Wave Forces on Windturbine Foundations
DEFF Research Database (Denmark)
Larsen, Brian Juul; Frigaard, Peter
A testprogramme has been performed to determine the wave forces on two types of foundations for an offshore windturbine. the tested foundation types are a monopile and cone. Furthermore the shaft of the cone has been tested.......A testprogramme has been performed to determine the wave forces on two types of foundations for an offshore windturbine. the tested foundation types are a monopile and cone. Furthermore the shaft of the cone has been tested....
Wave Forces on Offshore Windturbine Foundations
DEFF Research Database (Denmark)
Larsen, Brian Juul; Frigaard, Peter
The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations.......The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations....
Modulational instability in wind-forced waves
Brunetti, Maura
2014-01-01
We consider the wind-forced nonlinear Schroedinger (NLS) equation obtained in the potential flow framework when the Miles growth rate is of the order of the wave steepness. In this case, the form of the wind-forcing terms gives rise to the enhancement of the modulational instability and to a band of positive gain with infinite width. This regime is characterised by the fact that the ratio between wave momentum and norm is not a constant of motion, in contrast to what happens in the standard case where the Miles growth rate is of the order of the steepness squared.
Chen, Shyh-Chin; Trenberth, Kevin E.
1988-02-01
A more complete and new formulation of the orographic forcing and new thermal forcings are included in a steady state model of the Northern Hemisphere planetary waves. When both forcings are included, the simulation produces excellent results which are compared in detail with observations. In particular, the Siberian high, the tropospheric East Asian trough and subtropical tropospheric East Asian jet stream maxima are well reproduced even though the forcing is primarily extratropical in origin.The modes uses a lower boundary condition in which the orographic forcing is determined by the effects of the total flow, not just the zonal mean basic state. Consequently, the net orographic forcing changes when thermal forcing is added and the tow solution is not equal to the linear sum of the solutions with orographic and thermal forcings separately. The thermally induced orographic forcing is found to be very significant and, in the troposphere, there is strong interaction between the two forcings with both of roughly equal importance. However, the Iowa-latitude vertically propagating waves am deflected by the subtropical jet and absorbed in the low-latitude easterlies. Thus only the mid-high latitude planetary waves are important in the stratosphere which seems to be dominated by the thermally forced component.The model is forced with new estimates of diabetic heating from several FGGE analyses. The sensitivity of the results to different heatings and their assumed vertical profile is examined. The amplitude of the lower-troposphere response is very sensitive to the vertical profile but there are much smaller changes at upper levels which are dominated by the remote response. Large differences in the response to the different diabatic heatings are found at high latitudes and over the Pacific Ocean. However, when orographic forcing is also included, these differences diminish indicating a smaller sensitivity to uncertainties in heating, and thus the orographic forcing is
Waves, Coriolis force and the dynamo effect
Mahajan, S M; Gómez, D O
2004-01-01
Dynamo activity caused by waves in a rotating magneto-plasma is investigated. In astrophysical environments such as accretion disks and at sufficiently small spatial scales, the Hall effect is likely to play an important role. It is shown that a combination of the Coriolis force and Hall effect can produce a finite $\\alpha$-effect by generating net helicity in the small scales. The shear/ion-cyclotron normal mode of the Hall plasma is the dominant contributor to the dynamo action for short scale motions.
Preliminary Design Wave Forces on Wave Star's Ø5m Floats
DEFF Research Database (Denmark)
Kramer, Morten; Kristensen, Tom Sten; Hjørnet, Niels Kyhn
This document gives several estimates on the design force, but only one estimate on the design wave climate.......This document gives several estimates on the design force, but only one estimate on the design wave climate....
Wave slamming forces on truss support structures for wind turbines
Aashamar, Miriam Zakri
2012-01-01
This thesis is a study of the slamming forces from plunging breaking waves on truss support structures in shallow water. The main parts have been model testing and analysis on an existing 1:50 scale model of a truss support structure for wind turbines at NTNU.An expanding building of offshore structures has led to increased focus on wave forces. Large slamming forces from breaking waves can occur in shallow water. These forces will impact the structure in a much bigger way than non-breaking w...
Model Testing of Forces in the Reflector Joint and Mooring Forces on Wave Dragon
DEFF Research Database (Denmark)
Gilling, Lasse; Kofoed, Jens Peter; Tedd, James
This report aims to present the results of a test series analysing the forces in the redesigned reflector joint and the forces in the main mooring link. The resluts presented are intended to be used by WD project partners, for the design and construction of the joint on the prototype Wave Dragon...... at Nissum Bredning and for future North Sea scale Wave Dragon. Lengths, forces and other dimentions presented are scaled to the North sea Wave Dragon unless otherwise specified....
Model Testing of Forces in the Reflector Joint and Mooring Forces on Wave Dragon
DEFF Research Database (Denmark)
Gilling, Lasse; Kofoed, Jens Peter; Tedd, James
This report aims to present the results of a test series analysing the forces in the redesigned reflector joint and the forces in the main mooring link. The resluts presented are intended to be used by WD project partners, for the design and construction of the joint on the prototype Wave Dragon...... at Nissum Bredning and for future North Sea scale Wave Dragon. Lengths, forces and other dimentions presented are scaled to the North sea Wave Dragon unless otherwise specified....
Analyses of Current And Wave Forces on Velocity Caps
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.
2015-01-01
) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...
Ponderomotive forces on waves in modulated media
Dodin, I Y
2014-01-01
Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic field. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.
Equatorial Rossby Solitary Wave Under the External Forcing
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da
2005-01-01
A simple shallow-water model with influence of external forcing on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the perturbation method, the extended variable-coefficient KdV equation under an external forcing is derived for large amplitude equatorial Rossby wave in a shear flow. And then various periodic-like structures for these equatorial Rossby waves are obtained with the help of Jacobi elliptic functions.It is shown that the external forcing plays an important role in various periodic-like structures.
Understanding Stokes forces in the wave-averaged equations
Suzuki, Nobuhiro; Fox-Kemper, Baylor
2016-05-01
The wave-averaged, or Craik-Leibovich, equations describe the dynamics of upper ocean flow interacting with nonbreaking, not steep, surface gravity waves. This paper formulates the wave effects in these equations in terms of three contributions to momentum: Stokes advection, Stokes Coriolis force, and Stokes shear force. Each contribution scales with a distinctive parameter. Moreover, these contributions affect the turbulence energetics differently from each other such that the classification of instabilities is possible accordingly. Stokes advection transfers energy between turbulence and Eulerian mean-flow kinetic energy, and its form also parallels the advection of tracers such as salinity, buoyancy, and potential vorticity. Stokes shear force transfers energy between turbulence and surface waves. The Stokes Coriolis force can also transfer energy between turbulence and waves, but this occurs only if the Stokes drift fluctuates. Furthermore, this formulation elucidates the unique nature of Stokes shear force and also allows direct comparison of Stokes shear force with buoyancy. As a result, the classic Langmuir instabilities of Craik and Leibovich, wave-balanced fronts and filaments, Stokes perturbations of symmetric and geostrophic instabilities, the wavy Ekman layer, and the wavy hydrostatic balance are framed in terms of intuitive physical balances.
Horizontal Coherence of Wave Forces on Vertical Wall Breakwaters
DEFF Research Database (Denmark)
Archetti, R.; Frigaard, Peter; Lamberti, A.
2001-01-01
of breaking waves for increasing wave height are estimated and compared with existing empirical formulae. The horizontal dimension of the breaker is investigated using two different methodologies: the first analyses the decreasing of the highest 1/250 force with increasing horizontal dimension of the caisson...
Breaking Wave Characteristics and Breaking Wave Forces on Slender Cylinders
Chella, Mayilvahanan Alagan
2016-01-01
Offshore wind farms have become an increasingly important source of clean and renewable energy. Most recent offshore wind farms are deployed close to the coast in shallow waters. One of the major factors influencing the initial investment of this technology is the design of the substructure and foundation. The physical processes associated with the non-linear shallow water hydrodynamics are rather complex since the wave motion is strongly influenced by the seabed. Breaking wave...
Wave Forces on Linear Arrays of Rigid Vertical Circular Cylinders in Regular Wave
Directory of Open Access Journals (Sweden)
V.J. Kurian
2014-06-01
Full Text Available The present investigation aims to experimentally determine the variation of forces and force coefficients acting on circular cylinders, which are arranged in a linear array along the direction of the waves. Most commonly used structural and non-structural elements in the construction of offshore platforms are circular cylindrical members. In many cases, these members are found in very close neighbourhood of each other, thus modifying the surrounding flow and wave forces acting on them. Model tests were conducted in the wave tank on a maximum of four cylinders of the same diameter. A reasonable scale factor was chosen considering the pertinent factors such as water depth, wave generating capability and accuracy of measurements. The cylinders were installed inside the wave tank as vertical cantilevers fixed at the top. Wave forces acting on the cylinders were measured using special wave force sensors exclusively designed and fabricated for the present project, while the wave profiles were recorded using wave probes installed in the wave basin. The results confirmed the presence of a force shielding effect on the trailing cylinders by the leading cylinders with few exceptions. The findings also substantiated the significant modification of the forces on cylinders when they are present in a linear array. A common practice adopted for the design of offshore platforms was identified with a possibility of underestimating the wave forces acting on the cylindrical elements. In many cases, the experimentally computed hydrodynamic force coefficients were found to be lower than the standard values adopted by various design codes. These findings portray the significance of the present work in achieving economy in the design of jacket platforms and risers.
Stratospheric Annular Modes Induced By Stationary Wave Forcing
Körnich, H.; Schmitz, G.
The variability of the winter stratosphere shows distinguishable features in the north- ern and southern hemisphere. Since these differences are based on the different plan- etary waves of the underlying atmosphere, we explore the mechanism how stationary wave forcing in the troposphere can induce a stratospheric Annular Mode using a simple GCM. The model KMCM (Kühlungsborn Mechanistic Circulation Model) extends from the ground up to 60 km height and produces a reasonable winter climate. It takes into account the different large-scale wave forcings in the troposphere as prescribed pro- cesses. This allows us to examine the stratospheric Annular-Mode generation depend- ing on different wave forcings under perpetual January conditions. Principal com- ponent analysis is applied to identify the variability patterns of the geopotential and of the zonally averaged zonal wind. By this way, it is shown that the amplitude and composition of the orographic and thermal eddy forcing determines the stratospheric Annular Mode and the related downward propagation in the temperature field. Further model simplifications are introduced in order to understand the mechanism of the stratospheric AM-generation. Using a linear model version we illuminate the influence of the different wave forcing processes on the Annular Modes. Addition- ally, a constant-troposphere model is used to clarify the importance of transient and stationary waves. Finally, the Annular Mode is interpreted in terms of the dynamical coupling of the troposphere and stratosphere.
Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing
Institute of Scientific and Technical Information of China (English)
LI Guang-Zhao; CHEN Yong-Qi; TANG Guo-Ning; LIU Jun-Xian
2011-01-01
@@ Unidirectional linear error feedback coupling of two excitable medium systems displaying spiral waves is considered.The spiral wave in the response system is thus subjected to a spiral wave forcing.We find that the unidirectional feedback coupling can lead to richer behaviour than the mutual coupling.The spiral wave dynamics in the response system depends on the coupling strength and frequency mismatch.When the coupling strength is small, the feedback coupling induces the drift or meander of the forced spiral wave.When the coupling strength is large enough, the feedback coupling may lead to the transition from spiral wave to anti-target or target-like wave.The generation of anti-target wave in coupled excitable media is observed for the first time.Furthermore, when the coupling strength is strong, the synchronization between two subsystems can be established.%Unidirectional linear error feedback coupling of two excitable medium systems displaying spiral waves is considered. The spiral wave in the response system is thus subjected to a spiral wave forcing. We find that the unidirectional feedback coupling can lead to richer behaviour than the mutual coupling. The spiral wave dynamics in the response system depends on the coupling strength and frequency mismatch. When the coupling strength is small, the feedback coupling induces the drift or meander of the forced spiral wave. When the coupling strength is large enough, the feedback coupling may lead to the transition from spiral wave to anti-target or target-like wave. The generation of anti-target wave in coupled excitable media is observed for the first time. Furthermore,when the coupling strength is strong, the synchronization between two subsystems can be established.
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Image reconstruction with acoustic radiation force induced shear waves
McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.
2003-05-01
Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.
Estimation of Wave Forces on Large Compliant Platforms
Institute of Scientific and Technical Information of China (English)
Mirzaie Sefat S; Ketabdari M. J
2009-01-01
Compliant offshore structures such as spars, tension leg platforms (TLPs) and semi-submersibles have been dramatically improved in recent years due to their capability for deep water operation. Waves are the most important environmental phenomenon affecting these offshore structures. Estimation of wave forces is vital in offshore structure design. For large compliant offshore plat-forms, Morrison's equation is not valid anymore and usually diffraction theory is used. In this research, by using the finite difference method, a detailed analysis of the first-order diffraction of monochromatic waves on a large cylinder as a structural element is per-formed to solve the radiation and diffraction potentials. The results showed that the developed model is a reliable tool to estimate the wave forces and hydrodynamic coefficients on large structure elements when wave diffraction and radiation are considered.
Circuit Design of Surface Acoustic Wave Based Micro Force Sensor
Directory of Open Access Journals (Sweden)
Yuanyuan Li
2014-01-01
Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.
Numerical Method for Wave Forces Acting on Partially Perforated Caisson
Institute of Scientific and Technical Information of China (English)
姜峰; 唐晓成; 金钊; 张莉; 陈洪洲
2015-01-01
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid–structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier–Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.
Numerical method for wave forces acting on partially perforated caisson
Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou
2015-04-01
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.
The Force of a Tsunami on a Wave Energy Converter
O'Brien, Laura; Renzi, Emiliano; Dutykh, Denys; Dias, Frédéric
2012-01-01
With an increasing emphasis on renewable energy resources, wave power technology is fast becoming a realistic solution. However, the recent tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand the force of an incoming tsunami. The analytical 3D model of Renzi & Dias (2012) developed within the framework of a linear theory and applied to an array of fixed plates is used. The time derivative of the velocity potential allows the hydrodynamic force to be calculated.
Optimal Discrete PTO Force Point Absorber Wave Energy Converters in Regular Waves
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.
2013-01-01
the conventional fluid power systems suffer of poor efficiency. Therefore discrete fluid power force systems have been proposed. Limited research has, however, been conducted with focus on choosing the discrete force levels and force profiles for a discrete PTO system for WECs. This paper is to support the design...... of discrete force systems for PTO, by focusing on how to choose the optimal PTO force levels and force profile when seeking to increase energy harvesting. The work concerns point absorber WECs and utilises a simple float model based on linear wave theory. Utilising the principle of superposition...
Non-Schroedinger forces and pilot waves in quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1987-09-01
The author argues that the version of the pilot wave interpretation of quantum mechanics which uses a non-local non-Schroedinger force is inconsistent when applied to distributions with small numbers of particles. Thus, no version of the pilot wave interpretation (some-times called the de Broglie-Bohm, or causal, interpretation) can be applied to the wavefunction of quantum cosmology because in any version of this interpretation, there is only one particle, the universe.
Surface waves propagation on a turbulent flow forced electromagnetically
Gutiérrez, Pablo
2015-01-01
We study the propagation of monochromatic surface waves on a turbulent flow. The flow is generated in a layer of liquid metal by an electromagnetic forcing. This forcing creates a quasi two-dimensional (2D) turbulence with strong vertical vorticity. The turbulent flow contains much more energy than the surface waves. In order to focus on the surface wave, the deformations induced by the turbulent flow are removed. This is done by performing a coherent phase averaging. For wavelengths smaller than the forcing lengthscale, we observe a significant increase of the wavelength of the propagating wave that has not been reported before. We suggest that it can be explained by the random deflection of the wave induced by the velocity gradient of the turbulent flow. Under this assumption, the wavelength shift is an estimate of the fluctuations of deflection angle. The local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is measured. Finally we qu...
Non-Schroedinger forces and pilot waves in quantum cosmology
Tipler, Frank J.
1987-09-01
The version of the pilot wave interpretation of quantum mechanics using a nonlocal non-Schroedinger force is found to be inconsistent when applied to distributions with small numbers of particles. Any version of the pilot wave interpretation is shown to require the universe to move along a single trajectory. It is suggested that no version of the pilot wave interpretation can be applied to the wavefunction of quantum cosmology, because in any version of this interpretation there is only one particle, the universe.
Flexural waves induced by electro-impulse deicing forces
Gien, P. H.
1990-01-01
The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.
Morphodynamic modeling of an embayed beach under wave group forcing
Reniers, A. J. H. M.; Roelvink, J. A.; Thornton, E. B.
2004-01-01
The morphodynamic response of the nearshore zone of an embayed beach induced by wave groups is examined with a numerical model. The model utilizes the nonlinear shallow water equations to phase resolve the mean and infragravity motions in combination with an advection-diffusion equation for the sediment transport. The sediment transport associated with the short-wave asymmetry is accounted for by means of a time-integrated contribution of the wave nonlinearity using stream function theory. The two-dimensional (2-D) computations consider wave group energy made up of directionally spread, short waves with a zero mean approach angle with respect to the shore normal, incident on an initially alongshore uniform barred beach. Prior to the 2-D computations, the model is calibrated with prototype flume measurements of waves, currents, and bed level changes during erosive and accretive conditions. The most prominent feature of the 2-D model computations is the development of an alongshore quasi-periodic bathymetry of shoals cut by rip channels. Without directional spreading, the smallest alongshore separation of the rip channels is obtained, and the beach response is self-organizing in nature. Introducing a small amount of directional spreading (less than 2°) results in a strong increase in the alongshore length scales as the beach response changes from self-organizing to being quasi-forced. A further increase in directional spreading leads again to smaller length scales. The hypothesized correlation between the observed rip spacing and wave group forced edge waves over the initially alongshore uniform bathymetry is not found. However, there is a correlation between the alongshore length scales of the wave group-induced quasi-steady flow circulations and the eventual alongshore spacing of the rip channels. This suggests that the scouring associated with the quasi-steady flow induced by the initial wave groups triggers the development of rip channels via a positive feedback
Analyses of Current And Wave Forces on Velocity Caps
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.;
2015-01-01
Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...
Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2011-01-01
Forces on a monopile from a nonlinear irregular unidirectional wave model are investigated. Two seabed profiles of different slopes are considered. Morison’s equation is used to investigate the forcing from fully nonlinear irregular waves and to compare the results with those obtained from linear...... wave theory and with stream function wave theory. The latter of these theories is only valid on a flat bed. The three predictions of wave forces are compared and the influence of the bed slope is investigated. Force-profiles of two selected waves from the irregular wave train are further compared...... with the corresponding forceprofiles from stream function theory. The results suggest that the nonlinear irregular waves give rise to larger extreme wave forces than those predicted by linear theory and that a steeper bed slope increases the wave forces both for linear and nonlinear waves. It is further found...
Forced Gravity Waves and the Tropospheric Response to Convection
Halliday, Oliver; Parker, Doug; Griffiths, Stephen; Stirling, Alison
2017-04-01
It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighbouring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. Furthermore, we find the tropospheric adjustment to be sensitive to the horizontal length scale of the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings and argue that an idealized 'full-physics' nonlinear simulation of deep convection in the MetUM is qualitatively described by the linear solution: departures are quantified
Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations
Institute of Scientific and Technical Information of China (English)
Piotr Doerffer; Oskar Szulc; Franco Magagnato
2003-01-01
The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.
Stress Wave Propagation due to a Moving Force
DEFF Research Database (Denmark)
Rasmussen, K. M.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning
1999-01-01
In this paper the performance of two numerical methods of solving the problem of a time dependent moving force on the surface of an elastic continuum will be evaluated. One method is the finite element method (FEM) formulated in convected coordinates coupled with an absorbing boundary condition...... of an elastic halfspace. The time integral net impulse of the considered loading must be null for the considered FEM to work. Further, the FEM is unable to absorb Rayleigh waves, since the considered impedance condition has been tuned P- and S-waves. By contrast the BEM is able to handle also these cases...
An Experimental and Computational Study of Breaking Wave Impact Forces
Fu, Thomas C; Brewton, Susan; Brucker, Kyle A; Dommermuth, Douglas G
2014-01-01
The impact forces generated by the impact of a breaking wave are poorly understood. These impulsive hydrodynamic loads to a ship's hull are of short duration relative to ship motions and buoyant wave loads and often result in extremely high pressures. The physics of breaking waves is a poorly understood, complex, multiphase phenomenon involving violent jet sprays, strong free-surface turbulence, air entrainment and bubble generation, all of which interact with the flow field and the adjacent structure. This paper will describe a set of experiments that were performed, at the Naval Surface Warfare Center, Carderock Division (NSWCCD), in 2006, to measure the hydrodynamic loads of regular nonbreaking and focused breaking waves on a 0.305 m x 0.305 m (1.0 ft x 1.0 ft) square plate and discuss the results of this study. The paper will also discuss Computational Fluid Dynamics (CFD) code predictions of breaking waves and wave impact loads. The CFD code utilized in this study is Numerical Flow Analysis (NFA).
Numerical turbulence forced through localized random expansion waves
Mee, A J; Mee, Antony J.; Brandenburg, Axel
2006-01-01
In an attempt to determine the outer scale of turbulence driven by localized sources, such as supernova explosions in the interstellar medium, we consider a forcing function given by the gradient of gaussian profiles localized at random positions. Different coherence times of the forcing function are considered. In order to isolate the effects specific to the nature of the forcing function we consider the case of an isothermal equation of state and restrict ourselves to forcing amplitudes such that the flow remains subsonic. When the coherence time is short, the outer scale agrees with the scale of the gaussian. Longer coherence times can cause extra power at large scales, but this would not yield power law behavior at scales larger than that of the expansion waves. At scales smaller than the scale of the expansion waves the spectrum is close to power law with a spectral exponent of -2. The resulting flow is virtually free of vorticity. Viscous driving of vorticity turns out to be weak and self-amplification ...
Unforced, Forced and Resonance-Forced Waves in a Spherical Atmosphere
Energy Technology Data Exchange (ETDEWEB)
Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-27
This technical report discusses a longstanding issue of atmospheric tides in weather-prediction and general circulation models (GCMs). Tidal signatures consistent with observations have appeared in the surface pressure output of GCMs since their inception (Hardy 1968, Hunt and Manabe 1968). Such models, however, are sufficiently complicated that the possibility of “getting the right answer for the wrong reasons” arises. Lindzen et al. (1968, hereafter LBK) showed that wave reflection at the upper boundary of a GCM can artificially enhance the tides. Covey et al. (2011, 2014) found that tidal output from a number of modern GCMs is surprisingly independent of their forcing. This finding is consistent with earlier suggestions that a compensating effect occurs in some models: lowering the model top reduces the forcing (solar heating of the ozone layer) but also enhances spurious wave reflection (Zwiers and Hamilton 1986, Hamilton et al. 2008).
Forced wave motion with internal and boundary damping.
Louw, Tobias; Whitney, Scott; Subramanian, Anu; Viljoen, Hendrik
2012-01-01
A d'Alembert-based solution of forced wave motion with internal and boundary damping is presented with the specific intention of investigating the transient response. The dynamic boundary condition is a convenient method to model the absorption and reflection effects of an interface without considering coupled PDE's. Problems with boundary condition of the form [Formula: see text] are not self-adjoint which greatly complicates solution by spectral analysis. However, exact solutions are found with d'Alembert's method. Solutions are also derived for a time-harmonically forced problem with internal damping and are used to investigate the effect of ultrasound in a bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the solution simplifies the analysis of acoustic field problems.
Wave kinematics and response of slender offshore structures. Vol 5: Wave forces and responses
Energy Technology Data Exchange (ETDEWEB)
Pedersen, L.M.; Riber, H.J.
1999-08-01
A load measuring system (LMS) and a wave measuring system (WMS) has been used on the North Sea platform Tyra. The LMS consists of an instrumented pipe placed vertically in the crest zone of high and steep waves. The WMS consists of an unique sonar system placed on the sea floor. Simultaneous measurements are carried out of the kinematics of waves and currents and the response of the instrumented pipe during a period of five month in the winter 1994/95. Numerical calculations with LIC22 are carried out of the response of the LMS applying the measured wave and current kinematics. The responses are compared to the measured responses of the LMS. The comparison is based on the statistical main properties of the calculated and measured response as the kinematic field is measured 150 metres away from the instrumented pipe. From the analyses the main parameters (reduced velocity V{sub R} and correlation length l{sub c}) for vortex induced vibrations (VIV) are calibrated and the main environmental conditions for VIV are determined. The hydrodynamic coefficients determining the wave and current forces on slender structures are studied (drag coefficient C{sub D} and added mass coefficient C{sub M}). Further, the effect on the drag coefficient due to air blending in the upper part of the wave is determined. (au)
WAVE CURRENT FORCES ON THE PILE GROUP OF BASE FOUNDATION FOR THE EAST SEA BRIDGE, CHINA
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On the basis of the two structures of the bridge foundation designed for the East Sea Bridge, the wave current forces on four types of oblique piles, the pile group and the single piles at different positions in the pile group considering the effect of the super structures were experimentally investigated. The relationship between the wave current forces and the associated wave parameters, and the comparison of the wave current forces on the pile groups and the single piles were systematically analyzed. The group effectiveness and the reduction coefficient for the wave current forces on the group were examined for engineering design.
3-D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Z.
1998-01-01
The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...
Hydrodynamic Coefficients and Wave Excitation Forces for A Ship near A Quay
Institute of Scientific and Technical Information of China (English)
M.Hasan Adil; DUAN Wen-yang(段文洋)
2004-01-01
In this paper, the effects of a quay or a solid jetty on hydrodynamic coefficients and vertical wave excitation forces on a ship with or without forward speed are discussed. A modified simple Green function technique is used to calculate the 2D coefficients while the strip theory is used to calculate the 3D coefficients. Wave excitation forces are also calculated with the strip theory. Numerical results are provided for hydrodynamic coefficients and vertical wave excitation forc es on a 200 000 DWT tanker ship. It is found that the quay has a considerable effect on the hydrodynamic coefficients and wave excitation forces for a ship.
Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.
Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J
2014-06-15
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.
Study on Scattering Wave Force of Horizontal and Vertical Plate Type Breakwaters
Institute of Scientific and Technical Information of China (English)
WANG Ke; ZHANG Xi; GAO Xin
2011-01-01
The interaction between wave and horizontal and vertical plates is investigated by the boundary element method,and the relations of wave exciting force with plate thickness,submergence and length are obtained.It is found that:1)The efficient wave exciting force exists while plate submergence is less than 0.5 m,and the plate is very thin with order O(0.005 m).2) The maximum heave wave exciting force exists,and it is the main factor for surface and submerged horizontal plate while the roll force can be ignored.3) The maximum sway wave exciting force exists,it is the main factor for surface or submerged vertical plate,and the roll force is about 20 times of horizontal plate.
Breaking wave impact forces on truss support structures for offshore wind turbines
Cieślikiewicz, Witold; Gudmestad, Ove T.; Podrażka, Olga
2014-05-01
Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Küste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gdańsk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both
Effects of Periodic Forcing Amplitude on the Spiral Wave Resonance Drift
Institute of Scientific and Technical Information of China (English)
WU Ning-Jie; LI Bing-Wei; YING He-Ping
2006-01-01
@@ We study dynamics of spiral waves under a uniform periodic temporal forcing in an excitable medium. With a specific combination of frequency and amplitude of the external periodic forcing, a resonance drift of a spiral wave occurs along a straight line, and it is accompanied by a complicated ‘flower-like’ motion on each side of this bifurcate boundary line. It is confirmed that the straight-line drift frequency of spiral waves is not locked to the nature rotation frequency as the forcing amplitude expends the range of the spiral wave frequency. These results are further verified numerically for a simplified kinematical model.
The force of oblique incident wave on the breakwater with a partially perforated wall
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Wave forces induced by the interaction between the oblique incident wave and the breakwater with a partially perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigen-function expansion method is applied to expanding velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with other theories and a good agreement can be found between them. Experimental data have been compared with the present theoretical results. The effect of the traverse wall on wave forces has been discussed in detail. On the basis of the linear wave theory, it is shown that in the range of engineering practice, the incident angle of wave has small influence on wave forces on the unit length of perforated caisson.
Horizontal Coherence of Wave Forces on Vertical Wall Breakwaters
DEFF Research Database (Denmark)
Archetti, Renata; Lamberti, Alberto; Martinelli, Luca
2001-01-01
Evaluation of spatial coherence of breaking waves is of great importance and of recent interest.......Evaluation of spatial coherence of breaking waves is of great importance and of recent interest....
NUMERICAL SIMULATION OF SEA SURFACE DIRECTIONAL WAVE SPECTRA UNDER TYPHOON WIND FORCING
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Numercial simulation of sea surface directional wave spectra under typhoon wind forcing in the South China Sea (SCS) was carreid out using the WAVEWATCH-III wave model. The simulation was run for 210 h until the Typhoon Damrey (2005) approached Vietnam. The simulated data were compared with buoy observations, which were obtained in the northwest sea area of Hainan Island. The results show that the significant wave height, wave direction, wave length and frequency spetra agree well with buoy observations. The spatial characteristics of the signifciant wave height, mean wave period, mean wave length, wave age and directional spectra depend on the relative position from the typhoon center. Also, the misalignment between local wind and wave directions were investigated.
Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere
Institute of Scientific and Technical Information of China (English)
YU Xin; ZHAO Qiang
2009-01-01
Nonlinear waves in a Boussinesq fluid model which includes both the vertical and horizontal components of Coriolis force are studied by using the semi-geostrophic approximation and the method of travelling-wave solution.Taylor series expansion has been employed to isolate the characteristics of the linear Rossby waves and to identify the nonlinear shock and kink waves.The KdV-Burgers and the compound KdV-Burgers equations are derived,their shock wave and kink wave solution are also obtained.
Ličer, Matjaž; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Jansá, Agusti; Tintoré, Joaquín
2017-03-01
We use a high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves to investigate Balearic meteotsunami generation, amplification and propagation properties. We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. We quantify the contributions of Mallorca shelves and Menorca Channel for different gravity wave forcing angles and speeds. The Channel is demonstrated to be the key build-up region determining meteotsunami amplitude in Ciutadella while northern and southern Mallorca shelves serve mostly as barotropic wave guides but do not significantly contribute to seiche amplitude in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. We track meteotsunami propagation paths in the Menorca Channel for several forcing velocities and show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. We show that faster meteotsunamis propagate over deeper ocean regions, as required by Proudman resonance. We estimate meteotsunami speed under sub- and supercritical forcing and derive a first order estimate of its magnitude. We show that meteotsunamis, generated by supercritical gravity waves, propagate with a velocity which is equal to an arithmetic mean of the forcing velocity and local barotropic ocean wave speed.
EXPERIMENTAL STUDY ON TOTAL UPLIFT FORCES OF WAVES ON HORIZONTAL PLATES
Institute of Scientific and Technical Information of China (English)
ZHOU Yi-ren; CHEN Guo-ping; WANG Deng-ting
2004-01-01
The total uplift forces of waves acting on hori zontal plates are the important basis for the design of maritime hollow-trussed structures. In this paper, an experimental study on the total uplift forces of waves on horizontal plates was conducted by a series of model tests. The results show that the maximum total uplift forces do not necessarily occur with the maximum impact pressure intensity synchronously.On the basis of the test results, formation mechanism of the total uplift forces of waves as well as its influencing factors were analyzed in detail, and an equation for calculation of the maximum total uplift forces of waves on plates was put forward. Lots of test data shows the present equation is in good agreement with the test results.
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Z.
In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction...... on the peak-delay force reduction of caissons exposed to non-breaking short-crested waves. Battjes (1982) has investigated theoretically the peak-delay force reduction of shortcrested waves with only one frequency component. Such a force reduction factor cannot be applied because in nature waves are composed...... of many linear components with various frequencies. In this paper the peak-delay force reduction factor is defined on basis of zero-moment of the force spectrum. Based on linear wave theory, formulae for calculation of peakdelay force reduction factor for linear, long-crested and short-crested non-breaking...
DEFF Research Database (Denmark)
Frigaard, Peter; Burcharth, Hans F.
1988-01-01
An experimental study is carried out to investigate the wave forces on a slender cylinder. Special attention is given to the wave forces in the surface zone and correlation of forces along the cylinder. The experiments consider the effects of both long and short-crested irregular waves....
Interaction of two walkers: wave-mediated energy and force.
Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves
2014-12-01
A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.
Generation of internal solitary waves by frontally forced intrusions in geophysical flows.
Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric
2016-12-06
Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.
Generation of internal solitary waves by frontally forced intrusions in geophysical flows
Bourgault, Daniel; Galbraith, Peter S.; Chavanne, Cédric
2016-12-01
Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.
