WorldWideScience

Sample records for wave arrival times

  1. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  2. Determination of P – wave arrival time of acoustic events

    Directory of Open Access Journals (Sweden)

    Matěj Petružálek

    2010-10-01

    Full Text Available The new approach to the P-wave arrival time determination based on acoustic emission data from loading experiments is tested.The algorithm used in this paper is built on the STA/LTA function computed by a convolution that speeds up the computation processvery much. The picking process makes use of shifting of temporary onset until certain conditions are fulfill and as a main decisioncriterion on the threshold exceeding of the STA/LTA derivation function is used. The P-wave onset time is determined in a selectedinterval that corresponds to the theoretical propagation of elastic wave in the rock sample. Results obtained by our algorithm werecorrelated with data acquired manually and a high order statistic software as well.

  3. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  4. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    Science.gov (United States)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  5. Value of shear wave arrival time contour display in shear wave elastography for breast masses diagnosis.

    Science.gov (United States)

    Zhou, Bang-Guo; Wang, Dan; Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Liu, Bo-Ji; Wang, Qiao; Chen, Shi-Gao; Alizad, Azra; Xu, Hui-Xiong

    2017-08-01

    To evaluate the diagnostic performance of shear wave arrival time contour (SWATC) display for the diagnosis of breast lesions and to identify factors associated with the quality of shear wave propagation (QSWP) in breast lesions. This study included 277 pathologically confirmed breast lesions. Conventional B-mode ultrasound characteristics and shear wave elastography parameters were computed. Using the SWATC display, the QSWP of each lesion was assigned to a two-point scale: score 1 (low quality) and score 2 (high quality). Binary logistic regression analysis was performed to identify factors associated with QSWP. The area under the receiver operating characteristic curve (AUROC) for QSWP to differentiate benign from malignant lesions was 0.913, with a sensitivity of 91.9%, a specificity of 90.7%, a positive predictive value (PPV) of 74.0%, and a negative predictive value (NPV) of 97.5%. Compared with using the standard deviation of shear wave speed (SWS SD ) alone, SWS SD combined with QSWP increased the sensitivity from 75.8% to 93.5%, but decreased the specificity from 95.8% to 89.3% (P breast lesions.

  6. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-20

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.

  7. Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2008-12-15

    Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified

  8. Pipe Wall Thinning Evaluation through the Arrival Time Delay of A0 Lamb Wave Using Magnetostrictive Patch Transducers

    International Nuclear Information System (INIS)

    Cho, Seung Hyun; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok

    2008-01-01

    Guided wave technology is advantageous for fast inspection of pipe wall thinning since the guided wave propagates long distance. In this investigation, the method to evaluate gradual wall thinning in a pipe based on the arrival time delay with magnetostrictive patch transducers is presented. Low frequency A0 Lamb waves were generated and measured by the present transducer and it was applied to arrival time delay measurement experiments on a test pipe having gradual wall thinnings artificially manufactured. From experiments, consistent results that wall thinning increases the arrival time delay of A0 waves were obtained. Consequently, the feasibility of the magnetostrictive patch transducers to evaluate wall thinning was verified

  9. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    Science.gov (United States)

    Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng

    2013-03-01

    We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.

  10. A method for detecting crack wave arrival time and crack localization in a tunnel by using moving window technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Park, Tae Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Source localization in a dispersive medium has been carried out based on the time-of-arrival-differences (TOADs) method: a triangulation method and a circle intersection technique. Recent signal processing advances have led to calculation TOAD using a joint time-frequency analysis of the signal, where a short-time Fourier transform(STFT) and wavelet transform can be included as popular algorithms. The time-frequency analysis method is able to provide various information and more reliable results such as seismic-attenuation estimation, dispersive characteristics, a wave mode analysis, and temporal energy distribution of signals compared with previous methods. These algorithms, however, have their own limitations for signal processing. In this paper, the effective use of proposed algorithm in detecting crack wave arrival time and source localization in rock masses suggest that the evaluation and real-time monitoring on the intensity of damages related to the tunnels or other underground facilities is possible. Calculation of variances resulted from moving windows as a function of their size differentiates the signature from noise and from crack signal, which lead us to determine the crack wave arrival time. Then, the source localization is determined to be where the variance of crack wave velocities from real and virtual crack localization becomes a minimum. To validate our algorithm, we have performed experiments at the tunnel, which resulted in successful determination of the wave arrival time and crack localization.

  11. An innovative method for automatic determination of time of arrival for Lamb waves excited by impact events

    Science.gov (United States)

    Zhu, Junxiao; Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Patil, Devendra; Ge, Maochen; Li, Hongnan; Song, Gangbing

    2017-05-01

    Lamb waves have great potential as a diagnostic tool in the application of structural health monitoring. Propagation properties of Lamb waves are affected by the state of the structure that the waves are traveling upon. Thus Lamb waves can carry information about the structure as they travel across a structure. However, the dispersive, multimodal and attenuation characteristics of Lamb waves make it difficult to determine the time of arrival of Lamb waves. To deal with these characteristics, an innovative method to automatically determine the time of arrival for impact-induced Lamb waves without human intervention is proposed in this paper. Lead zirconate titanate sensors mounted on the surface of an aluminum plate were used to measure the Lamb waves excited by an impact. The time of arrival was determined based on wavelet decomposition, Hilbert transform and statistics (Grubbs’ test and maximum likelihood estimation). Both of numerical analysis and physical measurements have verified the accuracy of this method for impacts on an aluminum plate.

  12. Hong-Ou-Mandel effect in terms of the temporal biphoton wave function with two arrival-time variables

    Science.gov (United States)

    Fedorov, M. V.; Sysoeva, A. A.; Vintskevich, S. V.; Grigoriev, D. A.

    2018-03-01

    The well-known Hong-Ou-Mandel effect is revisited. Two physical reasons are discussed for the effect to be less pronounced or even to disappear: differing polarizations of photons coming to the beamsplitter and delay time of photons in one of two channels. For the latter we use the concepts of biphoton frequency and temporal wave functions depending, correspondingly, on two frequency continuous variables of photons and on two time variables t 1 and t 2 interpreted as the arrival times of photons to the beamsplitter. Explicit expressions are found for the probability densities and total probabilities for photon pairs to be split between two channels after the beamsplitter and to be unsplit, when two photons appear together in one of two channels.

  13. Automatic detection of P- and S-wave arrival times: new strategies based on the modified fractal method and basic matching pursuit.

    Science.gov (United States)

    Chi Durán, R. K.; Comte, D.; Diaz, M. A.; Silva, J. F.

    2017-12-01

    In this work, new strategies for automatic identification of P- and S-wave arrival times from digital recorded local seismograms are proposed and analyzed. The database of arrival times previously identified by a human reader was compared with automatic identification techniques based on the Fourier transformation in reduced time (spectrograms), fractal analysis, and the basic matching pursuit algorithm. The first two techniques were used to identify the P-wave arrival times, while the third was used for the identification of the S-wave. For validation, the results were compared with the short-time average over long-time average (STA/LTA) of Rietbrock et al., Geophys Res Lett 39(8), (2012) for the database of aftershocks of the 2010 Maule Mw = 8.8 earthquake. The identifiers proposed in this work exhibit good results that outperform the STA/LTA identifier in many scenarios. The average difference from the reference picks (times obtained by the human reader) in P- and S-wave arrival times is 1 s.

  14. Equilibrium Arrival Times to Queues

    DEFF Research Database (Denmark)

    Breinbjerg, Jesper; Østerdal, Lars Peter

    We consider a non-cooperative queueing environment where a finite number of customers independently choose when to arrive at a queueing system that opens at a given point in time and serves customers on a last-come first-serve preemptive-resume (LCFS-PR) basis. Each customer has a service time...... requirement which is identically and independently distributed according to some general probability distribution, and they want to complete service as early as possible while minimizing the time spent in the queue. In this setting, we establish the existence of an arrival time strategy that constitutes...... a symmetric (mixed) Nash equilibrium, and show that there is at most one symmetric equilibrium. We provide a numerical method to compute this equilibrium and demonstrate by a numerical example that the social effciency can be lower than the effciency induced by a similar queueing system that serves customers...

  15. Managing customer arrivals with time windows

    DEFF Research Database (Denmark)

    Chen, Gang; Jiang, Liping

    2016-01-01

    Due to increasing container traffic and mega-ships, many seaports face challenges of huge amounts of truck arrivals and congestion problem at terminal gates, which affect port efficiency and generate serious air pollution. To solve this congestion problem, we propose a solution of managing truck...... arrivals with time windows based on the truck-vessel service relationship, specifically trucks delivering containers for the same vessel share one common time window. Time windows can be optimized with different strategies. In this paper, we first propose a framework for installing this solution...

  16. Quantum arrival times and operator normalization

    International Nuclear Information System (INIS)

    Hegerfeldt, Gerhard C.; Seidel, Dirk; Gonzalo Muga, J.

    2003-01-01

    A recent approach to arrival times used the fluorescence of an atom entering a laser illuminated region, and the resulting arrival-time distribution was close to the axiomatic distribution of Kijowski, but not exactly equal, neither in limiting cases nor after compensation of reflection losses by normalization on the level of expectation values. In this paper we employ a normalization on the level of operators, recently proposed in a slightly different context. We show that in this case the axiomatic arrival-time distribution of Kijowski is recovered as a limiting case. In addition, it is shown that Allcock's complex potential model is also a limit of the physically motivated fluorescence approach and connected to Kijowski's distribution through operator normalization

  17. True Time API Link (real time arrival info)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This link will take you to the site where you can create an account to access Port Authority's real time arrival information. To request access to Port Authority's...

  18. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  19. Quantum arrival time formula from decoherent histories

    International Nuclear Information System (INIS)

    Halliwell, J.J.; Yearsley, J.M.

    2009-01-01

    We use the decoherent histories approach to quantum mechanics to compute the probability for a wave packet to cross the origin during a given time interval. We define class operators (sums of strings of projectors) characterizing quantum-mechanical crossing and simplify them using a semiclassical approximation. Using these class operators we find that histories crossing the origin during different time intervals are approximately decoherent for a variety of initial states. Probabilities may therefore be assigned and coincide with the flux of the wave packet (the standard semiclassical formula), and are positive. The known initial states for which the flux is negative (backflow states) are shown to correspond to non-decoherent sets of histories, so probabilities may not be assigned.

  20. Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic

    Directory of Open Access Journals (Sweden)

    Jakub Sokolowski

    2016-01-01

    Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.

  1. The arrival time distribution of muons in extensive air showers

    International Nuclear Information System (INIS)

    Van der Walt, D.J.

    1984-01-01

    An experiment was done to investigate the lateral dependence of the muon arrival time distribution in extensive air showers at small core distances. In the present experiment the muon arrival time distribution was investigated by measuring the relative arrival times between single muons in five fast Cerenkov detectors beneath 500g/cm 2 of concrete and at an atmospheric depth of 880g/cm 2 . It is shown that, although it is not possible to determine the arrival time distribution as such, it is possible to interpret the relative arrival times between muons in terms of the differences between the order statistics of a sample drawn from the arrival time distribution. The relationship between the arrival time distribution of muons relative to the first detected muon and the muon arrival time distribution is also derived. It was found that the dispersion of the muon arrival time distribution does not increase significantly with increasing core distance between 10m and 60m from the core. A comparison with theoretical distributions obtained from model calculations for proton initiated showers indicate that 1. the mean delay of muons with respect to the first detected muon is significantly larger than that expected from the model and 2. the observed dispersion is also significantly larger than the predicted dispersion for core distances between 10m and 60m

  2. Estimating bus passenger waiting times from incomplete bus arrivals data

    OpenAIRE

    McLeod, F.N.

    2007-01-01

    This paper considers the problem of estimating bus passenger waiting times at bus stops using incomplete bus arrivals data. This is of importance to bus operators and regulators as passenger waiting time is a key performance measure. Average waiting times are usually estimated from bus headways, that is, time gaps between buses. It is both time-consuming and expensive to measure bus arrival times manually so methods using automatic vehicle location systems are attractive; however, these syste...

  3. Spiral-shaped piezoelectric sensors for Lamb waves direction of arrival (DoA) estimation

    Science.gov (United States)

    De Marchi, L.; Testoni, N.; Marzani, A.

    2018-04-01

    A novel strategy to design piezoelectric sensors suited for direction of arrival (DoA) estimation of incoming Lamb waves is presented in this work. The designed sensor is composed by two piezoelectric patches (P1, P2) bonded on the structure to be inspected. In particular, by exploiting the Radon transform, the proposed procedure computes the shape of P2 given the shape of P1 so that the difference in time of arrival (DToA) of the Lamb waves at the two patches is linearly related to the DoA while being agnostic of the waveguide dispersion curves. With a dedicated processing procedure, the waveforms acquired from the two electrodes and digitized can be used to retrieve the DoA information. Numerical and experimental results show that DoA estimation performed by means of the proposed shaped transducers is extremely robust.

