12. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    Science.gov (United States)

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  13. Synthesis and properties of ZnO nanorods as ethanol gas sensors

    International Nuclear Information System (INIS)

    Mirabbaszadeh, K; Mehrabian, M

    2012-01-01

    Uniform ZnO nanorods were synthesized via the sol-gel process under mild conditions in which different ZnO nanostructures have been prepared by changing the pH of growth solution. It was seen that the optimum nanorods were grown at pH 11.33. The prepared ZnO nanostructures and morphologies were characterized by x-ray diffraction and scanning electron microscopy measurements. The ZnO one-dimensional nanostructures were found to have a wurtzite hexagonal crystalline structure and grow along the [001] direction. The optimum nanorods were about 1 μm in length and less than 100 nm in diameter. The ZnO nanostructures have been tested for different concentrations and different operating temperatures for ethanol vapor in air and the surface resistance of the sensors has been evaluated as a function of different parameters. The gas sensor fabricated from ZnO nanorods grown in solution with a special pH exhibited good performance. The sensor response to 5000 ppm ethanol was up to about 2.5 at the operating temperature of 300 °C. The differences in gas-sensing performance between the sensors were analyzed based on the defects created in the nanorods during their fast growth. The correlations between material structures and the properties of the gas sensors are discussed.

  14. Carbon-Nanotube-Based Chemical Gas Sensor

    Science.gov (United States)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  15. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2017-12-01

    Full Text Available In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO nanowire array produced by atomic layer deposition (ALD while an organic material was a p-type semiconductor, poly(3-hexylthiophene (P3HT. P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  16. Experimental Implementation of a Passive Millimeter-Wave Fast Sequential Lobing Radiometric Seeker Sensor

    Directory of Open Access Journals (Sweden)

    Massimiliano Rossi

    2018-01-01

    Full Text Available The paper investigates the theory of operation of a passive millimeter-wave seeker sensor using a fast electronic sequential-lobing technique and the experimental validation obtained through laboratory trials. The paper analyzes in detail the theoretical performance of a difference channel sensor and a pseudo-monopulse sensor deriving agile formulas for the estimation of target angular tracking accuracy and the subsequent experimental validation.

  17. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-02-01

    Full Text Available In this work, cross-sensitivities and environmental influences on the sensitivityand the functionality of an enzyme-based amperometric sensor system for the directdetection of formaldehyde from the gas phase are studied. The sensor shows a linearresponse curve for formaldehyde in the tested range (0 - 15 vppm with a sensitivity of1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmentalgases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol areevaluated as well as temperature and humidity influences on the sensor system. The sensorshowed neither significant signal to CO, H2, methanol or ethanol nor to variations in thehumidity of the test gas. As expected, temperature variations had the biggest influence onthe sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5vppm CH2O in the range of 25 - 30 °C.

  18. On the critical current of ionisation waves in gas discharges

    International Nuclear Information System (INIS)

    Sato, M.

    1982-01-01

    Measurement methods for determining the critical current of ionisation waves in gas discharge tubes are examined in detail. The conventional visual method which finds the current at which the waves disappear is erroneous since the criterion, 'observable', depends on the observing conditions. In the rigorous method it is defined as a current at which the linear growth rate of waves is zero. For the measured upper critical (Pupp) current of argon gas, close agreement is found between the results of other workers and those of the present author over a wide range of pressure-radius product 0.3 approximately equal to 60 Torr cm. (author)

  19. Sensors of the gas CO in thin film of SnO{sub 2}:Cu; Sensores del gas CO en pelicula delgada de SnO{sub 2}:Cu

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S.; Sanchez Z, F. E., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2011-10-15

    Thin films of SnO{sub 2}:Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO{sub 2} were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO{sub 2}:Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO{sub 2}:Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  20. A smart microelectromechanical sensor and switch triggered by gas

    KAUST Repository

    Bouchaala, Adam M.

    2016-07-05

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  1. A smart microelectromechanical sensor and switch triggered by gas

    Science.gov (United States)

    Bouchaala, Adam; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-07-01

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  2. Simulations of Propane and Butane Gas Sensor Based on Pristine Armchair Graphene Nanoribbon

    Science.gov (United States)

    Rashid, Haroon; Koel, Ants; Rang, Toomas

    2018-05-01

    Over the last decade graphene and its derivatives have gained a remarkable place in research field. As silicon technology is approaching to its geometrical limits so there is a need of alternate that can replace it. Graphene has emerged as a potential candidate for future nano-electronics applications due to its exceptional and extraordinary chemical, optical, electrical and mechanical properties. Graphene based sensors have gained significance for a wide range of sensing applications like detection of biomolecules, chemicals and gas molecules. It can be easily used to make electrical contacts and manipulate them according to the requirements as compared to the other nanomaterials. The intention of the work presented in this article is to contribute in this field by simulating a novel and cheap graphene nanoribbon sensor for the household gas leakage detection. QuantumWise Atomistix (ATK) software is used for the simulations of propane and butane gas sensor. Projected device density of the states (PDDOS) and the transmission spectrum of the device in the proximity of gas molecules are calculated and discussed. The change in the electric current through the device in the presence of the gas molecules is used as a gas detection mechanism for the simulated sensor.

  3. Approach for Self-Calibrating CO2 Measurements with Linear Membrane-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Detlef Lazik

    2016-11-01

    Full Text Available Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO2 in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO2 analysis in dry air with tubular PDMS membranes for various CO2 concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (<1% of the non-calibrated sensor response, and comparable statistical uncertainty.

  4. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    Science.gov (United States)

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  5. Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Laposa, A.; Kulha, Pavel; Kroutil, J.; Husák, M.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2591-2597 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : gas sensor * nanocrystalline diamond * quartz resonator * thickness shear mode Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 1.522, year: 2015

  6. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Science.gov (United States)

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  7. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  8. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  9. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood

    Science.gov (United States)

    Sharma, Anuj K.; Gupta, Jyoti

    2018-03-01

    Fiber optic evanescent wave sensor with graphene as an absorption-enhancing layer to measure hemoglobin concentration in human blood is proposed. Previous modal functions and experimental results describing the variation of optical constants of human blood with different hemoglobin concentrations in the near-infrared spectral region are considered for sensor design simulation. The sensor's performance is closely analyzed in terms of its absorption coefficient, sensitivity, and detection limit. It is found that the proposed sensor should be operated at longer light wavelength to get more enhanced sensitivity and smaller detection limit. At 1000 nm wavelength, a detection limit of 18 μg/dL and sensitivity of 6.71 × 10-4 per g/dL is achievable with the proposed sensor. The sensitivity is found to be better for larger hemoglobin concentrations. The results are correlated with the evanescent wave penetration depth.

  10. Review of Small Commercial Sensors for Indicative Monitoring of Ambient Gas

    OpenAIRE

    ALEIXANDRE Manuel; GERBOLES Michel

    2012-01-01

    The traditional ambient gases monitor stations are expensive, big and of complex operation. So they are not suitable for a network of sensors that cover large areas. To cover large areas these traditional systems algorithms usually interpolates the measurements to calculate the gas concentrations in points far away of the physical sensors. Small commercial sensors represent a big opportunity for making sensor networks that monitor the ambient gases within large areas w...

  11. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  12. Conductivity modeling of gas sensors based on copper ...

    African Journals Online (AJOL)

    The main objective of this work is to study the electronic conductivity of copper ... applications, such as gas sensors [11 - 13], catalysts [14], solar cells [15], .... solid systems and adopted to examine the mechanism of the adsorption process [38].

  13. Potential use of gas sensors in beef manure nutrient content ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... manure samples were collected from four beef operations in Southwest North Dakota. Manure samples were sent to be ... cation rate at spreading time instead of waiting two or three weeks to receive the results ... Operation mechanism of metal-oxide gas sensors. The sensors used in this study were ...

  14. Thermal-wave balancing flow sensor with low-drift power feedback

    NARCIS (Netherlands)

    Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2014-01-01

    A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the

  15. Nano-Hydroxyapatite Thick Film Gas Sensors

    International Nuclear Information System (INIS)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-01-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  16. Nanowire field-effect transistors for gas sensor applications

    Science.gov (United States)

    Constantinou, Marios

    Sensing BTEX (Benzene, Ethylbenzene, Toluene, Xylene) pollutants is of utmost importance to reduce health risk and ensure public safety. The lack of sensitivity and selectivity of the current gas sensors and the limited number of available technologies in the field of BTEX-sensing raises the demand for the development of high-performance gas sensors for BTEX applications. The scope of this thesis is the fabrication and characterisation of high-quality field-effect transistors (FETs), with functionalised silicon nanowires (SiNWs), for the selective sensing of benzene vs. other BTEX gases. This research addresses three main challenges in SiNW FET-sensor device development: i) controllable and reproducible assembly of high-quality SiNWs for FET sensor devices using the method of dielectrophoresis (DEP), ii) almost complete elimination of harmful hysteresis effect in the SiNW FET current-voltage characteristics induced by surface states using DMF solvent, iii) selective sensing of benzene with up to ppb range of sensitivity using calix[4]arene-derivatives. It is experimentally demonstrated that frequency-controlled DEP is a powerful tool for the selection and collection of semiconducting SiNWs with advanced electrical and morphological properties, from a poly-disperse as-synthesised NWs. The DEP assembly method also leads to a controllable and reproducible fabrication of high-quality NW-based FETs. The results highlight the superiority of DEP, performed at high signal frequencies (5-20 MHz) to selectively assemble only high-quality NWs which can respond to such high DEP frequencies. The SiNW FETs, with NWs collected at high DEP frequencies, have high mobility (≈50 cm2 V-1 s-1), low sub-threshold-swing (≈1.26 V/decade), high on-current (up to 3 mA) and high on/off ratio (106-107). The DEP NW selection is also demonstrated using an industrially scalable method, to allow establishing of NW response characteristics to different DEP frequencies in a very short time

  17. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    Science.gov (United States)

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Real-Time Gas Identification by Analyzing the Transient Response of Capillary-Attached Conductive Gas Sensor

    Directory of Open Access Journals (Sweden)

    Behzad Bahraminejad

    2010-05-01

    Full Text Available In this study, the ability of the Capillary-attached conductive gas sensor (CGS in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates.

  19. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

    Science.gov (United States)

    Penza, M; Rossi, R; Alvisi, M; Serra, E

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array

  20. An oxygen pressure sensor using surface acoustic wave devices

    Science.gov (United States)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  1. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  2. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  3. QCM gas sensor characterization of ALD-grown very thin TiO2 films

    Science.gov (United States)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Szilágyi, I. M.

    2018-03-01

    The paper presents a technology for preparation and characterization of titanium dioxide (TiO2) thin films suitable for gas sensor applications. Applying atomic layer deposition (ALD), very thin TiO2 films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The TiO2 thin films were grown using Ti(iOPr)4 and water as precursors. The surface of the films was observed by scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) used for a composition study. The research was focused on the gas-sensing properties of the films. Films of 10-nm thickness were deposited on quartz resonators with Au electrodes and the QCMs were used to build highly sensitive gas sensors, which were tested for detecting NO2. Although very thin, these ALD-grown TiO2 films were sensitive to NO2 already at room temperature and could register as low concentrations as 50 ppm, while the sorption was fully reversible, and the sensors could be fully recovered. With the technology presented, the manufacturing of gas sensors is simple, fast and cost-effective, and suitable for energy-effective portable equipment for real-time environmental monitoring of NO2.

  4. Love Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Pingping Tang

    2018-05-01

    Full Text Available Prostate-specific membrane antigen (PSMA is a biomarker for prostate cancer (PCa, and a specific and reliable detection technique of PSMA is urgently required for PCa early diagnosis. A Love wave sensor has been widely studied for real-time sensing and highly sensitive applications, but the sensing unit needs special handling for selective detection purpose. In this study, we prepared a versatile Love wave sensor functionalized with molecularly-imprinted polymers (MIP, PSMA as the template molecule. To enhance the specific template bindings of MIP in pure aqueous solutions, facile reversible addition/fragmentation chain transfer (RAFT precipitation polymerization (RAFTPP was used to produce surface hydrophilic polymer brushes on MIP. The presence of hydrophilic polymer brushes on MIP improved its surface hydrophilicity and significantly reduced their hydrophobic interactions with template molecules in pure aqueous media. In detection process, the acoustic delay-line is confederative to a microfluidic chip and inserted in an oscillation loop. The real-time resonance frequency of the MIP-based Love wave sensor to different concentrations of PSMA was investigated. The limit of detection (LOD for this Love SAW sensor was 0.013 ng mL−1, which demonstrates that this sensor has outstanding performance in terms of the level of detection.

  5. The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*

    Science.gov (United States)

    Chen, Zhenxing; Hou, Kepeng; Chen, Longwei

    2018-03-01

    For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.

  6. Detection of Cadmium Ion by Evanescent Wave Based Chitosan Coated Optical Fiber Sensor

    International Nuclear Information System (INIS)

    Yulianti, I; Edy, S S; Saputra, B A; Aji, M P; Susanto; Kurdi, O

    2017-01-01

    Evanescent wave based-optical fiber sensor to detect cadmium ion is proposed. Chitosan was used by using the dip-coating method. The sensor was fabricated in U-bent shape. U-bent optical sensor at aconcentration of 2ppm and 5ppm had asensitivity of 0.2067 dBm/ppm and -0.7995 dBm/ppm, respectively. At a level of 2ppm - 5ppm, the optical sensor has a linear response with asensitivity of -0.283 dBm/ppm. The sensor takes 9.5 minutes to reach steady stateat aconcentration of 1 ppm. Atalevel of 2ppm - 5ppm, the sensor takes 5 minutes to 10.45 minutes to reach steady state. (paper)

  7. Electrochemical sensors applied to pollution monitoring: Measurement error and gas ratio bias - A volcano plume case study

    Science.gov (United States)

    Roberts, T. J.; Saffell, J. R.; Oppenheimer, C.; Lurton, T.

    2014-06-01

    There is an increasing scientific interest in the use of miniature electrochemical sensors to detect and quantify atmospheric trace gases. This has led to the development of ‘Multi-Gas' systems applied to measurements of both volcanic gas emissions, and urban air pollution. However, such measurements are subject to uncertainties introduced by sensor response time, a critical issue that has received limited attention to date. Here, a detailed analysis of output from an electrochemical SO2 sensor and two H2S sensors (contrasting in their time responses and cross-sensitivities) demonstrates how instrument errors arise under the conditions of rapidly fluctuating (by dilution) gas abundances, leading to scatter and importantly bias in the reported gas ratios. In a case study at Miyakejima volcano (Japan), electrochemical sensors were deployed at both the crater-rim and downwind locations, thereby exposed to rapidly fluctuating and smoothly varying plume gas concentrations, respectively. Discrepancies in the H2S/SO2 gas mixing ratios derived from these measurements are attributed to the sensors' differing time responses to SO2 and H2S under fluctuating plume conditions, with errors magnified by the need to correct for SO2 interference in the H2S readings. Development of a sensor response model that reproduces sensor t90 behaviour (the time required to reach 90% of the final signal following a step change in gas abundance) during calibration enabled this measurement error to be simulated numerically. The sensor response times were characterised as SO2 sensor (t90 ~ 13 s), H2S sensor without interference (t90 ~ 11 s), and H2S sensor with interference (t90 ~ 20 s to H2S and ~ 32 s to SO2). We show that a method involving data integration between periods of episodic plume exposure identifiable in the sensor output yields a less biased H2S/SO2 ratio estimate than that derived from standard analysis approaches. For the Miyakejima crater-rim dataset this method yields highly

  8. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    Directory of Open Access Journals (Sweden)

    Suhwan Kim

    2012-02-01

    Full Text Available We have implemented a tin-oxide-decorated carbon nanotube (CNT network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 µm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures.

  9. Synthesis, characterization and gas sensing properties of undoped and Zn-doped γ-Fe2O3-based gas sensors

    International Nuclear Information System (INIS)

    Jing Zhihong

    2006-01-01

    In this study, undoped and Zn-doped γ-Fe 2 O 3 nanopowders have been prepared using Fe(NO 3 ) 3 .9H 2 O and Zn(NO 3 ) 2 .6H 2 O as starting materials and lauryl alcohol as anhydrous medium. Thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron micrograph (TEM) were employed to characterize the products. Sensitivity characteristics of the undoped and Zn-doped γ-Fe 2 O 3 semiconductor gas sensors have been investigated. The results show that both of the undoped and 15 mol% Zn-doped γ-Fe 2 O 3 -based gas sensors present good sensitivity and selectivity to acetone and ethanol in presence of CH 4 , H 2 and CO at the operating temperatures of 240 and 270 deg. C, respectively. After being doped with 15 mol% Zn addition, the γ-Fe 2 O 3 -based gas element displays higher sensitivity and selectivity as well as shorter response-recovery time compared with the undoped, suggesting that the promoting effect of ZnO is excellent. So, it seems that the γ-Fe 2 O 3 -based gas sensor doped with 15 mol% Zn is expected to be a promising sensor for detecting acetone and ethanol

  10. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    Directory of Open Access Journals (Sweden)

    Niuzi Xue

    2017-10-01

    Full Text Available It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2 powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD, transmission electron microscope (TEM and Brunauer–Emmett–Teller (BET. The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2 by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2 sensor exhibited the highest response (Ra/Rg = 22.2 to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed.

  11. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    Science.gov (United States)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  12. Development of a novel gas sensor based on oxide thick films

    International Nuclear Information System (INIS)

    Arshak, K.; Gaidan, I.

    2005-01-01

    Zinc and iron oxide thick film gas sensors were fabricated using screen-printing technology on glass substrates that had silver interdigitated electrodes. The sensor was used to detect methanol, ethanol and propanol with a concentration range of 0-8000 ppm. Using the formula to calculate a change in resistance, ΔR = R gas - R air, resistance was seen to increase linearly alongside increasing concentrations of the gas vapours. The sensor showed the highest sensitivity to propanol followed by ethanol and methanol when the operating temperature was 25 deg. C. The sensitivities (slope of graphs) of methanol, ethanol and propanol changed from 0.07, 0.5, and 3.54 to 0.075, 0.115, and 0.5 Ω/ppm when the operating temperature was increased from 25 to 50 deg. C. The response/recovery times of the sensor for 4000 ppm at room temperature were, 10/10, 15/20 and 40/70 s for methanol, ethanol and propanol, respectively. X-ray diffraction (XRD) was used to examine the final composition of the film, while scanning electron microscopy (SEM) was used to examine the final composition of grain size. The final composition has two phases: ZnO and ZnFe 2 O 4

  13. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    Science.gov (United States)

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters.

  14. Compaction wave profiles: Simulations of gas gun experiments

    International Nuclear Information System (INIS)

    Menikoff, Ralph

    2001-01-01

    Mesoscale simulations of a compaction wave in a granular bed of HMX have been performed. The grains are fully resolved in order that the compaction, i.e., the porosity behind the wave front, is determined by the elastic-plastic response of the grains rather than by an empirical law for the porosity as a function of pressure. Numerical wave profiles of the pressure and velocity are compared with data from a gas gun experiment. The experiment used an initial porosity of 36%, and the wave had a pressure comparable to the yield strength of the grains. The profiles are measured at the front and back of the granular bed. The transit time for the compaction wave to propagate between the gauges determines the wave speed. The wave speed depends on the porosity behind the wave and is affected by the strength model. The yield strength needed to match the experimental wave speed is discussed. Analysis of the lead wave through the granular bed, based on impedance matches using the Hugoniot loci, indicates that the compaction wave triggers a small amount of burn, less than 1% mass fraction, on the microsecond time scale of the experiment. copyright 2001 American Institute of Physics

  15. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Da Huang; Zhi Yang; Shusheng Xu; Guili He; Xiaolin Li; Nantao Hu; Guilin Yin; Dannong He; Liying Zhang

    2016-01-01

    Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH3, NO2, H2, CO, SO2, H2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.

