WorldWideScience

Sample records for wave beam grid

  1. Matter-Wave Tractor Beams

    DEFF Research Database (Denmark)

    Gorlach, Alexey A.; Gorlach, Maxim A.; Lavrinenko, Andrei

    2017-01-01

    Optical and acoustic tractor beams are currently the focus of intense research due to their counterintuitive property of exerting a pulling force on small scattering objects. In this Letter we propose a matter-wave tractor beam and utilize the de Broglie waves of nonrelativistic matter particles...... are compared, and the matter-wave pulling force is found to have exclusive properties of dragging slow particles in short-range potentials. We envisage that the use of tractor beams could lead to the unprecedented precision in manipulation with atomic-scale quantum objects....

  2. Ion beam collimating grid to reduce added defects

    Science.gov (United States)

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  3. Wave Resource Characterization Using an Unstructured Grid Modeling Approach

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Wu

    2018-03-01

    Full Text Available This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization, using the unstructured grid Simulating WAve Nearshore (SWAN model coupled with a nested grid WAVEWATCH III® (WWIII model. The flexibility of models with various spatial resolutions and the effects of open boundary conditions simulated by a nested grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured grid-modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Center Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the ST2 physics package’s ability to predict wave power density for large waves, which is important for wave resource assessment, load calculation of devices, and risk management. In addition, bivariate distributions show that the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than with the ST2 physics package. This study demonstrated that the unstructured grid wave modeling approach, driven by regional nested grid WWIII outputs along with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (102 km.

  4. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, Pierluigi, E-mail: pierluigi.veltri@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy); INFN—Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy)

    2016-06-15

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment.

  5. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    International Nuclear Information System (INIS)

    Veltri, Pierluigi; Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi

    2016-01-01

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment

  6. A staggered-grid convolutional differentiator for elastic wave modelling

    Science.gov (United States)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  7. An overset grid approach to linear wave-structure interaction

    DEFF Research Database (Denmark)

    Read, Robert; Bingham, Harry B.

    2012-01-01

    A finite-difference based approach to wave-structure interaction is reported that employs the overset approach to grid generation. A two-dimensional code that utilizes the Overture C++ library has been developed to solve the linear radiation problem for a floating body of arbitrary form. This sof......A finite-difference based approach to wave-structure interaction is reported that employs the overset approach to grid generation. A two-dimensional code that utilizes the Overture C++ library has been developed to solve the linear radiation problem for a floating body of arbitrary form...

  8. Fabrication of phosphor micro-grids using proton beam lithography

    International Nuclear Information System (INIS)

    Rossi, Paolo; Antolak, Arlyn J.; Provencio, Paula Polyak; Doyle, Barney Lee; Malmqvist, Klas; Hearne, Sean Joseph; Nilsson, Christer; Kristiansson, Per; Wegden, Marie; Elfman, Mikael; Pallon, Jan; Auzelyte, Vaida

    2005-01-01

    A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 (micro)m by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a 'Microscopic Gridded Phosphor' (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 (micro)m directly fabricated a matrix of pillars in a 15 (micro)m thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM.

  9. Deflagration wave formed by ion beam, 2

    International Nuclear Information System (INIS)

    Abe, T.; Kasuya, K.; Niu, K.; Tamba, M.

    1979-06-01

    Analyses are given for structures of deflagration waves formed by ion beams in spherical targets. The singularity at the sonic point disappears in the spherical target if the beam pressure is in balance with the plasma pressure. The expanding supersonic flow of the background plasma can be connected with the subsonic flow in the core of the target through the deflagration wave. The length and the strength of the deflagration wave in the spherical target is comparable with the corresponding ones in the slab target. (author)

  10. Deflagration wave formed by ion beam, 3

    International Nuclear Information System (INIS)

    Niu, Keishiro; Abe, Takashi; Tamba, Moritake.

    1980-01-01

    An analysis is given for the structure of the deflagration wave which is formed in a target bombarded by an ion beam. Stationary deflagration and/or detonation waves are formed at the surface of the target in a case in which the reaction energy of direct fusion and/or the beam energy deposited in the target are less than a critical value. On the other hand, no solution for stationary wave exists, if the energy deposited in the wave exceeds a critical value. In the latter case, the time-dependent fundamental equations reduce approximately to a self-similar type of equations. Numerical integrations are carried out for this type of differential equations, and an example of self-similar deflagration wave numerically obtained is plotted in the figures. (author)

  11. GridPix detectors: Production and beam test results

    International Nuclear Information System (INIS)

    Koppert, W.J.C.; Bakel, N. van; Bilevych, Y.; Colas, P.; Desch, K.; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.P.; Kaminski, J.; Schmitz, J.; Schön, R.; Zappon, F.

    2013-01-01

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip

  12. GridPix detectors: Production and beam test results

    Science.gov (United States)

    Koppert, W. J. C.; van Bakel, N.; Bilevych, Y.; Colas, P.; Desch, K.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N. P.; Kaminski, J.; Schmitz, J.; Schön, R.; Zappon, F.

    2013-12-01

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip.

  13. Geometrical and wave optics of paraxial beams.

    Science.gov (United States)

    Meron, M; Viccaro, P J; Lin, B

    1999-06-01

    Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.

  14. Beam splitter phase shifts: Wave optics approach

    Science.gov (United States)

    Agnesi, Antonio; Degiorgio, Vittorio

    2017-10-01

    We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.

  15. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  16. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  17. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  18. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  19. Technology of electron beam welding for Zr-4 alloy spacer grid

    International Nuclear Information System (INIS)

    Pei Qiusheng; Wu Xueyi; Yang Qishun

    1989-10-01

    The welding technology for Zr-4 alloy spacer grid by using vacuum electron beam was studied. Through a series of welding technological experiments, metallographic examinations of seam structure and detecting tests for welding defect by X-ray defectoscopy, a good welding technology was selected to meet the requirements. The experimental results indicated that the Zr-4 alloy spacer grid welded by vacuum electron beam welding is feasible

  20. Nonlinear wave beams in a piezo semiconducting layer

    International Nuclear Information System (INIS)

    Bagdoev, A.G.; Shekoyan, A.V.; Danoyan, Z.N.

    1997-01-01

    The propagation of quasi-monochromatic nonlinear wave in a piezo semiconducting layer taking into account electron-concentration nonlinearity is considered. For such medium the evolution equations for incoming and reflected waves are derived. Nonlinear Schroedinger equations and solutions for narrow beams are obtained. It is shown that symmetry of incoming and reflected waves does not take place. The focusing of beams is investigated.18 refs

  1. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    OpenAIRE

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  2. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    International Nuclear Information System (INIS)

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  3. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications

    Directory of Open Access Journals (Sweden)

    Lingyi Han

    2016-09-01

    Full Text Available The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC and estimation of signal parameters via rotation invariant technique (ESPRIT cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS method called improved turbo compressed channel sensing (ITCCS. It iteratively updates the soft information between the linear minimum mean square error (LMMSE estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle

  4. Multi-grid Beam and Warming scheme for the simulation of unsteady ...

    African Journals Online (AJOL)

    In this paper, a multi-grid algorithm is applied to a large-scale block matrix that is produced from a Beam and Warming scheme. The Beam and Warming scheme is used in the simulation of unsteady flow in an open channel. The Gauss-Seidel block-wise iteration method is used for a smoothing process with a few iterations.

  5. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  6. Beam test of a grid-less multi-harmonic buncher

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Barcikowski, A.; Clifft, B.; Pardo, R.; Sharamentov, S.I.; Sengupta, M.

    2008-01-01

    The Argonne Tandem Linear Accelerator System (ATLAS) is the first superconducting heavy-ion linac in the world. Currently ATLAS is being upgraded with the Californium Rare Ion Breeder Upgrade (CARIBU). The latter is a funded project to expand the range of shortlived, neutron-rich rare isotope beams available for nuclear physics research at ATLAS. To avoid beam losses associated with the existing gridded multi-harmonic buncher (MHB), we have developed and built a grid-less four-harmonic buncher with fundamental frequency of 12.125 MHz. In this paper, we report the results of the MHB commissioning and ATLAS beam performance with the new buncher.

  7. Proton beam generation of whistler waves in the earth's foreshock

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  8. Proton beam generation of whistler waves in the Earth's foreshock

    International Nuclear Information System (INIS)

    Wong, H.K.; Goldstein, M.L.

    1987-01-01

    We show that proton beams, often observed upstream of the Earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T/sub perpendicular//T/sub parallel/>>1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the ''1-Hz'' waves often seen in the Earth's foreshock

  9. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    Science.gov (United States)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  10. Correction of Beam Distortion in Negative Hydrogen Ion Source with Multi-Slot Grounded Grid

    International Nuclear Information System (INIS)

    Tsumori, Katsuyoshi; Kaneko, Osamu; Takeiri, Yasuhiko; Oka, Yoshihide; Osakabe, Masaki; Ikeda, Katsunori; Nagaoka, Kenichi; Kawamoto, Toshikazu; Asano, Eiji; Sato, Mamoru; Kondo, Tomoki; Watanabe, Junko; Asano, Shiro; Suzuki, Yasuo

    2005-01-01

    The new beam accelerator with multi-slot grounded grid (MSGG) has been developed to increase the port-through power into large helical device (LHD). Using the accelerator, the maximum power of 5.7 MW was achieved at the beam energy of 186 keV in the beam injection to LHD plasma last year. Although the port-through power increased compared with conventional accelerators with multi-hole grounded grid (MHGG), the accelerator with the MSGG includes a disadvantage of bi-focal condition in parallel and perpendicular direction to the long side of the slots. When the beam width in one of those directions gets narrower, the width in another direction becomes wider. This disadvantage includes the loss of beam port-through power and induces internal damages in neutral beam line. In order to reduce the disadvantage, an experiment has been done using a small-scaled negative ion source with racetrack-shaped apertures for the steering grid installed at beam upstream of the MSGG. By applying the racetrack apertures to the accelerator, it is observed that the beam widths in the parallel and perpendicular directions to the slot long side have almost the same focal condition to obtain minimal beam widths

  11. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  12. Nonlinear wave-beam kinetic equilibrium in decelerating systems

    International Nuclear Information System (INIS)

    Grishin, V.K.; Shaposhnikova, E.N.

    1981-01-01

    The equilibrium state of the wave-beam system arising during the interaction of a particle beam and excited electromagnetic wave has been investigated on the basis of the analysis of the exact polution of a non-linear self-consistent linear equation using the complete system of conservation laws. A waveguide with a dielectric filler, into which a monoenergetic particle beam magnetized in a transverse plane is continuously injected, is used as a model of an decelerating system. A dispersion equation describing the system state and expression for the evaluation of efficiency of the beam energy conversion to the field energy have been obtained. It is concluded that larae fields and high efficiency of energy conversion are achieved during the marked beam reconstruction. States with different values of current and beam velocity but similar amplitudes of a longitudinal field are possible in the system considered [ru

  13. Beam Splitter for Spin Waves in Quantum Spin Network

    OpenAIRE

    Yang, S.; Song, Z.; Sun, C. P.

    2005-01-01

    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.

  14. Travelling Wave Solutions to Stretched Beam's Equation: Phase Portraits Survey

    International Nuclear Information System (INIS)

    Betchewe, Gambo; Victor, Kuetche Kamgang; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2011-01-01

    In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that this system actually comprises two families of travelling waves: the sub- and super-sonic periodic waves of positive- and negative-definite velocities, respectively, and the localized sub-sonic loop-shaped waves of positive-definite velocity. Expressing the energy-like of this system while depicting its phase portrait dynamics, we show that these multivalued localized travelling waves appear as the boundary solutions to which the periodic travelling waves tend asymptotically. (general)

  15. Random wave fields and scintillated beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available F. Stef Roux CSIR National Laser Centre PO Box 395, Pretoria 0001, South Africa CSIR National Laser Centre – p.1/29 Contents . Scintillated beams and adaptive optics . Detecting a vortex — Shack-Hartmann . Remove optical vortices . Random vortex... beam. CSIR National Laser Centre – p.3/29 Weak scintillation If the scintillation is weak the resulting phase function of the optical beam is still continuous. Such a weakly scintillated beam can be corrected by an adaptive optical system. CSIR National...

  16. Novel wave/ion beam interaction approach to isotope separation

    International Nuclear Information System (INIS)

    Post, R.F.; Lowder, R.S.; Schwager, L.A.; Barr, W.L.; Warner, B.E.

    1993-02-01

    Numerical simulations and experimental studies have been made related to the possibility of employing an externally imposed electrostatic potential wave to separate isotopes. This wave/ion interaction is a sensitive function of the wave/ion difference velocity and for the appropriate wave amplitude and wave speed, a lighter faster isotope will be reflected by the wave to a higher energy while leaving heavier, slower isotopes virtually undisturbed in energy -- allowing subsequent ion separation by simple energy discrimination. In these experiments, a set of some 200 individual, electrodes, which surrounded a microamp beam of neon ions, was used to generate the wave. Measurements of the wave amplitudes needed for ion reflection and measurements of the final energies of those reflected ions are consistent with values expected from simple kinetic arguments and with the more detailed results of numeric simulations

  17. Analysis of Bending Waves in Phononic Crystal Beams with Defects

    Directory of Open Access Journals (Sweden)

    Yongqiang Guo

    2018-01-01

    Full Text Available Existing investigations on imperfect phononic crystal beams mainly concern periodic multi-span beams carrying either one or two channel waves with random or deterministic disorder in span-length. This paper studies the two channel bending waves in phononic crystal beams consisting of many phases of materials with defects introduced as one structural segment having different cross-sectional dimensions or material parameters. The method of reverberation-ray matrix (MRRM based on the Timoshenko beam theory, which can conduct high-frequency analysis, is extended for the theoretical analysis of dispersion and transmission of bending waves. The supercell technique and the Floquet–Bloch theorem are adopted for modeling the dispersion characteristics, and the whole finite structural model is used to calculate the transmission spectra. Experimental measurements and numerical calculations are provided to validate the displacement transmission obtained by the proposed MRRM, with the effect of damping on transmission spectra being concerned. The high-frequency calculation applicability of the proposed MRRM is also confirmed by comparing the present results with the corresponding ones either using the transfer matrix method (TMM or MRRM based on Euler—Bernoulli beam theory. The influences of defect size, defect form, and unit-cell number on the transmission spectra and the band structures are discussed. The drawn conclusions may be useful for designing or evaluating the defected phononic crystal beams in bending wave control. In addition, our conclusions are especially potential for identifying the defect location through bending wave signals.

  18. Calculation of doses of fast electrons in formation of the beam with the aid of grids

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A P; Telesh, L V; Chifonenko, V V; Shishov, V A

    1976-04-01

    The authors describe the method of finding dose distributions of electron beams formed with the aid of grids. Calculation of fields for different grids is made with the help of the mentioned method. The authors analyzed the relation between the depth of location, extension of the homogeneous area, and the engagement factor and size of the grid holes. The effect of electron scattering on the hole edges on the shape of the dose field is considered. The comparison of calculated and experimental results shows that the method is sufficiently accurate to be used for practical radiation therapy.

  19. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  20. Stable grid refinement and singular source discretization for seismic wave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N A; Sjogreen, B

    2009-10-30

    An energy conserving discretization of the elastic wave equation in second order formulation is developed for a composite grid, consisting of a set of structured rectangular component grids with hanging nodes on the grid refinement interface. Previously developed summation-by-parts properties are generalized to devise a stable second order accurate coupling of the solution across mesh refinement interfaces. The discretization of singular source terms of point force and point moment tensor type are also studied. Based on enforcing discrete moment conditions that mimic properties of the Dirac distribution and its gradient, previous single grid formulas are generalized to work in the vicinity of grid refinement interfaces. These source discretization formulas are shown to give second order accuracy in the solution, with the error being essentially independent of the distance between the source and the grid refinement boundary. Several numerical examples are given to illustrate the properties of the proposed method.

  1. Suppression of electron waves in relation to the deformation of the electron beam distribution function

    International Nuclear Information System (INIS)

    Fukumasa, O.; Itatani, R.

    1978-01-01

    The change of the electron beam distribution function due to the wave excited by the beam density modulation is observed, in relation to the suppression of electron waves in a beam-plasma system. (Auth.)

  2. Real-space grid implementation of the projector augmented wave method

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...... valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency...... is comparable to standard plane-wave methods, but the memory requirements are higher....

  3. Interaction for solitary waves in coasting charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Wei; Hong, Xue-Ren; Shi, Yu-Ren; Duan, Wen-shan, E-mail: duanws@nwnu.edu.cn [College of Physics and Electronic Engineering and Joint Laboratory of Atomic an Molecular Physics of NWNU and IMPCAS, Northwest Normal University, Lanzhou 730070 (China); Qi, Xin; Yang, Lei, E-mail: lyang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Han, Jiu-Ning [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2014-03-15

    By using the extended Poincare-Lighthill-Kuo perturbation method, the collision of solitary waves in a coasting charged particle beams is studied. The results show that the system admits a solution with two solitary waves, which move in opposite directions and can be described by two Korteweg-deVries equation in small-amplitude limit. The collision of two solitary waves is elastic, and after the interaction they preserve their original properties. Then the weak phase shift in traveling direction of collision between two solitary waves is derived explicitly.

  4. Properties of waves in an ion-beam plasma system

    International Nuclear Information System (INIS)

    Zank, G.P.; McKenzie, J.F.

    1988-01-01

    A multi-fluid approach is used to describe electrostatic interactions in an ion-beam plasma system. The structure of the wave equation governing the system exhibits the anisotropic and dispersive nature of the waves, whose properties are analysed in terms of the dispersion relation. The main purpose is to classify the different waves that can arise in an ion-beam plasma system in a systematic fashion. The classification is facilitated by introducing a three-parameter CMA diagram that illustrates the topological changes in not only the wavenumber, or refractive-index, surface but also the ray-velocity surface. Furthermore, an analytic expression governing wave amplification in an ion beam plasma is incorporated within the framework of a generalized CMA diagram. Such a description provides a simple interpretation for the onset of wave amplification in terms of a topological change in the refractive-index surface. It is hoped that by collating the wave properties in a unified form, many of the complicated wave features observed in an experiment may be interpreted more easily. (author)

  5. Beam generated electrostatic electron waves in the magnetosphere

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1986-03-01

    The generation of growing electrostatic electron waves by electron beams in the ionosphere and magnetosphere is investigated. The auroral F-region, the high latitude exosphere, the auroral acceleration region around 1 Rsub(e), the outer plasmasphere and the plasmasheet are treated. It is found that auroral electron beams can amplify electrostatic waves in all these regions but in different k-ranges. The growth rate, in terms of ωsub(i)/ω, generally increases outward. The propagation direction range of the waves discussed varies from a narrow cone around the magnetic field lines to all directions except close to perpendicularity. Strong cyclotron resonance effects at propagation angles close to 90 degrees are not dealt with. The method used can easily be applied to any plasma system where free energy is available in the form of an electron beam, including laboratory plasma. (author)

  6. Voltage Impact of a Wave Energy Converter on an Unbalanced Distribution Grid and Corrective Actions

    Directory of Open Access Journals (Sweden)

    Hugo Mendonça

    2017-10-01

    Full Text Available Renewable energy is steadily increasing its penetration level in electric power systems. Wind and solar energy have reached a high degree of maturity, and their impacts on the grid are well known. However, this is not the case for emerging sources like wave energy. This work explores the impact of the fluctuating power injected by a wave energy converter on the distribution grid voltage and proposes a strategy for mitigating the induced voltage fluctuations. The paper describes the mechanics of how a fluctuating active power injection leads to grid voltage fluctuations and presents an unbalanced three-phase power flow tool that allows one to quantitatively analyze the voltage evolution at every phase and bus of a distribution grid driven by this power injection. The paper also proposes a corrective action for mitigating the voltage fluctuations that makes use of the hardware resources already available in the wave energy converter, by means of a control strategy on the reactive capability of the grid-side inverter. The use of a STATCOM as additional reactive compensation equipment is also explored. The effectiveness of the proposal is assessed in the IEEE 13-bus test feeder showing that, in some cases, the wave energy converter by itself is able to mitigate the voltage fluctuations that it causes. If not, a STATCOM can provide the extra reactive capability needed.

  7. Breakdown-prone volume in terahertz wave beams

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, G. S.; Qiao, F.; Kashyn, D. G.; Pu, R. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742-3511 (United States); Dolin, L. S. [Institute of Applied Physics, Nizhny Novgorod 603600 (Russian Federation)

    2013-06-21

    This study was motivated by the recently proposed concept of remote detection of concealed radioactive materials by a focused terahertz (THz) radiation [V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)]. According to this concept, a high-power THz radiation should be focused in a small spot where the field intensity exceeds the breakdown threshold. In the presence of free electrons in such a breakdown-prone volume, a THz discharge will occur there. However, this volume should be so small that in the absence of ionizing sources in its vicinity the probability to have there any free electrons is low. Then, the increased breakdown rate in a series of THz pulses would indicate the presence of hidden radioactive materials in the vicinity of the focused spot. For this concept, it is important to accurately determine the breakdown-prone volume created by a focused THz radiation. This problem is analyzed in this paper, first, for the case of a single wave beam and, then, for the case of crossing wave beams of different polarizations. The problem is studied first ignoring the diffraction spread of wave beams in the vicinity of the focal plane and, then, with the account for the diffraction spreading. Then, relations between the THz wave power, the range of such a system and the breakdown-prone volume are analyzed. Finally, the effect of the atmospheric turbulence on propagation and focusing of THz wave beams in air is considered.

  8. Breakdown-prone volume in terahertz wave beams

    International Nuclear Information System (INIS)

    Nusinovich, G. S.; Qiao, F.; Kashyn, D. G.; Pu, R.; Dolin, L. S.

    2013-01-01

    This study was motivated by the recently proposed concept of remote detection of concealed radioactive materials by a focused terahertz (THz) radiation [V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)]. According to this concept, a high-power THz radiation should be focused in a small spot where the field intensity exceeds the breakdown threshold. In the presence of free electrons in such a breakdown-prone volume, a THz discharge will occur there. However, this volume should be so small that in the absence of ionizing sources in its vicinity the probability to have there any free electrons is low. Then, the increased breakdown rate in a series of THz pulses would indicate the presence of hidden radioactive materials in the vicinity of the focused spot. For this concept, it is important to accurately determine the breakdown-prone volume created by a focused THz radiation. This problem is analyzed in this paper, first, for the case of a single wave beam and, then, for the case of crossing wave beams of different polarizations. The problem is studied first ignoring the diffraction spread of wave beams in the vicinity of the focal plane and, then, with the account for the diffraction spreading. Then, relations between the THz wave power, the range of such a system and the breakdown-prone volume are analyzed. Finally, the effect of the atmospheric turbulence on propagation and focusing of THz wave beams in air is considered.

  9. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  10. Control-grid electron gun as a source of modulated electron beam for a collective accelerator

    International Nuclear Information System (INIS)

    Bakumenko, A.A.; Belikov, V.V.; Zvyagintsev, A.V.; Lyul'chenko, V.I.; Lymar', A.G.; Martynenko, P.A.; Suryadnyj, A.V.

    1989-01-01

    Structure is described and experimental results of investigations into an electron gun with transverse beam compression and control grid are presented. The pulse trailing edge is formed by a sectioned discharger. A modulated electron beam with the following parameters: 110 keV beam energy, 70 A current amplitude, 3-8 MHz modulation frequency, 100% modulation depth, ≅8-6 mm minimal beam diameter, ≅ 10μs pulse duration, 3% pulse top non-uniformity, more than 200 compression degree is obtained when introducing the positive feedback in auto-generator regime to the gun supply circuit. Further it is supposed to use the developed electron gun for heavy ion acceleration by a field of space charge of a modulated electron beam in a corrugated liner. It should be underlined that power supply of such an accelerator does not require powerful outside HF generator. 5 refs.; 1 fig

  11. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    International Nuclear Information System (INIS)

    Lipton, Robert; Polizzi, Anthony

    2014-01-01

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  12. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    International Nuclear Information System (INIS)

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  13. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    Science.gov (United States)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  14. Global Time Tomography of Finite Frequency Waves with Optimized Tetrahedral Grids.

    Science.gov (United States)

    Montelli, R.; Montelli, R.; Nolet, G.; Dahlen, F. A.; Masters, G.; Hung, S.

    2001-12-01

    Besides true velocity heterogeneities, tomographic images reflect the effect of data errors, model parametrization, linearization, uncertainties involved with the solution of the forward problem and the greatly inadequate sampling of the earth by seismic rays. These influences cannot be easily separated and often produce artefacts in the final image with amplitudes comparable to those of the velocity heterogeneities. In practice, the tomographer uses some form of damping of the ill-resolved aspects of the model to get a unique solution and reduce the influence of the errors. However damping is not fully adequate, and may reveal a strong influence of the ray path coverage in tomographic images. If some cells are ill determinated regularization techniques may lead to heterogeneity because these cells are damped towards zero. Thus we want a uniform resolution of the parameters in our model. This can be obtained by using an irregular grid with variable length scales. We have introduced an irregular parametrization of the velocity structure by using a Delaunay triangulation. Extensively work on error analysis of tomographic images together with mesh optimization has shown that both resolution and ray density can provide the critical informations needed to re-design grids. However, criteria based on resolution are preferred in the presence of narrow ray beams coming from the same direction. This can be understood if we realise that resolution is not only determined by the number of rays crossing a region, but also by their azimutal coverage. We shall discuss various strategies for grid optimization. In general the computation of the travel times is restricted to ray theory, the infinite frequency approximation of the elastodynamic equation of motion. This simplifies the mathematic and is therefore widely applied in seismic tomography. But ray theory does not account for scattering, wavefront healing and other diffraction effects that render the traveltime of a finite

  15. Integration of Wave and Offshore Wind Energy in a European Offshore Grid

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M.

    2010-01-01

    of offshore renewable energy sources. According to this, the paper covers i) public and private initiatives for offshore transmission networks, ii) the synergies between the wave and the offshore wind energy sector within an offshore grid, iii) power transmission options for offshore generation and iv...

  16. Protections Against Grid Breakdowns in the ITER Neutral Beam Injector Power Supplies

    International Nuclear Information System (INIS)

    Bigi, M.; Toigo, V.; Zanotto, L.

    2006-01-01

    The ITER Neutral Beam Injector (NBI) is designed to deliver 16.5 MW of additional heating power to the plasma, accelerating negative ions up to -1 MV with a current up to 40 A. Two main power supplies are foreseen to feed the system: the Acceleration Grid Power Supply (AGPS), which provides power to the acceleration grids, and the Ion Source Power Supply (ISPS), devoted to supplying the ion source components. For the accelerator, two different concepts are under investigation: the MAMuG (Multiple Aperture, Multiple Gap) and the SINGAP (SINgle Aperture). During operation of the NBI, the breakdown of the acceleration grids will occur regularly; as a consequence the AGPS is expected to experience frequent load short-circuits during a pulse. For each grid breakdown, energy and current peaks are delivered from the power supply systems that could damage the grids, if not limited. In previous NBI, rated for a lower accelerating voltage, the protection system in case of grid breakdowns was based on dc circuit breakers able to quickly disconnect the power supply from the grids. In the ITER case, a similar solution is not feasible, as the voltage level is too high for present dc breaker technology. Therefore, the protection strategy has to rely on fast switch-off of the power supplies, on the optimisation of the filter elements and core snubbers placed downstream the AGPS and on the introduction of additional passive elements. However, achieving a satisfactory protection against grid breakdowns is a challenging task, as the optimisation of each single provision can result in drawbacks for other aspects of the design; for instance, the optimisation of the filter elements, obtained by reducing the filter capacitance, produces an increase of the output voltage ripple. Therefore, the design of the protections must be carried out considering all the relevant aspects of the specifications, also those that are not strictly related to the limitations of the current peaks and energy

  17. Suppression of beam-excited electron waves by an externally applied RF signal

    International Nuclear Information System (INIS)

    Fukumasa, Osamu; Itatani, Ryohei

    1980-11-01

    Suppression of the beam-excited electron wave in a bounded system is investigated in connection with the beam distribution function. Wave suppression has two different processes depending on whether injected beams are reflected at the other end or not. In the absence of reflected beam electrons, deformation of the beam distribution function is observed in relation to the suppression of the electron wave. However, when beam electrons are reflected, the external wave suppresses the electron wave but distribution function shows no appreciable change. These experimental results show that nonlinear behaviors of beam electrons, namely behaviors of reflected beams, are quite important for wave suppression. By using the method of partial simulation, interaction between two waves in the bounded system including nonlinear motions of beam electrons is studied numerically. Qualitative agreement between experimental and numerical results is obtained. (author)

  18. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    International Nuclear Information System (INIS)

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-01-01

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described

  19. Beam loading effects in a standing wave accelerator structure

    International Nuclear Information System (INIS)

    Arai, Shigeaki; Katayama, Takeshi; Tojyo, Eiki; Yoshida, Katsuhide.

    1978-11-01

    The steady-state beam loading effects on the accelerating field in the disk-loaded structure of a standing wave type have been systematically studied. The electron bunch from a 15 MeV electron linac is injected at arbitrary phase of the external driving field in the test structure. The change of the phase shift of the accelerating field and that of the stored energy are measured as a function of the phase on which the bunch rides. The former shows drastic change when the bunch is around the crest of the driving field and when the beam loading is heavy, whereas the latter varies sinusoidally for any beam loading. The resonant frequency shift of the structure due to beam loading is estimated by using the measured results. All the experimental results are well explained by the normal mode analysis of the microwave cavity theory. (author)

  20. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  1. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    Rosenberg, M.; Krall, N.A.

    1989-01-01

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  2. Plasma waves in hot relativistic beam-plasma systems: Pt. 1

    International Nuclear Information System (INIS)

    Magneville, A.

    1990-01-01

    Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)

  3. Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N. Anders; Sjögreen, Björn

    2014-10-01

    Abstract

    We develop a super-grid modeling technique for solving the elastic wave equation in semi-bounded two- and three-dimensional spatial domains. In this method, waves are slowed down and dissipated in sponge layers near the far-field boundaries. Mathematically, this is equivalent to a coordinate mapping that transforms a very large physical domain to a significantly smaller computational domain, where the elastic wave equation is solved numerically on a regular grid. To damp out waves that become poorly resolved because of the coordinate mapping, a high order artificial dissipation operator is added in layers near the boundaries of the computational domain. We prove by energy estimates that the super-grid modeling leads to a stable numerical method with decreasing energy, which is valid for heterogeneous material properties and a free surface boundary condition on one side of the domain. Our spatial discretization is based on a fourth order accurate finite difference method, which satisfies the principle of summation by parts. We show that the discrete energy estimate holds also when a centered finite difference stencil is combined with homogeneous Dirichlet conditions at several ghost points outside of the far-field boundaries. Therefore, the coefficients in the finite difference stencils need only be boundary modified near the free surface. This allows for improved computational efficiency and significant simplifications of the implementation of the proposed method in multi-dimensional domains. Numerical experiments in three space dimensions show that the modeling error from truncating the domain can be made very small by choosing a sufficiently wide super-grid damping layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s problem, where fourth order accuracy is observed with a sixth order artificial dissipation. We then use successive grid refinements to study the numerical accuracy in the more

  4. Upconversion of whistler waves by gyrating ion beams in a plasma

    Indian Academy of Sciences (India)

    It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a ...

  5. Quiescent plasma machine for beam-plasma interaction and wave studies

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1994-01-01

    A quiescent double plasma machine for beam-plasma interaction wave studies is described. A detailed description of several plasma diagnostics used for plasma and wave excitation detection is given. A beam-plasma wave dispersion relation is used to compare theoretical values with the experimentally measured Langmuir wave frequencies and wavelengths. (author). 14 refs, 10 figs

  6. Alpha-particle simulation using NBI beam and ICRF wave

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hamada, Y.