  4. Estimated time of arrival and debiasing the time saving bias.

    Science.gov (United States)

    Eriksson, Gabriella; Patten, Christopher J D; Svenson, Ola; Eriksson, Lars

    2015-01-01

    The time saving bias predicts that the time saved when increasing speed from a high speed is overestimated, and underestimated when increasing speed from a slow speed. In a questionnaire, time saving judgements were investigated when information of estimated time to arrival was provided. In an active driving task, an alternative meter indicating the inverted speed was used to debias judgements. The simulated task was to first drive a distance at a given speed, and then drive the same distance again at the speed the driver judged was required to gain exactly 3 min in travel time compared with the first drive. A control group performed the same task with a speedometer and saved less than the targeted 3 min when increasing speed from a high speed, and more than 3 min when increasing from a low speed. Participants in the alternative meter condition were closer to the target. The two studies corroborate a time saving bias and show that biased intuitive judgements can be debiased by displaying the inverted speed. Practitioner Summary: Previous studies have shown a cognitive bias in judgements of the time saved by increasing speed. This simulator study aims to improve driver judgements by introducing a speedometer indicating the inverted speed in active driving. The results show that the bias can be reduced by presenting the inverted speed and this finding can be used when designing in-car information systems.

  5. Quantum arrival-time distributions from intensity functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim

    2002-01-01

    is similar in nature to other time-dependent arrival-type processes occurring, e.g., in population biology or queue theory. A simple but illustrative example related to the well-known Wigner discussion of the time-energy uncertainty relation is given and the numerical results obtained are compared...

  6. Original Research Factors associated with hospital arrival time after ...

    African Journals Online (AJOL)

    Original Research. Factors associated with hospital arrival time after the onset of stroke symptoms: A cross-sectional study at two teaching hospitals in Harare, Zimbabwe .... hypertension causing small vessel disease which outweigh the causes of ..... Stroke Mechanism in Atherosclerotic Middle Cerebral Artery Disease:.

  7. Spectral information for detection of acoustic time to arrival

    DEFF Research Database (Denmark)

    Gordon, Michael S.; Russo, Frank A.; MacDonald, Ewen

    2013-01-01

    The exponential increase of intensity for an approaching sound source provides salient information for a listener to make judgments of time to arrival (TTA). Specifically, a listener will experience a greater rate of increasing intensity for higher than for lower frequencies during a sound source...

  8. Estimating epidemic arrival times using linear spreading theory

    Science.gov (United States)

    Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne

    2018-01-01

    We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

  9. Operator-normalized quantum arrival times in the presence of interactions

    International Nuclear Information System (INIS)

    Hegerfeldt, G.C.; Seidel, D.; Muga, J.G.; Navarro, B.

    2004-01-01

    We model ideal arrival-time measurements for free quantum particles and for particles subject to an external interaction by means of a narrow and weak absorbing potential. This approach is related to the operational approach of measuring the first photon emitted from a two-level atom illuminated by a laser. By operator normalizing the resulting time-of-arrival distribution, a distribution is obtained which for freely moving particles not only recovers the axiomatically derived distribution of Kijowski for states with purely positive momenta but is also applicable to general momentum components. For particles interacting with a square barrier the mean arrival time and corresponding 'tunneling time' obtained at the transmission side of the barrier become independent of the barrier width (Hartman effect) for arbitrarily wide barriers, i.e., without the transition to the ultraopaque, classical-like regime dominated by wave packet components above the barrier

  10. Empirical estimation of the arrival time of ICME Shocks

    Science.gov (United States)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  11. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    Science.gov (United States)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.

  12. Stochastic Resonance and First Arrival Time for Excitable Systems

    Science.gov (United States)

    Duki, Solomon Fekade; Taye, Mesfin Asfaw

    2018-06-01

    We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T}) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).

  13. Time of arrival based location estimation for cooperative relay networks

    KAUST Repository

    Çelebi, Hasari Burak

    2010-09-01

    In this paper, we investigate the performance of a cooperative relay network performing location estimation through time of arrival (TOA). We derive Cramer-Rao lower bound (CRLB) for the location estimates using the relay network. The analysis is extended to obtain average CRLB considering the signal fluctuations in both relay and direct links. The effects of the channel fading of both relay and direct links and amplification factor and location of the relay node on average CRLB are investigated. Simulation results show that the channel fading of both relay and direct links and amplification factor and location of relay node affect the accuracy of TOA based location estimation. ©2010 IEEE.

  14. Time of arrival based location estimation for cooperative relay networks

    KAUST Repository

    Ç elebi, Hasari Burak; Abdallah, Mohamed M.; Hussain, Syed Imtiaz; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we investigate the performance of a cooperative relay network performing location estimation through time of arrival (TOA). We derive Cramer-Rao lower bound (CRLB) for the location estimates using the relay network. The analysis is extended to obtain average CRLB considering the signal fluctuations in both relay and direct links. The effects of the channel fading of both relay and direct links and amplification factor and location of the relay node on average CRLB are investigated. Simulation results show that the channel fading of both relay and direct links and amplification factor and location of relay node affect the accuracy of TOA based location estimation. ©2010 IEEE.

  15. AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times

    Science.gov (United States)

    Lou, X.; van der Lee, S.; Lloyd, S.

    2013-12-01

    Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.

  16. Arrival-Time Detection and Ultrasonic Flow-Meter Applications

    International Nuclear Information System (INIS)

    Willatzen, Morten; Soendergaard, Peter; Latino, Carl; Voss, Frands; Andersen, Niels Lervad; Brokate, Martin; Bounaim, Aicha

    2006-01-01

    The Danfoss problem on ultrasonic flow measurement has been separated into three parts each handled by a subgroup of the authors listed above. The first subgroup deals with a presentation of modelling equations describing the physics of ultrasonic flow meters employing reciprocal ultrasonic transducer systems. The mathematical model presented allows the electrical output signal to be determined corresponding to any time-dependent electrical input signal. The transducers modelled consist of a piezoceramic material layer and a passive acoustic matching layer. The second subgroup analyzes the possibility of coding the input signal so as to simplify arrival-time detection by re.nding the coded input sequence in the received signal. The narrow-band nature of the transducers makes this problem non-trivial but suggestions for improvement are proposed. The analysis given is based on traditional autoand cross-correlation techniques. The third subgroup attempts to improve existing correlation methods in determining arrival-time detection of signals. A mathematical formulation of the problem is given and the application to a set of real signals provided by Danfoss A/S is performed with good results

  17. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinya [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Deng, Zhiqun Daniel [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Rauchenstein, Lynn T. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Carlson, Thomas J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based and maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.

  18. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  19. Traffic Incident Clearance Time and Arrival Time Prediction Based on Hazard Models

    Directory of Open Access Journals (Sweden)

    Yang beibei Ji

    2014-01-01

    Full Text Available Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an effective input for travel time prediction. In this paper, the hazard based prediction models are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.

  20. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Lam, M. T.; Jones, M. L.; McLaughlin, M. A.; Pennucci, T. T. [Department of Physics, West Virginia University, White Hall, Morgantown, WV 26506 (United States); Cordes, J. M.; Chatterjee, S. [Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Arzoumanian, Z. [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Crowter, K.; Fonseca, E.; Gonzalez, M. E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM, 87801 (United States); Dolch, T. [Department of Physics, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242 (United States); Ellis, J. A [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA, 91109 (United States); Ferdman, R. D. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Jones, G. [Department of Physics, Columbia University, 550 W. 120th Street, New York, NY 10027 (United States); Levin, L. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Madison, D. R.; Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Shannon, R. M., E-mail: michael.lam@mail.wvu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping NSW 1710 (Australia); and others

    2017-01-01

    Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum for 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.

  1. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  2. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    Science.gov (United States)

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  3. Equilibrium arrival times to queues with general service times and non-linear utility functions

    DEFF Research Database (Denmark)

    Breinbjerg, Jesper

    2017-01-01

    by a general utility function which is decreasing in the waiting time and service completion time of each customer. Applications of such queueing games range from people choosing when to arrive at a grand opening sale to travellers choosing when to line up at the gate when boarding an airplane. We develop...

  4. CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

    Science.gov (United States)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-04-01

    CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

  5. Seismicity and arrival-time residuals from the Victoria Earthquake of June 9, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wong, V.; Frez, J.

    1981-01-01

    Hypocenter distribution in space and time of the aftershock activity from the Victoria Earthquake of June 9, 1980 was studied. It was concluded that the main event excited aftershocks in several pre-existing nests at the northwest end of the Cerro Prieto Fault, but no significant activity occurred at the immediate neighborhood of the main event. The depth of the aftershocks increases with the distance from the northwest end of the fault and this feature might be related with the higher temperatures and the spreading center located between the ends of the Imperial and Cerro Prieto Faults. The significance of the arrival-times residuals for local and regional stations is discussed both for P and S-waves and the importance of obtaining station corrections is emphasized. The non-uniqueness in determining a structure which minimizes the residuals is illustrated. Two different structures which satisfy the local data are presented.

  6. An Exact Solution of the Gamma Ray Burst Arrival Time Analysis ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    An Exact Solution of the Gamma Ray Burst Arrival Time Analysis. Problem. S. Sinha ISRO Satellite Center, Bangalore 560 017, India. Abstract. An analytical solution of the GRB arrival time analysis is presented. The errors in the position of the GRB resulting from timing and position errors of different satellites are calculated.

  7. Predictive analytics for truck arrival time estimation : a field study at a European distribution center

    NARCIS (Netherlands)

    van der Spoel, Sjoerd; Amrit, Chintan Amrit; van Hillegersberg, Jos

    2017-01-01

    Distribution centres (DCs) are the hubs connecting transport streams in the supply chain. The synchronisation of coming and going cargo at a DC requires reliable arrival times. To achieve this, a reliable method to predict arrival times is needed. A literature review was performed to find the

  8. Precise and accurate train run data: Approximation of actual arrival and departure times

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    with the approximated actual arrival and departure times. As a result, all future statistics can now either be based on track circuit data with high precision or approximated actual arrival times with a high accuracy. Consequently, performance analysis will be more accurate, punctuality statistics more correct, KPI...

  9. Obtaining location/arrival-time and location/outflow-quantity distributions for steady flow systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A steady, two-dimensional flow system is used to demonstrate the application of location/arrival-time and location/outflow-quantity curves in determining the environmental consequences of groundwater contamination. The subsurface geologic and hydrologic evaluations needed to obtain the arrival results involve a sequence of four phases: system identification, new potential determination, flow systems kinematics, and contaminant transport analysis. Once these phases are completed, they are effectively summarized and easily used to evaluate environmental consequences through the arrival distributions

  10. On-line scheduling of two-machine open shops where jobs arrive over time

    NARCIS (Netherlands)

    Chen, B.; Vestjens, A.P.A.; Woeginger, G.J.

    1998-01-01

    We investigate the problem of on-line scheduling two-machine open shops with the objective of minimizing the makespan.Jobs arrive independently over time, and the existence of a job is not known until its arrival. In the clairvoyant on-line model, the processing requirement of every job becomes

  11. Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter

    Science.gov (United States)

    Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.

    2018-04-01

    Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.

  12. Fault zone structure determined through the analysis of earthquake arrival times

    Energy Technology Data Exchange (ETDEWEB)

    Michelini, A.

    1991-10-01

    This thesis develops and applies a technique for the simultaneous determination of P and S wave velocity models and hypocenters from a set of arrival times. The velocity models are parameterized in terms of cubic B-splines basis functions which permit the retrieval of smooth models that can be used directly for generation of synthetic seismograms using the ray method. In addition, this type of smoothing limits the rise of instabilities related to the poor resolving power of the data. V{sub P}/V{sub S} ratios calculated from P and S models display generally instabilities related to the different ray-coverages of compressional and shear waves. However, V{sub P}/V{sub S} ratios are important for correct identification of rock types and this study introduces a new methodology based on adding some coupling (i.e., proportionality) between P and S models which stabilizes the V{sub P}/V{sub S} models around some average preset value determined from the data. Tests of the technique with synthetic data show that this additional coupling regularizes effectively the resulting models.

  13. Fault zone structure determined through the analysis of earthquake arrival times

    Energy Technology Data Exchange (ETDEWEB)

    Michelini, Alberto [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    This thesis develops and applies a technique for the simultaneous determination of P and S wave velocity models and hypocenters from a set of arrival times. The velocity models are parameterized in terms of cubic B-splines basis functions which permit the retrieval of smooth models that can be used directly for generation of synthetic seismograms using the ray method. In addition, this type of smoothing limits the rise of instabilities related to the poor resolving power of the data. VP/VS ratios calculated from P and S models display generally instabilities related to the different ray-coverages of compressional and shear waves. However, VP/VS ratios are important for correct identification of rock types and this study introduces a new methodology based on adding some coupling (i.e., proportionality) between P and S models which stabilizes the VP/VS models around some average preset value determined from the data. Tests of the technique with synthetic data show that this additional coupling regularizes effectively the resulting models.