  16. Fabrication on a ZnO/ST-cut quartz based love wave viscosity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tsung Tsong; Huang, Zhi Da; Chen, Yung Yu; Liu, Pei Ling [Institute of Applied Mechanics, National Taiwan University, Taipai (China)

    2006-05-15

    In this paper, we aim to propose a rugged and relatively inexpensive acoustic wave viscometer that is easy to use and to fabricate by the conventional semiconductor manufacturing processes. First, we fabricated five different Love wave acoustic devices based on ZnO/90 degree rotated ST-quartz layered structure and incorporated with Polydimethylsiloxane (PMDS) flow cell. This allows a tiny controlled amount of analyte to be confined solely upon the sensing area between the IDTs of our Love wave sensor, preventing unwanted electric interactions with IDTs. The PDMS liquid flow cell is fabricated by replica molding. Using a simple set of fixture, the flow cell can be clamped onto our Love wave sensor and a constant volume of analyte can be confined on the sensing surface. Finally, five glycerites with different viscosities were prepared for viscosity measurement. The measured results show that the frequency shifts are in good correlation with the known viscosities. We note that results of this study can further be implemented as an easy to use and inexpensive acoustic viscometer.

  17. Fabrication od a ZnO/ST-cut quartz based love wave viscosity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tsung Tsong; Huang, Zhi Da; Chen, Yung Yu; Liu, Pei Ling [Institute of Applied Mechanics, National Taiwan University, Taipai (China)

    2006-05-15

    In this paper, we aim to propose a rugged and relatively inexpensive acoustic wave viscometer that is easy to use and to fabricate by the conventional semiconductor manufacturing processes. First, we fabricated five different Love wave acoustic devices based on ZnO/90 degree rotated ST-quartz layered structure and incorporated with Polydimethylsiloxane (PMDS) flow cell. This allows a tiny controlled amount of analyte to be confined solely upon the sensing area between the IDTs of our Love wave sensor, preventing unwanted electric interactions with IDTs. The PDMS liquid flow cell is fabricated by replica molding. Using a simple set of fixture, the flow cell can be clamped onto our Love wave sensor and a constant volume of analyte can be confined on the sensing surface. Finally, five glycerites with different viscosities were prepared for viscosity measurement. The measured results show that the frequency shifts are in good correlation with the known viscosities. We note that results of this study can further be implemented as an easy to use and inexpensive acoustic viscometer.

  18. Fabrication od a ZnO/ST-cut quartz based love wave viscosity sensor

    International Nuclear Information System (INIS)

    Wu, Tsung Tsong; Huang, Zhi Da; Chen, Yung Yu; Liu, Pei Ling

    2006-01-01

    In this paper, we aim to propose a rugged and relatively inexpensive acoustic wave viscometer that is easy to use and to fabricate by the conventional semiconductor manufacturing processes. First, we fabricated five different Love wave acoustic devices based on ZnO/90 degree rotated ST-quartz layered structure and incorporated with Polydimethylsiloxane (PMDS) flow cell. This allows a tiny controlled amount of analyte to be confined solely upon the sensing area between the IDTs of our Love wave sensor, preventing unwanted electric interactions with IDTs. The PDMS liquid flow cell is fabricated by replica molding. Using a simple set of fixture, the flow cell can be clamped onto our Love wave sensor and a constant volume of analyte can be confined on the sensing surface. Finally, five glycerites with different viscosities were prepared for viscosity measurement. The measured results show that the frequency shifts are in good correlation with the known viscosities. We note that results of this study can further be implemented as an easy to use and inexpensive acoustic viscometer.

  19. Fabrication on a ZnO/ST-cut quartz based love wave viscosity sensor

    International Nuclear Information System (INIS)

    Wu, Tsung Tsong; Huang, Zhi Da; Chen, Yung Yu; Liu, Pei Ling

    2006-01-01

    In this paper, we aim to propose a rugged and relatively inexpensive acoustic wave viscometer that is easy to use and to fabricate by the conventional semiconductor manufacturing processes. First, we fabricated five different Love wave acoustic devices based on ZnO/90 degree rotated ST-quartz layered structure and incorporated with Polydimethylsiloxane (PMDS) flow cell. This allows a tiny controlled amount of analyte to be confined solely upon the sensing area between the IDTs of our Love wave sensor, preventing unwanted electric interactions with IDTs. The PDMS liquid flow cell is fabricated by replica molding. Using a simple set of fixture, the flow cell can be clamped onto our Love wave sensor and a constant volume of analyte can be confined on the sensing surface. Finally, five glycerites with different viscosities were prepared for viscosity measurement. The measured results show that the frequency shifts are in good correlation with the known viscosities. We note that results of this study can further be implemented as an easy to use and inexpensive acoustic viscometer.

  20. Mobile robot multi-sensor unit for unsupervised gas discrimination in uncontrolled environments

    OpenAIRE

    Xing, Yuxin; Vincent, Timothy A.; Cole, Marina; Gardner, Julian W.; Fan, Han; Hernandez Bennetts, Victor; Schaffernicht, Erik; Lilienthal, Achim

    2017-01-01

    In this work we present a novel multi-sensor unit to detect and discriminate unknown gases in uncontrolled environments. The unit includes three metal oxide (MOX) sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infra-red (NDIR) sensor, a commercial temperature humidity sensor, and a flow sensor. The proposed sensing unit was evaluated with plumes of gases (propanol, ethanol and acetone) in both, a laboratory setup on a gas testing bench and on-board a mobile robot operati...

  1. Snowflake-Shaped ZnO Nanostructures-Based Gas Sensor for Sensitive Detection of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Tianli Han

    2017-01-01

    Full Text Available Volatile organic compounds (VOCs have been considered severe risks to human health. Gas sensors for the sensitive detection of VOCs are highly required. However, the preparation of gas-sensing materials with a high gas diffusion performance remains a great challenge. Here, through a simple hydrothermal method accompanied with a subsequent thermal treatment, a special porous snowflake-shaped ZnO nanostructure was presented for sensitive detection of VOCs including diethyl ether, methylbenzene, and ethanol. The fabricated gas sensors exhibit a good sensing performance including high responses to VOCs and a short response/recovery time. The responses of the ZnO-based gas sensor to 100 ppm ethanol, methylbenzene, and diethyl ether are about 27, 21, and 11, respectively, while the response times to diethyl ether and methylbenzene are less than 10 seconds. The gas adsorption-desorption kinetics is also investigated, which shows that the gas-sensing behaviors to different target gases are remarkably different, making it possible for target recognition in practical applications.

  2. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  3. Design and development of a multifunction millimeter wave sensor

    Science.gov (United States)

    Nadimi, Sayyid Abdolmajid

    1998-11-01

    The millimeter-wave (MMW) spectrum (30-300 GHz) offers a unique combination of features that are advantageous when retrieving information about the environment. Due to small wavelengths involved, physically small antennas may be used to obtain very high gains (>50 dB) and resulting high spatial resolutions. Moreover, some features have scattering and emission behaviors that are more sensitive at MMW wavelengths than at microwave wavelengths. Examples include, water vapor (H2O). fog, haze, clouds, ozone (O 3) molecules, and chlorine monoxide (ClO) have rotational spectra in this region. The 75-110 GHz (W-band) atmospheric window is relatively quiet, and it can supply spectral information that can be useful in identifying and quantifying pollutants. Information such as the size and concentration of particulate pollutants can be obtained using radar techniques at W-band. Although there have been some activities at millimeter wave frequencies over very narrow bandwidths, there is a great need for wider bandwidth instruments for studying scattering and emission behaviors. To address this need and provide a versatile system for laboratory studies of electromagnetic phenomena at millimeter-wave frequencies, a multifunctionmillimeter- wave sensor has been designed and developed. This instrument is an active/passive wide band sensor operating in the 75-110 GHz region of the millimeter wave spectrum in four primary modes: (1)As a spectrometer measuring absorption over the entire 75-110 GHz region. (2)As a radiometer measuring blackbody emissions over the entire 75-110 GHz region. (3)As a pulse radar over a 500 MHz bandwidth centered around 93.1 GHz with a peak power of 200 mW. (4)As a step frequency radar when used in combination with a network analyzer over selected 9 GHz bandwidth segments (75-84, 84-93, 93-102, and 102-110) of the 75-110 GHz region. Measurements were performed on two volume fraction (15% and 20%) dense random media targets using this system. The results

  4. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  5. Karakterisasi Sensor Gas Lpg (Liquefied Petroleum Gas) Dari Bahan Komposit Semikonduktor Tio2(cuo)

    OpenAIRE

    Dewi, Ratna Sari; -, Elvaswer

    2015-01-01

    The Liquefied Petroleum Gas (LPG's) sensor in the form of composite has been characterized. The steps of manufacturing processes are the mixing of materials, calcinations at 500ºC for 4 hours, blended, compacted and sintered at 700ºC for 4 hours. The sensor was tested at room temperature through current (I)-voltage (V) characteristics, sensitivity, and conductivity. Based on measurement I-V characteristic it's known that sample with 10% addition of CuO have sensitivity of 10 at 10 volt vol...

  6. A study on the effect of gas flow rate on the wave characteristics in two-phase gas-liquid annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Han Huawei [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ont., L1H 7K4 (Canada)]. E-mail: colin.han@uoit.ca; Zhu Zhenfeng [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Sask., S7N 5A9 (Canada)]. E-mail: zhz752@mail.usask.ca; Gabriel, Kamiel [University of Ontario Institute of Technology, Oshawa, Ont., L1H 7K4 (Canada)]. E-mail: kamiel.gabriel@uoit.ca

    2006-12-15

    Interfacial waves play a very important role in the mass, momentum and energy transport phenomena in annular flow. In this paper, film thickness time-trace measurements for air-water annular flow were collected in a small vertical tube using a parallel wire probe. Using the data, a typical disturbance wave shape was obtained and wave properties (e.g., width, height, speed and roughness) were presented. The liquid mass flux ranged from 100 to 200 kg/m{sup 2} s and the gas mass flux ranged from 18 to 47 kg/m{sup 2} s. Disturbance wave characteristics were defined and the effects of changing the gas flow rate on the wave spacing, wave width, wave peak height and wave base height were studied. An average velocity model for the wave and base regions has been developed to determine the wave velocity. The investigation method could be further extended to annular-mist flow which frequently occurs in boiling water reactors.

  7. A study on the effect of gas flow rate on the wave characteristics in two-phase gas-liquid annular flow

    International Nuclear Information System (INIS)

    Han Huawei; Zhu Zhenfeng; Gabriel, Kamiel

    2006-01-01

    Interfacial waves play a very important role in the mass, momentum and energy transport phenomena in annular flow. In this paper, film thickness time-trace measurements for air-water annular flow were collected in a small vertical tube using a parallel wire probe. Using the data, a typical disturbance wave shape was obtained and wave properties (e.g., width, height, speed and roughness) were presented. The liquid mass flux ranged from 100 to 200 kg/m 2 s and the gas mass flux ranged from 18 to 47 kg/m 2 s. Disturbance wave characteristics were defined and the effects of changing the gas flow rate on the wave spacing, wave width, wave peak height and wave base height were studied. An average velocity model for the wave and base regions has been developed to determine the wave velocity. The investigation method could be further extended to annular-mist flow which frequently occurs in boiling water reactors

  8. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor

    International Nuclear Information System (INIS)

    Lee, Junwon; Shack, Roland V.; Descour, Michael R.

    2005-01-01

    We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics

  9. Fabrication and characterization of nano-gas sensor arrays

    International Nuclear Information System (INIS)

    Hassan, H. S.; Kashyout, A. B.; Morsi, I.; Nasser, A. A. A.; Raafat, A.

    2015-01-01

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O 2 , H 2 and CO 2 gases as a function of temperature

  10. Fabrication and characterization of nano-gas sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, H. S., E-mail: hassan.shokry@gmail.com; Kashyout, A. B., E-mail: hady8@yahoo.com [Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Researches and technological applications, New Borg El-Arab City, Alexandria (Egypt); Morsi, I., E-mail: drimanmorsi@yahoo.com; Nasser, A. A. A., E-mail: menem-1954@yahoo.com; Raafat, A., E-mail: abrs-218@yahoo.com [Arab Academy for Science and Technology, and Maritime Transport, Alexandria, 21936 (Egypt)

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.

  11. Gas Sensor Based on 3-D WO₃ Inverse Opal: Design and Applications.

    Science.gov (United States)

    Xing, Ruiqing; Du, Yang; Zhao, Xiaonan; Zhang, Xiu

    2017-03-29

    A three-dimensional inverse opal (3DIO) WO₃ architecture has been synthesized via a simple sacrificial template method. Morphology features of the 3DIO were characterized by scanning electron microscope (SEM) and its structure was characterized by X-ray diffraction (XRD). The shrinking ratio of the PMMA spheres was ~28.2% through measuring the distribution of the PMMA spheres and 3DIO WO₃ center-to-center distance between the spheres and macropores, respectively. Beyond that, the 3DIO gas sensing properties were investigated systematically and the sensing mechanism of 3DIO WO₃ was proposed. The results indicated that the response of the 3DIO sensor possessed excellent sensitivity to acetone gas, especially at trace levels. The 3DIO gas sensor response was ~7 to 5 ppm of acetone and could detect acetone low to 0.2 ppm effectively, which was in close proximity to the theoretical low detection limit of 0.14 ppm when R a /R g ≥ 1.2 was used as the criterion for reliable gas sensing. All in all, the obvious satisfaction of the gas-sensing properties was ascribed to the structure of the 3DIO, and the sensor could be a promising novel device in the future.

  12. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Carbon nanotubes/ceria composite layers deposited on surface acoustic wave devices for gas detection at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    David, M., E-mail: marjorie.david@univ-tln.fr [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Arab, M.; Martino, C. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Delmas, L. [SENSeOR, Sophia Antipolis, 06250 Mougins (France); Guinneton, F.; Gavarri, J.-R. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France)

    2012-05-01

    Surface acoustic wave (SAW) sensor on ATquartz piezoelectric substrate has been designed and fabricated. Test devices were based on asynchronous single-port resonators operating near the 434-MHz-centered industrial, scientific, and medical band. Multi-Walled Carbon Nanotubes/Ceria (MWNTs/CeO{sub 2}) nanocomposites were used as sensitive layers. The MWNTs were synthesized by catalytic chemical vapor deposition method and coated with nanosized ceria oxide. The composites were deposited on SAW quartz resonator using air-brush technique. MWNTs/CeO{sub 2} nanocomposites were characterized using X-ray diffraction, transmission electron and atomic force microscopy. The sensor responses were tested under acetone (C{sub 3}H{sub 5}OH) and ethanol (C{sub 2}H{sub 5}OH) gases. The output signal was done by S{sub 11} parameter of the SAW device and was monitored using a network analyzer. Frequency changes were observed under acetone and ethanol vapors. These changes depended on the surface conductivity of the nanocomposites deposited on the sensor. The single-port SAW gas sensor coated with the MWNTs/CeO{sub 2} presented the highest sensitivity in the case of acetone vapor interacting with these layers, with a frequency shift of 200 kHz at room temperature.

  14. Thin-film antifuses for pellistor type gas sensors

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Holleman, J.; van den Berg, Albert; Wallinga, Hans

    2001-01-01

    This work extends our previously reported idea of using the nano-scale conductive link (antifuse) as a combined heating /detecting element in a Pellistor-type gas sensor. Our new thin-film antifuse is designed in such a way that the oxide, for minimising the bulk influence on surface temperature,

  15. PDMS membranes as sensing element in optical sensors for gas detection in water

    Directory of Open Access Journals (Sweden)

    Stefania Torino

    2017-11-01

    Full Text Available Polydimethylsiloxane (PDMS has been introduced the first time about 20years ago. This polymer is worldwide used for the rapid prototyping of microfluidic device through a replica molding process. However, the great popularity of PDMS is not only related to its easy processability, but also to its chemical and physical properties. For its interesting properties, the polymer has been implied for several applications, including sensing. In this work, we investigated how to use functionalized PDMS membranes as sensing elements in optical sensors for gas detection in water samples. Keywords: Polydimethylsiloxane (PDMS, Surface Plasmon Resonance (SPR sensors, Gas sensor

  16. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  17. Quantum mechanics of lattice gas automata: One-particle plane waves and potentials

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1997-01-01

    Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society

  18. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)

    Science.gov (United States)

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-04-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.

  19. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Marcello Mascini

    2018-04-01

    Full Text Available In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.

  20. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    Science.gov (United States)

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  1. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

    Directory of Open Access Journals (Sweden)

    Yanhui Sun

    2018-01-01

    Full Text Available In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO2/Al2O3 ratio, different particle size of MFI type zeolites (ZSM-5 were coated on the SnO2 to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO2/Al2O3 = 70, grain size 300 nm coated SnO2 gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO2 gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO2/Al2O3 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO2 sensors did not show much difference with SnO2 sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  2. Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes

    Science.gov (United States)

    Some, Surajit; Xu, Yang; Kim, Youngmin; Yoon, Yeoheung; Qin, Hongyi; Kulkarni, Atul; Kim, Taesung; Lee, Hyoyoung

    2013-01-01

    New hydrophilic 2D graphene oxide (GO) nanosheets with various oxygen functional groups were employed to maintain high sensitivity in highly unfavorable environments (extremely high humidity, strong acidic or basic). Novel one-headed polymer optical fiber sensor arrays using hydrophilic GO and hydrophobic reduced graphene oxide (rGO) were carefully designed, leading to the selective sensing of volatile organic gases for the first time. The two physically different surfaces of GO and rGO could provide the sensing ability to distinguish between tetrahydrofuran (THF) and dichloromethane (MC), respectively, which is the most challenging issue in the area of gas sensors. The eco-friendly physical properties of GO allowed for faster sensing and higher sensitivity when compared to previous results for rGO even under extreme environments of over 90% humidity, making it the best choice for an environmentally friendly gas sensor. PMID:23736838

  3. Improved zinc oxide film for gas sensor applications

    Indian Academy of Sciences (India)

    Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices etc because of its high piezoelectric coupling, greater stability of its hexagonal phase and its pyroelectric property. In fact, ZnO is a potential material for gas sensor ...

  4. Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye.

    Science.gov (United States)

    Shang, Yunling; Wang, Xiaobo; Xu, Erchao; Tong, Changlun; Wu, Jianmin

    2011-01-24

    An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0-100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. A ‘Violin-Mode’ shadow sensor for interferometric gravitational wave detectors

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-12-01

    This paper describes a system of four novel shadow detectors having, collectively, a displacement sensitivity of (69  ±  13) picometres (rms) / √Hz, at 500 Hz, over a measuring span of ±0.1 mm. The detectors were designed to monitor the vibrations of the 600 mm long, 400 μm diameter, silica suspension fibres of the mirrors for the Advanced LIGO (Laser Interferometer Gravitational wave Observatory) gravitational wave detectors, at the resonances of the so-called Violin Modes (VM). The VM detection system described here had a target sensitivity of 100 pm (rms)/ √Hz at 500 Hz, together with, ultimately, a required detection span of ±0.1 mm about the mean position of each fibre—in order to compensate for potential slow drift over time of fibre position, due to mechanical relaxation. The full sensor system, comprising emitters (sources of illumination) and shadow detectors, therefore met these specifications. Using these sensors, VM resonances having amplitudes of 1.2 nm (rms) were detected in the suspension fibres of an Advanced LIGO dummy test-mass. The VM bandwidth of the sensor, determined by its transimpedance amplifier, was 226 Hz-8.93 kHz at the -3 dB points. This paper focuses mainly on the detector side of the shadow sensors. The emitters are described in an accompanying paper.