    1984-07-01

    A new idea to produce the distribution function similar to that of alpha-particles in an ignited plasma has been proposed. This concept is attributed to the acceleration of the injected beam up to about 1 MeV/nucleon by the ICRF wave with cyclotron higher harmonics. This new method makes it possible to perform the simulation experiments for alpha-particles under the condition of moderate plasma parameters (e.g., Tsub(e) = 4 keV, nsub(e) = 3.5x10 19 m -3 and B sub(T) = 3 T). And it is found that 3ωsub(ci) ICRF wave is preferable compared with other cyclotron harmonics, from the viewpoints of the effective tail formation with smaller bulk ion heating and lower amplitude of the applied electric field. The formula for the maximum energy of the extended beam is also derived. (author)

  7. Invariant measures for stochastic nonlinear beam and wave equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Ondreját, Martin; Seidler, Jan

    2016-01-01

    Roč. 260, č. 5 (2016), s. 4157-4179 ISSN 0022-0396 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : stochastic partial differential equation * stochastic beam equation * stochastic wave equation * invariant measure Subject RIV: BA - General Mathematics Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/ondrejat-0453412.pdf

  8. Gamma-ray-burst beaming and gravitational-wave observations.

    Science.gov (United States)

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  9. Dispersion relation of test waves in an electron beam plasma system

    International Nuclear Information System (INIS)

    Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.

    1994-01-01

    Test waves are propagated in an electron beam plasma system and the dispersion relation is measured. At the center of the experimental region a beam mode is excited. Near the chamber wall an electron plasma wave is excited and propagates from the chamber wall to the center of the experimental region. It is also found that observed unstable waves are standing wave which is formed by superposing the beam modes propagating in the opposite directions each other. (author). 6 refs, 6 figs

  10. Thermo-mechanical analysis of an acceleration grid for the international thermonuclear experimental reactor-neutral beam injection system

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Hanada, Masaya; Okumura, Yoshikazu; Suzuki, Satoshi; Watanabe, Kazuhiro

    2001-01-01

    In the engineering design of a negative-ion beam source for a high-power neutral beam injection (NBI) system, one of the most important issues is thermo-mechanical design of acceleration grids for producing several tens of MW ion beams. An acceleration grid for the international thermonuclear experimental reactor-neutral beam injection (ITER-NBI) system will be subjected to the heat loading as high as 1.5 MW. In the present paper, thermo-mechanical characteristics of the acceleration grid for the ITER-NBI system were analyzed. Numerical simulation indicated that maximum aperture-axis displacement of the acceleration grid due to thermal expansion would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens theory of beam optics, beamlet deflection angle by the aperture-axis displacement was estimated to be about 2 mrad, which is within the requirement of the engineering design of the ITER-NBI system. Numerical simulation also indicated that no melting on the acceleration grid would occur for a heat loading of 1.5 MW, while local plastic deformation would happen. To avoid the plastic deformation, it is necessary to reduce the heat loading onto the acceleration grid to less than 1 MW

  11. On Long-Time Instabilities in Staggered Finite Difference Simulations of the Seismic Acoustic Wave Equations on Discontinuous Grids

    KAUST Repository

    Gao, Longfei; Ketcheson, David I.; Keyes, David E.

    2017-01-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application

  12. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng; Cheng, Jiubing

    2017-01-01

    -difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using

  13. Neutron beam test of multi-grid-type microstrip gas chamber

    International Nuclear Information System (INIS)

    Fujita, K.; Takahashi, H.; Siritiprussamee, P.; Niko, H.; Kai, M.; Nakazawa, M.; Ino, T.; Sato, S.; Yokoo, T.; Furusaka, M.; Kanazawa, M.

    2006-01-01

    Multi-grid-type microstrip gas chambers (M-MSGCs) are being developed for the next-generation pulsed neutron source. Two new concepts, a global-local-grouping (GLG) method and a graded cathode pattern readout method, were applied to the M-MSGC design for realizing higher counting rate than traditional 3 He proportional counters. One-dimensional detectors with 700 mm-long test plates were fabricated and tested with X-ray and neutron beams, which demonstrated position detection capability based on these concepts

  14. Direct AC–AC grid interface converter for ocean wave energy system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • Novel power grid interface converter for ocean wave energy system. • Unlike conventional approach, generator output is directly converted into fixed frequency AC for synchronous connection. • High conversion efficient and power quality could be achieved. - Abstract: Ocean wave energy is very promising. However, existing systems are using rectifying circuits to convert variable voltage and variable frequency output of electric generator into DC voltage and then use grid-tied inverter to connect to the power grid. Such arrangement will not only reduce the overall efficient but also increase the cost of the system. A direct AC–AC converter is a desirable solution. In this paper, a six-switch AC–AC converter has been proposed as a single phase grid-connected interface. New switching scheme has been derived for the converter such that the virtual input AC–DC conversion and the output DC–AC conversion can be decoupled. State-space averaging model and pulse width modulation scheme have been derived for the converter. As the input and the output operations can be decoupled, two independent controllers have been designed to handle the input AC–DC regulation and the output DC–AC regulation. The proposed scheme demands for two separate duty ratios and novel switching scheme has been derived to realize the combined duty ratios in one switching cycle. Power regulation, harmonics elimination and power factor correction control algorithms have also been derived for the converter when it is connected to the supply grid. Experimental results of a small scale model are included to demonstrate the effectiveness of the proposed switching and control schemes

  15. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    Science.gov (United States)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  16. Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method

    KAUST Repository

    Lu, Yong Ming; Liu, Qiancheng

    2017-01-01

    Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  17. Non-overlapped P- and S-wave Poynting vectors and its solution on Grid Method

    KAUST Repository

    Lu, Yong Ming

    2017-12-12

    Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration (RTM) to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common imaging gather (ADCIG). However, the P and S waves are mixed together during wavefield propagation such that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  18. Critical Factors Influencing Viability of Wave Energy Converters in Off-Grid Luxury Resorts and Small Utilities

    Directory of Open Access Journals (Sweden)

    Aksel Botne Sandberg

    2016-12-01

    Full Text Available This paper examines technical and non-technical factors that are critical to the viability of commercialization of wave energy converters in off-grid luxury resorts and small utilities. Critical factors are found by investigating Levelized Cost of Energy, and using the tools PESTEL and Porter’s five competitive forces. Identified factors are then applied on three business cases to investigate their impact on viability. The results show that one of the main challenges facing off-grid commercialization is the few wave energy converter units installed per location, negating the economy of scale that large wave energy farms count on to achieve competitive cost levels. In addition, factors like current cost of energy, available wave resources, distance from shore, infrastructure, supply chain logistics, and electricity demand are found to be deciding factors for viability. Despite these challenges, it is found that there are potentially viable off-grid business cases for commercialization of wave energy converters.

  19. Cost estimates to guide manufacturing of composite waved beam

    International Nuclear Information System (INIS)

    Ye Jinrui; Zhang Boming; Qi Haiming

    2009-01-01

    A cost estimation model on the basis of manufacturing process has been presented. In the model, the effects of the material, labor, tool and equipment were discussed, and the corresponding formulas were provided. A method of selecting estimation variables has been provided based on a case study of composite waved beam using autoclave cure. The model parameters related to the process time estimation of the lay-up procedure were analyzed and modified for different part configurations. The result shows that there is little error while comparing the estimated process time with the practical one. The model is verified to be applicable to guide the design and manufacturing of the composite material

  20. Water-cooled U-tube grids for continuously operated neutral-beam injectors

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Duffy, T.J.

    1979-01-01

    A design for water-cooled extractor grids for long-pulse and continuously operated ion sources for neutral-beam injectors is described. The most serious design problem encountered is that of minimizing the thermal deformation (bowing) of these slender grid rails, which have typical overall spans of 150 mm and diameters on the order of 1 mm. A unique U-tube design is proposed that offers the possibility of keeping the thermal bowing down to about 0.05 mm (about 2.0 mils). However, the design requires high-velocity cooling water at a Reynolds number of about 3 x 10 4 and an inlet pressure on the order of 4.67 x 10 6 Pa (677 psia) in order to keep the axial and circumferential temperature differences small enough to achieve the desired small thermal bowing. It appears possible to fabricate and assemble these U-tube grids out of molybdenum with high precision and with a reasonably small number of brazes

  1. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng

    2017-05-10

    Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.

  2. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Tiaoming [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005 (Australia); School of Information Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Upadhyay, Aditi; Bhaskaran, Madhu; Sriram, Sharath [Functional Materials and Microsystems Research Group, RMIT University, Melbourne, Victoria 3001 (Australia); Withayachumnankul, Withawat [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005 (Australia); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S9-3, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Headland, Daniel; Abbott, Derek; Fumeaux, Christophe, E-mail: cfumeaux@eleceng.adelaide.edu.au [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005 (Australia)

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the strips into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.

  3. Modeling seismic wave propagation using staggered-grid mimetic finite differences

    Directory of Open Access Journals (Sweden)

    Freysimar Solano-Feo

    2017-04-01

    Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.

  4. Plasma waves generated by rippled magnetically focused electron beams surrounded by tenuous plasmas

    International Nuclear Information System (INIS)

    Cuperman, S.; Petran, F.

    1982-01-01

    This chapter investigates the electrostatic instability and the corresponding unstable wave spectrum of magnetically focused neutralized rippled electron beams under spacelike conditions. Topics considered include general equations and equilibrium, the derivation of the dispersion relation, and the solution of the dispersion relation (long wavelength perturbations, short wavelength perturbations, the rippled beam). The results indicate that in the long wavelength limit two types of instability (extending over different frequency ranges) exist. An instability of the beam-plasma type occurs due to the interaction between the beam electrons and the surrounding plasm electrons at the beam-plasma interface. A parametric type instability is produced by the coupling of a fast forward wave and a fast backward wave due to the rippling (modulation) of the beam. It is demonstrated that in the short wavelength limit, surface waves which are stable for the laminar beam may become unstable in the rippled beam case

  5. Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed

  6. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    Science.gov (United States)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  7. Auroral ion beams and ion acoustic wave generation by fan instability

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A

    1996-04-01

    Satellite observations indicate that efficient energy transport among various plasma particles and between plasma waves and plasma particles is taking place in auroral ion beam regions. These observations show that two characteristic wave types are associated with the auroral ion beam regions: electrostatic hydrogen cyclotron waves with frequencies above hydrogen gyrofrequency, and low frequency waves with frequencies below hydrogen gyrofrequency. We speculate that the low frequency waves can be ion acoustic waves generated through the fan instability. The presence of a cold background ion component is necessary for the onset of this instability. A cold ion component has been directly observed and has been indirectly suggested from observations of solitary wave structures. The wave-particle interaction during the development of the fan instability results in an efficient ion beam heating in the direction perpendicular to the ambient magnetic field. The fan instability development and the ion beam heating is demonstrated in a numerical particle simulation. 23 refs, 16 figs.

  8. Acoustic wave simulation using an overset grid for the global monitoring system

    Science.gov (United States)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  9. Solving the KPI wave equation with a moving adaptive FEM grid

    Directory of Open Access Journals (Sweden)

    Granville Sewell

    2013-04-01

    Full Text Available The Kadomtsev-Petviashvili I (KPI equation is the difficult nonlinear wave equation $U_{xt} + 6U_x^2 + 6UU_{xx} + U_{xxxx} = 3U_{yy}.$ We solve this equation using PDE2D (www.pde2d.com with initial conditions consisting of two lump solitons, which collide and reseparate. Since the solution has steep, moving, peaks, an adaptive finite element grid is used with a grading which moves with the peaks.

  10. On the fast gas ionization wave in an intense laser beam

    International Nuclear Information System (INIS)

    Fisher, V.I.

    1980-01-01

    The transfer of the adsorption zone of laser radiation along a beam is considered. It is shown that for a sufficiently strong laser beam intensity, q 0 >q tilde, the conditions of wave propagation differ principally from those known previously. In particular, the plasma temperature behind the wave front Tsup(*) decreases with the increase of q 0 , whereas the wave velocity D(q 0 ) grows faster than a linear function. The structure and laws of propagation of the ionization wave are determined

  11. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  12. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    Science.gov (United States)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  13. A novel patch-field design using an optimized grid filter for passively scattered proton beams

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Dong Lei; Mohan, Radhe

    2007-01-01

    For tumors with highly complex shapes, a 'patching' strategy is often used in passively scattered proton therapy to match the sharp distal edge of the spread-out Bragg peak (SOBP) of the patch field to the lateral penumbra of the through field at 50% dose level. The differences in the dose gradients at the distal edge and at the lateral penumbra could cause hot and cold doses at the junction. In this note, we describe an algorithm developed to optimize the range compensator design to yield a more uniform dose distribution at the junction. The algorithm is based on the fact that the distal fall-off of the SOBP can be tailored using a grid filter that is placed perpendicular to the beam's path. The filter is optimized so that the distal fall-off of the patch field complements the lateral penumbra fall-off of the through field. In addition to optimizing the fall-off, the optimization process implicitly accounts for the limitations of conventional compensator design algorithms. This algorithm uses simple ray tracing to determine the compensator shape and ignore scatter. The compensated dose distribution may therefore differ substantially from the intended dose distribution, especially when complex heterogeneities are encountered, such as those in the head and neck. In such a case, an adaptive optimization strategy can be used to optimize the 'grid' filter locally considering the tissue heterogeneities. The grid filter thus obtained is superimposed on the original range compensator so that the composite compensator leads to a more uniform dose distribution at the patch junction. An L-shaped head and neck tumor was used to demonstrate the validity of the proposed algorithm. A robustness analysis with focus on range uncertainty effect is carried out. (note)

  14. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  15. Large amplitude ion-acoustic waves in a plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.; Sanuki, H.

    1995-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with an electron beam, by the pseudopotential method. The region of the existence of large amplitude ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the electron beam temperature, the ion temperature, the electrostatic potential, and the concentration of the electron beam density. It turns out that the region of the existence spreads as the beam temperature increases but the effect of the electron beam velocity is relatively small. New findings of large amplitude ion-acoustic waves in a plasma with an electron beam are predicted. copyright 1995 American Institute of Physics

  16. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tokuzawa, T., E-mail: tokuzawa@nifs.ac.jp; Kisaki, M.; Nagaoka, K.; Ito, Y.; Ikeda, K.; Nakano, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tsumori, K.; Osakabe, M.; Takeiri, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Kaneko, O. [National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2016-11-15

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 10{sup 15} to 3 × 10{sup 18} m{sup −3} in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  17. Experimental evidences of modulational instability of Langmuir waves excited by an electron beam in a plasma

    International Nuclear Information System (INIS)

    Karfidov, D.M.; Alves, M.V.; Prado, F. do; Ueda, M.

    1993-01-01

    The results obtained in a beam plasma interaction experiment are reported. The experiment and the wave energy growth and saturation are governed by kinetic effects. The estimation of the maximum wave energy due to the warm beam quasi-linear diffusion process gives W r ≥ (κ o λ D ) 2 , indicating that the modulational instability can be the responsible mechanism for the suppression of the beam plasma instability observed in the experiment. (author)

  18. Two key improvements to enhance the thermo-mechanic performances of accelerator grids for neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Chitarin, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); University of Padova, Department of Engineering and Management, strad. S. Nicola 3, 36100 Vicenza (Italy); Gambetta, G.; Marcuzzi, D. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-01

    Highlights: • The grids of MITICA and ITER NBIs are subjected to huge heat loads. • With a standard design, fatigue life of the grids was below the ITER requirements. • Thanks to NICE and SRS improvements, ITER requirements are now satisfied. - Abstract: The MITICA experiment (Megavolt ITER Injector & Concept Advancement) is the prototype and the test bed of the Heating and Current Drive Neutral Beam Injectors, which will be necessary for the full-performance exploitation of ITER. MITICA injector experiments shall demonstrate the reliable and accurate emission of a 17 MW beam of neutral particles for duration up to 1 hour, fulfilling ITER specific requirements. The accelerator grids are among the most critical parts of this experiment, because they must fulfill several operational requirements and at the same time satisfy the fatigue verifications according to the ITER Structural Design Criteria for In-vessel Components (SDC-IC). After about two years of continuous development, two design improvements were found to effectively increase the fatigue life of the grids up to the requested values. The first method was to adopt a novel shape of the cooling channels inside the grids, called Nozzle Island Cooling Enhancement (NICE) and able to provide a high performance cooling without exceeding the limits on the pressure drop through the grids. The second, called Stress Relieving Slits (SRS), was to introduce suitable slits in the grids, whose design was iteratively optimized until they were able to significantly reduce the stress/strain peaks due to thermal gradients. The NICE and SRS design solutions, here described in detail, were found to be key improvements in order to obtain a design of the grids able to satisfy all the operating requirements and all the structural verifications according to the ITER criteria.

  19. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  20. On the influence of electromagnetic wave and relativistic electron beam on a plasma

    International Nuclear Information System (INIS)

    El Ashry, M.Y.; Berezhiani, V.I.; Javakhishvili, J.L.

    1993-08-01

    The dynamics of nonlinear wave in plasma under the influence of high-frequency electromagnetic pump and relativistic electron beam is considered. It is shown that the electrons of the beam play the role of the heavy plasma component, the matter which creates a possibility of formation of wave of a soliton type in a pure electron plasma. The wave structure is investigated and the characteristic parameters of the soliton are obtained. (author). 8 refs

  1. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  2. Positron-acoustic waves in an electron-positron plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1996-01-01

    The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron-positron plasma in the presence of an electron beam with finite temperature and hot electrons and positrons. The region where positron-acoustic waves exist is presented by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron temperature increases. 11 refs., 5 figs

  3. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  4. Study on THz wave generation from air plasma induced by quasi-square Airy beam

    Science.gov (United States)

    Zhang, Shijing; Zhang, Liangliang; Jiang, Guangtong; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Terahertz (THz) wave has attracted considerable attention in recent years because of its potential applications. The intense THz waves generated from air plasma induced by two-color femtosecond laser are widely used due to its high generation efficiency and broad frequency bandwidth. The parameters of the laser change the distribution of the air plasma, and then affect the generation of THz wave. In this research, we investigate the THz wave generation from air plasma induced by quasi-square Airy beam. Unlike the common Gauss beam, the quasi-square Airy beam has ability to autofocus and to increase the maximum intensity at the focus. By using the spatial light modulator (SLM), we can change the parameters of phase map to control the shape of the Airy beam. We obtain the two-color laser field by a 100-um-thick BBO crystal, then use a Golay detector to record THz wave energy. By comparing terahertz generation at different modulation depths, we find that terahertz energy produced by quasi-square Airy beam is up to 3.1 times stronger than that of Gauss beam with identical laser energy. In order to understand the influence of quasi-square Airy beam on the BBO crystal, we record THz wave energy by changing the azimuthal angle of BBO crystal with Gauss beam and Airy beam at different modulation depths. We find that the trend of terahertz energy with respect to the azimuthal angle of the BBO crystal keeps the same for different laser beams. We believe that the quasi-square Airy beam or other auto focusing beam can significantly improve the efficiency of terahertz wave generation and pave the way for its applications.

  5. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    Science.gov (United States)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  6. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen, Bavaria 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States) and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high

  7. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    International Nuclear Information System (INIS)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  8. SBP-SAT finite difference discretization of acoustic wave equations on staggered block-wise uniform grids

    KAUST Repository

    Gao, Longfei

    2018-02-16

    We consider the numerical simulation of the acoustic wave equations arising from seismic applications, for which staggered grid finite difference methods are popular choices due to their simplicity and efficiency. We relax the uniform grid restriction on finite difference methods and allow the grids to be block-wise uniform with nonconforming interfaces. In doing so, variations in the wave speeds of the subterranean media can be accounted for more efficiently. Staggered grid finite difference operators satisfying the summation-by-parts (SBP) property are devised to approximate the spatial derivatives appearing in the acoustic wave equation. These operators are applied within each block independently. The coupling between blocks is achieved through simultaneous approximation terms (SATs), which impose the interface condition weakly, i.e., by penalty. Ratio of the grid spacing of neighboring blocks is allowed to be rational number, for which specially designed interpolation formulas are presented. These interpolation formulas constitute key pieces of the simultaneous approximation terms. The overall discretization is shown to be energy-conserving and examined on test cases of both theoretical and practical interests, delivering accurate and stable simulation results.

  9. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    Science.gov (United States)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  10. Dynamics of beam-driven Langmuir and ion-acoustic waves including electrostatic decay

    International Nuclear Information System (INIS)

    Li, B.; Willes, A.J.; Robinson, P.A.; Cairns, I.H.

    2003-01-01

    The evolution of Langmuir waves and ion-acoustic waves stimulated by a hot electron beam in an initially homogeneous plasma is investigated numerically in time, position, and wave number space. Quasilinear interactions between the beam particles and Langmuir waves, nonlinear interactions between the Langmuir and ion-acoustic waves through Langmuir decay processes, and spontaneous emission are taken into account in the kinetic theory employed. For illustrative parameters of those in the solar wind near 1 a.u., nonlinear Langmuir decays are observed to transfer the beam-driven Langmuir waves rapidly out of resonance. The scattered Langmuir waves then undergo further decays, moving sequentially toward small wave numbers, until decay is kinematically prohibited. The main features of the evolution of Langmuir and ion-acoustic waves are spatially inhomogeneous. The scattered Langmuir spectra increase and eventually reach or exceed the beam-driven Langmuir spectra at a given spatial location (except in regions where further decays proceed). The ion-acoustic waves are relatively weak and subject to damping at the later stages of their evolution. The development of fine structures in the product Langmuir and ion-acoustic waves are observed, due to depletion of their energy by decay and dominant damping effects, respectively. The propagation of the beam is essentially unaffected by the operation of the decay process. The decay process is thus slaved to the primary beam-plasma evolution, as assumed in previous studies. A variation of the ratio of electron temperature to ion temperature is found to affect not only the ion-acoustic wave levels through effects on the damping rate, but also the dynamics of decay via effects on the decay rate. The latter was not addressed in previous studies. Furthermore, spontaneous emission of ion-acoustic waves is found to affect the dynamics of decay, thus its inclusion is necessary to correctly model the Langmuir and ion-acoustic spectra

  11. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  12. Terahertz wave polarization beam splitter using a cascaded multimode interference structure.

    Science.gov (United States)

    Li, Jiu-sheng; Liu, Han; Zhang, Le

    2014-08-01

    A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.

  13. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Gennady Shvets; Nathaniel J. Fisch; Alexander Pukhov

    2001-01-01

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined

  14. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    Beam-plasma interaction experiment has been made in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the satellite JIKIKEN (EXOS-B). Various types of wave emission are detected by LF and HF wave detectors. Waves near at upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is also observed outside the plasmapause

  15. Effect of electron beam on the properties of electron-acoustic rogue waves

    Science.gov (United States)

    El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.

    2015-04-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  16. Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection

    Science.gov (United States)

    Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching

    2017-01-01

    One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa. PMID:28772454

  17. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  18. Collective acceleration of protons by the plasma waves in a counterstreaming electron beam

    International Nuclear Information System (INIS)

    Yan, Y.T.

    1987-03-01

    A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration

  19. Grid Connection of Wave Power Farm Using an N-Level Cascaded H-Bridge Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    Rickard Ekström

    2013-01-01

    Full Text Available An N-level cascaded H-bridge multilevel inverter is proposed for grid connection of large wave power farms. The point-absorber wave energy converters are individually rectified and used as isolated DC-sources. The variable power characteristics of the wave energy converters are discussed, and a method of mitigating this issue is demonstrated. The complete power control system is given in detail and has been experimentally verified for a single-phase setup of the 9-level inverter. Theoretical expressions of the power sharing between multilevel cells are derived and show good correspondence with the experimental results.

  20. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    This chapter reports on a beam-plasma interaction experiment conducted in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the JIKIKEN satellite. Topics considered include instrumentation, wave excitation, and the charging of the satellite. Various types of wave emission are detected by low frequency and high frequency wave detectors. Waves near upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is observed outside the plasmapause. The main objectives of the Controlled Beam Experiment (CBE) are to control the satellite potential by an electron beam emission, and to study the wave excitation (linear and non-linear wave phenomena due to the beam-plasma interaction). It is concluded that waves excited in the beamplasma interaction are strongly dependent on plasma and other parameters in the magnetosphere so that it will provide important knowledge of the magnetosphere plasma processes

  1. Suppression of beam-break-up in a standing wave free electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Kim, J.S.

    1994-03-01

    Various schemes are examined in this study on the suppression of beam break-up (BBU) in a standing wave free electron laser two-beam accelerator (SWFEL/TBA). Two schemes are found to be not only able to effectively suppress the BBU but at the same time have minimum effect on the microwave generation process inside the SWFEL cavities. One is making the cavity-iris junction sufficiently gradual and the other is stagger-tuning the cavities

  2. Effect of material acoustic anisotropy on the shape of ultrasonic wave beam

    International Nuclear Information System (INIS)

    Iotchev, B.; Pawlowski, Z.

    1976-01-01

    When ultrasonic waves propagate in some types of materials having a structural anisotropy, a distortion of the ultrasonic beam takes place. This phenomenon is the cause of errors in the determination of flaw location and size

  3. Experimental investigation of electron beam wave interactions utilising short pulses

    International Nuclear Information System (INIS)

    Wiggins, Samuel Mark

    2000-01-01

    Experiments have investigated the production of ultra-short electromagnetic pulses and their interaction with electrons in various resonant structures. Diagnostic systems used in the measurements included large bandwidth detection systems for capturing the short pulses. Deconvolution techniques have been applied to account for bandwidth limitation of the detection systems and to extract the actual pulse amplitudes and durations from the data. A Martin-Puplett interferometer has been constructed for use as a Fourier transform spectrometer. The growth of superradiant electromagnetic spikes from short duration (0.5-1.0 ns), high current (0.6-2.0 kA) electron pulses has been investigated in a Ka-band Cherenkov maser and Ka- and W-band backward wave oscillators (BWO). In the Cherenkov maser, radiation spikes were produced with a peak power ≤ 3 MW, a duration ≥ 70 ps and a bandwidth ≤ 19 %. It is shown that coherent spontaneous emission from the leading edge of the electron pulse drives these interactions, giving rise to self-amplified coherent spontaneous emission (SACSE). BWO spikes were produced with a peak power ≤ 63 MW and a pulse duration ∼ 250 ps in the Ka-band and ≤ 12 MW and ∼ 170 ps in the W-band. Evidence of superradiant evolution has been observed in the measurements of scaling laws such as power scaling with the current squared and duration scaling inversely with the fourth root of the power. An X-band free-electron maser amplifier, in which a short (1.0ns) injected radiation pulse interacts with a long (∼ 140 ns) electron beam, has been investigated. The interaction is shown to evolve in the linear regime. The peak output power was 320 kW, which corresponded to a gain, approximately constant across the band, of 42 dB. Changes to the spectrum, that occur when the input radiation pulse is injected into electrons with an energy gradient, have been analysed. (author)

  4. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439 (United States); Illinois Institute of Technology, Chicago, IL 60616 (United States); Dickerson, C.; Ostroumov, P.N.; Zinkann, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-01-21

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied.

  5. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced

  6. Flexible DWDM Grid Manipulation Using Four Wave Mixing-based Time Lenses

    DEFF Research Database (Denmark)

    Røge, Kasper Meldgaard; Guan, Pengyu; Mulvad, Hans Christian Hansen

    2014-01-01

    An experimental demonstration of dense wavelength-division multiplexing (DWDM) grid manipulation is carried out using two time lenses. A DWDM spectrum is compressed from a 100-GHz to a 28-GHz grid with error-free performance.......An experimental demonstration of dense wavelength-division multiplexing (DWDM) grid manipulation is carried out using two time lenses. A DWDM spectrum is compressed from a 100-GHz to a 28-GHz grid with error-free performance....

  7. Plasma waves and electric discharges induced by a beam from a high-latitude satellite

    International Nuclear Information System (INIS)

    Kuns, G.; Koen, G.

    1985-01-01

    Using P78-2 satellite measurements of characteristics of space probe charging in synchronous orbit are carried out. A particle beam generation system including electron and ion guns was part of the satellite equipment. Electric charge analyser placed aboard the satellite in course of electron and ion beam generation recorded plasma waves and electric discharges

  8. Excitation of lower hybrid waves by electron beams in finite geometry plasmas

    International Nuclear Information System (INIS)

    Gagne, R.R.J.; Shoucri, M.M.

    1978-01-01

    The dispersion relations for the quasi-static lower hybrid surface waves are derived. Conditions for their existence and their linear excitation by a small density electron beam are discussed. Instabilities appearing in low-frequency surface waves are also discussed. (author)

  9. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  10. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  11. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  12. Experimental realization of millimeter-wave amplification by a sheet beam free electron laser

    International Nuclear Information System (INIS)

    Zhang, Z.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Rodgers, J.; Cheng, S.

    1994-01-01

    We report an observation of millimeter-wave (94 GHz) amplification in a sheet beam, short period, planar wiggler, free electron laser amplifier. The observed gain is about 5 dB for a 530 keV, 4 A beam through a 54 cm wiggler. Wave energy absorption was also observed when the beam energy is off-resonance. Experimental results are in good agreement with numerical simulation. This amplifier configuration has potential for producing equally high output power but at relatively low voltage compared with longer period free electron lasers

  13. A GRID solution for gravitational waves signal analysis from coalescing binaries: performances of test algorithms and further developments

    International Nuclear Information System (INIS)

    Acernese, A; Barone, F; Rosa, R De; Esposito, R; Frasca, S; Mastroserio, P; Milano, L; Palomba, C; Pardi, S; Qipiani, K; Ricci, F; Russo, G

    2004-01-01

    The analysis of data coming from interferometric antennas for gravitational wave detection requires a huge amount of computing power. The usual approach to the detection strategy is to set up computer farms able to perform several tasks in parallel, exchanging data through network links. In this paper a new computation strategy based on the GRID environment, is presented. The GRID environment allows several geographically distributed computing resources to exchange data and programs in a secure way, using standard infrastructures. The computing resources can be geographically distributed also on a large scale. Some preliminary tests were performed using a subnetwork of the GRID infrastructure, producing good results in terms of distribution efficiency and time duration

  14. Spectral and partial-wave decomposition of time-dependent wave functions on a grid: Photoelectron spectra of H and H2+ in electromagnetic fields

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.

    2007-01-01

    We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum

  15. Theoretical study of the attenuation of a gaussian beam penetrating into a dielectric circular wave guide

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1981-07-01

    It is proposed to draw up an approximate formula directly giving the attenuation of a gaussian beam penetrating into a superdimensioned dielectric circular wave guide. This formula is derived from optical laws, i.e. Fresnel's formulae of the reflexion of a wave on a dielectric to which a correcting term due to diffraction has been added. The results given by this formula are compared with the existing results, based on the breakdown of a gaussian beam into propagation modes, thereby enabling their validity and the field of use to be checked. An application is then made to the wave guides that will be employed in the infrared interferometer fitted in JET [fr

  16. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    Science.gov (United States)

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  17. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  18. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  19. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  20. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  1. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  2. ELF waves and ion resonances produced by an electron beam emitting rocket in the ionosphere

    International Nuclear Information System (INIS)

    Winckler, J.R.; Abe, Y.; Erickson, K.N.