Numerical Simulation of Nonlinear Wave Force on a Quasi-ellipse Caisson
Institute of Scientific and Technical Information of China (English)
Yongxue Wang; Xiaozhong Ren; Guoyu Wang
2011-01-01
A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper.Navier-Stokes equations were solved by the finite difference method,and the volume of fluid (VOF) method was employed to trace the free surface.The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure,and a satisfactory result was obtained.The numerical model was verified and used to investigate the effects of the relative wave height H/d,relative caisson width kD,and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson.It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson.Compared with the non-dimensional inline wave force,the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.
Self-induced dipole force and filamentation instability of a matter wave
DEFF Research Database (Denmark)
Saffman, M.
1998-01-01
The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...
Wave Forces on Offshore Windturbine Foundations on Borkum Riff
DEFF Research Database (Denmark)
Larsen, Brian Juul; Lykke Andersen, Thomas; Frigaard, Peter
This report is a summary of the reports by Juul Larsen and Frigaard (2004) and Lykke Andersen and Frigaard (November 2004) supplied with som additional force measurements on a cone shaped structure and some new force measurements on the concrete tripod....
DEFF Research Database (Denmark)
Burcharth, Hans F.; Liu, Zhou
1999-01-01
The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-04-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-01-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.
Excitation Forces on Point Absorbers Exposed to High Order Non-linear Waves
DEFF Research Database (Denmark)
Viuff, Thomas Hansen; Andersen, Morten Thøtt; Kramer, Morten
2013-01-01
of proper methods to calculate design pressure distributions has led to structural failures such as buckling in the shells in wave energy prototypes. As a step towards understanding the complex loading from high order non-linear waves, this paper presents a practical approach to estimate wave excitation...... forces accounting for both non-linearity and diffraction effects. The method is validated by laboratory experiments using a hemispherical point absorber with a 6-axis force transducer, but the technique is believed to be applicable for most types of submerged or semi-submerged floating devices...
Wave Forces and Overtopping on Crown Walls of Rubble Mound Breakwaters
DEFF Research Database (Denmark)
Pedersen, Jan
in the coastal laboratory at Aalborg University. Based on analyses of experimental data a design method for assessing the maximum wave forces on the vertical face of the crown wall structures has been developed as well as new and more versatile design equation for the related overtopping discharges...... of rubble mound breakwater crown walls. This background motivated the initialization of the present study on wave imposed forces and wave overtopping on crown wall structures. The two subjects where investigated through an excessive parametric model study involving more than 370 long duration test series...
Measurements of the force fields within an acoustic standing wave using holographic optical tweezers
Energy Technology Data Exchange (ETDEWEB)
Bassindale, P. G.; Drinkwater, B. W. [Faculty of Engineering, Queens building, University of Bristol, Bristol BS8 1TR (United Kingdom); Phillips, D. B. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Barnes, A. C. [Department of Physics, H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)
2014-04-21
Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.
Nonlinear dust acoustic waves with polarization force effects in Kappa distribution plasma
Chen, Hui; Zhou, Suyun; Luo, Rongxiang; Liu, Sanqiu
2017-01-01
The propagation characteristics of dust acoustic solitary waves (DASWs) in dusty plasmas with the effects of polarization force and superthermal ions are studied. First, the polarization force induced by superthermal ions is obtained. It is shown that the superthermality of background ions affect the Debye screening of dust grains as well as the polarization force significantly. Then for small amplitude solitary waves, the KdV equation is obtained by applying the reductive perturbation technique. And for the arbitrary amplitude solitary waves, the Sagdeev potential method is employed and the Sagdeev potential is analyzed. In both case, the effects of the polarization force associated the ions’ superthermality on the characteristic of the DASWs are analyzed.
Time-domain analysis of frequency dependent inertial wave forces on cylinders
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave...
Experimental Study of Wave Forces on Vertical Circular Cylinders in Long and Short Crested Sea
DEFF Research Database (Denmark)
Høgedal, Michael
The three-dimensional structure of ocean waves is generally ignored in favour of two-dimensional waves, which are easier to handle from a theoretical and computational point of view. For design fixed structures where horizontal in-line and resultant wave forces are important, this is normally on ...... with miniature pressure transducers. The experiments were carried out in the 3-D wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University and in the off-shore basin at the Danish Hydraulic Institute....
Institute of Scientific and Technical Information of China (English)
HU Jin-peng; YU Yu-xiu; ZHU Liang-sheng
2006-01-01
Comprehensive 3D model tests and numerical simulation were performed to study the effects of wave obliquity and multidirectionality on the wave forces acting on vertical breakwaters.The variation of wave forces acting on the unit length of a breakwater was analyzed, and the results were compared with Goda's formula.A numerical model based on a short-crest wave system was used to model regular wave forces for practical use, which showed good results for those waves with small incident angles.
Directory of Open Access Journals (Sweden)
M. Ern
2009-03-01
Full Text Available The quasi-biennial oscillation (QBO of the zonal mean zonal wind is one of the most important processes in the dynamics of the middle atmosphere in the tropics. Influences of the QBO can even be found at mid and high latitudes. It is widely accepted that the phase descent of alternating tropical easterlies and westerlies is driven by atmospheric waves of both global scale (equatorial wave modes like Kelvin, equatorial Rossby, Rossby-gravity, or inertia-gravity waves, as well as mesoscale gravity waves. However, the relative distribution of the different types of waves to the forcing of the QBO winds is highly uncertain. This is the case because until recently there were no high resolution long-term global measurements in the stratosphere. In our study we estimate Kelvin wave momentum flux and the contribution of zonal wind forcing by Kelvin waves based on space-time spectra determined from both Sounding of the Atmosphere using Broadband Emission Radiometry (SABER temperature measurements as well as temperatures from European Centre for Medium-Range Weather Forecasts (ECMWF operational analyses. Peak values of total Kelvin wave zonal wind forcing found are about 0.2 m/s/day. There is good agreement between SABER and ECMWF results. Global distributions are shown and the results are compared to the total wave forcing required to balance the background atmosphere. Sometimes Kelvin wave forcing is sufficient to explain almost the whole total wave forcing required for the momentum balance during the transition from QBO easterly to westerly winds. This is especially the case during the later parts of the periods of westerly wind shear at the equator between 20 and 35 km altitude. During other phases of the westerly wind shear periods, however, the contribution of Kelvin waves can be comparably low and the missing wave forcing, which is often attributed to mesoscale gravity waves or intermediate scale waves, can be the by far dominant contribution of
Elastic-wave propagation and the Coriolis force
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, E.N.
2016-01-01
In a coordinate system fixed with respect to the rotating Earth, the Coriolis force deflects an object sideways relative to its direction of motion. A beautiful demonstration of that effect is the Foucault pendulum, illustrated in figure 1a. As the long pendulum rocks back and forth, the Coriolis fo
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Energy Technology Data Exchange (ETDEWEB)
Li, Xinbo; Jiang, Hai; Jiao, Xiaoyang; Zhang, Kai; Liu, Guojun; Liu, Jianfang [Jilin University, Changchun (China)
2015-05-15
Based on the lever principle, a novel measurement method for the standing wave levitation force is investigated and the measurement device is developed. The relative levitation force was simulated by MATLAB software, from which the relative levitation force distribution and the curves of relative levitation force in vertical and horizontal directions were obtained. To verify the rationale of the measurement method, a series of experiments were carried out with the designed measurement device system. The levitation force distribution and the curves of levitation force in vertical and horizontal directions were also obtained from the experiment. Comparing the experimental results with the simulation, the levitation force distribution situation from the experimental results and the simulation is identical.
Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet
Institute of Scientific and Technical Information of China (English)
YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui
2006-01-01
We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance condition. A general method of the calculation is presented and the result is interesting. For example, under the condition that the wave packet is very narrow or/and the interaction is very strong, no matter whether the atom is initially in its ground state or excited state, as time approaches to infinity, the resonance-radiation force exerted by the light on the atom approaches to zero. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is a even function, then the resonance-radiation force exerted by the light on the atom is equal to zero.
Imaging of shear waves induced by Lorentz force in soft tissues.
Grasland-Mongrain, P; Souchon, R; Cartellier, F; Zorgani, A; Chapelon, J Y; Lafon, C; Catheline, S
2014-07-18
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues
Grasland-Mongrain, Pol; Cartellier, Florian; Zorgani, Ali; Chapelon, Jean-Yves; Lafon, Cyril; Catheline, Stefan
2014-01-01
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this 5 study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 um. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model 10 using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
Response spectrum method for extreme wave loading with higher order components of drag force
Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Mohammad Ali, Dastan Diznab; Saied, Mohajernasab; Saied, Seif Mohammad
2017-01-01
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force
Thurgood, J. O.; McLaughlin, J. A.
2013-07-01
Context. In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently, despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇cA ≠ 0) there is no further nonlinear generation of fast waves. Conclusions: We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse and longitudinal disturbances - effects absent in the linear regime - due to nonlinear magnetic pressure gradients.
The Generation of Coronal Loop Waves below the Photosphere by p-Mode Forcing
Hindman, Bradley W
2008-01-01
Recent observations of coronal-loop waves by TRACE and within the corona as a whole by CoMP clearly indicate that the dominant oscillation period is 5 minutes, thus implicating the solar p modes as a possible source. We investigate the generation of tube waves within the solar convection zone by the buffeting of p modes. The tube waves--in the form of longitudinal sausage waves and transverse kink waves--are generated on the many magnetic fibrils that lace the convection zone and pierce the solar photosphere. Once generated by p-mode forcing, the tube waves freely propagate up and down the tubes, since the tubes act like light fibers and form a waveguide for these magnetosonic waves. Those waves that propagate upward pass through the photosphere and enter the upper atmosphere where they can be measured as loop oscillations and other forms of propagating coronal waves. We treat the magnetic fibrils as vertically aligned, thin flux tubes and compute the energy flux of tube waves that can generated and driven in...
Vibrating-Sliding Motion of Caisson Breakwaters Under Various Breaking Wave Impact Forces
Institute of Scientific and Technical Information of China (English)
王元战; 于红霞
2003-01-01
Sliding is one of the principal failure types of caisson breakwaters and is an essential content of stability examination in caisson breakwater design. Herein, the mass-spring-dashpot model of caisson-base system is used to simulate the vibrating-sliding motion of the caisson under various types of breaking wave impact forces, i.e., single peak impact force, double peak impact force, and shock-damping oscillation impact force. The effects of various breaking wave impacts and the sliding motion on the dynamic response behaviors of caisson breakwaters are investigated and the calculation of relevant system parameters is discussed. It is shown that the dynamic responses of the caisson are significantly different under different types of breaking wave impact forces even when the amplitudes of impact forces are equal. The amplitude of dynamic response of the caisson is lower under single peak impact excitation than that under double peak impact or shock-damping oscillation impact excitation. Though the displacement of the caisson is large due to sliding, the rotation, the sliding force and the overturning moment of the caisson are significantly reduced.
VIBRATING-UPLIFT ROCKING MOTION OF CAISSON BREAKWATERS UNDER VARIOUS BREAKING WAVE IMPACT FORCES
Institute of Scientific and Technical Information of China (English)
WANG Yuan-zhan; ZHOU Zhi-rong; YANG Hai-dong
2005-01-01
Overturning is one of principal failure types of caisson breakwaters and is an essential content of stability examination in caisson breakwater design. The mass-springdashpot model of caisson-foundation system is used to simulate the vibrating-uplift rocking motion of caisson under various types of breaking wave impact forces, i.e., single peak impact force, double peak impact force, and shock-damping oscillation impact force. The effects of various breaking wave types and the uplift rocking motion on dynamic response behaviors of caisson breakwaters are investigated. It is shown that the dynamic responses of a caisson are significantly different under different types of breaking wave impact forces even when the amplitudes of impact forces are equal. Though the rotation of a caisson is larger due to the uplift rocking motion, the displacement, the sliding force and the overturning moment of the caisson are significantly reduced. It provides the theoretical base for the design idea that the uplift rocking motion of caisson is allowed in design.
Convectively Forced Gravity Waves and their Sensitivity to Heating Profile and Atmospheric Structure
Halliday, Oliver; Parker, Douglas; Griffiths, Stephen; Vosper, Simon; Stirling, Alison
2016-04-01
It has been known for some time that convective heating is communicated to its environment by gravity waves. Despite this, the radiation of gravity waves in macro-scale models, which are typically forced at the grid-scale by meso-scale parameterization schemes, is not well understood. We present here theoretical work directed toward improving our fundamental understanding of convectively forced gravity wave effects at the meso-scale, in order to begin to address this problem. Starting with the hydrostatic, non-rotating, 2D, Boussinesq equations in a slab geometry, we find a radiating, analytical solution to prescribed sensible heat forcing for both the vertical velocity and potential temperature response. Both Steady and pulsed heating with adjustable horizontal structure is considered. From these solutions we construct a simple model capable of interrogating the spatial and temporal sensitivity to chosen heating functions of the remote forced response in particular. By varying the assumed buoyancy frequency, the influence of the model stratosphere on the upward radiation of gravity waves, and in turn, on the tropospheric response can be understood. Further, we find that the macro-scale response to convection is highly dependent on the radiation characteristics of gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and upper boundary condition of the domain.
Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures
Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou
2015-01-01
Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.
Observational evidence for temporary planetary wave forcing of the MLT during fall equinox
Stray, Nora H; Espy, Patrick J; Hibbins, Robert E
2016-01-01
We present direct observations of zonal wave numbers 1 and 2 planetary wave activity in the mesopause region derived from a longitudinal chain of high-latitude Northern Hemisphere (51-66$^{\\circ}$N) Super Dual Auroral Radar Network radars. Over a 9 year period (2000-2008), the planetary wave activity observed shows a consistent increase around the fall equinox. This is shown to be coincident with a minimum in the magnitude of the stratospheric winds and consequently a minimum in the stratospheric gravity wave filtering and the subsequent momentum deposition in the mesopause region. Despite this, the observed meridional winds are shown to be perturbed poleward and mesopause temperatures rise temporarily, suggesting that westward momentum deposition from planetary waves temporarily becomes the dominant forcing on the mesopause region each fall equinox.
Long-wave forcing for regional atmospheric modelling
Energy Technology Data Exchange (ETDEWEB)
Storch, H. von; Langenberg, H.; Feser, F. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik
1999-07-01
A new method, named 'spectral nudging', of linking a regional model to the driving large-scale model simulated or analyzed by a global model is proposed and tested. Spectral nudging is based on the idea that regional-scale climate statistics are conditioned by the interplay between continental-scale atmospheric conditions and such regional features as marginal seas and mountain ranges. Following this 'downscaling' idea, the regional model is forced to satisfy not only boundary conditions, possibly in a boundary sponge region, but also large-scale flow conditions inside the integration area. We demonstrate that spectral nudging succeeds in keeping the simulated state close to the driving state at large scales, while generating smaller-scale features. We also show that the standard boundary forcing technique in current use allows the regional model to develop internal states conflicting with the large-scale state. It is concluded that spectral nudging may be seen as a suboptimal and indirect data assimilation technique. (orig.) [German] Eine neue Methode, genannt 'spektrales nudging', ein Regionalmodell an das durch ein Globalmodell simulierte grossskalige Antriebsfeld zu koppeln, wird vorgestellt und getestet. Das spektrale nudging basiert auf der Annahme, dass regionale Klimastatistik durch die Wechselwirkung zwischen dem kontinental-skaligen atmosphaerischen Zustand und regionalen Gegebenheiten, wie kleinere Seen und Gebirgszuege, bestimmt wird. Demnach muss das Regionalmodell nicht nur die Randbedingungen erfuellen, sondern auch die grossskaligen Zustaende innerhalb des Integrationsgebietes wiedergeben koennen. Wir zeigen, dass durch das spektrale nudging der grossskalige modellierte Zustand nahe an dem des Antriebsfeldes liegt, ohne die Modellierung regionaler Phaenomene zu beeintraechtigen. Ausserdem zeigen wir, dass das Regionalmodell durch die zur Zeit benutzte Antriebstechnik ueber den Modellrand interne Felder produzieren kann
Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
Mitri, F G
2009-12-01
Particle manipulation using the acoustic radiation force of Bessel beams is an active field of research. In a previous investigation, [F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Annals of Physics 323 (2008) 1604-1620] an expression for the radiation force of a zero-order Bessel beam standing wave experienced by a sphere was derived. The present work extends the analysis of the radiation force to the case of a high-order Bessel beam (HOBB) of positive order m having an angular dependence on the phase phi. The derivation for the general expression of the force is based on the formulation for the total acoustic scattering field of a HOBB by a sphere [F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Annals of Physics 323 (2008) 2840-2850; F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high order Bessel beam by an elastic sphere, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56 (2009) 1100-1103] to derive the general expression for the radiation force function YJm,st(ka,beta,m)Bessel beam standing wave incident upon a rigid sphere immersed in non-viscous water are computed. The rigid sphere calculations for YJm,st(ka,beta,m)Bessel beam standing wave (m=0). The proposed theory is of particular interest essentially due to its inherent value as a canonical problem in particle manipulation using the acoustic radiation force of a HOBB standing wave on a sphere. It may also serve as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.
Forces and overtopping on 2. generation Wave Dragon for Nissum Bredning. Phase 3
Energy Technology Data Exchange (ETDEWEB)
Hald, T.; Frigaard, P.
2001-11-01
The purpose of this report is to summarize forcing and overtopping on the redesigned Wave Dragon model. The results will establish a basis for the development of the 1:4.5 scale prototype planned for testing in Nissum Bredning, a sea inlet on the Danish West Coast. For comparison also results obtained using the 1. generation are referred in this report. (au)
Capillary Gravity Waves over an Obstruction - Forced Generalized KdV equation
Choi, Jeongwhan; Whang, S. I.; Sun, Shu-Ming
2013-11-01
Capillary gravity surface waves of an ideal fluid flow over an obstruction is considered. When the Bond number is near the critical value 1/3, a forced generalized KdV equation of fifth order is derived. We study the equation analytically and numerically. Existence and stability of solutions are studied and new types of numerical solutions are found.
Experiments on waves under impulsive wind forcing in view of the Phillips (1957) theory
Shemer, Lev; Zavadsky, Andrey
2016-11-01
Only limited information is currently available on the initial stages of wind-waves growth from rest under sudden wind forcing; the mechanisms leading to the appearance of waves are still not well understood. In the present work, waves emerging in a small-scale laboratory facility under the action of step-like turbulent wind forcing are studied using capacitance and laser slope gauges. Measurements are performed at a number of fetches and for a range of wind velocities. Taking advantage of the fully automated experimental procedure, at least 100 independent realizations are recorded for each wind velocity at every fetch. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters as a function of time elapsed from the blower activation. The accumulated results on the temporal variation of wind-wave field initially at rest allow quantitative comparison with the theory of Phillips (1957). Following Phillips, appearance of the initial detectable ripples was considered first, while the growth of short gravity waves at later times was analyzed separately. Good qualitative and partial quantitative agreement between the Phillips predictions and the measurements was obtained for both those stages of the initial wind-wave field evolution.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Institute of Scientific and Technical Information of China (English)
LU Ming-Zhu; LIU Xue-Jin; SHI Yu; KANG Yan-Ni; GUAN Yu-Bo; WAN Ming-Xi
2012-01-01
We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue.The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method.A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated.It is noted that unlike the dissipative effect,the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis,compresses or stretches the focus area.The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100％ peak positive displacement and 64％ peak negative displacement.This action is useful in discerning the water-like lesion.%We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue. The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method. A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated. It is noted that unlike the dissipative effect, the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis, compresses or stretches the focus area. The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100% peak positive displacement and 64% peak negative displacement. This action is useful in discerning the water-like lesion.
Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave
Zemánek, Pavel; Jonáš, Alexandr; Liška, Miroslav
2002-05-01
We study the axial force acting on dielectric spherical particles smaller than the trapping wavelength that are placed in the Gaussian standing wave. We derive analytical formulas for immersed particles with relative refractive indices close to unity and compare them with the numerical results obtained by generalized Lorenz-Mie theory (GLMT). We show that the axial optical force depends periodically on the particle size and that the equilibrium position of the particle alternates between the standing-wave antinodes and nodes. For certain particle sizes, gradient forces from the neighboring antinodes cancel each other and disable particle confinement. Using the GLMT we compare maximum axial trapping forces provided by the Gaussian standing-wave trap (SWT) and single-beam trap (SBT) as a function of particle size, refractive index, and beam waist size. We show that the SWT produces axial forces at least ten times stronger and permits particle confinement in a wider range of refractive indices and beam waists compared with those of the SBT.
Directory of Open Access Journals (Sweden)
A. M. Powell Jr.
2014-08-01
Full Text Available This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is the global atmospheric planetary waves that can lead to changes in the global surface air–sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956–1957, 1964–1965, 1977–1978, 1988–1989, and 1998–1999 in the recent 59 years (1950–2008 have been identified based on student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic and Indian ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. Due to the multidisciplinary audience, the global forcing mechanism is described from a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO global fish capture data (catch/stock. Analyses are performed to demonstrate the interactions between the atmosphere, ocean, and fisheries are a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from long wave (relatively
Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing
Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.
1996-01-01
An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.
Wave Drift Forces on Two Floating Bodies Arranged Side by Side
Institute of Scientific and Technical Information of China (English)
Wenyang Duan; Binbin Zhao
2011-01-01
An innovative hydrodynamic theory and numerical model were developed to help improve the efficiency,accuracy,and convergence of the numerical prediction of wave drift forces on two side-by-side deepwater floating bodies.The wave drift forces were expressed by the double integration of source strength and the corresponding Green function on the body surface,which is consistent with the far field formula based on momentum conservation and sharing the advantage of near field calculations providing the drift force on each body.Numerical results were validated through comparing the general far field model and pressure integral model,as well as the middle field model developed using the software HydroStar.
Design of Bidirectional Check Valve for Discrete Fluid Power Force System for Wave Energy Converters
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole
2014-01-01
Discrete fluid power force systems consisting of a multichamber cylinder, a witching manifold and common pressure lines have been proposed as a technology for increasing the efficiency of the power take off system in ocean wave energy converters. However the force shifting of these discrete systems...... enables passive force switching under minimal pressure difference, hence minimal energy loss. The bidirectional check valve is designed with a rated flow in the range of 1000L/min@5bar. The flow direction of the bidirectional check valve is set by the setting the pilot pressure. This paper presents...... a functionality test of a 125 L/min@5bar bidirectional check, leading to the design and modelling of a bidirectional check valve for ocean wave energy. It shows that a feasible bidirectional check valve may be configured by employing a multi-poppet topology for the main stage and utilising a 3/2 switching valve...
DEFF Research Database (Denmark)
Martinelli, Luca; Lamberti, Alberto; Frigaard, Peter
2007-01-01
This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under multidirectio...
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.;
2013-01-01
The effect from fully nonlinear irregular wave forcing on the fatigue life of the foundation and tower of an offshore wind turbine is investigated through aeroelastic calculations. Five representative sea states with increasing significant wave height are considered in a water depth of 40 m....... The waves are both linear and fully nonlinear irregular 2D waves. The wind turbine is the NREL 5-MW reference wind turbine. Fatigue analysis is performed in relation to analysis of the sectional forces in the tower and monopile. Impulsive excitation of the sectional force at the bottom of the tower is seen...
Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio
2010-07-01
Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.
AERODYNAMIC FORCES ACTING ON AN ALBATROSS FLYING ABOVE SEA-WAVES
Institute of Scientific and Technical Information of China (English)
SHENG Qi-hu; WU De-ming; ZHANG Liang
2005-01-01
Numerical investigation on the dynamic mechanism has been made for an albatross to fly effectively near sea surface. Emphasizing on the effect of the sea wave,the albatross is simplified as a two-dimensional airfoil and the panel method based on the potential flow theory is employed to calculate the wave effect on the aerodynamic forces. The numerical results have been presented for the states of flying at different constant speeds with constant heights above sea level, and flying at different constant speeds with the combined oscillations of pitching and free heaving. It is shown that the albatross flight efficiency depends on not only the speed and height of flight but also the wave amplitude and the wavelength. The albatross benefits by wave effect to get thrust,so as to reduce the resistance in the circumstances of rough sea.
Energy Technology Data Exchange (ETDEWEB)
Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)
2015-10-28
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of
Directory of Open Access Journals (Sweden)
M. Ern
2009-06-01
Full Text Available The quasi-biennial oscillation (QBO of the zonal mean zonal wind is a dynamical phenomenon of the tropical middle atmosphere. Influences of the QBO can even be found at mid and high latitudes. It is widely accepted that the phase descent of alternating tropical easterlies and westerlies is driven by atmospheric waves of both global scale (equatorial wave modes like Kelvin, equatorial Rossby, Rossby-gravity, or inertia-gravity waves, as well as mesoscale gravity waves. However, the relative distribution of the different types of waves to the forcing of the QBO winds is highly uncertain. This is the case because until recently there were no high resolution long-term global measurements in the stratosphere. In our study we estimate Kelvin wave momentum flux and the contribution of zonal wind forcing by Kelvin waves based on space-time spectra determined from both Sounding of the Atmosphere using Broadband Emission Radiometry (SABER temperature measurements as well as temperatures from European Centre for Medium-Range Weather Forecasts (ECMWF operational analyses. Peak values of total Kelvin wave zonal wind forcing found are about 0.2 m/s/day. There is good agreement between SABER and ECMWF results. Altitude-time cross sections are shown and the results are compared to the total wave forcing required to balance the background atmosphere. Sometimes Kelvin wave forcing is sufficient to explain almost the whole total wave forcing required for the momentum balance during the transition from QBO easterly to westerly winds. This is especially the case during the periods of strong westerly wind shear when the zonal wind is between −20 and 10 m/s at the equator in the altitude range 20 to 35 km. During other parts of the phases of strong westerly wind shear, however, the contribution of Kelvin waves can be comparably low and the missing wave forcing, which is often attributed to mesoscale gravity waves or intermediate scale waves, can be the by far
On the vertical structure of wave forcing for the ocean circulation
Bennis, Anne-Claire
2010-01-01
The conservation of momentum, when averaged over the phase of surface gravity waves can take two forms, whether or not the momentum variable contains the wave pseudo-momentum. The vertical profiles of the resulting wave-induced forces are discussed, with application to realistic condition. It was already proved that forces for the total momentum that use analytical functions of the local wave properties are necessarily inconsistent, and thus inaccurate at the lowest order. The consequences of these inaccuracies are explored here. In inviscid conditions, it is shown that large spurious currents of the order of 10 times the Strokes drift are generated on a sloping bottom, however small that slope is. These spurious velocities are reduced but are still significant when a strong vertical mixing is applied. In contrast, forces for the quasi-Eulerian mean momentum do not suffer from this inconsistency, and accurate numerical models can be developed. Choosing to solve for the quasi-Eulerian mean flow is also intrins...
Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments
Breivik, Øyvind; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A E M
2015-01-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wave field), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extra-tropics, but the sea-state dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total oce...
Powell, A. M., Jr.; Xu, J.
2015-04-01
This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is that the global atmospheric planetary waves can lead to changes in the global surface air-sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956-1957, 1964-1965, 1977-1978, 1988-1989, and 1998-1999) in the most recent 59-year period (1950-2008) have been identified based on Student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic, and Indian) ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. The global forcing mechanism is described with a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO) global fish capture data (catch/stock). Analyses are performed to demonstrate that examining the interactions between the atmosphere, ocean, and fisheries is a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from longwave (relatively smooth and less complex) to shorter-wave
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
Energy Technology Data Exchange (ETDEWEB)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Wave function collapses in a single spin magnetic resonance force microscopy
Berman, G P; Tsifrinovich, V I
2004-01-01
We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) magnetic resonance force microscopy (MRFM) technique. The quantum dynamics of the cantilever tip (CT) and the spin is analyzed and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the effective magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental study of this shift can reveal the information about the average time interval between the consecutive collapses of the wave function
Traveling waves for models of phase transitions of solids driven by configurational forces
Kawashima, Shuichi
2009-01-01
This article is concerned with the existence of traveling wave solutions, including standing waves, to some models based on configurational forces, describing respectively the diffusionless phase transformations of solid materials, e.g., Steel, and phase transitions due to interface motion by interface diffusion, e.g., Sintering. These models are recently proposed by Alber and Zhu. We consider both the order-parameter-conserved case and the non-conserved one, under suitable assumptions. Also we compare our results with the corresponding ones for the Allen-Cahn and the Cahn-Hilliard equations coupled with linear elasticity, which are models for diffusion-dominated phase transformations in elastic solids.
Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force
Yastrebov, Vladislav A
2015-01-01
An elastic layer slides on a rigid flat governed by Coulomb's friction law. We demonstrate that if the coefficient of friction is high enough, the sliding localizes within stick-slip pulses, which transform into opening waves propagating at intersonic speed in the direction of sliding or, for high Poisson's ratios, at supersonic speed in the opposite one. This sliding mode, characterized by small frictional dissipation, rapidly relaxes the shear elastic energy via stress waves and enables the contact surface slide ahead of the top one, resulting in inversion of the frictional force direction.
Comparative study on breaking wave forces on vertical walls with cantilever surfaces
Kisacik, D.; Bogaert, P; Troch, P.
2010-01-01
Physical experiments (at a scale of 1/20) are carried out using two different models: a vertical wall with cantilevering slab and a simple vertical wall. Tests are conducted for a range of values of water depth, wave period and wave height. The largest peak pressures were recorded at the SWL (82 pghs) on the vertical part and at the fixed corner of the cantilever slab (90 pghs). Pressure measurements and derived force calculations on the simple vertical wall were used to evaluate the existing...
Sato, N; Kanda, N; Kuroda, K; Miyoki, S; Ohashi, M; Saitô, Y; Shintomi, T; Suzuki, T; Tatsumi, D; Taylor, C; Tomaru, T; Uchiyama, T; Yamamoto, A
2002-01-01
We measured forces applied by an actuator with a YBCO film at near 77 K for the Large-scale Cryogenic Gravitational-wave Telescope (LCGT) project. An actuator consisting of both a YBCO film of 1.6 micrometers thickness and 0.81 square centimeters area and a solenoid coil exerted a force of up to 0.2 mN on a test mass. The presented actuator system can be used to displace the mirror of LCGT for fringe lock of the interferometer.
Estimating Wind and Wave Induced Forces On a Floating Wind Turbine
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong
-principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....
Estimating Wind and Wave Induced Forces On a Floating Wind Turbine
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong
2013-01-01
-principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....
An assessment of wind forcing impact on a spectral wave model for the Indian Ocean
Indian Academy of Sciences (India)
P G Remya; Raj Kumar; Sujit Basu
2014-07-01
The focus of the present study is the assessment of the impact of wind forcing on the spectral wave model MIKE 21 SW in the Indian Ocean region. Three different wind fields, namely the ECMWF analyzed winds, the ECMWF blended winds, and the NCEP blended winds have been used to drive the model. The wave model results have been compared with in-situ observations and satellite altimeter data. This study also evaluated the performance of the wind products during local phenomenon like sea breeze, since it has a significant impact on the wave prediction in the Indian coastal region. Hence we explored the possibility of studying the impact of diurnal variation of winds on coastal waves using different wind fields. An analysis of the model performance has also been made during high wind conditions with the inference that blended winds generate more realistic wave fields in the high wind conditions and are able to produce the growth and decay of waves more realistically.
Silber, M; Silber, Mary; Skeldon, Anne C.
1999-01-01
Motivated by experimental observations of exotic standing wave patterns in the two-frequency Faraday experiment, we investigate the role of normal form symmetries in the pattern selection problem. With forcing frequency components in ratio m/n, where m and n are co-prime integers, there is the possibility that both harmonic and subharmonic waves may lose stability simultaneously, each with a different wavenumber. We focus on this situation and compare the case where the harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic waves have a shorter wavelength. We show that in the former case a normal form transformation can be used to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions. Thus the role of resonant triads in the pattern selection problem is greatly diminished in this situation. We verify our general results within the example of one-dimensional surface wave solutions of the Zhang-Vinals model of the t...
DEFF Research Database (Denmark)
Martinelli, Luca; Lamberti, Alberto; Frigaard, Peter
2007-01-01
This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under...... multidirectional waves, causing mainly spilling and occasionally plunging breakers, in the CRF-LSF (Wallingford, UK) wave basin. Seven adjacent modules were instrumented with synchronized force transducers. Pulsating and breaking loads were distinguished on the basis of the frequency content and the spatial...... correlation of the force per unit length was fitted to a single or a double bell shaped distribution. The experimental autocorrelation function for pulsating loads agrees with theoretical solutions; for breaking waves it has a Taylor microscale which is approximately 7% of wavelength, only slightly dependent...