  6. A ‘Violin-Mode’ shadow sensor for interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lockerbie, N A; Tokmakov, K V

    2014-01-01

    This paper describes a system of four novel shadow detectors having, collectively, a displacement sensitivity of (69  ±  13) picometres (rms) / √Hz, at 500 Hz, over a measuring span of ±0.1 mm. The detectors were designed to monitor the vibrations of the 600 mm long, 400 μm diameter, silica suspension fibres of the mirrors for the Advanced LIGO (Laser Interferometer Gravitational wave Observatory) gravitational wave detectors, at the resonances of the so-called Violin Modes (VM). The VM detection system described here had a target sensitivity of 100 pm (rms)/ √Hz at 500 Hz, together with, ultimately, a required detection span of ±0.1 mm about the mean position of each fibre—in order to compensate for potential slow drift over time of fibre position, due to mechanical relaxation. The full sensor system, comprising emitters (sources of illumination) and shadow detectors, therefore met these specifications. Using these sensors, VM resonances having amplitudes of 1.2 nm (rms) were detected in the suspension fibres of an Advanced LIGO dummy test-mass. The VM bandwidth of the sensor, determined by its transimpedance amplifier, was 226 Hz–8.93 kHz at the −3 dB points. This paper focuses mainly on the detector side of the shadow sensors. The emitters are described in an accompanying paper. (paper)

  7. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  8. Nano Ag-Doped In2O3 Thick Film: A Low-Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-01-01

    Full Text Available Thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to ethanol vapour at 350°C for 80 ppm concentration. To improve the sensitivity and selectivity of the film towards a particular gas, In2O3 sensors were surface-modified by dipping them in a solution of 2% nanosilver for different intervals of time. Obtained results indicated that spherical nano-Ag grains are highly dispersed on the surface of In2O3sensor. The surface area of the nano-Ag/ In2O3 sensor is several times larger than that of pure In2O3 sensor. In comparison with pure In2O3 sensor, all of the nano-Ag-doped sensors showed better sensing performance in respect of response, selectivity, and optimum operating temperature. The surface-modified (30 min In2O3 sensor showed larger sensitivity to H2S gas (10 ppm at 100°C. Nano silver on the surface of the film shifts the reactivity of film from ethanol vapour to H2S gas. A systematic study of gas sensing performance of the sensor indicates the key role played by the nano silver species on the surface. The sensitivity, selectivity, response, and recovery time of the sensor were measured and presented.

  9. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  10. Robust Drones Formation Control in 5G Wireless Sensor Network Using mmWave

    Directory of Open Access Journals (Sweden)

    Shan Meng

    2018-01-01

    Full Text Available The drones formation control in 5G wireless sensor network is discussed. The base station (BS is used to receive backhaul position signals from the lead drone in formation and launches the beam to the lead one as the fronthaul flying signal enhancement. It is a promising approach to raise the formation strength of drones during flight control. The BS can transform the direction of the antennas and transmit energy to the lead drone that could widely enlarge the number of the receivers and increase the transmission speed of the data links. The millimeter-Wave (mmWave communication system offers new opportunities to meet this requirement owing to the tremendous amount of available spectrums. However, the massive non-line-of-sight (NLoS transmission and the site constraints in urban environment are severely challenging the conventional deploying terrestrial low power nodes (LPNs. Simulation experiments have been performed to verify the availability and effectiveness of mmWave in 5G wireless sensor network.

  11. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    Science.gov (United States)

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  12. Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Yan Su

    2010-09-01

    Full Text Available Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  13. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  14. Evaluation of dimension effects on a capillary-attached gas sensor

    International Nuclear Information System (INIS)

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambli, Zarida

    2010-01-01

    The analysis and useful gas sensing properties of a capillary-attached gas sensor (CGS) have been recently investigated. The aim of the present work was the assessment of dimension effects on the CGS sensing properties both diameterwise and lengthwise. CGS samples in different dimensions were fabricated and tested by exposure to different target gases in different concentration ranges. Dimension effects on CGS properties such as selectivity, sensitivity, rise time and input range were investigated. It was observed that the CGS with smaller diameter and longer lengths generated more selective information. However, decreasing sensitivity and increasing minimum input range were some disadvantages of smaller diameters. Longer length also made longer rise time and slower sensor. Finally, the optimum ranges for the CGS in length and diameter were suggested

  15. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  16. Thermal detection mechanism of SiC based hydrogen resistive gas sensors

    Science.gov (United States)

    Fawcett, Timothy J.; Wolan, John T.; Lloyd Spetz, Anita; Reyes, Meralys; Saddow, Stephen E.

    2006-10-01

    Silicon carbide (SiC) resistive hydrogen gas sensors have been fabricated and tested. Planar NiCr contacts were deposited on a thin 3C-SiC epitaxial film grown on thin Si wafers bonded to polycrystalline SiC substrates. At 673K, up to a 51.75±0.04% change in sensor output current and a change in the device temperature of up to 163.1±0.4K were demonstrated in response to 100% H2 in N2. Changes in device temperature are shown to be driven by the transfer of heat from the device to the gas, giving rise to a thermal detection mechanism.

  17. Self Powered Non-Dispersive Infra-Red CO{sub 2} Gas Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D R; MacGregor, C, E-mail: des@gassensing.co.uk [Gas Sensing Solutions Ltd, 60 Grayshill Road, Westfield North Courtyard, Glasgow G68 9HQ (United Kingdom)

    2011-08-17

    This paper describes a non-dispersive infra-red CO{sub 2} gas sensor, incorporating a mid-infra-red solid state light source/ detector combination, tuned to match the spectral absorption characteristic of CO{sub 2} gas. Injection moulded optics provide low cost manufacture. Continuous operation power consumption is < 3.5mW and pulsed mode with energy per measurement < 6mJ. Self powered operation using a solar cell is demonstrated together with wireless capability. Performance of two path length variants (20mm and 70mm) is described. The sensor shows invariant temperature output characteristic from -25 to 50 deg. C. Accuracy level is typically {+-}3% of reading.

  18. Sensors of the gas CO in thin film of SnO2:Cu

    International Nuclear Information System (INIS)

    Tirado G, S.; Sanchez Z, F. E.

    2011-10-01

    Thin films of SnO 2 :Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO 2 were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO 2 :Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO 2 :Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  19. Surface acoustic wave sensors with Graphene/PANI nanocomposites for nitric oxide detection

    Science.gov (United States)

    Wang, Beibei; Zheng, Lei; Zhou, Lingling

    2017-12-01

    Surface acoustic wave sensors with grapheme/PANI nanocomposite sensitive films for detecting nitric oxide (NO) were fabricated and experimentally studied. Morphological characterization and functionalization of the sensing material were explored using SEM and FTIR, respectively. The study of sensor response compared film sensitivity, response time, reversibility, and limit of detection for nanocomposite films, pure grapheme and pure PANI to the detection of NO. The response and recovery times were 40s and 20s when detecting 4ppm NO, respectively. The frequency response was discovered to be linear in the NO concentration range 1-50 ppm. The nanocomposite sensors had improved sensitivities compared to the polymer devices, and better response times.

  20. Integration of thin film giant magnetoimpedance sensor and surface acoustic wave transponder

    KAUST Repository

    Li, Bodong

    2012-03-09

    Passive and remote sensing technology has many potential applications in implantable devices, automation, or structural monitoring. In this paper, a tri-layer thin film giant magnetoimpedance (GMI) sensor with the maximum sensitivity of 16%/Oe and GMI ratio of 44% was combined with a two-port surface acoustic wave(SAW) transponder on a common substrate using standard microfabrication technology resulting in a fully integrated sensor for passive and remote operation. The implementation of the two devices has been optimized by on-chip matching circuits. The measurement results clearly show a magnetic field response at the input port of the SAW transponder that reflects the impedance change of the GMI sensor.

  1. Integration of thin film giant magnetoimpedance sensor and surface acoustic wave transponder

    KAUST Repository

    Li, Bodong; Salem, Nedime Pelin M. H.; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    Passive and remote sensing technology has many potential applications in implantable devices, automation, or structural monitoring. In this paper, a tri-layer thin film giant magnetoimpedance (GMI) sensor with the maximum sensitivity of 16%/Oe and GMI ratio of 44% was combined with a two-port surface acoustic wave(SAW) transponder on a common substrate using standard microfabrication technology resulting in a fully integrated sensor for passive and remote operation. The implementation of the two devices has been optimized by on-chip matching circuits. The measurement results clearly show a magnetic field response at the input port of the SAW transponder that reflects the impedance change of the GMI sensor.

  2. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    International Nuclear Information System (INIS)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita

    2016-01-01

    In this work, Pd:NiFe 2 O 4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe 2 O 4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe 2 O 4 nanoparticle thin film were fabricated. • Pd incorporation in NiFe 2 O 4 matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe 2 O 4 thin film sensor displays excellent long–term stability.

  3. Terahertz gas sensor based on absorption-induced transparency

    Directory of Open Access Journals (Sweden)

    Rodrigo Sergio G.

    2016-01-01

    Full Text Available A system for the detection of spectral signatures of gases at the Terahertz regime is presented. The system consists in an initially opaque holey metal film whereby the introduction of a gas provokes the appearance of spectral features in transmission and reflection, due to the phenomenom of absorption-induced transparency (AIT. The peaks in transmission and dips in reflection observed in AIT occur close to the absorption energies of the molecules, hence its name. The presence of the gas would be thus revealed as a strong drop in reflectivity measurements at one (or several of the gas absorption resonances. As a proof of principle, we theoretically demonstrate how the AIT-based sensor would serve to detect tiny amounts of hydrocyanic acid.

  4. Low-Power, Chip-Scale, Carbon Dioxide Gas Sensors for Spacesuit Monitoring

    Science.gov (United States)

    Rani, Asha; Shi, Chen; Thomson, Brian; Debnath, Ratan; Wen, Boamei; Motayed, Abhishek; Chullen, Cinda

    2018-01-01

    N5 Sensors, Inc. through a Small Business Technology Transfer (STTR) contract award has been developing ultra-small, low-power carbon dioxide (CO2) gas sensors, suited for monitoring CO2 levels inside NASA spacesuits. Due to the unique environmental conditions within the spacesuits, such as high humidity, large temperature swings, and operating pressure swings, measurement of key gases relevant to astronaut's safety and health such as(CO2), is quite challenging. Conventional non-dispersive infrared absorption based CO2 sensors present challenges inside the spacesuits due to size, weight, and power constraints, along with the ability to sense CO2 in a high humidity environment. Unique chip-scale, nanoengineered chemiresistive gas-sensing architecture has been developed for this application, which can be operated in a typical space-suite environmental conditions. Unique design combining the selective adsorption properties of the nanophotocatalytic clusters of metal-oxides and metals, provides selective detection of CO2 in high relative humidity conditions. All electronic design provides a compact and low-power solution, which can be implemented for multipoint detection of CO2 inside the spacesuits. This paper will describe the sensor architecture, development of new photocatalytic material for better sensor response, and advanced structure for better sensitivity and shorter response times.

  5. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  6. Tilted c-Axis Thin-Film Bulk Wave Resonant Pressure Sensors With Improved Sensitivity

    OpenAIRE

    Anderås, Emil; Katardjiev, Ilia; Yantchev, Ventsislav

    2012-01-01

    Aluminum nitride thin film bulk wave resonant pressure sensors employing c- and tilted c-axis texture, have been fabricated and tested for their pressure sensitivities. The c-axis tilted FBAR pressure sensors demonstrate substantially higher pressure sensitivity compared to its c-axis oriented counterpart. More specifically the thickness plate quasi-shear resonance has demonstrated the highest pressure sensitivity while further being able to preserve its performance in liquid environment.

  7. Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Ahmadian, Farzaneh [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Daneshgah Street, P.B179, 56199-11367 Ardabil (Iran, Islamic Republic of)

    2015-10-15

    As a result of this study, a new and simple method was proposed for the fabrication of an ultra sensitive, robust and reversible ammonia gas sensor. The sensing mechanism was based upon the change in electrical resistance of a graphene aerogel as a result of sensor exposing to ammonia. Three-dimensional graphene hydrogel was first synthesized via hydrothermal method in the absence or presence of various amounts of thiourea. The obtained material was heated to obtain aerogel and then it was used as ammonia gas sensor. The materials obtained were characterized using different techniques such as Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thiourea-treated graphene aerogel was more porous (389 m{sup 2} g{sup −1}) and thermally unstable and exhibited higher sensitivity, shorter response time and better selectivity toward ammonia gas, compared to the aerogel produced in the absence of thiourea. Thiourea amount, involved in the hydrogel synthesis step, was found to be highly effective factor in the sensing properties of finally obtained aerogel. The sensor response time to ammonia was short (100 s) and completely reversible (recovery time of about 500 s) in ambient temperature. The sensor response to ammonia was linear between 0.02 and 85 ppm and its detection limit was found to be 10 ppb (3S/N). - Highlights: • An ammonia gas sensor with ppb level determination capability was proposed. • A new procedure has been introduced for gas sensor fabrication by graphene hydrogel. • Thiourea-treated graphene aerogel was used as excellent ammonia gas sensor.

  8. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  9. The effects of two thick film deposition methods on tin dioxide gas sensor performance.

    Science.gov (United States)

    Bakrania, Smitesh D; Wooldridge, Margaret S

    2009-01-01

    This work demonstrates the variability in performance between SnO(2) thick film gas sensors prepared using two types of film deposition methods. SnO(2) powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 - 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis.

  10. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    Directory of Open Access Journals (Sweden)

    Smitesh D. Bakrania

    2009-08-01

    Full Text Available This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 ºC for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20, often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0 at an operating temperature of 330 ºC, low standard deviation to the sensor response (±0.35 and no signal hysteresis.

  11. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    Science.gov (United States)

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  12. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    Science.gov (United States)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  13. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    Science.gov (United States)

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  14. Aplikasi Sistem Peringatan Dini Pada Kebocoran Gas Dan Asap Menggunakan Sensor Gas MQ-7 Dengan Program C

    Directory of Open Access Journals (Sweden)

    Aan Burhanudin

    2016-06-01

    Full Text Available Abstract - Health Safety and Environment (HSE in the development will be more accentuate on the prevention of occupational accidents and occupational diseases by identifying the potential to cause accidents and occupational diseases as well as anticipatory measures in case of accidents and occupational diseases. The working environment is directly in contact with toxic materials would be very harmful to the human body when exposed continuously. An environment or factory containing toxic gases as an example of CO, SO or LPG gas in certain concentrations can cause eye irritation or shortness of breath. Therefore we need an early warning system that can measure the concentration of these gases and may give a warning to workers associated with the concentration of the gas to the workers. The early warning system was made using three gas sensors, three heat sensors, LEDs and buzzer. Recitation and processing of the sensor is processed by a 16 bit microcontroller which will condition the room. In making such a system is used programmable fuzzy algorithms previously simulated with MATLAB, C Programming used as logic programming refers to the simulation results, miniature rooms created with three main space for workers in a hallway and an emergency exit. The results of such a system is in a room when the detected gas concentration exceeds the threshold, the system will activate the buzzer and will activated LED as the safest evacuation route directions. Keyword -- C Proframming, Fuzzy Logic, Matlab

  15. Nozzle-less Ultrasonic Spray Deposition for Flexible Ammonia and Ozone Gas Sensors

    Directory of Open Access Journals (Sweden)

    Mónica ACUAUTLA

    2016-06-01

    Full Text Available In the last years printing and flexible electronic is transforming the way we used electronic devices. Among these, special interest is given to the development of gas sensors for industrial and environmental applications. Nozzle-less ultrasonic spray deposition is a simple and precise technique, which offers good homogeneity and high quality of the sensitive thin film. In addition, it represents a potential fabrication process for flexible electronic with low cost production and low waste of material. In this paper, nanoparticles of zinc oxide were deposited by nozzle-less ultrasonic spray deposition on flexible substrate. The sensing properties towards reducing and oxidizing gases in function of the operational temperature are reported. The flexible platform consists in titanium/platinum interdigitated electrodes and a micro-heater device, both fabricated by lift-off and photolithography. The operating temperature of the sensor is also challenging in term of power consumption. It is allowing the reaction with the exposure gases. Most of the semiconducting metal oxide materials used for gas sensing applications require high temperatures above 250 °C. Flexible gas sensors fabricated in this work present good responses towards ammonia and ozone at 300 °C and 200 °C respectively, with fast response and recovery time in a wide range of gas concentration.

  16. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR

  17. Gas Sensor Based on 3-D WO3 Inverse Opal: Design and Applications

    Directory of Open Access Journals (Sweden)

    Ruiqing Xing

    2017-03-01

    Full Text Available A three-dimensional inverse opal (3DIO WO3 architecture has been synthesized via a simple sacrificial template method. Morphology features of the 3DIO were characterized by scanning electron microscope (SEM and its structure was characterized by X-ray diffraction (XRD. The shrinking ratio of the PMMA spheres was ~28.2% through measuring the distribution of the PMMA spheres and 3DIO WO3 center-to-center distance between the spheres and macropores, respectively. Beyond that, the 3DIO gas sensing properties were investigated systematically and the sensing mechanism of 3DIO WO3 was proposed. The results indicated that the response of the 3DIO sensor possessed excellent sensitivity to acetone gas, especially at trace levels. The 3DIO gas sensor response was ~7 to 5 ppm of acetone and could detect acetone low to 0.2 ppm effectively, which was in close proximity to the theoretical low detection limit of 0.14 ppm when Ra/Rg ≥ 1.2 was used as the criterion for reliable gas sensing. All in all, the obvious satisfaction of the gas-sensing properties was ascribed to the structure of the 3DIO, and the sensor could be a promising novel device in the future.

  18. Combined raman and IR fiber-based sensor for gas detection

    Science.gov (United States)

    Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

    2014-06-24

    A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

  19. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  20. A pathway to eliminate the gas flow dependency of a hydrocarbon sensor for automotive exhaust applications

    Directory of Open Access Journals (Sweden)

    G. Hagen

    2018-02-01

    Full Text Available Gas sensors will play an essential role in future combustion-based mobility to effectively reduce emissions and monitor the exhausts reliably. In particular, an application in automotive exhausts is challenging due to the high gas temperatures that come along with highly dynamic flow rates. Recently, a thermoelectric hydrocarbon sensor was developed by using materials which are well known in the exhausts and therefore provide the required stability. As a sensing mechanism, the temperature difference that is generated between a catalytically activated area during the exothermic oxidation of said hydrocarbons and an inert area of the sensor is measured by a special screen-printed thermopile structure. As a matter of principle, this thermovoltage significantly depends on the mass flow rate of the exhausts under certain conditions. The present contribution helps to understand this cross effect and proposes a possible setup for its avoidance. By installing the sensor in the correct position of a bypass solution, the gas flow around the sensor is almost free of turbulence. Now, the signal depends only on the hydrocarbon concentration and not on the gas flow. Such a setup may open up new possibilities of applying novel sensors in automotive exhausts for on-board-measurement (OBM purposes.

  1. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    Science.gov (United States)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  2. Multi-Gas Sensor

    Science.gov (United States)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  3. The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-11-18

    The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  4. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, S.I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Georgieva, V. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Yordanov, R. [Department of Microelectronics, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1756 Sofia (Bulgaria); Raicheva, Z. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Szilágyi, I.M. [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-11-30

    Highlights: • For the first time the gas sensing towards NO{sub 2} of very thin ALD ZnO films is studied. • The very thin ALD ZnO films showed excellent sensitivity to NO{sub 2} at room temperature. • These very thin film ZnO-based QCM sensors very well register even low concentrations. • The sensors have fully reversible sorption and are able to be recovered in short time. • Described fast and cost-effective ALD deposition of ZnO thin films for QCM gas sensor. - Abstract: Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO{sub 2} was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO{sub 2} already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO{sub 2}.

  5. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  6. Al2O3- BSST Based Chemical Sensors for Ammonia Gas Sensing

    Directory of Open Access Journals (Sweden)

    L. A. Patil

    2009-10-01

    Full Text Available Gas sensing behaviour of pure and modified (Ba0.9Sr0.1(Sn0.5Ti0.5O3 (BSST thick films is reported in this article. The surface of the BSST thick film was modified by dipping it into aqueous solution of AlCl3, for different intervals of time. These films were then dried at 500 0C for 24 hours in air ambient for transformation of AlCl3 into Al2O3, for the evaporation of organic binders and also to improve the texture of the film. The gas response, selectivity, response and recovery time of the sensors were measured and presented. The role played by the aluminium species to improve the gas sensing performance of the sensors is discussed.

  7. Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Janotta, Markus; Karlowatz, Manfred; Vogt, Frank; Mizaikoff, Boris

    2003-10-31

    This work demonstrates the application of organically modified sol-gels as recognition layers combined with mid-infrared evanescent wave sensors for in situ detection of nitrated organics in aqueous media. Sol-gels were prepared by acid-catalyzed copolymerization of phenyltrimethoxysilane (PTMOS) and tetramethoxysilane (TMOS) and were spin-coated onto ZnSe attenuated total reflection (ATR) waveguides. These sensors were investigated with respect to their enrichment properties of selected organophosphates, i.e. parathion, fenitrothion and paraoxon, respectively, and their capability of suppressing interfering water background absorptions. Figures of merit are derived from calibration curves determined to assess sensitivity and reproducibility of the applied sensor system. It can be concluded that sol-gel coated infrared optical sensors enable reproducible detection of organophosphates down to the sub-ppm concentration range. Furthermore, measurement of spiked river water samples demonstrates feasibility as remote field sensor system. Once the required sensitivity is achieved, sol-gel based mid-infrared evanescent wave sensors have the potential of being an alternative to commonly applied biosensors for detection of organophosphates in environmental analysis, since they provide superior mechanical and chemical stability during application relevant periods of time.