  14. Controlled time of arrival windows for already initiated energy-neutral continuous descent operations

    OpenAIRE

    Dalmau Codina, Ramon; Prats Menéndez, Xavier

    2017-01-01

    Continuous descent operations with controlled times of arrival at one or several metering fixes could enable environmentally friendly procedures without compromising terminal airspace capacity. This paper focuses on controlled time of arrival updates once the descent has been already initiated, assessing the feasible time window (and associated fuel consumption) of continuous descent operations requiring neither thrust nor speed-brake usage along the whole descent (i.e. only elevator control ...

  15. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    Directory of Open Access Journals (Sweden)

    Yang Woo Shin

    1999-01-01

    Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.

  16. A review of the decoherent histories approach to the arrival time problem in quantum theory

    International Nuclear Information System (INIS)

    Yearsley, James M

    2011-01-01

    We review recent progress in understanding the arrival time problem in quantum mechanics, from the point of view of the decoherent histories approach to quantum theory. We begin by discussing the arrival time problem, focussing in particular on the role of the probability current in the expected classical solution. After a brief introduction to decoherent histories we review the use of complex potentials in the construction of appropriate class operators. We then discuss the arrival time problem for a particle coupled to an environment, and review how the arrival time probability can be expressed in terms of a POVM in this case. We turn finally to the question of decoherence of the corresponding histories, and we show that this can be achieved for simple states in the case of a free particle, and for general states for a particle coupled to an environment.

  17. A fire management simulation model using stochastic arrival times

    Science.gov (United States)

    Eric L. Smith

    1987-01-01

    Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...

  18. Rapid estimation of earthquake magnitude from the arrival time of the peak high‐frequency amplitude

    Science.gov (United States)

    Noda, Shunta; Yamamoto, Shunroku; Ellsworth, William L.

    2016-01-01

    We propose a simple approach to measure earthquake magnitude M using the time difference (Top) between the body‐wave onset and the arrival time of the peak high‐frequency amplitude in an accelerogram. Measured in this manner, we find that Mw is proportional to 2logTop for earthquakes 5≤Mw≤7, which is the theoretical proportionality if Top is proportional to source dimension and stress drop is scale invariant. Using high‐frequency (>2  Hz) data, the root mean square (rms) residual between Mw and MTop(M estimated from Top) is approximately 0.5 magnitude units. The rms residuals of the high‐frequency data in passbands between 2 and 16 Hz are uniformly smaller than those obtained from the lower‐frequency data. Top depends weakly on epicentral distance, and this dependence can be ignored for distances earthquake produces a final magnitude estimate of M 9.0 at 120 s after the origin time. We conclude that Top of high‐frequency (>2  Hz) accelerograms has value in the context of earthquake early warning for extremely large events.

  19. Analysing passenger arrivals rates and waiting time at bus stops

    OpenAIRE

    Kaparias, I.; Rossetti, C.; Trozzi, V.

    2015-01-01

    The present study investigates the rather under-explored topic of passenger waiting times at public transport facilities. Using data collected from part of London’s bus network by means of physical counts, measurements and observations, and complemented by on-site passenger interviews, the waiting behaviour is analysed for a number of bus stops served by different numbers of lines. The analysis employs a wide range of statistical methods and tools, and concentrates on three aspects: passenger...

  20. Detection of time of arrival of ultrasonic pulses

    International Nuclear Information System (INIS)

    Latino, Carl D; Andersen, Niels Lervad; Voss, Frands

    2006-01-01

    Applications exist that employ transit-time measurements to determine distances to scattering objects. These include blood-flow measurements, fluid-level detection, nondestructive testing of materials, image processing of geometrical bodies etc. Many of these require extreme accuracy in measuring transit time through a medium. The system typically consists of a transmitter, a medium and a receiver. The signal sent must operate within the limitations imposed by this overall system. Under ideal conditions a finite duration pulse consisting of a sinusoidal signal is sent and received. If the transmitted signal contains an integer number of complete cycles of a single frequency, performing a correlation between transmitted and received signals can accurately recover the transit time information. The method has difficulties especially in the presence of noise. The problem is compounded if the desired accuracy is a small fraction of a single sinusoid period. Noise could cause the correlation results to be off by a complete cycle. For a one MHz signal, one cycle error corresponds to a one microsecond error. For applications requiring nanosecond accuracy, this is not acceptable. Varying the frequency content of the signal reduces the error but requires that the transmitter, receiver and medium all have a broader band spectrum. The improvements we propose here work within a narrow band while enhancing the chance of recovering the signal accurately

  1. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Arzoumanian, Zaven [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Brazier, Adam; Chatterjee, Shami; Cordes, James M.; Dolch, Timothy [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Burke-Spolaor, Sarah; Demorest, Paul B. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Chamberlin, Sydney [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States); Christy, Brian [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Cornish, Neil [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Ellis, Justin A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena CA 91109 (United States); Ferdman, Robert D.; Kaspi, Victoria M. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Garver-Daniels, Nathan; Jones, Megan L. [Department of Physics, West Virginia University, P.O. Box 6315, Morgantown, WV 26505 (United States); Jenet, Fredrick A. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Jones, Glenn, E-mail: pdemores@nrao.edu [Department of Physics, Columbia University, 550 W. 120th St. New York, NY 10027 (United States); Collaboration: NANOGrav Collaboration; and others

    2015-11-01

    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.

  2. Upper mantle seismic velocity anomaly beneath southern Taiwan as revealed by teleseismic relative arrival times

    Science.gov (United States)

    Chen, Po-Fei; Huang, Bor-Shouh; Chiao, Ling-Yun

    2011-01-01

    Probing the lateral heterogeneity of the upper mantle seismic velocity structure beneath southern and central Taiwan is critical to understanding the local tectonics and orogeny. A linear broadband array that transects southern Taiwan, together with carefully selected teleseismic sources with the right azimuth provides useful constraints. They are capable of differentiating the lateral heterogeneity along the profile with systematic coverage of ray paths. We implement a scheme based on the genetic algorithm to simultaneously determine the relative delayed times of the teleseismic first arrivals of array data. The resulting patterns of the delayed times systematically vary as a function of the incident angle. Ray tracing attributes the observed variations to a high velocity anomaly dipping east in the mantle beneath the southeast of Taiwan. Combining the ray tracing analysis and a pseudo-spectral method to solve the 2-D wave propagations, we determine the extent of the anomaly that best fits the observations via the forward grid search. The east-dipping fast anomaly in the upper mantle beneath the southeast of Taiwan agrees with the results from several previous studies and indicates that the nature of the local ongoing arc-continent collision is likely characterized by the thin-skinned style.

  3. time of arrival 3-d position estimation using minimum ads-b receiver ...

    African Journals Online (AJOL)

    HOD

    The location from which a signal is transmitted can be estimated using the time it takes to be detected at a receiver. The difference between transmission time and the detection time is known as time of arrival (TOA). In this work, an algorithm for 3-dimensional (3-D) position estimation (PE) of an emitter using the minimum ...

  4. Refracted arrival waves in a zone of silence from a finite thickness mixing layer.

    Science.gov (United States)

    Suzuki, Takao; Lele, Sanjiva K

    2002-02-01

    Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.

  5. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    Science.gov (United States)

    Powell, Abby N.; Oppel, Steffen

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  6. Managing truck arrivals with time windows to alleviate gate congestion at container terminals

    DEFF Research Database (Denmark)

    Chen, G.; Govindan, Kannan; Yang, Z.

    2013-01-01

    Long truck queues at gates often limit the efficiency of a container terminal and generate serious air pollution. To reduce the gate congestion, this paper proposes a method called'vessel dependent time windows (VDTWs)' to control truck arrivals, which involves partitioning truck entries into gro......Long truck queues at gates often limit the efficiency of a container terminal and generate serious air pollution. To reduce the gate congestion, this paper proposes a method called'vessel dependent time windows (VDTWs)' to control truck arrivals, which involves partitioning truck entries...... into groups and assigning different time windows to the groups. The proposed VDTWs method includes three steps: (1) predicting truck arrivals based on the time window assignment, (2) estimating the queue length of trucks, and (3) optimizing the arrangement of time windows to minimize the total cost...

  7. Distribution of arrival times of muons with energy greater than 10 GeV

    International Nuclear Information System (INIS)

    Badino, G.; Bianco, P.; Dardo, M.; Fulgione, W.; Galeotti, P.; Periale, L.; Saavedra, O.

    1982-01-01

    Recent data on the arrival time distribution of EAS of primary energy >=10 14 eV, and of high energy muons detected at great depth (5000 mwe), seem to indicate an excess of short time intervals. We are using an apparatus, installed at 40 mwe underground, and a surface shower array to investigate the distributions of a) the time intervals between muon groups and b) the arrival times of muons with respect to the front of air showers. Preliminary results of this search are presented

  8. A study on the impact of prioritising emergency department arrivals on the patient waiting time.

    Science.gov (United States)

    Van Bockstal, Ellen; Maenhout, Broos

    2018-05-03

    In the past decade, the crowding of the emergency department has gained considerable attention of researchers as the number of medical service providers is typically insufficient to fulfil the demand for emergency care. In this paper, we solve the stochastic emergency department workforce planning problem and consider the planning of nurses and physicians simultaneously for a real-life case study in Belgium. We study the patient arrival pattern of the emergency department in depth and consider different patient acuity classes by disaggregating the arrival pattern. We determine the personnel staffing requirements and the design of the shifts based on the patient arrival rates per acuity class such that the resource staffing cost and the weighted patient waiting time are minimised. In order to solve this multi-objective optimisation problem, we construct a Pareto set of optimal solutions via the -constraints method. For a particular staffing composition, the proposed model minimises the patient waiting time subject to upper bounds on the staffing size using the Sample Average Approximation Method. In our computational experiments, we discern the impact of prioritising the emergency department arrivals. Triaging results in lower patient waiting times for higher priority acuity classes and to a higher waiting time for the lowest priority class, which does not require immediate care. Moreover, we perform a sensitivity analysis to verify the impact of the arrival and service pattern characteristics, the prioritisation weights between different acuity classes and the incorporated shift flexibility in the model.

  9. Arrival time and incidence angle distributions of extensive air showers (EAS) muons

    International Nuclear Information System (INIS)

    Brancus, I.M.; Duma, M.; Vulpescu, B.; Foeller, M.; Rebel, H.; Voelker, G.; Chilingarian, A.A.

    1995-01-01

    The arrival time distributions of the muons can be related to the longitudinal EAS development and may provide additional information about the nature of the primary. Based on EAS simulations using the Monte-Carlo code CORSIKA, the correlations between arrival time and incidence angle distributions have been investigated in a case of a set of ideal detectors (10 m x 10 m) placed at various distances from the shower core. Applying advanced statistical techniques based on Bayes decision rule and non-parametric multivariate analysing methods it turns out that the correlations of muon arrival time and incidence angle at various separating distances of about 50 m exhibit promising features for mass discrimination (author)

  10. Sequencing games with Just-in-Time arrival, and related games

    NARCIS (Netherlands)

    Lohmann, E.R.M.A.; Borm, P.E.M.; Slikker, M.

    2014-01-01

    In this paper sequencing situations with Just-in-Time (JiT) arrival are introduced. This new type of one-machine sequencing situations assumes that a job is available to be handled by the machine as soon as its predecessor is finished. A basic predecessor dependent set-up time is incorporated in the

  11. First arrival time picking for microseismic data based on DWSW algorithm

    Science.gov (United States)

    Li, Yue; Wang, Yue; Lin, Hongbo; Zhong, Tie

    2018-03-01

    The first arrival time picking is a crucial step in microseismic data processing. When the signal-to-noise ratio (SNR) is low, however, it is difficult to get the first arrival time accurately with traditional methods. In this paper, we propose the double-sliding-window SW (DWSW) method based on the Shapiro-Wilk (SW) test. The DWSW method is used to detect the first arrival time by making full use of the differences between background noise and effective signals in the statistical properties. Specifically speaking, we obtain the moment corresponding to the maximum as the first arrival time of microseismic data when the statistic of our method reaches its maximum. Hence, in our method, there is no need to select the threshold, which makes the algorithm more facile when the SNR of microseismic data is low. To verify the reliability of the proposed method, a series of experiments is performed on both synthetic and field microseismic data. Our method is compared with the traditional short-time and long-time average (STA/LTA) method, the Akaike information criterion, and the kurtosis method. Analysis results indicate that the accuracy rate of the proposed method is superior to that of the other three methods when the SNR is as low as - 10 dB.