Wang, Y. Q.; Guo, X. H.; Li, Y. G.; Li, J.
2010-03-01
This is a study of nonlinear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated harmonic force moving in a concentric circular path at a constant velocity. Donnell's shallow-shell theory is used, so that moderately large vibrations are analyzed. The problem is reduced to a system of ordinary differential equations by means of the Galerkin method. Frequency-responses for six different mode expansions are studied and compared with that for single mode to find the more contracted and accurate mode expansion investigating traveling wave vibration. The method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of this system. Results obtained with analytical method are compared with numerical simulation, and the agreement between them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in detail.
MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS
Directory of Open Access Journals (Sweden)
Mario Dobrilović
2005-12-01
Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.
Simulation of Wave Forces on A Semi-Circular Breakwater Using Multilayer Feed Forward Network
Institute of Scientific and Technical Information of China (English)
徐杰; 陶建华
2003-01-01
In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.
Fomichev, Vladislav; Yadrenkin, Mikhail; Shipko, Evgeny
2016-10-01
Summarizing of experimental studies results of the local MHD-interaction at hypersonic air flow near the plate is presented. Pulsed and radiofrequency discharge have been used for the flow ionization. It is shown that MHD-effect on the shock-wave structure of the flow is significant at test conditions. Using of MHD-interaction parameter enabled to defining characteristic modes of MHD-interaction by the force effect: weak, moderate and strong.
A SIMPLIFIED THEORY FOR UNSTEADY AERODYNAMIC FORCES ACTING ON AN AIRFOIL FLYING ABOVE SEA-WAVES
Institute of Scientific and Technical Information of China (English)
SHENG Qi-hu; WU De-ming; ZHANG Liang
2004-01-01
A simplified theoretical method based on the quasi-steady wing theory was proposed to study the unsteady aerodynamic forces acting on an airfoil flying in non-uniform flow. Comparison between the theoretical results and the numerical results based on nonlinear theory was made. It shows that the simplified theory is a good approximation for the investigation of the aerodynamic characteristics of an airfoil flying above sea-waves. From on the simplified theory it is also found that an airfoil can get thrust from a wave-disturbed airflow and thus the total drag is reduced. And the relationship among the thrust, the flying altitude, the flying speed and the wave parameters was worked out and discussed.
Wave system fitting: A new method for force measurements in shock tunnels with long test duration
Luo, Changtong; Wang, Yunpeng; Wang, Chun; Jiang, Zonglin
2015-10-01
Force measurements in shock tunnels are difficult due to the existence of vibrations excited by a sudden aerodynamic loading. Accelerometer inertia compensation could reduce its negative effect to some extent, but has inherent problems. A new signal decomposition method, wave system fitting (WSF), is proposed to remove vibration waves of low frequency. The WSF is accelerometer-free. It decomposes the balance signal and can separate vibration waves without the influence on the DC component, and it does work no matter the cycle of the sample signal is complete or not. As a standard signal post-processing tool in JF-12, the application results show that it works reliably with high accuracy, and it can also explain puzzling signals encountered in JF-12. WSF method is especially useful and irreplaceable whenever only a few cycles of a periodic signal could be obtained, as is usual for shock tunnels.
A numerical modeling for the wave forcing of floating thin plate
Energy Technology Data Exchange (ETDEWEB)
Basirat Tabrizi, H. [Amirkabir Univ. of Technology, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: hbasirat@aut.ac.ir, H.Basirat@dal.ca; Kouchaki Motlaq, M. [Islamic Azad Univ., Dept. of Graduate Studies, Arak (Iran, Islamic Republic of)
2004-07-01
A finite difference scheme based on central difference, which is applicable to the thin plate floating on intermediate depth water subjected to wave force, is developed. The floating structure analyzed as a plate with unit width and expressed by an elastic bending theory. The fluid flow expressed as an incompressible, inviscid and steady that the potential theory can apply. Here, the water wave elevation assumed the same as the bending displacement structure at the interface. The distribution of the displacement amplitude of structure and the wave amplitude varies in a wavy pattern in the middle part and increases greatly near the edge of plate. The present method verified by comparing quantitatively with the reported experimental and theoretical results of others. (author)
Hertzian impact: experimental study of the force pulse and resulting stress waves.
McLaskey, Gregory C; Glaser, Steven D
2010-09-01
Ball impact has long been used as a repeatable source of stress waves in solids. The amplitude and frequency content of the waves are a function of the force-time history, or force pulse, that the ball imposes on the massive body. In this study, Glaser-type conical piezoelectric sensors are used to measure vibrations induced by a ball colliding with a massive plate. These measurements are compared with theoretical estimates derived from a marriage of Hertz theory and elastic wave propagation. The match between experiment and theory is so close that it not only facilitates the absolute calibration the sensors but it also allows the limits of Hertz theory to be probed. Glass, ruby and hardened steel balls 0.4 to 2.5 mm in diameter were dropped onto steel, glass, aluminum, and polymethylmethacrylate plates at a wide range of approach velocities, delivering frequencies up to 1.5 MHz into these materials. Effects of surface properties and yielding of the plate material were analyzed via the resulting stress waves and simultaneous measurements of the ball's coefficient of restitution. The sensors are sensitive to surface normal displacements down to about +/-1 pm in the frequency range of 20 kHz to over 1 MHz.
A Study of Saturn's Normal Mode Oscillations and Their Forcing of Density Waves in the Rings
Friedson, Andrew James; Cao, Lyra
2016-10-01
Analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) ring occultation profiles has revealed the presence of spiral density waves in Saturn's C ring that are consistent with being driven by gravitational perturbations associated with normal-mode oscillations of the planet [1]. These waves allow the C ring to serve as a sort of seismometer, since their pattern speeds (i.e., azimuthal phase speeds) can in principle be mapped onto the frequencies of the predominant normal oscillations of the planet. The resonant mode frequencies in turn are sensitive to Saturn's internal structure and rotational state. Characterization of the normal modes responsible for the forcing holds the potential to supply important new constraints on Saturn's internal structure and rotation. We perform numerical calculations to determine the resonant frequencies of the normal modes of a uniformly rotating planet for various assumptions regarding its internal stratification and compare the implied pattern speeds to those of density waves observed in the C ring. A question of particular interest that we address is whether quasi-toroidal modes are responsible for exciting a mysterious class of slowly propagating density waves in the ring. We also explore the implications of avoided crossings between modes for explaining observed fine splitting in the pattern speeds of spiral density waves having the same number of spiral arms, and weigh the role that convective overstability may play in exciting large-scale quasi-toroidal modes in Saturn. [1] Hedman, M.M. and Nicholson, P.D. 2014. MNRAS 444, 1369.
Institute of Scientific and Technical Information of China (English)
LIU Yong; LI Yu-cheng; TENG Bin; JIANG Jun-jie
2006-01-01
The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble filled foundation, and has a rock-filled core. An analytical solution is developed based on the eigenfunction expansion and matching method to solve the wave field around the breakwater. The finite element method is used for simulating the wave-induced flow in the rubble-filled foundation. Experiments are also conducted to study the wave forces on the perforated caissons. Numerical predictions of the present model are compared with experimental results. The phase differences between the total horizontal and vertical forces are particularly analyzed by means of experimental and numerical results. The major factors that affect the wave forces are examined.
Anti-periodic traveling wave solution to a forced two-dimensional generalized KdV-Burgers equation
Institute of Scientific and Technical Information of China (English)
TAN Junyu
2003-01-01
The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied.Some theorems concerning the boundness, existence and uniqueness of the solution to this equation are proved.
Leichter, James J.; Stokes, M. Dale; Vilchis, L. Ignacio; Fiechter, Jerome
2014-01-01
Analysis of 10 year temperature records collected along the Florida Keys reef tract (FLKRT) reveals strong, regional-scale synchrony in high-frequency temperature variation suggestive of internal wave forcing at predominately semidiurnal frequencies. In each year and at all sites, the amplitude of semidiurnal temperature variation was greatest from March to September, and markedly lower from October to February. Comparisons of the semidiurnal component of the temperature variation among sites suggest complex patterns in the arrival of internal waves, with highest cross correlation among closely spaced sites and synchrony in periods of enhanced internal wave activity across the length of the FLKRT, particularly in summer. The periods of enhanced semidiurnal temperature variation at the 20 and 30 m isobaths on the reef slopes appear to be associated with the dynamics of the Florida Current and the onshore movement of warm fronts preceding the passage of Florida Current frontal eddies. Regional-scale satellite altimetry observations suggest temporal linkages to sea surface height anomalies in the Loop Current (upstream of the Florida Current) and setup of the Tortugas Gyre. The synchronized forcing of cool water onto the reef slope sites across the FLKRT is likely to affect physiological responses to temperature variation in corals and other ectothermic organisms, as well as larval transport and nutrient dynamics with the potential for regionally coherent pulses of larvae and nutrients arriving on reef slopes across the FLKRT.
Gravitational-wave detection by dispersion force modulation in nanoscale parametric amplifiers
Fabrizio, Pinto
2016-05-01
Two infinite parallel plane slabs separated by a gap alter the zero-point-energy of the matter-electromagnetic field system. Generally speaking, the corresponding interaction depends on the reflection properties of the boundaries, and therefore on the dielectric functions of both the slab and gap materials, on the gap width, and on the absolute temperature of the system. Importantly, it is known experimentally that dispersion forces can be modulated in time. This can be achieved by mechanically varying the gap width so as to introduce parametric oscillations. Much more fundamentally, however, dispersion forces can be altered by acting on the dielectric functions involved as is the case in semiconductors. In the optical analogy, a gravitational wave introduces an additional time dependence of the effective gap dielectric function. These elements, already confirmed by direct experimentation or predicted from the Lifshitz theory, support the design of a novel approach to ground-based nanoscale gravitational wave detection based on parametric amplification driven by dispersion force modulation.
Grasland-Mongrain, Pol
2014-01-01
The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical imp...
Directory of Open Access Journals (Sweden)
Yu Liu
Full Text Available Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm, as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable.
Dynamic Analysis for Two Kinds of Jacket Platforms under Wave Force
Institute of Scientific and Technical Information of China (English)
Meng Xun(孟珣); Huang Weiping; Li Huajun
2004-01-01
A detailed finite element analysis is presented in this paper in order to obtain the different vibration properties of two kinds of fixed jacket platforms under wave force. More attention is paid to the platform with prism shape jacket because of its more possibly excessive vibration in service than that of the jacket platform with slant piles. Numerical simulations are compared with the results from actual platform test and an effective strengthening technique is proposed. The conclusion of the paper may be taken as the basis of following control work.It also gives some guidance to the future design of the fixed platform with prism shape jacket.
A study of wave forces on an offshore platform by direct CFD and Morison equation
Directory of Open Access Journals (Sweden)
Zhang D.
2015-01-01
The next step is the presentation of 3D multiphase RANS simulation of the wind-turbine platform in single-harmonic regular waves. Simulation results from full 3D simulation will be compared to the results from Morison’s equation. We are motivated by the challenges of a floating platform which has complex underwater geometry (e.g. tethered semi-submersible. In cases like this, our hypothesis is that Morison’s equation will result in inaccurate prediction of forces, due to the limitations of 2D coefficients of simple geometries, and that 3D multiphase RANS CFD will be required to generate reliable predictions of platform loads and motions.
A force-based model to reproduce stop-and-go waves in pedestrian dynamics
Chraibi, Mohcine; Schadschneider, Andreas
2015-01-01
Stop-and-go waves in single-file movement are a phenomenon that is ob- served empirically in pedestrian dynamics. It manifests itself by the co-existence of two phases: moving and stopping pedestrians. We show analytically based on a simplified one-dimensional scenario that under some conditions the system can have instable homogeneous solutions. Hence, oscillations in the trajectories and in- stabilities emerge during simulations. To our knowledge there exists no force-based model which is collision- and oscillation-free and meanwhile can reproduce phase separation. We develop a new force-based model for pedestrian dynamics able to reproduce qualitatively the phenomenon of phase separation. We investigate analytically the stability condition of the model and define regimes of parameter values where phase separation can be observed. We show by means of simulations that the predefined conditions lead in fact to the expected behavior and validate our model with respect to empirical findings.
deWit, R J; Espy, P J; Orsolini, Y J; Limpasuvan, V; Kinnison, D E
2016-01-01
Studies of vertical and interhemispheric coupling during Sudden Stratospheric Warmings (SSWs) suggest that gravity wave (GW) momentum flux divergence plays a key role in forcing the middle atmosphere, although observational validation of GW forcing is limited. We present a whole atmosphere view of zonal winds from the surface to 100 km during the January 2013 major SSW, together with observed GW momentum fluxes in the mesopause region derived from uninterrupted high-resolution meteor radar observations from an All-Sky Interferometric Meteor Radar system located at Trondheim, Norway (63.4 $^{\\circ}$N, 10.5 $^{\\circ}$E). Observations show GW momentum flux divergence 6 days prior to the SSW onset, producing an eastward forcing with peak values of $\\sim$+145 $\\pm$ 60m $s^{-1}$ $d^{-1}$. As the SSW evolves, GW forcing turns westward, reaching a minimum of $\\sim$-240 $\\pm$ 70 m $s^{-1}$ $d^{-1}$ $\\sim$+18 days after the SSW onset. These results are discussed in light of previous studies and simulations using the Wh...
Directory of Open Access Journals (Sweden)
Liu Yongjun
2015-01-01
Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.
Wave propagation analysis of edge cracked circular beams under impact force.
Directory of Open Access Journals (Sweden)
Şeref Doğuşcan Akbaş
Full Text Available This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves.
DEFF Research Database (Denmark)
Jensen, Mads Jakob Herring; Bruus, Henrik
2013-01-01
The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions of this ......The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions...... of this specific problem can be found in the literature [Settnes ans Bruus, Phys. Rev. E 85, 016327 (2012), and references therein], but none have included the complete contribution from thermoviscous effects. Here, we solve this problem numerically by applying a finite-element method to solve directly the mass...... (continuity), momentum (Navier-Stokes), and energy conservation equations using perturbation theory to second order in the imposed time-harmonic ultrasound field. In a two-stage calculation, we first solve the first-order equations resolving the thermoviscous boundary layer surrounding the microparticle...
Ceyhan Bilgici, Meltem; Sağlam, Dilek; Delibalta, Semra; Yücel, Serap; Tomak, Leman; Elmalı, Muzaffer
2017-04-19
Acoustic radiation force impulse imaging is a kind of shear wave elastography that can be used in children for differentiating thyroid pathologies. Possible changes in the healthy thyroid gland in children may create difficulties in the use of shear wave velocities (SWV) in thyroid pathologies. The aim of this study was to define the normal values of SWV for the healthy thyroid gland in children, elucidate the correlation of the SWV values with potential influencing factors, and evaluate intra-operator reproducibility of the SWV. Between January 2015 and December 2015, a total of 145 healthy children (81 girls, 64 boys; mean age, 10.5 ± 3.14 years; range 6-17 years) were enrolled in the study. The SWV and volume of the thyroid gland were determined. The mean shear wave velocity of the thyroid gland was 1.22 ± 0.20 m/s. There was no correlation between age and the mean SWV of the thyroid gland (Spearman Rho = 0.049, p = 0.556). There was also no correlation between the thyroid gland volume or BSA and the mean SWV. The only correlation detected was between BSA and total thyroid gland volume (p thyroid gland in children was determined. There was no correlation between the SWV of the thyroid gland and age, BSA, or thyroid gland volume.
Gas dynamic and force effects of a solid particle in a shock wave in air
Obruchkova, L. R.; Baldina, E. G.; Efremov, V. P.
2017-03-01
Shock wave interaction with an adiabatic solid microparticle is numerically simulated. In the simulation, the shock wave is initiated by the Riemann problem with instantaneous removal of a diaphragm between the high- and low-pressure chambers. The calculation is performed in the two-dimensional formulation using the ideal gas equation of state. The left end of the tube is impermeable, while outflow from the right end is permitted. The particle is assumed to be motionless, impermeable, and adiabatic, and the simulation is performed for time intervals shorted than the time of velocity and temperature relaxation of the particle. The numerical grid is chosen for each particle size to ensure convergence. For each particle size, the calculated hydraulic resistance coefficient describing the particle force impact on the flow is compared with that obtained from the analytical Stokes formula. It is discovered that the Stokes formula can be used for calculation of hydraulic resistance of a motionless particle in a shock wave flow. The influence of the particle diameter on the flow perturbation behind the shock front is studied. Specific heating of the flow in front of the particle is calculated and a simple estimate is proposed. The whole heated region is divided by the acoustic line into the subsonic and supersonic regions. It is demonstrated that the main heat generated by the particle in the flow is concentrated in the subsonic region. The calculations are performed using two different 2D hydro codes. The energy release in the flow induced by the particle is compared with the maximum possible heating at complete termination of the flow. The results can be used for estimating the possibility of gas ignition in front of the particle by a shock wave whose amplitude is insufficient for initiating detonation in the absence of a particle.
Bayly, P V; Dutcher, S K
2016-10-01
Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This 'flutter' instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force.
Directory of Open Access Journals (Sweden)
Chanjo Woo
2017-07-01
Full Text Available The present study numerically analyzed the dynamic behavior of 3D framed structures subject to impulsive slamming forces by violent breaking waves. The structures were modeled using multiple lumped masses for the vertical projections of each member, and the slamming forces from the breaking waves were concentrated on these lumped masses. A numerical algorithm was developed to properly incorporate the slamming forces into a dynamic analysis to numerically determine the structural responses. Then, the validity of the numerical analysis was verified using the results of an existing hydraulic experiment. The numerical and experimental results for various model structures were generally in good agreement. The uncertainties concerning the properties of the breaking waves used in the verification are also discussed here.
Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth
DEFF Research Database (Denmark)
Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.
2014-01-01
Forcing by steep regular water waves on a vertical circular cylinder at finite depth was investigated numerically by solving the two-phase incompressible Navier–Stokes equations. Consistently with potential flow theory, boundary layer effects were neglected at the sea bed and at the cylinder...... surface, but the strong nonlinear motion of the free surface was included. The numerical model was verified and validated by grid convergence and by comparison to relevant experimental measurements. First-order convergence towards an analytical solution was demonstrated and an excellent agreement...... of secondary load cycles. Special attention was paid to this secondary load cycle and the flow features that cause it. By visual observation and a simplified analytical model it was shown that the secondary load cycle was caused by the strong nonlinear motion of the free surface which drives a return flow...
The covariance of temperature and ozone due to planetary-wave forcing
Fraser, G. J.
1976-01-01
The cross-spectra of temperature and ozone mass mixing ratio at 42 km and 28 km has been determined for spring (1971) and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The sources of data are the SCR and BUV experiments on Nimbus 4. The observed covariances are compared with a model in which the temperature and ozone perturbations are forced by an upward propagating planetary wave. The agreement between the observations and the model is reasonable. It is suggested that this cross-spectral method permits an estimate of the meridional gradient of ozone mass mixing ratio from measurements of the vertical profile of ozone mass mixing ratio at one location, supported by temperature profiles from at least two locations.
Effects of ultrasonic waves on the interfacial forces between oil and water.
Hamida, Tarek; Babadagli, Tayfun
2008-04-01
The effect of ultrasound on flow through a capillary using the pendant drop method was investigated. Water was injected into a 0.1 mm Hastelloy C-276 capillary tube submersed into several mineral oils with different viscosity, and kerosene. The average drop rate per minute was measured at several ultrasonic intensities. We observed that there exists a peak drop rate at a characteristic intensity, which strongly depends on oil viscosity and the interfacial tension between water and the oil. The semi-quantitative results reveal that the remarkable change in the interfacial forces between oil and water could be the explanation to the enhancement of oil recovery when the ultrasonic waves are applied.
State-Space Realization of the Wave-Radiation Force within FAST: Preprint
Energy Technology Data Exchange (ETDEWEB)
Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.
2013-06-01
Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.
Analysis of the frequency-dependent response to wave forcing in the extratropics
Directory of Open Access Journals (Sweden)
A. J. Haklander
2006-01-01
Full Text Available A quasigeostrophic model for the frequency-dependent response of the zonal-mean flow to planetary-wave forcing at Northern Hemisphere (NH midlatitudes is applied to 4-D-Var ECMWF analysis data for six extended winter seasons. The theoretical response is a non-linear function of the frequency of the forcing, the thermal damping time α−1, and a scaling parameter µ which includes the aspect ratio of the meridional to the vertical length scale of the response. Regression of the calculated response from the analyses onto the theoretical response yields height-dependent estimates for both α−1 and µ. The thermal damping time estimated from this dynamical model is about 2 days in the troposphere, 7–10 days in the stratosphere, and 2–4 days in the lower mesosphere. For the stratosphere and lower mesosphere, the estimates lie within the range of existing radiative damping time estimates, but for the troposphere they are significantly smaller.
Directory of Open Access Journals (Sweden)
A. E. Vinogradov
2008-01-01
Full Text Available An induction seismic receiver is widely applied in many guarding devices (1К18 «Realiya», PS-75 «Gerb» and others which are used for detection of moving surface objects. The receiver makes it possible to register soil vibrations caused by the object action. An inertial element of such seismic receiver is a cylindrical coil connected with the body by means of two flat springs.The paper proposes a method for calculation of electromotive force (EMF at induction seismic receiver output when it is exposed to seismic Relay wave on the basis of a differential equation for motion of the inertial element with due account of transient processes of forced vibrations and damping. The seismic receiver damping is a coil form where k of the spool, in which surface Foucault currents are induced.Results of modeling and experimental investigations have shown that the proposed methodology for EMF calculation, which is induced in the seismic receiver, allows faithfully to model signals at induction seismic receiver output that can be rather useful for mathematical modeling of surface object motion seismograms.
Graybill, George
2007-01-01
Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.
Directory of Open Access Journals (Sweden)
Hongwei Yang
2012-01-01
Full Text Available The paper presents an investigation of the generation, evolution of Rossby solitary waves generated by topography in finite depth fluids. The forced ILW- (Intermediate Long Waves- Burgers equation as a model governing the amplitude of solitary waves is first derived and shown to reduce to the KdV- (Korteweg-de Vries- Burgers equation in shallow fluids and BO- (Benjamin-Ono- Burgers equation in deep fluids. By analysis and calculation, the perturbation solution and some conservation relations of the ILW-Burgers equation are obtained. Finally, with the help of pseudospectral method, the numerical solutions of the forced ILW-Burgers equation are given. The results demonstrate that the detuning parameter α holds important implications for the generation of the solitary waves. By comparing with the solitary waves governed by ILW-Burgers equation and BO-Burgers equation, we can conclude that the solitary waves generated by topography in finite depth fluids are different from that in deep fluids.
A note on free and forced Rossby wave solutions: The case of a straight coast and a channel
Graef, Federico
2017-03-01
The free Rossby wave (RW) solutions in an ocean with a straight coast when the offshore wavenumber of incident (l1) and reflected (l2) wave are equal or complex are discussed. If l1 = l2 the energy streams along the coast and a uniformly valid solution cannot be found; if l1,2 are complex it yields the sum of an exponentially decaying and growing (away from the coast) Rossby wave. The channel does not admit these solutions as free modes. If the wavenumber vectors of the RWs are perpendicular to the coast, the boundary condition of no normal flow is trivially satisfied and the value of the streamfunction does not need to vanish at the coast. A solution that satisfies Kelvin's theorem of time-independent circulation at the coast is proposed. The forced RW solutions when the ocean's forcing is a single Fourier component are studied. If the forcing is resonant, i.e. a free Rossby wave (RW), the linear response will depend critically on whether the wave carries energy perpendicular to the channel or not. In the first case, the amplitude of the response is linear in the direction normal to the channel, y, and in the second it has a parabolic profile in y. Examples of these solutions are shown for channels with parameters resembling the Mozambique Channel, the Tasman Sea, the Denmark Strait and the English Channel. The solutions for the single coast are unbounded, except when the forcing is a RW trapped against the coast. If the forcing is non-resonant, exponentially decaying or trapped RWs could be excited in the coast and both the exponentially ;decaying; and exponentially ;growing; RW could be excited in the channel.
Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.
Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin
2016-04-05
We demonstrate an acoustofluidic device using Lamb waves (LWs) to manipulate polystyrene (PS) microparticles suspended in a sessile droplet of water. The LW-based acoustofluidic platform used in this study is advantageous in that the device is actuated over a range of frequencies without changing the device structure or electrode pattern. In addition, the device is simple to operate and cheap to fabricate. The LWs, produced on a piezoelectric substrate, attenuate inside the fluid and create acoustic streaming flow (ASF) in the form of a poloidal flow with toroidal vortices. The PS particles experience direct acoustic radiation force (ARF) in addition to being influenced by the ASF, which drive the concentration of particles to form a ring. This phenomenon was previously attributed to the ASF alone, but the present experimental results confirm that the ARF plays an important role in forming the particle ring, which would not be possible in the presence of only the ASF. We used a range of actuation frequencies (45-280 MHz), PS particle diameters (1-10 μm), and droplet volumes (5, 7.5, and 10 μL) to experimentally demonstrate this phenomenon.
Long-lived force patterns and deformation waves at repulsive epithelial boundaries
Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier
2017-10-01
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
On finding fields and self-force in a gauge appropriate to separable wave equations
Keidl, T S; Wiseman, A G; Friedman, John L.; Keidl, Tobias S.; Wiseman, Alan G.
2006-01-01
Gravitational waves from the inspiral of a stellar-size black hole to a supermassive black hole can be accurately approximated by a point particle moving in a Kerr background. This paper presents progress on finding the electromagnetic and gravitational field of a point particle in a black-hole spacetime and on computing the self-force in a ``radiation gauge.'' The gauge is chosen to allow one to compute the perturbed metric from a gauge-invariant component $\\psi_0$ (or $\\psi_4$) of the Weyl tensor and follows earlier work by Chrzanowski, and Cohen and Kegeles (we correct an minor, but propagating, error in the Cohen-Kegeles formalism). The electromagnetic field tensor and vector potential of a static point charge and the perturbed gravitational field of a static point mass in a Schwarzschild geometry are found, surprisingly, to have closed-form expressions. The gravitational field of a static point charge in the Schwarzschild background must have a strut, but $\\psi_0$ and $\\psi_4$ are smooth except at the pa...
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
DEFF Research Database (Denmark)
Burcharth, H. F.; Sørensen, Jørgen S.; Christiani, E.
1994-01-01
Impulsive wave breaking forces on a vertical caisson breakwater has been included by Takahashi et al, (1994) in Goda's wave pressure formula (Goda et al. 1972 and Goda 1974). Based on these formulae a deterministic design method following the Japanese recommendations has been used for the design ...... stability analysis is presented by the example of a rotation slip failure involving kinematically correct slip surfaces and failure zones in undrained clay. A conventional static quasi-static analysis based on equating external and internal work is used....
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2016-07-01
A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.
Energy Technology Data Exchange (ETDEWEB)
Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)
2016-07-25
A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.
Effect of nonlinear wave-current interaction on flow fields and hydrodynamic forces
Institute of Scientific and Technical Information of China (English)
王涛; 李家春
1997-01-01
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does so by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.
Marivela, Roberto; Synolakis, Costas
2016-01-01
A plethora of studies in the past decade describe tsunami hazards and study their evolution from the source to the target coastline, but mainly focus on coastal inundation and maximum runup. Nonetheless, anecdotal reports from eyewitnesses, photographs and videos suggest counterintuitive flow dynamics, for example rapid initial acceleration when the wave first strikes the initial shoreline. Further, the details of the flow field at or within tens of meters of the shoreline are exquisitely important in determining damage to structures and evacuation times. Based on a set of three-dimensional numerical simulations using solitary waves as a model, we show the spatial-temporal distribution of the flow momentum, kinetic energy and force during the breaking process. We infer that the flow reaches its highest destructive capacity not when flow momentum or kinetic energy reach their maxima, but when flow force reaches its. This occurs in the initial shoreline environment, which needs to be considered in nearshore str...
Sun, Tao; Morgan, Hywel; Green, Nicolas G.
2007-10-01
Analysis of the movement of particles in a nonuniform field requires accurate knowledge of the electric field distribution in the system. This paper describes a method for analytically solving the electric field distribution above interdigitated electrode arrays used for dielectrophoresis (DEP) and traveling wave dielectrophoresis (twDEP), using the Schwarz-Christoffel mapping method. The electric field solutions are used to calculate the dielectrophoretic force in both cases, and the traveling wave dielectrophoretic force and the electrorotational torque for the twDEP case. This method requires no approximations and can take into account the Neumann boundary condition used to represent an insulating lid and lower substrate. The analytical results of the electric field distributions are validated for different geometries by comparison with numerical simulations using the finite element method.
Institute of Scientific and Technical Information of China (English)
GENG Houcai; RAO Zhushi; HAN Zushun; ZHANG Hualiang
2002-01-01
A new modeling method is developed for the active control of interior noise within an irregular three-dimensional cavity under the cooperation of point force and incident wave. The validity of this method is verified by a regular cuboid enclosure. With global and local per-formance functions, good results are obtained in the active control of noise within the irregular enclosure according to numerical investigations.
Stationary rotary force waves on the liquid-air core interface of a swirl atomizer
Chinn, J. J.; Cooper, D.; Yule, A. J.; Nasr, G. G.
2016-10-01
A one-dimensional wave equation, applicable to the waves on the surface of the air-core of a swirl atomizer is derived analytically, by analogy to the similar one-dimensional wave equation derivation for shallow-water gravity waves. In addition an analogy to the flow of water over a weir is used to produce an analytical derivation of the flow over the lip of the outlet of a swirl atomizer using the principle of maximum flow. The principle of maximum flow is substantiated by reference to continuity of the discharge in the direction of streaming. For shallow-water gravity waves, the phase velocity is the same expression as for the critical velocity over the weir. Similarly, in the present work, the wave phase velocity on the surface of the air-core is shown to be the same expression as for the critical velocity for the flow at the outlet. In addition, this wave phase velocity is shown to be the square root of the product of the radial acceleration and the liquid thickness, as analogous with the wave phase velocity for shallow water gravity waves, which is the square root of the product of the acceleration due to gravity and the water depth. The work revisits the weirs and flumes work of Binnie et al. but using a different methodology. The results corroborate with the work of Binnie. High speed video, Laser Doppler Anemometry and deflected laser beam experimental work has been carried out on an oversize Perspex (Plexiglas) swirl atomizer. Three distinctive types of waves were detected: helical striations, low amplitude random ripples and low frequency stationary waves. It is the latter wave type that is considered further in this article. The experimentally observed waves appear to be stationary upon the axially moving flow. The mathematical analysis allows for the possibility of a negative value for the phase velocity expression. Therefore the critical velocity and the wave phase velocity do indeed lead to stationary waves in the atomizer. A quantitative comparison
Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing
Institute of Scientific and Technical Information of China (English)
FUZun-Tao; LIUShi-Da; LIUShi-Kuo
2004-01-01
The cubic nonlinear Schroedinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial cnvelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.
Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2004-01-01
The cubic nonlinear Schrodinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.
Energy Technology Data Exchange (ETDEWEB)
Della-Marta, P.M. [University of Bern, Institute of Geography, Climatology and Meteorology Research Group, Bern (Switzerland); Federal Office for Meteorology and Climatology MeteoSwiss, Zurich (Switzerland); National Climate Center, Bureau of Meteorology, Melbourne (Australia); Luterbacher, J.; Xoplaki, E.; Wanner, H. [University of Bern, Institute of Geography, Climatology and Meteorology Research Group, Bern (Switzerland); NCCR Climate, Bern (Switzerland); Weissenfluh, H. von [University of Bern, Institute of Geography, Climatology and Meteorology Research Group, Bern (Switzerland); Brunet, M. [University Rovira i Virgili, Climate Change Research Group, Tarragona (Spain)
2007-08-15
We investigate the large-scale forcing and teleconnections between atmospheric circulation (sea level pressure, SLP), sea surface temperatures (SSTs), precipitation and heat wave events over western Europe using a new dataset of 54 daily maximum temperature time series. Forty four of these time series have been homogenised at the daily timescale to ensure that the presence of inhomogeneities has been minimised. The daily data have been used to create a seasonal index of the number of heat waves. Using canonical correlation analysis (CCA), heat waves over western Europe are shown to be related to anomalous high pressure over Scandinavia and central western Europe. Other forcing factors such as Atlantic SSTs and European precipitation, the later as a proxy for soil moisture, a known factor in strengthening land-atmosphere feedback processes, are also important. The strength of the relationship between summer SLP anomalies and heat waves is improved (from 35%) to account for around 46% of its variability when summer Atlantic and Mediterranean SSTs and summer European precipitation anomalies are included as predictors. This indicates that these predictors are not completely collinear rather that they each have some contribution to accounting for summer heat wave variability. However, the simplicity and scale of the statistical analysis masks this complex interaction between variables. There is some useful predictive skill of summer heat waves using multiple lagged predictors. A CCA using preceding winter North Atlantic SSTs and preceding January to May Mediterranean total precipitation results in significant hindcast (1972-2003) Spearman rank correlation skill scores up to 0.55 with an average skill score over the domain equal to 0.28 {+-} 0.28. In agreement with previous studies focused on mean summer temperature, there appears to be some predictability of heat wave events on the decadal scale from the Atlantic Multidecadal Oscillation (AMO), although the long
Directory of Open Access Journals (Sweden)
Shilei Liu
2017-07-01
Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.