    1986-01-01

    Results are reported from the ECHO-6 electron-beam-injection experiment, performed in the auroral-zone ionosphere on March 30, 1983 using a sounding rocket equipped with two electron guns and a free-flying plasma-diagnostics instrument package. The data are presented in extensive graphs and diagrams and characterized in detail. Large ELF wave variations, superposed on the strong beam-sector-directed quasi-dc component, are observed in the 100-eV beam-induced plasma when the beam is injected in a transverse spiral, but not when it is injected upward parallel to the magnetic-field line. ELF activity is found to be suppressed whenever the rocket passed through field lines with auroral activity, suggesting that the waves are produced by the interaction of the beam potentials, plasma currents, and return currents neutralizing the accelerator payload. 12 references

  3. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind

    International Nuclear Information System (INIS)

    Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.

    2010-01-01

    Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.

  4. Excitation of a plasma wave by a right-handed Gaussian EM beam

    International Nuclear Information System (INIS)

    Sodha, M.S.; Patheja, B.L.; Sharma, R.P.

    1979-01-01

    This paper presents an investigation of the excitation of an electron plasma wave in a hot collisionless magnetoplasma by a right-handed Gaussian EM beam (pump wave) when the plasma wave and the pump wave are propagating along the static magnetic field. On account of the Gaussian intensity distribution of the pump wave, pondermotive force becomes finite and the electrons are redistributed. This redistribution is highly dependent on whether ω/sub c/>2ω 0 or ω/sub c/ 0 , where ω/sub c/ is the electron cyclotron frequency and ω 0 is the pump-wave frequency. The modified background electron density leads to coupling between the plasma wave and the pump wave. When the initial power of the pump wave is greater than the critical power for self-focusing, oscillatory self-focusing of the pump wave occurs and the coupling of the two waves are modified. Moreover, the effect of changing the intensity of the magnetic field affects the self-focusing of the pump wave, and the plasma-wave excitation is accordingly affected

  5. Magnetic and thermo-structural design optimization of the Plasma Grid for the MITICA neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Marconato, N., E-mail: nicolo.marconato@igi.cnr.it [Consorzio RFX, (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Agostinetti, P. [Consorzio RFX, (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Chitarin, G. [Consorzio RFX, (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University of Padova, Strad. S. Nicola 3, 36100 Vicenza (Italy)

    2015-10-15

    Highlights: • Latest status of the ITER NBI prototype (MITICA) design activity. • Finalization of the Plasma Grid design for optimal magnetic field intensity and uniformity. • Geometry optimization based on magnetic field calculation. • Assessment of the thermo-mechanical behavior of the grid by a 3D fully self-consistent fluid-thermal-structural model. - Abstract: MITICA is a prototype of the heating neutral beam (HNB) Injectors for ITER, built with the purpose of validating the injector design and optimizing its operation. Its goal is to produce a focused beam of neutral particles (H or D) with energy up to 1 MeV and power of 16 MW for 1 h. MITICA includes a Radio Frequency (RF) Plasma Source for the production of negative ions, a multi-stage electrostatic accelerator (up to 1 MV and 40 A), a neutralizer, a residual ion dump and a calorimeter. A transverse magnetic field in the Ion source and accelerator, including both a long-range component and a local component is crucial for obtaining the required Ion current and accelerator efficiency. The long-range component is produced by the current flowing through the plasma grid (PG) and related bus-bars. The PG current distribution and the uniformity of the resulting magnetic field have been optimized by detailed finite element (FEM) models. Hollow volumes in the thick copper part of the PG among beamlet groups allow a more uniform PG current distribution and a consequently uniform magnetic field in front of the grid. The paper describes in detail the PG geometry optimization procedure and the related magnetic and thermo-structural FEM analyses.

  6. Gridded 5-day mean sea surface height anomaly and significant wave height from Jason-1 and OSTM/Jason-2 satellites (NODC Accession 0065055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the gridded 5-day mean sea surface height anomaly (SSHA) and Ku Band significant wave height (SWH-KU) observed from Jason-1 and OSTM/Jason-2...

  7. A high-power millimeter-wave sheet beam free-electron laser amplifier

    International Nuclear Information System (INIS)

    Cheng, S.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M.; Levush, B.; Rodgers, J.; Zhang, Z.X.

    1996-01-01

    The results of experiments with a short period (9.6 mm) wiggler sheet electron beam (1.0 mm x 2.0 cm) millimeter-wave free electron laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for sheet beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance and space-charge effects. High-current beam propagation was achieved as a result of extensive analytical studies and experimental optimization. A design optimization resulted in a low sensitivity to structure errors and beam velocity spread, as well as a low required beam energy. A maximum gain of 24 dB was achieved with a 1-kW injected signal power at 86 GHz, a 450-kV beam voltage, 17-A beam current, 3.8-kG wiggler magnetic field, and a 74-period wiggler length. The maximum gain with a one-watt injected millimeter-wave power was observed to be over 30 dB. The lower gain at higher injection power level indicates that the device has approached saturation. The device was studied over a broad range of experimental parameters. The experimental results have a good agreement with expectations from a one-dimensional simulation code. The successful operation of this device has proven the feasibility of the original concept and demonstrated the advantages of the sheet beam FEL amplifier. The results of the studies will provide guidelines for the future development of sheet beam FEL's and/or other kinds of sheet beam devices. These devices have fusion application

  8. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  9. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  10. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  11. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.

    Science.gov (United States)

    Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob

    2014-06-01

    Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition

  12. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    International Nuclear Information System (INIS)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-01-01

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  13. Slow cyclotron waves in a waveguide with a relativistic electron beam

    International Nuclear Information System (INIS)

    Korenev, I.L.; Yudin, L.A.; Mustafin, Kh.Kh.

    1979-01-01

    Using the analytical methods the problem about propagation of waves of a small amplitude in an electron beam (without ions), moving along the axis of a smooth waveguide in the longitudinal magnetic field is considered. The main attention is paid to dispersion.characteristics and the slow cyclotron waves intended for ion acceleration. The problems connected with utilization of these waves for ion acceleration are discussed. The estimation shows that when a system of excitation of an accelerating wave has a wide range, i.e. excited is a great set of slow cyclotron modes, the accelerating field structure significantly changes at a distance of several dozens beam radii, and synchronism supply between the wave and accelerating ions becomes an impracticable task. So it is necessary to have a narrow-band excitation system to excite only a single mode. It is noted that the model used of a uniform beam density along the cross section is an idealization permitting to simplify analytical consideration. The presence of the radial density change in an undisturbed beam will lead to some other cyclotron wave field structure. However, such a change will not give any qualitative differences in comparison with the results obtained

  14. Numerical Study of Detonation Wave Propagation in the Variable Cross-Section Channel Using Unstructured Computational Grids

    Directory of Open Access Journals (Sweden)

    Alexander Lopato

    2018-01-01

    Full Text Available The work is dedicated to the numerical study of detonation wave initiation and propagation in the variable cross-section axisymmetric channel filled with the model hydrogen-air mixture. The channel models the large-scale device for the utilization of worn-out tires. Mathematical model is based on two-dimensional axisymmetric Euler equations supplemented by global chemical kinetics model. The finite volume computational algorithm of the second approximation order for the calculation of two-dimensional flows with detonation waves on fully unstructured grids with triangular cells is developed. Three geometrical configurations of the channel are investigated, each with its own degree of the divergence of the conical part of the channel from the point of view of the pressure from the detonation wave on the end wall of the channel. The problem in consideration relates to the problem of waste recycling in the devices based on the detonation combustion of the fuel.

  15. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    International Nuclear Information System (INIS)

    Yang, Jie; Zhao, Bo; Wang, Chong; Qiu, Feng; Wang, Rongfei; Yang, Yu

    2016-01-01

    Highlights: • Ge islands were prepared by ion beam sputtering with different grid-to-grid gaps. • Ge islands with larger sizes and low density are observed in 1-mm-spaced samples. • The island growth was determined by sputter energy and the quality of Si buffer. • The crystalline volume fraction of buffer must be higher than 72% to grow islands. - Abstract: Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  16. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zhao, Bo [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Wang, Chong, E-mail: cwang@mail.sitp.ac.cn [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Qiu, Feng; Wang, Rongfei [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China); Yang, Yu, E-mail: yuyang@ynu.edu.cn [Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, Kunming 650091 (China)

    2016-11-15

    Highlights: • Ge islands were prepared by ion beam sputtering with different grid-to-grid gaps. • Ge islands with larger sizes and low density are observed in 1-mm-spaced samples. • The island growth was determined by sputter energy and the quality of Si buffer. • The crystalline volume fraction of buffer must be higher than 72% to grow islands. - Abstract: Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  17. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  18. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  19. Study of the scheme of two-beam accelerator driver with accompanying electromagnetic wave

    International Nuclear Information System (INIS)

    Elzhov, A.V.; Kaminskij, A.K.; Kazacha, V.I.; Perel'shtejn, E.A.; Sedykh, S.N.; Sergeev, A.P.

    2000-01-01

    A novel scheme of two-beam accelerator (TBA) driver based on a linear induction accelerator is considered. In this scheme the bunched beam propagates in the accompanying enhanced microwave that provides the steady longitudinal beam bunching along the whole driver. A travelling wave tube (TWT) is used as the wave-slowing periodic structure. Major merits of the driver scheme in hand are the possibilities of providing the microwave phase and amplitude stability and the preliminary beam bunching at a rather low initial energy (∼ 1 MeV). The numerical simulation has shown that a steady state could be found when electron bunches accompanied by an amplified microwave are simultaneously accelerated in the external electric field. The total power, which is inserted into the beam by the accelerating field, transforms into the microwave power in the steady state. The first set of experiments was fulfilled with the buncher on the base of the JINR LIU-3000 linac (electron beam energy ∼ 600 keV, electron current ∼ 150 A). The considerable level of the amplified microwave power (∼ 5 MW) and high enough bunching parameter (∼ 0.4) were obtained. The electron beam bunching at the frequency of 36.4 GHz was registered by means of the Cherenkov radiation of the electron bunches that occurred at their passing through the special target. The beam keeps a high bunching level at the distance ∼ 10 cm from the TWT exit being accompanied by the amplified microwave

  20. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); University of the Western Cape, Belville (South Africa); Devanandhan, S., E-mail: devanandhan@gmail.com [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa)

    2016-08-15

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of “burst a” event by Viking satellite on the auroral field lines.

  1. Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

    Science.gov (United States)

    Zirak, H.; Jafari, S.

    2015-06-01

    In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

  2. Wave-optics description of self-healing mechanism in Bessel beams.

    Science.gov (United States)

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  3. Plasma waves and electrical discharges stimulated by beam operations on a high altitude satellite

    International Nuclear Information System (INIS)

    Koons, H.C.; Cohen, H.A.

    1982-01-01

    A satellite experiment was conducted to measure the characteristics of the spacecraft charging process near synchronous orbit. The payload included a particle beam system (both an electron gun and an ion gun) and a charging electrical effects analyzer consisting of a pulse shape analyzer, a VLF analyzer, and an RF analyzer. The characteristics of plasma waves and electrical discharges measured by these instruments during electron and ion beam operations are discussed

  4. A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction

    Science.gov (United States)

    Sobolev, D. I.; Denisov, G. G.

    2018-03-01

    A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.

  5. Plasma generation using high-power millimeter-wave beam and its application for thrust generation

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi

    2006-01-01

    Propagation of an ionization front in the beam channel was observed after plasma was generated using a 170 GHz millimeter-wave beam in the atmosphere. The propagation velocity of the ionization front was found to be supersonic when the millimeter-wave power density was greater than 75 kW cm -2 . The momentum coupling coefficient C m , a ratio of the propulsive impulse to the input energy, was measured using conical and cylindrical thruster models. A C m value greater than 350 N MW -1 was recorded when the ionization front propagated with supersonic velocity

  6. Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally polarized custom surface waves

    Science.gov (United States)

    Kwon, Do-Hoon; Tretyakov, Sergei A.

    2018-01-01

    For passive, lossless impenetrable metasurfaces, a design technique for arbitrary beam control of receiving, guiding, and launching is presented. Arbitrary control is enabled by a custom surface wave in an orthogonal polarization such that its addition to the incident (input) and the desired scattered (output) fields is supported by a reactive surface impedance everywhere on the reflecting surface. Such a custom surface wave (SW) takes the form of an evanescent wave propagating along the surface with a spatially varying envelope. A growing SW appears when an illuminating beam is received. The SW amplitude stays constant when power is guided along the surface. The amplitude diminishes as a propagating wave (PW) is launched from the surface as a leaky wave. The resulting reactive tensor impedance profile may be realized as an array of anisotropic metallic resonators printed on a grounded dielectric substrate. Illustrative design examples of a Gaussian beam translator-reflector, a probe-fed beam launcher, and a near-field focusing lens are provided.

  7. Nonstationary self-action of electromagnetic wave beams in the beat accelerator

    International Nuclear Information System (INIS)

    Abramyan, L.A.; Litvak, A.G.; Mironov, V.A.

    1990-01-01

    The resonance excitation of a plasma wave in a modified accelerator using the beats of two electromagnetic waves permits to increase considerably the intensity of the accelerating field and, consequently, the rate of the accumulation of the energy by charged particles. The efficiency of the electromagnetic radiation conversion to the longitudinal wave is defined by nonlinear processes. The saturation of the accelerating field is considered which is due to the appearance of multiflux motion of electrons oscillating in the wave field with overturn of waves, due to the development of parametric instabilities and due to the change of natural frequency of plasma oscillations caused by the relativistic increase of electron mass. The effects of self-action which change the form of the electromagnetic radiation pulse and the wave beam structure play a significant role in the most promising laser plasma beat accelerator. We consider dynamics of space distribution of the plasma wave in a self-consistent field of the wave beam. (author) 5 refs., 2 figs

  8. On Long-Time Instabilities in Staggered Finite Difference Simulations of the Seismic Acoustic Wave Equations on Discontinuous Grids

    KAUST Repository

    Gao, Longfei

    2017-10-26

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.

  9. On long-time instabilities in staggered finite difference simulations of the seismic acoustic wave equations on discontinuous grids

    Science.gov (United States)

    Gao, Longfei; Ketcheson, David; Keyes, David

    2018-02-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.

  10. Surface Wave Detection and Measurement Using a One Degree Global Dispersion Grid

    National Research Council Canada - National Science Library

    Stevens, Jeffry L

    2006-01-01

    .... The models consist of approximately 550 distinct crust and upper mantle structures, with surface layering and/or ocean depths that vary on a one-degree grid to create a total of 64,800 earth models...

  11. Conservative Overset Grids for Overflow For The Sonic Wave Atmospheric Propagation Project

    Science.gov (United States)

    Onufer, Jeff T.; Cummings, Russell M.

    1999-01-01

    Methods are presented that can be used to make multiple, overset grids communicate in a conservative manner. The methods are developed for use with the Chimera overset method using the PEGSUS code and the OVERFLOW solver.

  12. Stimulated scattering of space-charge waves in a relativistic electron beam by the ion acoustic wave of a plasma waveguide

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Buts, V.A.

    1982-01-01

    The interaction of a relativistic electron beam with a plasma waveguide whose density is modulated by an ion acoustic wave leads to the emission of electromagnetic radiation. The wavelength of the radiation is 2#betta# 2 times shorter than the ion acoustic wavelength. The emission is accompanied by the amplification of the ion acoustic wave. The maximum amplitudes of the excited waves are found

  13. Field control in a standing wave structure at high average beam power

    International Nuclear Information System (INIS)

    McKeown, J.; Fraser, J.S.; McMichael, G.E.

    1976-01-01

    A 100% duty factor electron beam has been accelerated through a graded-β side-coupled standing wave structure operating in π/2 mode. Three non-interacting control loops are necessary to provide the accelerating field amplitude and phase and to control structure resonance. The principal disturbances have been identified and measured over the beam current range of 0 to 20 mA. Design details are presented of control loops which regulate the accelerating field amplitude to +-0.3% and its phase to +-0.5 deg for 50% beam loading. (author)

  14. Nonlinear plasma waves excitation by intense ion beams in background plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p =(4πe 2 n p /m) 1/2 is the electron plasma frequency, and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  15. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p = (4πe 2 n p /m) 1/2 is the electron plasma frequency and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  16. Wave fields simulation in difficult terrain using numerical grid method; Hyoko henka no aru chiiki deno suchi koshi wo mochiita hado simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W; Ogawa, T [Yokohama National University, Yokohama (Japan); Tamagawa, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1997-10-22

    This paper describes that a high-accuracy simulation can be made on seismic exploration by using the numerical grid method. When applying a wave field simulation using the difference calculus to an area subjected to seismic exploration, a problem occurs as to how a boundary of the velocity structure including the ground surface should be dealt with. Simply applying grids to a boundary changing continuously makes accuracy of the simulation worse. The difference calculus using a numerical grid is a method to solve the problem by imaging a certain region into a rectangular region through use of variable conversion, which can impose the boundary condition more accurately. The wave field simulation was carried out on a simple two-layer inclined structure and a two-layer waved structure. It was revealed that amplitudes of direct waves and reflection waves are disturbed in the case where no numerical grid method is applied, and the amplitudes are more disperse in the reflection waves than those obtained by using the numerical grid method. 7 refs., 10 figs.

  17. Longitudinal waves and a beam instability in a relativistic anisotropic plasma

    International Nuclear Information System (INIS)

    Onishchenko, O.G.

    1981-01-01

    Dispersion relations are derived for longitudinal waves in a relativistic plasma with an arbitrary anisotropic particle distribution function. Longitudinal waves with phase velocity lower than the speed of light are shown to exist in such a plasma. The damping rate of longitudinal waves due to the Cerenkov interaction with plasma particles is derived for such a plasma. The instability of a beam of high-energy particles in such a plasma is studied. As the anisotropy of an ultrarelativistic plasma becomes less pronounced, the maximum hydrodynamic growth rate decreases

  18. Millimeter wave beam steered fiber wireless systems for 5G indoor coverage : Integrated circuits and systems

    NARCIS (Netherlands)

    Cao, Zizheng; Zhang, Xuebing; Zhao, Xinran; Shen, Longfei; Deng, Xiong; Yin, Xin; Koonen, Ton

    2017-01-01

    In this talk, we review our recent progress and on-going research on millimeter wave beam steered fiber wireless systems for 5G indoor coverage enabled by the advanced photonic integrated circuit and well-designed fiber-wireless networks.

  19. An attempt to define critical wave and wind scenarios leading to capsize in beam sea

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Choi, Ju-hyuck; Kristensen, Hans Otto Holmegaard

    2016-01-01

    for current new buildings with large superstructures. Thus it seems rea-sonable to investigate the possibility of capsizing in beam sea under the joint action of waves and wind using direct time domain simulations. This has already been done in several studies. Here it is combined with the First Order...

  20. Using GIS to evaluate the impact of exclusion zones on the connection cost of wave energy to the electricity grid

    International Nuclear Information System (INIS)

    Prest, Robert; Daniell, Trevor; Ostendorf, Bertram

    2007-01-01

    An increase in the planning and environmental restrictions associated with wind energy has led to a growth in interest towards wave energy. However, as the connection cost of a wave energy development is a driving factor in the development's feasibility, existing wind farm cable-routing techniques used by renewable energy developers may not be satisfactory. A Geographical Information System (GIS) method is presented which optimises the cable route between a wave farm and the electricity network, while taking a range of exclusion zones, such as native vegetation, into account. The optimisation is presented for a South Australian study area, which subsequently showed that exclusion zones reduce the number of suitable locations for wave energy by almost 40%. The method presented also assesses the effect that each exclusion zone applied has upon the number of suitable locations within the study area. The analysis undertaken showed that National Parks and cliffs pose a significant limitation to the potential of a wave energy industry within South Australia. Allowing the transmission route to travel through a National Park, or traverse a cliff, resulted in an increase in the number of locations from which a connection could be made to the electricity grid for less than $10 million of 33% and 50%, respectively. Conservation Parks, Wilderness Areas and native vegetation also have an effect upon the number of suitable locations for wave energy within South Australia. The GIS methods developed may be of assistance to governments in setting appropriate marine renewable energy policy, and also in identifying existing policy which may require amending if the government wishes to pursue and support the development of wave energy

  1. Measuring the band structures of periodic beams using the wave superposition method

    Science.gov (United States)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in

  2. Electron multi-beam technology for mask and wafer writing at 0.1nm address grid

    Science.gov (United States)

    Platzgummer, Elmar; Klein, Christof; Loeschner, Hans

    2013-03-01

    An overview of electron beam tool configurations is provided. The adoption of multi-beam writing is mandatory in order to fulfill industrial needs for 11nm HP nodes and below. IMS Nanofabrication realized a 50keV electron multibeam proof-of-concept (POC) tool confirming writing principles with 0.1nm address grid and lithography performance capability. The new architecture will be introduced for mask writing at first, but has also the potential for 1xmask (master template) and direct wafer writing. The POC system achieves the predicted 5nm 1sigma blur across the 82μm x 82μm array of 512 x 512 (262,144) programmable 20nm beams. 24nm HP has been demonstrated and complex patterns have been written in scanning stripe exposure mode. The first production worthy system for the 11nm HP mask node is scheduled for 2014 (Alpha), 2015 (Beta) and 1st generation HVM mask writer tools in 2016. Implementing a multi-axis column configuration, 50x / 100x productivity enhancements are possible for direct 300mm / 450mm wafer writing.

  3. Bandwidth broadening effect in a traveling-wave-tube amplifier by using impulse electron beam

    International Nuclear Information System (INIS)

    Jung, Sang Wook; Choi, Jin Joo; Kim, Seon Joo

    2012-01-01

    This paper reports on a wideband amplification mechanism involving an impulse electron beam. To prove broadband amplification with the impulse beam, we perform 3-dimensional particle-in-cell (3D PIC) code simulation. An impulse electron beam with a pulse width of 1 ns with electric potential 17.2 kV is injected into an interaction circuit of a coupled-cavity traveling-wave-tube (CCTWT) driven by a continuous-wave (CW) signal of 29.1 GHz. The resulting output bandwidth was 2.96%, and the peak output power of 713 W was the same as that obtained with CW operation at a single frequency. The simulation yielded very similar results with ultra short impulse signal from the simulation.

  4. Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas

    Science.gov (United States)

    Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John

    2014-10-01

    When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  5. Generation of an intense stationary wave in modulated beam-plasma systems

    International Nuclear Information System (INIS)

    Jungwirth, K.; Krlin, L.

    1974-03-01

    Basic equations and numerical results describing nonlinear interaction of a weakly modulated electron beam with a single stationary one-dimensional wave excited in a cold plasma without the magnetic field, are presented and discussed. The effect of all possible irreversible processes (e.g., plasma turbulence) accompanying this interaction is simulated by the constant effective collision frequency νsub(eff) of plasma electrons. Starting from the nonlinear Poisson equation, the expression for the amplitude and the phase of the beam-excited wave are derived and solved numerically together with the equations of the beam electron motion. The results are compared with those of a time model. Significant, experimentally detectable differences are established. (author)

  6. Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities

    International Nuclear Information System (INIS)

    Lock, Edwin H

    2012-01-01

    Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than λ 0 /D (where λ 0 is the incident wavelength, and D is the slit width), but can also be zero under certain conditions. (methodological notes)

  7. A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application

    Directory of Open Access Journals (Sweden)

    L. Schoon

    2018-05-01

    Full Text Available For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi. It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia–gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia–gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.

  8. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    Fullekrug, Martin; Hanuise, C; Parrot, M

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which...

  9. Excitation of accelerating plasma waves by counter-propagating laser beams

    International Nuclear Information System (INIS)

    Shvets, Gennady; Fisch, Nathaniel J.; Pukhov, Alexander

    2002-01-01

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Δω between beams and duration τ L of the short pulse, there are two approaches to CBA. First approach assumes (τ L ≅2/ω p ). Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with τ L >>ω p -1 detuned by Δω∼2ω p from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2ω p of two co-propagating lasers was first predicted by Rosenbluth and Liu [M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972)], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented

  10. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  11. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    International Nuclear Information System (INIS)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-01-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75–80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (∼1 −μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10 4 with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  12. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd., Rochester, New York 14616 (United States); Kugland, N. L.; Rushford, M. C. [Lawrence Livermore National Laboratory, University of California, P. O. Box 808, Livermore, California 94551 (United States)

    2012-10-15

    A 10-ps, 263-nm (4{omega}) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution ({approx}1 -{mu}m full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10{sup 4} with respect to all wavelengths outside of the 263 {+-} 2 nm measurement range.

  13. Advanced Integration Techniques on Broadband Millimeter-Wave Beam Steering for 5G Wireless Networks and Beyond

    NARCIS (Netherlands)

    Cao, Zizheng; Ma, Qian; Smolders, Bart; Jiao, Yuqing; Wale, Mike; Oh, Joanne; wu, hequan; Koonen, Ton

    2015-01-01

    Recently, the desired very high throughput of 5G wireless networks drives millimeter-wave (mm-wave) communication into practical applications. A phased array technique is required to increase the effective antenna aperture at mm-wave frequency. Integrated solutions of beamforming/beam steering are

  14. Experiments with BECs in a Painted Potential: Atom SQUID, Matter Wave Bessel Beams, and Matter Wave Circuits

    Science.gov (United States)

    Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin

    2014-05-01

    The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.

  15. Analysis of elastic wave propagation through anisotropic stainless steel using elastodynamic FEM and ultrasonic beam model

    International Nuclear Information System (INIS)

    Cho, Seog Je; Jeong, Hyun Jo

    1999-01-01

    The wave propagation problem in anisotropic media is modeled by the Gauss-Hermite beam and tile finite element method and their results are compared. Gauss-Hermite mettled is computationally fast and simple, and explicitly incorporates beam spreading. In the 2-D model problem chosen, the ultrasonic beam leaves a transducer, propagates through a layer of ferritic steel and through a planar interface into a region of columnar cast stainless steel with two directions. After propagation to a reference plane, comparison .if made of the time-domain waveforms predicted by tile two models. The predictions of the two models are found to be in good agreement near the center of the beam, with deviations developing as one moves away from tile central ray. These are interpreted to be a consequence of the Fresnel approximation, made in the Gauss-Hermite model.

  16. Plasma waves stimulated by electron beams in the lab and in the auroral ionosphere

    International Nuclear Information System (INIS)

    Holzworth, R.H.; Harbridge, W.B.; Koons, H.C.

    1982-01-01

    This chapter describes the experimental laboratory simulation of ionospheric rocket observed phenomena. The NASA sounding rocket 27.010 AE was launched in 1978 in order to study plasma dynamics in the auroral ionosphere. The rocket carried an electron accelerator and a full complement of plasma diagnostic devices including electric and magnetic receivers, particle detectors and photometers. The simulation was conducted in the large vacuum chamber at NASA's Johnson Space Center. The electron beam was operated at 4 kilovolts and the electron current modulated at 3 kiloherz from 0 to 80 milliamps during the rocket flight, resulting in the pulsing of the beam in and out of beam plasma discharge (BPD) and a variety of propagating wave modes. It is concluded that the electron-beam-produced BPD in the rocket is similar to that seen in the lab. The very low frequency (VLF) spectrum during BPD is examined

  17. Design guidelines for flexural wave attenuation of slender beams with local resonators

    International Nuclear Information System (INIS)

    Liu, Yaozong; Yu, Dianlong; Li, Li; Zhao, Honggang; Wen, Jihong; Wen, Xisen

    2007-01-01

    The complex band structures and attenuation spectra of flexural waves in slender beams with periodically mounted local resonators are investigated with transfer matrix method. It is noteworthy that the frequency range and attenuation coefficient of the locally resonant gap become larger in complex band structures if larger resonators were used. But given the total add-on mass of resonators, the attenuation spectra of finite beams with large but few resonators do not demonstrate such phenomena because the attenuation needs several periods to establish. So with the view of application, a large number of small local resonators widely spread along the beam are preferred given the total add-on mass to the beam

  18. Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons

    Science.gov (United States)

    Danehkar, A.

    2018-06-01

    Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.

  19. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  20. Fast wave current drive in neutral beam heated plasmas on DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value

  1. Opportunistic beam training with hybrid analog/digital codebooks for mmWave systems

    KAUST Repository

    Eltayeb, Mohammed E.

    2016-02-25

    © 2015 IEEE. Millimeter wave (mmWave) communication is one solution to provide more spectrum than available at lower carrier frequencies. To provide sufficient link budget, mmWave systems will use beamforming with large antenna arrays at both the transmitter and receiver. Training these large arrays using conventional approaches taken at lower carrier frequencies, however, results in high overhead. In this paper, we propose a beam training algorithm that efficiently designs the beamforming vectors with low training overhead. Exploiting mmWave channel reciprocity, the proposed algorithm relaxes the need for an explicit feedback channel, and opportunistically terminates the training process when a desired quality of service is achieved. To construct the training beamforming vectors, a new multi-resolution codebook is developed for hybrid analog/digital architectures. Simulation results show that the proposed algorithm achieves a comparable rate to that obtained by exhaustive search solutions while requiring lower training overhead when compared to prior work.

  2. Opportunistic beam training with hybrid analog/digital codebooks for mmWave systems

    KAUST Repository

    Eltayeb, Mohammed E.; Alkhateeb, Ahmed; Heath, Robert W.; Al-Naffouri, Tareq Y.

    2016-01-01

    © 2015 IEEE. Millimeter wave (mmWave) communication is one solution to provide more spectrum than available at lower carrier frequencies. To provide sufficient link budget, mmWave systems will use beamforming with large antenna arrays at both the transmitter and receiver. Training these large arrays using conventional approaches taken at lower carrier frequencies, however, results in high overhead. In this paper, we propose a beam training algorithm that efficiently designs the beamforming vectors with low training overhead. Exploiting mmWave channel reciprocity, the proposed algorithm relaxes the need for an explicit feedback channel, and opportunistically terminates the training process when a desired quality of service is achieved. To construct the training beamforming vectors, a new multi-resolution codebook is developed for hybrid analog/digital architectures. Simulation results show that the proposed algorithm achieves a comparable rate to that obtained by exhaustive search solutions while requiring lower training overhead when compared to prior work.

  3. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2014-01-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves

  4. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  5. Chaotic behavior in a relativistic electron beam interacting with a transverse slow electromagnetic wave

    International Nuclear Information System (INIS)

    Serbeto, A.; Alves, M.V.

    1993-01-01

    Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)

  6. The GRA beam-splitter experiments and wave-particle duality of light

    International Nuclear Information System (INIS)

    Kaloyerou, P.N.

    2005-01-01

    Full text: Grangier, Roger and Aspect (GRA) performed a beam-splitter experiment to demonstrate particle behaviour of light and a Mach-Zehnder interferometer experiment to demonstrate wave behaviour of light. The distinguishing feature of these experiments is the use of a gating system to produce near ideal single photon states. With the demonstration of both wave and particle behaviour (in the two mutually exclusive experiments) they claim to have demonstrated the dual wave-particle behaviour of light. The demonstration of the wave behaviour of light is not in dispute. But, we want to demonstrate, contrary to the claims of GRA, that their beam-splitter experiment does not conclusively confirm the particle behaviour of light, and hence does not demonstrate particle-wave duality. Our demonstration consists of providing a detailed model, not involving particles, of GRA's 'which-path' experiment. The model uses the causal interpretation of quantum fields. We will also give a brief outline a model for the second 'interference' GRA experiment. (author)

  7. Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model

    Science.gov (United States)

    Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.

    2018-02-01

    We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is

  8. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    Science.gov (United States)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  9. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    International Nuclear Information System (INIS)

    Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai

    2013-01-01

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained

  10. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ling-Bao, E-mail: konglingbao@gmail.com [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Hong-Yu [School of Physics, Anshan Normal University, Anshan 114005 (China); Hou, Zhi-Ling, E-mail: houzl@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Jin, Hai-Bo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Du, Chao-Hai [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  11. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    Science.gov (United States)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}zz≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  12. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack.