  12. Retinal fluorescein contrast arrival time of young patients with the hepatosplenic form of the Schistosomiasis mansoni

    Directory of Open Access Journals (Sweden)

    Ana Catarina Delgado de Souza

    2002-10-01

    Full Text Available Schistosoma mansoni is responsible for lesions that can alter the hemodinamic of the portal venous circulation, lung arterial and venous sistemic systems. Therefore, hemodinamic changes in the ocular circulation of mansonic schistosomotic patients with portal hypertension and hepatofugal venous blood flow is also probable. The purpose of this study was to determine the fluorescein contrast arrival time at the retina of young patients with the hepatosplenic form of schistosomiasis, clinically and surgically treated. The control group included 36 non schistosomotic patients, mean age of 17.3 years, and the case group was represented by 25 schistosomotic patients, mean age of 18.2 years, who were cared for at The University Hospital (Federal University of Pernambuco, Brazil, from 1990 to 2001. They underwent digital angiofluoresceinography and were evaluated for the contrast arrival time at the early retinal venous phase of the exam. Both groups were ophthalmologically examined at the same hospital (Altino Ventura Foundation, Recife, Brazil, using the same technique. There was retardation of the retinal contrast arrival time equal or more than 70 sec in the eyes of three schistosomotic patients (12% and in none of the control group, however, the mean contrast arrival time between the two groups were not statistically different. These findings lend support to the hypothesis that there could be a delay of the eye venous blood flow drainage.

  13. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    Science.gov (United States)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  14. An Erlang Loss Queue with Time-Phased Batch Arrivals as a Model for Traffic Control in Communication Networks

    Directory of Open Access Journals (Sweden)

    Moon Ho Lee

    2008-01-01

    Full Text Available A multiserver queueing model that does not have a buffer but has batch arrival of customers is considered. In contrast to the standard batch arrival, in which the entire batch arrives at the system during a single epoch, we assume that the customers of a batch (flow arrive individually in exponentially distributed times. The service time is exponentially distributed. Flows arrive according to a stationary Poisson arrival process. The flow size distribution is geometric. The number of flows that can be simultaneously admitted to the system is under control. The loss of any customer from an admitted flow, with a fixed probability, implies termination of the flow arrival. Analysis of the sojourn time and loss probability of an arbitrary flow is performed.

  15. Application on technique of joint time-frequency analysis of seismic signal's first arrival estimation

    International Nuclear Information System (INIS)

    Xu Chaoyang; Liu Junmin; Fan Yanfang; Ji Guohua

    2008-01-01

    Joint time-frequency analysis is conducted to construct one joint density function of time and frequency. It can open out one signal's frequency components and their evolvements. It is the new evolvement of Fourier analysis. In this paper, according to the characteristic of seismic signal's noise, one estimation method of seismic signal's first arrival based on triple correlation of joint time-frequency spectrum is introduced, and the results of experiment and conclusion are presented. (authors)

  16. Flow time analysis of load management late arrival discrete time queueing system with dual service rate using hypo geometrical distribution

    International Nuclear Information System (INIS)

    Shah, S.A.; Shah, W.; Shaikh, F.K.

    2012-01-01

    Flow time analysis is a powerful concept to analyze the flow time of any arriving customer in any system at any instant. A load management mechanism can be employed very effectively in any queueing system by utilizing a system which provides probability of dual service rate. In this paper, we develop and demonstrate the flow and service processes transition diagram to determine the flow time of a customer in a load management late arrival state dependent finite discrete time queueing system with dual service rate where customers are hypo geometrically distributed. We compute the probability mass function of each starting state and total probability mass function. The obtained analytical results are validated with simulation results for varying values of arrival and service probabilities. (author)

  17. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    International Nuclear Information System (INIS)

    Cordes, J. M.; Jenet, F. A.

    2012-01-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  18. Detecting Gravitational Wave Memory with Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Jenet, F. A.

    2012-06-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  19. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT

    Science.gov (United States)

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-01-01

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909

  20. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.

    Science.gov (United States)

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-11-04

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.

  1. Monitoring molecular interactions using photon arrival-time interval distribution analysis

    Science.gov (United States)

    Laurence, Ted A [Livermore, CA; Weiss, Shimon [Los Angels, CA

    2009-10-06

    A method for analyzing/monitoring the properties of species that are labeled with fluorophores. A detector is used to detect photons emitted from species that are labeled with one or more fluorophores and located in a confocal detection volume. The arrival time of each of the photons is determined. The interval of time between various photon pairs is then determined to provide photon pair intervals. The number of photons that have arrival times within the photon pair intervals is also determined. The photon pair intervals are then used in combination with the corresponding counts of intervening photons to analyze properties and interactions of the molecules including brightness, concentration, coincidence and transit time. The method can be used for analyzing single photon streams and multiple photon streams.

  2. Time interval between stroke onset and hospital arrival in acute ischemic stroke patients in Shanghai, China.

    Science.gov (United States)

    Fang, Jing; Yan, Weihong; Jiang, Guo-Xin; Li, Wei; Cheng, Qi

    2011-02-01

    To observe the time interval between stroke onset and hospital arrival (time-to-hospital) in acute ischemic stroke patients and analyze its putatively associated factors. During the period from November 1, 2006 to August 31, 2008, patients with acute ischemic stroke admitted consecutively to the Department of Neurology, Ninth Hospital, Shanghai, were enrolled in the study. Information of the patients was registered including the time-to-hospital, demographic data, history of stroke, season at attack, neurological symptom at onset, etc. Characteristics of the patients were analyzed and logistic regression analyses were conducted to identify factors associated with the time-to-hospital. There were 536 patients in the study, 290 (54.1%) males and 246 (45.9%) females. The median time-to-hospital was 8h (ranged from 0.1 to 300 h) for all patients. Within 3h after the onset of stroke, 162 patients (30.2%) arrived at our hospital; and within 6h, 278 patients (51.9%). Patients with a history of stroke, unconsciousness at onset, or a high NIHSS score at admission had significantly less time-to-hospital. The time interval between stroke onset and hospital arrival was importance of seeking immediate medical help after stroke onset of patients and their relatives could significantly influence their actions. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. A FIFO based neutron arrival time collection technique for assay of plutonium

    International Nuclear Information System (INIS)

    Parthasarathy, R.; Saisubalakshmi, D.; Venkatasubramani, C.R.

    2004-01-01

    The system assays plutonium by counting the time correlated neutrons emitted by the spontaneous fissions of the even-even Pu isotopes in the presence of random neutron background, originating principally from (a,n) reactions in the material. The correlation technique discussed in this paper utilizes twofold neutron coincidence counting but the system is proposed to be enhanced for neutron multiplicity counting. A microcontroller based data acquisition system has been developed using a couple of fast FIFO 2kX9 bit memory ICs and a 16 bit counter for identifying time-correlated neutrons. Since the neutron pulses are arriving at a rapid rate, the incoming pulses are buffered in the FIFO and then transferred to PC by the microcontroller through the parallel port. The correlation analysis based on this time arrival information is done in the PC off-line. (author)

  4. Two-Step Time of Arrival Estimation for Pulse-Based Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    H. Vincent Poor

    2008-05-01

    Full Text Available In cooperative localization systems, wireless nodes need to exchange accurate position-related information such as time-of-arrival (TOA and angle-of-arrival (AOA, in order to obtain accurate location information. One alternative for providing accurate position-related information is to use ultra-wideband (UWB signals. The high time resolution of UWB signals presents a potential for very accurate positioning based on TOA estimation. However, it is challenging to realize very accurate positioning systems in practical scenarios, due to both complexity/cost constraints and adverse channel conditions such as multipath propagation. In this paper, a two-step TOA estimation algorithm is proposed for UWB systems in order to provide accurate TOA estimation under practical constraints. In order to speed up the estimation process, the first step estimates a coarse TOA of the received signal based on received signal energy. Then, in the second step, the arrival time of the first signal path is estimated by considering a hypothesis testing approach. The proposed scheme uses low-rate correlation outputs and is able to perform accurate TOA estimation in reasonable time intervals. The simulation results are presented to analyze the performance of the estimator.

  5. Uncertainty in Bus Arrival Time Predictions: Treating Heteroscedasticity With a Metamodel Approach

    DEFF Research Database (Denmark)

    O'Sullivan, Aidan; Pereira, Francisco Camara; Zhao, Jinhua

    2016-01-01

    Arrival time predictions for the next available bus or train are a key component of modern traveler information systems (TISs). A great deal of research has been conducted within the intelligent transportation system community in developing an assortment of different algorithms that seek...... sources. In this paper, we tackle the issue of uncertainty in bus arrival time predictions using an alternative approach. Rather than endeavor to develop a superior method for prediction, we take existing predictions from a TIS and treat the algorithm generating them as a black box. The presence...... of heteroscedasticity in the predictions is demonstrated and then a metamodel approach is deployed, which augments existing predictive systems using quantile regression to place bounds on the associated error. As a case study, this approach is applied to data from a real-world TIS in Boston. This method allows bounds...

  6. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  7. Arrival-time picking method based on approximate negentropy for microseismic data

    Science.gov (United States)

    Li, Yue; Ni, Zhuo; Tian, Yanan

    2018-05-01

    Accurate and dependable picking of the first arrival time for microseismic data is an important part in microseismic monitoring, which directly affects analysis results of post-processing. This paper presents a new method based on approximate negentropy (AN) theory for microseismic arrival time picking in condition of much lower signal-to-noise ratio (SNR). According to the differences in information characteristics between microseismic data and random noise, an appropriate approximation of negentropy function is selected to minimize the effect of SNR. At the same time, a weighted function of the differences between maximum and minimum value of AN spectrum curve is designed to obtain a proper threshold function. In this way, the region of signal and noise is distinguished to pick the first arrival time accurately. To demonstrate the effectiveness of AN method, we make many experiments on a series of synthetic data with different SNR from -1 dB to -12 dB and compare it with previously published Akaike information criterion (AIC) and short/long time average ratio (STA/LTA) methods. Experimental results indicate that these three methods can achieve well picking effect when SNR is from -1 dB to -8 dB. However, when SNR is as low as -8 dB to -12 dB, the proposed AN method yields more accurate and stable picking result than AIC and STA/LTA methods. Furthermore, the application results of real three-component microseismic data also show that the new method is superior to the other two methods in accuracy and stability.

  8. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    Science.gov (United States)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  9. Predicting Ambulance Time of Arrival to the Emergency Department Using Global Positioning System and Google Maps

    Science.gov (United States)

    Fleischman, Ross J.; Lundquist, Mark; Jui, Jonathan; Newgard, Craig D.; Warden, Craig

    2014-01-01

    Objective To derive and validate a model that accurately predicts ambulance arrival time that could be implemented as a Google Maps web application. Methods This was a retrospective study of all scene transports in Multnomah County, Oregon, from January 1 through December 31, 2008. Scene and destination hospital addresses were converted to coordinates. ArcGIS Network Analyst was used to estimate transport times based on street network speed limits. We then created a linear regression model to improve the accuracy of these street network estimates using weather, patient characteristics, use of lights and sirens, daylight, and rush-hour intervals. The model was derived from a 50% sample and validated on the remainder. Significance of the covariates was determined by p times recorded by computer-aided dispatch. We then built a Google Maps-based web application to demonstrate application in real-world EMS operations. Results There were 48,308 included transports. Street network estimates of transport time were accurate within 5 minutes of actual transport time less than 16% of the time. Actual transport times were longer during daylight and rush-hour intervals and shorter with use of lights and sirens. Age under 18 years, gender, wet weather, and trauma system entry were not significant predictors of transport time. Our model predicted arrival time within 5 minutes 73% of the time. For lights and sirens transports, accuracy was within 5 minutes 77% of the time. Accuracy was identical in the validation dataset. Lights and sirens saved an average of 3.1 minutes for transports under 8.8 minutes, and 5.3 minutes for longer transports. Conclusions An estimate of transport time based only on a street network significantly underestimated transport times. A simple model incorporating few variables can predict ambulance time of arrival to the emergency department with good accuracy. This model could be linked to global positioning system data and an automated Google Maps web

  10. Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time.

    Directory of Open Access Journals (Sweden)

    Xu Cui

    2009-08-01

    Full Text Available What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI, we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA. Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the "go" signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a "countdown" condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in "no-go" conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals.

  11. Reduced time delay for gravitational waves with dark matter emulators

    International Nuclear Information System (INIS)

    Desai, S.; Kahya, E. O.; Woodard, R. P.

    2008-01-01

    We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles

  12. A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA

    Science.gov (United States)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-03-01

    Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.

  13. Relationship between coronal holes and high speed streams at L1: arrival times, durations, and intensities

    Science.gov (United States)

    Luo, B.; Bu, X.; Liu, S.; Gong, J.