  8. Distinguishing feature of metal oxide films' structural engineering for gas sensor applications

    International Nuclear Information System (INIS)

    Korotcenkov, G; Golovanov, V; Brinzari, V; Cornet, A; Morante, J; Ivanov, M

    2005-01-01

    The different methods of structural engineering, used for improvement of solid state gas sensors parameters are reviewed in this paper. The wide possibilities of structural engineering in optimization of gas sensing properties were demonstrated on the example of thin tin dioxide films deposited by spray pyrolysis

  9. Effect of Indium Doping on the Sensitivity of SnO2 Gas Sensor

    International Nuclear Information System (INIS)

    Suharni; Sayono

    2009-01-01

    The dependence of sensitivity f SnO 2 gas sensors on indium concentration has been studied. Undoped and indium-doped SnO 2 gas sensors have been prepared by DC sputtering technique with following parameters i.e : electrode voltage of 3 kV, current 20 mA, vacuum pressure 1.8 × 10 -1 torr, deposition time 60 minutes and temperature of 200℃. The effect of weight variations of indium in order of 0.0370; 0.0485 and 0.0702 grams into SnO 2 thin film gas sensor for optimum result were investigated. The measurement of resistance, sensitivity and response time for various temperature for detecting of carbon monoxide (CO), Ammonia (NH 3 ) and acetone (CH 3 COCH 3 ) gas for indium doped has been done. From the analysis result shows that for indium doped 0.0702 g on the SnO 2 the resistance can be decreased from 832.0 kΩ to 3.9 kΩ and the operating temperature from 200℃ to 90℃ and improving the sensitivity from 15.92% to 40.09% and a response time from 30 seconds to 10 seconds for CO. (author)

  10. Ammonia gas sensing property of gadolinium oxide using fiber optic gas sensor

    Science.gov (United States)

    Kumar, J. Santhosh; Ranganathan, B.; Sastikumar, D.

    2017-05-01

    The design of fiber optic sensor is based on a cladding modification methodology. A fiber-optic chemical sensor is developed by replacing a certain portion of the original cladding with a chemically sensitive material, specifically, calcinated gadolinium oxide (Gd2O3).Both the light absorption co-efficient and refractive index change upon exposure to chemical vapours of volatile organic compounds (VOCs) such as ammonia (NH3), ethanol (CH3CH2OH), and methanol (CH3OH). The spectral characteristics of the sensor were studied for different concentrations ranging from 0-500 ppm. These changes induced the optical intensity modulation of the transmitted optical signal. During interaction between the sensing material and VOCs, the output intensity is taken into account to detect the toxic VOCs present in the environment. This was systematically investigated by X-ray diffractometer (XRD) and SEM. The XRD analysis indicated that the calcinated Gd2O3 was formed in cubic structure with the crystallite size of 13 nm. The Gd2O3 nanorods with thickness ranging from 80 to 120 nm were confirmed from SEM. The ammonia gas response of the Gd2O3 sensor is presented. A model is proposed for understanding the spectral intensity variations.

  11. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    OpenAIRE

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-01-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the co...

  12. Fast response time alcohol gas sensor using nanocrystalline F

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method. Sarbani Basu Yeong-Her Wang C Ghanshyam Pawan Kapur. Volume 36 Issue 4 August 2013 pp 521-533 ...

  13. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    Science.gov (United States)

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  14. Synthesis and characterization of porous silicon gas sensors

    Science.gov (United States)

    abbas, Roaa A.; Alwan, Alwan M.; Abdulhamied, Zainab T.

    2018-05-01

    In this work, photo-electrochemical etching process of n-type Silicon of resistivity(10 Ω.cm) and (100) orientation, using two illumination sources IR and violet wavelength in HF acid have been used to produce PSi gas detection device. The fabrication process was carried out at a fixed etching current density of 25mA/cm2 and at different etching time (5, 10, 15 and 20) min and (8, 16, 24, and 30) min. Two configurations of gas sensor configuration planer and sandwich have been made and investigated. The morphological properties have been studied using SEM,the FTIR measurement show that the (Si-Hx) and (Si-O-Si) absorption peak were increases with increasing etching time,and Photoluminescence properties of PSi layer show decrease in the peak of PL peak toward the violet shift. The gas detection process is made on the CO2 gas at different operating temperature and fixed gas concentration. In the planner structure, the gas sensing was measured through, the change in the resistance readout as a function to the exposure time, while for sandwich structure J-V characteristic have been made to determine the sensitivity.

  15. A laser-based sensor for measurement of off-gas composition and temperature in basic oxygen steelmaking

    International Nuclear Information System (INIS)

    Ottesen, D.; Allendorf, S.; Ludowise, P.; Hardesty, D.; Miller, T.; Goldstein, D.; Smith, C.; Bonin, M.

    1999-01-01

    We are developing an optical sensor for process control in basic oxygen steelmaking. The sensor measures gas temperature and relative CO/CO 2 concentration ratios in the furnace off-gas by transmitting the laser probe beam directly above the furnace lip and below the exhaust hood during oxygen blowing. Dynamic off-gas information is being evaluated for optimizing variables such as lance height, oxygen flow, post-combustion control, and prediction of final melt-carbon content. The non-invasive nature of the optical sensor renders it robust and relatively maintenance-free. Additional potential applications of the method are process control for electric arc furnace and bottom-blown oxygen steelmaking processes. (author)

  16. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  17. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review

    International Nuclear Information System (INIS)

    Korotcenkov, Ghenadii; Cho, Beong K.; Brinzari, Vladimir

    2016-01-01

    This review (with 170 refs.) discusses approaches towards surface functionalizaton of metal oxides by gold nanoparticles, and the application of the resulting nanomaterials in resistive gas sensors. The articles is subdivided into sections on (a) methods for modification of metal oxides with gold nanoparticles; (b) the response of gold nanoparticle-modified metal oxide sensors to gaseous species, (c) a discussion of the limitations of such sensors, and (d) a discussion on future tasks and trends along with an outlook. It is shown that, in order to achieve significant improvements in sensor parameters, it is necessary to warrant a good control the size and density of gold nanoparticles on the surface of metal oxide crystallites, the state of gold in the cluster, and the properties of the metal oxide support. Current challenges include an improved reproducibility of sensor preparation, better long-term stabilities, and a better resistance to sintering and poisoning of gold clusters during operation. Additional research focused on better understanding the role of gold clusters and nanoparticles in gas-sensing effects is also required. (author)

  18. Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Huang Po-Jung

    2009-01-01

    Full Text Available Abstract ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%.

  19. PPY-PVA Blend Thin Films as a Ammines Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. B. DUPARE

    2009-06-01

    Full Text Available Synthesis of polypyrrole–polyvinyl alcohol blend thin by in situ chemical oxidative polymerization, on glass substrate for development of Ammonia and Trimethyl ammine hazardous gas sensor. The all experimental process carried out at room temperature (304 k. These polymer materials were characterized by Chemical analyses, spectral studies (UV-visible and IR and conductivity measurement by four –probe technique. The surface morphology as seen in the SEM image was observed to be granular, tubular, uniformly covering the entire substrate surface having porous in nature. The current–voltage characterization show that these thin films have conducting in nature having ohmic behaviors. The sensor was used for different concentration (ppm of TMA and Ammonia gas investigation at room temperature (304 k. This study found to possess improved electrical, mechanical and environmental stability PPY-PVA films.

  20. CO_2 gas sensors based on rare earth oxycarbonates

    International Nuclear Information System (INIS)

    Haensch, Alexander

    2016-01-01

    This title presents a new type of CO_2 gas sensor, that allows the measurement of CO_2 gas with very low effort. The measurement principle is based on two semiconducting materials. One the ''receptor'' and a ''transducer'' form a semiconductor junction. Electronic changes in the receptor change the electrical resistance in the transducer and therefor allow the easy electrical measurement. The reactivity and the reaction mechanism is thoroughly studied. In the first part the basics and resistance measurements are presented. A comparison between different mixtures is done. The main part studies the surface chemistry with operando DRIFT spectroscopy. The chemical reactivity of different target gases and background gases is studied thoroughly. The electronic properties of Oxycarbonates and the combination of oxycarbonate and tin oxide were studied using operando Kelvin probes measurements. The result is that CO_2 alters the electron affinity of the material. Once moisture is present, an additional band bending is visible. The band bending dominated in a humid atmosphere, the work function changes. The electronic connection of oxycarbonate and tin oxide, the work function change of Oxycarbonates can be transferred to the tin oxide. Using the collected data, a basic idea of the operation will be presented by a two-semiconductor materials gas sensor.

  1. Shear horizontal wave excitation and reception with shear horizontal piezoelectric wafer active sensor (SH-PWAS)

    International Nuclear Information System (INIS)

    Kamal, A; Giurgiutiu, V

    2014-01-01

    This article discusses shear horizontal (SH) guided-waves that can be excited with shear type piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the art SH waves modelling and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-mechanical coupling coefficient d 35 are reviewed. Multiphysics finite element modelling (MP-FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure are presented. The structural resonances are compared with experimental measurements and showed good agreement. Analytical prediction of SH waves was performed. SH wave propagation experimental study was conducted between different combinations of SH-PWAS and regular in-plane PWAS transducers. Experimental results were compared with analytical predictions for aluminium plates and showed good agreement. 2D wave propagation effects were studied by MP-FEM. An analytical model was developed for SH wave power and energy. The normal mode expansion (NME) method was used to account for superpositioning multimodal SH waves. Modal participation factors were presented to show the contribution of every mode. Power and energy transfer between SH-PWAS and the structure was analyzed. Finally, we present simulations of our developed wave power and energy analytical models. (paper)

  2. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  3. Selective mixed potential based ammonia exhaust gas sensor; Selektiver Ammoniakabgassensor auf Mischpotentialbasis

    Energy Technology Data Exchange (ETDEWEB)

    Schoenauer, D.; Moos, R. [Bayreuth Univ. (Germany). Lehrstuhl fuer Funktionsmaterialien; Wiesner, K.; Fleischer, M. [Siemens AG, CT PS 6, Muenchen (Germany)

    2007-07-01

    Mixed potential sensors with additional catalytic deposits on one of two electrodes show a high potential for NH{sub 3} detection. With defined reactions at the covered electrode it is possible to derive a temperature dependent correlation between the gas concentration/composition and the sensor signal which is characteristic for the used electrode material and the catalyst.

  4. Large-scale syntheses of uniform ZnO nanorods and ethanol gas sensors application

    International Nuclear Information System (INIS)

    Chen Jin; Li Jin; Li Jiahui; Xiao Guoqing; Yang Xiaofeng

    2011-01-01

    Research highlights: → The uniform ZnO nanorods could be synthesized by a low temperature, solution-based method. → The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. → Room-temperature photoluminescence spectra of these nanorods show an exciton emission around 382 nm and a weak deep level emission, indicating the nanorods have high quality. → The sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. - Abstract: Uniform ZnO nanorods with a gram scale were prepared by a low temperature and solution-based method. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL). The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. Room-temperature PL spectra of these nanorods show an exciton emission around 382 nm and a negligible deep level emission, indicating the nanorods have high quality. The gas-sensing properties of the materials have been investigated. The results indicate that the as-prepared nanorods show much better sensitivity and stability. The n-type semiconductor gas sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. ZnO nanorods are excellent potential candidates for highly sensitive gas sensors and ultraviolet laser.

  5. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  6. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  7. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    Science.gov (United States)

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  8. A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes.

    Science.gov (United States)

    Hoffmann, Martin W G; Mayrhofer, Leonhard; Casals, Olga; Caccamo, Lorenzo; Hernandez-Ramirez, Francisco; Lilienkamp, Gerhard; Daum, Winfried; Moseler, Michael; Waag, Andreas; Shen, Hao; Prades, J Daniel

    2014-12-17

    Selectivity and low power consumption are major challenges in the development of sophisticated gas sensor devices. A sensor system is presented that unifies selective sensor-gas interactions and energy-harvesting properties, using defined organic-inorganic hybrid materials. Simulations of chemical-binding interactions and the consequent electronic surface modulation give more insight into the complex sensing mechanism of selective gas detection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metal Oxides Doped PPY-PVA Blend Thin Films Based Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. B. DUPARE

    2009-02-01

    Full Text Available Synthesis of metal oxides doped polypyrrole–polyvinyl alcohol blend thin films by in situ chemical oxidative polymerization, using microwave oven on glass substrate for development of Ammonia and Trimethyl ammine hazardous gas sensor. The all experimental process carried out at room temperature(304 K. These polymer materials were characterized by Chemical analyses, spectral studies (UV-visible and IR and conductivity measurement by four –probe technique. The surface morphology as observed in the SEM image was observed to be uniformly covering the entire substrate surface. The sensor was used for different concentration (ppm of TMA and Ammonia gas investigation at room temperature (304 k. This study found to possess improved electrical, mechanical and environmental stability metal oxides doped PPY-PVA films.

  10. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  11. Chemical gas sensors and the characterization, monitoring and sensor technology needs of the US Department of Energy

    International Nuclear Information System (INIS)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-01-01

    The Office of Technology Development within the Dept. of Energy (DOE) has the responsibility of providing new technologies to aid the environmental restoration and waste management (ER/WM) activities of the DOE. There is a perception that application and judicious development of chemical sensor technologies could result in large cost savings and reduced risk to the health and safety of ER/WM personnel. A number of potential gas sensor applications which exist within DOE ER/WM operations are described. The capabilities of several chemical sensor technologies and their potential to meet the needs of ER/WM applications in the present or near term future are discussed

  12. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    Science.gov (United States)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Waved graphene: Unique structure for the adsorption of small molecules

    International Nuclear Information System (INIS)

    Pan, Hui

    2017-01-01

    We propose waved graphenes for the strong adsorption of molecules and investigate their potential applications. We find that the physical adsorption of molecules on waved graphene is greatly enhanced by compression. At optimal compression, the physical adsorption energies of H_2, N_2, NO, and CO are increased by 6–9 times, and that for O_2 is more than 2 times. We show that the energy for their chemical adsorption on waved graphene decreases dramatically with the increment of compression. The energy of dissociation of H_2 on flat graphene is 1.63 eV and reduced to 0.06 eV (96% reduction) on waved graphene at a compression of 50%, respectively. The energy for chemical adsorption of O_2 on waved graphenes is extremely reduced from 0.98 eV to −0.57 eV as with compression increasing from 0 to 50%, indicating the transition of endothermic chemical adsorption to exothermic. We further show that the electronic properties of waved graphenes are modified, leading to the change of electrical characters. We see that the waved graphenes may find applications in gas storage, sensor and catalyst because of enhanced physical and chemical adsorption and the induced change of electronic properties. - Highlights: • Adsorption of small molecules on waved graphene is greatly enhanced. • Strong physical adsorption in the trough of waved graphene can be achieved by tuning the curvature. • Chemical adsorption is on the crest of waved graphene. • Exothermic dissociation of H2 and O2 can be realized on waved graphene under high compression. • Wave graphene can be candidates as catalysts and gas storage/sensor.

  14. Waved graphene: Unique structure for the adsorption of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hui, E-mail: huipan@umac.mo

    2017-03-01

    We propose waved graphenes for the strong adsorption of molecules and investigate their potential applications. We find that the physical adsorption of molecules on waved graphene is greatly enhanced by compression. At optimal compression, the physical adsorption energies of H{sub 2}, N{sub 2}, NO, and CO are increased by 6–9 times, and that for O{sub 2} is more than 2 times. We show that the energy for their chemical adsorption on waved graphene decreases dramatically with the increment of compression. The energy of dissociation of H{sub 2} on flat graphene is 1.63 eV and reduced to 0.06 eV (96% reduction) on waved graphene at a compression of 50%, respectively. The energy for chemical adsorption of O{sub 2} on waved graphenes is extremely reduced from 0.98 eV to −0.57 eV as with compression increasing from 0 to 50%, indicating the transition of endothermic chemical adsorption to exothermic. We further show that the electronic properties of waved graphenes are modified, leading to the change of electrical characters. We see that the waved graphenes may find applications in gas storage, sensor and catalyst because of enhanced physical and chemical adsorption and the induced change of electronic properties. - Highlights: • Adsorption of small molecules on waved graphene is greatly enhanced. • Strong physical adsorption in the trough of waved graphene can be achieved by tuning the curvature. • Chemical adsorption is on the crest of waved graphene. • Exothermic dissociation of H2 and O2 can be realized on waved graphene under high compression. • Wave graphene can be candidates as catalysts and gas storage/sensor.

  15. Spiral-shaped piezoelectric sensors for Lamb waves direction of arrival (DoA) estimation

    Science.gov (United States)

    De Marchi, L.; Testoni, N.; Marzani, A.

    2018-04-01

    A novel strategy to design piezoelectric sensors suited for direction of arrival (DoA) estimation of incoming Lamb waves is presented in this work. The designed sensor is composed by two piezoelectric patches (P1, P2) bonded on the structure to be inspected. In particular, by exploiting the Radon transform, the proposed procedure computes the shape of P2 given the shape of P1 so that the difference in time of arrival (DToA) of the Lamb waves at the two patches is linearly related to the DoA while being agnostic of the waveguide dispersion curves. With a dedicated processing procedure, the waveforms acquired from the two electrodes and digitized can be used to retrieve the DoA information. Numerical and experimental results show that DoA estimation performed by means of the proposed shaped transducers is extremely robust.

  16. Hamiltonian aspects of three-wave resonant interactions in gas dynamics

    Science.gov (United States)

    Webb, G. M.; Zakharian, A.; Brio, M.; Zank, G. P.

    1997-06-01

    Equations describing three-wave resonant interactions in adiabatic gas dynamics in one Cartesian space dimension derived by Majda and Rosales are expressed in terms of Lagrangian and Hamiltonian variational principles. The equations consist of two coupled integro-differential Burgers equations for the backward and forward sound waves that are coupled by integral terms that describe the resonant reflection of a sound wave off an entropy wave disturbance to produce a reverse sound wave. Similarity solutions and conservation laws for the equations are derived using symmetry group methods for the special case where the entropy disturbance consists of a periodic saw-tooth profile. The solutions are used to illustrate the interplay between the nonlinearity represented by the Burgers self-wave interaction terms and wave dispersion represented by the three-wave resonant interaction terms. Hamiltonian equations in Fourier (p,t) space are also obtained where p is the Fourier space variable corresponding to the fast phase variable 0305-4470/30/12/013/img6 of the waves. The latter equations are transformed to normal form in order to isolate the normal modes of the system.

  17. Acetone gas-sensing properties of multiple-networked Pd-decorated Bi_2O_3 nanorod sensors

    International Nuclear Information System (INIS)

    Park, Sung Hoon; Kim, Soo Hyun; Lee, Sang Min; Lee, Chong Mu

    2015-01-01

    This study examined the sensing properties of Bi_2O_3 nanorods decorated with Pd nanoparticles. Pd-decorated β-Bi_2O_3 nanorods were prepared by immersing the Bi_2O_3 nanorods in ethanol/(50 mM)PdCl_2 solution followed by UV irradiation and annealing. The Bi_2O_3 nanorods decorated with Pd nanoparticles showed faster and stronger response to acetone gas than the pristine Bi_2O_3 nanorods. Interestingly, the difference in response time between the Pd-decorated Bi_2O_3 nanorod sensor and pristine Bi_2O_3 nanorod sensor increased with increasing the acetone gas concentration. In contrast, the difference in recovery time between the two nanorod sensors decreased with increasing the acetone gas concentration. This difference can be explained using the chemical mechanism. The underlying mechanism for the enhanced response of the Bi_2O_3 nanorods decorated with Pd nanoparticles to acetone gas is also discussed

  18. Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications.