    Science.gov (United States)

    Miroshnichenko, G P; Kozubov, A V; Gaidash, A A; Gleim, A V; Horoshko, D B

    2018-04-30

    We consider a subcarrier wave quantum key distribution (QKD) system, where quantum encoding is carried out at weak sidebands generated around a coherent optical beam as a result of electro-optical phase modulation. We study security of two protocols, B92 and BB84, against one of the most powerful attacks for this class of systems, the collective beam-splitting attack. Our analysis includes the case of high modulation index, where the sidebands are essentially multimode. We demonstrate numerically and experimentally that a subcarrier wave QKD system with realistic parameters is capable of distributing cryptographic keys over large distances in presence of collective attacks. We also show that BB84 protocol modification with discrimination of only one state in each basis performs not worse than the original BB84 protocol in this class of QKD systems, thus significantly simplifying the development of cryptographic networks using the considered QKD technique.

  13. Plural three-wave resonances of space charge wave harmonics in transit section of klystron-type two-stream FEL with helical electron beam

    DEFF Research Database (Denmark)

    Lysenko, Alexander; Volk, Iurii; Serozhko, Anastasia

    2017-01-01

    We have carried out the research of plural three-wave resonances of space charge wave (SCW) harmonics in the transit section of the klystron type two-stream superheterodyne free-electron laser (TSFEL) with helical electron beam in cubic non-linear approximation. We have found out that two...

  14. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  15. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    Science.gov (United States)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  16. Investigation of terahertz sheet beam traveling wave tube amplifier with nanocomposite cathode

    International Nuclear Information System (INIS)

    Shin, Young-Min; Zhao Jinfeng; Barnett, Larry R.; Luhmann, Neville C. Jr.

    2010-01-01

    Particle-in-cell simulations of a staggered double grating array traveling wave tube intended as a wideband amplifier for terahertz communications, sensing, and imaging applications showed that, for an electron beam power of 5 kW, it produces 150-275 W, corresponding to 3%-5.5% electronic efficiency, at 0.22 THz with over ∼30% bandwidth and with greater than 12 dB/cm growth rate. The circuit has been fabricated by both UV lithography and high precision computer-numerical-control machining with ∼2-3 μm dimensional tolerance and ∼50 nm surface roughness. A scandate nanocomposite (Sc 2 O 3 -W) cathode for the electron beam source has successfully emitted 120 A/cm 2 (space charge limited) at 1150 deg. C and 50 A/cm 2 at 1050 deg. C for 8000 h as required to produce the requisite high current density electron beam.

  17. Beam pattern improvement by compensating array nonuniformities in a guided wave phased array

    International Nuclear Information System (INIS)

    Kwon, Hyu-Sang; Lee, Seung-Seok; Kim, Jin-Yeon

    2013-01-01

    This paper presents a simple data processing algorithm which can improve the performance of a uniform circular array based on guided wave transducers. The algorithm, being intended to be used with the delay-and-sum beamformer, effectively eliminates the effects of nonuniformities that can significantly degrade the beam pattern. Nonuniformities can arise intrinsically from the array geometry when the circular array is transformed to a linear array for beam steering and extrinsically from unequal conditions of transducers such as element-to-element variations of sensitivity and directivity. The effects of nonuniformities are compensated by appropriately imposing weight factors on the elements in the projected linear array. Different cases are simulated, where the improvements of the beam pattern, especially the level of the highest sidelobe, are clearly seen, and related issues are discussed. An experiment is performed which uses A0 mode Lamb waves in a steel plate, to demonstrate the usefulness of the proposed method. The discrepancy between theoretical and experimental beam patterns is explained by accounting for near-field effects. (paper)

  18. Electromagnetic Waves Dispersion and Interaction of an Annular Beam-Ion Channel System in Plasma Waveguide

    Directory of Open Access Journals (Sweden)

    Jixiong Xiao

    2017-01-01

    Full Text Available A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also can interact with the low frequency branch at large wavenumber.

  19. Block Fusion on Dynamically Adaptive Spacetree Grids for Shallow Water Waves

    KAUST Repository

    Weinzierl, Tobias

    2014-09-01

    © 2014 World Scientific Publishing Company. Spacetrees are a popular formalism to describe dynamically adaptive Cartesian grids. Even though they directly yield a mesh, it is often computationally reasonable to embed regular Cartesian blocks into their leaves. This promotes stencils working on homogeneous data chunks. The choice of a proper block size is sensitive. While large block sizes foster loop parallelism and vectorisation, they restrict the adaptivity\\'s granularity and hence increase the memory footprint and lower the numerical accuracy per byte. In the present paper, we therefore use a multiscale spacetree-block coupling admitting blocks on all spacetree nodes. We propose to find sets of blocks on the finest scale throughout the simulation and to replace them by fused big blocks. Such a replacement strategy can pick up hardware characteristics, i.e. which block size yields the highest throughput, while the dynamic adaptivity of the fine grid mesh is not constrained - applications can work with fine granular blocks. We study the fusion with a state-of-the-art shallow water solver at hands of an Intel Sandy Bridge and a Xeon Phi processor where we anticipate their reaction to selected block optimisation and vectorisation.

  20. Simulation of mode converted ion Bernstein wave - beam deuteron interactions on TFTR

    Science.gov (United States)

    Herrmann, Mark; Fisch, Nathaniel

    1998-11-01

    Experiments on TFTR have documented strong interactions between mode converted ion Bernstein waves (MCIBW) and beam deuterons(D. S. Darrow et al.), Nucl. Fusion 36, 509 (1996).^,(N. J. Fisch et al.), IAEA, Vol. 1, p. 271 (1996). This is of particular interest in the study of α channelling, since the most promising scenarios(M. C. Herrmann and N. J. Fisch, Phys. Rev. Lett. 79), 1495 (1997). rely on a suitable combination of MCIBW and Alfvén eigenmodes to achieve the cooling of the α particles. Collisional effects, realistic wave fields, and a detailed model of the wave-particle interaction have been added to the Monte Carlo simulations which are used to simulate α channelling in order to model TFTR experiments(M. C. Herrmann, Ph.D. thesis, Princeton University, 1998.). The results are found to be in qualitative agreement with the data. In addition, the simulation is used, in conjunction with the data, to demonstrate the existence of the k_\\|-flip of the MCIBW, and to infer a diffusion coefficient for the beam deuterons interacting with the wave. This diffusion coefficient significantly exceeds what would be expected on the basis of quasilinear theory with the fields specified by 1 D ray tracing of the MCIBW.

  1. Pierce gain analysis for a sheet beam in a rippled waveguide traveling-wave tube

    International Nuclear Information System (INIS)

    Carlsten, Bruce E.

    2001-01-01

    A Pierce-type mode analysis is presented for a planar electron beam in a rippled planar waveguide. This analysis describes the gain of a traveling-wave tube consisting of that geometry. The dispersion relation is given by the determinant of a matrix based on the coupling of different free-space modes through the boundary conditions. For the case of high-frequency, low-power amplifiers, the dispersion relation reduces to a simple cubic expression for the Compton regime, leading to three roots analogous to the Pierce solution of a standard traveling-wave tube. The analysis shows that this type of traveling-wave tube is capable of very high gain at extremely high frequencies

  2. Traveling-wave tube amplifier characteristics study for stochastic beam-cooling experiments

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1982-03-01

    The characteristics of continuous-wave wideband traveling-wave tube amplifiers have been experimentally investigated over a frequency range of 1.5 to 4.5 GHz. We present measurements of characteristics important for stochastic beam cooling systems that are generally not available from manufacturers' data sheets. The amplifers measured include models 1177 H01 and 1277 H01 having output power capabilities of 10 to 20 W, respectively, at frequencies of 2 to 4 GHz. The power transfer characteristics, the phase-shift characteristics as functions of frequency and the input power level, the voltage standing-wave ratio, noise drive transfer characteristics, harmonics and intermodulation products content were accurately measured and are discussed. Measurement procedures and description of measuring systems, which include measuring system error corrections, are given in detail. Also several approaches are discussed for the reduction of harmonics and intermodulation products

  3. Real-time beam tracing for control of the deposition location of electron cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M., E-mail: matthias.reich@ipp.mpg.de; Bilato, R.; Mszanowski, U.; Poli, E.; Rapson, C.; Stober, J.; Volpe, F.; Zille, R.

    2015-11-15

    Highlights: • We successfully integrated a real-time EC beam tracing code at ASDEX Upgrade. • The calculation of EC beam deposition location is fast enough for control purposes. • The accuracy of the deposition location calculation exceeds equivalent measurements. • The implementation method is by design portable to larger fusion devices. - Abstract: Plasma control techniques that use electron cyclotron (EC) resonance heating and current drive such as control of neoclassical tearing modes require accurate control of the deposition location of EC beams. ASDEX Upgrade has successfully implemented a real-time version of the beam-tracing code TORBEAM into its real-time diagnostic system to act as a globally available module that calculates current deposition location and its sensitivity from other real-time diagnostic measurements for all its moveable EC wave launchers. Based on a highly (100×) accelerated version of TORBEAM, the software implementation as a diagnostic process uses parallelization and achieves cycle times of 15–20 ms for determining the radial deposition location of 12 beams in the plasma. This cycle time includes data input–output overhead arising from the use of available real-time signals. The system is by design portable to other machines such as ITER.

  4. High Order Numerical Simulation of Waves Using Regular Grids and Non-conforming Interfaces

    Science.gov (United States)

    2013-10-06

    for a homogeneous problem . . . . . . . . . . . . . . . . . 65 6 BEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7...Lqu = 0, and Tr u = ξΓ. Finally, we have proved that ξΓ satisfies the BEP if and only if ξΓ = Tr u for which Lq u = 0 [51, 53, 39]. We call equation...2.9) the boundary equation with projection ( BEP ). 2.1.1 Wave Split The solutions to the homogeneous equation Lqu = 0 can be interpreted as incoming

  5. Wave excitation in the experiment with an electron beam at the Dzhajkiken Exos-B Japanese satellite

    International Nuclear Information System (INIS)

    Kavashima, N.

    1985-01-01

    An experiment on investigation of beam-plasma interaction in the magnetosphere is carried out at the ''Dzhajkiken (Exos-B)'' japanese satellite. 100-200 eV and 0.25-1 μA electron beam was injected into the magnetosphere. Using LF and HF detectors in low altitude range waves with the frequencies close to the upper hybrid and electron frequencies are recorded. Beyond the plasmapause the satellite was charged to the potential corresponding to the beam energy

  6. 38-GHz millimeter wave beam steered fiber wireless systems for 5G indoor coverage: architectures, devices, and links

    NARCIS (Netherlands)

    Cao, Z.; Zhao, X.; Soares, F.M.; Tessema, N.M.; Koonen, A.M.J.

    2017-01-01

    Millimeter wave (mm-wave) beam steering is a key technique for the next generation (5G) wireless communication. The 28 and 38-GHz bands are widely considered as the candidates for 5G. In the context of indoor coverage, fiber-wireless systems with multiple simplified remote antenna sites are

  7. Beam steering in superconducting quarter-wave resonators: An analytical approach

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2011-07-01

    Full Text Available Beam steering in superconducting quarter-wave resonators (QWRs, which is mainly caused by magnetic fields, has been pointed out in 2001 in an early work [A. Facco and V. Zviagintsev, in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001, p. 1095], where an analytical formula describing it was proposed and the influence of cavity geometry was discussed. Since then, the importance of this effect was recognized and effective correction techniques have been found [P. N. Ostroumov and K. W. Shepard, Phys. Rev. ST Accel. Beams 4, 110101 (2001PRABFM1098-440210.1103/PhysRevSTAB.4.110101]. This phenomenon was further studied in the following years, mainly with numerical methods. In this paper we intend to go back to the original approach and, using well established approximations, derive a simple analytical expression for QWR steering which includes correction methods and reproduces the data starting from a few calculable geometrical constants which characterize every cavity. This expression, of the type of the Panofski equation, can be a useful tool in the design of superconducting quarter-wave resonators and in the definition of their limits of application with different beams.

  8. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    International Nuclear Information System (INIS)

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A.

    1989-01-01

    The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma β (the ratio of plasma pressure to the magnetic pressure) varies from β = 1 to β << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet

  9. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    International Nuclear Information System (INIS)

    Gruszecki, P.; Krawczyk, M.; Romero-Vivas, J.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.

    2014-01-01

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale

  10. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Gruszecki, P., E-mail: pawel.gruszecki@amu.edu.pl; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614 (Poland); Romero-Vivas, J. [Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland); Dadoenkova, Yu. S.; Dadoenkova, N. N. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Ulyanovsk State University, 42 Leo Tolstoy str., 432000 Ulyanovsk (Russian Federation); Lyubchanskii, I. L. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine)

    2014-12-15

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.

  11. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    Science.gov (United States)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  12. Compounded effects of heat waves and droughts over the Western Electricity Grid: spatio-temporal scales of impacts and predictability toward mitigation and adaptation.

    Science.gov (United States)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.

    2016-12-01

    Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.

  13. Standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1991-01-01

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set. (orig.)

  14. Localization of metastable atom beams with optical standing waves: nanolithography at the heisenberg limit

    Science.gov (United States)

    Johnson; Thywissen; Dekker; Berggren; Chu; Younkin; Prentiss

    1998-06-05

    The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.

  15. Beam Dynamics a Integrated Plane Wave Transformer Photoinjector at S- and X- band

    Science.gov (United States)

    Rosenzweig, J. B.; Ding, X.; Pellegrini, X.; Serafini, L.; Yu, D.

    1997-05-01

    The beam dynamics of an integrated S-band rf photoinjector based on the plane wave transformer concept, proposed as part of an SBIR collaboration between UCLA and DULY Research, are studied. The intial design, which calls for an 11.5 cell structure run at a peak on-axis accelerating field of 60 MV/m, and has a compact solenoid around the intial 2.5 cells, is based on the recently developed theory of emittance compensation(L.Serafini, and J.B. Rosenzweig, submitted to Physical Review E.). It calls for matching the beam onto an envelope which is a generalized Brillouin flow, producing a beam which diminishes in transverse size as the square root of the accelerating beam energy. This condition produces a minimized emittance, which for the S-band case is 1 mm-rad at at charge of 1 nC. This design is also scaled to produce nearly identical performance at X-band, giving an injector appropriate to running an FEL at the SLAC NLCTA. It is noted that these designs are insensitive to rf emittance increase, allowign a choice of injection phase, and the option to compress the emitted pulse.

  16. Stable operating regimes in NET with respect to Alfven wave instabilities during neutral beam current drive

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1989-01-01

    Supra-thermal ions can contribute to the steady-state current in future large tokamak machines like NET or ITER. The fast-ion population is generated by collisional slowing-down of high-energy ions which were injected as neutral atoms in quasi-tangential direction and ionized by plasma interactions. Depending on the initial beam shape these fast ions can excite microinstabilities of the Alfven-wave type which are driven by the gradients in velocity-space. The ensuring plasma turbulence is expected to slow down the fast ions very quickly. This effect reduces the current drive efficiency which otherwise is comparable to that of other current drive schemes like lower hybrid waves where the toroidal current is carried by high-energy resonant electrons. (author) 3 refs., 1 fig

  17. Tilting at wave beams: a new perspective on the St Andrew's Cross

    Science.gov (United States)

    Akylas, T. R.; Kataoka, T.; Ghaemsaidi, S. J.; Holzenberger, N.; Peacock, T.

    2017-11-01

    The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified fluid of constant buoyancy frequency, is investigated theoretically and experimentally. This forcing arrangement leads to a variant of the classical St Andrew's Cross that has certain unique features: (i) radiation of wave beams is limited due to a lower cut-off frequency set by the cylinder tilt angle to the horizontal; (ii) the response is essentially three-dimensional, as end effects eventually come into play when the cut-off frequency is approached, however long a cylinder might be. These results follow from kinematic considerations and are also confirmed by laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cut-off frequency, where viscous and nonlinear effects are likely to play an important part. This scenario is examined by an asymptotic model as well as experimentally. Supported in part by NSF Grant DMS-1512925.

  18. A continuous wave fan beam tomography system having a best estimating filter

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    A continuous wave fan beam tomographic system is described which continuously samples X-ray absorption values and a means of providing a best-estimate of the X-ray absorption values at discrete points in time determined by sampling signal s(t). The means to provide the best-estimate include a continuous filter having a frequency range defined by the geometry of the mechanical system. Errors due to the statistical variation in photon emissions of the X-ray source are thereby minimized and the effective signal-to-noise ratio of signals is enhanced, which in turn allows a significant reduction in radiation dosage. (author)

  19. Slowing of a fast electron beam in a plasma in an intense electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, R.V.; Fedorov, M.V.

    1980-01-01

    The slowing of a fast electron beam as it penetrates into a plasma in a strong external electromagnetic field is studied. The effective collision frequency ..nu../sub p/ which is responsible for the slowing is derived in the dipole approximation; many-photon stimulated bremsstrahlung and inverse bremsstrahlung are taken into account. The asymptotic behavior of ..nu../sub p/ in strong wave fields E/sub 0/ is found. The results show that ..nu../sub p/ falls off with increasing E/sub 0/, because of a decrease in the frequency of collisions with plasma ions proportional to E/sub 0//sup -1/.

  20. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  1. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation

    Science.gov (United States)

    Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang

    2018-04-01

    Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.

  2. SU-F-T-506: Development and Commissioning of the Effective and Efficient Grid Therapy Using High Dose Rate Flattening Filter Free Beam and Multileaf Collimator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M; Wen, N; Beyer, C; Siddiqui, F; Chetty, I; Zhao, B [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: Treating bulky tumors with grid therapy (GT) has demonstrated high response rates. Long delivery time (∼15min), with consequent increased risk of intrafraction motion, is a major disadvantage of conventional MLC-based GT (MLC-GT). The goal of this study was to develop and commission a MLC-GT technique with similar dosimetric characteristics, but more efficient delivery. Methods: Grid plan was designed with 10X-FFF (2400MU/min) beam and MLC in a commercial treatment planning system (TPS). Grid size was 1cm by 1cm and grid-to-grid distance was 2cm. Field-in-field technique was used to flatten the dose profile at depth of 10cm. Prescription was 15Gy at 1.5cm depth. Doses were verified at depths of 1.5cm, 5cm and 10cm. Point dose was measured with a plastic scintillator detector (PSD) while the planar dose was measured with calibrated Gafchromic EBT3 films in a 20cm think, 30cmx30cm solid water phantom. The measured doses were compared to the doses calculated in the treatment planning system. Percent depth dose (PDD) within the grid was also measured using EBT3 film. Five clinical cases were planned to compare beam-on time. Results: The valley-to-peak dose ratio at the 3 depths was approximately 10–15%, which is very similar to published result. The average point dose difference between the PSD measurements and TPS calculation is 2.1±0.6%. Film dosimetry revealed good agreement between the delivered and calculated dose. The average gamma passing rates at the 3 depths were 95% (3%, 1mm). The average percent difference between the measured PDD and calculated PDD was 2.1% within the depth of 20cm. The phantom plan delivery time was 3.6 min. Average beam-on time was reduced by 66.1±5.6% for the 5 clinical cases. Conclusion: An effective and efficient GT technique was developed and commissioned for the treatment of bulky tumors using FFF beam combined with MLC and automation. The Department of Radiation Oncology at Henry Ford Health System receives research

  3. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT).

    Science.gov (United States)

    Ren, Lei; Yin, Fang-Fang; Chetty, Indrin J; Jaffray, David A; Jin, Jian-Yue

    2012-08-01

    To evaluate the feasibility of a synchronized moving grid (SMOG) system to remove scatter artifacts, improve the contrast-to-noise ratio (CNR), and reduce image lag artifacts in cone-beam CT (CBCT). The SMOG system proposed here uses a rapidly oscillating, synchronized moving grid attached to the kV source. Multiple partial projections are taken at different grid positions to form a complete projection in each gantry position, before the gantry moves to the next position during a scan. The grid has a low transmission factor, and it is used for both scatter reduction and scatter measurement for postscan scatter correction. Experimental studies using a static grid and an enlarged CATphan phantom were performed to evaluate the potential CNR enhancement for different SMOG exposure numbers (1, 2, and 4). Simulation studies were performed to evaluate the image lag correction for different exposure numbers (2, 3, and 4) and grid interspace widths in SMOG using the data from an anthropomorphic pelvis phantom scan. Imaging dose of SMOG was also estimated by measuring the imaging dose in a CIRS CT dose phantom using a static grid. SMOG can enhance the CNR by 16% and 13% when increasing exposure number from 1 to 2 and from 2 to 4, respectively. This enhancement was more dramatic for larger phantoms and smaller initial exposure numbers. Simulation results indicated that SMOG could reduce the lag to less than 4.3% for 2-exposure mode and to less than 0.8% for 3-exposure mode when the grid interspace width was 1.4 cm. Increasing the number of exposures in SMOG dramatically reduced the residual lag in the image. Reducing the grid interspace width somewhat reduced the residual lag. Skin line artifacts were removed entirely in SMOG. Point dose measurement showed that imaging dose of SMOG at isocenter was similar as that of a conventional CBCT. Compared to our previously developed static-grid dual-rotation method, the proposed SMOG technique has the advantages of enhancing the CNR

  4. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT)

    International Nuclear Information System (INIS)

    Ren Lei; Yin Fangfang; Chetty, Indrin J.; Jaffray, David A.; Jin Jianyue

    2012-01-01

    Purpose: To evaluate the feasibility of a synchronized moving grid (SMOG) system to remove scatter artifacts, improve the contrast-to-noise ratio (CNR), and reduce image lag artifacts in cone-beam CT (CBCT). Methods: The SMOG system proposed here uses a rapidly oscillating, synchronized moving grid attached to the kV source. Multiple partial projections are taken at different grid positions to form a complete projection in each gantry position, before the gantry moves to the next position during a scan. The grid has a low transmission factor, and it is used for both scatter reduction and scatter measurement for postscan scatter correction. Experimental studies using a static grid and an enlarged CATphan phantom were performed to evaluate the potential CNR enhancement for different SMOG exposure numbers (1, 2, and 4). Simulation studies were performed to evaluate the image lag correction for different exposure numbers (2, 3, and 4) and grid interspace widths in SMOG using the data from an anthropomorphic pelvis phantom scan. Imaging dose of SMOG was also estimated by measuring the imaging dose in a CIRS CT dose phantom using a static grid. Results: SMOG can enhance the CNR by 16% and 13% when increasing exposure number from 1 to 2 and from 2 to 4, respectively. This enhancement was more dramatic for larger phantoms and smaller initial exposure numbers. Simulation results indicated that SMOG could reduce the lag to less than 4.3% for 2-exposure mode and to less than 0.8% for 3-exposure mode when the grid interspace width was 1.4 cm. Increasing the number of exposures in SMOG dramatically reduced the residual lag in the image. Reducing the grid interspace width somewhat reduced the residual lag. Skin line artifacts were removed entirely in SMOG. Point dose measurement showed that imaging dose of SMOG at isocenter was similar as that of a conventional CBCT. Conclusions: Compared to our previously developed static-grid dual-rotation method, the proposed SMOG technique

  5. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces.

    Science.gov (United States)

    Richings, Gareth W; Habershon, Scott

    2017-09-12

    We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.

  6. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Usero, Antonio [Observatorio Astronmico Nacional (IGN), C/Alfonso XII, 3, E-28014 Madrid (Spain); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching (Germany); Bigiel, Frank [Institute für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Kruijssen, J. M. Diederik; Schinnerer, Eva [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Kepley, Amanda [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Bolatto, Alberto D. [Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Cormier, Diane; Jiménez-Donaire, Maria J. [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Hughes, Annie [CNRS, IRAP, 9 av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada)

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  7. A switched-beam millimeter-wave array with MIMO configuration for 5G applications

    KAUST Repository

    Ikram, Muhammad

    2018-03-08

    In this work, a switched-beam 2-element multiple-input multiple-output (MIMO) antenna system is proposed at mm-wave bands for 5G applications. The antenna system consists of a 4 × 4 connected slot antennas for each MIMO element forming the connected antenna array (CAA). A feed network based on a Butler matrix is used to excite the CAA, in addition to steer the beam at different locations which enhance the diversity performances. The mm-wave MIMO antenna system operates at 28 GHz with at least −10 dB measured bandwidth of 830 MHz (27.4 GHZ–28.23 GHz). It is fabricated on a commercially available RO3003 substrate with dielectric constant of 3.3 and height of 0.13 mm, respectively. The dimensions of the board are equal to 150 mm3 × 100 mm3 × 0.13 mm3. The proposed design is compact, low profile, and suitable for future 5G-enabled tablet PCs.

  8. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.

    Science.gov (United States)

    Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares

    2014-08-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Magnetized Langmuir wave packets excited by a strong beam-plasma interaction

    International Nuclear Information System (INIS)

    Pelletier, G.; Sol, H.; Asseo, E.

    1988-01-01

    The physics of beam-plasma interaction, which has been investigated for a long time mostly in relation with solar bursts, is now more widely invoked in various astrophysical contexts such as pulsars, active galactic nuclei, close binaries, cataclysmic variables, γ bursters, and so on. In these situations the interaction is more likely in the spirit of strong Langmuir turbulence rather than in the spirit of quasilinear theory. Many investigations have been done for two opposite extremes, namely, in very weak and in very strong magnetic fields. Very few properties of the strong Langmuir turbulence are known in the most usual astrophysical situation where the magnetic field plays a significant role but is not strong enough to force the electrons into one-dimensional motion. For this case, we analyze the dynamics of Langmuir wave packets and provide new results about the stability of the solitons against transverse perturbations. It turns out that both the averaged Lagrangian method and the adiabatic perturbation method derived from the inverse scattering transform give exactly the same results (which is not obvious in soliton perturbation theory). In particular, they predict the stability of the solitons as long as the electron gyrofrequency is greater than the plasma frequency (strong magnetic field) and their instability against transverse self-modulation in the opposite case (weak magnetic field); moreover, they allow one to deduce the self-similar collapsing oblate cavitons in the latter case. The laws governing the collapse of the wave packets determine the relaxation of the beam in the surrounding medium and we derive a useful formula giving the power loss of the beam. We outline the astrophysical consequences of this investigation

  10. Constraints on Short, Hard Gamma-Ray Burst Beaming Angles from Gravitational Wave Observations

    Science.gov (United States)

    Williams, D.; Clark, J. A.; Williamson, A. R.; Heng, I. S.

    2018-05-01

    The first detection of a binary neutron star merger, GW170817, and an associated short gamma-ray burst confirmed that neutron star mergers are responsible for at least some of these bursts. The prompt gamma-ray emission from these events is thought to be highly relativistically beamed. We present a method for inferring limits on the extent of this beaming by comparing the number of short gamma-ray bursts (SGRBs) observed electromagnetically with the number of neutron star binary mergers detected in gravitational waves. We demonstrate that an observing run comparable to the expected Advanced LIGO (aLIGO) 2016–2017 run would be capable of placing limits on the beaming angle of approximately θ \\in (2\\buildrel{\\circ}\\over{.} 88,14\\buildrel{\\circ}\\over{.} 15), given one binary neutron star detection, under the assumption that all mergers produce a gamma-ray burst, and that SGRBs occur at an illustrative rate of {{ \\mathcal R }}grb}=10 {Gpc}}-3 {yr}}-1. We anticipate that after a year of observations with aLIGO at design sensitivity in 2020, these constraints will improve to θ \\in (8\\buildrel{\\circ}\\over{.} 10,14\\buildrel{\\circ}\\over{.} 95), under the same efficiency and SGRB rate assumptions.

  11. Interfacial damage identification of steel and concrete composite beams based on piezoceramic wave method.

    Science.gov (United States)

    Yan, Shi; Dai, Yong; Zhao, Putian; Liu, Weiling

    2018-01-01

    Steel-concrete composite structures are playing an increasingly important role in economic construction because of a series of advantages of great stiffness, good seismic performance, steel material saving, cost efficiency, convenient construction, etc. However, in service process, due to the long-term effects of environmental impacts and dynamic loading, interfaces of a composite structure might generate debonding cracks, relative slips or separations, and so on, lowering the composite effect of the composite structure. In this paper, the piezoceramics (PZT) are used as transducers to perform experiments on interface debonding slips and separations of composite beams, respectively, aimed at proposing an interface damage identification model and a relevant damage detection innovation method based on PZT wave technology. One part of various PZT patches was embedded in concrete as "smart aggregates," and another part of the PZT patches was pasted on the surface of the steel beam flange, forming a sensor array. A push-out test for four specimens was carried out and experimental results showed that, under the action of the external loading, the received signal amplitudes will increasingly decrease with increase of debonding slips along the interface. The proposed signal energy-based interface damage detection algorithm is highly efficient in surface state evaluations of composite beams.

  12. INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES

    International Nuclear Information System (INIS)

    CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.

    2003-01-01

    OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results

  13. Comparison of the effect of annular and solid electron beams on linear and nonlinear traveling wave tube

    Directory of Open Access Journals (Sweden)

    F. Sheykhe

    Full Text Available The present paper, compares the effect of the annular and solid electron beam on the efficiency of linear and nonlinear TWTs. To do this, first we introduce four different geometric structure of the beam-helix. Then, we calculate the output power of each structure, in linear and nonlinear modes, at different frequencies using the numerical solution of the mathematical equations of the multi-frequency Eulerian model. Now, plot the output power in terms of distance for each structure at different frequencies and compare them. In a linear tube, the effect of annular beams on the output power is better than the solid beam, while this affects the frequency in nonlinear tubes. It is shown that in linear regime the power increase linearly with frequency but for nonlinear regimes is nonlinear. Keywords: Annular beam, Solid beam, Circuit power, Nonlinear, Traveling wave tube, Helix

  14. Creation of matter wave Bessel beams and observation of quantized circulation in a Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Ryu, C; Henderson, K C; Boshier, M G

    2014-01-01

    Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because they propagate ‘diffraction-free’ and because they can carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose–Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that the toroidal BEC can only be made to rotate at discrete, equally spaced frequencies, demonstrating that circulation is quantized in atomic BECs. The method used here can be viewed as a form of wavefunction engineering which might be developed to implement cold atom matter wave holography. (paper)

  15. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Kuo-Chih, E-mail: chuangkc@zju.edu.cn; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-09

    Highlights: • Slow waves around the defect modes in a phononic crystal beam are validated. • A fiber Bragg grating displacement sensing system can measure the defect mode. • The defect mode is analyzed by a transfer matrix method with a supercell technique. - Abstract: This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  16. WE-EF-207-08: Improve Cone Beam CT Using a Synchronized Moving Grid, An Inter-Projection Sensor Fusion and a Probability Total Variation Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Kong, V; Jin, J [Georgia Regents University Cancer Center, Augusta, GA (Georgia); Ren, L; Zhang, Y; Giles, W [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To present a cone beam computed tomography (CBCT) system, which uses a synchronized moving grid (SMOG) to reduce and correct scatter, an inter-projection sensor fusion (IPSF) algorithm to estimate the missing information blocked by the grid, and a probability total variation (pTV) algorithm to reconstruct the CBCT image. Methods: A prototype SMOG-equipped CBCT system was developed, and was used to acquire gridded projections with complimentary grid patterns in two neighboring projections. Scatter was reduced by the grid, and the remaining scatter was corrected by measuring it under the grid. An IPSF algorithm was used to estimate the missing information in a projection from data in its 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct the initial CBCT image using projections after IPSF processing for pTV. A probability map was generated depending on the confidence of estimation in IPSF for the regions of missing data and penumbra. pTV was finally used to reconstruct the CBCT image for a Catphan, and was compared to conventional CBCT image without using SMOG, images without using IPSF (SMOG + FDK and SMOG + mask-TV), and image without using pTV (SMOG + IPSF + FDK). Results: The conventional CBCT without using SMOG shows apparent scatter-induced cup artifacts. The approaches with SMOG but without IPSF show severe (SMOG + FDK) or additional (SMOG + TV) artifacts, possibly due to using projections of missing data. The 2 approaches with SMOG + IPSF removes the cup artifacts, and the pTV approach is superior than the FDK by substantially reducing the noise. Using the SMOG also reduces half of the imaging dose. Conclusion: The proposed technique is promising in improving CBCT image quality while reducing imaging dose.