    2017-12-01

    Coronal holes are sources of high-speed steams (HSS) of solar wind. When coronal holes appear at mid/low latitudes on the Sun, consequential HSSs may impact Earth and cause recurrent geospace environment disturbances, such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements. Thus, it is of interests for space weather forecasters to predict when (arrival times), how long (time durations), and how severe (intensities) HSSs may impact Earth when they notice coronal holes on the sun and are anticipating their geoeffectiveness. In this study, relationship between coronal holes and high speed streams will be statistically investigated. Several coronal hole parameters, including passage times of solar central meridian, coronal hole longitudinal widths, intensities reflected by mean brightness, are derived using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. These parameters will be correlated with in-situ solar wind measurements measured at the L1 point by the ACE spacecraft, which can give some results that are useful for space weather forecaster in predicting the arrival times, durations, and intensities of coronal hole high-speed streams in about 3 days advance.

  14. The Effect of Integration Policies on the Time until Regular Employment of Newly Arrived Immigrants:

    DEFF Research Database (Denmark)

    Clausen, Jens; Heinesen, Eskil; Hummelgaard, Hans

    We analyse the effect of active labour-market programmes on the hazard rate into regular employment for newly arrived immigrants using the timing-of-events duration model. We take account of language course participation and progression in destination country language skills. We use rich...... administrative data from Denmark. We find substantial lock-in effects of participation in active labour-market programmes. Post programme effects on the hazard rate to regular employment are significantly positive for wage subsidy programmes, but not for other types of programmes. For language course...... participants, improvement in language proficiency has significant and substantial positive effects on the hazard rate to employment....

  15. Prediction of the Critical Curvature for LX-17 with the Time of Arrival Data from DNS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, Laurence E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moss, William C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-10

    We extract the detonation shock front velocity, curvature and acceleration from time of arrival data measured at grid points from direct numerical simulations of a 50mm rate-stick lit by a disk-source, with the ignition and growth reaction model and a JWL equation of state calibrated for LX-17. We compute the quasi-steady (D, κ) relation based on the extracted properties and predicted the critical curvatures of LX-17. We also proposed an explicit formula that contains the failure turning point, obtained from optimization for the (D, κ) relation of LX-17.

  16. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    Science.gov (United States)

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering.

  17. Marginal Bayesian nonparametric model for time to disease arrival of threatened amphibian populations.

    Science.gov (United States)

    Zhou, Haiming; Hanson, Timothy; Knapp, Roland

    2015-12-01

    The global emergence of Batrachochytrium dendrobatidis (Bd) has caused the extinction of hundreds of amphibian species worldwide. It has become increasingly important to be able to precisely predict time to Bd arrival in a population. The data analyzed herein present a unique challenge in terms of modeling because there is a strong spatial component to Bd arrival time and the traditional proportional hazards assumption is grossly violated. To address these concerns, we develop a novel marginal Bayesian nonparametric survival model for spatially correlated right-censored data. This class of models assumes that the logarithm of survival times marginally follow a mixture of normal densities with a linear-dependent Dirichlet process prior as the random mixing measure, and their joint distribution is induced by a Gaussian copula model with a spatial correlation structure. To invert high-dimensional spatial correlation matrices, we adopt a full-scale approximation that can capture both large- and small-scale spatial dependence. An efficient Markov chain Monte Carlo algorithm with delayed rejection is proposed for posterior computation, and an R package spBayesSurv is provided to fit the model. This approach is first evaluated through simulations, then applied to threatened frog populations in Sequoia-Kings Canyon National Park. © 2015, The International Biometric Society.

  18. Comparison of Muon Arrival Time Distributions measured in KASCADE Experiment with Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Badea, A.F.; Brancus, I.M.; Haeusler, R.; Rebel, H.

    2000-01-01

    The muon arrival time distributions of Extensive Air Showers (EAS) have been studied in KASCADE experiment by data collected in the period October 1997 - April 1999 with more than 3.4 millions of reconstructed showers. The radial distance of the shower center from the central detector has been selected smaller than 110 m. The experimental muon arrival time distributions are compared with simulations of the air shower development, calculated with the Monte Carlo air shower simulation program CORSIKA. The actual calculations are based on the QGSJET model and cover an energy range of 5·10 14 - 3.06·10 16 eV (divided in 7 overlapping energy bins) and a zenith angle range of 0 angle - 40 angle. They are performed for three mass groups: H = light group, O = CNO group, Fe = heavy group) with an energy distribution of a spectral index of -2.7. The simulations comprise a set of ≅ 2000$ showers for each case, except for the bins of the highest energies (6.51·10 15 - 1.82·10 16 eV with ≅1000$ simulated showers and 1.09·10 16 - 3.06·10 16 eV with ≅ 500 simulated showers). The response of the KASCADE detector system and the timing qualities have been simulated using the CRES program, dedicatedly developed by the KASCADE group on the basis of the GEANT code. The particles of the simulated EAS are tracked through the detector setup and the timing response of the detectors are recorded for various core distances from the central detector facilities. Particularly, it should be noted that the timing depends on the energy deposit in the scintillation detectors and on the multiplicities of the muon samples spanning the arrival time distributions of the single EAS. Such effects slightly distorts the measured time distributions and have been corrected by introducing a corresponding correction procedure. The dependence of the experimental and simulated median time values on the N μ tr range, as being proportional to the primary energy, is presented. The good agreement of the

  19. Positioning performance analysis of the time sum of arrival algorithm with error features

    Science.gov (United States)

    Gong, Feng-xun; Ma, Yan-qiu

    2018-03-01

    The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.

  20. Application of Cyclostationary Signal Selectivity to the Carry-On Multi-Platform GPS Assisted Time Difference of Arrival System

    National Research Council Canada - National Science Library

    Streight, David

    1997-01-01

    .... The Applied Research Lab at the University of Texas at Austin (ARL:UT) has developed a prototype TDOA system, the Carry-on Multi-platform GPS Assisted Time Difference of Arrival System for the Naval Information Warfare Activity...

  1. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    Science.gov (United States)

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  2. Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird

    Science.gov (United States)

    Becker, Peter H.; Dittmann, Tobias; Ludwigs, Jan-Dieter; Limmer, Bente; Ludwig, Sonja C.; Bauch, Christina; Braasch, Alexander; Wendeln, Helmut

    2008-01-01

    In long-lived vertebrates, individuals generally visit potential breeding areas or populations during one or more seasons before reproducing for the first time. During these years of prospecting, they select a future breeding site, colony, or mate and improve various skills and their physical condition to meet the requirements of reproduction. One precondition of successful reproduction is arrival in time on the breeding grounds. Here, we study the intricate links among the date of initial spring arrival, body mass, sex, and the age of first breeding in the common tern Sterna hirundo, a long-lived migratory colonial seabird. The study is based on a unique, individual-based, long-term dataset of sexed birds, marked with transponders, which allow recording their individual arrival, overall attendance, and clutch initiation remotely and automatically year by year over the entire lifetime at the natal colony site. We show that the seasonal date of initial arrival at the breeding grounds predicts the individual age at first reproduction, which mostly occurs years later. Late first-time arrivals remain delayed birds throughout subsequent years. Our findings reveal that timing of arrival at the site of reproduction and timing of reproduction itself are coherent parameters of individual quality, which are linked with the prospects of the breeding career and may have consequences for fitness. PMID:18711134

  3. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    International Nuclear Information System (INIS)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.

    2014-01-01

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses

  4. Timing analysis for embedded systems using non-preemptive EDF scheduling under bounded error arrivals

    Directory of Open Access Journals (Sweden)

    Michael Short

    2017-07-01

    Full Text Available Embedded systems consist of one or more processing units which are completely encapsulated by the devices under their control, and they often have stringent timing constraints associated with their functional specification. Previous research has considered the performance of different types of task scheduling algorithm and developed associated timing analysis techniques for such systems. Although preemptive scheduling techniques have traditionally been favored, rapid increases in processor speeds combined with improved insights into the behavior of non-preemptive scheduling techniques have seen an increased interest in their use for real-time applications such as multimedia, automation and control. However when non-preemptive scheduling techniques are employed there is a potential lack of error confinement should any timing errors occur in individual software tasks. In this paper, the focus is upon adding fault tolerance in systems using non-preemptive deadline-driven scheduling. Schedulability conditions are derived for fault-tolerant periodic and sporadic task sets experiencing bounded error arrivals under non-preemptive deadline scheduling. A timing analysis algorithm is presented based upon these conditions and its run-time properties are studied. Computational experiments show it to be highly efficient in terms of run-time complexity and competitive ratio when compared to previous approaches.

  5. Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements.

    Science.gov (United States)

    Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George

    2017-08-15

    A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.

  6. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  7. Risk factors associated with short term mortality changes over time, after arrival to the emergency department

    DEFF Research Database (Denmark)

    Bech, Camilla Nørgaard; Brabrand, Mikkel; Mikkelsen, Søren

    2018-01-01

    , 0-2 day, 3-7 day and 8-30 day mortality. The degree of acuteness at arrival defined by urgency-level, physician-assisted transfer to the Emergency Department and abnormal vital parameters are associated with 0-2 day mortality. High temperature at arrival shows no association in either mortality...

  8. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Science.gov (United States)

    2010-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  9. Towards routine determination of focal mechanisms obtained from first motion P-wave arrivals

    Science.gov (United States)

    Lentas, K.

    2018-03-01

    The Bulletin of the International Seismological Centre (ISC) contains information on earthquake mechanisms collected from many different sources including national and global agencies, resulting in a satisfactory coverage over a wide magnitude range (M ˜2-9). Nevertheless, there are still a vast number of earthquakes with no reported source mechanisms especially for magnitudes up to 5. This study investigates the possibility of calculating earthquake focal mechanisms in a routine and systematic way based on P-wave first motion polarities. Any available parametric data in the ISC database is being used, as well as auto-picked polarities from waveform data up to teleseismic epicentral distances (90°) for stations that are not reported to the ISC. The determination of the earthquake mechanisms is carried out with a modified version of the HASH algorithm that is compatible with a wide range of epicentral distances and takes into account the ellipsoids defined by the ISC location errors, and the Earth's structure uncertainties. Initially, benchmark tests for a set of ISC reviewed earthquakes (mb > 4.5) are carried out and the HASH mechanism classification scheme is used to define the mechanism quality. Focal mechanisms of quality A, B and C with an azimuthal gap up to 90° compare well to the benchmark mechanisms. Nevertheless, the majority of the obtained mechanisms fall into class D as a result of limited polarity data from stations in local/regional epicentral distances. Specifically, the computation of the minimum rotation angle between the obtained mechanisms and the benchmarks, reveals that 41 per cent of the examined earthquakes show rotation angles up to 35°. Finally, the current technique is applied to a small set of earthquakes from the reviewed ISC bulletin where 62 earthquakes, with no previously reported source mechanisms, are successfully obtained.

  10. Improving perfusion quantification in arterial spin labeling for delayed arrival times by using optimized acquisition schemes

    International Nuclear Information System (INIS)

    Kramme, Johanna; Diehl, Volker; Madai, Vince I.; Sobesky, Jan; Guenther, Matthias

    2015-01-01

    The improvement in Arterial Spin Labeling (ASL) perfusion quantification, especially for delayed bolus arrival times (BAT), with an acquisition redistribution scheme mitigating the T1 decay of the label in multi-TI ASL measurements is investigated. A multi inflow time (TI) 3D-GRASE sequence is presented which adapts the distribution of acquisitions accordingly, by keeping the scan time constant. The MR sequence increases the number of averages at long TIs and decreases their number at short TIs and thus compensating the T1 decay of the label. The improvement of perfusion quantification is evaluated in simulations as well as in-vivo in healthy volunteers and patients with prolonged BATs due to age or steno-occlusive disease. The improvement in perfusion quantification depends on BAT. At healthy BATs the differences are small, but become larger for longer BATs typically found in certain diseases. The relative error of perfusion is improved up to 30% at BATs > 1500 ms in comparison to the standard acquisition scheme. This adapted acquisition scheme improves the perfusion measurement in comparison to standard multi-TI ASL implementations. It provides relevant benefit in clinical conditions that cause prolonged BATs and is therefore of high clinical relevance for neuroimaging of steno-occlusive diseases.