    Science.gov (United States)

    Ayari, Taha; Bishop, Chris; Jordan, Matthew B; Sundaram, Suresh; Li, Xin; Alam, Saiful; ElGmili, Youssef; Patriarche, Gilles; Voss, Paul L; Salvestrini, Jean Paul; Ougazzaden, Abdallah

    2017-11-09

    The transfer of GaN based gas sensors to foreign substrates provides a pathway to enhance sensor performance, lower the cost and extend the applications to wearable, mobile or disposable systems. The main keys to unlocking this pathway is to grow and fabricate the sensors on large h-BN surface and to transfer them to the flexible substrate without any degradation of the performances. In this work, we develop a new generation of AlGaN/GaN gas sensors with boosted performances on a low cost flexible substrate. We fabricate 2-inch wafer scale AlGaN/GaN gas sensors on sacrificial two-dimensional (2D) nano-layered h-BN without any delamination or cracks and subsequently transfer sensors to an acrylic surface on metallic foil. This technique results in a modification of relevant device properties, leading to a doubling of the sensitivity to NO 2 gas and a response time that is more than 6 times faster than before transfer. This new approach for GaN-based sensor design opens new avenues for sensor improvement via transfer to more suitable substrates, and is promising for next-generation wearable and portable opto-electronic devices.

  19. Liquefied petroleum gas sensor based on manganese (III) oxide and zinc manganese (III) oxide nanoparticles

    Science.gov (United States)

    Sharma, Shiva; Chauhan, Pratima; Husain, Shahid

    2018-01-01

    In this paper, {{{Mn}}}2{{{O}}}3 and {{{ZnMn}}}2{{{O}}}4 nanoparticles (NPs) are successfully synthesized using chemical co-precipitation method at room temperature and further annealed at 450 °C. The structure, crystallite size, morphology, specific surface area (SSA) and band gap energy have been determined by x-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area analysis, scanning electron microscopy (SEM-EDS) and UV-visible spectrophotometer. The sensor films of the {{{Mn}}}2{{{O}}}3 NPs and {{{ZnMn}}}2{{{O}}}4 NPs have been fabricated onto glass substrate using spin coater system separately. These sensor films are investigated for different concentrations (200-1200 ppm) of liquefied petroleum gas (LPG) at different operating temperatures ranging from 100 °C to 400 °C. A comparative study of gas sensing properties shows that spinel {{{ZnMn}}}2{{{O}}}4 sensor film exhibit excellent response (≈ 80 % ) towards 1000 ppm LPG at 300 °C in comparison to {{{Mn}}}2{{{O}}}3 sensor films. The enhancement in the gas sensing characteristics of {{{ZnMn}}}2{{{O}}}4 sensor film is attributed to the reduced crystallite size, greater SSA, and modification in structure as well as morphology.

  20. 2-D FEM Simulation of Propagation and Radiation of Leaky Lamb Wave in a Plate-Type Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Jin; Kim, Hoe-Woong; Joo, Young-Sang; Kim, Sung-Kyun; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted for the radiation beam profile analysis. The FEM simulations are performed with three different excitation frequencies and the radiation beam profiles obtained from FEM simulations are compared with those obtained from corresponding experiments. This paper deals with the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted to analyze the radiation beam profiles. The radiation beam profile results obtained from the FEM simulation show good agreement with the ones obtained from the experiment. This result will be utilized to improve the performance of the developed waveguide sensor. The quality of the visualized image is mainly affected by beam profile characteristics of the leaky wave radiated from the waveguide sensor. However, the relationships between the radiation beam profile and many parameters of the waveguide sensor are not fully revealed yet. Therefore, further parametric studies are necessary to improve the performance of the sensor and the finite element method (FEM) is one of the most effective tools for the parametric study.

  1. Rancang Bangun Robot 6WD Dengan Sensor Gas TGS2600 Menggunakan Metode Wall Following Berbasis Arduino Mega 2560

    Directory of Open Access Journals (Sweden)

    I Made Arya Budhana

    2017-07-01

    Full Text Available Intisari— Perkembangan teknologi khususnya dibidang robotika saat ini sangat pesat, Salah satu bentuk aplikasi dari teknologi robotika yang erat kaitannya dengan sistem kontrol adalah wheel mobile robot. Beberapa metode dapat dilakukan untuk mendistribusikan gas alam salah satunya dengan pipa. Distribusi gas alam dengan menggunakan pipa sering mengalami kendala kebocoran yang disebabkan usia dari pipa distribusi yang sudah cukup tua. Untuk mempermudah pemantauan pipa gas yang berada di bawah tanah digunakan robot 6 WD (wheel drive yang memiliki 6 roda dan penggerak pada setiap rodanya untuk mengatasi medan yang berat. Pergerakan dari robot 6 WD mengacu pada sensor ultrasonik SRF HC-SR04, metode ini dinamakan wall following. Sensor gas tipe TGS dari figaro dimanfaatkan untuk mengetahui adanya kebocoran gas  pada pipa atau tidak. Selain itu, robot ini juga dilengkapi dengan kamera untuk mengirim gambar kerusakan pipa pada user agar dapat segera dilakukan perbaikan. Arduino Mega 2560 digunakan sebagai otak pada robot 6 WD yang bertugas untuk mengolah data yang masuk dan memberikan instruksi pada robot 6WD. Pengiriman data dari robot 6 WD pada pengguna meliputi, data sensor gas, data sensor kompas, data sensor jarak dan gambar kerusakan pada pipa. Seluruh data dapat dilihat pada GCS (Ground Control Station.   [TRUNITIN CHECK 20%, 26042017

  2. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  3. A One ppm NDIR Methane Gas Sensor with Single Frequency Filter Denoising Algorithm

    Directory of Open Access Journals (Sweden)

    Binqing Jiang

    2012-09-01

    Full Text Available A non-dispersive infrared (NDIR methane gas sensor prototype has achieved a minimum detection limit of 1 parts per million by volume (ppm. The central idea of the design of the sensor is to decrease the detection limit by increasing the signal to noise ratio (SNR of the system. In order to decrease the noise level, a single frequency filter algorithm based on fast Fourier transform (FFT is adopted for signal processing. Through simulation and experiment, it is found that the full width at half maximum (FWHM of the filter narrows with the extension of sampling period and the increase of lamp modulation frequency, and at some optimum sampling period and modulation frequency, the filtered signal maintains a noise to signal ratio of below 1/10,000. The sensor prototype provides the key techniques for a hand-held methane detector that has a low cost and a high resolution. Such a detector may facilitate the detection of leakage of city natural gas pipelines buried underground, the monitoring of landfill gas, the monitoring of air quality and so on.

  4. Diode Laser-Based Sensor for Fast Measurement of Binary Gas Mixtures

    National Research Council Canada - National Science Library

    McNesby, Kevin

    1999-01-01

    The development and characterization of a gas sensor to measure binary mixtures of oxygen and the vapor from a series of volatile organic compounds, with a time resolution of 10 milliseconds, is described...

  5. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  6. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    Directory of Open Access Journals (Sweden)

    Sutichai Chaisitsak

    2011-07-01

    Full Text Available This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG sensors by doping with fluorine (F. Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer. The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  7. High Temperature and High Sensitive NOx Gas Sensor with Hetero-Junction Structure using Laser Ablation Method

    Science.gov (United States)

    Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki

    In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.

  8. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    Science.gov (United States)

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  9. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  10. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application

    International Nuclear Information System (INIS)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-01-01

    Highlights: • ZnO spheres fabricated via solvothermal method are with (0 0 2) polar facet exposed. • Response time of ZnO sensor for detecting 100 ppm acetone is as short as 3 s. • R a /R g toward 100 ppm acetone is 33 when operated at 230 °C. • ZnO sensor exhibits good selectivity against other toxic gases and water vapor. • Porous structure and exposure of polar facet contribute to good sensing properties. - Abstract: Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200 °C for 4 h. The products were pure hexagonal ZnO with large exposure of (0 0 2) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25 ppm. The response (R a /R g ) toward 100 ppm acetone was 33 operated at 230 °C and the response time was as short as 3 s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (0 0 2) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature

  11. Diffusion-controlled regime of surface-wave-produced plasmas in helium gas

    International Nuclear Information System (INIS)

    Berndt, J; Makasheva, K; Schlueter, H; Shivarova, A

    2002-01-01

    The study presents a numerical fluid-plasma model of diffusion-controlled surface-wave-sustained discharges in helium gas. The self-consistent behaviour of the discharge based on the interrelation between plasma density and Θ, the power absorbed on average by one electron, is described. The nonlinear process of step ionization in the charged particle balance equation is the main factor, which ensures the self-consistency. However, it is shown that in helium discharges, the ionization frequencies enter the dependence of Θ on the plasma density also through the ambipolar-diffusion coefficient. Results at two different values of the gas pressure and of the wave frequency are discussed. The lower value of the gas pressure is chosen according to the condition to have a pure diffusion-controlled regime without interference with a transition to the free-fall regime. The boundary condition for the ion flux at the wall sheath is used for determination of the value of μ, the quantity denoting the degree of the radial plasma-density inhomogeneity which, together with the electron-neutral elastic collision frequency, influences the wave propagation characteristics. The two values of the wave frequency chosen provide descriptions of high-frequency and microwave discharges. The model results in the self-consistent structure of the discharge: interrelated variations along the discharge length of wavenumber, space damping rate, Θ, plasma density and electron temperature. The power necessary for sustaining discharges of a given length is also calculated. Comparisons with argon discharges are shown

  12. Development of nanostructured protective "sight glasses" for IR gas sensors

    DEFF Research Database (Denmark)

    Bergmann, René; Davis, Zachary James; Schmidt, Michael Stenbæk

    2011-01-01

    In this work protective "sight glasses" for infrared gas sensors showing a sub-wavelength nanostructure with random patterns have been fabricated by reactive ion etching (RIE) in an easy and comparable cheap single step mask-less process. By an organic coating, the intrinsic water repellent...

  13. High-temperature CO / HC gas sensors to optimize firewood combustion in low-power fireplaces

    Directory of Open Access Journals (Sweden)

    B. Ojha

    2017-06-01

    Full Text Available In order to optimize firewood combustion in low-power firewood-fuelled fireplaces, a novel combustion airstream control concept based on the signals of in situ sensors for combustion temperature, residual oxygen concentration and residual un-combusted or partly combusted pyrolysis gas components (CO and HC has been introduced. A comparison of firing experiments with hand-driven and automated airstream-controlled furnaces of the same type showed that the average CO emissions in the high-temperature phase of the batch combustion can be reduced by about 80 % with the new control concept. Further, the performance of different types of high-temperature CO / HC sensors (mixed-potential and metal oxide types, with reference to simultaneous exhaust gas analysis by a high-temperature FTIR analysis system, was investigated over 20 batch firing experiments (∼ 80 h. The distinctive sensing behaviour with respect to the characteristically varying flue gas composition over a batch firing process is discussed. The calculation of the Pearson correlation coefficients reveals that mixed-potential sensor signals correlate more with CO and CH4; however, different metal oxide sensitive layers correlate with different gas species: 1 % Pt / SnO2 designates the presence of CO and 2 % ZnO / SnO2 designates the presence of hydrocarbons. In the case of a TGS823 sensor element, there was no specific correlation with one of the flue gas components observed. The stability of the sensor signals was evaluated through repeated exposure to mixtures of CO, N2 and synthetic air after certain numbers of firing experiments and exhibited diverse long-term signal instabilities.

  14. Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite

    Science.gov (United States)

    Jyoti, Kanaujiya, Neha; Varma, G. D.

    2018-05-01

    Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.

  15. A Micro CO2 Gas Sensor Based on Sensing of pH-Sensitive Hydrogel Swelling by Means of a Pressure Sensor

    NARCIS (Netherlands)

    Herber, S.; Bomer, Johan G.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    In this paper a sensor is presented for the detection of carbon dioxide gas inside the stomach in order to diagnose gastrointestinal ischemia. The operational principle of the sensor is measuring the CO2 induced pressure generation of a confined pH-sensitive hydrogel by means of a micro pressure

  16. High-power TM01 millimeter wave pulse sensor in circular waveguide

    International Nuclear Information System (INIS)

    Wang Guang-Qiang; Zhu Xiang-Qin; Chen Zai-Gao; Wang Xue-Feng; Zhang Li-Jun

    2015-01-01

    By investigating the interaction of an n-type silicon sample with the TM 01 mode millimeter wave in a circular waveguide, a viable high-power TM 01 millimeter wave sensor is proposed. Based on the hot electron effect, the silicon sample serving as a sensing element (SE) and appropriately mounted on the inner wall of the circular waveguide is devoted to the on-line measurement of a high-power millimeter wave pulse. A three-dimensional parallel finite-difference time-domain method is applied to simulate the wave propagation within the measuring structure. The transverse electric field distribution, the dependences of the frequency response of the voltage standing-wave ratio (VSWR) in the circular waveguide, and the average electric field amplitude within the SE on the electrophysical parameters of the SE are calculated and analyzed in the frequency range of 300–400 GHz. As a result, the optimal dimensions and specific resistance of the SE are obtained, which provide a VSWR of no more than 2.0, a relative sensitivity around 0.0046 kW −1 fluctuating within ± 17.3%, and a maximum enduring power of about 4.3 MW. (paper)

  17. Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer

    International Nuclear Information System (INIS)

    Klepper, C.C.; Biewer, T.M.; Marcus, C.; Graves, V.B.; Andrew, P.; Hughes, S.; Gardner, W.L.

    2017-01-01

    The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for /textasciitilde 1 s response time from the sensor cluster [1].

  18. Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer

    Science.gov (United States)

    Klepper, C. C.; Biewer, T. M.; Marcus, C.; Andrew, P.; Gardner, W. L.; Graves, V. B.; Hughes, S.

    2017-10-01

    The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].

  19. Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Biewer, Theodore M. [ORNL; Marcus, Chris [ORNL; Klepper, C Christopher [ORNL; Andrew, Philip [ITER Organization, Cadarache, France; Gardner, W. L. [United States ITER Project Office; Graves, Van B. [ORNL; Hughes, Shaun [ITER Organization, Saint Paul Lez Durance, France

    2017-10-01

    The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].

  20. Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.W.J.; Yang, S.M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Materials Chemistry Research Group; Chabanis, G.; Williams, D.E. [University Coll., London (United Kingdom). Dept. of Chemistry

    2001-10-02

    Periodic macroporous forms of nc-SnO{sub 2} have been synthesized by two methods, giving opals and inverse opals that can be used as structurally well-defined gas sensors, as demonstrated for CO gas, as well as for toluene and ethanol vapors. The inverse opals, in particular, seem to approximate ''ideal'' behavior. (orig.)

  1. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  2. Gas Sensors Built with Nanomaterials and Provided with a Heating Double Purpose Hot-plate

    Directory of Open Access Journals (Sweden)

    Cristian L. ARRIETA

    2017-01-01

    Full Text Available Pure or doped SnO2, has been used to build resistive type gas sensors from several decades. This subject has been retaken using pure or doped nanocrystalline SnO2 to build the sensors, finding considerable advantages in devices performance. The sensors working temperature (Tw decreases from (350-450 0C to (180-200 0C in comparison with that of devices built with microcrystalline conventional material. Sensitivity of sensors built with nanocrystalline material in comparison with that of devices built with conventional microcrystalline material, increases from 30 % to 37 %. In this work, SnO2 is synthesized using two different modified techniques based on gel-combustion and reactive oxidation and results of both syntheses are compared. Nanomaterials are characterised with X-ray diffraction (XRD, High Resolution Transmission Electron Microscopy (HRTEM and Field Emission Electron Scanning Microscopy (FESEM and absorption techniques (BET. An electronic system, already patented by the authors, enables to alternatively measure the sensor resistivity (which is proportional to the adsorbed gas concentration and set a constant working temperature, thus contributing to considerably save energy.

  3. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets

    Science.gov (United States)

    Liu, Zongyuan; Yu, Lingmin; Guo, Fen; Liu, Sheng; Qi, Lijun; Shan, Minyu; Fan, Xinhui

    2017-11-01

    A highly sensitive NO2 gas sensor based on ZnO nanowalls decorated rGO nanosheets was fabricated using a thermal reduction and soft solution process. The highly developed interconnected microporous networks of ZnO nanowalls were anchored homogeneously on the surface of reduced graphene oxide (rGO). Sensors fabricated with heterojunction structures achieved a higher response (S = 9.61) and shorter response-recovery (25 s, 15 s) behavior at room temperature to 50 ppm level NO2 effectively in contrast to those sensors based on net ZnO nanowalls or rGO layers. The stability and selectivity of ZnO/rGO heterojunction were carried out. Meanwhile, the effects of humidity on ZnO/rGO heterojunction gas sensor were investigated. The more preferable sensing performance of ZnO/rGO heterojunction to NO2 was discussed. It can be surmised that this NO2 gas sensor has potential for use as a portable room temperature gas sensor.

  4. Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions

    Science.gov (United States)

    Nasirian, Shahruz; Milani Moghaddam, Hossain

    2015-02-01

    In the present research, polyaniline assisted by TiO2:SnO2 nanoparticles was synthesized and deposited onto an epoxy glass substrate with Cu-interdigited electrodes for gas sensing application. To examine the efficiency of the polyaniline/TiO2:SnO2 nanocomposite (PTS) as a hydrogen (H2) gas sensor, its nature, stability, response, recovery/response time have been studied with a special focus on its ability to work at environmental conditions. H2 gas sensing results demonstrated that a PTS sensor with 20 and 10 wt% of anatase-TiO2 and SnO2 nanoparticles, respectively, has the best response time (75 s) with a recovery time of 117 s at environmental conditions. The highest (lowest) response (recovery time) was 6.18 (46 s) in PTS sensor with 30 and 15 wt% of anatase- (rutile-)TiO2 and SnO2 nanoparticles, respectively, at 0.8 vol.% H2 gas. Further, the H2 gas sensing mechanism of PTS sensor has also been studied.

  5. Quartz Crystal Microbalance Coated with Sol-gel-derived Thin Films as Gas Sensor for NO Detection

    Directory of Open Access Journals (Sweden)

    S. J. O’Shea

    2003-10-01

    Full Text Available This paper presents the possibilities and properties of Indium tin oxide (ITO-covered quartz crystal as a NOx toxic gas-sensor. The starting sol-gel solution was prepared by mixing indium chloride dissolved in acetylacetone and tin chloride dissolved in ethanol (0-20% by weight. The ITO thin films were deposited on the gold electrodes of quartz crystal by spin-coating technique and subsequently followed a standard photolithography to pattern the derived films to ensure all sensors with the same sensing areas. All heat treatment processes were controlled below 500°C in order to avoid the piezoelectric characteristics degradation of quartz crystal (Quartz will lose its piezoelectricity at ~573°C due to the phase change from α to β. The electrical and structural properties of ITO thin films were characterized with Hall analysis system, TG/DTA, XRD, XPS, SEM and etc. The gas sensor had featured with ITO thin films of ~100nm as the receptor to sense the toxic gas NO and quartz crystal with frequency of 10MHz as the transducer to transfer the surface reactions (mass loading, etc into the frequency shift. A homemade setup had been employed to measure the sensor response under the static mode. The experimental results had indicated that the ITO-coated QCM had a good sensitivity for NO gas, ~12Hz/100ppm within 5mins. These results prove that the ITO-covered quartz crystals are usable as a gas sensor and as an analytical device.

  6. Laser deposition of sulfonated phthalocyanines for gas sensors

    Czech Academy of Sciences Publication Activity Database

    Fitl, Přemysl; Vrňata, M.; Kopecký, D.; Vlček, J.; Škodová, J.; Bulíř, Jiří; Novotný, Michal; Pokorný, Petr

    2014-01-01

    Roč. 302, MAY (2014), s. 37-41 ISSN 0169-4332. [European-Materials-Research-Society Symposium on Laser Material Interactions for Micro- and Nano- Applications /5./. Strasbourg, 27.05.2013-31.05.2013] R&D Projects: GA ČR(CZ) GAP108/11/1298 Institutional support: RVO:68378271 Keywords : Matrix Assisted Pulsed Laser Evaporation * substituted phthalocyanine s * gas sensors * impedance measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  7. Study on the propagation law of shock wave resulting from coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; ZHOU Ai-tao; ZHANG Pin; LI Chuan; GUO Yan-wei

    2011-01-01

    According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.

  8. Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.

    Science.gov (United States)

    Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2018-01-16

    To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.