  17. WE-EF-207-08: Improve Cone Beam CT Using a Synchronized Moving Grid, An Inter-Projection Sensor Fusion and a Probability Total Variation Reconstruction

    International Nuclear Information System (INIS)

    Zhang, H; Kong, V; Jin, J; Ren, L; Zhang, Y; Giles, W

    2015-01-01

    Purpose: To present a cone beam computed tomography (CBCT) system, which uses a synchronized moving grid (SMOG) to reduce and correct scatter, an inter-projection sensor fusion (IPSF) algorithm to estimate the missing information blocked by the grid, and a probability total variation (pTV) algorithm to reconstruct the CBCT image. Methods: A prototype SMOG-equipped CBCT system was developed, and was used to acquire gridded projections with complimentary grid patterns in two neighboring projections. Scatter was reduced by the grid, and the remaining scatter was corrected by measuring it under the grid. An IPSF algorithm was used to estimate the missing information in a projection from data in its 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct the initial CBCT image using projections after IPSF processing for pTV. A probability map was generated depending on the confidence of estimation in IPSF for the regions of missing data and penumbra. pTV was finally used to reconstruct the CBCT image for a Catphan, and was compared to conventional CBCT image without using SMOG, images without using IPSF (SMOG + FDK and SMOG + mask-TV), and image without using pTV (SMOG + IPSF + FDK). Results: The conventional CBCT without using SMOG shows apparent scatter-induced cup artifacts. The approaches with SMOG but without IPSF show severe (SMOG + FDK) or additional (SMOG + TV) artifacts, possibly due to using projections of missing data. The 2 approaches with SMOG + IPSF removes the cup artifacts, and the pTV approach is superior than the FDK by substantially reducing the noise. Using the SMOG also reduces half of the imaging dose. Conclusion: The proposed technique is promising in improving CBCT image quality while reducing imaging dose

  18. Plasma waves produced by an ion beam: observations by the VLF experiment on Porcupine

    International Nuclear Information System (INIS)

    Jones, D.

    1980-01-01

    Results are presented from the VLF electric field experiments flown on Porcupine flights F3 and F4, which also had ejectable xenon ion sources. The xenon ion beam was found to produce plasma instabilities whose frequencies could be linked to the local proton gyrofrequency fsub(cH + ). The main energy in the instabilities lies at approximately 3kHz for events when the Xe + source is close to the rocket, and at approximately 7kHz when the source is farther away. Theory predicts that these frequencies should be the lower-hybrid-resonance and this implies that Xe + is the dominant ion in the first case and that it is the ambient plasma that dominates later. There is no discernable antenna spin-modulation during the Xe events which indicates that the wave k-vectors are not unidirectional. A theory is cited based on the 'setting up' of the proton cyclotron harmonic waves by the Xe + or O + cyclotron harmonic waves. The second Xe + event on both flights exhibited an, as yet, unexplained harmonic structure related to fsub(cH + )/2. (Auth.)

  19. Propagation of 3D internal gravity wave beams in a slowly varying stratification

    Science.gov (United States)

    Fan, Boyu; Akylas, T. R.

    2017-11-01

    The time-mean flows induced by internal gravity wave beams (IGWB) with 3D variations have been shown to have dramatic implications for long-term IGWB dynamics. While uniform stratifications are convenient both theoretically and in the laboratory, stratifications in the ocean can vary by more than an order of magnitude over the ocean depth. Here, in view of this fact, we study the propagation of a 3D IGWB in a slowly varying stratification. We assume that the stratification varies slowly relative to the local variations in the wave profile. In the 2D case, the IGWB bends in response to the changing stratification, but nonlinear effects are minor even in the finite amplitude regime. For a 3D IGWB, in addition to bending, we find that nonlinearity results in the transfer of energy from waves to a large-scale time-mean flow associated with the mean potential vorticity, similar to IGWB behavior in a uniform stratification. In a weakly nonlinear setting, we derive coupled evolution equations that govern this process. We also use these equations to determine the stability properties of 2D IGWB to 3D perturbations. These findings indicate that 3D effects may be relevant and possibly fundamental to IGWB dynamics in nature. Supported by NSF Grant DMS-1512925.

  20. The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam

    International Nuclear Information System (INIS)

    Jiang Lina; Wang Hongyu; Sun Peng

    2014-01-01

    The theory of slow backward-wave amplifications is developed based on electron cyclotron maser (ECM) mechanism employing an initially rectilinear beam. A nonlinear evolution equation is derived to describe the electron energy. Numerical calculations show that the saturated interaction efficiency in this system may exceed 20%, and the saturated interaction length spans 3–6 centimeters. The distinctive interaction mechanism is promising for the design of compact backward microwave amplification devices. Numerical studies are also presented for the slow-wave ECM efficiency with inclusion of Gaussian beam electron velocity spread. It is shown that the velocity spread reduces the interaction efficiency. (basic plasma phenomena)

  1. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    Science.gov (United States)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  2. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    Science.gov (United States)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  3. Stress and displacement analysis of a core plate, i.e. grid-perforated plate compound, modelled as an equivalent beam system

    International Nuclear Information System (INIS)

    Frank, R.; Engel, R.

    1979-01-01

    The core support plate is a very important component of the reactor pressure vessel internals. Therefore, an exact stress analysis is desired. This analysis will cause high computer costs with a detailed FEM-model because of the complexity of this compound system. In this paper, a method is suggested to solve the problem with a much cheaper beam element model. The main problem is to establish an equivalent beam system with nearly the same stiffness property as the perforated circular plate stiffened by a grid. Furthermore, the system must allow to determine the maximum stresses with sufficient accuracy. The calculation of the equivalent beam stiffness is based on the analysis of perforated plates by T. SLOT and W.J. O'DONNELL. This analysis method utilizes the concept of the equivalent solid plate. In this method, the perforated plate is replaced by a solid one which is geometrically similar to the perforated plate but has modified values of the elastic constants. The simple equivalent beam system of one half of the core support plate (symmetry) was loaded with a pressure difference and stresses and displacements were analysed. After that, these results were compared with the stress and displacement analysis of a part of the real structure. This substructure was discretized by three-dimensional 20-node brick-elements. The comparison of the results of the two models shows that the stresses and displacements, calculated with the simple beam model, are in good agreement with those of the real structure. (orig.)

  4. Common analysis of the relativistic klystron and the standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-07-01

    This paper summarizes a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ''coupling impedance'' for both the RK and SWFEL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. The analysis allows, for the first time, a relative comparison of the RF and SWFEL TBAs

  5. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  6. A universal parameterization of chaos in various beam-wave interactions

    International Nuclear Information System (INIS)

    Lee, Jae Koo; Lee, Hae June; Hur, Min Sup; Bae, InDeog; Yang, Yi

    1998-01-01

    The comprehensive parameter space of sell-oscillation and its period-doubling route to chaos are shown for a bounded collisionless beam-plasma system. In this parameterization, it is helpful to use a potentially universal parameter in close analogy with free-electron-laser chaos. A common parameter, which is related to the velocity slippage and the ratio of bounce to oscillation frequencies, is shown to have similar significance for different physical systems. This single parameter replaces the dependences on many input parameters, thus suitable for a simplifying and diagnostic measure of nonlinear dynamical and chaotic phenomena for various systems of particle-wave interactions. The results of independent kinetic-simulations verify those of nonlinear fluid-simulations. Other standard routes to chaos via intermittent or quasiperiodic oscillations are also shown for the undriven plasma systems. Some correlation of linear characteristics to nonlinear phenomena was noted. (author)

  7. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    International Nuclear Information System (INIS)

    Zhou, X.L.; McMichael, G.E.

    1994-01-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 x 10 9 n/cm 2 s epithermal flux with 7 x 10 5 γ/cm 2 s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 x 10 7 n/cm 2 s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E p = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL

  8. The Analysis of Stress Waves at a Junction of Beam and String

    Directory of Open Access Journals (Sweden)

    Mu Chen

    2018-01-01

    Full Text Available In the bridge engineering, there are some problems about the dynamics that traditional theory cannot solve. So, the theory about stress waves is introduced to solve the related problems. This is a new attempt that the mechanic theory is applied to practical engineering. The stress wave at a junction of the structure composed of beams and strings is investigated in this paper. The structure is studied because the existence of a soft rope makes the transmission of the force in the bridge structure different from the traditional theory, and it is the basis for further research. The equilibrium equations of the displacement and the internal force are built based on the hypothesis. The fast Fourier transform (FFT numerical algorithm is used to express an incident pulse of arbitrary shape. The analytical solutions are substantiated by comparing with the finite element programs. The conclusion that if the cross section of the string is relatively small, then the energy density of the structure is relatively large, which is disadvantageous to the structure, can be obtained from this paper.

  9. Beam-wave interaction in periodic and quasi-periodic structures. 2. ed.

    International Nuclear Information System (INIS)

    Schaechter, Levi

    2011-01-01

    The main theme of this book is the interaction of electrons with electromagnetic waves in the presence of periodic and quasi-periodic structures in vacuum, in view of applications in the design and operation of particle accelerators. The first part of the book is concerned with the textbook-like presentation of the basic material, in particular reviewing elementary electromagnetic phenomena and electron dynamics. The second part of the book describes the current models for beam-wave interactions with periodic and quasi-periodic structures. This is the basis for introducing, in the last part of the book, a number of particle and radiation sources that rest on these principles, in particular the free-electron laser, wake-field acceleration schemes and a number of other advanced particle accelerator concepts. This second edition brings this fundamental text up-to-date in view of the enormous advances that have been made over the last decade since the first edition was published. All chapters, as well as the bibliography, have been significantly revised and extended, and the number of end-of-chapter exercises has been further increased to enhance this book's usefulness for teaching specialized graduate courses. (orig.)

  10. Hydrodynamics of triangular-grid arrays of floating point-absorber wave energy converters with inter-body and bottom slack-mooring connections

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, Pedro C.; Falcao, Antonio F. de O.; Gato, Luiz M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Justino, Paulo A.P. [Laboratorio Nacional de Energia e Geologia, 1649-038 Lisboa (Portugal)

    2009-07-01

    It may be convenient that dense arrays of floating point absorbers are spread-moored to the sea bottom through only some of their elements (possibly located in the periphery), while the other array elements are prevented from drifting and colliding with each other by connections to adjacent elements. An array of identical floating point absorbers located at the grid points of an equilateral triangular grid is considered in the paper. A spread set of slack-mooring lines connect the peripheric floaters to the bottom. A weight is located at the centre of each triangle whose function is o pull the three floaters towards each other and keep the inter-body moorings lines under tension. The whole system - buoys, moorings and power take-off systems - is assumed linear, so that a frequency domain analysis may be employed. Hydrodynamic interference between the oscillating bodies is neglected. Equations are presented for a set of three identical point absorbers. This is then extended to more complex equilateral iriangular grid arrays. Results from numerical simulations, with regular and irregular waves, are presented for the motions and power absorption of hemispherical converters in arrays of three and seven elements and different mooring and power take-off parameters, and wave incidence angles. Comparisons are given with the unmoored and independently-moored buoy situations.

  11. The influence of air-filled structures on wave propagation and beam formation of a pygmy sperm whale (Kogia breviceps) in horizontal and vertical planes.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen

    2017-10-01

    The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.

  12. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    Directory of Open Access Journals (Sweden)

    Shimozuma T.

    2015-01-01

    Full Text Available In a high power Electron Cyclotron Resonance Heating (ECRH system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  13. The interaction between a relativistic electron beam and a slow electromagnetic wave in a waveguide that is partially filled with a dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.T.; Nikolov, N.A.

    1979-01-01

    The problem of the excitation of microwaves during the propagation of a relativistic electron beam through a waveguide which is partially filled with a dielectric is solved using Maxwell equations and relativistic magnetic hydrodynamics. Two cases are found in which the beam-excited wave has a single mode (it is coherent). For one of the coherent waves, the saturation amplitude and the efficiency of converting the beam energy into electomagnetic field energy are determined.

  14. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    International Nuclear Information System (INIS)

    Tan, Sirui; Huang, Lianjie

    2014-01-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion

  15. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    Science.gov (United States)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  16. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex

    DEFF Research Database (Denmark)

    Dohn, A. O.; Jónsson, E. Ö.; Levi, Gianluca

    2017-01-01

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory...... and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H2O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds...

  17. Dynamics of positron beam from a convertor target while beam additional accelerating in a travelling wave electron linac

    International Nuclear Information System (INIS)

    Dzhilavyan, L.Z.; Karev, A.I.

    1981-01-01

    The results of experimental and theoretical investigations of the dynamics of a positron beam produced in a tantalum converter of the 6 mm thickness in the process of beam reacceleration in an electron linac (ELA) are presented. The mean finite positron currents and their dependences on the accelerating electric field are measured. The energy spectra of accelerated positrons are given. A good agreement between the calculated and experimental data is shown. As a result of investigations some peculiarities of positron production on the ELA intersection targets, which are defined by both the initial positron beam parameters from the converter and the dynamics of positron reacceleration in the ELA [ru

  18. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shimin, E-mail: gsm861@126.com; Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn [School of Mathematics and Statistics, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-11-15

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numerically investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.

  19. Coherent effects in relativistic electron beams radiation in the presence of beat waves; Kogerentnye ehffekty v izluchenii relyativistskogo ehlektronnogo sgustka pri nalichii voln bienij

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, L A; Shamamian, A N

    1992-12-31

    The problem of relativistic electron beam-laser beat waves interaction is considered. Due to interaction the electron density is changed as opposed to the case, when it interacts with still electron plasma, the change of density gets less. But it is interesting to research the coherent spontaneous radiation of the electron beam interacting with. It is shown that this interaction brings to an increase of the partial coherent effect. The radiation efficiency depends essentially on the beam parameters, i.e. on the radio of the distinctive longitudinal dimension density. The maximum amplification takes place when the beam length makes room for an odd number of wave length quarters. Since the gain factor decreases with the radiation wave length, we offer to use high-current relativistic electron beams to generate micro radio waves. 4 refs.

  20. Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure

    Energy Technology Data Exchange (ETDEWEB)

    Gee, Anthony; Shin, Young-Min

    2013-01-01

    A multi-beam traveling wave amplifier designed with an overmoded staggered double grating array was examined by small signal analysis combined with simulation. Eigenmode and S-parameter analyses show that the 2cm long slow wave structure (SWS) has 1-5dB insertion loss over the passband (TM31 mode) with ~28% cold bandwidth. Analytic gain calculation indicates that in the SWS, TM31-mode is amplified with 15–20 dB/beam at 64–84GHz with three elliptical beams of 10kV and 150mA/beam, which was compared with particle-in-cell (PIC) simulations. PIC analysis on the analysis of instability with zero-input driving excitations demonstrated that background noises and non-operating lower order modes are noticeably suppressed by implanting equidistant dielectric absorbers; the overmoded structure only allowed the desired 3rd order mode to propagate in the structure. The designed circuit structure can be widely applied to multi-beam devices for high power RF generation.

  1. Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure

    International Nuclear Information System (INIS)

    Gee, Anthony; Shin, Young-Min

    2013-01-01

    A multi-beam traveling wave amplifier designed with an overmoded staggered double grating array was examined by small signal analysis combined with simulation. Eigenmode and S-parameter analyses show that the 2 cm long slow wave structure (SWS) has 1–5 dB insertion loss over the passband (TM 31 mode) with ∼28% cold bandwidth. Analytic gain calculation indicates that in the SWS, TM 31 -mode is amplified with 15–20 dB/beam at 64–84 GHz with three elliptical beams of 10 kV and 150 mA/beam, which was compared with particle-in-cell (PIC) simulations. PIC analysis on the analysis of instability with zero-input driving excitations demonstrated that background noises and non-operating lower order modes are noticeably suppressed by implanting equidistant dielectric absorbers; the overmoded structure only allowed the desired 3rd order mode to propagate in the structure. The designed circuit structure can be widely applied to multi-beam devices for high power RF generation

  2. Pierce-type dispersion relation for an intense relativistic electron beam interacting with a slow-wave structure

    International Nuclear Information System (INIS)

    Chen, C.

    1994-01-01

    A Pierce-type dispersion relation is derived for the interaction of an intense relativistic electron beam with a cylindrical slow-wave structure of arbitrary corrugation depth. It is shown that near a resonance, the Pierce parameter can be expressed in terms of the vacuum dispersion function and the beam current. The dispersion relation is valid in both the low-current (Compton) regime and the high-current (Raman) regime. The dispersion characteristics of the interaction, such as the linear instability growth rate and bandwidth, are analyzed for both regimes

  3. Electrostatic mechanism of shaping the wave micro-relief on the surface of a semiconductor, sputtered by an ion beam

    International Nuclear Information System (INIS)

    Grigor'ev, A.I.

    2000-01-01

    The effect of the electric field formed due to the surface charging, is not accounted for in the weakly-developed theoretical models for the ordered micro-relief formation on the surface of a semiconductor under the impact of an ion beam. It is shown, that the problem on modeling the physical mechanism of forming the ordered wave micro-relief on the semiconductor surface under the impact of a high-energy ion beam may be interpreted as an electrostatic one [ru

  4. Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus’kov, S.Yu.; Kalinowska, Z.; Badziak, J.; Batani, D.; Antonelli, L.; Folpini, G.; Maheut, Y.; Baffigi, F.; Borodziuk, S.; Chodukowski, T.; Cristoforetti, G.; Demchenko, N. N.; Gizzi, L.A.; Kasperczuk, A.; Koester, P.; Krouský, Eduard; Labate, L.; Parys, P.; Pfeifer, Miroslav; Renner, Oldřich; Šmíd, Michal; Rosinski, M.; Skála, Jiří; Dudžák, Roman; Ullschmied, Jiří; Pisarczyk, P.

    2014-01-01

    Roč. 21, č. 1 (2014), 012708/1-012708/7 ISSN 1070-664X R&D Projects: GA MŠk LM2010014; GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Energy transfer * laser ablation * shock waves * plasma waves * laser beam effects Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 2.142, year: 2014 http://scitation.aip.org/content/aip/journal/pop/21/1/10.1063/1.4862784

  5. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  6. Resiliency of the Nation's Power Grid: Assessing Risks of Premature Failure of Large Power Transformers Under Climate Warming and Increased Heat Waves

    Science.gov (United States)

    Schlosser, C. A.; Gao, X.; Morgan, E.

    2017-12-01

    The aging pieces of our nation's power grid - the largest machine ever built - are at a critical time. Key assets in the transmission system, including large power transformers (LPTs), are approaching their originally designed lifetimes. Moreover, extreme weather and climate events upon which these design lifetimes are partially based are expected to change. In particular, more frequent and intense heat waves can accelerate the degradation of LPTs' insulation/cooling system. Thus, there are likely thousands of LPTs across the United States under increasing risk of premature failure - yet this risk has not been assessed. In this study, we investigate the impact of climate warming and corresponding shifts in heat waves for critical LPTs located in the Northeast corridor of the United States to assess: To what extent do changes in heat waves/events present a rising threat to the transformer network over the Northeast U.S. and to what extent can climate mitigation reduce this risk? This study focuses on a collection of LPTs with a high degree of "betweenness" - while recognizing other factors such as: connectivity, voltage rating, MVA rating, approximate price, weight, location/proximity to major transportation routes, and age. To assess the risk of future change in heat wave occurrence we use an analogue method, which detects the occurrence of heat waves based on associated large-scale atmospheric conditions. This method is compared to the more conventional approach that uses model-simulated daily maximum temperature. Under future climate warming scenarios, multi-model medians of both methods indicate strong increases in heat wave frequency during the latter half of this century. Under weak climate mitigation - the risks imposed from heat wave occurrence could quadruple, but a modest mitigation scenario cuts the increasing threat in half. As important, the analogue method substantially improves the model consensus through reduction of the interquartile range by a

  7. Modeling of Synergy Between 4th and 6th Harmonic Absorptions of Fast Waves on Injected Beams in DIII-D Tokamak

    International Nuclear Information System (INIS)

    Choi, M.; Pinsker, R. I.; Chan, V. S.; Muscatello, C. M.; Jaeger, E. F.

    2011-01-01

    In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6 th harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4 th harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4 th harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6 th harmonic FW on beam ion tails to produce synergy.

  8. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-01-01

    Full Text Available Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14 and high (L > 2.14 geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36 in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from

  9. Radiation from a Relativistic Electron Beam in a Molecular Medium due to Parametric Pumping by a Strong Electromagnetic Wave,

    Science.gov (United States)

    1981-02-01

    UNIVERSITY OF MARYLAND DEPARTMENT OF PHYSICS 4WJD ASTRONOMY COLLG PAM A 2 3i 81 4 30) 235. RADIATION FROM A .ELATIVISTIC_§LECTRON BEAM IN AZOLECULAR...A MOLECULAR MEDIUM DUE TO PARAMETRIC PUMPING BY A STRONG ELECTROMAGNETIC WAVE L. Stenflo Department of Plasma Physics Umel University S-90187 Umel...GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81

  10. Topology optimization of reinforced concrete beams by a spread-over reinforcement model with fixed grid mesh

    Directory of Open Access Journals (Sweden)

    Benjapon Wethyavivorn

    2011-02-01

    Full Text Available For this investigation, topology optimization was used as a tool to determine the optimal reinforcement for reinforcedconcrete beam. The topology optimization process was based on a unit finite element cell with layers of concrete and steel.The thickness of the reinforced steel layer of this unit cell was then adjusted when the concrete layer could not carry thetensile or compressive stress. At the same time, unit cells which carried very low stress were eliminated. The process wasperformed iteratively to create a topology of reinforced concrete beam which satisfied design conditions.

  11. Impedance-based analysis and study of phase sensitivity in slow-wave two-beam accelerators

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-06-01

    This paper presents a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ''coupling impedance'' for both the RK and SWFEWL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. Expressions are derived for the phase and amplitude sensitivities of the TBA schemes to errors (shot-to-shot jitter) in current and energy. The analysis allows, for the first time, relative comparisons of the RK and the SWFEL TBAs

  12. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source

    Science.gov (United States)

    Shen, Yizhu; Yang, Jiawei; Meng, Hongfu; Dou, Wenbin; Hu, Sanming

    2018-04-01

    Metasurfaces, orbital angular momenta (OAM), and non-diffractive Bessel beams have been attracting worldwide research. Combining the benefits of these three promising techniques, this paper proposes a metasurface-based reflective-type approach to generate a first-order Bessel beam carrying OAM. To validate this approach, a millimeter-wave metasurface is analyzed, designed, fabricated, and measured. Experimental results agree well with simulation. Moreover, this reflective-type metasurface, generating a Bessel beam with OAM, is inherently integrated with a planar feeding source in the same single-layer printed circuit board. Therefore, the proposed design features low profile, low cost, easy integration with front-end active circuits, and no alignment error between the feeding source and the metasurface.

  13. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    Science.gov (United States)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  14. Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer

    Science.gov (United States)

    Fukunari, Masafumi; Wongsuryrat, Nat; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2017-02-01

    This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.

  15. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  16. Wave Power as Solution for Off-Grid Water Desalination Systems: Resource Characterization for Kilifi-Kenya

    Directory of Open Access Journals (Sweden)

    Francisco Francisco

    2018-04-01

    Full Text Available Freshwater scarcity is one of humanity’s reoccurring problems that hamper socio-economic development in many regions across the globe. In coastal areas, seawater can be desalinated through reverse osmosis (RO and transformed into freshwater for human use. Desalination requires large amounts of energy, mostly in the form of a reliable electricity supply, which in many cases is supplied by diesel generators. The objective of this work is to analyze the wave power resource availability in Kilifi-Kenya and evaluate the possible use of wave power converter (WEC to power desalination plants. A particular focus is given use of WECs developed by Uppsala University (UU-WEC. The results here presented were achieved using reanalysis—wave data revealed that the local wave climate has an approximate annual mean of 7 kW/m and mode of 5 kW/m. Significant wave height and wave mean period are within 0.8–2 m and 7–8 s respectively, with a predominant wave mean direction from southeast. The seasonal cycle appeared to be the most relevant for energy conversion, having the highest difference of 6 kW/m, in which April is the lowest (3.8 kW/m and August is the peak (10.5 kW/m. In such mild wave climates, the UU–WEC and similar devices can be suitable for ocean energy harvesting for water desalination systems. Technically, with a capacity factor of 30% and energy consumption of 3 kWh/m3, a coastal community of about five thousand inhabitants can be provided of freshwater by only ten WECs with installed capacity of 20 kW.

  17. Parametric Excitations of Fast Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Shvets, G.; Fisch, N.J.

    2001-01-01

    Short- and long-wavelength plasma waves can become strongly coupled in the presence of two counter-propagating laser pump pulses detuned by twice the cold plasma frequency. What makes this four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in the more obvious co-propagating geometry

  18. SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiansen; Pei, Zhongtian; Wang, Linghua; Tu, Chuanyi; Zhang, Lei [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Salem, Chadi, E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-06-01

    Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover, no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.

  19. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  20. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Enhancement of photorefractive two wave mixing gain with a Bessel pump beam

    International Nuclear Information System (INIS)

    Biswas, Dhruba J.; Padma Nilaya, J.; Danailov, Miltcho, B.

    2001-07-01

    The performance of a photo-refractive amplifier has been shown to greatly improve when a diffraction free beam is employed as the pump source. It has been established experimentally that this behaviour owes primarily to the ability of this beam to propagate in the photo-refractive crystal will less fanning. A qualitative explanation for the reduction of fanning with Bessel beam is offered. (author)

  2. Excitation of lower hybrid waves by electron beams in finite geometry plasmas

    International Nuclear Information System (INIS)

    Shoucri, M.m.; Gagne, R.R.J.

    1978-01-01

    The quasi-static lower hybrid eigenmodes of a plasma column in a cylindrical waveguide are determined, and their linear excitation by a small density electron beam is discussed for the cases of a hot electron beam as well as for a cold electron beam. It is shown that under certain conditions, finite geometry effects introduce important quantitative and qualitative differences with respect to the results obtained in an infinite geometry. (author)

  3. An efficient hexagonal switched beam antenna structure based on Fabry-Perot cavity leaky-wave antenna

    Science.gov (United States)

    Aymen El Cafsi, Mohamed; Nedil, Mourad; Osman, Lotfi; Gharsallah, Ali

    2015-11-01

    A novel design of switched beam antenna (SBA) system based on Fabry-Perot cavity leaky-wave antenna (FPC LWA) is designed and fabricated for base station operating in the unlicensed ISM central frequency band at 5.8 GHz of the wireless local area network (WLAN) standard. The proposed SBA is designed with hexagonal shape of FPC LWA Arrays in order to get 360° of coverage. The single element of FPC LWA array is composed of a patch antenna and covered by a Partially Reflective Surface (PRS), which is composed of a Metal Strip Grating and printed on a high permittivity Superstrate. First, the Transmission Line Model of FPC LWA is introduced to analyse and calculate the far-field components in E- and H planes by using the Transverse Equivalent Network. This approach is then compared with other full wave's commercial software such as Ansoft HFSS and CST Microwave Studio. Second, a parametric study is performed to evaluate the effect of the angle formed by the two successive FPC LWA on the radiation efficiency of the activate sector. To examine the performance of the proposed SBA, experimental prototype was fabricated and measured. As a result, multiple orthogonal beams (six beams) of 10 dBi of gain with low Side Lobes Level and 360° of coverage are produced. This SBA structure is suitable for WLAN communication systems.

  4. Theoretical aspects of the electronical devices operating due to interaction between annular electron beams and the azimuthal surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Girka, V O; Girka, I O [Kharkiv State Univ. (Ukraine)

    1997-12-31

    The physical basis is discussed of electronic devices whose operation is based on the beam or dissipative instability of the azimuthal surface waves (ASW). The ASW are electromagnetic surface waves with extraordinary polarization (with field components E{sub r}, E{sub {phi}}, H{sub z}), propagating across the axial external steady magnetic field in the cylindrical metal waveguide with cold plasma filling. The ASW fields are described by Maxwell equations. To solve the problem, the authors used the Fourier method and numerical simulation of the equations obtained. The ASW excitation was examined under conditions of beam and dissipative instabilities due to the electron beam motion. The correction to ASW eigenfrequencies caused by the waveguide chamber noncircularity was also studied. ASW delaying leads to a negative frequency correction. The ASW energy can be emitted from the narrow slot in the metallic chamber of the waveguide. The optimum wavenumber range was found where the increment values are much greater than those of the ASW decrement caused by their energy radiation. (author). 2 figs., 3 refs.

  5. Substrate-Integrated Waveguide PCB Leaky-Wave Antenna Design Providing Multiple Steerable Beams in the V-Band

    Directory of Open Access Journals (Sweden)

    Matthias Steeg

    2017-12-01

    Full Text Available A periodic leaky-wave antenna (LWA design based on low loss substrate-integrated waveguide (SIW technology with inset half-wave microstrip antennas is presented. The developed LWA operates in the V-band between 50 and 70 GHz and has been fabricated using standard printed circuit board (PCB technology. The presented LWA is highly functional and very compact supporting 1D beam steering and multibeam operation with only a single radio frequency (RF feeding port. Within the operational 50–70 GHz bandwidth, the LWA scans through broadside, providing over 40° H-plane beam steering. When operated within the 57–66 GHz band, the maximum steering angle is 18.2°. The maximum gain of the fabricated LWAs is 15.4 dBi with only a small gain variation of +/−1.5 dB across the operational bandwidth. The beam steering and multibeam capability of the fabricated LWA is further utilized to support mobile users in a 60 GHz hot-spot. For a single user, a maximum wireless on-off keying (OOK data rate of 2.5 Gbit/s is demonstrated. Multibeam operation is achieved using the LWA in combination with multiple dense wavelength division multiplexing (WDM channels and remote optical heterodyning. Experimentally, multibeam operation supporting three users within a 57–66 GHz hot-spot with a total wireless cell capacity of 3 Gbit/s is achieved.

  6. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes

    International Nuclear Information System (INIS)

    Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei

    2015-01-01

    Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under −15 dB, transmission up to −1.5 dB, and meanwhile isolation under −20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation

  7. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wang, Shafei [North Electronic Device Research Institution, P.O. Box 947, Beijing 100141 (China)

    2015-06-15

    Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under −15 dB, transmission up to −1.5 dB, and meanwhile isolation under −20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation.

  8. Different roles of electron beam in two stream instability in an elliptical waveguide for generation and amplification of THz electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S.; Jazi, B., E-mail: jaziada@kashanu.ac.ir [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Jahanbakht, S. [Department of Communications Engineering, Faculty of Electrical And Computer Engineering, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-08-15

    In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electron beam plays a stabilizing role.