  11. The effect of patients’ time of arrival at the hospital on the rate of Thrombolytic therapy

    Directory of Open Access Journals (Sweden)

    Toba Kazemi

    2013-01-01

    Full Text Available The honorable editor-in-chief of the Journal of ARYA We read with interest the article of Dr. Maleki that has recently been published.1 We conducted a similar study in Birjand Vali-e-Asr Hospital in 2009-2010. This study was done on 125 patients with STEMI with a mean age of 59.2 ± 11.9 years. In this study, 65.6% of patients underwent thrombolytic therapy. This showed a crucial increase compared to the previous study in Birjand in 2003 that showed 17.3% of patients underwent thrombolytic therapy.2 Mean door to needle time was 74.8 ± 42.7 minutes (median 60 minutes. Thrombolytic therapy showed no difference for difference in sex (69.4% in males, and 51.9% in females, P = 0.08. However, in working staff (86.7% in employees, and 51.2% in farmers/workers, P = 0.003, in highly educated individuals (92.3% at university level, and 45.5% illiterate, P < 0.001, and in citizens (73.2% in urban, and 51.2% in rural citizens, P = 0.01 there was a higher percentage of thrombolytic therapy. The main reason for this difference between them is earlier arrival to the hospital since the onset of symptoms. The arrival time in the city's residents was 166.7 ± 179.6 minutes, but for villagers it was 221.6 ± 112 minutes (P = 0.001. Furthermore, the rate of thrombolytic therapy during the night was not significantly different compared to the rest of the day (73% during morning, 62.9% during afternoon, and 62.3% during night, P = 0.52. The patient's arrival time to the hospital at night was not different compared to the rest of the day (166.9 ± 174.7 minutes in the morning shift, and 148.2 ± 85.2 minutes during the night shift, P = 0.63. Visiting patients during the night shift was similar to other shifts; visit by intern was 12.3 ± 9.1 minutes during the morning shift, and 14.1 ± 9.3 minutes during the night shift (P = 0.73. The rate of thrombolytic therapy in our study was similar to the study by Dr. Maleki;1 however, door to needle time was longer. In our

  12. Time evolution of wave packets on nanostructures

    International Nuclear Information System (INIS)

    Prunele, E de

    2005-01-01

    Time evolution of wave packets on nanostructures is studied on the basis of a three-dimensional solvable model with singular interactions (de Prunele 1997 J. Phys. A: Math. Gen. 30 7831). In particular, methods and tools are provided to determine time independent upper bounds for the overlap of the normalized time-dependent wave packet with the time independent normalized wave packet concentrated at an arbitrarily chosen vertex of the nanosystem. The set of upper bounds referring to all initial positions of the wave packet and all overlaps are summarized in a matrix. The analytical formulation allows a detailed study for arbitrary geometrical configurations. Time evolution on truncated quasicrystalline systems has been found to be site selective, depending on the position of the initial wave packet

  13. Time difference of arrival estimation of microseismic signals based on alpha-stable distribution

    Science.gov (United States)

    Jia, Rui-Sheng; Gong, Yue; Peng, Yan-Jun; Sun, Hong-Mei; Zhang, Xing-Li; Lu, Xin-Ming

    2018-05-01

    Microseismic signals are generally considered to follow the Gauss distribution. A comparison of the dynamic characteristics of sample variance and the symmetry of microseismic signals with the signals which follow α-stable distribution reveals that the microseismic signals have obvious pulse characteristics and that the probability density curve of the microseismic signal is approximately symmetric. Thus, the hypothesis that microseismic signals follow the symmetric α-stable distribution is proposed. On the premise of this hypothesis, the characteristic exponent α of the microseismic signals is obtained by utilizing the fractional low-order statistics, and then a new method of time difference of arrival (TDOA) estimation of microseismic signals based on fractional low-order covariance (FLOC) is proposed. Upon applying this method to the TDOA estimation of Ricker wavelet simulation signals and real microseismic signals, experimental results show that the FLOC method, which is based on the assumption of the symmetric α-stable distribution, leads to enhanced spatial resolution of the TDOA estimation relative to the generalized cross correlation (GCC) method, which is based on the assumption of the Gaussian distribution.

  14. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors

    International Nuclear Information System (INIS)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-01-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations

  15. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.

    Science.gov (United States)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-02-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.

  16. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  17. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  18. Arrives the green wave

    International Nuclear Information System (INIS)

    Cardenas S, Diego Hernan

    2005-01-01

    The paper refers to the use of the alcohol like fuel inside the new era of bio-fuels in Colombia, for it will be used it the sugar cane. The produced alcohol will be added to the gasoline and this way to generate a mixture more cleans and ecological

  19. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    Science.gov (United States)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  20. Time of Arrival Estimation in Probability-Controlled Generalized CDMA Systems

    Directory of Open Access Journals (Sweden)

    Hagit Messer

    2007-11-01

    Full Text Available In recent years, more and more wireless communications systems are required to provide also a positioning measurement. In code division multiple access (CDMA communication systems, the positioning accuracy is significantly degraded by the multiple access interference (MAI caused by other users in the system. This MAI is commonly managed by a power control mechanism, and yet, MAI has a major effect on positioning accuracy. Probability control is a recently introduced interference management mechanism. In this mechanism, a user with excess power chooses not to transmit some of its symbols. The information in the nontransmitted symbols is recovered by an error-correcting code (ECC, while all other users receive a more reliable data during these quiet periods. Previous research had shown that the implementation of a probability control mechanism can significantly reduce the MAI. In this paper, we show that probability control also improves the positioning accuracy. We focus on time-of-arrival (TOA based positioning systems. We analyze the TOA estimation performance in a generalized CDMA system, in which the probability control mechanism is employed, where the transmitted signal is noncontinuous with a symbol transmission probability smaller than 1. The accuracy of the TOA estimation is determined using appropriate modifications of the Cramer-Rao bound on the delay estimation. Keeping the average transmission power constant, we show that the TOA accuracy of each user does not depend on its transmission probability, while being a nondecreasing function of the transmission probability of any other user. Therefore, a generalized, noncontinuous CDMA system with a probability control mechanism can always achieve better positioning performance, for all users in the network, than a conventional, continuous, CDMA system.

  1. Arterial spin labelling reveals prolonged arterial arrival time in idiopathic Parkinson's disease.

    Science.gov (United States)

    Al-Bachari, Sarah; Parkes, Laura M; Vidyasagar, Rishma; Hanby, Martha F; Tharaken, Vivek; Leroi, Iracema; Emsley, Hedley C A

    2014-01-01

    Idiopathic Parkinson's disease (IPD) is the second most common neurodegenerative disease, yet effective disease modifying treatments are still lacking. Neurodegeneration involves multiple interacting pathological pathways. The extent to which neurovascular mechanisms are involved is not well defined in IPD. We aimed to determine whether novel magnetic resonance imaging (MRI) techniques, including arterial spin labelling (ASL) quantification of cerebral perfusion, can reveal altered neurovascular status (NVS) in IPD. Fourteen participants with IPD (mean ± SD age 65.1 ± 5.9 years) and 14 age and cardiovascular risk factor matched control participants (mean ± SD age 64.6 ± 4.2 years) underwent a 3T MRI scan protocol. ASL images were collected before, during and after a 6 minute hypercapnic challenge. FLAIR images were used to determine white matter lesion score. Quantitative images of cerebral blood flow (CBF) and arterial arrival time (AAT) were calculated from the ASL data both at rest and during hypercapnia. Cerebrovascular reactivity (CVR) images were calculated, depicting the change in CBF and AAT relative to the change in end-tidal CO2. A significant (p = 0.005) increase in whole brain averaged baseline AAT was observed in IPD participants (mean ± SD age 1532 ± 138 ms) compared to controls (mean ± SD age 1335 ± 165 ms). Voxel-wise analysis revealed this to be widespread across the brain. However, there were no statistically significant differences in white matter lesion score, CBF, or CVR between patients and controls. Regional CBF, but not AAT, in the IPD group was found to correlate positively with Montreal cognitive assessment (MoCA) scores. These findings provide further evidence of alterations in NVS in IPD.

  2. Time-Reversal Generation of Rogue Waves

    Science.gov (United States)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  3. Coherent Seismic Arrivals in the P Wave Coda of the 2012 Mw 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?

    Science.gov (United States)

    Fan, Wenyuan; Shearer, Peter M.

    2018-04-01

    Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

  4. Time variations of hf induced plasma waves

    International Nuclear Information System (INIS)

    Showen, R.L.

    1976-01-01

    Intense plasma waves are generated by an HF pump wave in an ionospheric heating experiment at the Arecibo Observatory. These plasma waves can be observed as enhancements to the ion and plasma lines of the incoherent backscatter echo. The enhancements can be three or four orders of magnitude more intense than the unenhanced lines, and tend to fluctuate wildly. Both the purely growing and the decay mode parametric instabilities are present. When the pump wave is turned on abruptly the enhancements develop in time in a repeatable manner. A rather remarkable feature on time scales of seconds is an overshoot in instability power. These overshoots occur frequently but not universally and last for 1 to 6 seconds. They can have a magnitude from ten to hundreds of times the average instability level. Field aligned irregularities may be the cause of the overshoots. The overshoots appear definitely related to an unusually rapid rise in measured electron temperature that cannot be understood in terms of ohmic energy deposition. On time scales of milliseconds there is a ''mini-overshoot'' before the growth of the instability to a large value. The spectral details also change in a striking manner. The instabilities can first be detected 2 to 4 msec after the pump wave turn-on. The decay mode is present as well as a broad featureless ''noise bump'', which partially sharpens into a line as time progresses. These changes of the spectra in time seem to run counter to the currently accepted theories of plasma wave saturation

  5. Simulation studies of the information content of muon arrival time observations of high energy extensive air showers

    International Nuclear Information System (INIS)

    Brancus, I.; Duma, M.; Badea, A. F.; Aiftimiei, C.; Rebel, M. H.; Oehlschlaeger, J.

    2001-01-01

    By extensive Monte Carlo calculations, using the air shower simulation code CORSIKA, EAS muon arrival time distributions and EAS time profiles up to 320 m distances from the shower centre have been generated, for proton, oxygen and iron induced showers using different hadronic interaction models as Monte Carlo generators. The model dependence and mass discriminating features have been scrutinized for three energy ranges, (1-1.7783) 10 15 eV, (1.-1.78) 10 16 eV and (1.78-3.16) 10 16 eV, by use of non-parametric statistical inference method applied to multidimensional distributions, correlating the EAS time quantities with different other EAS observables. The correlations of local muon arrival times with the local muon density and the shower age indicate a good mass separation quality at larger shower distances. The best discrimination was obtained by adding the correlation with N μ tr quantity. The comparison between 'local times', with reference to the first registered muon and 'global times' with reference to the arrival time of the shower core, indicates a slightly better mass discrimination in the case of muon 'global' time distributions. (authors)

  6. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    Science.gov (United States)

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  7. Faraday waves under time-reversed excitation.

    Science.gov (United States)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  8. Arrival time pattern and waiting time distribution of patients in the emergency outpatient department of a tertiary level health care institution of North India

    Directory of Open Access Journals (Sweden)

    Yogesh Tiwari

    2014-01-01

    Full Text Available Background: Emergency Department (ED of tertiary health care institute in India is mostly overcrowded, over utilized and inappropriately staffed. The challenges of overcrowded EDs and ill-managed patient flow and admission processes result in excessively long waits for patients. Aim: The objective of the present study was to analyze the patient flow system by assessing the arrival and waiting time distribution of patients in an Emergency out Patient Department (EOPD. Materials and Methods: This short cross-sectional descriptive study was conducted in the EOPD of a Tertiary level health care Institution in North India in the month of May, 2011. The data was obtained from 591 patients, who were present in the EOPD during the month of May, 2011. The waiting time, inter arrival time between two consecutive patients were calculated in addition to the daily census data (discharge rate, admission rate and transfer out rates etc. of the emergency. Results: Arrival time pattern of patients in the EOPD was highly stochastic with the peak arrival hours to be "9.00-12.00 h" in which around 26.3% patients arrived in the EOPD. The primary waiting areas of patients included patients "under observation" (29.6%; "waiting for routine diagnostic tests" (16.4% and "waiting for discharge" (14.6%. Around 71% patients were waiting due to reasons within emergency complex. Conclusion: The patient flow of the ED could only be addressed by multifaceted, multidisciplinary and hospital wide approach.

  9. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  10. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC/SWRC from 2010-2016

    Science.gov (United States)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; MacNeice, P. J.; Jian, L. K.

    2017-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model CME propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME leading edge measurements near Earth, STEREO-A and STEREO-B for simulations completed between March 2010-December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B and we observed an arrival (hit), the mean absolute arrival-time prediction error was 10.4 ± 0.9 hours, with a tendency to early prediction error of -4.0 hours. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). There is an increase of 1.7 hours in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.

  11. Investigation of relative arrival time distributions of EAS electron and muon component with the KASCADE central detector

    International Nuclear Information System (INIS)

    Hafemann, W.; Haeusler, R.; Rebel, H.; Mathes, H.J.

    2000-01-01

    The central detector of the KASCADE experiment is equipped with two layers of scintillation detectors with different area coverage. The scintillators of both detector systems have a good timing resolution of about 1.6 ns. With these two arrangements we performed extensive measurements of the arrival time differences at different energy thresholds of the electron and the muon component of EAS. The observed time structure of the shower profile is classified according to different EAS parameters. We furthermore present an analysis and comparism based on detailed MC simulations of the shower development. This comparism shows good agreement between experimental data and the expected behaviour of the different time distributions. (orig.)

  12. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)

    Science.gov (United States)

    Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun

    2016-01-01

    Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.