Nonlinear Alfv\\'en wave dynamics at a 2D magnetic null point: ponderomotive force
Thurgood, J O
2013-01-01
Context : In the linear, {\\beta}=0 MHD regime, the transient properties of MHD waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfv\\'en waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfv\\'en speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfv\\'en waves about a 2D magnetic null point in nonlinear, {\\beta}= 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfv\\'en waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfv\\'en wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. t...
Wave Forces on Transition Pieces for Bucket Foundations for Offshore Wind Turbines
DEFF Research Database (Denmark)
Nezhentseva, Anastasia; Andersen, Thomas Lykke; Andersen, Lars Vabbersgaard;
to a bucket foundation (suction caisson) located at 35 m water depth in the North Sea. Several models of the TPs (wedge-shaped steel flange-reinforced shear panels, conical and doubly curved with or without cutaways) are tested in a wave flume and compared with respect to wave loading. Due to a larger size...
Severe summer heat waves over Georgia: trends, patterns and driving forces
Directory of Open Access Journals (Sweden)
I. Keggenhoff
2015-11-01
Full Text Available During the last 50 years Georgia experienced a rising number of severe summer heat waves causing increasing heat-health impacts. In this study, the 10 most severe heat waves between 1961 and 2010 and recent changes in heat wave characteristics have been detected from 22 homogenized temperature minimum and maximum series using the Excess Heat Factor (EHF. A composite and Canonical Correlation Analysis (CCA have been performed to study summer heat wave patterns and their relationships to the selected predictors: mean Sea Level Pressure (SLP, Geopotential Height at 500 mb (Z500, Sea Surface Temperature (SST, Zonal (u-wind500 and Meridional Wind at 500 mb (v-wind500, Vertical Velocity at 500 mb (O500, Outgoing Longwave Radiation (OLR, Relative Humidity (RH500, Precipitation (RR and Soil Moisture (SM. Most severe heat events during the last 50 years are identified in 2007, 2006 and 1998. Largest significant trend magnitudes for the number, intensity and duration of low and high-impact heat waves have been found during the last 30 years. Significant changes in the heat wave predictors reveal that all relevant surface and atmospheric patterns contributing to heat waves have been intensified between 1961 and 2010. Composite anomalies and CCA patterns provide evidence of a large anticyclonic blocking pattern over the southern Ural Mountains, which attracts warm air masses from the Southwest, enhances subsidence and surface heating, shifts the African Intertropical Convergence Zone (ITCZ northwards, and causes a northward shift of the subtropical jet. Moreover, pronounced precipitation and soil moisture deficiency throughout Georgia contribute to the heat wave formation and persistence over Georgia. Due to different large- to mesoscale circulation patterns and the local terrain, heat wave effects over Eastern Georgia are dominated by subsidence and surface heating, while convective rainfall and cooling are observed in the West.
Energy Technology Data Exchange (ETDEWEB)
Lawson, M.; Yu, Y. H.; Nelessen, A.; Ruehl, K.; Michelen, C.
2014-05-01
Wave energy converters (WECs) are commonly designed and analyzed using numerical models that combine multi-body dynamics with hydrodynamic models based on the Cummins Equation and linearized hydrodynamic coefficients. These modeling methods are attractive design tools because they are computationally inexpensive and do not require the use of high performance computing resources necessitated by high-fidelity methods, such as Navier Stokes computational fluid dynamics. Modeling hydrodynamics using linear coefficients assumes that the device undergoes small motions and that the wetted surface area of the devices is approximately constant. WEC devices, however, are typically designed to undergo large motions in order to maximize power extraction, calling into question the validity of assuming that linear hydrodynamic models accurately capture the relevant fluid-structure interactions. In this paper, we study how calculating buoyancy and Froude-Krylov forces from the instantaneous position of a WEC device (referred to as instantaneous buoyancy and Froude-Krylov forces from herein) changes WEC simulation results compared to simulations that use linear hydrodynamic coefficients. First, we describe the WEC-Sim tool used to perform simulations and how the ability to model instantaneous forces was incorporated into WEC-Sim. We then use a simplified one-body WEC device to validate the model and to demonstrate how accounting for these instantaneously calculated forces affects the accuracy of simulation results, such as device motions, hydrodynamic forces, and power generation.
Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz
Ohmichi, E.; Tokuda, Y.; Tabuse, R.; Tsubokura, D.; Okamoto, T.; Ohta, H.
2016-07-01
In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn2+ impurities(˜0.2%) in MgO.
Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz
Energy Technology Data Exchange (ETDEWEB)
Ohmichi, E., E-mail: ohmichi@harbor.kobe-u.ac.jp; Tokuda, Y.; Tabuse, R.; Tsubokura, D.; Okamoto, T. [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Ohta, H. [Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan)
2016-07-15
In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn{sup 2+} impurities(∼0.2%) in MgO.
Energy Technology Data Exchange (ETDEWEB)
Love, LJL
2003-09-24
The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive
DEFF Research Database (Denmark)
Markus, D.; Ferri, Francesco; Wüchner, R.
2015-01-01
that focuses on differences in load curves resulting from 2D and 3D flows. It is shown that the major trends predicted by the numerical simulations are also captured in the experiment, highlighting the potential of CFD as a powerful tool for shape optimization studies. The overall aim of the paper...... variations of the structure on the resulting horizontal forces. Steady current conditions, dynamic loading due to waves, and combined wave–current scenarios are considered. A clear focus is put on simplicity and reproducibility, allowing for efficient testing of related methods and codes. This is achieved...... by defining a simple test geometry, altered in one design variable only, and by designing the test case such that a two dimensional analysis of the flow fields is possible. The force sensitivities to changes in the geometry are determined both numerically and experimentally for a great bandwidth of different...
Numerical Prediction of Wave Forces on a Breakwater under Tsunami Loading
Brucker, Kyle A.; Oshnack, Mary Beth; O'Shea, Thomas T.; Cox, Dan; Dommermuth, Douglas G.
2010-11-01
Numerical Flow Analysis (NFA) predictions of wave propagation and wave- impact loading are compared to the Oregon State University (OSU) O.H. Hinsdale Wave Research Laboratories Tsunami experiments (Oshnack, et al. 2009). The simulations were designed to replicate the experiments such that a soliton is sent down a wave flume, runs up a small beach, and impacts with a breakwater. The soliton is 1.2m high in a water depth of 2.29m and travels over 61m before hitting the breakwater. The NFA predictions are compared to laboratory measurements of a) free-surface elevation at several locations down the flume and b) impact pressure at the base of the breakwater. The free-surface elevations as predicted by NFA are in excellent agreement with the experimental measurements. This shows that NFA can simulate the propagation of waves over long distances with minimal amplitude and dispersion errors. Pressures that are induced by the jet are important because in certain coastal areas buildings must be designed to sustain Tsunami loads. The pressure predictions over the duration of breaking agree very well with laboratory measurements. The peak pressures predicted by NFA are in excellent agreement with experiments.
Nonautonomous analysis of steady Korteweg-de Vries waves under nonlocalised forcing
Balasuriya, Sanjeeva; Binder, Benjamin J.
2014-10-01
Recently developed nonautonomous dynamical systems theory is applied to quantify the effect of bottom topography variation on steady surface waves governed by the Korteweg-de Vries (KdV) equation. Arbitrary (but small) nonlocalised bottom topographies are amenable to this method. Two classes of free surface solutions-hyperbolic and homoclinic solutions of the associated augmented dynamical system-are characterised. The first of these corresponds to near-uniform free-surface flows for which explicit formulæ are developed for a range of topographies. The second corresponds to solitary waves on the free surface, and a method for determining their number is developed. Formulæ for the shape of these solitary waves are also obtained. Theoretical free-surface profiles are verified using numerical KdV solutions, and excellent agreement is obtained.
Institute of Scientific and Technical Information of China (English)
Lotfollahi-Yaghin, M. A.; Pourtaghi, A.; Sanaaty, B.; Lotfollahi-Yaghin, A.
2012-01-01
An approach based on artificial neural network (ANN) is used to develop predictive relations between hydrodynamic inline force on a vertical cylinder and some effective parameters.The data used to calibrate and validate the ANN models are obtained from an experiment.Multilayer feed-forward neural networks that are trained with the back-propagation algorithm are constructed by use of three design parameters (i.e.wave surface height,horizontal and vertical velocities) as network inputs and the ultimate inline force as the only output.A sensitivity analysis is conducted on the ANN models to investigate the generalization ability (robustness) of the developed models,and predictions from the ANN models are compared to those obtained from Morison equation which is usually used to determine inline force as a computational method.With the existing data,it is found that least square method (LSM) gives less error in determining drag and inertia coefficients of Morison equation.With regard to the predicted results agreeing with calculations achieved from Morison equation that used LSM method,neural network has high efficiency considering its convenience,simplicity and promptitude.The outcome of this study can contribute to reducing the errors in predicting hydrodynamic inline force by use of ANN and to improve the reliability of that in comparison with the more practical state of Morison equation.Therefore,this method can be applied to relevant engineering projects with satisfactory results.
Neogi, Anupam; Mitra, Nilanjan
2015-06-01
Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.
Institute of Scientific and Technical Information of China (English)
Noarayanan Lakshmanan; Murali Kantharaj; Vallam Sundar
2012-01-01
Extreme coastal events require careful prediction of wave forces.Recent tsunamis have resulted in extensive damage of coastal structures.Such scenarios are the result of the action of long waves on structures.In this paper,the efficiency of vegetation as a buffer system in attenuating the incident ocean waves was studied through a well controlled experimental program.The study focused on the measurement of forces resulting from cnoidal waves on a model building mounted over a slope in the presence and absence of vegetation.The vegetative parameters,along with the width of the green belt,its position from the reference line,the diameter of the individual stems as well as the spacing between them,and their rigidity are varied so as to obtain a holistic view of the wave-vegetation interaction problem.The effect of vegetation on variations of dimensional forces with a Keulegan-Carpenter number (KC) was discussed in this paper.It has been shown that when vegetal patches are present in front of structure,the forces could be limited to within F*≤1,by a percentile of 92％,90％,55％,and 96％,respectively for gap ratios of 0.0,0.5,1.0,and 1.5.The force is at its maximum for the gap ratio of 1.0 and beyond which the forces start to diminish.
Urban, Matthew W; Nenadic, Ivan Z; Qiang, Bo; Bernal, Miguel; Chen, Shigao; Greenleaf, James F
2015-10-01
Evaluation of tissue engineering constructs is performed by a series of different tests. In many cases it is important to match the mechanical properties of these constructs to those of native tissues. However, many mechanical testing methods are destructive in nature which increases cost for evaluation because of the need for additional samples reserved for these assessments. A wave propagation method is proposed for characterizing the shear elasticity of thin layers bounded by a rigid substrate and fluid-loading, similar to the configuration for many tissue engineering applications. An analytic wave propagation model was derived for this configuration and compared against finite element model simulations and numerical solutions from the software package Disperse. The results from the different models found very good agreement. Experiments were performed in tissue-mimicking gelatin phantoms with thicknesses of 1 and 4 mm and found that the wave propagation method could resolve the shear modulus with very good accuracy, no more than 4.10% error. This method could be used in tissue engineering applications to monitor tissue engineering construct maturation with a nondestructive wave propagation method to evaluate the shear modulus of a material.
Disentangling inertial waves from eddy turbulence in a forced rotating turbulence experiment
Campagne, Antoine; Moisy, Frédéric; Cortet, Pierre-Philippe
2015-01-01
We present a spatio-temporal analysis of a statistically stationary rotating turbulence experiment, aiming to extract a signature of inertial waves, and to determine the scales and frequencies at which they can be detected. The analysis uses two-point spatial correlations of the temporal Fourier transform of velocity fields obtained from time-resolved stereoscopic particle image velocimetry measurements in the rotating frame. We quantify the degree of anisotropy of turbulence as a function of frequency and spatial scale. We show that this space-time-dependent anisotropy is well described by the dispersion relation of linear inertial waves at large scale, while smaller scales are dominated by the sweeping of the waves by fluid motion at larger scales. This sweeping effect is mostly due to the low-frequency quasi-two-dimensional component of the turbulent flow, a prominent feature of our experiment which is not accounted for by wave turbulence theory. These results question the relevance of this theory for rota...
Forced vibration and wave propagation in mono-coupled periodic structures
DEFF Research Database (Denmark)
Ohlrich, Mogens
1986-01-01
This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... of the determination of the junction-receptance. The influence of such a disorder is illustrated by a simple example...
Non Breaking Wave Forces at the Front Face of Seawave Slotcone Generators
Directory of Open Access Journals (Sweden)
Mario Calabrese
2012-11-01
Full Text Available The Seawave Slotcone Generator (WAVEnergy SAS, 2003 is a wave energy converter based on the overtopping principle. Although it has been effectively researched during the last decade, no design tool has been supplied to estimate the hydrodynamic loads the waves exert on its front face. In this article a set of well reliable 3D experiments has been re-analyzed, in order to get indications on possible calculation methods. It is shown that the Japanese design tools for monolithic sea dikes may be reasonably adapted to the present case. Finally a new approach is presented, which is based on the so called momentum flux principle; the resulting predictive equation fits the experimental data remarkably well.
Generation of magnetic fields by the ponderomotive force of electromagnetic waves in dense plasmas
Shukla, P K; Shukla, Nitin; Stenflo, Lennart
2010-01-01
We show that the non-stationary ponderomotive force of a, large-amplitude electromagnetic move in a very dense quantum plasma wall streaming degenerate electrons can spontaneously create d.c. magnetic fields. The present result can account for the seed magnetic fields in compact astrophysical objects and in the next-generation intense laser-solid density, plasma interaction experiments.
DEFF Research Database (Denmark)
Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.
2012-01-01
over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....
Energy Technology Data Exchange (ETDEWEB)
Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu
2009-02-15
In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.
The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor
Directory of Open Access Journals (Sweden)
S. Dhomse
2008-02-01
Full Text Available Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres and tropical lower stratospheric (TLS water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux, and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation. After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006. The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde temperatures (up to 2005 with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor
Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro
2017-04-01
The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.
Bertrand, Sophie; Dewitte, Boris; Tam, Jorge; Díaz, Erich; Bertrand, Arnaud
2008-10-01
Because climate change challenges the sustainability of important fish populations and the fisheries they support, we need to understand how large scale climatic forcing affects the functioning of marine ecosystems. In the Humboldt Current system (HCS), a main driver of climatic variability is coastally-trapped Kelvin waves (KWs), themselves originating as oceanic equatorial KWs. Here we (i) describe the spatial reorganizations of living organisms in the Humboldt coastal system as affected by oceanic KWs forcing, (ii) quantify the strength of the interactions between the physical and biological component dynamics of the system, (iii) formulate hypotheses on the processes which drive the redistributions of the organisms, and (iv) build scenarios of space occupation in the HCS under varying KW forcing. To address these questions we explore, through bivariate lagged correlations and multivariate statistics, the relationships between time series of oceanic KW amplitude (TAO mooring data and model-resolved baroclinic modes) and coastal Peruvian oceanographic data (SST, coastal upwelled waters extent), anchoveta spatial distribution (mean distance to the coast, spatial concentration of the biomass, mean depth of the schools), and fishing fleet statistics (trip duration, searching duration, number of fishing sets and catch per trip, features of the foraging trajectory as observed by satellite vessel monitoring system). Data sets span all or part of January 1983 to September 2006. The results show that the effects of oceanic KW forcing are significant in all the components of the coastal ecosystem, from oceanography to the behaviour of the top predators - fishers. This result provides evidence for a bottom-up transfer of the behaviours and spatial stucturing through the ecosystem. We propose that contrasting scenarios develop during the passage of upwelling versus downwelling KWs. From a predictive point of view, we show that KW amplitudes observed in the mid-Pacific can
Guzatov, D. V.; Gaida, L. S.; Afanas'ev, Anatolii A.
2008-12-01
The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves.
Hickey, M. P.
1988-01-01
The chemical-dynamical model of Walterscheid et al. (1987), which describes wave-driven fluctuations in OH nightglow, was modified to include the effects of both eddy thermal conduction and viscosity, as well as the Coriolis force (with the shallow atmosphere approximation). Using the new model, calculations were performed for the same nominal case as used by Walterscheid et al. but with only wave periods considered. For this case, the Coriolis force was found to be unimportant at any wave period. For wave periods greater than 2 or 3 hours, the inclusion of thermal conduction alone greatly modified the results (in terms of a complex ratio 'eta' which expresses the relationship between the intensity oscillation about the time-averaged intensity and the temperature oscillation about the time-averaged temperature); this effect was reduced with the further inclusion of the eddy viscosity.
On forced oscillations of a simple model for a novel wave energy converter
Orazov, Bayram
2011-05-11
The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.
Chen, Xiaolong; Zhou, Tianjun
2017-08-01
The Yangtze River valley (YRV), located in central-eastern China, has witnessed increased numbers of heat waves in the summer since 1951. Knowing what factors control and affect the interannual variability of heat waves, especially distinguishing the contributions of anomalous sea surface temperature (SST) forcings and those of internal modes of variability, is important to improving heat wave prediction. After evaluating 70 members of the atmospheric model intercomparison project (AMIP) experiments from the 25 models that participated in the coupled model intercomparison project phase 5 (CMIP5), 13 high-skill members (HSMs) are selected to estimate the SST-forced variability. The results show that approximately 2/3 of the total variability of the July-August heat waves in the YRV during 1979-2008 can be attributed to anomalous SST forcings, whereas the other 1/3 are due to internal variability. Within the SST-forced component, one-half of the influence is from the impact of the El Niño-Southern Oscillation (ENSO) and the other half is from non-ENSO related SST forcings, specifically, the SST anomalies in the North Pacific and the North Atlantic. Both the decaying El Niño and developing La Niña accompanied by a warm Indian Ocean and cold central Pacific, respectively, are favorable to hotter summers in the YRV because these patterns strengthen and extend the western North Pacific Subtropical High (WNPSH) westwards, for which the decaying ENSO plays a dominant role. The internal variability shows a circumglobal teleconnection in which Rossby waves propagate southeastwards over the Eurasian Continent and strengthen the WNPSH. Atmospheric model sensitivity experiments confirm that non-ENSO SST forcings can modulate the WNPSH and heat wave variability by projecting their influences onto the internal mode.
Directory of Open Access Journals (Sweden)
Dongxiao Wang
2008-06-01
Full Text Available Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO at the period of 40~70 days. Analysis of remotelysensed sea surface height (SSH anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Time-longitude diagrams of ISO signals in SSH anomalies and wind-stress curl indicate that the eastward propagating SSH anomalies is forced by wind-stress curl. This is also confirmed by lag correlation between SSH anomalies and the wind-stress-curl index (wind stress curl averaged over 109.5Ã‚ÂºE -115Ã‚ÂºE and 12Ã‚ÂºN -13.5Ã‚ÂºN. Lag correlation of SSH anomaly suggests that the westward propagating signals are free Rossby waves.
Wu, Xiangyu; Xie, Qiang; He, Zhigang; Wang, Dongxiao
2008-06-01
Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO) at the period of 40~70 days. Analysis of remotelysensed sea surface height (SSH) anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Time-longitude diagrams of ISO signals in SSH anomalies and wind-stress curl indicate that the eastward propagating SSH anomalies is forced by wind-stress curl. This is also confirmed by lag correlation between SSH anomalies and the wind-stress-curl index (wind stress curl averaged over 109.5ºE -115ºE and 12ºN -13.5ºN). Lag correlation of SSH anomaly suggests that the westward propagating signals are free Rossby waves.
Bulanov, S. S.; Esirkepov, T. Zh; Kando, M.; Koga, J. K.; Bulanov, S. V.
2013-02-01
When the effects of radiation reaction dominate the interaction of electrons with intense laser pulses, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possess unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency.
Mitri, F G
2017-02-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto
Study on Wave Uplift Force of Onshore Open Structure Under Regular Wave%规则波作用下近岸透空式结构物的波浪上托力研究
Institute of Scientific and Technical Information of China (English)
李绍武; 刘慧芳; 龙锋
2011-01-01
By analyzing the research achievements of wave uplift force on the open wharf structure, the numerical model of wave uplift force on a horizontal plate are made through simulating regular wave in a vertical 2D CFD wave tank. By comparing and analyzing the different wave pressures gained from the physical model and numerical model, it is summarized the distribution characteristics of the flow field and the measuring point pressure at the bottom of horizontal plate. It is also discussed the rule that the maximum impact pressures of different period waves are changed by the relative wave clearances. It is shown in the test that the numerical simulation result of wave uplift force under regular wave basically accords with the physical model test result.%基于对透空码头结构物波浪上托力研究现状的分析,运用垂向二维CFD数值波浪水槽建立模拟规则波作用下水平板波浪上托力的数值模型.通过物理模型和数值模型所获波浪压力结果的对比分析,总结平板底部流场和测点压强的分布特点,探讨不同周期波浪的最大冲击压强随波浪相对超高变化的规律.试验结果表明,规则波作用下波浪上托力的数值模拟结果与物理模型试验结果基本相符.
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time.
Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies
Favier, B; Baruteau, C; Ogilvie, G I
2014-01-01
We perform one of the first studies into the nonlinear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the nonlinear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of nonlinearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially unifor...
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.
2016-09-01
To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.
Projected changes in African easterly wave intensity and track in response to greenhouse forcing.
Skinner, Christopher Bryan; Diffenbaugh, Noah S
2014-05-13
Synoptic-scale African easterly waves (AEWs) impact weather throughout the greater Atlantic basin. Over the African continent, AEWs are instrumental in initiating and organizing precipitation in the drought-vulnerable Sahel region. AEWs also serve as the precursors to the most intense Atlantic hurricanes, and contribute to the global transport of Saharan dust. Given the relevance of AEWs for the climate of the greater Atlantic basin, we investigate the response of AEWs to increasing greenhouse gas concentrations. Using an ensemble of general circulation models, we find a robust increase in the strength of the winds associated with AEWs along the Intertropical Front in West Africa by the late 21st century of the representative concentration pathway 8.5. AEW energy increases directly due to an increase in baroclinicity associated with an enhanced meridional temperature gradient between the Sahara and Guinea Coast. Further, the pattern of low-level warming supports AEW development by enhancing monsoon flow, resulting in greater convergence and uplift along the Intertropical Front. These changes in energetics result in robust increases in the occurrence of conditions that currently produce AEWs. Given relationships observed in the current climate, such changes in the location of AEW tracks and the magnitude of AEW winds carry implications for the relationship between AEWs and precipitation in the Sahel, the mobilization of Saharan dust, and the likelihood of cyclogenesis in the Atlantic. Our results therefore suggest that changes in AEW characteristics could play a critical role in shaping the response of Atlantic basin climate to future increases in greenhouse gas concentrations.
Nuclear pairing from microscopic forces: singlet channels and higher-partial waves
Maurizio, S; Finelli, P
2014-01-01
Background: An accurate description of nuclear pairing gaps is extremely important for understanding static and dynamic properties of the inner crusts of neutron stars and to explain their cooling process. Purpose: We plan to study the behavior of the pairing gaps $\\Delta_F$ as a function of the Fermi momentum $k_F$ for neutron and nuclear matter in all relevant angular momentum channels where superfluidity is believed to naturally emerge. The calculations will employ realistic chiral nucleon-nucleon potentials with the inclusion of three-body forces and self-energy effects. Methods: The superfluid states of neutron and nuclear matter are studied by solving the BCS gap equation for chiral nuclear potentials using the method suggested by Khodel et al., where the original gap equation is replaced by a coupled set of equations for the dimensionless gap function $\\chi(p)$ defined by $\\Delta(p) = \\Delta_F \\chi(p)$ and a non-linear algebraic equation for the gap magnitude $\\Delta_F = \\Delta(p_F)$ at the Fermi surfa...
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
2012-01-01
The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).
Mitri, F G
2016-01-01
Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on the partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force compone...
Directory of Open Access Journals (Sweden)
Teresa Cañas
2015-01-01
Full Text Available Background. Liver disease associated with cystic fibrosis (CFLD is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence.
Mitri, F G
2016-01-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure st...
Directory of Open Access Journals (Sweden)
V. O. Kaledin
2014-01-01
Full Text Available In this paper we consider a moving orthotropic cylindrical shell of rotation. The purpose is to assess the choice of kinematic hypothesis for calculating the phase velocities of cylindrical shells. The comparison was done for the two hypotheses, namely: those of Timoshenko and Kirchhoff-Love. The calculation was performed under the following assumptions: all Poisson's ratios of orthotropic material were taken to be zero; the principal axes of anisotropy coincide with the lines of curvature, the coefficients of mutual influence of forces per unit length and bending moments were taken to be zero, which is valid for sufficiently thin shells. Analysis of the phase velocity of the cylindrical shell has shown that at low frequencies of traveling wave Timoshenko’s hypothesis gives an infinite value of the phase velocity. However, with increasing frequency of the traveling wave phase velocities obtained with different kinematic hypotheses, in the limit approach each other. Additionally, this article presents a numerical calculation of the phase velocity of the traveling waves. Calculation technique developed by V.O. Kaledin is based on the assumption that the traveling (direct and reflected waves, forming a standing wave, are in superposition at sustained forced vibrations of a shell. Next, the analytical results, obtained for a cylindrical shell with the harmonic disturbing force acting at the front edge, have been compared with the numerical results obtained under the same assumptions. The difference between the numerical and analytical results is less than 1,5%.We note that many of the well-known works mention low accuracy when using the Kirchhoff-Love hypothesis to calculate phase velocities of the second and higher forms in thin cylindrical shells of rotation. This work is soundly refutes this claim and can form the basis of further studies of wave processes in shells of rotation of arbitrary Gaussian curvature using the Kirchhoff
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2016-01-01
and nonlinear irregular wave realizations are calculated using the fully nonlinear potential flow wave model OceanWave3D [1]. The linear and nonlinear wave realizations are compared using both a static analysis on a fixed monopile and dynamic calculations with the aeroelastic code Flex5 [2]. The conclusion from...... this analysis is that linear wave theory is generally sufficient for estimating the fatigue loading, but wave nonlinearity is important in determining the ultimate design loads.......The response of an offshore wind turbine tower and its monopile foundation has been investigated when exposed to linear and fully nonlinear irregular waves on four different water depths. The investigation focuses on the consequences of including full nonlinearity in the wave kinematics. The linear...
Kanti Das, Tushar; Ali, Rustam; Chatterjee, Prasanta
2017-10-01
The dynamics of dust ion acoustic waves (DIAWs) is investigated in a magnetized dusty plasma whose constituents are cold ions, superthermal electrons, and dust particles in the framework of a damped Zakharov-Kuznetsov (dZK) equation in the presence of externally applied periodic force. The dZK equation is derived employing the standard reductive perturbation technique. The effect of dust ion collision on the quasiperiodic and chaotic motion of dust ion acoustic waves is discussed. It is observed that the collision frequency νid 0 plays the role of a switching parameter from the quasiperiodic route to chaos for the DIAWs.
DEFF Research Database (Denmark)
Schløer, Signe
2013-01-01
Since the world’s first offshore wind farm was built in the early 1990s in Denmark, the offshore wind industry has increased tremendously in Europe, and will increase even more the next years. Both the water depth and the size of the wind turbines have increased continually since the first offshore...... wind farms. As wind farms are being moved further offshore the wave loads become larger compared to the wind loads and therefore more important in the design of offshore wind turbines. Yet, the water depth is still only shallow or intermediate where the waves should be described by nonlinear irregular...... is the consequence of incorporation of full nonlinearity in the wave kinematics. In the main part of the thesis six wind and sea states with increasing wind speed and significant wave height are considered. The wave realizations are considered at four different water depths to investigate the effect of water depth...
Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.
2013-04-01
A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Bulanov, Stepan S.
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
DEFF Research Database (Denmark)
Wang, Kai; Cheng, Zhengshun; Moan, Torgeir;
2015-01-01
With increasing interests in the development of offshore floating vertical axis wind turbines (FVAWTs), a large amount of studies on the FVAWTs have been conducted. This paper focuses on evaluating the effect of second-order difference-frequency force on the dynamics of a 5 MW FVAWT in misaligned...... wave-wind condition. The studied FVAWT is composed of a 5 MW Darrieus rotor, a semi-submersible floater and a catenary mooring system. Fully coupled nonlinear time domain simulations were conducted using the state-of-art code Simo- Riflex-DMS. Several misaligned wave-wind conditions were selected...... to investigate the global dynamic responses of the FVAWT, such as the platform motions, structural responses and mooring line tensions. It has been found that the wave-wind misalignment does not significantly affect the mean values of the global responses since the global responses are primarily wind...
Indian Academy of Sciences (India)
J Swain; R K Shukla; A Raghunadha Rao; J K Panigrahi; N R Venkitachalam
2003-06-01
Time-series wind and wave measurements were carried out onboard INS Sagardhwani in the central Bay of Bengal during BOBMEX-99. Various other marine meteorological and oceanographic measurements relevant to monsoon studies were also collected simultaneously. The observed variations of wind and waves and the associated mixed layer depth (MLD) variability based on both temperature and density criteria at 3 hourly intervals are presented in this paper as a case study. At the time-series location (13°N, 87°E) wind varied between 6 and 16 m/s and the predominant direction was southwesterly. The significant wave height and period varied from 1.9 to 3.7m and 8 to 13 s respectively. Some of the available statistical predictive methods for the determination of MLD by forced mixing are utilized to test the extent of mechanical mixing within the top layer of water by the local wind and wave activity. The same is extended to formulate a new empirical relation for gross estimation of effective depth within which the sound energy is generally trapped during its transmission in the surface duct. The present analysis aiming for estimation of observed MLD variability (35 to 75 m) using the suggested simple empirical relation reveals that, the mixed layer variability observed during the experiment depends on both local ocean variability as well as remote forcing as reported earlier.
Directory of Open Access Journals (Sweden)
James L Falter
Full Text Available We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System coupled with the wave transformation model SWAN (Simulating WAves Nearshore. Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2, pH, and aragonite saturation state (Ω(ar are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2, pH, and Ω(ar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months net offsets in reef-water pCO(2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2.
Institute of Scientific and Technical Information of China (English)
DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian
2012-01-01
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14％ of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14％,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75％ on average.
Bob, Flaviu; Bota, Simona; Sporea, Ioan; Sirli, Roxana; Popescu, Alina; Schiller, Adalbert
2015-04-01
The aim of the study was to establish the relationship between the estimated glomerular filtration rate (GFR) and kidney shear wave speed values assessed by acoustic radiation force impulse (ARFI) elastography. Our study included 104 patients with or without chronic kidney disease in which the kidney shear wave speed was evaluated by ARFI elastography and correlated with the estimated GFR. Five ARFI measurements were performed in the parenchyma of each kidney. A median value expressed as meters per second was calculated. Five valid ARFI elastographic measurements were obtained in the right kidney in all patients and in the left kidney in 97.1% of patients. The mean kidney shear wave speed values ± SD in the right and left kidneys were similar: 2.17 ± 0.81 versus 2.06 ± 0.75 m/s (P = .30). The mean kidney shear wave speed decreased with the decrease in the estimated GFR. Statistically significant differences were obtained only when kidney shear wave speed values obtained in patients with an estimated GFR of greater than 90 mL/min/1.73 m(2) were compared to values in patients with stage 4 (estimated GFR, 15-29 mL/min/1.73 m(2)) and stage 5 (estimated GFR, wave speed had 86.7% sensitivity, 48.3% specificity, a 22.1% positive predictive value, and a 95.6% negative predictive value (area under the receiver operating characteristic curve, 0.692; P = .008) for predicting the presence of an estimated GFR of less than 30 mL/min/1.73 m(2). Kidney shear wave speed values obtained by ARFI elastography decrease with the decrease in the estimated GFR. © 2015 by the American Institute of Ultrasound in Medicine.