  9. Stability analysis of Hasegawa space-charge waves in a plasma waveguide with collisional ion beam

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-12-01

    The dispersion relation for the Hasegawa space-charge wave propagating in a cylindrical waveguide dusty plasma containing collision-dominated ion stream is derived by using the fluid equations and the Poisson equation which lead to a Bessel equation. The solution of Bessel equation is null at the boundary and then the roots of the Bessel function would characterize the property of space-charge wave propagation. We have found that the Hasegawa space-charge wave can be excited for a large axial wave number. The growth rate of excitation increases as the order of the roots of the Bessel function increases. The growth rate decreases with an increase of the radius of cylindrical waveguide as well as with an increase of the collision frequency. We found that the disturbance of wave can be damped only for small wave numbers.

  10. Beam steered millimeter-wave fiber-wireless system for 5G indoor coverage

    NARCIS (Netherlands)

    Cao, Z.; Wang, Q.; Tessema, N.M.; Leijtens, X.J.M.; Soares, F.M.; Koonen, A.M.J.

    2016-01-01

    A 38GHz beam steered fiber-wireless system, enabled by a novel integrated optical tunable delay line, is demonstrated for 5G indoor coverage. The beam steering gains 14dBm spatial power focusing and 6 times EVM improvement.

  11. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters

    International Nuclear Information System (INIS)

    Schaefer, B.; Luebbecke, M.; Mann, K.

    2006-01-01

    The suitability of the Hartmann-Shack technique for the determination of the propagation parameters of a laser beam is faced against the well known caustic approach according to the ISO 11146 standard. A He-Ne laser (543 nm) was chosen as test beam, both in its fundamental mode as well as after intentional distortion, introducing a moderate amount of spherical aberration. Results are given for the most important beam parameters M 2 , divergence, and beam widths, indicating an agreement of better than 10% and for adapted beam diameter <5%. Furthermore, the theoretical background, pros and cons, as well as some features of the software implementation for the Hartmann-Shack sensor are briefly reviewed

  12. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  13. SU-D-12A-01: An Inter-Projection Interpolation (IPI) Approach for the Synchronized Moving Grid (SMOG) to Reduce Dose in Cone Beam CT

    International Nuclear Information System (INIS)

    Zhang, H; Kong, V; Jin, J; Ren, L

    2014-01-01

    Purpose: Synchronized moving grid is a promising technique to reduce scatter and ghost artifacts in cone beam computed tomography (CBCT). However, it requires 2 projections in the same gantry angle to obtain full information due to signal blockage by the grid. We proposed an inter-projection interpolation (IPI) method to estimate blocked signals, which may reduce the scan time and the dose. This study aims to provide a framework to achieve a balance between speed, dose and image quality. Methods: The IPI method is based on the hypothesis that an abrupt signal in a projection can be well predicted by the information in the two immediate neighboring projections if the gantry angle step is small. The study was performed on a Catphan and a head phantom. The SMOG was simulated by erasing the information (filling with “0”) of the areas in each projection corresponding to the grid. An IPI algorithm was applied on each projection to recover the erased information. FDK algorithm was used to reconstruct CBCT images for the IPI-processed projections, and compared with the original image in term of signal to noise ratio (SNR) measured in the whole reconstruction image range. The effect of gantry angle step was investigated by comparing the CBCT images from projection sets of various gantry intervals, with IPI-predicted projections to fill the missing projection in the interval. Results: The IPI procession time was 1.79s±0.53s for each projection. SNR after IPI was 29.0db and 28.1db for the Catphan and head phantom, respectively, comparing to 15.3db and 22.7db for an inpainting based interpolation technique. SNR was 28.3, 28.3, 21.8, 19.3 and 17.3 db for gantry angle intervals of 1, 1.5, 2, 2.5 and 3 degrees, respectively. Conclusion: IPI is feasible to estimate the missing information, and achieve an reasonable CBCT image quality with reduced dose and scan time. This study is supported by NIH/NCI grant 1R01CA166948-01

  14. SU-E-I-08: An Inpaint-Based Interpolation Technique to Recover Blocked Information for Cone Beam CT with a Synchronized Moving Grid (SMOG)

    International Nuclear Information System (INIS)

    Kong, V; Zhang, H; Jin, J; Ren, L

    2014-01-01

    Purpose: Synchronized moving grid (SMOG) is a promising technique to reduce scatter and ghost artifacts in cone beam computed tomography (CBCT). However, the grid blocks part of image information in each projection, and multiple projections at the same gantry angle have to been taken to obtain full information. Because of the continuity of a patient's anatomy in the projection, the blocked information may be estimated by interpolation. This study aims to evaluate an inpainting-based interpolation approach to recover the missing information for CBCT reconstruction. Method: We used a simple region-based inpainting approach to interpolate the missing information. For a pixel to be interpolated, we divided the nearby regions having image information into 6 sub-regions: up-left, up-middle, up-right, down-left, down-middle, and down-right, each with 9 pixels. The average pixel value of each sub-region was calculated. These average values, along with the pixel location, were used to determine the interpolated pixel value. We compared our approach with the Criminisi Exemplar (CE) and total variation (TV) based inpainting techniques. Projection images of Catphan and a head phantom were used for the comparison. The SMOG was simulated by erasing the information (filling with “0”) of the areas in each projection corresponding to the grid. Results: For the Catphan, the processing time was 178, 45 and 0.98 minutes for CE, TV and our approach, respectively. The signal to noise ratio (SNR) was 19.4, 18.5 and 26.4 db, correspondingly. For the head phantom, the processing time was 222, 45 and 0.93 minutes for CE, TV and our approach, respectively. The SNR was 24.6, 20.2 and 26.2db correspondingly. Conclusion: We have developed a simple inpainting based interpolation approach, which can recover some of the image information for the SMOG-based CBCT imaging. This study is supported by NIH/NCI grant 1R01CA166948-01

  15. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Science.gov (United States)

    Pickett, J. S.; Chen, L.-J.; Santolík, O.; Grimald, S.; Lavraud, B.; Verkhoglyadova, O. P.; Tsurutani, B. T.; Lefebvre, B.; Fazakerley, A.; Lakhina, G. S.; Ghosh, S. S.; Grison, B.; Décréau, P. M. E.; Gurnett, D. A.; Torbert, R.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.

    2009-06-01

    Electrostatic Solitary Waves (ESWs) have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period) in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18-19 RE and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1) the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2) the EDI instrument detected bursts of field-aligned electron currents, 3) the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4) the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5) CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD) with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in more detail using the space

  16. Electrostatic solitary waves in current layers: from Cluster observations during a super-substorm to beam experiments at the LAPD

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2009-06-01

    Full Text Available Electrostatic Solitary Waves (ESWs have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18–19 RE and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1 the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2 the EDI instrument detected bursts of field-aligned electron currents, 3 the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4 the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5 CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in

  17. Interaction of the modulated electron beam with inhomogeneous plasma: plasma density profile deformation and langmuir waves excitation

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Kelnyk, O.I.; Soroka, S.V.; Siversky, T.V.

    2005-01-01

    Nonlinear deformation of the initially linear plasma density profile due to the modulated electron beam is studied via computer simulation. In the initial time period the field slaves to the instantaneous profile of the plasma density. Langmuir waves excitation is suppressed by the density profile deformation. The character of the plasma density profile deformation for the late time period depends significantly on the plasma properties. Particularly, for plasma with hot electrons quasi-periodic generation of ion-acoustic pulses takes place in the vicinity of the initial point of plasma resonance

  18. Secondary emission monitor (SEM) grids.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A great variety of Secondary Emission Monitors (SEM) are used all over the PS Complex. At other accelerators they are also called wire-grids, harps, etc. They are used to measure beam density profiles (from which beam size and emittance can be derived) in single-pass locations (not on circulating beams). Top left: two individual wire-planes. Top right: a combination of a horizontal and a vertical wire plane. Bottom left: a ribbon grid in its frame, with connecting wires. Bottom right: a SEM-grid with its insertion/retraction mechanism.

  19. Multi-bunch energy spread induced by beam loading in standing wave structure

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1995-04-01

    The interaction of a relativistic beam with the modes of the TM 010 pass-band of a multicell cavity does not cause any problem: although all the modes are excited by the RF (radiofrequency) generator, resulting in different cell excitations during the cavity filling and the beam pulse, the net accelerating field exhibits negligible fluctuations from bunch to bunch. However, when the beam is not fully relativistic, this is no more true. The phase slippage occurring in the first cells, between the non relativistic beam and the lower pass-band modes, produces an effective enhancement of the shunt impedances, which is usually negligible for a relativistic beam in a well tuned cavity. Moreover, the voltage jumps (amplitude and phase) occurring at each bunch passage, as well as the beam detuning caused by the off-crest bunches, vary from cell to cell. These effects enhance dramatically the fluctuation of the accelerating voltage, with a dominant beating provided by the pass-band mode nearest to the pi-mode. The induced beam energy spread has been estimated by the help of two distinct codes, developed at Frascati (Italy) and (Saclay), with results in good agreement. While an interaction integral is computed at each bunch passage, the cavity refilling is calculated by solving coupled differential equations of the modes of the pass-band, driven by a generator linked to one end-cell. It is shown also that the intermode coupling arises from the external Q of the drive end-cell, and not from the wall losses. For illustration, the authors applied the method to the beam-loading problem in the SC capture cavity of the low charge injector of the TESLA test facility installed at DESY

  20. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  1. Manipulation of Bloch surface waves: from subwavelength focusing to nondiffracting beam

    Science.gov (United States)

    Kim, Myun-Sik; Herzig, Hans Peter

    2018-01-01

    We present a different type of electromagnetic surface wave than a surface plasmon polariton (SPP), called Bloch surface wave (BSW). BSWs are sustained by dielectric multilayers, and therefore they do not suffer from dissipation. Their propagation length is unbeatably long, e.g., over several millimeters. Thanks to this feature, larger integrations of 2D photonic chips are realizable. To do this, 2D optical components and corresponding techniques are necessary to manipulate in-plane propagation of surface waves. We overview recent progresses of the BSW research on manipulation techniques and developed components. Our study will provide a good guideline of the BSW components for users.

  2. Excitation of plasmonic waves in metal-dielectric structures by a laser beam using holography principles

    Science.gov (United States)

    Ignatov, A. I.; Merzlikin, A. M.

    2018-03-01

    A method for development of gratings for effective excitation of surface plasmonic waves using holography principles has been proposed and theoretically analyzed. For the case of a plasmonic wave in a dielectric layer on metal, the proposed volume hologram is 1.7 times more effective than the simple grating of slits in the dielectric layer with the optimized period and slits' width. The advantage of the hologram over the optimized grating is in the refractive index distribution that accounts phase relationships between an exciting and an excited waves more correctly. The proposed holographic method is universal. As expected, this can be extended for effective excitation of different types of optical surface waves and modes of optical waveguides.

  3. Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models

    Science.gov (United States)

    Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng

    2017-02-01

    This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.

  4. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  5. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    Science.gov (United States)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  6. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    International Nuclear Information System (INIS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-01-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I_0 = 3 × 10"2"0" W/cm"2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  7. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.; Shen, X. F.; You, W. Y. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Yan, X. Q. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wu, S. Z. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, C. T.; He, X. T. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  8. Producing acoustic 'Frozen Waves': Simulated experiments with diffraction/attenuation resistant beams, in lossy media

    OpenAIRE

    Prego-Borges, Jose' L.; Zamboni-Rached, Michel; Recami, Erasmo; Tavares-Costa, Eduardo

    2013-01-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have arisen significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction (self-healing) property, after obstacles with size smaller than the antenna's; while the FWs, a sub-class of theirs, offer the possibility of arbitrarily modeling the field longitudinal int...

  9. An absorptive single-pole four-throw switch using multiple-contact MEMS switches and its application to a monolithic millimeter-wave beam-forming network

    International Nuclear Information System (INIS)

    Lee, Sanghyo; Kim, Jong-Man; Kim, Yong-Kweon; Kwon, Youngwoo

    2009-01-01

    In this paper, a new absorptive single-pole four-throw (SP4T) switch based on multiple-contact switching is proposed and integrated with a Butler matrix to demonstrate a monolithic beam-forming network at millimeter waves (mm waves). In order to simplify the switching driving circuit and reduce the number of unit switches in an absorptive SP4T switch, the individual switches were replaced with long-span multiple-contact switches using stress-free single-crystalline-silicon MEMS technology. This approach improves the mechanical stability as well as the manufacturing yield, thereby allowing successful integration into a monolithic beam former. The fabricated absorptive SP4T MEMS switch shows insertion loss less than 1.3 dB, return losses better than 11 dB at 30 GHz and wideband isolation performance higher than 39 dB from 20 to 40 GHz. The absorptive SP4T MEMS switch is integrated with a 4 × 4 Butler matrix on a single chip to implement a monolithic beam-forming network, directing beam into four distinct angles. Array factors from the measured data show that the proposed absorptive SPnT MEMS switch can be effectively used for high-performance mm-wave beam-switching systems. This work corresponds to the first demonstration of a monolithic beam-forming network using switched beams

  10. Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Kim, Myung Hwan; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2012-08-15

    Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

  11. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. A., E-mail: Ivanov@inp.nsk.su; Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Burdakov, A. V.; Sorokina, N. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Kurkuchekov, V. V.; Kuznetsov, S. A. [Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation)

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  12. Investigation of 0.38 THz backward-wave oscillator based on slotted sine waveguide and pencil electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Luqi; Wei, Yanyu; Wang, Bing; Shen, Wenan; Xu, Jin; Gong, Yubin [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Park, Gun-Sik [The Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-03-15

    A novel backward wave oscillator (BWO) is presented by utilizing a slotted sine waveguide with a pencil electron beam to produce the high power terahertz wave. The high frequency characteristics including dispersion properties, interaction impedances, and transmission characteristics of the slotted sine waveguide are analyzed in detail. The high frequency system including the output coupler, slow wave structure (SWS), and reflector are designed properly. A 3-D particle-in-cell mode is applied to predict the device performance of the BWO based on the novel SWS. The investigation results demonstrate that this device can generate over 8.05 W output power in the frequency range of 363.4–383.8 GHz by using a 30 mA pencil electron beam and adjusting the beam voltage from 20 kV to 32 kV.

  13. Zeeman-Stern Gerlach deceleration of supersonic beams of paramagnetic particles with traveling waves of magnetic field

    International Nuclear Information System (INIS)

    Trimeche, Azer

    2013-01-01

    This work focuses on the study and implementation of a new technique of deceleration of a supersonic beam of paramagnetic particles using a co-moving progressive wave of magnetic field. This technique relies on a method of slowing based on Stern-Gerlach forces acting on a paramagnetic system in motion in the presence of a co-propagating magnetic field. This highly innovative approach has the advantage of being applicable to a wide range of species and opens up new opportunities. A suitable theoretical approach is followed, that allows for a direct link between theory, programming of experimental parameters, and experimental results in a systematic, rational and predictive manner. The understanding and control of the dynamics of trapping at a given speed, acceleration and deceleration require decoupling between the transverse and longitudinal effects of the wave. These effects are clearly visible when the added uniform magnetic field limits the transverse effects of the progressive wave of magnetic field. The outlooks for the new Zeeman Stern Gerlach decelerator are numerous. Deceleration paramagnetic molecules, free radicals and neutrons are possible. (author) [fr

  14. Linear analysis of an X-band backward wave oscillator with a circular-edge disk-loaded cylindrical waveguide driven by an annular electron beam

    Science.gov (United States)

    Hasan Sagor, Rakibul; Ruhul Amin, Md.

    2017-10-01

    An X-band backward wave oscillator (BWO) with a circular-edge disk-loaded periodic metallic slow wave structure (CDSWS) is proposed and studied numerically. The structure is the modified version of our previously modeled semi-circularly corrugated slow wave structure (SCCSWS). The CDSWS is energized by an intense relativistic electron beam (IREB) which is directed by a strong magnetic field. The electromagnetic (EM) wave of the slow wave structure (SWS) merges with the space charge wave of the beam under the guidance of the strong axial magnetic field. The inner wall contour of CDSWS is modeled by a finite Fourier series and the dispersion characteristics of different TM modes are solved by utilizing the linear Rayleigh-Fourier (R-F) technique, which is verified by a commercial EM solver. To study the temporal growth rate (TGR) for the fundamental TM01 mode, the dispersion equation is solved for the beam current of 0.1-1.0kA and the beam energy of 205-665kV. For the TM01 mode, the TGR that occurs at the unstable region, which provides a qualitative index of the strength of the microwave generation, is compared with those of the BWOs with sinusoidally corrugated SWS (SCSWS), disk-loaded SWS (DLSWS) and triangularly corrugated SWS (TrCSWS) for different beam parameters. The dimension of the CDSWS is determined by comparing the dispersion characteristics of fundamental TM01 mode with DLSWS and SCSWS. For the same set of beam parameters, an average of 3.5%, 7%, 1.5% and more than 50% higher TGR have been obtained with the proposed CDSWS than that of SCSWS, DLSWS, TrCSWS and SCCSWS respectively. Moreover, the presented structure also provides an advantage in the fabrication process and is less prone to RF breakdown since it has no sharp edges in the inner wall where the electric field intensity can be infinitely high.

  15. Finite element modeling of light propagation in fruit under illumination of continuous-wave beam

    Science.gov (United States)

    Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...

  16. Angle-Beam Shear Wave Scattering from Buried Crack-like Defects in Bonded Specimens (Postprint)

    Science.gov (United States)

    2017-02-01

    defects: such as understanding the scattering behavior of fatigue cracks emanating from fastener holes in aluminum structural components [2]. Angle...Ultrasonic NDE techniques using angle-beam wedges coupled to PZT transducers have also been utilized in measuring the depth of surface-breaking cracks

  17. Ion-acoustic wave propagation in plasmas with ion beams having a finite cross section--

    International Nuclear Information System (INIS)

    Huld, T.A.; Pe'cseli, H.L.; Rasmussen, J.J.

    1990-01-01

    The propagation of a low-density-modulated ion beam with finite cross section in a homogeneous plasma is considered. Analytical expressions describing a Cerenkov-like radiation pattern are obtained. An experimental setup is described that is suitable for investigating these phenomena. The results are in qualitive agreement with the analytical expressions

  18. Over-the-air Radiated Testing of Millimeter-Wave Beam-steerable Devices in a Cost-Effective Measurement Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Rumney, Moray

    2018-01-01

    antenna selection scheme is proposed. This setup is suitable for evaluation of beam-steerable devices, including both base station (BS) and user equipment (UE) devices. The requirements for the test system design are analyzed, including the measurement range, number of OTA antennas, number of active OTA...... conditions. In this article, radiated testing methods are reviewed, with a focus on their principle and applicability for beam steerable mmWave devices. To explore the spatial sparsity of mmWave channel profiles, a cost-effective simplified 3D sectored multi-probe anechoic chamber (MPAC) system with an OTA......With the severe spectrum congestion of sub-6GHz cellular systems, large-scale antenna systems in the millimeter-wave (mmWave) bands can potentially meet the high data rate envisioned for fifth generation (5G) communications. Performance evaluation of antenna systems is an essential step...

  19. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    Science.gov (United States)

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  20. Electron-beam-induced acoustic-wave enhancement of gaseous combustion

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Bosch, R.A.; Gilgenbach, R.M.

    1989-01-01

    The combustion rate of premixed gases in a closed vessel was increased by injecting a high-current electron beam into the gas mixture within about 20 ms of spark ignition. This effect was observed with the fuels ethylene, methane, ethane, propane, and n-butane. Experimental results provide strong evidence that e-beam excitation of the fundamental longitudinal-acoustic mode of the cylindrical chamber is the mechanism of combustion enhancement. An observable combustion enhancement required that the amplitude of the fluid velocity oscillation in this acoustic mode be greater than or approximately equal to the flame propagation speed and was associated with a wrinkled or cellular flame structure with dimensions on the order of 1/2 cm. These results are in good agreement with values for the threshold acoustic velocity amplitude and dimension of cellular structure predicted for a periodically accelerated flame

  1. Use of thin films obtained by electron beam evaporation as optical wave guide

    International Nuclear Information System (INIS)

    Nobre, S.A.A.; Oliveira, C.A.S. de; Freire, G.F.de O.

    1986-01-01

    Thin films evaporated by electron beam for the fabrication of planar optical waveguides were used. The tested materials were aluminium oxide (Al 2 O 3 ) and tantalum pentoxide (Ta 2 O 5 ). The effect of annealing conditions on the film absorption was investigated for Ta 2 O 5 . The Al 2 O 3 films were characterized by the method of guided modes, in terms of refractive index measurements and film thickness. Atenuation measurements were also carried out. (M.C.K.) [pt

  2. Particle-in-cell analysis of beam-wave interaction in gyrotron cavity with tapered magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: anil.gyrotron@gmail.com [Gyrotron Lab., Microwave Tube Area, Central Electronics Engineering Research Inst. (CEERI, CSIR), Pilani, Rajasthan (India); Banasthali Univ., Dept. of Physics, Banasthali, Rajasthan (India); Khatun, H.; Kumar, N.; Singh, U.; Sinha, A.K. [Gyrotron Lab., Microwave Tube Area, Central Electronics Engineering Research Inst. (CEERI, CSIR), Pilani, Rajasthan (India); Vyas, V. [Banasthali Univ., Dept. of Physics, Banasthali, Rajasthan (India)

    2010-11-15

    A commercially available electromagnetic simulator -- MAGIC, a particle-in-cell (PIC) code -- has been used to carry out a comparative study of the beam-wave interaction under uniform and tapered magnetic field profiles of a 42 GHz, 200kW gyrotron. The magnetic field profile across the resonant cavity varies by ±6.5% with a peak value of 1.615 T. The MAGIC simulation shows the desire performance of the gyrotron under both magnetic field conditions with an operating mode TE{sub 03} and a pitch factor of 1.26. The analysis of the simulated results show that stability in the power growth was reached more quickly and achieved higher output power in the case of a tapered magnetic field. (author)

  3. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2014-12-01

    Full Text Available This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  4. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  5. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus

    Science.gov (United States)

    Bliokh, Yu. P.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  6. A parametric investigation on the cyclotron maser instability driven by ring-beam electrons with intrinsic Alfvén waves

    Science.gov (United States)

    Tong, Zi-Jin; Wang, Chuan-Bing; Zhang, Pei-Jin; Liu, Jin

    2017-05-01

    The electron-cyclotron maser is a process that generates the intense and coherent radio emission in the plasma. In this paper, we present a comprehensive parametric investigation on the electron-cyclotron-maser instability driven by non-thermal ring-beam electrons with intrinsic Alfvén waves, which pervade the solar atmosphere and interplanetary space. It is found that both forward propagating and backward propagating waves can be excited in the fast ordinary (O) and extraordinary (X) electromagnetic modes. The growth rates of X1 mode are almost always weakened by Alfvén waves. The average pitch-angle ϕ 0 of electrons is a key parameter for the effect of Alfvén waves on the growth rate of modes O1, O2, and X2. For a beam-dominated electron distribution ( ϕ 0 ≲ 30 ° ), the growth rates of the maser instability for O1, O2, and X2 modes are enhanced with the increase of the Alfvén wave energy density. In other conditions, the growth rates of O1, O2, and X2 modes weakened with the increasing Alfvén wave intensity, except that the growth of the O1 mode may also be enhanced by Alfvén waves for a ring distribution. The results may be important for us in analyzing the mechanism of radio bursts with various fine structures observed in space and astrophysical plasmas.

  7. Linear acoustic waves induced in a cylindrical solid target by particle beam in e--e+ colliders

    International Nuclear Information System (INIS)

    Adeyemi, Olufemi Segun

    2015-06-01

    A future high energy lepton collider will demand high luminosities to achieve its physics goals. For the electron-positron linear collider, the generation of the desired amount of positrons is a non-trivial problem: the positron production target has to survive huge amounts of energy deposited by the bombardment of intense beams of electrons or photons. This causes a rapid increase of the temperature in the target within a very short time period. The resulting deformation due to the induced pressure waves can substantially shorten the operating life-span of the target material. In this work, we study linear effects of induced stress in a solid target through pressure acoustic waves using continuum mechanics. We derived analytical solutions for different cases and imposed different boundary conditions. The application of the model to the SLC positron target gave us the results which are in agreement with the existing literature. In a similar manner, we investigated the effect of single and multiple photon bunches on the conversion target for ILC.

  8. PLASMA EFFECTS ON FAST PAIR BEAMS. II. REACTIVE VERSUS KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    International Nuclear Information System (INIS)

    Schlickeiser, R.; Krakau, S.; Supsar, M.

    2013-01-01

    The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10 –4 . We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument

  9. A broadband beam-steered fiber mm-wave link with high energy-spectral-spatial efficiency for 5G coverage

    NARCIS (Netherlands)

    Cao, Z.; Zhao, X.; Jiao, Y.; Deng, X.; Tessema, N.; Raz, O.; Koonen, A.M.J.

    2017-01-01

    Utilizing an integrated optical-tunable-delay-line, reversely-modulated single sideband modulation, and Nyquist subcarrier modulation, we demonstrate an 8 Gbps mm-wave beam steered link with a spatial-spectral efficiency of 16 bits/s/Hz.

  10. Plasma Wave Turbulence and Particle Heating Caused by Electron Beams, Radiation, and Pinches.

    Science.gov (United States)

    1983-01-01

    34Vlasov turbulence, this means that Poisson’s equation for F(k;t )m dr exp(- k-r)(g (r,t)-’(0,t)) the field fluctuations must be taken into account ...effect can work in principle for a narrow band cm -. , and therefore an electron plasma frequency off, = 35 width spectrum. In Sec. IV, we discuss some...sufficiently intense to saturate the beam-unstable modes. Such levels appear to produce either fundmental or harmonic emission." 1 Both have been

  11. Focusing of high power ultrasound beams and limiting values of shock wave parameters

    Science.gov (United States)

    Bessonova, O. V.; Khokhlova, V. A.; Bailey, M. R.; Canney, M. S.; Crum, L. A.

    2009-10-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post-shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  12. Electrostatic electron cyclotron waves generated by low-energy electron beams

    Czech Academy of Sciences Publication Activity Database

    Menietti, J. D.; Santolík, Ondřej; Scudder, J. D.; Pickett, J. S.; Gurnett, D. A.

    2002-01-01

    Roč. 107, A10, 1285 (2002), s. SMP 8-1-8-11, doi: 10.1029/2001JA009223 ISSN 0148-0227 R&D Projects: GA ČR GA205/01/1064 Grant - others:NASA(US) NAG5-7943; NASA(US) NAG5-9561; NASA(US) NAG5-8119 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : low-energy electron beams * cyclotron frequency Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.245, year: 2002

  13. Plasma Wave Turbulence and Particle Heating Caused by Electron Beams, Radiation and Pinches.

    Science.gov (United States)

    1979-11-01

    current as dP K .2 Td - _c 2 . dt (K 2 (28a) where r 2 2 [ W (r)] , (28b) is the principal wave vector of the emitted radiation, and w p(r) is the...resulting from the angular average of coa 260, Tis research was supported In part by Hughes In the lowest bound state, which t an a state. TD . F. DuBois ad...Pbs.-JEW7, 21. 1127). and Sbsvchenko. V. 1. 1975, Fiz. Plasmy. 1, 10 (English Smith, D. F. 1977, J~ . (Leoaer). 214. L53 . tram!. in Soviet J. Plasim

  14. Diffractive beam shaping, tracking and coupling for wave-guided optical waveguides (WOWs)

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2014-01-01

    techniques to create multiple focal spots that can be coupled into light manipulated WOWs. This is done by using a spatial light modulator to project the necessary phase to generate the multiple coupling light spots. We incorporate a diffractive setup in our Biophotonics Workstation (BWS) and demonstrate......We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). The full strength of this structure-mediated paradigm can be harnessed by addressing multiple WOWs and manipulating them to work in tandem. We propose the use of diffractive...

  15. The Grid

    CERN Document Server

    Klotz, Wolf-Dieter

    2005-01-01

    Grid technology is widely emerging. Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple, robust yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. This talk will give a short history how, out of lessons learned from the Internet, the vision of Grids was born. Then the extensible anatomy of a Grid architecture will be discussed. The talk will end by presenting a selection of major Grid projects in Europe and US and if time permits a short on-line demonstration.

  16. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  17. Stability of a modified Peaceman–Rachford method for the paraxial Helmholtz equation on adaptive grids

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Qin, E-mail: Qin_Sheng@baylor.edu [Department of Mathematics and Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place, Waco, TX 76798-7328 (United States); Sun, Hai-wei, E-mail: hsun@umac.mo [Department of Mathematics, University of Macau (Macao)

    2016-11-15

    This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.

  18. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    Science.gov (United States)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  19. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    Science.gov (United States)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  20. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    International Nuclear Information System (INIS)

    Kasparek, W.; Plaum, B.; Petelin, M.I.; Shchegolkov, D.Yu; Erckmann, V.; Bruschi, A.

    2008-01-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented

  1. Design and Implementation of a C++ Multithreaded Operational Tool for the Generation of Detection Time Grids in 2D for P- and S-waves taking into Consideration Seismic Network Topology and Data Latency

    Science.gov (United States)

    Sardina, V.

    2017-12-01

    The Pacific Tsunami Warning Center's round the clock operations rely on the rapid determination of the source parameters of earthquakes occurring around the world. To rapidly estimate source parameters such as earthquake location and magnitude the PTWC analyzes data streams ingested in near-real time from a global network of more than 700 seismic stations. Both the density of this network and the data latency of its member stations at any given time have a direct impact on the speed at which the PTWC scientists on duty can locate an earthquake and estimate its magnitude. In this context, it turns operationally advantageous to have the ability of assessing how quickly the PTWC operational system can reasonably detect and locate and earthquake, estimate its magnitude, and send the corresponding tsunami message whenever appropriate. For this purpose, we designed and implemented a multithreaded C++ software package to generate detection time grids for both P- and S-waves after taking into consideration the seismic network topology and the data latency of its member stations. We first encapsulate all the parameters of interest at a given geographic point, such as geographic coordinates, P- and S-waves detection time in at least a minimum number of stations, and maximum allowed azimuth gap into a DetectionTimePoint class. Then we apply composition and inheritance to define a DetectionTimeLine class that handles a vector of DetectionTimePoint objects along a given latitude. A DetectionTimesGrid class in turn handles the dynamic allocation of new TravelTimeLine objects and assigning the calculation of the corresponding P- and S-waves' detection times to new threads. Finally, we added a GUI that allows the user to interactively set all initial calculation parameters and output options. Initial testing in an eight core system shows that generation of a global 2D grid at 1 degree resolution setting detection on at least 5 stations and no azimuth gap restriction takes under 25

  2. Application of the Gaussian beam summation method to the study of the ultrasonic wave propagation in a turbulent medium

    International Nuclear Information System (INIS)

    Fiorina, D.