  13. A Robust Real Time Direction-of-Arrival Estimation Method for Sequential Movement Events of Vehicles.

    Science.gov (United States)

    Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang

    2018-03-27

    Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.

  14. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016

    Science.gov (United States)

    Wold, Alexandra M.; Mays, M. Leila; Taktakishvili, Aleksandre; Jian, Lan K.; Odstrcil, Dusan; MacNeice, Peter

    2018-03-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model coronal mass ejection (CME) propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC space weather team. CCMC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in situ interplanetary coronal mass ejection leading edge measurements at Solar TErrestrial RElations Observatory-Ahead (STEREO-A), Solar TErrestrial RElations Observatory-Behind (STEREO-B), and Earth (Wind and ACE) for simulations completed between March 2010 and December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three locations. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B, and was actually observed (hit event), the mean absolute arrival-time prediction error was 10.4 ± 0.9 h, with a tendency to early prediction error of -4.0 h. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A sidelobe operations (August 2014-December 2015). There is an increase of 1.7 h in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.

  15. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the sun to 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Möstl, C.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V. [Kanzelhöhe Observatory-IGAM, Institute of Physics, University of Graz (Austria); Amla, K.; Hall, J. R.; Liewer, P. C.; De Jong, E. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Colaninno, R. C. [Space Sciences Division, Naval Research Laboratory, Washington, DC (United States); Davies, J. A.; Harrison, R. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Lugaz, N.; Farrugia, C. J.; Galvin, A. B. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Vršnak, B., E-mail: christian.moestl@uni-graz.at [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000, Zagreb (Croatia)

    2014-06-01

    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700 km s{sup –1}). We track the CMEs to 34.9 ± 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of –26.4 ± 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Φ, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 ± 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 ± 288 km s{sup –1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 ± 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 ± 50 km s{sup –1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.

  16. Sex-Specific Arrival Times on the Breeding Grounds: Hybridizing Migratory Skuas Provide Empirical Support for the Role of Sex Ratios.

    Science.gov (United States)

    Lisovski, Simeon; Fröhlich, Anne; von Tersch, Matthew; Klaassen, Marcel; Peter, Hans-Ulrich; Ritz, Markus S

    2016-04-01

    In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.

  17. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  18. An analysis of the first-arrival times picked on the DSS and wide-angle seismic section recorded in Italy since 1968

    Directory of Open Access Journals (Sweden)

    R. Tondi

    2004-06-01

    Full Text Available We performed an analysis of refraction data recorded in Italy since 1968 in the frame of the numerous deep seismic sounding and wide-angle reflection/refraction projects. The aims of this study are to construct a parametric database including the recording geometric information relative to each profile, the phase pickings and the results of some kinematic analyses performed on the data, and to define a reference 1D velocity model for the Italian territory from all the available refraction data. As concerns the first goal, for each seismic section we picked the P-wave first-arrival-times, evaluated the uncertainties of the arrival-times pickings and determined from each travel time-offset curve the 1D velocity model. The study was performed on 419 seismic sections. Picking was carried out manually by an algorithm which includes the computation of three picking functions and the picking- error estimation. For each of the travel time-offset curves a 1D velocity model has been calculated. Actually, the 1D velocity-depth functions were estimated in three different ways which assume: a constant velocitygradient model, a varying velocity-gradient model and a layered model. As regards the second objective of this work, a mean 1D velocity model for the Italian crust was defined and compared with those used for earthquake hypocentre locations and seismic tomographic studies by different institutions operating in the Italian area, to assess the significance of the model obtained. This model can be used in future works as input for a next joint tomographic inversion of active and passive seismic data.

  19. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  20. Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection

    Science.gov (United States)

    Becker, Werner; Kramer, Michael; Sesana, Alberto

    2018-02-01

    Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.

  1. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases.

    Science.gov (United States)

    Chong, Ka Chun; Zee, Benny Chung Ying; Wang, Maggie Haitian

    2018-04-10

    In an influenza pandemic, arrival times of cases are a proxy of the epidemic size and disease transmissibility. Because of intense surveillance of travelers from infected countries, detection is more rapid and complete than on local surveillance. Travel information can provide a more reliable estimation of transmission parameters. We developed an Approximate Bayesian Computation algorithm to estimate the basic reproduction number (R 0 ) in addition to the reporting rate and unobserved epidemic start time, utilizing travel, and routine surveillance data in an influenza pandemic. A simulation was conducted to assess the sampling uncertainty. The estimation approach was further applied to the 2009 influenza A/H1N1 pandemic in Mexico as a case study. In the simulations, we showed that the estimation approach was valid and reliable in different simulation settings. We also found estimates of R 0 and the reporting rate to be 1.37 (95% Credible Interval [CI]: 1.26-1.42) and 4.9% (95% CI: 0.1%-18%), respectively, in the 2009 influenza pandemic in Mexico, which were robust to variations in the fixed parameters. The estimated R 0 was consistent with that in the literature. This method is useful for officials to obtain reliable estimates of disease transmissibility for strategic planning. We suggest that improvements to the flow of reporting for confirmed cases among patients arriving at different countries are required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. IEEE 802.15.4 ZigBee-Based Time-of-Arrival Estimation for Wireless Sensor Networks.

    Science.gov (United States)

    Cheon, Jeonghyeon; Hwang, Hyunsu; Kim, Dongsun; Jung, Yunho

    2016-02-05

    Precise time-of-arrival (TOA) estimation is one of the most important techniques in RF-based positioning systems that use wireless sensor networks (WSNs). Because the accuracy of TOA estimation is proportional to the RF signal bandwidth, using broad bandwidth is the most fundamental approach for achieving higher accuracy. Hence, ultra-wide-band (UWB) systems with a bandwidth of 500 MHz are commonly used. However, wireless systems with broad bandwidth suffer from the disadvantages of high complexity and high power consumption. Therefore, it is difficult to employ such systems in various WSN applications. In this paper, we present a precise time-of-arrival (TOA) estimation algorithm using an IEEE 802.15.4 ZigBee system with a narrow bandwidth of 2 MHz. In order to overcome the lack of bandwidth, the proposed algorithm estimates the fractional TOA within the sampling interval. Simulation results show that the proposed TOA estimation algorithm provides an accuracy of 0.5 m at a signal-to-noise ratio (SNR) of 8 dB and achieves an SNR gain of 5 dB as compared with the existing algorithm. In addition, experimental results indicate that the proposed algorithm provides accurate TOA estimation in a real indoor environment.

  3. Bunch arrival time monitors; Concepts towards improving the sensitivity for low charge operation for FLASH II and XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Penirschke, Andreas; Angelovski, Aleksandar; Jakoby, Rolf [TU Darmstadt, Institut fuer Mikrowellentechnik und Photonik, Merckstr. 25, 64283 Darmstadt (Germany); Sydlo, Cezary; Bousonville, Michael; Czwalinna, Marie Kristin; Schlarb, Holger [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kuhl, Alexander [University of Hamburg, Physics Department, Accelerator Physics Group (Germany); Weiland, Thomas [Technische Univ. Darmstadt (Germany). Inst. fuer Theorie Elektromagnetischer Felder

    2013-07-01

    High gain Free-Electron Lasers can generate ultra short X-ray pulses in the femtosecond range. For a stable operation of the FEL, the precise knowledge of the bunch arrival time is crucial. A novel high bandwidth Bunch Arrival time Monitor was recently installed at FLASH to allow a low charge operation mode with a sub-10 fs resolution for bunch charges of 20 pC or more. The BAM is equipped with cone shaped pickups for the precise measurement of both, the high and low bunch charge operation mode. For the extension of FLASH facility to FLASH II new pickups for the high bandwidth BAMs need to be developed. The new BAM needs to maximize the voltage level of the beam induced signal for low charge operation mode in order to provide sufficient signal strength for the subsequent electronics. In this talk, we present concepts to improve the signal strength at the electro-optic modulators for low charge operation at FLASH II and XFEL.

  4. A clinical study concerning hepatic arterial dominant phase and arrival time of contrast media on helical dynamic CT

    International Nuclear Information System (INIS)

    Matsubara, Susumu; Uchida, Chiharu; Sato, Sei; Ishida, Junichi; Masuya, Ryozo; Makiguchi, Mako; Kanamori, Isao

    2001-01-01

    Hepatic arterial dominant phase in helical dynamic CT was optimized by measuring the arrival time of contrast media (ATCM) with time-density curve (TDC). Subjects were 1005 patients (577 males and 428 females) and 98 nodules diagnosed as advanced hepatocellular carcinoma (HCC). The CT was done with Toshiba 4MHU X-vision SP, ultrasonography with Toshiba SSH-160A and automatic infusion of the contrast medium, iopamidol or iohexol, with Nemotokyorindo Autoenhance A-50. ATCM was found correlated with pulse rate and with arterial diameter, and significantly different between the sex. Elevation slope of TDC was suggested to be made constant by a defined infusion time of the dose corrected by body weight. Fluctuation of TDC among patients , when normalized by ATCM, was found smaller and the TDC was suggested to be useful for better imaging of HCC of less than 10 mm diameter. (K.H.)

  5. Optimizing Time Windows For Managing Export Container Arrivals At Chinese Container Terminals

    DEFF Research Database (Denmark)

    Chen, Gang; Yang, Zhongzhen

    2010-01-01

    window management programme that is widely used in Chinese terminals to facilitate terminal and truck delivery operations. Firstly, the arrangement of time windows is assumed to follow the principle of minimizing transport costs. A cost function is defined that includes the costs of truck and driver...... waiting time, fuel consumption associated with truck idling, storage time of the containerized cargos and yard fee. Secondly, to minimize the total cost, a heuristic is developed based on a genetic algorithm to find a near optimal time window arrangement. The optimized solution involves the position...

  6. OPTIMIZING TIME WINDOWS FOR MANAGING ARRIVALS OF EXPORT CONTAINERS AT CHINESE CONTAINER TERMINALS

    DEFF Research Database (Denmark)

    Chen, Gang; Yang, Zhongzhen

    2009-01-01

    of driver and truck waiting time, the cost of container cargo storage time, the truck idle cost and terminal yard fee. Secondly, to minimize the costs, a heuristic is developed based on a genetic algorithm to optimize the time window arrangement. The optimal solution involves the position and the length...... window management programme that is widely used in Chinese terminals to facilitate the terminal operations and the truck delivery operations. Firstly, the arrangement of time windows is assumed to follow the principle of minimizing the transport costs. A cost function is defined that includes the cost...

  7. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    Science.gov (United States)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  8. Traffic Responsive Control of Intersections with Predicted Arrival Times: A Markovian Approach

    NARCIS (Netherlands)

    Haijema, R.; Hendrix, E.M.T.

    2014-01-01

    The dynamic adaptive control of traffic lights can be formulated as a Markov decision problem (MDP). This framework is hardly used, as solving an MDP can be very time-consuming and is only possible for simple infrastructures with a small number of traffic flows. Nevertheless, we show that the MDP

  9. Time properties of ionospheric wave disturbances

    International Nuclear Information System (INIS)

    Kaliev, M.Z.; Krasnikov, I.M.; Litvinov, Yu.G.; Chakenov, B.D.; Yakovets, A.F.

    1989-01-01

    Records of Doppler frequency shifts of an ionospheric signal, taken in separate observation posts in the vicinity of Alma-Ata in 1986-1987, are analyzed. It is shown that the coherent parts of Doppler shift oscillations are wave disturbance trains in the ionospheric F region. The relation between the train duration and its central frequency is established. With the frequency decrease the mean train length increases, while the maximum train length, determined in the experiment, is about 6h. The probabilities of train detection in the low and high-frequency ranges are nearly the same, and moreover, they are equal in day time and at night

  10. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  11. Development of the town data base: Estimates of exposure rates and times of fallout arrival near the Nevada Test Site

    International Nuclear Information System (INIS)

    Thompson, C.B.; McArthur, R.D.; Hutchinson, S.W.

    1994-09-01

    As part of the U.S. Department of Energy's Off-Site Radiation Exposure Review Project, the time of fallout arrival and the H+12 exposure rate were estimated for populated locations in Arizona, California, Nevada, and Utah that were affected by fallout from one or more nuclear tests at the Nevada Test Site. Estimates of exposure rate were derived from measured values recorded before and after each test by fallout monitors in the field. The estimate for a given location was obtained by retrieving from a data base all measurements made in the vicinity, decay-correcting them to H+12, and calculating an average. Estimates were also derived from maps produced after most events that show isopleths of exposure rate and time of fallout arrival. Both sets of isopleths on these maps were digitized, and kriging was used to interpolate values at the nodes of a 10-km grid covering the pattern. The values at any location within the grid were then estimated from the values at the surrounding grid nodes. Estimates of dispersion (standard deviation) were also calculated. The Town Data Base contains the estimates for all combinations of location and nuclear event for which the estimated mean H+12 exposure rate was greater than three times background. A listing of the data base is included as an appendix. The information was used by other project task groups to estimate the radiation dose that off-site populations and individuals may have received as a result of exposure to fallout from Nevada nuclear tests

  12. On the more accurate channel model and positioning based on time-of-arrival for visible light localization

    Science.gov (United States)

    Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed

    2017-01-01

    This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.