Urban, Matthew W; Qiang, Bo; Song, Pengfei; Nenadic, Ivan Z; Chen, Shigao; Greenleaf, James F
2016-01-07
The myocardium is known to be an anisotropic medium where the muscle fiber orientation changes through the thickness of the wall. Shear wave elastography methods use propagating waves which are measured by ultrasound or magnetic resonance imaging (MRI) techniques to characterize the mechanical properties of various tissues. Ultrasound- or MR-based methods have been used and the excitation frequency ranges for these various methods cover a large range from 24-500 Hz. Some of the ultrasound-based methods have been shown to be able to estimate the fiber direction. We constructed a model with layers of elastic, transversely isotropic materials that were oriented at different angles to simulate the heart wall in systole and diastole. We investigated the effect of frequency on the wave propagation and the estimation of fiber direction and wave speeds in the different layers of the assembled models. We found that waves propagating at low frequencies such as 30 or 50 Hz showed low sensitivity to the fiber direction but also had substantial bias in estimating the wave speeds in the layers. Using waves with higher frequency content (>200 Hz) allowed for more accurate fiber direction and wave speed estimation. These results have particular relevance for MR- and ultrasound-based elastography applications in the heart.
Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam
2016-04-01
It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.
White, I. P.; Lu, H.; Mitchell, N. J.
2015-12-01
The quasi-biennial oscillation (QBO), a quasi-periodic oscillation of the stratospheric equatorial zonal wind between easterlies and westerlies, is known to affect the stratospheric circulation and transfer anomalies downward into the troposphere via a modulation of the winter polar vortex. However, the exact mechanism(s) governing this remain unclear. In this study, wave-mean-flow interactions associated with this effect, the so-called Holton-Tan effect (HTE), are studied using the ERA-Interim reanalysis dataset. Significant evidence of the HTE in isentropic coordinates is found, with a weaker and warmer polar vortex present when the lower stratospheric QBO is in its easterly phase (QBOe). For the first time, we quantify the QBO modulation of wave propagation, wave-mean-flow interaction and wave decay/growth via a calculation of potential vorticity (PV)-based measures, the zonal-mean momentum budget and up/down-gradient eddy PV fluxes. Stratosphere-troposphere coupling is also investigated with particular focus on the effect of the tropospheric subtropical jet on QBO modulation of the wave activity. In the subtropical to midlatitude lower stratosphere, QBOe is associated with an enhanced upward flux of wave activity across the tropopause, and corresponding wave convergence and wave growth, which leads to a stronger zonal-mean Brewer-Dobson Circulation and consequently a warmer polar region. In the middle stratosphere, QBOe is associated with increased poleward wave propagation, leading to enhanced wave convergence and in-situ wave growth at high latitudes and contributing to the weaker polar vortex. In agreement with recent studies, our results suggest that the critical-line effect cannot fully account for the wave anomalies associated with the HTE. Instead, it is suggestive of a new, additional mechanism that hinges on the QBO-induced meridional circulation effect on the latitudinal positioning of the subtropical jet. Under QBOe, the QBO-induced meridional
Nonlinear Rossby waves near the equator with complete Coriolis force%近赤道完整Coriolis力作用下的非线性Rossby波
Institute of Scientific and Technical Information of China (English)
杨红丽; 刘福梅; 王丹妮; 杨联贵
2016-01-01
Nonlinear Rossby Waves near the equator in a potential vorticity equation which includes both the vertical and horizontal components of Coriolis force are studied.The wave evolution is described by the inhomo-geneous Boussinesq equation or the modified Korteweg-de Vries equation depending on the different perturbation methods.From the evolution equations,the effect of the horizontal components of Coriolis force on the nonlinear Rossby waves is evident.As expected,the equations derived also include,as special cases,those obtained before.%从既含有Coriolis力垂直分量又含有水平分量的位涡方程出发,采用不同的摄动方法推导了近赤道非线性Rossby波的演化方程,得到非线性Rossby波振幅演化满足非齐次Boussinesq方程或改进的Korteweg-de Vries方程.从演化方程可以看出Coriolis力水平分量对非线性Rossby波的影响,并且本文取特殊情况时包括了已有的一些结果.
Georgi, Howard
1993-01-01
The first complete introduction to waves and wave phenomena by a renowned theorist. Covers damping, forced oscillations and resonance; normal modes; symmetries; traveling waves; signals and Fourier analysis; polarization; diffraction.
Bandura, A V; Sofo, J O; Kubicki, J D
2006-04-27
Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.
Directory of Open Access Journals (Sweden)
Flaviu Bob
Full Text Available to assess the inter-operator reproducibility of kidney shear wave speed, evaluated by means of Acoustic Radiation Force Impulse (ARFI elastography, and the factors which influence it.Our prospective pilot study included 107 subjects with or without kidney pathology in which kidney shear wave speed was evaluated by means of ARFI elastography. Intraclass correlation coefficient (ICC was used to assess ARFI elastography reproducibility.A strong agreement was obtained between kidney shear wave speed measurements obtained by the two operators: ICC = 0.71 (right kidney and 0.69 (left kidney. Smaller ICCs were obtained in "healthy subjects", as compared to patients with kidney diseases (0.68 vs. 0.75, in women as compared with men (0.59 vs. 0.78, in subjects younger than 50 years as compared with those aged at least 50 years (0.63 vs. 0.71, in obese as compared with normal weight and overweight subjects (0.36 vs. 0.66 and 0.78 and in case of measurements depth 6 cm as compared with those performed at a depth of 4-6 cm from the skin (0.32 and 0.60 vs. 0.81.ARFI elastography is a reproducible method for kidney shear wave speed assessment.
On the Uplift Forces of Waves on the Piled Baffle Permeable Breakwater%桩基挡板式透空堤底板波浪的上托力
Institute of Scientific and Technical Information of China (English)
茆福文; 陈德春; 董霞
2013-01-01
The uplift forces of waves acting on the plate are the important parameters for designing the piled baffle permeable breakwater.Based on the wave model test,the wave steepness and superelevation are analyszd which are the main factors that influence the uplift forces of the impact pressure on the plate.Through the dimensional analysis and linear regression method,the empirical formula of calculating the uplift forces of the impact pressure on the plate of piled baffle permeable breakwater is derived when 1.67 ＜ d/H ＜ 3.2,0.03 ＜ H/L ＜ 0.1and-0.16 ＜ △h/H ＜ 0.48.Finnaly,compared with the former results,the experimental data show that the expirical formula is consistent with the experiment.%波浪对底板的上托力是桩基挡板式透空堤设计的重要参数.通过波浪模型试验,分析波陡、超高等因素对其底板波浪上托力冲击压强的影响,采用因次分析和线性回归方法,得到1.67＜∥H＜ 3.23,0.03 ＜H/L ＜0.1,-0.16＜△h/H＜0.48波浪条件下,桩基挡板式透空堤底板波浪上托力冲击压强的计算公式,并与以往公式进行比较.试验资料表明,该公式与试验值有较好的一致性.
Krebs, H; Meissner, U G; Epelbaum, Evgeny; Krebs, Hermann; Mei{\\ss}ner, Ulf-G.
2007-01-01
We study the two-nucleon force at next-to-next-to-leading order in a chiral effective field theory with explicit Delta degrees of freedom. Fixing the appearing low-energy constants from a next-to-leading order calculation of pion-nucleon threshold parameters, we find an improved convergence of most peripheral nucleon-nucleon phases compared to the theory with pions and nucleons only. In the delta-full theory, the next-to-leading order corrections are dominant in most partial waves considered.
Mitri, F. G.
2016-07-01
This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of
Isoyama, Soichiro; Sago, Norichika; Tagoshi, Hideyuki; Tanaka, Takahiro
2012-01-01
The accurate calculation of long-term phase evolution of gravitational wave (GW) forms from extreme (intermediate) mass ratio inspirals (E(I)MRIs) is an inevitable step to extract information from this system. Achieving this goal, it is believed that we need to understand the gravitational self-forces. However, it is not quntatively demonstrated that the second order self-forces are necessary for this purpose. In this paper we revisit the problem to estimate the order of magnitude of the dephasing caused by the second order self-forces on a small body in a quasi-circular orbit around a Kerr black hole, based on the knowledge of the post-Newtonian (PN) approximation and invoking the energy balance argument. In particular, we focus on the averaged dissipative part of the self-force, since it gives the leading order contribution among the various components of them. To avoid the possibility that the energy flux of GWs becomes negative, we propose a new simple resummation called exponential resummation, which ass...
Directory of Open Access Journals (Sweden)
V. M. Sinitskiy
2016-01-01
Full Text Available When operating the anvil hammers there occur impacts of die tooling and as a consequence, virtually instantaneous impact stops of motion of drop hammer parts. Such operating conditions come with accelerated failures of the anvil hammer rods because of emerging significant wave stresses. Engineering practice widely uses variation, difference, and integral methods to calculate wave stresses. However, to use them a researcher has to acquire certain skills, and the special programs should be available. The paper considers a method for estimating the wave stress changes in the anvil hammer rods, which is based on the wave equation of the Laplace transform. It presents a procedure for generating differential equations and their solution using the operator method. These equations describe the wave processes of strain and stress propagation in the anvil hammer rod under non-rigid impact with the compliance obstacle of the drop hammer parts. The work defines how the piston and rod mass and also the mechanical and geometric parameters of the rod influence on the stress level in the rod sealing of the hammer ram. Analysis of the results shows that the stresses in the rod sealing are proportional to the total amount of wave stresses caused by the rod and piston impact included in the total weight of the system. The piston influence on the stresses in the rod under impact is in direct proportion to the ratio of its mass to the mass of the rod. Geometric parameters of the rod and speed of drop parts before the impact influence on the stress value as well. It was found that if the time of impact is less than the time of the shock wave running in forward and backward direction, the impact with a compliance obstacle is equivalent to that of with a rigid obstacle, and the dependence of the wave stresses follows the Zhukovsky formula of direct pressure shock. The presented method of stress calculation can be successfully used to select the optimal mass and the rod
DEFF Research Database (Denmark)
Burcharth, H. F.; Frigaard, Peter
1989-01-01
Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....
Energy Technology Data Exchange (ETDEWEB)
Couling, A. J.; Goupee, A. J.; Robertson, A. N.; Jonkman, J. M.
2013-06-01
To better access the abundant offshore wind resource, efforts across the world are being undertaken to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools that can be relied upon in the design process. The National Renewable Energy Laboratory (NREL) has created a comprehensive, coupled analysis CAE tool for floating wind turbines, FAST, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are currently underway that leverage the extensive 1/50th-scale DeepCwind wind/wave basin model test dataset, obtained at the Maritime Research Institute Netherlands (MARIN) in 2011, to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. In this paper, further work is undertaken to continue this validation. In particular, the ability of FAST to replicate global response behaviors associated with dynamic wind forces, second-order difference-frequency wave-diffraction forces and their interaction with one another are investigated.
Energy Technology Data Exchange (ETDEWEB)
Imai, Y. [Hiroshima University, Hiroshima (Japan); Okusu, M. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1996-12-31
A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Imai, Y. [Hiroshima University, Hiroshima (Japan); Okusu, M. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1996-12-31
A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Valdes, Haydee; Pluhackova, Kristyna; Pitonak, Michal; Rezac, Jan; Hobza, Pavel
2008-03-13
A detailed quantum chemical study on five peptides (WG, WGG, FGG, GGF and GFA) containing the residues phenylalanyl (F), glycyl (G), tryptophyl (W) and alanyl (A)—where F and W are of aromatic character—is presented. When investigating isolated small peptides, the dispersion interaction is the dominant attractive force in the peptide backbone–aromatic side chain intramolecular interaction. Consequently, an accurate theoretical study of these systems requires the use of a methodology covering properly the London dispersion forces. For this reason we have assessed the performance of the MP2, SCS-MP2, MP3, TPSS-D, PBE-D, M06-2X, BH&H, TPSS, B3LYP, tight-binding DFT-D methods and ff99 empirical force field compared to CCSD(T)/complete basis set (CBS) limit benchmark data. All the DFT techniques with a ‘-D’ symbol have been augmented by empirical dispersion energy while the M06-2X functional was parameterized to cover the London dispersion energy. For the systems here studied we have concluded that the use of the ff99 force field is not recommended mainly due to problems concerning the assignment of reliable atomic charges. Tight-binding DFT-D is efficient as a screening tool providing reliable geometries. Among the DFT functionals, the M06-2X and TPSS-D show the best performance what is explained by the fact that both procedures cover the dispersion energy. The B3LYP and TPSS functionals—not covering this energy—fail systematically. Both, electronic energies and geometries obtained by means of the wave-function theory methods compare satisfactorily with the CCSD(T)/CBS benchmark data.
DEFF Research Database (Denmark)
Ferri, Francesco; Ambühl, Simon; Kofoed, Jens Peter
2015-01-01
is linked to the cost of the energy (CoE) produced from the different wave energy converters (WEC). The CoE from the different WECs is not yet comparable with other energy resources, due to a relative low efficiency coupled with the high structural costs. Within the sector a large effort has been addressed......, the application of an advance control strategy will most probably increase the loads exerted on the structure, leading to an increment of the structural cost. Therefore, the problem of minimising the CoE produced by a WEC is at least a 2Dproblem. In a previous article [3], the minimisation problem has been...... was implemeted with perfect knowledge of the future loadtime series, which is physically not achivable. This article is an extension of the work presented in [3] with a closer focus on the infuence of the excitation force prediction on the capability of the MPC architecture. Different estimator models...
Aruna, K.; Lakshmi Kumar, T. V.; Krishna Murthy, B. V.; Babu, S. Suresh; Ratnam, M. Venkat; Rao, D. Narayana
2016-01-01
The short wave direct Aerosol Radiative Forcing (ARF) at a semi urban coastal location near Chennai (12.81 °N, 80.03 °E, ˜45 m amsl), a mega city on the east coast of India has been estimated for all the four seasons in the year 2013 using the SBDART (Santa Barbara Discrete ordinate Atmospheric Radiative Transfer) model. As inputs to this model, measured aerosol parameters together with modeled aerosol and atmospheric parameters are used. The ARF in the atmosphere is found to be higher in the pre-monsoon and winter seasons compared to the other seasons whereas at the surface, it is found to be higher in the south-west (SW) monsoon and winter seasons. The estimated ARF values are compared with those reported over other locations in India. The effect of Relative Humidity on ARF has been investigated for the first time in the present study. It is found that the ARF increases with increasing RH in the SW monsoon and winter seasons. An unique feature of the present study is the comparison of the net surface short wave fluxes estimated from the model (SBDART) and measured fluxes using CNR 4 net radiometer. This comparison between the estimated and measured fluxes showed good agreement, providing a 'closure' for the estimates.
Effects of Micropump Driving Parameters on Traveling Wave Driving Force%行波微泵驱动参数对驱动效果的影响
Institute of Scientific and Technical Information of China (English)
张冲; 魏守水; 魏长智
2012-01-01
提出一种新型的无阀机械微泵,它依靠微泵管道顶部铺设的压电薄膜阵列产生的超声行波来驱动微管道中的流体。根据超声行波驱动微流体的原理对微泵进行ANSYS有限元建模和CFX流固耦合计算,得到了选定模态下内边长为200μm的方形微泵管道中流体的动力黏度与微泵驱动能力的关系,以及驱动电压幅值和频率对管口流速的影响曲线。结果表明：驱动电压的幅值大小与管口流速成正比,且当驱动频率等于共振频率时驱动效果最明显;当流体动力黏度小于0.001Pa.s时微流体流速随黏度增大而线性增大,之后则缓慢减小。此外,通过CFX后处理得到了微管道中的截面流速矢量图,由矢量图可以看出,在行波驱动作用显著的部分流速分布呈现自微管顶部向下逐渐减慢的特点,而在行波驱动作用极微弱的部分则流速分布近似呈抛物线形状。%A novel type of valveless mechanical micro--pump was proposed herein. It transported the liquid depending on the driving force of traveling wave which was produced by piezoelectric films fabricated on the top surface of the channel. Using finite element software, according to the principle of ultrasonic traveling wave driving,a model was structured and solved. The relationships among the ve- locity of microfluidic and driving factors such as the dynamic viscosity of liquid, the driving voltage amplitude and frequency were obtained for the first time under condition of the selected modal of square micro--pipe with a caliber of 200μm. The results show that the voltage amplitude is propor- tional to the flow velocity and the best driving efficiency is obtained on the resonance frequency;When the dynamic viscosity is below 0. 001Pa · s, the flow velocity will increase along with the rising viscos- ity while decrease above that value. In addition, the section velocity vector diagrams have been ob- tained, which illustrate that the flow
Yuan, Bing; de Swart, Huib E.; Panadès, Carles
2016-09-01
Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal currents are above 0.5 m s-1, while long bed waves occur in regions where the maximum tidal current velocity is slightly above the critical velocity for sand erosion and the current is elliptical. An idealized nonlinear numerical model was developed to improve the understanding of the initial formation of these bedforms. The model governs the feedbacks between tidally forced depth-averaged currents and the sandy bed on the outer shelf. The effects of different formulations of bed shear stress and sand transport, tidal ellipticity and different tidal constituents on the characteristics of these bedforms (growth rate, wavelength, orientation of the preferred bedforms) during their initial formation were examined systematically. The results show that the formulations for bed shear stress and slope-induced sand transport are not critical for the initial formation of these bedforms. For tidal sand ridges, under rectilinear tidal currents, increasing the critical bed shear stress for sand erosion decreases the growth rate and the wavelength of the preferred bedforms significantly, while the orientation angle slightly decreases. The dependence of the growth rate, wavelength and the orientation of the preferred bedforms on the tidal ellipticity is non-monotonic. A decrease in tidal frequency results in preferred bedforms with larger wavelength and smaller orientation angle, while their growth rate hardly changes. In the case of joint diurnal and semidiurnal tides, or spring-neap tides, the characteristics of the bedforms are determined by the dominant tidal constituent. For long bed waves, the number of anticyclonically/cyclonically oriented bedforms with respect to the principal
Institute of Scientific and Technical Information of China (English)
黄小华; 郭根喜; 胡昱; 陶启友; 张小明
2011-01-01
This study is aimed to discuss the effects of waves combined with currents on forces and motion deformation of deep-water net cages, and provides a strong reference to risk assessment for net-cage aquaculture with severe marine conditions. The set value of wave and current elements were as follows: wave heights H=4-6 m,wave periods T=6.0-8.6s, current velocities U=0.3-0.9 m/s. With a numerical model previously validated by physical model tests, the mooring line forces, the wave-current forces, the volume reduction rate and the floating-collar pitches of the deep-water net cage were calculated. The simulated results indicated that the mooring line force, the wave-current force and the volume reduction rate were all in direct proportion to wave height as well as current velocity, but less related to wave period. Furthermore, the wave-current force on the cage was approximately equal to the sum of force on each mooring line on wave-side. The volume reduction rate reached 47％-56％ for the cage caused by the conditions of wave height of 4-6 m and current velocity of 0.75m/s, which showed serious cage deformation. Therefore, we concluded that farming sites should not be placed in sea areas where current speed exceeded 0.75 m/s. The calculated results also showed that the influence of wave period on volume reduction rate was slight, while significant on the floating-collar pitch. The floating-collar pitch would decrease as wave period increasing at constant wave height and current velocity.%基于已建立的浮架和网衣数学模型,对不同波况和流速共同作用条件下HDPE深水网箱所受的锚绳力、波流力、容积损失率以及浮架倾角进行数值计算,设计的波流要素值为:波高H=4～6 m,周期T=6.0～8.6 s,流速U=0.3～0.9 m/s.结果表明,网箱锚绳受力、波流力和容积损失率均与波高和流速成正比,与周期的关系不明显,且网箱系统所受的波流力约为网箱迎浪侧两根锚
Institute of Scientific and Technical Information of China (English)
Lotfollahi-Yaghin Mohammad Ali; Moosavi Sayyid Mehdi; Lotfollahi-Yaghin Amin
2011-01-01
The wave force exerted on vertical piles of offshore structures is the main criterion in designing them. In structures with more than one large pile, the influence of piles on each other is one of the most important issues being concerned in past researches. An efficient method for determining the interaction of piles is introduced in present research. First the wave force is calculated by the exact method using the diffraction theory, then in the finite difference numerical method the force is calculated by adding the velocity potentials of each pile and integration of pressure on their surface. The results showed that the ratio of the wave force on each of the double piles to a single pile has a damped oscillation around unity in which the amplitude of oscillation decreases with the increase in the spacing parameter. Also different wave incident directions and diffraction parameters were used and the results showed that the numerical solution has acceptable accuracy when the diffraction parameter is larger than unity.
Institute of Scientific and Technical Information of China (English)
王荀; 邱阿瑞
2012-01-01
In this paper, the field-circuit coupled time-stepping finite element model of squirrel-cage asynchronous motor is presented and the validity is verified by means of the comparison between the stator phase current harmonics of the simulating wave and those of the experiment wave. Air gap flux density is calculated by means of this model and radial electromagnetic force is calculated using the classical Maxwell stress tensor method. Air gap flux density and radial electromagnetic force vary in both space domain and time domain and two dimensional Fourier analysis are carried out to calculate harmonics of those. The influence of the tooth and slot and the slip on flux density and radial electromagnetic force are discussed. The relationship of flux density waves and radial electromagnetic force waves are analyzed. Radial electromagnetic force waves and the testing electromagnetic noise spectra are analyzed and compared and the results verify the effectiveness of the calculation of radial electromagnetic force waves. Radial electromagnetic force and its harmonics calculated by the method can be used to electromagnetic noise analysis in the design stage.%建立笼型异步电动机的场路耦合时步有限元模型,通过定子相电流仿真波形和实测波形的谐波比较验证有效性。基于该模型计算气隙磁通密度,进而利用经典的Maxwell应力张量法计算径向电磁力。气隙磁通密度和径向电磁力均随空间和时间变化,利用二维傅里叶分析分别求解它们的谐波;并探讨齿槽和转差率对磁通密度和径向电磁力的影响,以及磁通密度波和径向电磁力波之间的关系。将径向电磁力波和实测电磁噪声频谱进行了分析和对比,结果表明径向电磁力波的计算是合理有效的。利用本文方法计算的径向电磁力及其谐波可应用于在设计阶段对电磁噪声的分析。
Baerenzung, J; Mininni, P D; Pouquet, A
2009-01-01
We present a study of spectral laws for helical turbulence in the presence of solid body rotation up to Reynolds numbers Re~1*10^5 and down to Rossby numbers Ro~3*10^-3. The forcing function is a fully helical flow that can also be viewed as mimicking the effect of atmospheric convective motions. We test in the helical case variants of a model developed previously (Baerenzung et al. 2008a) against direct numerical simulations (DNS), using data from a run on a grid of 15363 points; we also contrast its efficiency against a spectral Large Eddy Simulation (LES) (Chollet and Lesieur 1981) as well as an under-resolved DNS. The model including the contribution of helicity to the spectral eddy dissipation and eddy noise behaves best, allowing to recover statistical features of the flow. An exploration of parameter space is then performed beyond what is feasible today using DNS. At fixed Reynolds number, lowering the Rossby number leads to a regime of wave-mediated inertial helicity cascade to small scales. However, ...
Nicolas, Maxime
2016-01-01
Engineering school; This course is designed for students of Polytech Marseille, engineering school. It covers first the physics of vibration of the harmonic oscillator with damping and forcing, coupled oscillators. After a presentation of the wave equation, the vibration of strings, beams and membranes are studied.
Reflectors to Focus Wave Energy
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
2005-01-01
Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen
Wave energy is regarded as a major and promising renewable energy resource. The most critical factor to the success of deploying a wave energy converter in an ocean environment is the cost. The key factors affecting the costs include the performance, capital costs, operation and maintenance costs...... to evaluate the electrical power generated by a given wave energy device from a given wave condition. The first part of this work focuses on the development of such a numerical model. An important task is to quantify the wave-induced load effects to ensure that the input is correct and a safe and robust...
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-09-01
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.
Energy Technology Data Exchange (ETDEWEB)
Del Ben, Mauro, E-mail: mauro.delben@chem.uzh.ch; Hutter, Jürg, E-mail: hutter@chem.uzh.ch [Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch [Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland)
2015-09-14
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH{sub 3}, CO{sub 2}, formic acid, and benzene.
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-09-14
The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.
Yuan, T.; Zhao, Y.; Pautet, P.; Cai, X.; Fish, C. S.; Taylor, M. J.
2012-12-01
Gravity wave forcing (GWF) is induced by the momentum deposition during the wave breaking event. It is believed to be the major dynamic source in the mesosphere and lower thermosphere (MLT) that affects not only the global climatological features but also the mesoscale events in this region. The Utah State University (USU) Na Doppler Temperature/Wind lidar set up zonal co-planner beam in June 2011 to measure the zonal momentum flux through zonal wind variance calculations. Meanwhile, the lidar's multi-day continuous full diurnal cycle observations provide opportunity to investigate the GWF on the tidal wave variability and propagations within the mesopause region. In this paper, we are going to discuss the nocturnal GWF revealed by the lidar momentum flux measurements in one collaborative continuous 5-day campaign with Advance Mesospheric Temperature Mapper (AMTM) at USU and the Meteor Wind Radar at Bear Lake Observatory (BLO) in August 2011. The AMTM also captured one intensive mesospheric "Bore" event during one night with strong GWF, while TIMED/SABER data indicates that the temperature inversion layer (thermal duct region for "Bore" propagation) is well over 1000 km in horizontal scale, extending beyond west coast of North America. The correlation between zonal GWF and tidal wave will be investigated, along with planetary wave behavior through this campaign.
Diffenbaugh, N. S.; Ashfaq, M.; Hertel, T. W.; Scherer, M.; Verma, M.
2012-12-01
We explore the use of climate impacts as a probe for understanding the dynamics governing the response of the climate system to changes in radiative forcing. As a case study, we focus on the volatility of corn prices in the U.S. Recent price spikes have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades. However, commodity price volatility is also influenced by other factors, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected to occur over the next three decades. Given this sensitivity to severe heat, we next explore the dynamics shaping the projected near-term intensification of severe heat over the US in our high-resolution ensemble climate model experiment. We find that the intensification of hot extremes is associated not only with increased downward long-wave radiation from increasing greenhouse gases, but also with a shift towards more anticyclonic atmospheric circulation during the warm season, along with warm season drying over much of the US. We find that the coupling between surface temperature change and surface moisture change is robust across a suite of global climate model experiments. Given these projected changes in climate dynamics associated with near-term intensification of severe hot events, we next explore the transient response of summer climate in the US to increasing greenhouse forcing through the end of the 21st century. We find that the central US exhibits
Energy Technology Data Exchange (ETDEWEB)
Wesolowski, David J [ORNL; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Sofo, Jorge O. [Pennsylvania State University; Kubicki, James D. [Pennsylvania State University
2006-01-01
Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO{sub 2} (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H{sub 2}O present. A classical interatomic force field has been developed to describe bulk SnO{sub 2} and SnO{sub 2}-H{sub 2}O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO{sub 2} are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H{sub 2}O molecules agree well between the ab initio and force field predictions. H{sub 2}O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.
Digital Repository Service at National Institute of Oceanography (India)
Amol, P.; Shankar, D.; Aparna, S.G.; Shenoi, S.S.C.; Fernando, V.; Shetye, S.R.; Mukherjee, A.; Agarvadekar, Y.; Khalap, S.; Satelkar, N.P.
QuikSCAT wind data, we show that the contribution of remote forcing to the shelf West Indian Coastal Current (WICC) is significant even when the local alongshore wind is strong, as during the summer-monsoon onset during May–June, and forces a strong...
Kattawar, G. W.
1980-01-01
The multipole expansion obtained by Morita et al. (1968) of the Gaussian laser beam used to levitate an aerosol particle in order that its complete phase matrix may be measured is compared with that of Tsai and Pogorzelski (1975) in order to demonstrate the effect of the incorrect expansion used by Morita. Errors incurred by the use of an equation in which one side satisfies the scalar wave equation while the other side does not and can be reduced to a plane wave amplitude are calculated as functions of the inverse of the wave number times the beam waist, the wave number times the radial spherical coordinate and the angular spherical coordinate. Errors on the order of a few percent, considered undetectable are obtained in the squared-field amplitudes due to the expansion, however, they are found to become significant (several tens of percent) when the angle is zero. It is concluded that the expansion of Morita should only be used in the regions where the spherical angle is less than 0.01 and its product with the wave number and the radial spherical coordinate is less than unity.
Yuan, Tao; Pautet, P.-D.; Zhao, Y.; Cai, X.; Criddle, N. R.; Taylor, M. J.; Pendleton, W. R.
2014-04-01
Mesospheric inversion layers (MIL) are well studied in the literature but their relationship to the dynamic feature associated with the breaking of atmospheric waves in the mesosphere/lower thermosphere (MLT) region are not well understood. Two strong MIL events (ΔT ~30 K) were observed above 90 km during a 6 day full diurnal cycle Na lidar campaign conducted from 6 August to 13 August Logan, Utah (42°N, 112°W). Colocated Advanced Mesospheric Temperature Mapper observations provided key information on concurrent gravity wave (GW) events and their characteristics during the nighttime observations. The study found both MILs were well correlated with the development and presence of an unstable region ~2 km above the MIL peak altitudes and a highly stable region below, implicating the strengthening of MIL is likely due to the increase of downward heat flux by the enhanced saturation of gravity wave, when it propagates through a highly stable layer. Each MIL event also exhibited distinct features: one showed a downward progression most likely due to tidal-GW interaction, while the peak height of the other event remained constant. During further investigation of atmospheric stability surrounding the MIL structure, lidar measurements indicate a sharp enhancement of the convective stability below the peak altitude of each MIL. We postulate that the sources of these stable layers were different; one was potentially triggered by concurrent large tidal wave activity and the other during the passage of a strong mesospheric bore.
2011-09-30
resolving differential GPS and sidescan and multibeam sonar system as described in our DURIP proposal (“Instrumentation for Measuring Nearshore Morphologic...elevation is a suitable reference for measuring bedforms under swell. The multibeam will provide digital elevation with a swath width roughly twice the...to several other proposed ONR efforts including an OASIS project with John Trowbridge to measure wave boundary layer stresses in support of optical
Effect of various periodic forces on Duffing oscillator
Indian Academy of Sciences (India)
V Ravichandran; V Chinnathambi; S Rajasekar
2006-08-01
Bifurcations and chaos in the ubiquitous Duffing oscillator equation with different external periodic forces are studied numerically. The external periodic forces considered are sine wave, square wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave, rectangular wave with amplitude-dependent width and modulus of sine wave. Period doubling bifurcations, chaos, intermittency, periodic windows and reverse period doubling bifurcations are found to occur due to the applied forces. A comparative study of the effect of various forces is performed.
Coriolis effect on water waves
Benjamin, Melinand
2015-01-01
This paper is devoted to the study of water waves under the influence of the gravity and the Coriolis force. It is quite common in the physical literature that the rotating shallow water equations are used to study such water waves. We prove a local wellposedness theorem for the water waves equations with vorticity and Coriolis force, taking into account the dependence on various physical parameters and we justify rigorously the shallow water model. We also consider a possible non constant pr...
Research into traveling wave effect of ultralong RC frame beam on internal force%超长混凝土框架梁弹性内力行波效应研究
Institute of Scientific and Technical Information of China (English)
蒋中林; 张新培; 高少波; 伍松
2012-01-01
鉴于超长混凝土框架结构行波效应规律尚缺乏系统研究,借助建筑结构通用有限元软件MIDAS/GEN,采用一致与非一致两种激励方式对165～1100m/s地震波速作用下长度为33～264m的3层钢筋混凝土框架结构进行弹性时程分析.通过对比一致与非一致激励下的梁弯矩、剪力和轴力,详细讨论了其随波速、长度以及不同部位的变化规律.研究表明:波速越慢,模型越长,行波效应越明显.框架梁弯矩的增大作用主要集中在264m模型第1层两端,减小作用表现在各模型第1层中部和第2、3层的梁上；剪力与弯矩有相似的变化规律；梁中存在拉力与压力,中部各梁的拉力和压力较两端的梁要大.%In view of lack of research on traveling wave effect of ultralong RC frame structure, finite element software Midas/Gen for architectural structure and methods of uniform and non-uniform excitation were applied to analyze time-history responses of a three-storey and 33 - 264m reinforced concrete structures under action of 165 ~ 1100m/s earthquake wave. By comparing the data of the bending moments, shear forces and axial forces under condition of uniform and non-uniform excitation,their change with wave speed,beam length and acted position was discussed in detail. Research shows that the slower the seismic velocity or the longer the structure, the more obvious the travelling effect is. The increasing effect mainly concentrates at both ends of the first floor of 264m model, the reducing effect reflects in the middle part of all first floor and all second and third floors; The change rule of shear force is similar to that of bending moment, tension and pressure exist in beams, the tension and the pressure in middle beams are larger than that in end beams.
Wind generated rogue waves in an annular wave flume
Toffoli, A; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2016-01-01
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves, where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an {\\it unlimited-fetch} condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
Wind Generated Rogue Waves in an Annular Wave Flume.
Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2017-04-07
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole
2014-01-01
Fluid power systems are the leading technology for power take off systems in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lowers the energy production. To overcome...... less than 10 ms. The pilot stage is directly actuated and utilises internal valve pressure as supply and an external tank connection as drain. The current paper presents the multi-disciplinary design process leading to the final valve design. This includes the geometric design of the main stage......, the choice of pilot valve, structural mechanical issues and modelling and simulation of various valve configurations. Hence, a mechatronic design process is utilised to choose the best valve configuration....
Laboratory Study on the Interaction Between Regular Obliquely Incident Waves and Vertical Walls
Institute of Scientific and Technical Information of China (English)
李玉成; 董国海; 孙昭晨; 徐双全; 毛恺; 牛恩宗
2001-01-01
The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio ofobliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is related with variousfactors. A linear reduction of the mean force of obliquely incident waves is confirmed with an increase in the relativecaisson length. Also the characteristics of reflection coefficient of diagonal waves are discussed.
Grove, Timothy Todd
The forces exerted on a three-level atom by a bichromatic standing-wave field are investigated. A theoretical analysis shows that the standing-wave dipole force can be rectified, i.e., maintain its sign over many optical wavelengths. Three systems in particular are studied: the lambda, the vee, and the cascade. Experimental results for the rubidium 5S --> 5P --> 5D cascade system are used to confirm the theory. The nearly coincident transition wavelengths for this system (780.0 nm and 776.0 nm) provide potential wells repeating at the beat wavelength (71 μm) which can accumulate laser cooled atoms. This force may have future applications in forming deep neutral atom traps as well as in the creation of new elements for atom optics. Two-color, two-photon spectroscopy of the 5D_{5/2}cascade system (5S --> 5P --> 5D) was also performed.
Nonstationary distributions of wave intensities in wave turbulence
Choi, Yeontaek; Jo, Sanggyu; Kwon, Young-Sam; Nazarenko, Sergey
2017-09-01
We obtain a general solution for the probability density function (PDF) of wave intensities in non-stationary wave turbulence. The solution is expressed in terms of the initial PDF and the wave action spectrum satisfying the wave-kinetic equation. We establish that, in the absence of wave breaking, the wave statistics converge to a Gaussian distribution in forced-dissipated wave systems while approaching a steady state. Also, we find that in non-stationary systems, if the statistic is Gaussian initially, it will remain Gaussian for all time. Generally, if the statistic is not initially Gaussian, it will remain non-Gaussian over the characteristic nonlinear evolution time of the wave spectrum. In freely decaying wave turbulence, substantial deviations from Gaussianity may persist infinitely long.
Trout, Andrew T; Dillman, Jonathan R; Xanthakos, Stavra; Kohli, Rohit; Sprague, Garrett; Serai, Suraj; Mahley, Alana D; Podberesky, Daniel J
2016-11-01
Purpose To evaluate the correlation between ultrasonographic (US) point shear-wave elastography (SWE) and magnetic resonance (MR) elastography liver shear-wave speed (SWS) measurements in a pediatric population and to determine if US data dispersion affects this relationship. Materials and Methods Institutional review board approval was obtained for this HIPAA-compliant investigation; informed consent and patient assent (as indicated) were obtained. Patients (age range, 0-21 years) undergoing clinical liver MR elastography between July 2014 and November 2015 were prospectively enrolled. Patients underwent two-dimensional gradient-recalled-echo 1.5-T MR elastography with point SWE performed immediately before or immediately after MR elastography. Spearman rank correlation coefficients were calculated to assess the relationship and agreement between point SWE and MR elastography SWS measurements. Uni- and multivariate logistic regression were performed to identify predictors of US data dispersion, with the best multivariate model selected based on Akaike information criterion. Results A total of 55 patients (24 female) were enrolled (mean age, 14.0 years ± 3.9 (standard deviation) (range, 3.5-21.4 years). There was fair correlation between point SWE and MR elastography SWS values for all patients (ρ = 0.33, P = .016). Correlation was substantial, however, when including only patients with minimal US data dispersion (n = 26, ρ = 0.61, P = .001). Mean body mass index (BMI) was significantly lower in patients with minimal US data dispersion than in those with substantial US data dispersion (25.4 kg/m(2) ± 7.8 vs 32.3 kg/m(2) ± 8.3, P = .003). At univariate analysis, BMI (odds ratio, 1.12; 95% confidence interval [CI]: 1.03, 1.21; P = .006) and abdominal wall thickness (odds ratio, 2.50; 95% CI: 1.32, 4.74; P = .005) were significant predictors of US data dispersion. In the best multivariate model, BMI was the only significant predictor (odds ratio, 1.11; 95% CI: 1
Dynamic Response of Coarse Granular Material to Wave Load
DEFF Research Database (Denmark)
Ibsen, Lars Bo
1998-01-01
The soil beneath vertical breakwaters is subjected to a combination of forces induced by the waves. The forces acting on the soil can be characterized as 1) static load due to submerged weight of the structure, 2) quasi-static forces induced by cyclic wave loading, and 3) wave impact from breakin...
Delaying vortex breakdown by waves
Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.
1989-03-01
The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.
Institute of Scientific and Technical Information of China (English)
方昭昭; 赵丙乾; 金武雷; 朱仁传
2013-01-01
In this paper,a Numerical Wave Tank(NWT)is constructed based on Computational Fluid Dynamics(CFD),and the hydrodynamic properties of a ship model is analyzed. Specifically,the genera-tion and propagation of regular waves are first simulated and verified with a reference coordinate system, through which the hydrodynamic forces and motions of the Wigley-III model advancing in head waves at different speeds are calculated. The obtained results are then compared with the experimental data collect-ed by Delft University of Technology,and good agreement can be observed. Overall,the proposed simula-tion technique,compared with the physical experimental method,is relatively easy to implement and con-trol. Therefore,this method has extensive applicability in analyzing the wave hydrodynamic performance of ships and marine floating structures.%基于计算流体动力学（CFD）方法建立数值波浪水池，对顶浪中航行船舶的水动力与运动进行数值计算研究。推导出一种船舶在波浪中航行的数值模拟的波浪环境表达方法并进行模拟验证，计算不同航速下顶浪中Wigley-III船模所受的水动作用力，以及顶浪中航行的Wigley-III船模的运动。通过将计算结果与DUT （Delft University of Technology）相关的试验数据进行比较，吻合良好。研究表明：基于数值波浪水池的数值模拟较试验更容易实现和控制，能够获得船体周围详细的流场信息，在波浪中舰船水动力性能与运动的研究等方面具有广泛的适用性。
Stochastic Forcing for Ocean Uncertainty Prediction
2013-09-30
shallow water waves governed by Korteweg-de Vries ( KdV ) dynamics with stochastic forcing. Uncertain Boundary Conditions and DO Equations: A...schemes to time-integrate shallow water surface waves governed by KdV equations with external stochastic forcing. We find that the DO scheme is
Sound Waves Levitate Substrates
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
Turbulent wind waves on a water current
Directory of Open Access Journals (Sweden)
M. V. Zavolgensky
2008-05-01
Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.
滑坡涌浪对高桩码头船舶撞击力的影响%Effects of landslide generated impulse waves on ship impact force for pile wharf
Institute of Scientific and Technical Information of China (English)
王平义; 韩林峰; 喻涛; 孟彩霞
2016-01-01
涌浪作为库岸滑坡的主要次生灾害，给库区码头、船舶以及水工建筑物带来巨大的安全隐患。高桩码头是目前三峡库区最为常见的码头结构形式之一，船舶撞击力对其在使用阶段的稳定性、安全性具有至关重要的影响。通过水槽模型试验，对滑坡涌浪作用下三峡库区系泊船舶与高桩码头间的撞击力进行研究。试验结果表明：系泊船舶对高桩码头的最大撞击力与涌浪初始波高、水体附加质量等参数有关，与水深无关；而用《港口工程荷载规范》计算得到的船舶撞击力与试验值相比偏小，不利于库区码头的设计安全。结合相关试验数据，提出滑坡涌浪影响下高桩码头船舶撞击力计算公式。%As the main secondary result of reservoir bank landslides, surges pose enormous potential risk to wharves, ships, and hydraulic structures in the Three Gorges Reservoir ( TGR) area. The high⁃pile wharf is cur⁃rently one of the most common wharf structures in TGR. Ship impact has a significant effect on the stability and safety of working wharves. Using flume model experiments, the landslide surge impact force between ships and wharves in the TGR was studied. The results show that the maximum impact force correlates to the height of the leading wave and the added water mass coefficient, but is not correlated to the water depth. The ship impact forces computed by the "Lode Code for Harbor Engineering" are smaller than the experimental values and therefore are unsuitable for safe wharf design. Combined with relevant experimental data, this paper proposes an equation for landslide surge impact force between ships and high⁃pile wharves.
Rainey, R C T
2012-01-28
For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.
Autoresonant control of drift waves
Shagalov, A. G.; Rasmussen, J. Juul; Naulin, V.
2017-03-01
The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes.
Autoresonant control of drift waves
DEFF Research Database (Denmark)
Shagalov, A.G.; Rasmussen, Jens Juul; Naulin, Volker
2017-01-01
The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined...... on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear...... waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes....
Numerical Wave Flume Study on Wave Motion Around Submerged Plates
Institute of Scientific and Technical Information of China (English)
齐鹏; 侯一筠
2003-01-01
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...
Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan
Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.
Occupational Outlook Quarterly, 2012
2012-01-01
The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…
Two-wave interaction in ideal magnetohydrodynamics
T. V. Zaqarashvili; Roberts, B.
2006-01-01
The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a resul...
Generation and Properties of Freak Waves in A Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
韩涛; 张庆河; 庞红犁; 秦崇仁
2004-01-01
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.
Buhmann, Stefan Yoshi
2012-01-01
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...
Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Bouzit, Omar; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)
2015-10-15
The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic one (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.
Observation of Phillips's spectrum in Faraday waves
Castillo, Gustavo; Falcon, Claudio
2016-11-01
We consider the problem of wave turbulence generated by singularities from an experimental point of view. We study a system of Faraday waves interacting with waves generated by a wave-maker driven with a random forcing. We measure the temporal fluctuations of the surface wave amplitude at a given location and we show that for a wide range of forcing parameters the surface height displays a power-law spectra that greatly differs from the one predicted by the WT theory. In the capillary region the power spectrum turns out to be proportional to f-5, which we believe is due to singularities moving across the system. Proyecto Postdoctorado Fondecyt Nro 3160032.
Surface Shear, Persistent Wave Groups and Rogue Waves
Chafin, Clifford
2014-01-01
We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.
The Radiation Magnetic Force (FmR)
Yousif, Mahmoud
2017-01-01
The detection of Circular Magnetic Field (CMF), associated with electrons movement, not incorporated in theoretical works; is introduced as elements of attraction and repulsion for magnetic force between two conductors carrying electric currents; it also created magnetic force between charged particles and magnetic field, or Lorentz force; CMF contain energy of Electromagnetic Radiation (EM-R); a relationship has been established between the magnetic part of the EM-R, and radiation force, showing the magnetic force as a frequency controlled entity, in which a Radiation Magnetic Force formula is derived, the force embedded EM-Wave, similar to Electromagnetic Radiation Energy given by Planck's formula; the force is accountable for electron removal from atom in the Photoelectric Effects, stabilizing orbital atoms, excitation and ionization atoms, initiating production of secondary EM-R in Compton Effect mechanism; the paper aimed at reviving the wave nature of EM-R, which could reflects in a better understanding of the microscopic-world.
Tunnel effect wave energy detection
Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)
1995-01-01
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.
Infra-Gravity Wave Generation by the Shoaling Wave Groups over Beaches
Institute of Scientific and Technical Information of China (English)
LIN Yu-Hsien; HWUNG Hwung-Hweng
2012-01-01
A physical parameter,μb,which was used to meet the forcing of primary short waves to be off-resonant before wave breaking,has been considered as an applicable parameter in the infra-gravity wave generation.Since a series of modulating wave groups for different wave conditions are performed to proceed with the resonant mechanism of infragravity waves prior to wave breaking,the amplitude growth of incident bound long wave is assumed to be simply controlled by the normalized bed slope,βb.The results appear a large dependence of the growth rate,α,of incident bound long wave,separated by the three-array method,on the normalized bed slope,βb.High spatial resolution of wave records enables identification of the cross-correlation between squared short-wave envelopes and infra-gravity waves.The crossshore structure of infra-gravity waves over beaches presents the mechanics of incident bound- and outgoing free long waves with the formation of free standing long waves in the nearshore region.The wave run-up and amplification of infra-gravity waves in the swash zone appear that the additional long waves generated by the breaking process would modify the cross-shore structure of free standing long waves.Finally,this paper would further discuss the contribution of long wave breaking and bottom friction to the energy dissipation of infra-gravity waves based on different slope conditions.
Forced Internal Waves in the Arctic Ocean.
1980-05-01
lead axis with a superimposed pattern of localized lead driven circulation perpendicular to the lead axis. Such a pattern has been predicted by Estoque ...Conseil Perm. Intern. p. l’Expl. de la Mer, Pub. de Circonstance, No. 43, 47 pp. Estoque , M. A. and C. M. Bhumralker, 1969. Flow over a localized heat
Hydrodynamic Excitation Forces on Floating Structures with Finite Displacements
DEFF Research Database (Denmark)
Andersen, Morten Thøtt; Nielsen, Søren R. K.
2015-01-01
excitation force is solely a function of time, hence the body is fixed in reference to the wave field. In this paper, the instantaneous position of the body is included in the calculation of the excitation force. Even though the displacement of the structure relative to a characteristic wavelength......This paper aims to present an extended version of the classic linear wave excitation force theory. Linear wave theory implies that the wave load is applied in the referential state of the structure. In reality, the load is acting in the dynamically altered state. In the classic notation the wave...
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Mechanics, Waves and Thermodynamics
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
Water Waves The Mathematical Theory with Applications
Stoker, J J
2011-01-01
Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.
Control Strategies for Accurate Force Generation and Relaxation.
Ohtaka, Chiaki; Fujiwara, Motoko
2016-10-01
Characteristics and motor strategies for force generation and force relaxation were examined using graded tasks during isometric force control. Ten female college students (M age = 20.2 yr., SD = 1.1) were instructed to accurately control the force of isometric elbow flexion using their right arm to match a target force level as quickly as possible. They performed: (1) a generation task, wherein they increased their force from 0% maximum voluntary force to 20% maximum voluntary force (0%-20%), 40% maximum voluntary force (0%-40%), or 60% maximum voluntary force (0%-60%) and (2) and a relaxation task, in which they decreased their force from 60% maximum voluntary force to 40% maximum voluntary force (60%-40%), 20% maximum voluntary force (60%-20%), or to 0% maximum voluntary force (60%-0%). Produced force parameters of point of accuracy (force level, error), quickness (reaction time, adjustment time, rate of force development), and strategy (force wave, rate of force development) were analyzed. Errors of force relaxation were all greater, and reaction times shorter, than those of force generation. Adjustment time depended on the magnitude of force and peak rates of force development and force relaxation differed. Controlled relaxation of force is more difficult with low magnitude of force control.
Without the strong force, there could be no life. The carbon in living matter is synthesised in stars via the strong force. Lighter atomic nuclei become bound together in a process called nuclear fusion. A minor change in this interaction would make life impossible. As its name suggests, the strong force is the most powerful of the 4 forces, yet its sphere of influence is limited to within the atomic nucleus. Indeed it is the strong force that holds together the quarks inside the positively charged protons. Without this glue, the quarks would fly apart repulsed by electromagnetism. In fact, it is impossible to separate 2 quarks : so much energy is needed, that a second pair of quarks is produced. Text for the interactive: Can you pull apart the quarks inside a proton?
Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.
1998-01-01
This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...
Measurement and modeling of bed shear stress under solitary waves
Digital Repository Service at National Institute of Oceanography (India)
Jayakumar, S.; Guard, P.A.; Baldock, T.E.
convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total...
Yerganian, Simon Scott
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Wave Height Distribution for Spilling Waves in and outside the Surf Zone
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The wave characteristics affecting coastal sediment transport include wave height, wave period and breaking wave direction. Wave height is a critical factor in determining the amount of sediment transport in the coastal area. The force of sediment transport is much more intense under breaking waves than under non-breaking waves. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave deformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and setdown and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height decay caused by the wave breaking and the bottom friction. Flume experiments relating to the spilling wave height distribution across the surf zone were conducted to verify the theoretical model. Advanced wave maker, data sampling devices and data processing system were utilized in the flume experiments with a slope covered by sands of different diameters to facilitate the observation and research on the wave transformation and breaking. The agreement between the theoretical and experimental results is good.
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Numerical study of airflow over breaking waves
Yang, Zixuan; Shen, Lian
2016-11-01
We present direct numerical simulation (DNS) results on airflow over breaking waves. Air and water are simulated as a coherent system. The initial condition for the simulation is a fully-developed turbulent airflow over strongly-forced steep waves. The airflow is driven by a shear stress at the top. The effects of the initial wave steepness and wave age are studied systematically. Because wave breaking is an unsteady process, we use ensemble averaging of a large number of runs to obtain turbulent statistics. Simulation results show that the airflow above does not see the wave trough during wave breaking. Vortex structures at different stages of wave breaking are analyzed based on a linear stochastic estimation method. It is found that the wave breaking alters the pattern of vortex structures.
Forgács, Péter; Romańczukiewicz, Tomasz
2013-01-01
It is shown that in a large class of systems plane waves can act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode having a larger wave number, in which case excess momentum is created behind the scatterer. Such a tractor beam or negative radiation pressure effect arises naturally in systems where the coupling between the scattering channels is due to Aharonov-Bohm (AB) gauge potentials. It is demonstrated that this effect is also present if the AB potential is an induced, ("artificial") gauge potential such as the one found in J. March-Russell, J. Preskill, F. Wilczek, Phys. Rev. Lett. 58 2567 (1992).
Mathematical Model of Gravitational and Electrostatic Forces
Krouglov, Alexei
2006-01-01
Author presents mathematical model for acting-on-a-distance attractive and repulsive forces based on propagation of energy waves that produces Newton expression for gravitational and Coulomb expression for electrostatic forces. Model uses mathematical observation that difference between two inverse exponential functions of the distance asymptotically converges to function proportional to reciprocal of distance squared.
Segregation of helicity in inertial wave packets
Ranjan, A.
2017-03-01
Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.
Ponedel, Benjamin; Knobloch, Edgar
2016-11-01
We study spatial localization in the real subcritical Ginzburg-Landau equation ut =m0 u +m1 cos2/π l x u +uxx +d | u | 2 u -| u | 4 u with spatially periodic forcing. When d > 0 and m1 = 0 this equation exhibits bistability between the trivial state u = 0 and a homogeneous nontrivial state u =u0 with stationary localized structures which accumulate at the Maxwell point m0 = - 3d2 / 16 . When spatial forcing is included its wavelength is imprinted on u0 creating conditions favorable to front pinning and hence spatial localization. We use numerical continuation to show that under appropriate conditions such forcing generates a sequence of localized states organized within a snakes-and-ladders structure centered on the Maxwell point, and refer to this phenomenon as forced snaking. We determine the stability properties of these states and show that longer lengthscale forcing leads to stationary trains consisting of a finite number of strongly localized, weakly interacting pulses exhibiting foliated snaking.
Prototype testing of the wave energy converter wave dragon
Energy Technology Data Exchange (ETDEWEB)
Kofoed, Jens Peter; Frigaard, Peter [Hydraulics and Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, Aalborg 9000 (Denmark); Friis-Madsen, Erik [Loewenmark F.R.I., Copenhagen (Denmark); Soerensen, Hans Chr. [SPOK, Copenhagen (Denmark)
2006-02-01
The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57x27m wide and 237tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive measuring program has been carried out, establishing the background for optimal design of the structure and regulation of the power take off system. Planning for deployment of a 4MW power production unit in the Atlantic by 2007 is in progress. (author)
Buckingham, A D
1975-11-06
The nature of molecular interactions is examined. Intermolecular forces are divided into long-range and short-range components; the former operate at distances where the effects of electron exchange are negligible and decrease as an inverse power of the separation. The long-range interactions may be subdividied into electrostatic, induction and dispersion contributions, where the electrostatic component is the interaction of the permanent charge distributions and the others originate in the fluctuations in the distributions. Typical magnitudes of the various contributions are given. The forces between macroscopic bodies are briefly considered, as are the effects of a medium. Some of the manifestations of molecular interactions are discussed.
Kruse, Karsten
2017-01-01
Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.
2016-01-01
We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens...
Seagrass blade motion under waves and its impact on wave decay
Luhar, M.; Infantes, E.; Nepf, H.
2017-05-01
The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).
Universal Spin-Momentum Locked Optical Forces
Kalhor, Farid; Jacob, Zubin
2015-01-01
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, direction of decay, and direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and $HE_{11}$ mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles is caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from...
Ponderomotive Force in the Presence of Electric Fields
Khazanov, G. V.; Krivorutsky, E. N.
2013-01-01
This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.
Steep waves in free-surface flow past narrow topography
Wade, Stephen L.; Binder, Benjamin J.; Mattner, Trent W.; Denier, James P.
2017-06-01
In this work, we compute steep forced solitary wave solutions for the problem of free-surface flow over a localised topographic disturbance in an otherwise flat horizontal channel bottom. A single forced solitary wave and a double-crested forced solitary wave solution are shown to exist, both of which approach the Stokes limiting configuration of an included angle of 12 0° and a stagnation point at the wave crests. The solution space for the topographically forced problem is compared to that found in Wade et al. ["On the free-surface flow of very steep forced solitary waves," J. Fluid Mech. 739, 1-21 (2014)], who considered forcing due to a localised distribution of pressure applied to the free surface. The main feature that differentiates the two types of forcing is an additional solution that exists in the pressure-forced problem, a steep wave with a cusp at a single wave crest. Our numerical results suggest that this cusped-wave solution does not exist in the topographically forced problem.
The Crest Wing Wave Energy Device
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Antonishen, Michael Patrick
This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...... to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....
Wind wave source functions in opposing seas
Langodan, Sabique
2015-08-26
The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik
2008-01-01
Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik;
2008-01-01
Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....
Scattering Forces within a Left-Handed Photonic Crystal.
Ang, Angeleene S; Sukhov, Sergey V; Dogariu, Aristide; Shalin, Alexander S
2017-01-23
Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals.
The Absence of Stokes Drift in Waves
Chafin, Clifford
2015-01-01
Stokes drift has been as central to the history of wave theory as it has been distressingly absent from experiment. Neither wave tanks nor experiments in open bodies detect this without nearly canceling "eulerian flows." Acoustic waves have an analogous problem that is particularly problematic in the vorticity production at the edges of beams. Here we demonstrate that the explanation for this arises from subtle end-of-packet and wavetrain gradient effects such as microbreaking events and wave-flow decomposition subtleties required to conserve mass and momentum and avoid fictitious external forces. These losses occur at both ends of packets and can produce a significant nonviscous energy loss for translating and spreading surface wave packets and wavetrains. In contrast, monochromatic sound wave packets will be shown to asymmetrically distort to conserve momentum. This provides an interesting analogy to how such internal forces arise for gradients of electromagnetic wavetrains in media. Such examples show that...
Christov, Ivan C
2012-01-01
In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...
Effect of oblique force source induced by laser ablation on ultrasonic generation.
Guo, Yuning; Yang, Dexing; Chang, Ying; Gao, Wei
2014-01-13
The effect of asymmetry caused by oblique line-shaped laser ablation on the generation of ultrasonic waves in metal, especially the effect of transverse component of the ablation force source on the ultrasonic waves is analyzed. Due to the oblique force source, the displacements of shear wave increase obviously by the enhanced shear force, the energy concentration area of longitudinal wave deflects to the small range centered on the incident direction while that of shear wave is approximately perpendicular to incident direction. In addition, surface wave enhances in the direction of transverse power flow. Furthermore, some ultrasonic characteristics under vortex laser ablation condition are inferred.
Fundamentals and Applications of Ultrasonic Waves
Cheeke, J David N
2012-01-01
Designed specifically for newcomers to the field, this fully updated second edition begins with fundamentals and quickly advances beyond general wave concepts into an in-depth treatment of ultrasonic waves in isotropic media. Focusing on the physics of acoustic waves, their propagation, technology, and applications, this accessible overview of ultrasonics includes accounts of viscoelasticity and multiple scattering. It examines new technologies, including atomic force acoustic microscopy, lasers, micro-acoustics, and nanotechnology. In addition, it highlights both direct and indirect applicati
Surface plasmon polariton assisted optical pulling force
Petrov, M I; Bogdanov, A A; Shalin, A S; Dogariu, A
2016-01-01
We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between the incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern while the directional excitation of surface plasmon polaritons (SPP) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin-orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on a dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerica...
Force decomposition in robot force control
Murphy, Steve H.; Wen, John T.
1991-01-01
The unit inconsistency in force decomposition has motivated an investigation into the force control problem in multiple-arm manipulation. Based on physical considerations, it is argued that the force that should be controlled is the internal force at the specified frame in the payload. This force contains contributions due to both applied forces from the arms and the inertial force from the payload and the arms. A least-squares scheme free of unit inconsistency for finding this internal force is presented. The force control issue is analyzed, and an integral force feedback controller is proposed.
Waves, damped wave and observation
Phung, Kim Dang
2009-01-01
We consider the wave equation in a bounded domain (eventually convex). Two kinds of inequality are described when occurs trapped ray. Applications to control theory are given. First, we link such kind of estimate with the damped wave equation and its decay rate. Next, we describe the design of an approximate control function by an iterative time reversal method.
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
Previous to this project a scale model 1:50 of the wave energy converter (WEC) Wave Dragon was built by the Danish Maritime Institute and tested in a wave tank at Aalborg University (AAU). The test programs investigated the movements of the floating structure, mooring forces and forces in the reflectors. The first test was followed by test establishing the efficiency in different sea states. The scale model has also been extensively tested in the EU Joule Craft project JOR-CT98-7027 (Low-Pressure Turbine and Control Equipment for Wave Energy Converters /Wave Dragon) at University College Cork, Hydraulics and Maritime Research Centre, Ireland. The results of the previous model tests have formed the basis for a redesign of the WEC. In this project a reconstruction of the scale 1:50 model and sequential tests of changes to the model geometry and mass distribution parameters will be performed. AAU will make the modifications to the model based on the revised Loewenmark design and perform the tests in their wave tank. Grid connection requirements have been established. A hydro turbine with no movable parts besides the rotor has been developed and a scale model 1:3.5 tested, with a high efficiency over the whole head range. The turbine itself has possibilities for being used in river systems with low head and variable flow, an area of interest for many countries around the world. Finally, a regulation strategy for the turbines has been developed, which is essential for the future deployment of Wave Dragon.The video includes the following: 1. Title, 2. Introduction of the Wave Dragon, 3. Model test series H, Hs = 3 m, Rc = 3 m, 4. Model test series H, Hs = 5 m, Rc = 4 m, 5. Model test series I, Hs = 7 m, Rc = 1.25 m, 6. Model test series I, Hs = 7 m, Rc = 4 m, 7. Rolling title. On this VCD additional versions of the video can be found in the directory 'addvideo' for playing the video on PC's. These versions are: Model testing of Wave Dragon, DVD version
Rectified optical force on dark-state atoms
Korsunsky, E. A.; Kosachiov, D. V.
1997-12-01
We show that an imperfection of velocity-selective coherent population trapping (VSCPT) in three-level atoms excited by standing light waves causes a rectified force on cooled atoms. The rectified force as well as the cooling force are calculated both analytically and numerically for 0953-4075/30/24/010/img5 and cascade three-level systems. Combination of these forces with the VSCPT mechanism can lead to localization of very cold atoms in potential wells created by the rectified force. This effect should be taken into account in experiments with VSCPT in standing waves, and can be used for realizing superlattices of cold atoms, in particular, cold Rydberg atoms.
Fritts, David
1987-02-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
Photoacoustic radiation force on a microbubble
Erkol, Hakan; Aytac-Kipergil, Esra; Unlu, Mehmet Burcin
2014-08-01
We investigate the radiation force on a microbubble due to the photoacoustic wave which is generated by using a pulsed laser. In particular, we focus on the dependence of pulsed laser parameters on the radiation force. In order to do so, we first obtain a new and comprehensive analytical solution to the photoacoustic wave equation based on the Fourier transform for various absorption profiles. Then, we write an expression of the radiation force containing explicit laser parameters, pulse duration, and beamwidth of the laser. Furthermore, we calculate the primary radiation force acting on a microbubble. We show that laser parameters and the position of the microbubble relative to a photoacoustic source have a considerable effect on the primary radiation force. By means of recent developments in laser technologies that render tunability of pulse duration and repetition frequency possible, an adjustable radiation force can be applied to microbubbles. High spatial control of applied force is ensured on account of smaller focal spots achievable by focused optics. In this context, conventional piezoelectric acoustic source applications could be surpassed. In addition, it is possible to increase the radiation force by making source wavelength with the absorption peak of absorber concurrent. The application of photoacoustic radiation force can open a cache of opportunities such as manipulation of microbubbles used as contrast agents and as carrier vehicles for drugs and genes with a desired force along with in vivo applications.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2015-09-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Knapp, W.
2006-01-01
Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...
The Falsification of Nuclear Forces
Perez, R Navarro; Arriola, E Ruiz
2015-01-01
We review our work on the statistical uncertainty analysis of the NN force. This is based on the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data from 1950 till 2013 below pion production threshold has been made. We stress the necessary conditions required for a correct and self-consistent statistical interpretation of the discrepancies between theory and experiment which enable a subsequent statistical error propagation and correlation analysis
The Falsification of Nuclear Forces
Navarro Perez, R.; Amaro, J. E.; Ruiz Arriola, E.
2016-03-01
We review our work on the statistical uncertainty analysis of the NN force. This is based on the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data from 1950 till 2013 below pion production threshold has been made. We stress the necessary conditions required for a correct and self-consistent statistical interpretation of the discrepancies between theory and experiment which enable a subsequent statistical error propagation and correlation analysis
Nonlinear Fourier analysis with cnoidal waves
Energy Technology Data Exchange (ETDEWEB)
Osborne, A.R. [Dipt. di Fisica Generale dell`Universita, Torino (Italy)
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Towards measuring the Archimedes force of vacuum
Calloni, Enrico; De Rosa, Rosario; Di Fiore, Luciano; Esposito, Giampiero; Garufi, Fabio; Rosa, Luigi; Rovelli, Carlo; Ruggi, Paolo; Tafuri, Francesco
2014-01-01
We discuss the force exerted by the gravitational field on a Casimir cavity in terms of Archimedes' force of vacuum, we identify the force that can be tested against observation and we show that the present technology makes it possible to perform the first experimental tests. We motivate the use of suitable high-Tc superconductors as modulators of Archimedes' force. We analyze the possibility of using gravitational wave interferometers as detectors of the force, transported through an optical spring from the Archimedes vacuum force apparatus to the gravitational interferometers test masses to maintain the two systems well separated. We also analyze the use of balances to actuate and detect the force, we compare different solutions and discuss the most important experimental issues.
Papazoglou, Dimitris G; Tzortzakis, Stelios
2016-01-01
We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....
DEFF Research Database (Denmark)
Kramer, Morten; Andersen, Thomas Lykke
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....
Needham, Charles E
2010-01-01
The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...
Acoustic interaction forces between small particles in an ideal fluid
Silva, Glauber T
2014-01-01
We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair-interaction potentials with no restriction on the inter-particle distance. The theory is applied to studies of the acoustic interaction force on a particle suspension in either standing or traveling plane waves. The results show aggregation regions along the wave propagation direction, while particles may attract or repel each other in the transverse direction. In addition, a mean-field approximation is developed to describe ...
Wave Loadings Acting on an Innovative Breakwater for Energy Production
DEFF Research Database (Denmark)
Vicinanza, Diego; Ciardulli, F.; Buccino, M.
2011-01-01
. The hydraulic model tests have been carried out at the LInC laboratory of the University of Naples Federico II using random waves. Results indicate wave overtopping is able to cause a sudden inversion of vertical force under wave crest, so that it is alternatively upward and downward directed over a short time...