    1998-01-01

    Some systems for the control and the surveillance of fast reactors are based on the characteristics of the ultrasonic wave propagation. We present here the results of a numerical and experimental study of ultrasonic propagation in a thermal turbulent medium. A numerical model, based on the technique of superposition of discrete Fourier modes for representing isotropic and homogeneous turbulence and on the Gaussian beam summation method for calculating the acoustic field, has been implemented in order to study the propagation of a point source wave in a bidimensional turbulent medium. Our model is based on the following principle: the medium is represented by a great number of independent realizations of a turbulent field and for each of them we calculate the acoustic field in a deterministic way. Statistics over a great number of realizations enable us to access to the different quantities of the distorted acoustic field: variance of the time of flight fluctuations, scintillation index and intensity probability density function. In the case of small fluctuations, the results for these three quantities are in a good agreement with analytical solutions. When the level of the fluctuations grows, the model predicts correct evolutions. However, a great sensitivity to the location of a receiver in the vicinity of a caustic has been proved. Calculations in the temporal domain have also been performed. They give an illustration of the possible effects of the turbulence on an impulsion signal. An experimental device, fitted with thermocouples and acoustic transducers, has been used to study the ultrasonic propagation in turbulent water. The different measures permitted to characterize the turbulent field and to get aware of the effect of the turbulence on the acoustic propagation. The acoustical measures agree well with the analytical solution of Chernov and Rytov. They are show the importance of the knowledge of the real spectrum of the fluctuations and the limitations of

  3. Nonlinear rolling of a biased ship in a regular beam wave under external and parametric excitations

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouny, A.F. [Mathematics Dept., Benha Univ., Benha (Egypt)

    2007-10-15

    We consider a nonlinear oscillator simultaneously excited by external and parametric functions. The oscillator has a bias parameter that breaks the symmetry of the motion. The example that we use to illustrate the problem is the rolling oscillation of a biased ship in longitudinal waves, but many mechanical systems display similar features. The analysis took into consideration linear, quadratic, cubic, quintic, and seven terms in the polynomial expansion of the relative roll angle. The damping moment consists of the linear term associated with radiation and viscous damping and a cubic term due to frictional resistance and eddies behind bilge keels and hard bilge corners. Two methods (the averaging and the multiple time scales) are used to investigate the first-order approximate analytical solution. The modulation equations of the amplitudes and phases are obtained. These equations are used to obtain the stationary state. The stability of the proposed solution is determined applying Liapunov's first method. Effects of different parameters on the system behaviour are investigated numerically. Results are presented graphically and discussed. The results obtained by two methods are in excellent agreement. (orig.)

  4. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    International Nuclear Information System (INIS)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 μs, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1 + to 4 + . The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  5. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  6. Study of welding characteristics of inconel 600 alloy using a continuous wave Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Song, Seong Wook; Yoo, Young Tae; Shin, Ho Jun

    2004-01-01

    Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power. Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser

  7. Studies of the longitudinal instability with an electron beam

    International Nuclear Information System (INIS)

    1993-01-01

    Goals for our first-year period are as follows: To study the evolution of a small perturbation in the current pulse (introduced via the grid voltage on the electron gun) when the beam propagates through our 5-m long periodic solenoid channel. Specifically, to see if the perturbation is reflected from the rear end of the pulse. So far these objectives have been met without any delays. We were able to launch different perturbations on the beam resulting in either a slow space-charge wave or a fast wave or both waves. The relative strength of each wave was found to depend on the electron emission temperature of the cathode. The propagation of these waves on an initially rectangular longitudinal beam profile was measured with fast current monitors and the kinetic energy was measured with sensitive energy analyzers at various positions along the 5-m long solenoidal focusing channel. We have also begun to study the behavior of the waves when they reach the respective edge of the beam. But this work is still of a preliminary nature, and we need to refine the beam conditions and measurements in future studies to reach any firm conclusions. Preparations for the resistive-wall instability experiment are in progress

  8. Effect of different parameters governing the stability of drift wave in a magnetised plasma

    International Nuclear Information System (INIS)

    Elashkar, F.F.

    1990-01-01

    Influence of the governing parameters, such as electron drift parallel speed, parallel wave length, electron-neutral and ion-neutral collision frequencies, electron temperature and magnetic field, on the stability of drift wave in a magnetized plasma has been studied experimentally and theoretically using a full numerical solution of the exact equation. Drift wave has been excited by a positively biased grid; at a threshold grid potential secondary excitation and ionisation processes take place in the ejected beam of plasma. Effect of the applied magnetic field on the probability of these processes is discussed. Grid positive potential, electron-neutral collision, parallel wave length, electron temperature and speed are found to be destabilizing, While ion neutral collision is stabilizing. Using a new parameter β, the effect of magnetic field is investigated and it is destabilizing only upto a certain limit. (author). 11 figs., 21 refs

  9. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    Science.gov (United States)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  10. Grid Security

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The aim of Grid computing is to enable the easy and open sharing of resources between large and highly distributed communities of scientists and institutes across many independent administrative domains. Convincing site security officers and computer centre managers to allow this to happen in view of today's ever-increasing Internet security problems is a major challenge. Convincing users and application developers to take security seriously is equally difficult. This paper will describe the main Grid security issues, both in terms of technology and policy, that have been tackled over recent years in LCG and related Grid projects. Achievements to date will be described and opportunities for future improvements will be addressed.

  11. The Grid2003 Production Grid Principles and Practice

    CERN Document Server

    Foster, I; Gose, S; Maltsev, N; May, E; Rodríguez, A; Sulakhe, D; Vaniachine, A; Shank, J; Youssef, S; Adams, D; Baker, R; Deng, W; Smith, J; Yu, D; Legrand, I; Singh, S; Steenberg, C; Xia, Y; Afaq, A; Berman, E; Annis, J; Bauerdick, L A T; Ernst, M; Fisk, I; Giacchetti, L; Graham, G; Heavey, A; Kaiser, J; Kuropatkin, N; Pordes, R; Sekhri, V; Weigand, J; Wu, Y; Baker, K; Sorrillo, L; Huth, J; Allen, M; Grundhoefer, L; Hicks, J; Luehring, F C; Peck, S; Quick, R; Simms, S; Fekete, G; Van den Berg, J; Cho, K; Kwon, K; Son, D; Park, H; Canon, S; Jackson, K; Konerding, D E; Lee, J; Olson, D; Sakrejda, I; Tierney, B; Green, M; Miller, R; Letts, J; Martin, T; Bury, D; Dumitrescu, C; Engh, D; Gardner, R; Mambelli, M; Smirnov, Y; Voeckler, J; Wilde, M; Zhao, Y; Zhao, X; Avery, P; Cavanaugh, R J; Kim, B; Prescott, C; Rodríguez, J; Zahn, A; McKee, S; Jordan, C; Prewett, J; Thomas, T; Severini, H; Clifford, B; Deelman, E; Flon, L; Kesselman, C; Mehta, G; Olomu, N; Vahi, K; De, K; McGuigan, P; Sosebee, M; Bradley, D; Couvares, P; De Smet, A; Kireyev, C; Paulson, E; Roy, A; Koranda, S; Moe, B; Brown, B; Sheldon, P

    2004-01-01

    The Grid2003 Project has deployed a multi-virtual organization, application-driven grid laboratory ("GridS") that has sustained for several months the production-level services required by physics experiments of the Large Hadron Collider at CERN (ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave search experiment LIGO, the BTeV experiment at Fermilab, as well as applications in molecular structure analysis and genome analysis, and computer science research projects in such areas as job and data scheduling. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. We describe the principles that have guided the development of this unique infrastructure and the practical experiences that have resulted from its creation and use. We discuss application requirements for grid services deployment and configur...

  12. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  13. Evaluation of Single File Systems Reciproc, Oneshape, and WaveOne using Cone Beam Computed Tomography -An In Vitro Study.

    Science.gov (United States)

    Dhingra, Annil; Ruhal, Nidhi; Miglani, Anjali

    2015-04-01

    Successful endodontic therapy depends on many factor, one of the most important step in any root canal treatment is root canal preparation. In addition, respecting the original shape of the canal is of the same importance; otherwise, canal aberrations such as transportation will be created. The purpose of this study is to compare and evaluate Reciprocating WaveOne ,Reciproc and Rotary Oneshape Single File Instrumentation System On Cervical Dentin Thickness, Cross Sectional Area and Canal Transportation on First Mandibular Molar Using Cone Beam Computed Tomography. Sixty Mandibular First Molars extracted due to periodontal reason was collected from the Department of Oral and Maxillofacial. Teeth were prepared using one rotary and two reciprocating single file system. Teeth were divided into 3 groups 20 teeth in each group. Pre instrumentation and Post instrumentation scans was done and evaluated for three parameters Canal Transportation, Cervical Dentinal Thickness, Cross-sectional Area. Results were analysed statistically using ANOVA, Post-Hoc Tukey analysis. The change in cross-sectional area after filing showed significant difference at 0mm, 1mm, 2mm and 7mm (pfile system over a distance of 7 mm (starting from 0mm and then evaluation at 1mm, 2mm, 3mm, 5mm and 7mm), the results showed a significant difference among the file systems at various lengths (p= 0.014, 0.046, 0.004, 0.028, 0.005 & 0.029 respectively). Mean value of cervical dentinal removal is maximum at all the levels for oneshape and minimum for waveone showing the better quality of waveone and reciproc over oneshape file system. Significant difference was found at 9mm, 11mm and 12mm between all the three file systems (p<0.001,< 0.001, <0.001). It was concluded that reciprocating motion is better than rotary motion in all the three parameters Canal Transportation, Cross-sectional Area, Cervical Dentinal Thickness.

  14. Grid Computing

    Indian Academy of Sciences (India)

    A computing grid interconnects resources such as high performancecomputers, scientific databases, and computercontrolledscientific instruments of cooperating organizationseach of which is autonomous. It precedes and is quitedifferent from cloud computing, which provides computingresources by vendors to customers ...

  15. Grid Computing

    Indian Academy of Sciences (India)

    IAS Admin

    emergence of supercomputers led to the use of computer simula- tion as an .... Scientific and engineering applications (e.g., Tera grid secure gate way). Collaborative ... Encryption, privacy, protection from malicious software. Physical Layer.

  16. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.; Hithin, N.K.

    and studied the validity of these observations against ship-reported and buoy data. Many studies have been undertaken on how best to use the data available from satellite observation systems in wave models (Mastenbroek, 1994; Young and Glowacki, 1996... Sea wave model. Journal of Geophysical Research 10, 5829–5849. Young, I.R., 1994. Global ocean wave statistics obtained from satellite observations. Applied Ocean Research 16, 235-248. Young, I.R., Glowacki, T.J., 1996. Assimilation of altimeter...

  17. Shaping ability of reciprocating motion of WaveOne and HyFlex in moderate to severe curved canals: A comparative study with cone beam computed tomography

    Science.gov (United States)

    Simpsy, Gurram Samuel; Sajjan, Girija S.; Mudunuri, Padmaja; Chittem, Jyothi; Prasanthi, Nalam N. V. D.; Balaga, Pankaj

    2016-01-01

    Introduction: M-Wire and reciprocating motion of WaveOne and controlled memory (CM) wire) of HyFlex were the recent innovations using thermal treatment. Therefore, a study was planned to evaluate the shaping ability of reciprocating motion of WaveOne and HyFlex using cone beam computed tomography (CBCT). Methodology: Forty-five freshly extracted mandibular teeth were selected and stored in saline until use. All teeth were scanned pre- and post-operatively using CBCT (Kodak 9000). All teeth were accessed and divided into three groups. (1) Group 1 (control n = 15): Instrumented with ProTaper. (2) Group 2 (n = 15): Instrumented with primary file (8%/25) WaveOne. (3) Group 3 (n = 15): Instrumented with (4%/25) HyFlex CM. Sections at 1, 3, and 5 mm were obtained from the pre- and post-operative scans. Measurement was done using CS3D software and Adobe Photoshop software. Apical transportation and degree of straightening were measured and statistically analyzed. Results: HyFlex showed lesser apical transportation when compared to other groups at 1 and 3 mm. WaveOne showed lesser degree of straightening when compared to other groups. Conclusion: This present study concluded that all systems could be employed in routine endodontics whereas HyFlex and WaveOne could be employed in severely curved canals. PMID:27994323

  18. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  19. Study of probing beam enlargement due to forward-scattering under low wavenumber turbulence using a FDTD full-wave code

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F. da [Associao EURATOM/IST, IPFN-LA, Instituto Superor Tecnico, Lisbon (Portugal); Heuraux, S. [Institut Jean Lamour, CNRS-Nancy-Universite, BP70239, Vandoeuvre-les-Nancy (France); Gusakov, E.; Popov, A. [Ioffe Institute, Polytekhnicheskaya, St Petersburg (Russian Federation)

    2011-07-01

    Forward-scattering under high level of turbulence or long propagation paths can induce significant effects, as predicted by theory, and impose a signature on the Doppler reflectometry response. Simulations using a FDTD (finite-difference time-domain) full-wave code have confirmed the main dependencies and general behavior described by theory but display a returned RMS power, at moderate amplitudes, half of the one predicted by theory due to the impossibility to reach the numerical requirements needed to describe the small wavenumber spectrum with the wanted accuracy.One justifying factor may be due to the splitting and enlargement of the probing beam. At high turbulence levels, the scattered power returning to the antenna is higher than the predicted by the theory probably due to the scattered zone being closer than the oblique cutoff. This loss of coherence of the wavefront induces a beam spreading, which is also responsible for a diminution of the wavenumber resolution. With a FDTD full-wave code we study the behavior of the probing beam under several amplitude levels of low wavenumber plasma turbulence, using long temporal simulations series to ensure statistical accuracy. (authors)

  20. Beam dynamics in an initial part of a high Brightness electron linac

    CERN Document Server

    Ayzatsky, M I; Dovbnya-Kushnir, V A

    2001-01-01

    The paper is focused on problems of obtained a bright electron beam in a system that includes a grid-controlled electron gun,a klystron type type subharmonical buncher, a standing wave fundamental buncher with increasing accelerating field and a short travelling wave accelerating section. Beam focusing is provided by a longitudinal solenoidal magnetic field.It was shown that the proposed system can provide electron bunches with a peak current more than 100 A and normalized r.m.s. emittance no more than phi centre dot mm centre dot mrad.

  1. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    International Nuclear Information System (INIS)

    Kim, Young Chul; Ahn, Seong Joon; Kim, Ho Seob; Kim, Dae-Wook; Ahn, Seungjoon

    2011-01-01

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  2. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Chul [Department of Optometry, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Ahn, Seong Joon [Department of I and C Engineering, Sun Moon University, Tangjeong-myeon, Asan-si, Chungnam 336-708 (Korea, Republic of); Kim, Ho Seob; Kim, Dae-Wook [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Ahn, Seungjoon, E-mail: sjan@sunmoon.ac.kr [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of)

    2011-10-21

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  3. Langmuir waves excitation by electron beam with the limited cross-section in the near-earth electron foreshock

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Musatenko, K.S.; Krasnosselskikh, V.V.

    2005-01-01

    Model of the stripped monoenergetic electron beam with the sharp boundaries based on the results of CLUSTER measurements is proposed for the near-Earth foreshock vicinity. Dispersion equation is obtained and analyzed using numerical methods. Dependency of the equation roots corresponding to kinetic mechanism of beam-plasma instability on the model parameters is studied

  4. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    Science.gov (United States)

    Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.

    2014-02-01

    The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian

  5. Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics.

    Science.gov (United States)

    Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo

    2005-11-10

    The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.

  6. Power grids

    International Nuclear Information System (INIS)

    Viterbo, J.

    2012-01-01

    The implementation of renewable energies represents new challenges for electrical systems. The objective: making power grids smarter so they can handle intermittent production. The advent of smart grids will allow flexible operations like distributing energy in a multidirectional manner instead of just one way and it will make electrical systems capable of integrating actions by different users, consumers and producers in order to maintain efficient, sustainable, economical and secure power supplies. Practically speaking, they associate sensors, instrumentation and controls with information processing and communication systems in order to create massively automated networks. Smart grids require huge investments: for example more than 7 billion dollars have been invested in China and in the Usa in 2010 and France is ranked 9. worldwide with 265 million dollars invested. It is expected that smart grids will promote the development of new business models and a change in the value chain for energy. Decentralized production combined with the probable introduction of more or less flexible rates for sales or purchases and of new supplier-customer relationships will open the way to the creation of new businesses. (A.C.)

  7. The light wave flow effect in a plane-parallel layer with a quasi-zero refractive index under the action of bounded light beams

    International Nuclear Information System (INIS)

    Gadomsky, O. N.; Shchukarev, I. A.

    2016-01-01

    It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.

  8. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    CERN Document Server

    Ryazanov, A I; Vasilyev, Ya S; Ferrari, A

    2014-01-01

    The interaction of 450GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the anal ysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsy stem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron–phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4 , 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6 , 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90 , 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic an...

  9. Grid pulser

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M.; Es, J.T. van.

    1990-01-01

    This report describes a fast pulse generator. This generator delivers a high-voltage pulse of at most 6000 V with a rise time being smaller than 50 nS. this results in a slew rate of more than 120.000 volts per μS. The pulse generator is used to control the grid of the injector of the electron accelerator MEA. The capacity of this grid is about 60 pF. In order to charge this capacity up to 6000 volts in 50 nS a current of 8 ampere is needed. The maximal pulse length is 50 μS with a repeat frequency of 500 Hz. During this 50 μS the stability of the pulse amplitude is better than 0.1%. (author). 20 figs

  10. The grid

    OpenAIRE

    Morrad, Annie; McArthur, Ian

    2018-01-01

    Project Anywhere Project title: The Grid   Artists: Annie Morrad: Artist/Senior Lecturer, University of Lincoln, School of Film and Media, Lincoln, UK   Dr Ian McArthur: Hybrid Practitioner/Senior Lecturer, UNSW Art & Design, UNSW Australia, Sydney, Australia   Annie Morrad is a London-based artist and musician and senior lecturer at the University of Lincoln, UK. Dr Ian McArthur is a Sydney-based hybrid practitione...

  11. Transformation of Optical Discharge into a Low-Frequency Quasi-Stationary Wave Moving Along the Beam

    National Research Council Canada - National Science Library

    Tischenko, V. N; Gulidov, A. I

    2003-01-01

    .... We have revealed some criteria for the existence of QW. Unlike the shock waves, the pressure in QW is a maximum at thc back front and the length depends linearly upon the consumption of energy for generation of QW...

  12. Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2018-04-01

    This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.

  13. Study of Control Grid Thermionic Cathode RF Gun

    CERN Document Server

    Xiao, Jin; Ming, Li; Xinfan, Yang; Xumin, Shen; Yanan, Chen; Zhou, Xu

    2004-01-01

    In this paper, the beam loading effect of RF Gun was analyzed. To minimize the energy spread, the grid control RF Gun was introduced. The result shows that the grid congrol RF Gun can increase electron beam within 1% energy spread.

  14. Comparison of canal transportation and centering ability of rotary protaper, one shape system and wave one system using cone beam computed tomography: An in vitro study

    Science.gov (United States)

    Tambe, Varsha Harshal; Nagmode, Pradnya Sunil; Abraham, Sathish; Patait, Mahendra; Lahoti, Pratik Vinod; Jaju, Neha

    2014-01-01

    Aim: The aim of the present study was to compare the canal transportation and centering ability of Rotary ProTaper, One Shape and Wave One systems using cone beam computed tomography (CBCT) in curved root canals to find better instrumentation technique for maintaining root canal geometry. Materials and Methods: Total 30 freshly extracted premolars having curved root canals with at least 10 degrees of curvature were divided into three groups of 10 teeth each. All teeth were scanned by CBCT to determine the root canal shape before instrumentation. In Group 1, the canals were prepared with Rotary ProTaper files, in Group 2 the canals were prepared with One Shape files and in Group 3 canals were prepared with Wave One files. After preparation, post-instrumentation scan was performed. Pre-instrumentation and post-instrumentation images were obtained at three levels, 3 mm apical, 3 mm coronal and 8 mm apical above the apical foramen were compared using CBCT software. Amount of transportation and centering ability were assessed. The three groups were statistically compared with analysis of variance and Tukey honestly significant. Results: All instruments maintained the original canal curvature with significant differences between the different files. Data suggested that Wave One files presented the best outcomes for both the variables evaluated. Wave One files caused lesser transportation and remained better centered in the canal than One Shape and Rotary ProTaper files. Conclusion: The canal preparation with Wave One files showed lesser transportation and better centering ability than One Shape and ProTaper. PMID:25506145

  15. Estimation of the dose deposited by electron beams in radiotherapy in voxelised phantoms using the Monte Carlo simulation platform GATE based on GEANT4 in a grid environment

    International Nuclear Information System (INIS)

    Perrot, Y.

    2011-01-01

    Radiation therapy treatment planning requires accurate determination of absorbed dose in the patient. Monte Carlo simulation is the most accurate method for solving the transport problem of particles in matter. This thesis is the first study dealing with the validation of the Monte Carlo simulation platform GATE (GEANT4 Application for Tomographic Emission), based on GEANT4 (Geometry And Tracking) libraries, for the computation of absorbed dose deposited by electron beams. This thesis aims at demonstrating that GATE/GEANT4 calculations are able to reach treatment planning requirements in situations where analytical algorithms are not satisfactory. The goal is to prove that GATE/GEANT4 is useful for treatment planning using electrons and competes with well validated Monte Carlo codes. This is demonstrated by the simulations with GATE/GEANT4 of realistic electron beams and electron sources used for external radiation therapy or targeted radiation therapy. The computed absorbed dose distributions are in agreement with experimental measurements and/or calculations from other Monte Carlo codes. Furthermore, guidelines are proposed to fix the physics parameters of the GATE/GEANT4 simulations in order to ensure the accuracy of absorbed dose calculations according to radiation therapy requirements. (author)

  16. Safe Grid

    Science.gov (United States)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  17. Grid interoperability: joining grid information systems

    International Nuclear Information System (INIS)

    Flechl, M; Field, L

    2008-01-01

    A grid is defined as being 'coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations'. Over recent years a number of grid projects, many of which have a strong regional presence, have emerged to help coordinate institutions and enable grids. Today, we face a situation where a number of grid projects exist, most of which are using slightly different middleware. Grid interoperation is trying to bridge these differences and enable Virtual Organizations to access resources at the institutions independent of their grid project affiliation. Grid interoperation is usually a bilateral activity between two grid infrastructures. Recently within the Open Grid Forum, the Grid Interoperability Now (GIN) Community Group is trying to build upon these bilateral activities. The GIN group is a focal point where all the infrastructures can come together to share ideas and experiences on grid interoperation. It is hoped that each bilateral activity will bring us one step closer to the overall goal of a uniform grid landscape. A fundamental aspect of a grid is the information system, which is used to find available grid services. As different grids use different information systems, interoperation between these systems is crucial for grid interoperability. This paper describes the work carried out to overcome these differences between a number of grid projects and the experiences gained. It focuses on the different techniques used and highlights the important areas for future standardization

  18. Slow wave cyclotron maser

    International Nuclear Information System (INIS)

    Kho, T.H.; Lin, A.T.

    1988-01-01

    Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application

  19. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe.

    Science.gov (United States)

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-04-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42-1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue.

  20. KEEN Wave Simulations: Comparing various PIC to various fixed grid Vlasov to Phase-Space Adaptive Sparse Tiling & Effective Lagrangian (PASTEL) Techniques

    Science.gov (United States)

    Afeyan, Bedros; Larson, David; Shadwick, Bradley; Sydora, Richard

    2017-10-01

    We compare various ways of solving the Vlasov-Poisson and Vlasov-Maxwell equations on rather demanding nonlinear kinetic phenomena associated with KEEN and KEEPN waves. KEEN stands for Kinetic, Electrostatic, Electron Nonlinear, and KEEPN, for electron-positron or pair plasmas analogs. Because these self-organized phase space structures are not steady-state, or single mode, or fluid or low order moment equation limited, typical techniques with low resolution or too much noise will distort the answer too much, too soon, and fail. This will be shown via Penrose criteria triggers for instability at the formation stage as well as particle orbit statistics in fully formed KEEN waves and KEEN-KEEN and KEEN-EPW interacting states. We will argue that PASTEL is a viable alternative to traditional methods with reasonable chances of success in higher dimensions. Work supported by a Grant from AFOSR PEEP.

  1. In-beam test of the Boron-10 Multi-Grid neutron detector at the IN6 time-of-flight spectrometer at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J; Hultman, L; Höglund, C [Linköping University, Thin Film Physics Division, IFM, SE-581 83 Linköping (Sweden); Buffet, J-C; Clergeau, J-F; Correa, J; Van Esch, P; Ferraton, M; Guerard, B; Halbwachs, J; Khaplanov, A; Koza, M; Piscitelli, F; Zbiri, M [Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble (France); Hall-Wilton, R [European Spallation Source ESS AB, P.O Box 176, SE-221 00 Lund (Sweden)

    2014-07-24

    A neutron detector concept based on solid layers of boron carbide enriched in {sup 10}B has been in development for the last few years as an alternative for {sup 3}He by collaboration between the ILL, ESS and Linköping University. This Multi-Grid detector uses layers of aluminum substrates coated with {sup 10}B{sub 4}C on both sides that are traversed by the incoming neutrons. Detection is achieved using a gas counter readout principle. By segmenting the substrate and using multiple anode wires, the detector is made inherently position sensitive. This development is aimed primarily at neutron scattering instruments with large detector areas, such as time-of-flight chopper spectrometers. The most recent prototype has been built to be interchangeable with the {sup 3}He detectors of IN6 at ILL. The {sup 10}B detector has an active area of 32 x 48cm{sup 2}. It was installed at the IN6 instrument and operated for several weeks, collecting data in parallel with the regularly scheduled experiments, thus providing the first side-by-side comparison with the conventional {sup 3}He detectors. Results include an efficiency comparison, assessment of the in-detector scattering contribution, sensitivity to gamma-rays and the signal-to-noise ratio in time-of-flight spectra. The good expected performance has been confirmed with the exception of an unexpected background count rate. This has been identified as natural alpha activity in aluminum. New convertor substrates are under study to eliminate this source of background.

  2. Electron Emission And Beam Generation Using Ferroelectric Cathodes (electron Beam Generation, Lead Lanthanum Zicronate Titanate, High Power Traveling Wave Tube Amplfier)

    CERN Document Server

    Flechtner, D D

    1999-01-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...

  3. Millimeterwave Space Power Grid architecture development 2012

    Science.gov (United States)

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  4. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam

    Science.gov (United States)

    Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...

  5. Production of high-brightness continuous wave proton beams with very high proton fractions (abstract)a

    International Nuclear Information System (INIS)

    Spence, D.; McMichael, G.; Lykke, K.R.; Schneider, J.D.; Sherman, J.; Stevens, R. Jr.; Hodgkins, D.

    1996-01-01

    This article demonstrates a new technique to significantly enhance the proton fraction of an ion beam extracted from a plasma ion source. We employ a magnetically confined microwave driven source, though the technique is not source specific and can probably be applied equally effectively to other plasma sources such as Penning and multicusp types. Specifically, we dope the plasma with about 1% H 2 O, which increases the proton fraction of a 45 keV 45 mA beam from 75% to 90% with 375 W 2.45 GHz power to the source and from 84% to 92% for 500 W when the source is operated under nonresonant conditions. Much of the remaining fraction of the beam comprises a heavy mass ion we believe to be N + impurity ions resulting from the conditions under which the experiments were performed. If so, this impurity can easily be removed and much higher proton fractions could be expected. Preliminary measurements show the additive has no adverse effect on the emittance of the extracted beam, and source stability is greatly improved

  6. Laser ray tracing and power deposition on an unstructured three-dimensional grid

    International Nuclear Information System (INIS)

    Kaiser, Thomas B.

    2000-01-01

    A scheme is presented for laser beam evolution and power deposition on three-dimensional unstructured grids composed of hexahedra, prisms, pyramids, and tetrahedra. The geometrical-optics approximation to the electromagnetic wave equation is used to follow propagation of a collection of discrete rays used to represent the beam(s). Ray trajectory equations are integrated using a method that is second order in time, exact for a constant electron-density gradient, and capable of dealing with density discontinuities that arise in certain hydrodynamics formulations. Power deposition by inverse-bremsstrahlung is modeled with a scheme based on Gaussian quadrature to accommodate a deposition rate whose spatial variation is highly nonuniform. Comparisons with analytic results are given for a density ramp in three dimensions, and a ''quadratic-well'' density trough in two dimensions. (c) 2000 The American Physical Society

  7. Comparison tomography relocation hypocenter grid search and guided grid search method in Java island

    International Nuclear Information System (INIS)

    Nurdian, S. W.; Adu, N.; Palupi, I. R.; Raharjo, W.

    2016-01-01

    The main data in this research is earthquake data recorded from 1952 to 2012 with 9162 P wave and 2426 events are recorded by 30 stations located around Java island. Relocation hypocenter processed using grid search and guidded grid search method. Then the result of relocation hypocenter become input for tomography pseudo bending inversion process. It can be used to identification the velocity distribution in subsurface. The result of relocation hypocenter by grid search and guided grid search method after tomography process shown in locally and globally. In locally area grid search method result is better than guided grid search according to geological reseach area. But in globally area the result of guided grid search method is better for a broad area because the velocity variation is more diverse than the other one and in accordance with local geological research conditions. (paper)

  8. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    Energy Technology Data Exchange (ETDEWEB)

    Machikhin, A S; Pozhar, V E [Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  9. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  10. Nonlinear propagation of ion-acoustic solitary waves in relativistic ion-beam plasma with negative ions

    International Nuclear Information System (INIS)

    Singh, Kh.I.; Das, G.C.

    1993-01-01

    Soliton propagations are studied in a relativistic multicomponent ion-beam plasma through the derivation of Korteweg-deVries (K-dV) and modified K-dV (mK-dV) equations. A generalization of the mK-dV equation involving higher order nonlinearities gives a transitive link between the K-dV and mK-dV equations for isothermal plasma, and the validity of this generalized equation throughout the whole range of negative ion concentrations is investigated through the derivation of Sagdeev potential. Parallel discussion of various K-dV solitons enlightening the experimental implications is also made. (author). 22 refs

  11. Preliminary thermal analysis of grids for twin source extraction system

    International Nuclear Information System (INIS)

    Pandey, Ravi; Bandyopadhyay, Mainak; Chakraborty, Arun K.

    2017-01-01

    The TWIN (Two driver based Indigenously built Negative ion source) source provides a bridge between the operational single driver based negative ion source test facility, ROBIN in IPR and an ITER-type multi driver based ion source. The source is designed to be operated in CW mode with 180kW, 1MHz, 5s ON/600s OFF duty cycle and also in 5Hz modulation mode with 3s ON/20s OFF duty cycle for 3 such cycle. TWIN source comprises of ion source sub-assembly (consist of driver and plasma box) and extraction system sub-assembly. Extraction system consists of Plasma grid (PG), extraction grid (EG) and Ground grid (GG) sub assembly. Negative ion beams produced at plasma grid seeing the plasma side of ion source will receive moderate heat flux whereas the extraction grid and ground grid would be receiving majority of heat flux from extracted negative ion and co-extracted electron beams. Entire Co-extracted electron beam would be dumped at extraction grid via electron deflection magnetic field making the requirement of thermal and hydraulic design for extraction grid to be critical. All the three grids are made of OFHC Copper and would be actively water cooled keeping the peak temperature rise of grid surface within allowable limit with optimum uniformity. All the grids are to be made by vacuum brazing process where joint strength becomes crucial at elevated temperature. Hydraulic design must maintain the peak temperature at the brazing joint within acceptable limit

  12. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  13. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  14. Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...

  15. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  16. Demagnifying electron projection with grid masks

    International Nuclear Information System (INIS)

    Politycki, A.; Meyer, A.