  9. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  10. Using pressure square-like wave to measure the dynamic characteristics of piezoelectric pressure sensor

    International Nuclear Information System (INIS)

    Han, L-L; Tsung, T-T; Chen, L-C; Chang Ho; Jwo, C-S

    2005-01-01

    Piezoelectric pressure sensors are commonly used to measuring the dynamic characteristics in a hydraulic system. The dynamic measurements require a pressure sensor which has a high response rate. In this paper, we proposed use of a pressure square wave to excite the piezoelectric pressure sensor. Experimental frequencies are 0.5, 1.0, 1.5, and 2.0 kHz at 10, 15, 20 bar, respectively. Results show that the waveform of time-domain and frequencydomain response are quite different under above testing conditions. The higher the frequencies tested, the faster the pressure-rise speeds obtained. Similarly, the higher the testing pressure, the shorter the rise time attained

  11. Linear spin waves in a trapped Bose gas

    International Nuclear Information System (INIS)

    Nikuni, T.; Williams, J.E.; Clark, C.W.

    2002-01-01

    An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent experiments at JILA with 87 Rb atoms confined in a harmonic trap. We present a theory of the spin-wave collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits, we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the peak density n, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show the largest deviation for intermediate densities, where one expects Landau damping--which is unaccounted for in our moment approach--to play a significant role

  12. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher

  13. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  14. Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism

    KAUST Repository

    Majhi, Sanjit Manohar

    2018-04-25

    In this work, Au@NiO core-shell nanoparticles (C-S NPs) as a p-type gas sensing material was synthesized by a facile wet-chemical method, and evaluated their gas sensing properties as compared to the pristine NiO NPs gas sensors. Transmission electron microscope (TEM) results exhibited the well-dispersed formation of Au@NiO C-S NPs having the total size of 70–120 nm and NiO shells having 30–50 nm thickness. The C-S morphology as well as the overall particle sizes are unchanged even at 500 °C. The gas sensing result reveals that the response of Au@NiO C-S NPs gas sensor is higher than pristine NiO NPs gas sensor for 100 ppm of ethanol at 200 °C operating temperature. The baseline resistance in the air for Au@NiO C-S NPs sensor is lowered as compared to pristine NiO NPs, which is due to the increased number of holes as charge carriers in Au@NiO C-S NPs. The high response of Au@NiO core-shell NPs as compared to pristine NiO NPs is attributed to electronic and chemical sensitization effects of Au. In Au@NiO C-S structure, the contact between metal (Au) and semiconductor (NiO) formed a Schottky junction since Au metal acted as electron acceptor, a withdrawal of electrons from NiO by Au metal core leaved behind number of holes as charge carriers in Au@NiO C-S NPs. Therefore, the baseline resistance of Au@NiO C-S NPs greatly decreased than pristine NiO NPs, as a result the Au@NiO C-S NPs showed higher response. On the other hand, in chemical sensitization effect, Au NPs catalyzed to dissociate O2 molecules into ionic species. This work will give some clue to the researchers for the further development of p-type based C-S NPs sensors.

  15. A Solitary Wave-Based Sensor to Monitor the Setting of Fresh Concrete

    Directory of Open Access Journals (Sweden)

    Piervincenzo Rizzo

    2014-07-01

    Full Text Available We present a proof-of-principle study about the use of a sensor for the nondestructive monitoring of strength development in hydrating concrete. The nondestructive evaluation technique is based on the propagation of highly nonlinear solitary waves (HNSWs, which are non-dispersive mechanical waves that can form and travel in highly nonlinear systems, such as one-dimensional particle chains. A built-in transducer is adopted to excite and detect the HNSWs. The waves are partially reflected at the transducer/concrete interface and partially transmitted into the concrete. The time-of-flight and the amplitude of the waves reflected at the interface are measured and analyzed with respect to the hydration time, and correlated to the initial and final set times established by the penetration test (ASTM C 403. The results show that certain features of the HNSWs change as the concrete curing progresses indicating that it has the potential of being an efficient, cost-effective tool for monitoring strengths/stiffness development.

  16. Gas scintillation drift chambers with wave shifter fiber readout

    International Nuclear Information System (INIS)

    Sadoulet, B.; Weiss, S.; Parsons, A.; Lin, R.P.; Smith, G.

    1988-01-01

    The authors present results from their prototype xenon gas scintillation drift chamber. They discuss its operation with two types of light detection schemes: one based on a Anger camera geometry and one based on an array of wave shifting light fibers. The results demonstrate some of the instruments's tremendous potential

  17. ALAT PENDETEKSI KEBOCORAN GAS BERACUN CO PADA MOBIL DENGAN ARRAY SENSOR MENGGUNAKAN FUZZY CONTROLLER

    Directory of Open Access Journals (Sweden)

    Slamet Widodo

    2016-03-01

    Full Text Available Perkembangan teknologi otomotif sekarang ini semakin pesat yaitu dengan fasilitas accessories mobil yang semakin lengkap. Namun berbagai fasilitas yang terdapat dalam mobil tanpa disadari menyimpan ancaman bahaya bagi pengguna mobil salah satunya ketika system pada AC (Air Conditioner terjadi kebocoran maka gas CO (karbon monoksida akan memenuhi ruang mobil yang tertutup. Gas CO ini sangat berbahaya karena gas ini tidak berwarna, tidak berbau, dan tidak berasa sehingga sulit untuk dideteksi yang dapat menyebabkan orang yang ada didalam mobil menjadi mati lemas tanpa disadari karena menghirup gas CO yang bocor. Dengan fenomena tersebut dibutuhkan sebuah alat yang dapat mendeteksi dan mengontrol kebocoran gas CO untuk memberikan rasa aman kepada pengguna mobil. Alat ini menggunakan kendali logika fuzzy sebagai proses pengambilan keputusan sebagai hasil nilai dari inferensi kerja array sensor. Pengendali utama pada sistem menggunakan mikrokontroller ATmega32. Ketika array sensor yaitu TGS2442 dan TGS2600 mendeteksi kadar gas CO >29,0 ppm berarti dalam status bahaya sehingga buzzer akan aktif diikuti motor DC yang menggerakkan kaca mobil agar terbuka. Berdasarkan lima kali pengujian yang dilakukan didapatkanlah rata-rata selisih error output gas sebesar 0.29 ppm disaat kondisi aman dan 3.87 ppm disaat kondisi bahaya.

  18. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.

    Science.gov (United States)

    Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun

    2018-02-05

    A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.

  19. Gas-leak localization using distributed ultrasonic sensors

    Science.gov (United States)

    Huseynov, Javid; Baliga, Shankar; Dillencourt, Michael; Bic, Lubomir; Bagherzadeh, Nader

    2009-03-01

    We propose an ultrasonic gas leak localization system based on a distributed network of sensors. The system deploys highly sensitive miniature Micro-Electro-Mechanical Systems (MEMS) microphones and uses a suite of energy-decay (ED) and time-delay of arrival (TDOA) algorithms for localizing a source of a gas leak. Statistical tools such as the maximum likelihood (ML) and the least squares (LS) estimators are used for approximating the source location when closed-form solutions fail in the presence of ambient background nuisance and inherent electronic noise. The proposed localization algorithms were implemented and tested using a Java-based simulation platform connected to four or more distributed MEMS microphones observing a broadband nitrogen leak from an orifice. The performance of centralized and decentralized algorithms under ED and TDOA schemes is analyzed and compared in terms of communication overhead and accuracy in presence of additive white Gaussian noise (AWGN).

  20. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  1. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Science.gov (United States)

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  2. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Directory of Open Access Journals (Sweden)

    Gunter Hagen

    2011-08-01

    Full Text Available Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers.

  3. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review.

    Science.gov (United States)

    Baron, Ronan; Saffell, John

    2017-11-22

    This review examines the use of amperometric electrochemical gas sensors for monitoring inorganic gases that affect urban air quality. First, we consider amperometric gas sensor technology including its development toward specifically designed air quality sensors. We then review recent academic and research organizations' studies where this technology has been trialed for air quality monitoring applications: early studies showed the potential of electrochemical gas sensors when colocated with reference Air Quality Monitoring (AQM) stations. Spatially dense networks with fast temporal resolution provide information not available from sparse AQMs with longer recording intervals. We review how this technology is being offered as commercial urban air quality networks and consider the remaining challenges. Sensors must be sensitive, selective, and stable; air quality monitors/nodes must be electronically and mechanically well designed. Data correction is required and models with differing levels of sophistication are being designed. Data analysis and validation is possibly the biggest remaining hurdle needed to deliver reliable concentration readings. Finally, this review also considers the roles of companies, urban infrastructure requirements, and public research in the development of this technology.

  4. A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth.

    Science.gov (United States)

    Wang, Xiaomei; Sun, Fazhe; Huang, Yongan; Duan, Yongqing; Yin, Zhouping

    2015-02-21

    Micropatterned ZnO nanorod arrays were fabricated by the mechanoelectrospinning-assisted direct-writing process and the hydrothermal growth process, and utilized as gas sensors that exhibited excellent Ohmic behavior and sensitivity response to oxidizing gas NO2 at low concentrations (1-100 ppm).

  5. Gas Identification Using Passive UHF RFID Sensor Platform

    Directory of Open Access Journals (Sweden)

    Muhammad Ali AKBAR

    2015-11-01

    Full Text Available The concept of passive Radio Frequency Identification (RFID sensor tag is introduced to remove the dependency of current RFID platforms on battery life. In this paper, a gas identification system is presented using passive RFID sensor tag along with the processing unit. The RFID system is compliant to Electronics Product Code Generation 2 (EPC-Gen2 protocol in 902-928 MHz ISM band. Whereas the processing unit is implemented and analyzed in software and hardware platforms. The software platform uses MATLAB, whereas a High Level Synthesis (HLS tool is used to implement the processing unit on a Zynq platform. Moreover, two sets of different gases are used along with Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA based feature reduction approaches to analyze in detail the best feature reduction approach for efficient classification of gas data. It is found that for the first set of gases, 90 % gases are identified using first three principal components, which is 7 % more efficient than LDA. However in terms of hardware overhead, LDA requires 50 % less hardware resources than PCA. The classification results for the second set of gases reveal that 91 % of gas classification is obtained using LDA and first four PCA, while LDA requires 52 % less hardware resources than PCA. The RFID tag used for transmission is implemented in 0.13 µm CMOS process, with simulated average power consumption of 2.6 µW from 1.2 V supply. ThingMagic M6e embedded reader is used for RFID platform implementation. It shows an output power of 31.5 dBm which allows a read range up to 9 meters.

  6. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    International Nuclear Information System (INIS)

    Juliasih, N; Buchari; Noviandri, I

    2017-01-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 – 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room. (paper)

  7. Nanocrystalline Pd:NiFe{sub 2}O{sub 4} thin films: A selective ethanol gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita, E-mail: smb.agc@gmail.com

    2016-10-15

    In this work, Pd:NiFe{sub 2}O{sub 4} thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe{sub 2}O{sub 4} thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe{sub 2}O{sub 4} nanoparticle thin film were fabricated. • Pd incorporation in NiFe{sub 2}O{sub 4} matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe{sub 2}O{sub 4} thin film sensor displays excellent long–term stability.

  8. PZT guided waves sensor permanently attached on multi-wire AWG12 cables used as communication medium

    Science.gov (United States)

    Trane, Gianpiero; Mijarez, Rito; Guevara, Ricardo; Baltazar, Arturo

    2015-03-01

    Guided waves in solid media have been used in structural health monitoring (SHM) and non-destructive testing (NDT) applications due to their mechanical propagation properties. In this context, guided waves communications offer the reuse of infrastructure as communication channel, in which the guided waves work as the information carrying signals. This study presents the proprietary design and implementation of a piezoelectric (PZT) sensor for the transmission and reception of guided waves that uses a multiple-wire AWG12 cable, commonly used in electric domestic and industrial applications, as a communication channel. The design involves electrical/mechanical coupling, electric isolation, instrumentation and casing. The PZT guided waves transmitter instrumentation includes a microcontroller-based pulse position modulator (PPM), a signal booster, a PZT crystal and a 9 V battery. Dispersion curves of the cable and dynamical linear 3D finite element (FE) models of the sensor were performed to substantiate the proper frequency selection. To evaluate the transmitter design, a receiver instrumentation package made of a PZT crystal, an amplifier and a commercial data acquisition module connected to a personal computer was implemented. Experimental tests were conducted in the laboratory using 1 m and 4 m AWG12 cables. Results showed that, although there was significant dispersion and multiple mode excitations of the transmitted pulses, the system correctly identified 10-bit frames of guided wave PPM encoded information.

  9. Time reversal technique for gas leakage detection.

    Science.gov (United States)

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.

  10. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection

    Directory of Open Access Journals (Sweden)

    Fang-Qian Xu

    2015-12-01

    Full Text Available A new wireless and passive surface acoustic wave (SAW-based chemical sensor for organophosphorous compound (OC detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs and three shorted reflectors was fabricated on YZ LiNbO3 piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally.

  11. Studies on Gas Sensing Performance of Cr-doped Indium Oxide Thick Film Sensors

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-02-01

    Full Text Available A series of In1-xCrxO3 composites, with x ranging from 0.01 to 0.5wt% were prepared by mechanochemically starting from InCl3 and CrO3. Structural and micro structural characteristics of the sample were investigated by XRD, SEM with EDAX. Thick films of pure Indium Oxide and composites were prepared by standard screen printing technique. The gas sensitivity of these thick films was tested for various gases. The pure Indium Oxide thick film (x=0 shows maximum sensitivity to ethanol vapour (80 ppm at 350 oC, but composite-A (x=0.01 thick film shows maximum sensitivity to H2S gas (40 ppm at 250 oC, composite-B (x=0.1 thick film shows higher sensitivity to NH3 gas (80 ppm at 250 oC and composite-C (x=0.5 thick film shows maximum sensitivity to Cl2 gas (80 ppm at 350 oC. A systematic study of gas sensing performance of the sensors indicates the key role played by concentration variation of Cr doped species. The sensitivity, selectivity and recovery time of the sensor were measured and presented.

  12. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  13. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    Science.gov (United States)

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  14. Development of a wireless nonlinear wave modulation spectroscopy (NWMS) sensor node for fatigue crack detection

    Science.gov (United States)

    Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon

    2014-03-01

    Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.

  15. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications

    International Nuclear Information System (INIS)

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO 3 nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO 3 sensor exhibited a high performance to NO 2 gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO 2 ) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO 2 . In addition, the developed sensor exhibited selective detection of low NO 2 concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  16. Design and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jun-Tao Gu

    2014-03-01

    Full Text Available The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxidation technique is used to manufacture a SiO2-Si3N2-SiO2 microstructure carrier with a sandwich structure, while wet etching silicon is used to form a beam structure to reduce the heat consumption. Thin-film technology is adopted to manufacture the platinum-film sensitive resistance. Nano Al2O3-ZrO-ThO is coated to format the sensor carrier, and the sensitive unit is dipped in a Pt-Pd catalyst solution to form the catalytic sensitive bridge arm. Meanwhile the uncoated catalyst carrier is considered as the reference unit, realizing an integrated chip based on a micro double bridge and forming sensors. The lines of the Pt thin-film resistance have been observed with an electronic microscope. The compensation of the sensitive material carriers and compensation materials have been analyzed using an energy spectrum. The results show that the alcohol sensor can detect a volume fraction between 0 and 4,500 × 10−6 and has good linear output characteristic. The temperature ranges from −20 to +40 °C. The humidity ranges from 30% to 85% RH. The zero output of the sensor is less than ±2.0% FS. The power consumption is ≤0.2 W, and both the response and recovery time are approximately 20 s.

  17. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    Directory of Open Access Journals (Sweden)

    Yuriy Vashpanov

    2011-11-01

    Full Text Available This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time.

  18. Optimal sensor locations for the backward Lagrangian stochastic technique in measuring lagoon gas emission

    Science.gov (United States)

    This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...

  19. An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

    Directory of Open Access Journals (Sweden)

    Elnaz Akbari

    2014-05-01

    Full Text Available Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs, holds great potential for applications in variety of sensors because of dangling π-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel surface molecules is emphasized. NH3 has been used as the prototype gas to be detected by the nanosensor and the corresponding current–voltage (I–V characteristics of the FET-based sensor are studied. A graphene-based gas sensor model is also developed. The results from graphene and CNT models are compared with the experimental data. A satisfactory agreement, within the uncertainties of the experiments, is obtained. Graphene-based gas sensor exhibits higher conductivity compared to that of CNT-based counterpart for similar ambient conditions.

  20. An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications.

    Science.gov (United States)

    Akbari, Elnaz; Arora, Vijay Kumar; Enzevaee, Aria; Ahmadi, Mohamad T; Saeidmanesh, Mehdi; Khaledian, Mohsen; Karimi, Hediyeh; Yusof, Rubiyah

    2014-01-01

    Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs), holds great potential for applications in variety of sensors because of dangling π-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs) and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET) based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel surface molecules is emphasized. NH3 has been used as the prototype gas to be detected by the nanosensor and the corresponding current-voltage (I-V) characteristics of the FET-based sensor are studied. A graphene-based gas sensor model is also developed. The results from graphene and CNT models are compared with the experimental data. A satisfactory agreement, within the uncertainties of the experiments, is obtained. Graphene-based gas sensor exhibits higher conductivity compared to that of CNT-based counterpart for similar ambient conditions.

  1. A Fiber-Optic Sensor for Leak Detection in a Space Environment

    Science.gov (United States)

    Sinko, John E.; Korman, Valentin; Hendrickson, Adam; Polzin, Kurt A.

    2009-01-01

    A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.

  2. Simulations, fabrication and characterization of diamond coated Love wave-type SAW sensors

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Soltani, A.; Rumeau, A.; Taylor, Andrew; Drbohlavová, L.; Klimša, Ladislav; Kopeček, Jaromír; Fekete, Ladislav; Krečmarová, Marie; Mortet, Vincent

    2015-01-01

    Roč. 212, č. 11 (2015), 2606-2610 ISSN 1862-6300 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029; GA ČR GA13-31783S Institutional support: RVO:68378271 Keywords : acoustic sensors * chemical vapor deposition * diamond * nanocrystalline materials * quartz * surface acoustic waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.648, year: 2015

  3. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Woo

    2016-09-01

    Full Text Available Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors.

  4. Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Arain

    2015-03-01

    Full Text Available The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

  5. audio-ultrasonic waves by argon gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.

    2010-01-01

    in the present work, wave emission formed by audio-ultrasonic plasma is investigated. the evidence of the magnetic and electric fields presence is performed by experimental technique. comparison between experimental field measurements and several plasma wave methods reveals the plasma audio-ultrasonic radiations mode. this plasma is a symmetrically driven capacitive discharge, consisting of three interactive regions: the electrodes, the sheaths, and the positive column regions . the discharge voltage is up to 900 volts, the discharge current flowing through the plasma attains a value of 360 mA .the frequency of the discharge voltage covers the audio and the ultrasonic range up to 100 khz. the effective plasma working distance has increased to attain the total length of the tube of 40 cm. a non-disturbing method using an external coil is used to measure the electric discharge field in a plane perpendicular to that of the plasma axe tube. this method proves the existence of a current flowing in a direction perpendicular to the plasma axe tube. a system of minute coils sensors proved the existence of two fields in two perpendicular directions . comparison between different observed fields reveals the existence of propagating electromagnetic waves due to the alternating current flowing through the skin plasma tube. the field intensity distribution along the tube draws the discharge current behavior between the two plasma electrodes that can be used to predict the range of the plasma discharge current.

  6. Detection of Hydrogen Sulphide Gas Sensor Based Nanostructured Ba2CrMoO6 Thick Films

    Directory of Open Access Journals (Sweden)

    A. V. Kadu

    2007-11-01

    Full Text Available Nanocrystalline pure and doped Ba2CrMoO6, having an average crystallite size of 40 nm were synthesized by the sol-gel citrate method. Structural and gas-sensing characteristics were performed by using X-ray diffraction (XRD and sensitivity measurements. The gas sensing properties to reducing gases like Hydrogen sulphide (H2S, liquefied petroleum gas (LPG, carbon monoxide (CO and hydrogen gas (H2 were also discussed. The maximum sensitivity was obtained for 5 wt % Ni doped Ba2CrMoO6 at an operating temperature 250oC for H2S gas. Pd incorporation over 5 wt% Ni doped Ba2CrMoO6 improved the sensitivity, selectivity, response time, and reduced the operating temperature from 250 to 200oC of the sensor for H2S gas. This sensor also shows good satiability.