A Two-Wave Scheme for Orographic Gravity Wave Drag Parameterization
Institute of Scientific and Technical Information of China (English)
WANG Yuan; CAI Ninghao; TANG Jinyun
2008-01-01
When the magnitude of sub-scale ographic forcing is comparable with explicitly ordinary dynamic forcing, the drag effect reduced by ographic gravity wave is to be significant for maintaining dynamic balance of atmo-spheric circulation, as well as the momentum and energy transport. Such sub-scale ographic forcing should be introduced into numerically atmospheric model by means of drag being parameterized. Furthermore, the currently mature ographic gravity wave drag (OGWD) parameterization, i.e., the so-called first-generation(based on lineal single-wave theoretical framework) or the second-generation drag parameterization (includ-ing an important extra forcing by the contribution of critical level absorption), cannot correctly and effectly describe the vertical profile of wave stress under the influence of ambient wind shearing. Based on aforemen-tioned consideration, a new two-wave scheme was proposed to parameterize the ographic gravity wave drag by means of freely propagating gravity waves. It starts with a second order WKB approximation, and treats the wave stress attenuations caused by either the selective critical level absorption or the classical critical level absorption explicitly; while in the regions where critical levels are absent, it transports the wave stress vertically by two sinusoidal waves and deposits them and then damps them according to the wave saturation criteria. This scheme is thus used to conduct some sample computations over the Dabie Mountain region of East China, as an example. The results showed that the new two-wave scheme is able to model the vertical distribution of the wave stress more realistically.
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
1993-01-01
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.
Imbalanced Relativistic Force-Free Magnetohydrodynamic Turbulence
Cho, Jungyeon
2013-01-01
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfv\\'enic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., \\$b_+^2/b_-^2 \\propto (\\epsilon_+/\\epsilon_-)^n \\$ with n>2). These result...
WAVE INTERACTION WITH PERFORATED CAISSON BREAKWATERS
Institute of Scientific and Technical Information of China (English)
Chen Xue-feng
2003-01-01
The reflection coefficient of perforated caissons and the total horizontal forces acting on them were experimentally and numerically analyzed and discussed when wave propagates normally. To consider the viscosity effect of fluid and nonlinear action of waves on structures, the VOF (Volume Of Fluid) method combined with the k-ε turbulence model was used to simulate the interaction between waves and structures. Governing equations were solved with the finite difference method. Through 2D experimental study in the wave flume, the empirical relationship between the reflection coefficient of perforated caissons and the main affecting factors were obtained from the experimental data using the least square method. Also the correlation between the ratio of the total horizontal force acting on perforated caisson and the force acting on solid caisson and the main affecting factors were regressed from the experimental data.
Clustering of cycloidal wave energy converters
Siegel, Stefan G.
2016-03-29
A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.
Nonlinear wave-wave interactions and wedge waves
Institute of Scientific and Technical Information of China (English)
Ray Q.Lin; Will Perrie
2005-01-01
A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
Tropical response to extratropical eastward propagating waves
Directory of Open Access Journals (Sweden)
S. Sridharan
2015-06-01
Full Text Available Space–time spectral analysis of ERA-interim winds and temperature at 200 hPa for December 2012–February 2013 shows the presence of eastward propagating waves with period near 18 days in mid-latitude meridional winds at 200 hPa. The 18 day waves of k = 1–2 are dominantly present at latitudes greater than 80°, whereas the waves of k = 3–4 are dominant at 60° of both Northern and Southern Hemispheres. Though the 18 day wave of smaller zonal wavenumbers (k = 1–2 are confined to high latitudes, there is an equatorward propagation of the 18 day wave of k = 4 and 5. The wave amplitude of k = 5 is dominant than that of k = 4 at tropical latitudes. In the Northern Hemisphere (NH, there is a poleward tilt in the phase of the wave of k = 5 at mid-latitudes, as height increases indicating the baroclinic nature of the wave, whereas in the Southern Hemisphere (SH, the wave has barotropic structure as there is no significant phase variation with height. At the NH subtropics, the wave activity is confined to 500–70 hPa with moderate amplitudes. It is reported for the first time that the wave of similar periodicity (18 day and zonal structure (k = 5 as that of extratropical wave disturbance has been observed in tropical OLR, a proxy for tropical convection. We suggest that the selective response of the tropical wave forcing may be due to the lateral forcing of the eastward propagating extratropical wave of similar periodicity and zonal structure.
A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices
Matula, Thomas J.; Hilmo, Paul R.; Bailey, Michael R.
2005-07-01
Cavitation plays a varied but important role in lithotripsy. Cavitation facilitates stone comminution, but can also form an acoustic barrier that may shield stones from subsequent shock waves. In addition, cavitation damages tissue. Spark-gap lithotripters generate cavitation with both a direct and a focused wave. The direct wave propagates as a spherically diverging wave, arriving at the focus ahead of the focused shock wave. It can be modeled with the same waveform (but lower amplitude) as the focused wave. We show with both simulations and experiments that bubbles are forced to grow in response to the direct wave, and that these bubbles can still be large when the focused shock wave arrives. A baffle or ``suppressor'' that blocks the propagation of the direct wave is shown to significantly reduce the direct wave pressure amplitude, as well as direct wave-induced bubble growth. These results are applicable to spark-gap lithotripters and extracorporeal shock wave therapy devices, where cavitation from the direct wave may interfere with treatment. A simple direct-wave suppressor might therefore be used to improve the therapeutic efficacy of these devices.
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
Turbulence beneath finite amplitude water waves
Energy Technology Data Exchange (ETDEWEB)
Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)
2012-05-15
Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)
DEFF Research Database (Denmark)
Christensen, Thomas Budde
.g. sustainability or quality of life. The purpose of this paper is to explore how and to what extent public sector interventions that aim at forcing cluster development in industries can support sustainable development as defined in the Brundtland tradition and more recently elaborated in such concepts as eco......, Portugal and New Zealand have adopted the concept. Public sector interventions that aim to support cluster development in industries most often focus upon economic policy goals such as enhanced employment and improved productivity, but rarely emphasise broader societal policy goals relating to e...... to the automotive sector in Wales. Specifically, the paper evaluates the "Accelerates" programme initiated by the Welsh Development Agency and elaborates on how and to what extent the Accelerate programme supports the development of a sustainable automotive industry cluster. The Accelerate programme was set up...
Marciuc, Daly; Solschi, Viorel
2017-04-01
Understanding the Coriolis effect is essential for explaining the movement of air masses and ocean currents. The lesson we propose aims to familiarize students with the manifestation of the Coriolis effect. Students are guided to build, using the GeoGebra software, a simulation of the motion of a body, related to a rotating reference system. The mathematical expression of the Coriolis force is deduced, for particular cases, and the Foucault's pendulum is presented and explained. Students have the opportunity to deepen the subject, by developing materials related to topics such as: • Global Wind Pattern • Ocean Currents • Coriolis Effect in Long Range Shooting • Finding the latitude with a Foucault Pendulum
Nguyen, Vu A.; Palo, Scott E.; Lieberman, Ruth S.; Forbes, Jeffrey M.; Ortland, David A.; Siskind, David E.
2016-07-01
Theory and past observations have provided evidence that atmospheric tides and other global-scale waves interact nonlinearly to produce additional secondary waves throughout the space-atmosphere interaction region. However, few studies have investigated the generation region of nonlinearly generated secondary waves, and as a result, the manifestation and impacts of these waves are still poorly understood. This study focuses on the nonlinear interaction between the quasi 2 day wave (2dayW3) and the migrating diurnal tide (DW1), two of the largest global-scale waves in the atmosphere. The fundamental goals of this effort are to characterize the forcing region of the secondary waves and to understand how it relates to their manifestation on a global scale. First, the Fast Fourier Synoptic Mapping method is applied to Thermosphere Ionosphere Mesosphere Energetics and Dynamics-Sounding of the Atmosphere using Broadband Emission Radiometry satellite observations to provide new evidence of secondary waves. These results show that secondary waves are only significant above 80 km. The nonlinear forcing for each secondary wave is then computed by extracting short-term primary wave information from a reanalysis model. The estimated nonlinear forcing quantities are used to force a linearized tidal model in order to calculate numerical secondary wave responses. Model results show that the secondary waves are significant from the upper mesosphere to the middle thermosphere, highlighting the implications for the atmosphere-space weather coupling. The study also concludes that the secondary wave response is most sensitive to the nonlinear forcing occurring in the lower and middle mesosphere and not coincident with the regions of strongest nonlinear forcing.
Nonlinear internal wave penetration via parametric subharmonic instability
Ghaemsaidi, S J; Dauxois, T; Odier, P; Peacock, T
2016-01-01
We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially-periodic boundary forcing from above of a density stratification comprising a strongly-stratified, thin upper layer sitting atop a weakly-stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability (PSI) in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly-stratified lower layer. We find that around $10\\%$ of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.
Multi-directional random wave interaction with an array of cylinders
DEFF Research Database (Denmark)
Ji, Xinran; Liu, Shuxue; Bingham, Harry B.;
2015-01-01
. The biggest transverse force is found to occur on the rear cylinder rather than the front one. This is quite different from the results in unidirectional waves and should be paid much more attention in the design of offshore structures. At last, the possibility of the near-trapping under the multi......Based on the linear theory of wave interaction with an array of circular bottom-mounted vertical cylinders, systematic calculations are made to investigate the effects of the wave directionality on wave loads in short-crested seas. The multi-directional waves are specified using a discrete form...... of the Mitsuyasu-type spreading function. The time series of multi-directional wave loads, including both the wave run-up and wave force, can be simulated. The effect of wave directionality on the wave run-up and wave loading on the cylinders is investigated. For multi-directional waves, as the distribution...
On the Attraction of Matter by the Ponderomotive Miller Force
Lundin, Rickard
2010-01-01
Wave induced attraction of matter is a unique aspect of ponderomotive forcing by electromagnetic (e/m) waves in plasmas. The Miller force, sometimes denoted the gradient force, is of particular interest, because the direction as well as magnitude of the Miller force on a plasma depends on the wave frequency. While plasma is usually considered in its gaseous form, solid bodies can also be treated as plasma, denoted solid-state plasma. The first experimental proof of wave effects in magnetized solid-state plasmas (Lundqvist, 1949, Herlofson, 1950) came after the suggestion by Alfv\\'en (1942) on the possible existence of magneto-hydrodynamic (MHD) waves. However, most of our knowledge basis on MHD/Alfv\\'en waves have since then emerged from space- and laboratory (gaseous) plasmas. It is therefore timely to investigate further the applicability of e/m wave ponderomotive forcing on solid-state plasma. In this report we discuss the applicability of the ponderomotive Miller force on solid-state plasmas. At this stag...
Dynamic Responses of Truss Spar Due to Wave Actions
Directory of Open Access Journals (Sweden)
V.J. Kurian
2013-01-01
Full Text Available Spar platforms have been used for drilling, production and storage of oil and gas in the offshore deepwater region. The structure is installed at the deepwater locations in the sea and is exposed to continuous action of wind, wave, current and other environmental forces. Wave force constitutes about 70% of the total environmental force and could be considered as the most significant force affecting the dynamic responses needed for the design of these structures. In this study, the dynamic responses of the truss spar due to wave actions including the wave force theories and wave propagation directions are investigated. Numerical simulations are developed to investigate the accuracy of the wave force theories i.e., Morison equation and Diffraction theory, for large structure such as truss spar. The investigation is further expanded to study responses of the truss spar due to variations directions of the wave propagated. The truss spar is modelled as a rigid body with three degrees of freedom restrained by mooring lines. In the simulation, the mass, damping and stiffness matrices are evaluated at every time step. The equations of motion are formulated for the platform dynamic equilibrium and solved by using Newmark Beta method. To compute the wave force for truss spar, which is large compared to the wave length, Diffraction theory was found to be more appropriate. The Morison equation was found applicable only at the high frequency range. Short crested waves resulted in smaller responses in all the motions than that for long crested waves. Hence, it would be appropriate to consider the short crested wave statistics for the optimum design.
Inventing a Better Way to Capture the Energy of Waves
Energy Technology Data Exchange (ETDEWEB)
2016-06-01
NREL's ocean energy research team's efforts to develop more robust and cost-effective wave energy converters have yielded a record of invention titled, 'Wave Energy Conversion Devices with Actuated Geometry.' This innovative wave device features a wave converter with controlled geometry that increases energy capture and prevents large waves from overloading the generator. The invention's control system actuates flaps that open and close depending on wave conditions. Better control of the wave forces acting on wave energy conversion devices provides a solution to one of wave energy's biggest challenges -- and could cut the cost of wave energy in half.
Gravity wave turbulence revealed by horizontal vibrations of the container.
Issenmann, B; Falcon, E
2013-01-01
We experimentally study the role of forcing on gravity-capillary wave turbulence. Previous laboratory experiments using spatially localized forcing (vibrating blades) have shown that the frequency power-law exponent of the gravity wave spectrum depends on the forcing parameters. By horizontally vibrating the whole container, we observe a spectrum exponent that does not depend on the forcing parameters for both gravity and capillary regimes. This spatially extended forcing leads to a gravity spectrum exponent in better agreement with the theory than by using a spatially localized forcing. The role of the vessel shape has been also studied. Finally, the wave spectrum is found to scale linearly with the injected power for both regimes whatever the forcing type used.
Experimental study on the wave loads of twin-plate breakwater under oblique waves
Institute of Scientific and Technical Information of China (English)
GU Qian; HUANG Guoxing; ZHANG Ningchuan; LI Longxiang; SHAO Zhongan
2016-01-01
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate widthB/L, wave heightHs/D and incident angleθ0 on the wave forces were analyzed and discussed. The results showed that: (1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles (θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases. (2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves. (3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater. This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.
Baroclinic stationary waves in aquaplanet models
Lucarini, V.; Zappa, G.
2012-04-01
An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with kinverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave energy is then trapped in the wave guide created by the upper tropospheric jet stream. In agreement with Green's theory, as the equator to pole SST difference is reduced the stationary marginally stable component shifts toward higher wavenumbers, while the wave five becomes neutral and westward propagating. Some properties of the aquaplanet QS waves are found in interesting agreement with a low frequency wave observed by Salby (1982) in the southern hemisphere DJF, so that this perspective on low frequency variability might be, apart from its value in terms of basic geophysical fluid dynamics, of specific interest for studying the Earth's atmosphere.
Shallow Water Waves and Solitary Waves
Hereman, Willy
2013-01-01
Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.
Slosh wave excitation and stability of spacecraft fluid systems
Hung, R. J.; Lee, C. C.; Leslie, F. W.
1990-01-01
The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.
Three-Dimensional Simulations of Deep-Water Breaking Waves
Brucker, Kyle A; Dommermuth, Douglas G; Adams, Paul
2014-01-01
The formulation of a canonical deep-water breaking wave problem is introduced, and the results of a set of three-dimensional numerical simulations for deep-water breaking waves are presented. In this paper fully nonlinear progressive waves are generated by applying a normal stress to the free surface. Precise control of the forcing allows for a systematic study of four types of deep-water breaking waves, characterized herein as weak plunging, plunging, strong plunging, and very strong plunging.
Wave-Current Conditions and Navigation Safety at an Inlet Entrance
2015-06-26
Wind wave generation and growth, diffraction, reflection, dissipation due to bottom friction , white-capping and breaking, wave-current interaction...the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom friction , wave roller, and turbulent diffusion. Governing...H s , m), spectral peak period ( pT , sec ) and mean wave direction ( , deg), wave steepness ( /H Ls p , where L p is the spectral peak wavelength
In Situ Measurements of an Energetic Wave Event in the Arctic Marginal Ice Zone
2015-03-01
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson ...three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing and (3) uninhibited...propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...
Directory of Open Access Journals (Sweden)
Dieter H. W. Peters
2015-05-01
Full Text Available At the beginning of September 2002, strong convection processes over south-eastern Indonesia and over south-eastern Africa have been observed. Due to the strong upper tropospheric divergent outflow, two Rossby wave trains (RWTs were generated. Their south-eastward propagation was controlled by the mean background flow. These two wave trains are visible in observations. It is hypothesised that these wave trains cause enhanced planetary wave activity fluxes which are a result of an amplified planetary wave 2 in the upper troposphere/lower stratosphere over Antarctica. Such a change of the planetary wave structure was diagnosed in September 2002, prior to the first observed major sudden stratospheric warming event on the Southern Hemisphere. A simplified version of GCM ECHAM4 is used to evaluate the hypothesis. Sensitivity experiments were performed for a mean background flow similar to September 2002. Furthermore, the wave maker approach was used to generate Rossby waves in the subtropical upper troposphere at two distinct locations which are corresponding to the observed regions of divergent outflow. As a main result, after about 2 weeks of model integration with wave maker forcing, we find two RWTs with a south-eastward propagation inducing a polar amplification of planetary wave 2 in the upper troposphere and lower/middle stratosphere. The poleward wave activity flux is enhanced in comparison to the control run without any wave maker forcing. The convergence of the Eliassen–Palm flux causes a 25% deceleration of zonal mean zonal wind in the model stratosphere but no wind reversal. Sensitivity runs support the robustness of these results. The obtained model results highlight the mechanism and confirm the hypothesis that enhanced planetary wave activity in austral polar region in 2002 is caused by enhanced subtropical forcing of two RWTs.
Kudo, Tadasuke; Kawamura, Ryuichi; Hirata, Hidetaka; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei
2014-07-01
The modulation of large-scale moisture transport from the tropics into East Asia in response to typhoon-induced heating during the mature stage of the Baiu/Meiyu season is investigated using the Japanese 55-year reanalysis (JRA-55), aided by a Rayleigh-type global isotope circulation model (ICM). We highlighted the typhoons that migrate northward along the western periphery of the North Pacific subtropical high and approach the vicinity of Japan. Anomalous anticyclonic circulations to the northeast and southeast of typhoons and cyclonic circulation to their west become evident as they migrate toward Japan, which could be interpreted as a Rossby wave response to typhoon heating. These resultant anomalous circulation patterns form moisture conveyor belt (MCB) stretching from the South Asian monsoon region to East Asia via the confluence region between the monsoon westerlies and central Pacific easterlies. The ICM results confirm that the well-defined nature of the MCB leads to penetration of the Indian Ocean, South China Sea, Philippine Sea, and Pacific Ocean water vapors into western Japan. The typhoons have the potential to accumulate large amounts of moisture from distant tropical oceans through the interaction of their Rossby wave response with the background flow. In the case of a typical typhoon, the total precipitable water around the typhoon center as it approaches Japan is maintained by the moisture supply from distant oceans rather than from the underlying ocean, which indirectly leads to the occurrence of heavy rainfall over western Japan.
A numerical study of momentum and forced convection heat transfer ...
African Journals Online (AJOL)
temperature fields, axial velocity profiles, local and average Nusselt numbers, and skin frictions were ... Key words: Finite volume method - Turbulent flow - Forced convection - Waved baffles. .... numerical simulations are conducted in a two-.
On the feasibility of the use of wind SAR to downscale waves on shallow water
Gutiérrez, O. Q.; Filipponi, F.; Taramelli, A.; Valentini, E.; Camus, P.; Méndez, F. J.
2016-01-01
In recent years, wave reanalyses have become popular as a powerful source of information for wave climate research and engineering applications. These wave reanalyses provide continuous time series of offshore wave parameters; nevertheless, in coastal areas or shallow water, waves are poorly described because spatial resolution is not detailed. By means of wave downscaling, it is possible to increase spatial resolution in high temporal coverage simulations, using forcing from wind and offshore wave databases. Meanwhile, the reanalysis wave databases are enough to describe the wave climate at the limit of simulations; wind reanalyses at an adequate spatial resolution to describe the wind structure near the coast are not frequently available. Remote sensing synthetic aperture radar (SAR) has the ability to detect sea surface signatures and estimate wind fields at high resolution (up to 300 m) and high frequency. In this work a wave downscaling is done on the northern Adriatic Sea, using a hybrid methodology and global wave and wind reanalysis as forcing. The wave fields produced were compared to wave fields produced with SAR winds that represent the two dominant wind regimes in the area: the bora (ENE direction) and sirocco (SE direction). Results show a good correlation between the waves forced with reanalysis wind and SAR wind. In addition, a validation of reanalysis is shown. This research demonstrates how Earth observation products, such as SAR wind fields, can be successfully up-taken into oceanographic modeling, producing similar downscaled wave fields when compared to waves forced with reanalysis wind.
Experiments with Point Absorber Type Wave Energy Converters in a Large-Scale Wave Basin
DEFF Research Database (Denmark)
Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim
2014-01-01
Wave Energy Converters (WECs) extract energy from ocean waves and have the potential to produce a significant contribution of electricity from renewable sources. However, large "WEC farms" or "WEC arrays" are expected to have "WEC array effects", expressed as the impact of the WECs on the wave...... of geometric layout configurations and wave conditions. WEC response, wave induced forces on the WECs and wave field modifications have been measured. Each WEC consists of a buoy with diameter of 0.315 m. Power take-off is modeled by realizing friction based energy dissipation through damping of the WECs...... array effects and for validation and extension of numerical models. This model validation will enable optimization of the geometrical layout of WEC arrays for real applications and reduction of the cost of energy from wave energy systems....
Impact of Wave Dragon on Wave Climate
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Tedd, James; Kramer, Morten
This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....
Aerosol absorption and radiative forcing
Directory of Open Access Journals (Sweden)
P. Stier
2007-05-01
Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from –0.79 to –0.53 W m^{−2} (33% and all-sky from –0.47 to –0.13 W m^{−2} (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m^{−2} (36% clear-sky and of 0.12 W m^{−2} (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Radiation force and balance of electromagnetic momentum
Campos, I.; Jiménez, J. L.; Roa-Neri, J. A. E.
2016-07-01
Some force densities can be expressed as a divergence of a stress tensor, as is the case with the electromagnetic force density. We have shown elsewhere that from the Maxwell equations several balance equations of electromagnetic momentum can be derived, depending on the form these equations are expressed in terms of fields E, D, B, H, and polarisations P and M. These balance equations imply different force densities and different stress tensors, providing a great flexibility to solve particular problems. Among these force densities we have found some proposed in the past with plausibility arguments, like the Einstein-Laub force density, while other proposed force densities appear as particular or limit cases of these general force densities, like the Helmholtz force density. We calculate the radiation force of an electromagnetic wave incident on a semi-infinite negligibly absorbing material using these balance equations, corroborating in this way that the surface integration of the stress tensor gives the same result that the calculation made through a volume integration of the force density, as done by Bohren. As is usual in applications of Gauss’s theorem, the surface on which the surface integral is to be performed must be chosen judiciously, and due care of discontinuities on the boundary conditions must be taken. Advanced undergraduates and graduate students will find a different approach to new aspects of the interaction of radiation with matter.
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter; Brorsen, Michael
Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....
Inch, Kris; Davidson, Mark; Masselink, Gerd; Russell, Paul
2017-04-01
Infragravity waves (0.005-0.04 Hz) can dominate the water motion close to shore on low sloping beaches and play a significant role in beach and dune erosion. A new field data set of water surface elevation at 15 cross-shore locations on a dissipative, fetch-unlimited beach is analysed to investigate the forcing and surf zone behaviour of infragravity waves during a wide range of offshore wave conditions (Ho=0.38-3.88 m; Tp=6-20 s). Infragravity waves approach the shore as bound waves lagging slightly ( 4 s) behind the short wave (0.04-0.33 Hz) envelope and are released in the surf zone as free waves. Infragravity wave heights of up to 1 m are measured close to shore and are best predicted using an offshore forcing parameter that represents the short wave energy flux (Ho2 Tp). Considerable infragravity dissipation is observed in the surf zone and dissipation increases with offshore wave energy. Dissipation is highly frequency-dependant and a frequency-domain Complex Empirical Orthogonal Function analysis reveals (quasi-)standing waves at frequencies <0.017 Hz, but an increasingly progressive wave pattern at higher frequencies with reflection coefficients <0.1, indicative of more than 90% dissipation. Much of the observed dissipation occurs very close to shore and the dependence of the reflection coefficient on a normalised bed slope parameter implies that energy at high infragravity frequencies is dissipated by wave breaking, since these frequencies fit into a mild sloping regime. This is supported by the results of bispectral analysis which show predominantly infragravity-infragravity interactions in shallow water and the development of infragravity harmonics indicative of steepening and eventual breaking of the infragravity waves.
Ferrarese, Giorgio
2011-01-01
Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
Kaihatu, J. M.; Goertz, J.; Sheremet, A.; Weiss, R.
2014-12-01
It has been observed that the front face of landfalling tsunamis often feature dispersive "fission" waves. These are short, almost monochromatic coherent waves which result from the piling up of water as the tsunami rapidly decelerates upon encountering land. Photographs taken during the 2004 Indian Ocean tsunami show these waves to resemble cnoidal waves in shape and have a spatial and temporal scale of the same order as swell waves. As part of our goal to study the tsunami in concert with other aspects of the physical environment, we investigate possible physical linkages between the background random swell, monochromatic fission waves, and the long-scale tsunami waves. This particular investigation involves the modification of the dissipation characteristics of random surface waves when interacting with a coherent wavefield (e.g., laboratory proxies for the fission wave or the tsunami). Data from laboratory experiments conducted at the Large Wave Flume at Oregon State University (part of the Network for Earthquake Engineering Simulation supported by the National Science Foundation) were analyzed and the dissipation characteristics inferred using a steepness-regulated instantaneous dissipation mechanism. It is shown that, for random waves, the instances of significant dissipation events temporally correspond to the appearance of high frequency energy in the time-frequency spectrogram. Furthermore, these observations are strongly affected by the presence of an underlying coherent wave signal, particularly in the case of interaction with a tsunami. We further discuss the possible effect of these interactions on the forces in the hydrodynamic field responsible for sediment transport.
Baroclinic stationary waves in aquaplanet models
Zappa, Giuseppe; Navarra, Antonio; 10.1175/2011JAS3573.1
2011-01-01
An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with k<5 are baroclinically neutral. In agreement with the Green's model of baroclinic instability, the wave five is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlos...
Oblique and Multi-Directional Random Wave Loads on Vertical Breakwaters
Institute of Scientific and Technical Information of China (English)
俞聿修; 李本霞; 张宁川
2003-01-01
Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.
Role of the basin boundary conditions in gravity wave turbulence
Deike, Luc; Gutiérrez-Matus, Pablo; Jamin, Timothée; Semin, Benoit; Aumaitre, Sébastien; Berhanu, Michael; Falcon, Eric; BONNEFOY, Félicien
2014-01-01
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely...
Breaking wave impacts on offshore wind turbine foundations
DEFF Research Database (Denmark)
Bredmose, Henrik; Jacobsen, Niels Gjøl
2010-01-01
that for the impacts of spilling breakers the peak force gets smaller the more developed the breaking is. This is in qualitative agreement with a finding from shallow water impacts on vertical walls: the strongest wave loads are associated with breakers that hit the structure with slightly overturning front......Extreme wave loads from breaking waves on a monopile foundation are computed within a 3D CFD model. The wave impacts are obtained by application of focused wave groups. For a fixed position of the monopile, the focus location of the wave group is varied to produce impacts with front shapes...... that varies from early stages of breaking to broken waves. The CFD results for in-line force are compared to load estimates obtained from the Morison equation. The peak loads determined with this simple method are smaller than those of the CFD solution. The computational results appear to suggest...
Generation of Solitary Rossby Waves by Unstable Topography
Institute of Scientific and Technical Information of China (English)
YANG Hong-Wei; YIN Bao-Shu; DONG Huan-He
2012-01-01
The effect of topography on generation of the solitary Rossby waves is researched. Here, the topography, as a forcing for waves generation, is taken as a function of longitude variable x and time variable t, which is called unstable topography. With the help of a perturbation expansion method, a forced mKdv equation governing the evolution of amplitude of the solitary Rossby waves is derived from quasi-geostrophic vortieity equation and is solved by the pseudo-spectral method. Basing on the waterfall plots, the generational features of the solitary Rossby waves under the influence of unstable topography and stable topography are compared and some conclusions are obtained.
Experimental Study on the Langlee Wave Energy Converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.
This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....
GUIDED CIRCUMFERENTIAL WAVES IN DOUBLE-WALLED CARBON NANOTUBES
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotube has been taken into account in the model. The dispersion curves of the guided circumferential wave propagation are studied, and some dispersion characteristics are illustrated by comparing with those of single-walled carbon nanotubes. It is found that in double-walled carbon nanotubes, the guided circumferential waves will propagate in more dispersive ways. More interactions between neighboring wave modes may take place. In particular, it has been found that a couple of wave modes may disappear at a certain frequency and that, while a couple of wave modes disappear, another new couple of wave modes are excited at the same wave number.
-Advanced Models for Tsunami and Rogue Waves
Directory of Open Access Journals (Sweden)
D. W. Pravica
2012-01-01
Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.
Stochastic model for joint wave and wind loads on offshore structures
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2002-01-01
The stochastic wave load environment of offshore structures is of such a complicated nature that any engineering analysis requires extensive simplifications. This concerns both the transformation of the wave field velocities and accelerations to forces on the structure and the probabilistic...... and by integration over all sea states given $Q>q_0$, the distribution is obtained that is relevant for the free space design. However, for the forces on the members of the structure also the wave period is essential. Within the linear wave theory (Airy waves) the drag term in the Morison force formula increases...... and is therefore very difficult if not impossible to obtain by analytical mathematical reasoning. Keywords: Extreme wind driven sea waves, Local maxima and period properties of Gaussian process, Nataf model for wave and wind data, Offshore structure loads, Sea wave stochastics during wind storm, Wave and wind...
Universal spin-momentum locked optical forces
Energy Technology Data Exchange (ETDEWEB)
Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)
2016-02-08
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.
Universal spin-momentum locked optical forces
Kalhor, Farid; Thundat, Thomas; Jacob, Zubin
2016-02-01
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE11 mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.
Light forces in ultracold photoassociation
Gómez, E; Lett, P D; Tiesinga, E; Turner, L D
2006-01-01
We study the time-resolved photoassociation of ultracold sodium in an optical dipole trap. The photoassociation laser excites pairs of atoms to molecular states of large total angular momentum at high intensities (above 20 kW/cm$^{2}$). Such transitions are generally suppressed at ultracold temperatures by the centrifugal barriers for high partial waves. Time-resolved ionization measurements reveal that the atoms are accelerated by the dipole potential of the photoassociation beam. We change the collision energy by varying the potential depth, and observe a strong variation of the photoassociation rate. These results demonstrate the important role of light forces in cw photoassociation at high intensities.
The Falsification of Nuclear Forces
Directory of Open Access Journals (Sweden)
Perez R. Navarro
2016-01-01
Full Text Available We review our work on the statistical uncertainty analysis of the NN force. This is based on the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data from 1950 till 2013 below pion production threshold has been made. We stress the necessary conditions required for a correct and self-consistent statistical interpretation of the discrepancies between theory and experiment which enable a subsequent statistical error propagation and correlation analysis
A Comparison of Measured and Predicted Wave-Impact Pressures from Breaking and Non-breaking Waves
Fullerton, Anne M; Brewton, Susan; Brucker, Kyle A; O'Shea, Thomas T; Dommermuth, Douglas G
2014-01-01
Impact loads from waves on vessels and coastal structures are complex and may involve wave breaking, which has made these loads difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and nonbreaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident nonbreaking and breaking waves on one face of a cube. This experimental effort was sponsored by the Office of Naval Research (ONR), under the Dynamics of Interacting Platforms Program, Program Manager Dr. Ron Joslin. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. Additionally, a limited number of runs were made at low forward speeds, ranging from about 0.5 to 2...
Wave propelled ratchets and drifting rafts
2008-01-01
Several droplets, bouncing on a vertically vibrated liquid bath, can form various types of bound states, their interaction being due to the waves emitted by their bouncing. Though they associate droplets which are individually motionless, we show that these bound states are self- propelled when the droplets are of uneven size. The driving force is linked to the assymetry of the emitted surface waves. The direction of this ratchet-like displacement can be reversed, by varying the amplitude of ...
Love waves excited by a moving source
Zaslavskii, Yu. M.
2016-01-01
The study analyzes the characteristics of surface Love waves excited by the moment of an oscillating torsional force with a point of action that moves uniformly and rectilinearly along the free flat boundary of a medium having the structure of a "layer on a half-space." The azimuthal-angular distribution of the amplitude and Doppler shift in frequency of the wave modes is studied as a function of the motion velocity of a vibrating source and the parameters of the medium.
Physicists' Forced Migrations under Hitler
Beyerchen, Alan
2011-03-01
When the Nazis came to power in early 1933 they initiated formal and informal measures that forced Jews and political opponents from public institutions such as universities. Some physicists retired and others went into industry, but most emigrated. International communication and contact made emigration a viable option despite the desperate economic times in the Great Depression. Another wave of emigrations followed the annexation of Austria in 1938. Individual cases as well as general patterns of migration and adaptation to new environments will be examined in this presentation. One important result of the forced migrations was that many of the physicists expelled under Hitler played important roles in strengthening physics elsewhere, often on the Allied side in World War II.
Making Waves: Seismic Waves Activities and Demonstrations
Braile, S. J.; Braile, L. W.
2011-12-01
The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.