    1978-01-01

    Tightly toleranced micro- and submicrostructures with smooth edges were realized by using transmission masks with an improved supporting grid (width of traverses 0.8 μm). Local edge shift due to the proximity effect is kept at a minimum. Supporting grids with stil narrower traverses (0.5 μm) were prepared by generating the grid pattern by electron beam writing. Masks of this kind allow projection at a demagnification ratio of 1:4, resulting in large image fields. (orig.) [de

  17. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  18. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  19. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  20. Monitor of SC beam profiles

    CERN Document Server

    CERN PhotoLab

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  1. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  2. Grid Integration Research | Wind | NREL

    Science.gov (United States)

    Grid Integration Research Grid Integration Research Researchers study grid integration of wind three wind turbines with transmission lines in the background. Capabilities NREL's grid integration electric power system operators to more efficiently manage wind grid system integration. A photo of

  3. Grids heat loading of an ion source in two-stage acceleration system

    International Nuclear Information System (INIS)

    Okumura, Yoshikazu; Ohara, Yoshihiro; Ohga, Tokumichi

    1978-05-01

    Heat loading of the extraction grids, which is one of the critical problems limiting the beam pulse duration at high power level, has been investigated experimentally, with an ion source in a two-stage acceleration system of four multi-aperture grids. The loading of each grid depends largely on extraction current and grid gap pressures; it decreases with improvement of the beam optics and with decrease of the pressures. In optimum operating modes, its level is typically less than -- 2% of the total beam power or -- 200 W/cm 2 at beam energies of 50 - 70 kV. (auth.)

  4. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    Science.gov (United States)

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated

  5. Solitary-wave emission fronts, spectral chirping, and coupling to beam acoustic modes in RPIC simulation of SRS backscatter.

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, D. F. (Donald F.); Yin, L. (Lin); Daughton, W. S. (William S.); Bezzerides, B. (Bandel); Dodd, E. S. (Evan S.); Vu, H. X. (Hoanh X.)

    2004-01-01

    Detailed diagnostics of quasi-2D RPIC simulations of backward stimulated Raman scattering (BSRS), from single speckles under putative NIF conditions, reveal a complex spatio-temporal behavior. The scattered light consists of localized packets, tens of microns in width, traveling toward the laser at an appreciable fraction of the speed of light. Sub pico-second reflectivity pulses occur as these packets leave the system. The LW activity consists of a front traveling with the light packets with a wake of free LWs traveling in the laser direction. The parametric coupling occurs in the front where the scattered light and LW overlap and are strongest. As the light leaves the plasma the LW quickly decays, liberating its trapped electrons. The high frequency part of the |n{sub e}(k,{omega})|{sup 2} spectrum, where n{sub e} is the electron density fluctuation, consists of a narrow streak or straight line with a slope that is the velocity of the parametric front. The time dependence of |n{sub e}(k,t)|{sup 2}, shows that during each pulse the most intense value of k also 'chirps' to higher values, consistent with the k excursions seen in the |n{sub e}(k,{omega})|{sup 2} spectrum. But k does not always return, in the subsequent pulses, to the original parametrically matched value, indicating that, in spite of side loss, the electron distribution function does not return to its original Maxwellian form. Liberated pulses of hot electrons result in down-stream, bump on tail distributions that excite LWs and beam acoustic modes deeper in the plasma. The frequency broadened spectra are consistent with Thomson scatter spectra observed in TRIDENT single-hot-spot experiments in the high k{lambda}{sub D}, trapping regime. Further details including a comparison of results from full PIC simulations, and movies of the spatio-temporal behavior, will be given in the poster by L Yin et al.

  6. High frequency electric field spikes formed by electron beam-plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-02-01

    In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs

  7. Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-01-01

    In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics

  8. The Direct Digital Modulation of Traveling Wave Tubes

    Science.gov (United States)

    Radhamohan, Ranjan S.

    2004-01-01

    direct digital modulation of a TWT removes the need for a separate amplitude modulation device. Instead, different levels of gain are achieved by varying the electron beam current. The lower the current, the less kinetic energy is available to be transferred to the signal. To vary the current, a grid is placed in-between the electron gun and the slow wave circuit. By changing the voltage across the grid, the electron beam current can be controlled. Grid technology has mostly been used in pulse applications such as radar, where only two voltage states are necessary. For direct digital modulation, however, a continuous range of voltages is required.

  9. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  10. Process and device for fabricating nuclear fuel assembly grids

    International Nuclear Information System (INIS)

    Thiebaut, B.; Duthoo, D.; Germanaz, J.J.; Angilbert, B.

    1991-01-01

    The method for fabricating PWR fuel assembly grids consists to place the grid of which the constituent parts are held firmly in place within a frame into a sealed chamber full of inert gas. This chamber can rotate about an axis. The welding on one face at a time is carried out with a laser beam orthogonal to the axis orientation of the device. The laser source is outside of the chamber and the beam penetrates via a transparent view port

  11. Gridded X-ray tube gun

    International Nuclear Information System (INIS)

    1975-01-01

    An X-ray generator has a Pierce type electron gun comprising an electron emissive cathode with field shaping electrodes, a first accelerating anode spaced from the cathode, and an X-ray target anode spaced from the accelerating anode for being impinged upon by a focused electron beam. Control grid means are disposed between the cathode and the first anode. The grid means are constructed such that with use of proper grid potentials, the electron beam may be selectively biased to cutoff, or electrons can be withdrawn from selected areas of the cathode or from the entire cathode to produce focal spots of different sizes and various electron current magnitudes on the target anode

  12. Beam-energy and laser beam-profile monitor at the BNL LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  13. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  14. Effects of beam, target and substrate potentials in ion beam processing

    International Nuclear Information System (INIS)

    Harper, J.M.E.

    1982-01-01

    Ion beam etching and deposition are normally carried out with beam, target and substrate potentials near ground potential. In this paper, the effects of intentional or unintentional changes in these potentials are described. Examples include beam neutralization, a single extraction grid, substrate bias, and target bias. Each example is described in terms of beam plasma parameters. (Auth.)

  15. Large eddy simulation and laboratory experiments on the decay of grid wakes in strongly stratified flows

    International Nuclear Information System (INIS)

    Fraunie, P.; Berrella, S.; Chashechkin, Y.D.; Velasco, D.; Redondo, M.

    2008-01-01

    A detailed analysis of the flow structure resulting from the combination of turbulence and internal waves is carried out and visualized by means of the Schlieren method on waves in a strongly stratified fluid at the Laboratory of the IPM in Moscow. The joint appearance of the more regular internal wave oscillations and the small-scale turbulence that is confined vertically to the Ozmidov length scale favours the use of a simple geometrical analysis to investigate their time-space span and evolution. This provides useful information on the collapse of internal wave breaking processes in the ocean and the atmosphere. The measurements were performed under a variety of linear stratifications and different grid forcing scales, combining the grid wake and velocity shear. A numerical simulation using LES on the passage of a single bar in a linearly stratified fluid medium has been compared with the experiments identifying the different influences of the environmental agents on the actual affective vertical diffusion of the wakes. The equation of state, which connects the density and salinity, is assumed to be linear, with the coefficient of the salt contraction being included into the definition of salinity or heat. The characteristic internal waves as well as the entire beam width are related to the diameter of the bar, the Richardson number and the peak-to-peak value of oscillations. The ultimate frequency of the infinitesimal periodic internal waves is limited by the maximum buoyancy frequency relating the decrease in the vertical scale with the anisotropy of the velocity turbulent r.m.s. velocity.

  16. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress

    International Nuclear Information System (INIS)

    Wang Yi-Ze; Li Feng-Ming

    2012-01-01

    The propagation of elastic waves in magnetoelectroelastic grid structures is studied. Band gap properties are presented and the effects of the magnetoelectroelastic coupling and initial stress are considered. Numerical calculations are performed using the plane-wave expansion method. The results show that the band gap width can be tuned by the initial stress. It is hoped that our results will be helpful for designing acoustic filters with magnetoelectroelastic materials and grid structures

  17. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2010-01-01

    This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...

  18. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  19. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  20. Smart grid in China

    DEFF Research Database (Denmark)

    Sommer, Simon; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    China is planning to transform its traditional power grid in favour of a smart grid, since it allows a more economically efficient and a more environmentally friendly transmission and distribution of electricity. Thus, a nationwide smart grid is likely to save tremendous amounts of resources...

  1. Evaluation of Single File Systems Reciproc, Oneshape, and WaveOne using Cone Beam Computed Tomography –An In Vitro Study

    Science.gov (United States)

    Dhingra, Annil; Miglani, Anjali

    2015-01-01

    Background Successful endodontic therapy depends on many factor, one of the most important step in any root canal treatment is root canal preparation. In addition, respecting the original shape of the canal is of the same importance; otherwise, canal aberrations such as transportation will be created. Aim The purpose of this study is to compare and evaluate Reciprocating WaveOne ,Reciproc and Rotary Oneshape Single File Instrumentation System On Cervical Dentin Thickness, Cross Sectional Area and Canal Transportation on First Mandibular Molar Using Cone Beam Computed Tomography. Materials and Methods Sixty Mandibular First Molars extracted due to periodontal reason was collected from the Department of Oral and Maxillofacial. Teeth were prepared using one rotary and two reciprocating single file system. Teeth were divided into 3 groups 20 teeth in each group. Pre instrumentation and Post instrumentation scans was done and evaluated for three parameters Canal Transportation, Cervical Dentinal Thickness, Cross-sectional Area. Results were analysed statistically using ANOVA, Post-Hoc Tukey analysis. Results The change in cross-sectional area after filing showed significant difference at 0mm, 1mm, 2mm and 7mm (pfile system over a distance of 7 mm (starting from 0mm and then evaluation at 1mm, 2mm, 3mm, 5mm and 7mm), the results showed a significant difference among the file systems at various lengths (p= 0.014, 0.046, 0.004, 0.028, 0.005 & 0.029 respectively). Mean value of cervical dentinal removal is maximum at all the levels for oneshape and minimum for waveone showing the better quality of waveone and reciproc over oneshape file system. Significant difference was found at 9mm, 11mm and 12mm between all the three file systems (p<0.001,< 0.001, <0.001). Conclusion It was concluded that reciprocating motion is better than rotary motion in all the three parameters Canal Transportation, Cross-sectional Area, Cervical Dentinal Thickness. PMID:26023639

  2. Grid Architecture 2

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  3. North RTL ''grid scan'' studies

    International Nuclear Information System (INIS)

    Emma, P.

    1990-01-01

    This study was made in response to screen measurements which indicated an emittance growth of nearly a factor of two within the North RTL or linac girder-1. Betatron oscillations are induced at the beginning of the North RTL to search for gross geometric aberrations arising within the RTL or sector-2 of the linac. The oscillations are induced horizontally and vertically with two X or two Y dipole correctors stepped in a nested loop fashion. In both cases the full set of RTL and first girder sector-2 linac beam position monitors (BPMs) are sampled in X and Y for each corrector setting. Horizontal (or vertical) data from pairs of BPMs are then transformed to phase space coordinates by the linear transformation constructed assuming the transport optics between the BPMs is known. A second transformation is then made to normalized phase space coordinates by using Twiss parameters consistent with the assumed transport optics. By careful choice of initial Twiss parameters the initial grid can be made square for convenience in graphical interpretation. A linear ''grid'' is then fitted to the transformed data points for each pair of BPMs. The area of each grid is calculated and linearity qualitatively evaluated. Furthermore, although not the focus of this study, the beta match at each BPM can be quantified. 6 figs

  4. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2011-01-01

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector b ·E-vector perpendicular =0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector b ·E-vector perpendicular =0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of

  5. Numerical modeling of Gaussian beam propagation and diffraction in inhomogeneous media based on the complex eikonal equation

    Science.gov (United States)

    Huang, Xingguo; Sun, Hui

    2018-05-01

    Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.

  6. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  7. Smart grid technologies in local electric grids

    Science.gov (United States)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  8. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A.D.; Sørensen, P.

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project "Grid fault and design basis for wind turbine" supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  9. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project ''Grid fault and designbasis for wind turbine'' supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  10. Power beaming research at NASA

    Science.gov (United States)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.

  11. Study of the synthesized plasma resulting from forced neutralization of a mercury ions beam

    International Nuclear Information System (INIS)

    Spiess, G.

    1969-01-01

    When an ionic beam is used (space simulation etc...) it needs a forced space charge neutralization by means of electrons injection when the perturbations resulting from the ionic space charge are not already eliminated by the well known self neutralization of the beam on the back ground gas of the tank. We have shown that it is possible to obtain the forced neutralization of a low energy (a few KeV) Hg + ion beam, 10 cm in diameter, with a neutraliser made of a hot emissive filament located inside the beam close to the ion source. The computed solution of the plane waves dispersion equation has shown that the synthesized plasma, resulting from the neutralised beam, is damping fluctuations with any wave length when the average ions velocity is less than the neutralizing electrons thermal velocity. This last conclusion assumes that no external electromagnetic field is applied. When a longitudinal electric field is applied, by means of a polarized grid into the beam, the plasma stability range is changed. (author) [fr

  12. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  13. Computation of tightly-focused laser beams in the FDTD method.

    Science.gov (United States)

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2013-01-14

    We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software ("Angora").

  14. LHC computing grid

    International Nuclear Information System (INIS)

    Novaes, Sergio

    2011-01-01

    Full text: We give an overview of the grid computing initiatives in the Americas. High-Energy Physics has played a very important role in the development of grid computing in the world and in Latin America it has not been different. Lately, the grid concept has expanded its reach across all branches of e-Science, and we have witnessed the birth of the first nationwide infrastructures and its use in the private sector. (author)

  15. Urban micro-grids

    International Nuclear Information System (INIS)

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  16. High density grids

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Aina E.; Baxter, Elizabeth L.

    2018-01-16

    An X-ray data collection grid device is provided that includes a magnetic base that is compatible with robotic sample mounting systems used at synchrotron beamlines, a grid element fixedly attached to the magnetic base, where the grid element includes at least one sealable sample window disposed through a planar synchrotron-compatible material, where the planar synchrotron-compatible material includes at least one automated X-ray positioning and fluid handling robot fiducial mark.

  17. Model of interaction in Smart Grid on the basis of multi-agent system

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-11-01

    This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.

  18. Micro grids toward the smart grid

    International Nuclear Information System (INIS)

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  19. Challenges facing production grids

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  20. Grid today, clouds on the horizon

    Science.gov (United States)

    Shiers, Jamie

    2009-04-01

    By the time of CCP 2008, the largest scientific machine in the world - the Large Hadron Collider - had been cooled down as scheduled to its operational temperature of below 2 degrees Kelvin and injection tests were starting. Collisions of proton beams at 5+5 TeV were expected within one to two months of the initial tests, with data taking at design energy ( 7+7 TeV) foreseen for 2009. In order to process the data from this world machine, we have put our "Higgs in one basket" - that of Grid computing [The Worldwide LHC Computing Grid (WLCG), in: Proceedings of the Conference on Computational Physics 2006 (CCP 2006), vol. 177, 2007, pp. 219-223]. After many years of preparation, 2008 saw a final "Common Computing Readiness Challenge" (CCRC'08) - aimed at demonstrating full readiness for 2008 data taking, processing and analysis. By definition, this relied on a world-wide production Grid infrastructure. But change - as always - is on the horizon. The current funding model for Grids - which in Europe has been through 3 generations of EGEE projects, together with related projects in other parts of the world, including South America - is evolving towards a long-term, sustainable e-infrastructure, like the European Grid Initiative (EGI) [The European Grid Initiative Design Study, website at http://web.eu-egi.eu/]. At the same time, potentially new paradigms, such as that of "Cloud Computing" are emerging. This paper summarizes the results of CCRC'08 and discusses the potential impact of future Grid funding on both regional and international application communities. It contrasts Grid and Cloud computing models from both technical and sociological points of view. Finally, it discusses the requirements from production application communities, in terms of stability and continuity in the medium to long term.

  1. Dosimetric characteristics with spatial fractionation using electron grid therapy.

    Science.gov (United States)

    Meigooni, A S; Parker, S A; Zheng, J; Kalbaugh, K J; Regine, W F; Mohiuddin, M

    2002-01-01

    Recently, promising clinical results have been shown in the delivery of palliative treatments using megavoltage photon grid therapy. However, the use of megavoltage photon grid therapy is limited in the treatment of bulky superficial lesions where critical radiosensitive anatomical structures are present beyond tumor volumes. As a result, spatially fractionated electron grid therapy was investigated in this project. Dose distributions of 1.4-cm-thick cerrobend grid blocks were experimentally determined for electron beams ranging from 6 to 20 MeV. These blocks were designed and fabricated at out institution to fit into a 20 x 20-cm(2) electron cone of a commercially available linear accelerator. Beam profiles and percentage depth dose (PDD) curves were measured in Solid Water phantom material using radiographic film, LiF TLD, and ionometric techniques. Open-field PDD curves were compared with those of single holes grid with diameters of 1.5, 2.0, 2.5, 3.0, and 3.5 cm to find the optimum diameter. A 2.5-cm hole diameter was found to be the optimal size for all electron energies between 6 and 20 MeV. The results indicate peak-to-valley ratios decrease with depth and the largest ratio is found at Dmax. Also, the TLD measurements show that the dose under the blocked regions of the grid ranged from 9.7% to 39% of the dose beneath the grid holes, depending on the measurement location and beam energy.

  2. Brewster-angle 50%-50% beam splitter for p-polarized infrared light using a high-index quarter-wave layer deposited on a low-index prism.

    Science.gov (United States)

    Azzam, R M A

    2017-08-10

    A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.

  3. A GridFTP transport driver for Globus XIO

    International Nuclear Information System (INIS)

    Kettimuthu, R.; Wantao, L.; Link, J.; Bresnahan, J.

    2008-01-01

    GridFTP is a high-performance, reliable data transfer protocol optimized for high-bandwidth wide-area networks. Based on the Internet FTP protocol, it defines extensions for high-performance operation and security. The Globus implementation of GridFTP provides a modular and extensible data transfer system architecture suitable for wide area and high-performance environments. GridFTP is the de facto standard in projects requiring secure, robust, high-speed bulk data transport. For example, the high energy physics community is basing its entire tiered data movement infrastructure for the Large Hadron Collider computing Grid on GridFTP; the Laser Interferometer Gravitational Wave Observatory routinely uses GridFTP to move 1 TB a day during production runs; and GridFTP is the recommended data transfer mechanism to maximize data transfer rates on the TeraGrid. Commonly used GridFTP clients include globus-url-copy, uberftp, and the Globus Reliable File Transfer service. In this paper, we present a Globus XIO based client to GridFTP that provides a simple Open/Close/Read/Write (OCRW) interface to the users. Such a client greatly eases the addition of GridFTP support to third-party programs, such as SRB and MPICH-G2. Further, this client provides an easier and familiar interface for applications to efficiently access remote files. We compare the performance of this client with that of globus-url-copy on multiple endpoints in the TeraGrid infrastructure. We perform both memory-to-memory and disk-to-disk transfers and show that the performance of this OCRW client is comparable to that of globus-url-copy. We also show that our GridFTP client significantly outperforms the GPFS WAN on the TeraGrid.

  4. Particle simulation of grid system for krypton ion thrusters

    Directory of Open Access Journals (Sweden)

    Maolin CHEN

    2018-04-01

    Full Text Available The transport processes of plasmas in grid systems of krypton (Kr ion thrusters at different acceleration voltages were simulated with a 3D-PIC model, and the result was compared with xenon (Xe ion thrusters. The variation of the screen grid transparency, the accelerator grid current ratio and the divergence loss were explored. It is found that the screen grid transparency increases with the acceleration voltage and decreases with the beam current, while the accelerator grid current ratio and divergence loss decrease first and then increase with the beam current. This result is the same with Xe ion thrusters. Simulation results also show that Kr ion thrusters have more advantages than Xe ion thrusters, such as higher screen grid transparency, smaller accelerator grid current ratio, larger cut-off current threshold, and better divergence loss characteristic. These advantages mean that Kr ion thrusters have the ability of operating in a wide range of current. Through comprehensive analyses, it can be concluded that using Kr as propellant is very suitable for a multi-mode ion thruster design. Keywords: Grid system, Ion thrusters, Krypton, Particle in cell method, Plasma

  5. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  6. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  7. Security for grids

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  8. The LHCb Grid Simulation

    CERN Multimedia

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  9. The play grid

    DEFF Research Database (Denmark)

    Fogh, Rune; Johansen, Asger

    2013-01-01

    In this paper we propose The Play Grid, a model for systemizing different play types. The approach is psychological by nature and the actual Play Grid is based, therefore, on two pairs of fundamental and widely acknowledged distinguishing characteristics of the ego, namely: extraversion vs. intro...

  10. Planning in Smart Grids

    NARCIS (Netherlands)

    Bosman, M.G.C.

    2012-01-01

    The electricity supply chain is changing, due to increasing awareness for sustainability and an improved energy efficiency. The traditional infrastructure where demand is supplied by centralized generation is subject to a transition towards a Smart Grid. In this Smart Grid, sustainable generation

  11. Gridded Species Distribution, Version 1: Global Amphibians Presence Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Amphibians Presence Grids of the Gridded Species Distribution, Version 1 is a reclassified version of the original grids of amphibian species distribution...

  12. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2017-01-01

    This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.

  13. The GRID seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The Grid infrastructure is a key part of the computing environment for the simulation, processing and analysis of the data of the LHC experiments. These experiments depend on the availability of a worldwide Grid infrastructure in several aspects of their computing model. The Grid middleware will hide much of the complexity of this environment to the user, organizing all the resources in a coherent virtual computer center. The general description of the elements of the Grid, their interconnections and their use by the experiments will be exposed in this talk. The computational and storage capability of the Grid is attracting other research communities beyond the high energy physics. Examples of these applications will be also exposed during the presentation.

  14. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  15. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  16. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB injectors

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)], E-mail: piero.agostinetti@igi.cnr.it; Dal Bello, S.; Dalla Palma, M.; Zaccaria, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)

    2007-10-15

    The SINGle Aperture-SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi-Aperture Multi-Grid (MAMuG) reference configuration. The grids have to fulfil specific requirements coming from ion extraction, beam optics and thermo-mechanical issues. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with sensitivity analyses in order to satisfy the grid functional requirements (temperatures, stresses, in plane and out of plane deformations). The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models.

  17. Ion extraction capabilities of closely spaced grids

    Science.gov (United States)

    Rovang, D. C.; Wilbur, P. J.

    1982-01-01

    The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.

  18. Concomitant GRID boost for Gamma Knife radiosurgery

    International Nuclear Information System (INIS)

    Ma Lijun; Kwok, Young; Chin, Lawrence S.; Simard, J. Marc; Regine, William F.

    2005-01-01

    We developed an integrated GRID boost technique for Gamma Knife radiosurgery. The technique generates an array of high dose spots within the target volume via a grid of 4-mm shots. These high dose areas were placed over a conventional Gamma Knife plan where a peripheral dose covers the full target volume. The beam weights of the 4-mm shots were optimized iteratively to maximize the integral dose inside the target volume. To investigate the target volume coverage and the dose to the adjacent normal brain tissue for the technique, we compared the GRID boosted treatment plans with conventional Gamma Knife treatment plans using physical and biological indices such as dose-volume histogram (DVH), DVH-derived indices, equivalent uniform dose (EUD), tumor control probabilities (TCP), and normal tissue complication probabilities (NTCP). We found significant increase in the target volume indices such as mean dose (5%-34%; average 14%), TCP (4%-45%; average 21%), and EUD (2%-22%; average 11%) for the GRID boost technique. No significant change in the peripheral dose coverage for the target volume was found per RTOG protocol. In addition, the EUD and the NTCP for the normal brain adjacent to the target (i.e., the near region) were decreased for the GRID boost technique. In conclusion, we demonstrated a new technique for Gamma Knife radiosurgery that can escalate the dose to the target while sparing the adjacent normal brain tissue

  19. Computer Simulation of the UMER Gridded Gun

    CERN Document Server

    Haber, Irving; Friedman, Alex; Grote, D P; Kishek, Rami A; Reiser, Martin; Vay, Jean-Luc; Zou, Yun

    2005-01-01

    The electron source in the University of Maryland Electron Ring (UMER) injector employs a grid 0.15 mm from the cathode to control the current waveform. Under nominal operating conditions, the grid voltage during the current pulse is sufficiently positive relative to the cathode potential to form a virtual cathode downstream of the grid. Three-dimensional computer simulations have been performed that use the mesh refinement capability of the WARP particle-in-cell code to examine a small region near the beam center in order to illustrate some of the complexity that can result from such a gridded structure. These simulations have been found to reproduce the hollowed velocity space that is observed experimentally. The simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on. This complex temporal behavior appears to result directly from the dynamics of the virtual cathode formation and may therefore be representative of the expected behavior in...

  20. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  1. Beam-plasma interaction in randomly inhomogeneous plasmas and statistical properties of small-amplitude Langmuir waves in the solar wind and electron foreshock

    Czech Academy of Sciences Publication Activity Database

    Krasnoselskikh, V. V.; Lobzin, V. V.; Musatenko, K.; Souček, Jan; Pickett, J. S.; Cairns, I. H.

    2007-01-01

    Roč. 112, A10 (2007), A10109/1-A10109/12 ISSN 0148-0227 R&D Projects: GA AV ČR IAA301120601; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517 Keywords : plasma waves * kinetic waves and instabilities * foreshock * solar wind Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.953, year: 2007

  2. Decentral Smart Grid Control

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  3. Decentral Smart Grid Control

    International Nuclear Information System (INIS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals. (paper)

  4. The open science grid

    International Nuclear Information System (INIS)

    Pordes, R.

    2004-01-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE and NSF Laboratories and Universities and Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus

  5. A gridded air counter for measuring exoelectrons

    International Nuclear Information System (INIS)

    Nagase, Makoto; Chiba, Yoshiya; Kirihata, Humiaki.

    1980-01-01

    A gridded air counter with a quenching circuit is described, which serves to detect low-energy electrons such as thermionic electrons, photoelectrons and exoelectrons emitted into the atmospheric air. The air counter consists of a loop-shaped anode and two grids provided for quenching the gas discharge and for protecting the electron emitter from the positive ion bombardment. The quenching circuit with a high input sensitivity of 5 mV detects the initiation gas discharge caused by an incident electron and immediately supplies a rectangular wave pulse of 300 V in amplitude and of more than 3 msec in width to the quenching grid near the anode. Simultaneously, the voltage of the suppressor grid is brought down and kept at -30 V against the earthed sample for the same period of time. Performance of the gridded air counter was examined by use of photoelectrons emitted from an abraded aluminum plate. The quenching action was successfully accomplished in the anode voltage range from 3.65 to 3.95 kV. The photoelectrons emitted into the atmosphere could be counted stably by use of this counter. (author)

  6. Transformation instability of oscillations in inhomogeneous beam-plasma system

    International Nuclear Information System (INIS)

    Kitsenko, A.B.

    1985-01-01

    Wave transformation is studied in a plasma system which was weak-inhomogeneous along beam velocity, in absence of external magnetic field. For the case of small density beam formulae are obtained which have set a coupling between the charge density beam wave amplitudes and the Langmuir wave on both sides of transformation point. It is shown that in collisionless plasma the wave production is a cause of the absorption of the charge density beam waves. Transformation mechanism of the absolute instability in the weak-inhomogeneous beam-plasma system is revealed

  7. Desktop grid computing

    CERN Document Server

    Cerin, Christophe

    2012-01-01

    Desktop Grid Computing presents common techniques used in numerous models, algorithms, and tools developed during the last decade to implement desktop grid computing. These techniques enable the solution of many important sub-problems for middleware design, including scheduling, data management, security, load balancing, result certification, and fault tolerance. The book's first part covers the initial ideas and basic concepts of desktop grid computing. The second part explores challenging current and future problems. Each chapter presents the sub-problems, discusses theoretical and practical

  8. Transmission grid security

    CERN Document Server

    Haarla, Liisa; Hirvonen, Ritva; Labeau, Pierre-Etienne

    2011-01-01

    In response to the growing importance of power system security and reliability, ""Transmission Grid Security"" proposes a systematic and probabilistic approach for transmission grid security analysis. The analysis presented uses probabilistic safety assessment (PSA) and takes into account the power system dynamics after severe faults. In the method shown in this book the power system states (stable, not stable, system breakdown, etc.) are connected with the substation reliability model. In this way it is possible to: estimate the system-wide consequences of grid faults; identify a chain of eve

  9. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  10. Optimal variable-grid finite-difference modeling for porous media

    International Nuclear Information System (INIS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-01-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)

  11. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  12. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  13. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  14. CMS computing on grid

    International Nuclear Information System (INIS)

    Guan Wen; Sun Gongxing

    2007-01-01

    CMS has adopted a distributed system of services which implement CMS application view on top of Grid services. An overview of CMS services will be covered. Emphasis is on CMS data management and workload Management. (authors)

  15. Technology Roadmaps: Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The development of Technology Roadmaps: Smart Grids -- which the IEA defines as an electricity network that uses digital and other advanced technologies to monitor and manage the transport of electricity from all generation sources to meet the varying electricity demands of end users -- is essential if the global community is to achieve shared goals for energy security, economic development and climate change mitigation. Unfortunately, existing misunderstandings of exactly what smart grids are and the physical and institutional complexity of electricity systems make it difficult to implement smart grids on the scale that is needed. This roadmap sets out specific steps needed over the coming years to achieve milestones that will allow smart grids to deliver a clean energy future.

  16. Meet the Grid

    CERN Multimedia

    Yurkewicz, Katie

    2005-01-01

    Today's cutting-edge scientific projects are larger, more complex, and more expensive than ever. Grid computing provides the resources that allow researchers to share knowledge, data, and computer processing power across boundaries

  17. World Wide Grid

    CERN Multimedia

    Grätzel von Grätz, Philipp

    2007-01-01

    Whether for genetic risk analysis or 3D-rekonstruktion of the cerebral vessels: the modern medicine requires more computing power. With a grid infrastructure, this one can be if necessary called by the network. (4 pages)

  18. Spacer grid corner gusset

    International Nuclear Information System (INIS)

    Larson, J.G.

    1984-01-01

    There is provided a spacer grid for a bundle of longitudinally extending rods in spaced generally parallel relationship comprising spacing means for holding the rods in spaced generally parallel relationship; the spacing means includes at least one exterior grid strip circumscribing the bundle of rods along the periphery thereof; with at least one exterior grid strip having a first edge defining the boundary of the strip in one longitudinal direction and a second edge defining the boundary of the strip in the other longitudinal direction; with at least one exterior grid strip having at least one band formed therein parallel to the longitudinal direction; a plurality of corner gussets truncating each of a plurality of corners formed by at least one band and the first edge and the second edge

  19. Smart grids - French Expertise

    International Nuclear Information System (INIS)

    2015-11-01

    The adaptation of electrical systems is the focus of major work worldwide. Bringing electricity to new territories, modernizing existing electricity grids, implementing energy efficiency policies and deploying renewable energies, developing new uses for electricity, introducing electric vehicles - these are the challenges facing a multitude of regions and countries. Smart Grids are the result of the convergence of electrical systems technologies with information and communications technologies. They play a key role in addressing the above challenges. Smart Grid development is a major priority for both public and private-sector actors in France. The experience of French companies has grown with the current French electricity system, a system that already shows extensive levels of 'intelligence', efficiency and competitiveness. French expertise also leverages substantial competence in terms of 'systems engineering', and can provide a tailored response to meet all sorts of needs. French products and services span all the technical and commercial building blocks that make up the Smart Grid value chain. They address the following issues: Improving the use and valuation of renewable energies and decentralized means of production, by optimizing the balance between generation and consumption. Strengthening the intelligence of the transmission and distribution grids: developing 'Supergrid', digitizing substations in transmission networks, and automating the distribution grids are the focus of a great many projects designed to reinforce the 'self-healing' capacity of the grid. Improving the valuation of decentralized flexibilities: this involves, among others, deploying smart meters, reinforcing active energy efficiency measures, and boosting consumers' contribution to grid balancing, via practices such as demand response which implies the aggregation of flexibility among residential, business, and/or industrial sites. Addressing current technological challenges, in

  20. US National Grid

    Data.gov (United States)

    Kansas Data Access and Support Center — This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information...