  7. A Novel Particulate Matter 2.5 Sensor Based on Surface Acoustic Wave Technology

    Directory of Open Access Journals (Sweden)

    Jiuling Liu

    2018-01-01

    Full Text Available Design, fabrication and experiments of a miniature particulate matter (PM 2.5 sensor based on the surface acoustic wave (SAW technology were proposed. The sensor contains a virtual impactor (VI for particle separation, a thermophoretic precipitator (TP for PM2.5 capture and a SAW sensor chip for PM2.5 mass detection. The separation performance of the VI was evaluated by using the finite element method (FEM model and the PM2.5 deposition characteristic in the TP was obtained by analyzing the thermophoretic theory. Employing the coupling-of-modes (COM model, a low loss and high-quality SAW resonator was designed. By virtue of the micro electro mechanical system (MEMS technology and semiconductor technology, the SAW based PM2.5 sensor detecting probe was fabricated. Then, combining a dual-port SAW oscillator and an air sampler, the experimental platform was set up. Exposing the PM2.5 sensor to the polystyrene latex (PSL particles in a chamber, the sensor performance was evaluated. The results show that by detecting the PSL particles with a certain diameter of 2 μm, the response of the SAW based PM2.5 sensor is linear, and in accordance with the response of the light scattering based PM2.5 monitor. The developed SAW based PM2.5 sensor has great potential for the application of airborne particle detection.

  8. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  9. Porous TiO₂-Based Gas Sensors for Cyber Chemical Systems to Provide Security and Medical Diagnosis.

    Science.gov (United States)

    Galstyan, Vardan

    2017-12-19

    Gas sensors play an important role in our life, providing control and security of technical processes, environment, transportation and healthcare. Consequently, the development of high performance gas sensor devices is the subject of intense research. TiO₂, with its excellent physical and chemical properties, is a very attractive material for the fabrication of chemical sensors. Meanwhile, the emerging technologies are focused on the fabrication of more flexible and smart systems for precise monitoring and diagnosis in real-time. The proposed cyber chemical systems in this paper are based on the integration of cyber elements with the chemical sensor devices. These systems may have a crucial effect on the environmental and industrial safety, control of carriage of dangerous goods and medicine. This review highlights the recent developments on fabrication of porous TiO₂-based chemical gas sensors for their application in cyber chemical system showing the convenience and feasibility of such a model to provide the security and to perform the diagnostics. The most of reports have demonstrated that the fabrication of doped, mixed and composite structures based on porous TiO₂ may drastically improve its sensing performance. In addition, each component has its unique effect on the sensing properties of material.

  10. Robust Design of SAW Gas Sensors by Taguchi Dynamic Method

    Directory of Open Access Journals (Sweden)

    Hsun-Heng Tsai

    2009-02-01

    Full Text Available This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.

  11. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    Directory of Open Access Journals (Sweden)

    Raúl O. Cadena-Pereda

    2012-08-01

    Full Text Available Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  12. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water.

    Science.gov (United States)

    Cadena-Pereda, Raúl O; Rivera-Muñoz, Eric M; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J; Anaya-Rivera, Ely K

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  13. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    OpenAIRE

    Bakrania, Smitesh D.; Wooldridge, Margaret S.

    2009-01-01

    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition meth...

  14. Possibility of gas sensor based on C_2_0 molecular devices

    International Nuclear Information System (INIS)

    Zhao, Wenkai; Yang, Chuanlu; Zou, Dongqing; Sun, Zhaopeng; Ji, Guomin

    2017-01-01

    We theoretically investigate the possibility of diatomic gas detection (NO, CO, O_2) by making use of the transport properties of the C_2_0 molecular junctions. The calculations are performed by using nonequilibrium Green's function (NEGF) formalism in combination with density functional theory (DFT). In this work, we systematically study the most stable adsorption structural configurations, adsorption energy, and the transport properties on C_2_0 molecular junctions with these diatomic gas molecules. It is found that NO and O_2 gas molecule can be detected selectively. We suggest its possibility of nanosensors for highly sensitive and selective based on C_2_0 molecular junction systems. - Highlights: • The most favorable adsorption site is investigated. • The mechanism of gas sensors is revealed. • NO and O_2 gas molecules can be detected by C_2_0 selectively.

  15. Characterization of gas sensors for measurement of unburned gases in small district heating furnaces; Karaktaerisering av gassensorer foer maetning av ofoerbraenda aemnen i naervaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie [Swedish National Testing and Research Inst., Boraas (Sweden)

    2004-11-01

    Small district heating boilers are often equipped with a simple O{sub 2}-gauge (lambda sensor) that controls the air supply. There is a great need in small furnaces of continuous measurements of several gas components such as CO, THC and NO{sub x} by simple and cheap technique. Recently, new types of cheap gas sensors have been developed which can be suitable. These gas sensors measure the amount of unburned species (sum of carbon monoxide, hydrocarbons and hydrogen). The objective with this project has been to characterise several gas sensors for unburnt in order to evaluate if they are suitable for combustion control and surveillance of small district heating furnaces. In this work three different gas sensors have been characterised. The sensors were characterised in the laboratory where they were exposed for mixtures of pure gases. The sensors were mounted inside the flue gas channel from a small district heating furnace during 3 months in order to estimate the sensors robustness and the character of the signal in flue gas. The tests with pure gases show that all sensors also reacts for other components besides CO and THC. It is mainly the oxygen concentrations that affect the sensors characteristics but also an altered humidity is important. Measurements in the small district heating furnace showed that none of the sensors was able to measure correctly when mounted directly in the flue gas channel (in situ). The in situ sensors are covered with fly ash and the fly ash also slowly destroys the sensors. Sensors mounted after a filter (exposed for a particle free flue gas) work satisfactory. All of the tested sensors, mounted after a filter, follow the changes in CO concentration well. Some of the sensors are capable of detecting CO as low as 15 ppm. But the accuracy of how well the sensors are able to detect CO varies from sensor to sensor. The measurements also show that even if the sensor is able to follow the changes in CO concentration, the ground signal of

  16. Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring

    Science.gov (United States)

    Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.

    2017-12-01

    While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.

  17. Real time EM waves monitoring system for oil industry three phase flow measurement

    International Nuclear Information System (INIS)

    Al-Hajeri, S; Wylie, S R; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Monitoring fluid flow in a dynamic pipeline is a significant problem in the oil industry. In order to manage oil field wells efficiently, the oil industry requires accurate on line sensors to monitor the oil, gas, and water flow in the production pipelines. This paper describes a non-intrusive sensor that is based on an EM Waves cavity resonator. It determines and monitors the percentage volumes of each phase of three phase (oil, gas, and water) in the pipeline, using the resonant frequencies shifts that occur within an electromagnetic cavity resonator. A laboratory prototype version of the sensor system was constructed, and the experimental results were compared to the simulation results which were obtained by the use of High Frequency Structure Simulation (HFSS) software package.

  18. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  19. CO{sub 2} gas sensors based on rare earth oxycarbonates

    Energy Technology Data Exchange (ETDEWEB)

    Haensch, Alexander

    2016-07-01

    This title presents a new type of CO{sub 2} gas sensor, that allows the measurement of CO{sub 2} gas with very low effort. The measurement principle is based on two semiconducting materials. One the ''receptor'' and a ''transducer'' form a semiconductor junction. Electronic changes in the receptor change the electrical resistance in the transducer and therefor allow the easy electrical measurement. The reactivity and the reaction mechanism is thoroughly studied. In the first part the basics and resistance measurements are presented. A comparison between different mixtures is done. The main part studies the surface chemistry with operando DRIFT spectroscopy. The chemical reactivity of different target gases and background gases is studied thoroughly. The electronic properties of Oxycarbonates and the combination of oxycarbonate and tin oxide were studied using operando Kelvin probes measurements. The result is that CO{sub 2} alters the electron affinity of the material. Once moisture is present, an additional band bending is visible. The band bending dominated in a humid atmosphere, the work function changes. The electronic connection of oxycarbonate and tin oxide, the work function change of Oxycarbonates can be transferred to the tin oxide. Using the collected data, a basic idea of the operation will be presented by a two-semiconductor materials gas sensor.

  20. Gas transfer under breaking waves: experiments and an improved vorticity-based model

    Directory of Open Access Journals (Sweden)

    V. K. Tsoukala

    2008-07-01

    Full Text Available In the present paper a modified vorticity-based model for gas transfer under breaking waves in the absence of significant wind forcing is presented. A theoretically valid and practically applicable mathematical expression is suggested for the assessment of the oxygen transfer coefficient in the area of wave-breaking. The proposed model is based on the theory of surface renewal that expresses the oxygen transfer coefficient as a function of both the wave vorticity and the Reynolds wave number for breaking waves. Experimental data were collected in wave flumes of various scales: a small-scale experiments were carried out using both a sloping beach and a rubble-mound breakwater in the wave flume of the Laboratory of Harbor Works, NTUA, Greece; b large-scale experiments were carried out with a sloping beach in the wind-wave flume of Delft Hydraulics, the Netherlands, and with a three-layer rubble mound breakwater in the Schneideberg Wave Flume of the Franzius Institute, University of Hannover, Germany. The experimental data acquired from both the small- and large-scale experiments were in good agreement with the proposed model. Although the apparent transfer coefficients from the large-scale experiments were lower than those determined from the small-scale experiments, the actual oxygen transfer coefficients, as calculated using a discretized form of the transport equation, are in the same order of magnitude for both the small- and large-scale experiments. The validity of the proposed model is compared to experimental results from other researchers. Although the results are encouraging, additional research is needed, to incorporate the influence of bubble mediated gas exchange, before these results are used for an environmental friendly design of harbor works, or for projects involving waste disposal at sea.

  1. A novel methanol sensor based on gas-penetration through a porous polypyrrole-coated polyacrylonitrile nanofiber mat.

    Science.gov (United States)

    Jun, Tae-Sun; Ho, Thi Anh; Rashid, Muhammad; Kim, Yong Shin

    2013-09-01

    In this work, we propose a novel chemoresistive gas sensor operated under a vertical analyte flow passing through a permeable sensing membrane. Such a configuration is different from the use of a planar sensor implemented under a conventional horizontal flow. A highly porous core-shell polyacrylonitrile-polypyrrole (PAN@PPy) nanofiber mat was prepared as the sensing element via electrospinning and two-step vapor-phase polymerization (VPP). Various analysis methods such as SEM, TEM, FT-IR and XPS measurements were employed in order to characterize structural features of the porous sensing mat. These analyses confirmed that very thin (ca. 10 nm) conductive PPy sheath layers were deposited by VPP on electrospun PAN nanofibers with an average diameter of 258 nm. Preliminary results revealed that the gas penetration-type PAN@PPy sensor had a higher sensor response and shorter detection and recovery times upon exposure to methanol analyte when compared with a conventional horizontal flow sensor due to efficient and fast analyte transfer into the sensing layer.

  2. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Wan, Pengbo; Wang, Cheng; Luo, Ruixian; Li, Yaping; Liu, Junfeng; Sun, Xiaoming

    2015-01-21

    Transparent chemical gas sensors are assembled from a transparent conducting film of hierarchically nanostructured polyaniline (PANI) networks fabricated on a flexible PET substrate, by coating silver nanowires (Ag NWs) followed by the in situ polymerization of aniline near the sacrificial Ag NW template. The sensor exhibits enhanced gas sensing performance at room temperature in both sensitivity and selectivity to NH3 compared to pure PANI film. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PP and PS seismic response from fractured tight gas reservoirs: a case study

    International Nuclear Information System (INIS)

    Jianming, Tang; Shaonan, Zhang; Li, Xiang-Yang

    2008-01-01

    In this paper, we present an example of using PP and PS converted-wave data recorded by digital micro-eletro-mechanical-systems (MEMS) to evaluate a fractured tight gas reservoir from the Xinchang gas field in Sichuan, China. For this, we analyse the variations in converted shear-wave splitting, Vp/Vs ratio and PP and PS impedance, as well as other attributes based on absorption and velocity dispersion. The reservoir formation is tight sandstone, buried at a depth of about 5000 m, and the converted-wave data reveal significant shear-wave splitting over the reservoir formation. We utilize a rotation technique to extract the shear-wave polarization and time delay from the data, and a small-window correlation method to build time-delay spectra that allow the generation of a time-delay section. At the reservoir formation, the shear-wave time delay is measured at 20 ms, about 15% shear-wave anisotropy, correlating with the known gas reservoirs. Furthermore, the splitting anomalies are consistent with the characteristics of other attributes such as Vp/Vs ratio and P- and S-wave acoustic and elastic impedance. The P-wave shows consistent low impedance over the reservoir formation, whilst the S-wave impedance shows relatively high impedance. The calculated gas indicator based on absorption and velocity dispersion yields a high correlation with the gas bearing formations. This confirms the benefit of multicomponent seismic data from digital MEMS sensors

  4. Deployment Algorithms of Wireless Sensor Networks for Near-surface Underground Oil and Gas Pipeline Monitoring

    Directory of Open Access Journals (Sweden)

    Hua-Ping YU

    2014-07-01

    Full Text Available Oil and gas pipelines are the infrastructure of national economic development. Deployment problem of wireless underground sensor networks (WUSN for oil and gas pipeline systems is a fundamental problem. This paper firstly analyzed the wireless channel characteristics and energy consumption model in near-surface underground soil, and then studied the spatial structure of oil and gas pipelines and introduced the three-layer system structure of WUSN for oil and gas pipelines monitoring. Secondly, the optimal deployment strategy in XY plane and XZ plane which were projected from three-dimensional oil and gas pipeline structure was analyzed. Thirdly, the technical framework of using kinetic energy of the fluid in pipelines to recharge sensor nodes and partition strategy for energy consumption balance based on the wireless communication technology of magnetic induction waveguide were proposed, which can effectively improve the energy performance and connectivity of the network, and provide theoretical guidance and practical basis for the monitoring of long oil and gas pipeline network, the city tap water pipe network and sewage pipe network.

  5. Effect of Humid Aging on the Oxygen Adsorption in SnO2 Gas Sensors

    Directory of Open Access Journals (Sweden)

    Koichi Suematsu

    2018-01-01

    Full Text Available To investigate the effect of aging at 580 °C in wet air (humid aging on the oxygen adsorption on the surface of SnO2 particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO2 resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants (K1; for O− adsorption, K2; for O2− adsorption were estimated on the basis of the theoretical model of oxygen adsorption. The K1 and K2 in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O− and O2−. These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO2 resistive-type gas sensors in dry and wet atmospheres.

  6. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene

    Science.gov (United States)

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, Gyeongho; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-01

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area.Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01468b

  7. Investigation of Gasochromic Rhodium Complexes Towards Their Reactivity to CO and Integration into an Optical Gas Sensor for Fire Gas Detection

    Directory of Open Access Journals (Sweden)

    Carolin Pannek

    2018-06-01

    Full Text Available The detection of the toxic gas carbon monoxide (CO in the low ppm range is required in different applications. We present a study of the reactivity of different gasochromic rhodium complexes towards the toxic gas carbon monoxide (CO. Therefore, variations of binuclear rhodium complexes with different ligands were prepared. They were characterized by FTIR spectroscopy, 1H NMR spectroscopy, and differential scanning calorimetry. All complexes are spectroscopically distinguishable and temperature stable up to at least 187 °C. The gasochromic behavior of all different compounds was tested. Therefore, the compounds were dissolved in toluene and exposed to 100 ppm CO for 10 min to investigate their gas sensitivity and reaction velocity. The changes in the transmission spectra were recorded by UV/vis spectroscopy. Furthermore, a significant influence of the solvent to the color dyes’ gasochromic reaction and behavior was observed. After characterization, one complex was transferred as sensing element into an optical gas sensor. Two different measurement principles (reflection- and waveguide-based were built up and tested towards their capability as gasochromic CO sensors. Finally, different gas-dependent measurements were carried out.

  8. Shear stress from hot-film sensors in unsteady gas flow

    International Nuclear Information System (INIS)

    Cole, K.D.

    1991-01-01

    In this paper a data analysis procedure is proposed for obtaining unsteady wall shear stress from flush-mounted hot-film anemometer measurements. The method is based on a two-dimensional heat transfer model of the unsteady heat transfer in both the hot-film sensor and in the gas flow. The sensor thermal properties are found from preliminary calibration experiments at zero flow. Numerical experiments are used to demonstrate the data analysis method using simulated sensor signals that are corrupted with noise. The numerical experiments show that noise in the data propagates into the results so that data smoothing may be important in analyzing experimental data. Because the data analysis procedure is linear, a linear digital filter is constructed that could be used for processing large amounts of experimental data. However, further refinements will be needed before the method can be applied to experimental data

  9. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor

    Science.gov (United States)

    Anand, Kanica; Kaur, Jasmeet; Singh, Ravi Chand; Thangaraj, Rengasamy

    2017-08-01

    Pure and Ag-doped In2O3 nanoparticles are synthesized by the co-precipitation method and are characterized by X-ray diffraction, transmission electron microscopy and photoluminescence spectroscopy. Gas sensing properties of the sensors has been investigated towards methanol, ethanol, acetone and LPG at different operating temperatures. It is found that the sensor response magnitude of the 3% Ag-doped In2O3 nanoparticles sensors is higher to 50 ppm of ethanol at 300 °C, to acetone at 350 °C and to LPG at 400 °C. This is mainly attributed to the large number of oxygen vacancies and defects in doped sensors as corroborated by the photoluminescence studies.

  10. Gas sensors for ammonia detection based on polyaniline-coated multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    He Lifang; Jia Yong; Meng Fanli; Li Minqiang; Liu Jinhuai

    2009-01-01

    Polyaniline-coated multi-wall carbon nanotubes (PANI-coated MWNTs) were prepared by in situ polymerization method. Field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis were used to characterize the as-prepared PANI-coated MWNTs. Obtained results indicated that PANI was uniformly coated on MWNTs, and the thickness of the coatings can be controlled by changing the weight ratios of aniline monomer and MWNTs in the polymerization process. Sensors were fabricated by spin-coating onto pre-patterned electrodes, and ammonia gas sensing properties of the as-prepared PANI-coated MWNTs were studied. The results showed a good response and reproducibility towards ammonia at room temperature. In addition, PANI-coated MWNTs exhibited a linear response to ammonia in the range of 0.2-15 ppm. The effects of the thickness of PANI coatings on the gas sensing properties were also investigated in detail. The results suggest a potential application of PANI-coated MWNTs in gas sensor for detecting ammonia.

  11. All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening.

    Science.gov (United States)

    Jochum, Tobias; Rahal, Leila; Suckert, Renè J; Popp, Jürgen; Frosch, Torsten

    2016-03-21

    In today's fruit conservation rooms the ripening of harvested fruit is delayed by precise management of the interior oxygen (O2) and carbon dioxide (CO2) levels. Ethylene (C2H4), a natural plant hormone, is commonly used to trigger fruit ripening shortly before entering the market. Monitoring of these critical process gases, also of the increasingly favored cooling agent ammonia (NH3), is a crucial task in modern postharvest fruit management. The goal of this work was to develop and characterize a gas sensor setup based on fiber enhanced Raman spectroscopy for fast (time resolution of a few minutes) and non-destructive process gas monitoring throughout the complete postharvest production chain encompassing storage and transport in fruit conservation chambers as well as commercial fruit ripening in industrial ripening rooms. Exploiting a micro-structured hollow-core photonic crystal fiber for analyte gas confinement and sensitivity enhancement, the sensor features simultaneous quantification of O2, CO2, NH3 and C2H4 without cross-sensitivity in just one single measurement. Laboratory measurements of typical fruit conservation gas mixtures showed that the sensor is capable of quantifying O2 and CO2 concentration levels with accuracy of 3% or less with respect to reference concentrations. The sensor detected ammonia concentrations, relevant for chemical alarm purposes. Due to the high spectral resolution of the gas sensor, ethylene could be quantified simultaneously with O2 and CO2 in a multi-component mixture. These results indicate that fiber enhanced Raman sensors have a potential to become universally usable on-site gas sensors for controlled atmosphere applications in postharvest fruit management.