Experimental observation of gravity-capillary solitary waves generated by a moving air-suction
Park, Beomchan; Cho, Yeunwoo
2016-11-01
Gravity-capillary solitary waves are generated by a moving "air-suction" forcing instead of a moving "air-blowing" forcing. The air-suction forcing moves horizontally over the surface of deep water with speeds close to the minimum linear phase speed cmin = 23 cm/s. Three different states are observed according to forcing speed below cmin. At relatively low speeds below cmin, small-amplitude linear circular depressions are observed, and they move steadily ahead of and along with the moving forcing. As the forcing speed increases close to cmin, however, nonlinear 3-D gravity-capillary solitary waves are observed, and they move steadily ahead of and along with the moving forcing. Finally, when the forcing speed is very close to cmin, oblique shedding phenomena of 3-D gravity-capillary solitary waves are observed ahead of the moving forcing. We found that all the linear and nonlinear wave patterns generated by the air-suction forcing correspond to those generated by the air-blowing forcing. The main difference is that 3-D gravity-capillary solitary waves are observed "ahead of" the air-suction forcing, whereas the same waves are observed "behind" the air-blowing forcing. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002441).
Geometrical vs wave optics under gravitational waves
Angélil, Raymond
2015-01-01
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...
Hydraulic behaviour of the floating wave energy converter Wave Dragon
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-07-01
The objective of the project is to establish a scale 1:4.5 test model of the floating offshore wave energy converter - Wave Dragon - for testing at 5 m water depth in the Inlet Nissum Bredning. The test model will be equipped with an existing diameter 340 mm model turbine plus additional outlet tubes simulating the resistance from 1 - 16 turbines. The model will be designed to stay afloat even with a total loss of air pressure in the open bottom buoyancy chambers. The test series will primarily focus on measurements of hydraulic response, forces in the mooring system and overtopping quantities. Also data such as head, rotational speed and power production from the turbine will be monitored during the whole test period. The project will verify the effect of the pressured air buoyancy system, which cannot be scaled correctly in laboratory scale models. The test results will allow for an evaluation of the Wave Dragon power production as a function of sea state and freeboard height, in order to calibrate the existing WD-power simulation software. The model can be utilized for further testing of turbine regulation and stress and strain in the structure, establishing the necessary knowledge base for deploying a full-scale demonstration plant. This CD-ROM contains various videos, reports, notes, conference papers and Power Point presentations on the making of the wave energy converter Wave Dragon. (BA)
Calculating wave-generated bottom orbital velocities from surface-wave parameters
Wiberg, P.L.; Sherwood, C.R.
2008-01-01
Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics
Optical Pulling Force and Tractor Beams
Paul, Nayan Kumar
Light-matter interaction has been an interesting subject of intense analytical and experimental research since the formulation of Maxwell's electromagnetic wave theory. Optical forces exerted on particles excited by incident light waves have been studied for the last few decades. The interaction of light with materials gives rise to light scattering from the particle in the form of energy. The divergence of the Maxwell stress tensor provides a good approximation of the total optical forces on a particle. The divergence of the stress tensor is mathematically equal to the time average Lorentz force since [special characters omitted]. Others have claimed that the stress tensor is "fraught with danger," but it is a matter of application. The stress tensor approach is computationally simpler since application of the divergence theorem allows for a reduction of dimension in the integration. For example, you can either integrate the force density over the volume of an object (3-D), or integrate the divergence of the stress tensor on a surface (2-D) enclosing the volume. It gives a straightforward prediction of the total optical forces on a particle, but may be challenging in the case of multiple particles or for larger particles. The Rayleigh approximation estimates the radiation pressure on small particles in the propagation direction of light, but may be inappropriate for larger particles in comparison to the wavelength of the incident light waves. Light waves exert radiation pressure on a particle and pushes it away from the light source toward the direction of propagation. It is shown that plane waves propagating in a rectangular waveguide not only push a passive particle toward the propagation direction, but also pull it toward the light source. The particle remains trapped in the transverse direction of the rectangular waveguide. The Lorentz force and the Rayleigh approximation are applied to calculate the total force on the particle. The push-pull phenomenon
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system
Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.
2008-01-01
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK RU
Wavenumber Locking And Pattern Formation In Spatially Forced Systems
Energy Technology Data Exchange (ETDEWEB)
Hagberg, Aric [Los Alamos National Laboratory; Meron, Ehud [BEN-GURION UNIV; Manor, Rotem [BEN-GURION UNIV
2008-01-01
We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that support stationary or traveling stripe patterns in the absence of the forcing, and assume that the one-dimensional forcing is aligned with the direction of the stripe patterns. When the forcing wavenumber is about twice as large as the wavenumber of the unforced system we find that the forcing can either select or stabilize a resonant stripe solution at half the forcing wavenumber, or create a new resonant solution. When the wavenumber mismatch is high we find that the wave-vector component of the pattern in the direction of the forcing can stilI lock at half the forcing wavenumber, but a wave-vector component in the orthogonal direction develops to compensate for the total wavenumber. As a result stationary two-dimensional rectangular and oblique patterns form. When the unforced system supports traveling waves resonant rectangular patterns remain stationary but the oblique patterns travel in a direction orthogonal to the traveling-waves.
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system
Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.
2008-01-01
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK
National Research Council Canada - National Science Library
Arzura Idris
2012-01-01
This paper analyzes the phenomenon of "forced migration" in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants...
Wave-induced dynamics of flexible blades
Luhar, M
2015-01-01
We present an experimental and numerical study that describes the motion of flexible blades, scaled to be dynamically similar to natural aquatic vegetation, forced by wave-induced oscillatory flows. For the conditions tested, blade motion is governed primarily by two dimensionless variables: (i) the Cauchy number, $Ca$, which represents the ratio of the hydrodynamic forcing to the restoring force due to blade stiffness, and (ii) the ratio of the blade length to the wave orbital excursion, $L$. For flexible blades with $Ca \\gg 1$, the relationship between drag and velocity can be described by two different scaling laws at the large- and small-excursion limits. For large excursions ($L \\ll 1$), the flow resembles a unidirectional current and the scaling laws developed for steady-flow reconfiguration studies hold. For small excursions ($L \\gg 1$), the beam equations may be linearized and a different scaling law for drag applies. The experimental force measurements suggest that the small-excursion scaling applies...
Stefanescu, Dan Mihai
2011-01-01
Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco
Arzura Idris
2012-01-01
This paper analyzes the phenomenon of “forced migration” in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants. It considers forced migration as an event hosting multifaceted issues related and relevant to forced migrants and suggests that Malaysia has been preoccupied with the issue of forced migration movements. This is largely seen in various responses invoked from Malaysi...
2014-10-27
2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE CMS -Wave 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward-marching, finite...difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction, diffraction, reflection
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.
Lim, Chai Heng; Lettmann, Karsten; Wolff, Jörg-Olaf
2013-12-01
Wave generation, propagation, and transformation from deep ocean over complex bathymetric terrains to coastal waters around Potter Cove (King George Island, South Shetland Islands, Antarctica) have been simulated for an austral summer month using the Simulating Waves Nearshore (SWAN) wave model. This study aims to examine and understand the wave patterns, energy fluxes, and dissipations in Potter Cove. Bed shear stress due to waves is also calculated to provide a general insight on the bed sediment erosion characteristics in Potter Cove.A nesting approach has been implemented from an oceanic scale to a high-resolution coastal scale around Potter Cove. The results of the simulations were compared with buoy observations obtained from the National Data Buoy Center, the WAVEWATCH III model results, and GlobWave altimeter data. The quality of the modelling results has been assessed using two statistical parameters, namely the Willmott's index of agreement D and the bias index. Under various wave conditions, the significant wave heights at the inner cove were found to be about 40-50 % smaller than the ones near the mouth of Potter Cove. The wave power in Potter Cove is generally low. The spatial distributions of the wave-induced bed shear stress and active energy dissipation were found to be following the pattern of the bathymetry, and waves were identified as a potential major driving force for bed sediment erosion in Potter Cove, especially in shallow water regions. This study also gives some results on global ocean applications of SWAN.
Ponderomotive Acceleration by Relativistic Waves
Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki
2014-01-01
In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...
Shock wave-droplet interaction
Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan
2016-11-01
Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Faraday wave lattice as an elastic metamaterial
Domino, L; Patinet, Sylvain; Eddi, A
2016-01-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying sub-wavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
EIT waves and coronal magnetic field diagnostics
Institute of Scientific and Technical Information of China (English)
CHEN PengFei
2009-01-01
Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.
Magnetohydrodynamic waves driven by p-modes
Khomenko, Elena
2013-01-01
Waves are observed at all layers of the solar atmosphere and the magnetic field plays a key role in their propagation. While deep down in the atmosphere the p-modes are almost entirely of acoustic nature, in the upper layers magnetic forces are dominating, leading to a large variety of new wave modes. Significant advances have been made recently in our understanding of the physics of waves interaction with magnetic structures, with the help of analytical theories, numerical simulations, as well as high-resolution observations. In this contribution, we review recent observational findings and current theoretical ideas in the field, with an emphasis on the following questions: (i) Peculiarities of the observed wave propagation in network, plage and facular regions; (ii) Role of the mode transformation and observational evidences of this process; (iii) Coupling of the photosphere, chromosphere, and above by means of waves propagating in magnetic structures.
Waves in Radial Gravity Using Magnetic Fluid
Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.
1999-01-01
Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to
Potential role of kinetic Alfvén waves and whistler waves in solar wind plasmas
Nandal, P.; Yadav, N.; Sharma, R. P.; Goldstein, M. L.
2016-07-01
Spacecraft observations indicate the signatures of highly oblique kinetic Alfvén waves (KAWs) and whistler waves in the solar wind plasma. In the present work, we explore the possible role of KAWs and whistler waves in the observed solar wind magnetic turbulent spectrum. The nonlinear spatial evolution of KAW is studied including the effects of the ponderomotive force which results in intense localized structures due to the background density modification. Weak quasi-transverse whistler wave propagating through these localized structures also gets localized in the form of small-scale localized structures. We present numerically calculated magnetic power spectra for both KAW as well as for whistler wave. Our obtained results demonstrate the important role that KAWs and whistler waves play in the energy cascading from larger to smaller scales. The relevance of these results to recent spacecraft observations is also pointed out.
Subfemtonewton Force Spectroscopy at the Thermal Limit in Liquids
Liu, Lulu; Ginis, Vincent; Capasso, Federico
2016-01-01
We demonstrate thermally limited force spectroscopy using a probe formed by a dielectric microsphere optically trapped in water near a dielectric surface. We achieve force resolution below 1 fN in 100 s, corresponding to a 2 {\\AA} rms displacement of the probe. Our measurement combines a calibrated evanescent wave particle tracking technique and a lock-in detection method. We demonstrate the accuracy of our method by measurement of the height-dependent force exerted on the probe by an evanescent wave, the results of which are in agreement with Mie theory calculations.
Efficient Wave Energy Amplification with Wave Reflectors
DEFF Research Database (Denmark)
Kramer, Morten Mejlhede; Frigaard, Peter Bak
2002-01-01
Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....
Wave Loadings Acting on an Innovative Breakwater for Energy Production
DEFF Research Database (Denmark)
Vicinanza, Diego; Ciardulli, F.; Buccino, M.
2011-01-01
The paper reports on 2D small scale experiments conducted to investigate wave loadings acting on a pilot project of device for the conversion of wave energy into electricity. The conversion concept is based on the overtopping principle and the structure is worldwide known with the acronym SSG....... The hydraulic model tests have been carried out at the LInC laboratory of the University of Naples Federico II using random waves. Results indicate wave overtopping is able to cause a sudden inversion of vertical force under wave crest, so that it is alternatively upward and downward directed over a short time...
Acoustic interaction forces and torques acting on suspended spheres in an ideal fluid
Lopes, J Henrique; Silva, G T
2014-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N spheres suspended in an inviscid fluid are theoretically analyzed. In so doing, we utilize the partial-wave expansion method to solve the related multiple scattering problem. The acoustic interaction force and torque are computed for a sphere using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets radii are comparable to the wavelength (i.e. Mie scattering regime). The results show that the radiation force may considerably deviates from that exerted solely by the external incident wave. In addition, we find that acoustic interaction torques arise on the droplets when a nonsymmetric effective incident wave interacts with the droplets.
Traveling waves in a spring-block chain sliding down a slope
Morales, J. E.; James, G.; Tonnelier, A.
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
DEFF Research Database (Denmark)
Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring;
2012-01-01
We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles...... parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties....
On wave-packet dynamics in a decaying quadratic potential
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1997-01-01
We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....
Phase modulated solitary waves controlled by bottom boundary condition
Mukherjee, Abhik
2014-01-01
A forced KdV equation is derived to describe weakly nonlinear, shallow water surface wave propagation over non trivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced kdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition whereas amplitude remains constant.
Hydraulic Evaluation of the Crest Wing Wave Energy Converter
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Antonishen, Michael Patrick
This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....
Universality of Sea Wave Growth and Its Physical Roots
Zakharov, Vladimir E; Hwang, Paul A; Caulliez, Guillemette
2014-01-01
Modern day studies of wind-driven sea waves are usually focused on wind forcing rather than on the effect of resonant nonlinear wave interactions. The authors assume that these effects are dominating and propose a simple relationship between instant wave steepness and time or fetch of wave development expressed in wave periods or lengths. This law does not contain wind speed explicitly and relies upon this asymptotic theory. The validity of this law is illustrated by results of numerical simulations, in situ measurements of growing wind seas and wind wave tank experiments. The impact of the new vision of sea wave physics is discussed in the context of conventional approaches to wave modeling and forecasting.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The reflection of plane electromagnetic waves (TE wave and TM wave) from a perfect conductor which moves in an arbitrary direction is investigated. Based on Maxwell's equations and the boundary conditions for moving boundary, the relation between the field vectors of reflected and incident waves, and the reflection coefficient are derived. The energy balance between incident and reflected waves, the force exerted by electromagnetic waves to the moving conductor are also discussed and some new conclusions are suggested for notice.
Internal waves interacting with particles in suspension
Micard, Diane
2016-04-01
Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.
Behaviour of Large Cylindrical Offshore Structures Subjected to Wave Loads
Directory of Open Access Journals (Sweden)
Begüm Yurdanur DAĞLI
2017-08-01
Full Text Available Spar-type and monopole substructures consisting of a large-diameter, single vertical cylinders have been used as wind turbine towers, oil storage platforms, tankers and wave energy converters at deepwater region in the sea. These towers and platforms are exposed to environmental forces such as wind, wave and current. Wave force is the most effective force in the total environmental force. The body disturbs the incident wave and Diffraction Theory is used for computing the pressure distribution for designing the structure. Therefore, this study aims to present the effect of structural design of towers on dynamic behavior due to wave actions. Two different cases of structural models are selected to employ bidirectional fluid structure interaction (FSI analysis. Diffraction Theory is utilized to investigate wave forces. Solid and fluid domains are modeled in Abaqus finite elements program. Behaviors of various types of offshore structures are evaluated and compared according to the significant stresses and displacements. The hydrodynamic pressure on the cylindrical structure surface and the diffraction forces acting on structures are presented. Mode shapes, first three natural frequencies are comparatively given.
Galileon Forces in the Solar System
Andrews, Melinda; Trodden, Mark
2013-01-01
We consider the challenging problem of obtaining an analytic understanding of realistic astrophysical dynamics in the presence of a Vainshtein screened fifth force arising from infrared modifications of General Relativity. In particular, we attempt to solve -- within the most general flat spacetime galileon model -- the scalar force law between well separated bodies located well within the Vainshtein radius of the Sun. To this end, we derive the exact static Green's function of the galileon wave equation linearized about the background field generated by the Sun, for the minimal cubic and maximally quartic galileon theories, and then introduce a method to compute the general leading order force law perturbatively away from these limits. We also show that the same nonlinearities which produce the Vainshtein screening effect present obstacles to an analytic calculation of the galileon forces between closely bound systems within the solar system, such as that of the Earth and Moon. Within the test mass approxima...
Fundamental limits of optical force and torque
Rahimzadegan, A.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.
2017-01-01
Optical force and torque provide unprecedented control on the spatial motion of small particles. A valid scientific question, that has many practical implications, concerns the existence of fundamental upper bounds for the achievable force and torque exerted by a plane wave illumination with a given intensity. Here, while studying isotropic particles, we show that different light-matter interaction channels contribute to the exerted force and torque, and analytically derive upper bounds for each of the contributions. Specific examples for particles that achieve those upper bounds are provided. We study how and to which extent different contributions can add up to result in the maximum optical force and torque. Our insights are important for applications ranging from molecular sorting, particle manipulation, and nanorobotics up to ambitious projects such as laser-propelled spaceships.
Directory of Open Access Journals (Sweden)
Omid Alizadeh Choobari
2013-05-01
Full Text Available Direct radiative forcing by mineral dust is important as it significantly affects the climate system by scattering and absorbing short-wave and long-wave radiation. The multi-angle imaging spectro radiometer (MISR and cloud–aerosol lidar with orthogonal polarisation (CALIOP aerosol data are used to observe mineral dust distribution over Australia. In addition, the weather research and forecasting with chemistry (WRF/Chem model is used to estimate direct radiative forcing by dust. At the surface, the model domain clear-sky short-wave and long-wave direct radiative forcing by dust averaged for a 6-month period (austral spring and summer was estimated to be −0.67 W m−2 and 0.13 W m−2, respectively. The long-wave warming effect of dust therefore offsets 19.4% of its short-wave cooling effect. However, over Lake Eyre Basin where coarse particles are more abundant, the long-wave warming effect of dust offsets 60.9% of the short-wave cooling effect. At the top of the atmosphere (TOA, clear-sky short-wave and long-wave direct radiative forcing was estimated to be −0.26 W m−2 and −0.01 W m−2, respectively. This leads to a net negative direct radiative forcing of dust at the TOA, indicating cooling of the atmosphere by an increase in outgoing radiation. Short-wave and long-wave direct radiative forcing by dust is shown to have a diurnal variation due to changes in solar zenith angle and in the intensity of infrared radiation. Atmospheric heating due to absorption of short-wave radiation was simulated, while the interaction of dust with long-wave radiation was associated with atmospheric cooling. The net effect was cooling of the atmosphere near the surface (below 0.2 km, with warming of the atmosphere at higher altitudes.
Simplified Design Procedures for Moorings of Wave-Energy Converters
DEFF Research Database (Denmark)
Bergdahl, Lars; Kofoed, Jens Peter
The goal of the report is that the reader shall be able to self-dependently make a first, preliminary analysis of wave-induced horizontal loads, motions and mooring forces for a moored floating wave energy device. Necessary prerequisites to attain that goal are the understanding of the physical...
Avoided-level-crossing spectroscopy with dressed matter waves.
Eckardt, André; Holthaus, Martin
2008-12-12
We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.
Smooth sandwich gravitational waves
Podolsky, J
1999-01-01
Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.
Knudsen forces on microcantilevers
Passian, A.; Wig, A.; Meriaudeau, F.; Ferrell, T. L.; Thundat, T.
2002-11-01
When two surfaces at two different temperatures are separated by a distance comparable to a mean-free path of the molecules of the ambient medium, the surfaces experience Knudsen force. This mechanical force can be important in microelectromechanical systems and in atomic force microscopy. A theoretical discussion of the magnitude of the forces and the conditions where they can be encountered is discussed. A potential application of the Knudsen force in designing a cantilever-based vacuum gauge is discussed.
Wave climate in the Arctic 1992-2014: seasonality, trends, and wave-ice influence
Girard-Ardhuin, Fanny; Stopa, Justin; Ardhuin, Fabrice
2016-04-01
The diminishing sea ice has direct implications on the wave field which is mainly dependent on the ice-free area and wind. Over the past decade, the Arctic sea ice has diminished which directly impacts the wave field. This study characterizes the wave climate in the Arctic using detailed sea state information from a wave hindcast and merged altimeter dataset spanning 1992-2014. The waves are driven by winds from the Climate Forecast System Reanalysis. Ice concentrations derived from satellites with a grid spacing of 12.5 km are sufficiently able to resolve important features in the marginal ice zone. Before implementation, suitable wind forcing is identified and the validity and consistency of the wave hindcast is verified with altimeters. The seasonal ice advance and retreat largely dictates the waves and creates distinct features in the wind-waves and swells. The Nordic-Greenland Sea is dominated by swells from the North Atlantic while the coastal regions and semi-enclosed seas of the Kara, Laptev, Chukchi, and Beaufort have a more equal proportion of wind-waves and swells. Trends in the altimeters and model are in agreement and show increasing wave activities in the Baffin Bay, Beaufort, Chukchi, Laptev, and Kara Seas due to the loss of sea ice. In the Nordic-Greenland Sea, there is a decreasing trend related to changes in the wind field by North Atlantic Oscillation. The waves also influence the sea ice. Two distinctly different wave-ice environments are identified and selected events demonstrate the importance of waves in the marginal ice zone. The crux of the research identifies the need for continued study and improvement of wave-ice interaction.
Evaluation Statistics Computed for the Wave Information Studies (WIS)
2016-07-01
wave models , including those of WIS, are influenced by meteorological forcing parameters, representation of the geographic area (e.g., bathymetry...statistical metrics to wave model evaluation are found in Zambresky (1989) and Cardone et al. (1996). These statistics were calculated in the...describes the statistical metrics used by the Wave Information Studies (WIS) and produced as part of the model evaluation process. INTRODUCTION: The
Design and testing for novel joint for wave reflectors
Energy Technology Data Exchange (ETDEWEB)
Tedd, J. [SPOK ApS, Copenhagen (Denmark); Friis-Madsen, E. [Loewenmark, Copenhagen (Denmark); Frigaard, P. [Aalborg Univ., Aalborg (Denmark)
2005-07-01
Construction of a novel joint between the main platform and the wave reflectors of the Wave Dragon has begun. This paper describes the design and testing process behind this. Tests conducted in the facilities at Aalborg University highlighted large motions, and similar force magnitudes to the previous design. This testing has influenced the design and allowed construction to begin on refitting the joint to the 1:4.5 scale prototype Wave Dragon. (au)
WAVE-E: The WAter Vapour European-Explorer Mission
Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara
2017-04-01
In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...
Fluxon density waves in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig
1993-01-01
Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....
The New Wave of Regional Economic Integration
Institute of Scientific and Technical Information of China (English)
2006-01-01
Since the 1990s, various regional economic integration organizations have been mushrooming in the world, forming an unprecedentedly forceful and extensive new wave. The broad-ranged contents, flexible regimes, diverse forms and bright prospects of cooperation are all unparalleled in history.
DEFF Research Database (Denmark)
2013-01-01
for the evaluation of array interaction models and environmental scale models. Each wave energy converter unit has a diameter of 0.315 m and power absorption is due to friction of both a power take off system and bearings. Response is measured on all floats and surge force on five floats. Wave gauges are located...
Asymptotic theory for spiral wave reflections
Langham, Jacob; Barkley, Dwight
2014-01-01
Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as point-like objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly non-specular in general. In this context we apply the theory of response functions, which via numerically computable integrals, reduces the reaction-diffusion equations governing the whole excitable medium to the dynamics of just the rotation center and rotation phase of a spiral wave. Spiral reflection trajectories are computed by this method for both small and large-core spiral waves. Such calculations provide insight into the process of reflection as well as explanations for differences in trajectories across parameters, including the effects of incidence angle and forcing amplitude. Qualitative aspects of these results are preserved fa...
Observation of Phillips' spectrum in Faraday waves
Castillo, Gustavo
2016-01-01
We report the observation of the Phillips' spectrum of gravity surface waves driven by a horizontally moving wave maker interacting with Faraday waves. We measure the temporal fluctuations of the surface wave amplitude at a given location and we show that, for a wide range of forcing parameters, they display a power-law spectrum that greatly differs from the one predicted by the WT theory but coincides with Phillips' spectrum for gravity waves. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power-laws as a function of the time lag, with exponents that are not linear with the order of the structure function, thus showing that the wave field is intermittent. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves, which can be related directly to the P...
Roll dynamics of a ship sailing in large amplitude head waves
Daalen, E.F.G.; Gunsing, M.; Grasman, J.; Remmert, J.
2014-01-01
Some ship types may show significant rolling when sailing in large-amplitude (near) head waves. The dynamics of the ship are such that the roll motion is affected by the elevation of the encountering waves. If the natural roll period (without forcing) is about half the period of the forcing by the w
Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development
Katsaros, Kristina B.; Atakturk, Serhad S.
1992-01-01
Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of
Hydraulic power take-off for wave energy systems
DEFF Research Database (Denmark)
Christensen, Georg Kronborg
2001-01-01
Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.
Flow and sediment transport induced by a plunging solitary wave
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Sen, M.Berke; Karagali, Ioanna
2011-01-01
, and for observation of the morphological changes. The two experimental conditions were maintained as similar as possible. The experiments showed that the complete sequence of the plunging solitary wave involves the following processes: Shoaling and wave breaking; Runup; Rundown and hydraulic jump; and Trailing wave...... affected, by as much as a factor of 2, in the runup and hydraulic jump stages. The pore-water pressure measurements showed that the sediment at (or near) the surface of the bed experiences upward-directed pressure gradient forces during the downrush phase. The magnitude of this force can reach values...
Wave propagation in reconfigurable magneto-elastic kagome lattice structures
Schaeffer, Marshall; Ruzzene, Massimo
2015-05-01
The paper discusses the wave propagation characteristics of two-dimensional magneto-elastic kagome lattices. Mechanical instabilities caused by magnetic interactions are exploited in combination with particle contact to bring about changes in the topology and stiffness of the lattices. The analysis uses a lumped mass system of particles, which interact through axial and torsional elastic forces as well as magnetic forces. The propagation of in-plane waves is predicted by applying Bloch theorem to lattice unit cells with linearized interactions. Elastic wave dispersion in these lattices before and after topological changes is compared, and large differences are highlighted.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Wind waves in tropical cyclones: satellite altimeter observations and modeling
Golubkin, Pavel; Kudryavtsev, Vladimir; Chapron, Bertrand
2016-04-01
Results of investigation of wind-wave generation by tropical cyclones using satellite altimeter data are presented. Tropical cyclones are generally relatively small rapidly moving low pressure systems that are capable of generating severe wave conditions. Translation of a tropical cyclone leads to a prolonged period of time surface waves in the right sector remain under high wind forcing conditions. This effect has been termed extended fetch, trapped fetch or group velocity quasi-resonance. A tropical cyclone wave field is thus likely more asymmetrical than the corresponding wind field: wind waves in the tropical cyclone right sector are more developed with larger heights than waves in the left one. A dataset of satellite altimeter intersections of the Western Pacific tropical cyclones was created for 2010-2013. Data from four missions were considered, i.e., Jason-1, Jason-2, CryoSat-2, SARAL/AltiKa. Measurements in the rear-left and front-right sectors of tropical cyclones were examined for the presence of significant wave asymmetry. An analytical model is then derived to efficiently describe the wave energy distribution in a moving tropical cyclone. The model essentially builds on a generalization of the self-similar wave growth model and the assumption of a strongly dominant single spectral mode in a given quadrant of the storm. The model provides a criterion to anticipate wave enhancement with the generation of trapped abnormal waves. If forced during a sufficient timescale interval, also defined from this generalized self-similar wave growth model, waves can be trapped and large amplification of the wave energy will occur in the front-right storm quadrant. Remarkably, the group velocity and corresponding wavelength of outrunning wave systems will become wind speed independent and solely relate to the translating velocity. The resulting significant wave height also only weakly depends on wind speed, and more strongly on the translation velocity. Satellite
On radial geodesic forcing of zonal modes
Kendl, Alexander
2011-01-01
The elementary local and global influence of geodesic field line curvature on radial dispersion of zonal modes in magnetised plasmas is analysed with a primitive drift wave turbulence model. A net radial geodesic forcing of zonal flows and geodesic acoustic modes can not be expected in any closed toroidal magnetic confinement configuration, since the flux surface average of geodesic curvature identically vanishes. Radial motion of poloidally elongated zonal jets may occur in the presence of g...
First Principles Force Field for Metallic Tantalum
Strachan, Alejandro; Cagin, Tahir; Gulseren, Oguz; Mukherjee, Sonali; Cohen, Ronald E.; Goddard III, William A.
2002-01-01
We propose a general strategy to develop accurate Force Fields (FF) for metallic systems derived from ab initio quantum mechanical (QM) calculations; we illustrate this approach for tantalum. As input data to the FF we use the linearized augmented plane wave method (LAPW) with the generalized gradient approximation (GGA) to calculate: (i) the zero temperature equation of state (EOS) of Ta for bcc, fcc, and hcp crystal structures for pressures up to ~500 GPa. (ii) Elastic constants. (iii) We u...
On the unstable mode merging of gravity-inertial waves with Rossby waves
Directory of Open Access Journals (Sweden)
J. F. McKenzie
2011-08-01
Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.
Loads on a 3D body due to second order waves and a current
DEFF Research Database (Denmark)
Skourup, Jesper; Cheung, K. F.; Bingham, Harry B.;
2000-01-01
Non-linear loads on a fixed body due to waves and a current are investigated. Potential theory is used to describe the flow, and a three-dimensional (3D) boundary element method (BEM), combined with a time-stepping procedure, is used to solve the problem. The exact free-surface boundary conditions......-order oscillatory forces and for the second-order mean force on a fixed vertical circular cylinder in waves and a current. The second-order oscillatory forces on the body in waves and current are new results, while the remaining force components are verified by comparison with established numerical and analytical...
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
Model based feasibility study on bidirectional check valves in wave energy converters
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole
2014-01-01
Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check...
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION
WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD
1995-01-01
Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen
Experimental Validation of aWave Energy Converter Array Hydrodynamics Tool
DEFF Research Database (Denmark)
Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter
2017-01-01
This paper uses experimental data to validate a wave energy converter (WEC) array hydrodynamics tool developed within the context of linearized potential flow theory. To this end, wave forces and power absorption by an array of five-point absorber WECs in monochromatic and panchromatic waves were...
TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION
WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD
1995-01-01
Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen
TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION
WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD
Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves
2015-10-30
generates wave and wind roses and histograms of directional wave data required to define the wave climate for Corps projects. Five published technical...on the CIRP wiki: http://cirpwiki.info/wiki/Main_Page Application of Products Projected Benefits Documentation Points of Contact CIRP Website Figure 2. Display of time series of wave height ( blue ) and wind speed (red)
Gerritsen, S.
2007-01-01
In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity
Temiz, Burak Kagan; Yavuz, Ahmet
2015-01-01
This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…
Gerritsen, S.
2007-01-01
In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity
Yuce, C
2015-01-01
We predict the existence of linear discrete rogue waves. We discuss that Josephson effect is the underlying reason for the formation of such waves. We study linear rogue waves in continuous system and present an exact analytical rogue wave solution of the Schrodinger-like equation.
Fuster, Andrea; Pabst, Cornelia
2016-11-01
In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.
Labor Force Participation Rate
City and County of Durham, North Carolina — This thematic map presents the labor force participation rate of working-age people in the United States in 2010. The 2010 Labor Force Participation Rate shows the...
Directory of Open Access Journals (Sweden)
Arzura Idris
2012-06-01
Full Text Available This paper analyzes the phenomenon of “forced migration” in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants. It considers forced migration as an event hosting multifaceted issues related and relevant to forced migrants and suggests that Malaysia has been preoccupied with the issue of forced migration movements. This is largely seen in various responses invoked from Malaysia due to “south-south forced migration movements.” These responses are, however, inadequate in terms of commitment to the international refugee regime. While Malaysia did respond to economic and migration challenges, the paper asserts that such efforts are futile if she ignores issues critical to forced migrants.
Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system
Berenstein, Igal; Muñuzuri, Alberto P.; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M.; Epstein, Irving R.
2008-08-01
Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.
Wave Prediction Model To Study On The Wave Height Variation In Terengganu Coast Of Malaysia
Directory of Open Access Journals (Sweden)
Nur Amalina Abdul Latif
2015-08-01
Full Text Available Abstract In this study the significant wave height at the Terengganu and the change of wave height at Kuala Terengganu to Merang shoreline were simulated by using the 2D Near-Shore Wave 2D NSW model. The significant wave height by the 2D NSW model at Kuala Terengganu to Merang shoreline from 2008-2012 were simulated. The model was forced by ECMWF European Centre for Medium Range Weather Forecast data. The simulated significant wave height by the 2D NSW model at Airport Kuala Terengganu AWAC station was compared with the observed significant wave height. The mean annual significant wave height indicate the higher wave height with average mean value in a range of 1.08-1.10 m in Kuala Terengganu to Batu Rakit area and lower in Merang area with average mean value in a range of 0.74 m. The detailed 5 years simulation period demonstrates that the strong variability of wave height exists during North-East monsoon. The findings of this study could be useful for the erosive calculation shoreline protection and coastal zone management activities.