  12. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon

    2017-08-05

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  13. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon; Kang, Sun Kil; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Kumaresan, Yogeenth; Lee, Sungeun; Lee, Chaedeok; Ham, Moon-Ho; Jung, Gun Young

    2017-01-01

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  14. Nanomolecular gas sensor architectures based on functionalized carbon nanotubes for vapor detection

    Science.gov (United States)

    Hines, Deon; Zhang, Henan; Rümmeli, Mark H.; Adebimpe, David; Akins, Daniel L.

    2015-05-01

    There is enormous interest in detection of simple & complex odors by mean of electronic instrumentation. Specifically, our work focuses on creating derivatized-nanotube-based "electronic noses" for the detection and identification of gases, and other materials. We have grafted single-walled carbon nanotubes (SWNTs) with an array of electron-donating and electron withdrawing moieties and have characterized some of the physicochemical properties of the modified nanotubes. Gas sensing elements have been fabricated by spin coating the functionalized nanotubes onto interdigitated electrodes (IDE's), creating an array of sensors. Each element in the sensor array can contain a different functionalized matrix. This facilitates the construction of chemical sensor arrays with high selectivity and sensitivity; a methodology that mimics the mammalian olfactory system. Exposure of these coated IDEs to organic vapors and the successful classification of the data obtained under DC monitoring, indicate that the system can function as gas sensors of high repeatability and selectivity for a wide range of common analytes. Since the detection of explosive materials is also of concern in this research, our next phase focuses on explosives such as, TNT, RDX, and Triacetone Triperoxide (TATP). Sensor data from individual detection are assessed on their own individual merits, after which they are amalgamated and reclassified to present each vapor as unique data point on a 2-dimensional map and with minimum loss of information. This approach can assist the nation's need for a technology to defeat IEDs through the use of methods that detect unique chemical signatures associated with explosive molecules and byproducts.

  15. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part I: surface relief gratings.

    Science.gov (United States)

    Cody, D; Naydenova, I

    2017-12-01

    The suitability of holographic structures fabricated in zeolite nanoparticle-polymer composite materials for gas sensing applications has been investigated. Theoretical modeling of the sensor response (i.e., change in hologram readout due to a change in refractive index modulation or thickness as a result of gas adsorption) of different sensor designs was carried out using Raman-Nath theory and Kogelnik's coupled wave theory. The influence of a range of parameters on the sensor response of holographically recorded surface and volume photonic grating structures has been studied, namely the phase difference between the diffracted and probe beam introduced by the grating, grating geometry, thickness, spatial frequency, reconstruction wavelength, and zeolite nanoparticle refractive index. From this, the optimum fabrication conditions for both surface and volume holographic gas sensor designs have been identified. Here, in part I, results from theoretical modeling of the influence of design on the sensor response of holographically inscribed surface relief structures for gas sensing applications is reported.

  16. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    Science.gov (United States)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  17. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jerome L. Wright

    2003-07-01

    Full Text Available This paper describes the development of a surface-acoustic-wave (SAW sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene, which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  18. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jingli Yang

    2016-12-01

    Full Text Available The k-nearest neighbour (kNN rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitoring processes with a large volume of variables and training samples and may be impossible for real-time monitoring. To address this problem, a novel clustering-kNN rule is presented. The landmark-based spectral clustering (LSC algorithm, which has low computational complexity, is employed to divide the entire training sample set into several clusters. Further, the kNN rule is only conducted in the cluster that is nearest to the test sample; thus, the efficiency of the fault detection methods can be enhanced by reducing the number of training samples involved in the detection process of each test sample. The performance of the proposed clustering-kNN rule is fully verified in numerical simulations with both linear and non-linear models and a real gas sensor array experimental system with different kinds of faults. The results of simulations and experiments demonstrate that the clustering-kNN rule can greatly enhance both the accuracy and efficiency of fault detection methods and provide an excellent solution to reliable and real-time monitoring of gas sensor arrays.

  19. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays

    Science.gov (United States)

    Yang, Jingli; Sun, Zhen; Chen, Yinsheng

    2016-01-01

    The k-nearest neighbour (kNN) rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitoring processes with a large volume of variables and training samples and may be impossible for real-time monitoring. To address this problem, a novel clustering-kNN rule is presented. The landmark-based spectral clustering (LSC) algorithm, which has low computational complexity, is employed to divide the entire training sample set into several clusters. Further, the kNN rule is only conducted in the cluster that is nearest to the test sample; thus, the efficiency of the fault detection methods can be enhanced by reducing the number of training samples involved in the detection process of each test sample. The performance of the proposed clustering-kNN rule is fully verified in numerical simulations with both linear and non-linear models and a real gas sensor array experimental system with different kinds of faults. The results of simulations and experiments demonstrate that the clustering-kNN rule can greatly enhance both the accuracy and efficiency of fault detection methods and provide an excellent solution to reliable and real-time monitoring of gas sensor arrays. PMID:27929412

  20. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    International Nuclear Information System (INIS)

    Xu Lei; Wang Rui; Liu Yong; Dong Liang

    2011-01-01

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (general)

  1. In-situ growth of AuNPs on WS2@U-bent optical fiber for evanescent wave absorption sensor

    Science.gov (United States)

    Zhang, Suzhen; Zhao, Yuefeng; Zhang, Chao; Jiang, Shouzhen; Yang, Cheng; Xiu, Xianwu; Li, Chonghui; Li, Zhen; Zhao, Xiaofei; Man, Baoyuan

    2018-05-01

    The sensitivity of the evanescent wave absorption sensor is always a hot topic which has been attracted researchers' discussion. It is still a challenge for developing the effective sensor to sensitively detect some biochemical molecules solution in a simple and low-cost way. In this paper, an evanescent wave absorption (EWA) sensor has been presented based on the U-bent multimode fiber coated with tungsten disulfide (WS2) film and in-situ growth of gold nanoparticles (AuNPs) for the detection of ethanol solution and sodium chloride (NaCl) solution. Benefitted from the effective light coupling produced between U-bent probe and AuNPs, we attained the optimal size of the AuNPs by changing the reaction time between WS2 and tetrachloroauric acid (HAuCl4). With the AuNPs/WS2@U-bent optical fiber, we discussed the behaviors of EWA sensor, such as sensitivity, reproducibility, fast response-recovery time and stability. The sensitivity (△A/△C) of the proposed AuNPs/WS2@U-bent optical fiber EWA sensor is 0.65 for the detection of the ethanol solution. Besides, the AuNPs/WS2@U-bent optical fiber EWA sensor exhibits high sensitivity in detection of the sodium chloride (NaCl), which can reach 1.5 when the proposed sensor was immersed into NaCl solution. Our work demonstrates that the U-bent optical fiber EWA sensor may have promising applications in testing the solution of concentration.

  2. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    International Nuclear Information System (INIS)

    Wu, Hao; Dong, Feng

    2014-01-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model

  3. Sensing Properties of Pd-Loaded Co3O4 Film for a ppb-Level NO Gas Sensor

    Directory of Open Access Journals (Sweden)

    Takafumi Akamatsu

    2015-04-01

    Full Text Available We prepared 0.1 wt%–30 wt% Pd-loaded Co3O4 by a colloidal mixing method and investigated the sensing properties of a Pd-loaded Co3O4 sensor element, such as the sensor response, 90% response time, 90% recovery time, and signal-to-noise (S/N ratio, toward low nitric oxide (NO gas levels in the range from 50 to 200 parts per billion. The structural properties of the Pd-loaded Co3O4 powder were investigated using X-ray diffraction analysis and transmission electron microscopy. Pd in the powder existed as PdO. The sensor elements with 0.1 wt%–10 wt% Pd content have higher sensor properties than those without any Pd content. The response of the sensor element with a 30 wt% Pd content decreased markedly because of the aggregation and poor dispersibility of the PdO particles. High sensor response and S/N ratio toward the NO gas were achieved when a sensor element with 10 wt% Pd content was used.

  4. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Javier Burgués

    2018-01-01

    Full Text Available Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA sensors were exposed to low concentrations of carbon monoxide (0–9 ppm with environmental conditions, such as ambient humidity (15–75% relative humidity and temperature (21–27 °C, varying within the indicated ranges. Partial Least Squares (PLS models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm. Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm. The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate

  5. Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, M., E-mail: m.spindler@ifw-dresden.de [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany); Herold, S.; Acker, J. [BTU Cottbus – Senftenberg, Faculty of Sciences, P.O. Box 101548, 01968 Senftenberg (Germany); Brachmann, E.; Oswald, S.; Menzel, S.; Rane, G. [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany)

    2016-08-01

    Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > 300 °C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10{sup −1} Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. - Highlights: • We fabricated Tungsten SAW Electrodes by magnetron sputtering technology. • An etching process removes sidewall covering of photoresist, which allows lift-off. • Tungsten etching rates based on a hydrogen peroxide solutions were determined.

  6. [A mobile sensor for remote detection of natural gas leakage].

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way.

  7. Human Heart Pulse Wave Responses Measured Simultaneously at Several Sensor Placements by Two MR-Compatible Fibre Optic Methods

    Directory of Open Access Journals (Sweden)

    Teemu Myllylä

    2012-01-01

    Full Text Available This paper presents experimental measurements conducted using two noninvasive fibre optic methods for detecting heart pulse waves in the human body. Both methods can be used in conjunction with magnetic resonance imaging (MRI. For comparison, the paper also performs an MRI-compatible electrocardiogram (ECG measurement. By the simultaneous use of different measurement methods, the propagation of pressure waves generated by each heart pulse can be sensed extensively in different areas of the human body and at different depths, for example, on the chest and forehead and at the fingertip. An accurate determination of a pulse wave allows calculating the pulse transit time (PTT of a particular heart pulse in different parts of the human body. This result can then be used to estimate the pulse wave velocity of blood flow in different places. Both measurement methods are realized using magnetic resonance-compatible fibres, which makes the methods applicable to the MRI environment. One of the developed sensors is an extraordinary accelerometer sensor, while the other one is a more common sensor based on photoplethysmography. All measurements, involving several test patients, were performed both inside and outside an MRI room. Measurements inside the MRI room were conducted using a 3-Tesla strength closed MRI scanner in the Department of Diagnostic Radiology at the Oulu University Hospital.

  8. Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray

    Directory of Open Access Journals (Sweden)

    Joachim Goschnick

    2004-05-01

    Full Text Available Abstract: The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 oC/mm and 6.7 oC/mm, applied across the sensor elements (segments of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.

  9. Possibility of gas sensor based on C{sub 20} molecular devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wenkai [School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025 (China); Yang, Chuanlu, E-mail: yangchuanlu@126.com [School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025 (China); Zou, Dongqing [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Sun, Zhaopeng [School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025 (China); Ji, Guomin [Electrical and Computer Engineering, The University of Oklahoma, Norman, Tulsa, OK 74078 (United States)

    2017-06-09

    We theoretically investigate the possibility of diatomic gas detection (NO, CO, O{sub 2}) by making use of the transport properties of the C{sub 20} molecular junctions. The calculations are performed by using nonequilibrium Green's function (NEGF) formalism in combination with density functional theory (DFT). In this work, we systematically study the most stable adsorption structural configurations, adsorption energy, and the transport properties on C{sub 20} molecular junctions with these diatomic gas molecules. It is found that NO and O{sub 2} gas molecule can be detected selectively. We suggest its possibility of nanosensors for highly sensitive and selective based on C{sub 20} molecular junction systems. - Highlights: • The most favorable adsorption site is investigated. • The mechanism of gas sensors is revealed. • NO and O{sub 2} gas molecules can be detected by C{sub 20} selectively.

  10. Interfacial instability induced by a shock wave in a gas-liquid horizontal stratified system

    International Nuclear Information System (INIS)

    Sutradhar, S.C.; Chang, J.S.; Yoshida, H.

    1987-01-01

    The experiments are performed in a rectangular lucite duct equipped with the facility of generating shock waves. Piezo-type pressure transducers are used to monitor the strength and propagation velocity of the shock wave. As the liquid phase has high sound velocity, a prepulse wave system of flow amplitude travels in this phase at a speed faster than the principal shock wave. The magnitude of the transmitted wave in the liquid phase is estimated using a transmission coefficient for gas-liquid system. From the initial pressure ratio of the shock wave, the amplitude of the prepulse as well as the induced interfacial fluid velocity are calculated. The wave length and height of the ripples during the passage of the shock wave are estimated for a specific strength of shock wave moving through the phases. From the high speed photographs, the wave length of the ripples can be assessed. The interfacial friction factor is calculated using colebrook's equation for high speed flow. At least five distinct phenomena are observed to exist during the propagation of a shock wave. These are - (1) the energy carried by the pre-pulse is utilized in perturbing the interface; (2) shock wave induces a mass velocity at the interface; (3) the wavelength of the ripples at the interface is the product of induced interfacial mass velocity and the time period of the prepulse; (4) a portion of the liquid mass of the perturbed interface is entrained in the gas phase may be due to the hydrodynamic lift in that phase; and finally (5) waves with long wavelength are established at the interface

  11. Role of the Material Electrodes on Resistive Behaviour of Carbon Nanotube-Based Gas Sensors for H2S Detection

    Directory of Open Access Journals (Sweden)

    M. Lucci

    2012-01-01

    Full Text Available Miniaturized gas-sensing devices that use single-walled carbon nanotubes as active material have been fabricated using two different electrode materials, namely, Au/Cr and NbN. The resistive sensors have been assembled aligning by dielectrophoresis the nanotube bundles between 40 μm spaced Au/Cr or NbN multifinger electrodes. The sensing devices have been tested for detection of the H2S gas, in the concentration range 10–100 ppm, using N2 as carrier gas. No resistance changes were detected using sensor fabricated with NbN electrodes, whereas the response of the sensor fabricated with Au/Cr electrodes was characterized by an increase of the resistance upon gas exposure. The main performances of this sensor are a detection limit for H2S of 10 ppm and a recovery time of few minutes. The present study suggests that the mechanism involved in H2S gas detection is not a direct charge transfer between molecules and nanotubes. The hypothesis is that detection occurs through passivation of the Au surfaces by H2S molecules and modification of the contact resistance at the Au/nanotube interface.

  12. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks.

    Science.gov (United States)

    Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.

  13. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks

    Science.gov (United States)

    Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020

  14. Evaluation of semiconductor gas sensor system for ethanol determination during fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Picque, D; Corrieu, G

    1988-10-01

    Using commercial gas sensitive semi-conductors, an ethanol sensor has been constructed which operates by direct immersion in fermentation media. The calibration range of 0.1 to 10 or 13 % depending on the component. However, they are very often subjected to considerable drift (in the same case up to 10 %/h of the measured value). The electrical resistance of component may vary by a factor of 1 to 5 for a well-defined ethanol concentration. The effects of temperature changes in fermentation media are easily compensated. Other volatile compounds (methanol, ammonia,...) substantially affect component responses. Thus, all work on sensors requires careful calibration. Wine fermentation processes can be monitored satisfactorily, providing the sensor is recalibrated about every six hours.

  15. Effect of molecular weight and density of ambient gas on shock wave in laser-induced surface nanostructuring

    International Nuclear Information System (INIS)

    Guo Liying; Wang Xinwei

    2009-01-01

    This paper presents the results of molecular dynamics studies about the shock wave during laser-induced surface nanostructuring. A quasi-three dimensional model is constructed to study systems consisting of over 2 million atoms. Detailed studies are carried out about the shock wave front and Mach number, evolution of plume and ambient gas interaction zone, and energy exchange between the ambient gas and plume. Under an ambience of lower pressure or lighter molecular mass, the plume affects a larger area while the strength of the shock wave front is weaker. With the same ambient pressure, the ablated material features the same kinetic energy at the late stage regardless of the molecular weight of the ambient gas. The same conclusion holds for the energy increase of the ambient gas as well. When the ambient pressure is reduced, more kinetic energy is carried out by the ablated material while less energy is transferred to the ambient gas. It is observed that heavier ambient gas could bounce back the ablated material to the target surface.

  16. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    Science.gov (United States)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  17. Concept and set-up of an IR-gas sensor construction kit

    Science.gov (United States)

    Sieber, Ingo; Perner, Gernot; Gengenbach, Ulrich

    2015-10-01

    The paper presents an approach to a cost-efficient modularly built non-dispersive optical IR-gas sensor (NDIR) based on a construction kit. The modularity of the approach offers several advantages: First of all it allows for an adaptation of the performance of the gas sensor to individual specifications by choosing the suitable modular components. The sensitivity of the sensor e.g. can be altered by selecting a source which emits a favorable wavelength spectrum with respect to the absorption spectrum of the gas to be measured or by tuning the measuring distance (ray path inside the medium to be measured). Furthermore the developed approach is very well suited to be used in teaching. Together with students a construction kit on basis of an optical free space system was developed and partly implemented to be further used as a teaching and training aid for bachelor and master students at our institute. The components of the construction kit are interchangeable and freely fixable on a base plate. The components are classified into five groups: sources, reflectors, detectors, gas feed, and analysis cell. Source, detector, and the positions of the components are fundamental to experiment and test different configurations and beam paths. The reflectors are implemented by an aluminum coated adhesive foil, mounted onto a support structure fabricated by additive manufacturing. This approach allows derivation of the reflecting surface geometry from the optical design tool and generating the 3D-printing files by applying related design rules. The rapid fabrication process and the adjustment of the modules on the base plate allow rapid, almost LEGO®-like, experimental assessment of design ideas. Subject of this paper is modeling, design, and optimization of the reflective optical components, as well as of the optical subsystem. The realization of a sample set-up used as a teaching aid and the optical measurement of the beam path in comparison to the simulation results are

  18. Photocatalytical Decomposition of Contaminants on Thin Film Gas Sensors

    International Nuclear Information System (INIS)

    Radecka, M.; Lyson, B.; Lubecka, M.; Czapla, A.; Zakrzewska, K.

    2010-01-01

    Gas sensing materials have been prepared in a form of TiO 2 -SnO 2 thin films by rf reactive sputtering from Ti:SnO 2 and Sn:TiO 2 targets. Material studies have been performed by scanning electron microscopy, atomic force microscopy, X-ray diffraction at grazing incidence, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and optical spectrophotometry. Dynamic gas sensing responses have been recorded as reproducible changes in the electrical resistance upon introduction of hydrogen at a partial pressure of 100-6000 ppm over a wide temperature range 473-873 K. Contamination experiments have been carried out with the motor oil (40 vol.% solution in CCl 4 ) in order to study the effect of UV light illumination on the gas sensor response. Optical spectroscopy has been applied to monitor the photodecomposition of the test compound, bromothymol blue. The Electronic Nose, ALPHA MOS FOX 4000 has been used in order to differentiate between different groups of motor oil vapors. (author)

  19. Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network

    International Nuclear Information System (INIS)

    Yang, Jae Mo; Ko, Byung Seok; Park, Chulhwan; Ko, Jae Wook; Yoo, Byungtae; Shin, Dongil

    2014-01-01

    To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG) service stations in Korea use only local-mode monitoring, with only on-site operators to monitor the facility. To complement this local-mode monitoring, an online safety management system called Ubiquitous-gas safety management system (U-GSMS) was developed. The U-GSMS consists largely of software and hardware. The software consists of systems that can manage safety and operations, while the hardware consists of sensors installed in the gas facility and wireless communication systems using a ubiquitous sensor network (USN) technology that facilitates communication between sensors as well as between sensors and other devices. As these systems are web-based, on-site operators as well as managers and executive officers at the headquarters can more effectively and efficiently perform monitoring and safety management

  20. Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Mo; Ko, Byung Seok; Park, Chulhwan; Ko, Jae Wook [Kwangwoon University, Seoul (Korea, Republic of); Yoo, Byungtae [National Disaster Management Institute, Seoul (Korea, Republic of); Shin, Dongil [Myongji University, Yongin (Korea, Republic of)

    2014-03-15

    To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG) service stations in Korea use only local-mode monitoring, with only on-site operators to monitor the facility. To complement this local-mode monitoring, an online safety management system called Ubiquitous-gas safety management system (U-GSMS) was developed. The U-GSMS consists largely of software and hardware. The software consists of systems that can manage safety and operations, while the hardware consists of sensors installed in the gas facility and wireless communication systems using a ubiquitous sensor network (USN) technology that facilitates communication between sensors as well as between sensors and other devices. As these systems are web-based, on-site operators as well as managers and executive officers at the headquarters can more effectively and efficiently perform monitoring and safety management.