  13. Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Real-time control of wave energy converters requires knowledge of future incident wave elevation in order to approach optimal efficiency of wave energy extraction. We present an approach where the wave elevation is treated as a time series and it is predicted only from its past history. A comparison of a range of forecasting methodologies on real wave observations from two different locations shows how the relatively simple linear autoregressive model, which implicitly models the cyclical beh...

  14. Healthcare System Information at Language Schools for Newly Arrived Immigrants: A Pertinent Setting in Times of Austerity

    Science.gov (United States)

    Tynell, Lena Lyngholt; Wimmelmann, Camilla Lawaetz; Jervelund, Signe Smith

    2017-01-01

    Objective: In most European countries, immigrants do not systematically learn about the host countries' healthcare system when arriving. This study investigated how newly arrived immigrants perceived the information they received about the Danish healthcare system. Methods: Immigrants attending a language school in Copenhagen in 2012 received…

  15. First-arrival traveltime computation for quasi-P waves in 2D transversely isotropic media using Fermat’s principle-based fast marching

    Science.gov (United States)

    Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong

    2017-12-01

    First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.

  16. Hepatic Vein Arrival Time for Diagnosis of Liver Cirrhosis: A 10-Year Single-Center Experience With Contrast-Enhanced Sonography.

    Science.gov (United States)

    Abbattista, Teresa; Ridolfi, Francesco; Consalvo, Giovanni Traina; Brunelli, Eugenio

    2016-10-01

    To evaluate the performance of contrast-enhanced sonography with a second-generation contrast agent in assessing the severity of chronic diffuse liver disease and differentiating cirrhotic from noncirrhotic liver disease. Contrast-enhanced sonography was performed after intravenous bolus injection of a second-generation contrast agent in 14 healthy control participants and 160 consecutive patients with cirrhotic and noncirrhotic liver disease (n = 78 and 82, respectively) enrolled between March 2004 and April 2014. The intensity of enhancement in a main hepatic vein was used to determine hepatic vein arrival time, time to peak intensity, and peak contrast enhancement. The hepatic vein arrival time was lower in cirrhotic patients compared with both noncirrhotic patients and controls (mean ± SD, 15.0 ± 2.8, 21.5 ± 3.4, and 25.6 ± 4.7 seconds, respectively; P < .05). The hepatic vein arrival time in noncirrhotic patients was also significantly lower than that in controls (P < .05). The time to peak intensity was significantly lower in cirrhotic patients compared with noncirrhotic patients and controls (40.7 ± 13.7, 49.4 ± 12.8, and 51.2 ± 13.7 seconds; P < .05). A receiver operating characteristic curve analysis revealed that the hepatic vein arrival time more accurately excluded a diagnosis of liver cirrhosis than the time to peak intensity (area under the receiver operating characteristic curve, 0.953 versus 0.694). Specifically, a hepatic vein arrival time cutoff value of 17 seconds excluded liver cirrhosis with 91.1% sensitivity and 93.6% specificity. Contrast-enhanced sonography is a valid alternative method for noninvasive staging of liver diseases. The hepatic vein arrival time could be used to exclude liver cirrhosis in a clinical setting.

  17. Fluid approximation analysis of a call center model with time-varying arrivals and after-call work

    Directory of Open Access Journals (Sweden)

    Yosuke Kawai

    2015-12-01

    Full Text Available Important features to be included in queueing-theoretic models of the call center operation are multiple servers, impatient customers, time-varying arrival process, and operator’s after-call work (ACW. We propose a fluid approximation technique for the queueing model with these features by extending the analysis of a similar model without ACW recently developed by Liu and Whitt (2012. Our model assumes that the service for each quantum of fluid consists of a sequence of two stages, the first stage for the conversation with a customer and the second stage for the ACW. When the duration of each stage has exponential, hyperexponential or hypo-exponential distribution, we derive the time-dependent behavior of the content of fluid in each stage of service as well as that in the waiting room. Numerical examples are shown to illustrate the system performance for the cases in which the input rate and/or the number of servers vary in sinusoidal fashion as well as in adaptive ways and in stationary cases.

  18. Simulation-based validation and arrival-time correction for Patlak analyses of Perfusion-CT scans

    Science.gov (United States)

    Bredno, Jörg; Hom, Jason; Schneider, Thomas; Wintermark, Max

    2009-02-01

    Blood-brain-barrier (BBB) breakdown is a hypothesized mechanism for hemorrhagic transformation in acute stroke. The Patlak analysis of a Perfusion Computed Tomography (PCT) scan measures the BBB permeability, but the method yields higher estimates when applied to the first pass of the contrast bolus compared to a delayed phase. We present a numerical phantom that simulates vascular and parenchymal time-attenuation curves to determine the validity of permeability measurements obtained with different acquisition protocols. A network of tubes represents the major cerebral arteries ipsi- and contralateral to an ischemic event. These tubes branch off into smaller segments that represent capillary beds. Blood flow in the phantom is freely defined and simulated as non-Newtonian tubular flow. Diffusion of contrast in the vessels and permeation through vessel walls is part of the simulation. The phantom allows us to compare the results of a permeability measurement to the simulated vessel wall status. A Patlak analysis reliably detects areas with BBB breakdown for acquisitions of 240s duration, whereas results obtained from the first pass are biased in areas of reduced blood flow. Compensating for differences in contrast arrival times reduces this bias and gives good estimates of BBB permeability for PCT acquisitions of 90-150s duration.

  19. Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight

    DEFF Research Database (Denmark)

    Elyas, Eli; Grimwood, Alex; Erler, Janine Terra

    2017-01-01

    a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared......Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down...... of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves...

  20. PIXiE: an algorithm for automated ion mobility arrival time extraction and collision cross section calculation using global data association

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jian; Casey, Cameron P.; Zheng, Xueyun; Ibrahim, Yehia M.; Wilkins, Christopher S.; Renslow, Ryan S.; Thomas, Dennis G.; Payne, Samuel H.; Monroe, Matthew E.; Smith, Richard D.; Teeguarden, Justin G.; Baker, Erin S.; Metz, Thomas O.

    2017-05-15

    Motivation: Drift tube ion mobility spectrometry (DTIMS) is increasingly implemented in high throughput omics workflows, and new informatics approaches are necessary for processing the associated data. To automatically extract arrival times for molecules measured by DTIMS coupled with mass spectrometry and compute their associated collisional cross sections (CCS) we created the PNNL Ion Mobility Cross Section Extractor (PIXiE). The primary application presented for this algorithm is the extraction of information necessary to create a reference library containing accu-rate masses, DTIMS arrival times and CCSs for use in high throughput omics analyses. Results: We demonstrate the utility of this approach by automatically extracting arrival times and calculating the associated CCSs for a set of endogenous metabolites and xenobiotics. The PIXiE-generated CCS values were identical to those calculated by hand and within error of those calcu-lated using commercially available instrument vendor software.

  1. Longitudinal development of air-shower electrons studied from the arrival time distributions of atmospheric Cerenkov light measured at 5200 m above sea level

    International Nuclear Information System (INIS)

    Inoue, N.; Kaneko, T.; Yoshii, H.

    1985-01-01

    The longitudinal development of electrons in extensive air showers before the maximum has been studied by measuring the arrival time distributions of atmospheric Cerenkov light from air showers, with primary energies in the range 6 x 10 15 to 2 x 10 17 eV, in the Chacaltaya air-shower array. These arrival time distributions are consistent with those calculated using a model of particle interactions which contain Feynman scaling in the fragmentation region, an Esup(1/2) multiplicity law in the pionisation region and a rising cross section for primary protons. Such a model also reproduces the arrival time distributions of Cerenkov light measured in the Akeno air-shower array as described in the preceding paper, which implies a very fast development before the maximum and a slow development after the maximum. (author)

  2. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  3. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  5. Gamma-Ray Burst Arrival Time Localizations: Simultaneous Observations by Pioneer Venus Orbiter, Compton Gamma-Ray Observatory, and Ulysses

    International Nuclear Information System (INIS)

    Laros, J.G.; Hurley, K.C.; Fenimore, E.E.; Klebesadel, R.W.; Briggs, M.S.; Kouveliotou, C.; McCollough, M.L.; Fishman, G.J.; Meegan, C.A.; Cline, T.L.; Boer, M.; Niel, M.

    1998-01-01

    Between the Compton Gamma Ray Observatory (CGRO) launch in 1991 April and the Pioneer Venus Orbiter (PVO) demise in 1992 October, concurrent coverage by CGRO, PVO, and Ulysses was obtained for several hundred gamma-ray bursts (GRBs). Although most of these were below the PVO and Ulysses thresholds, 37 were positively detected by all three spacecraft, with data quality adequate for quantitative localization analysis. All were localized independently to ∼2 degree accuracy by the CGRO Burst and Transient Source Experiment (BATSE), and three were also localized by COMPTEL. We computed arrival-time error boxes, whose larger dimensions range from about 2' to several degrees and whose smaller dimensions are in the arcminute range. Twelve have areas less than 10 arcmin 2 , and only four have areas greater than 1 deg 2 . The area of the smallest box is 0.44 arcmin 2 . We find that the overall BATSE localization accuracy for these events is consistent with the most recent stated uncertainties. This work indicates that the ROSAT soft X-ray source found within a preliminary IPN error box for GB920501 (Trig 1576) (Hurley et al.) is less likely to be the GRB counterpart than previously reported. copyright copyright 1998. The American Astronomical Society

  6. A Novel Differential Time-of-Arrival Estimation Technique for Impact Localization on Carbon Fiber Laminate Sheets

    Directory of Open Access Journals (Sweden)

    Eugenio Marino Merlo

    2017-10-01

    Full Text Available Composite material structures are commonly used in many industrial sectors (aerospace, automotive, transportation, and can operate in harsh environments where impacts with other parts or debris may cause critical safety and functionality issues. This work presents a method for improving the accuracy of impact position determination using acoustic source triangulation schemes based on the data collected by piezoelectric sensors attached to the structure. A novel approach is used to estimate the Differential Time-of-Arrival (DToA between the impact response signals collected by a triplet of sensors, overcoming the limitations of classical methods that rely on amplitude thresholds calibrated for a specific sensor type. An experimental evaluation of the proposed technique was performed with specially made circular piezopolymer (PVDF sensors designed for Structural Health Monitoring (SHM applications, and compared with commercial piezoelectric SHM sensors of similar dimensions. Test impacts at low energies from 35 mJ to 600 mJ were generated in a laboratory by free-falling metal spheres on a 500 mm × 500 mm × 1.25 mm quasi-isotropic Carbon Fiber Reinforced Polymer (CFRP laminate plate. From the analysis of many impact signals, the resulting localization error was improved for all types of sensors and, in particular, for the circular PVDF sensor an average error of 20.3 mm and a standard deviation of 8.9 mm was obtained.

  7. Continuous cuff-less blood pressure monitoring based on the pulse arrival time approach: the impact of posture.

    Science.gov (United States)

    Muehlsteff, J; Aubert, X A; Morren, G

    2008-01-01

    There is an unmet need for cuff-less blood pressure (BP) monitoring especially, in personal healthcare applications. The pulse arrival time (PAT) approach might offer a suitable solution to enable comfortable BP monitoring even at beat-level. However, the methodology is based on hemodynamic surrogate measures, which are sensitive to patient activities such as posture changes, not necessarily related to blood pressure variations. In this paper, we analyze the impact of posture on the PAT measure and related hemodynamic parameters such as the pre-ejection period in well-defined procedures. Additionally, the PAT of a monitored subject is investigated in an unsupervised scenario illustrating the complexity of such a measurement. Our results show the failure of blood pressure inference based on simple calibration strategies using the PAT measure only. We discuss opportunities to compensate for the observed effects towards the realization of wearable cuff-less blood pressure monitoring. These findings emphasize the importance of accessing context information in personal healthcare applications, where vital sign monitoring is typically unsupervised.

  8. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  9. Methodology for the determination of the time of arrival at scale function of the flow of water basin

    International Nuclear Information System (INIS)

    Almoza, Yeleine; Grimaldi, Salvador; Petroseli, Andrea; Santini, Monia; Nardi, Fernando

    2008-01-01

    Full text: Physics is closely related to the other natural sciences, and in certain mode covers all. For example, the geomorphology; hydrogeology and other so many branches of Physical geography, linking this science in the modelling of phenomena related with them. Watersheds are areas than by their topographic features are they identify and differ from other types of relief. Specifically in the Rigo basin of the region of Lazio, Italy, relief - flow of water - time relationship, was characterized by the physical relationship T = S/V where T is the time that it takes the water flow produced by a rain event on reaching the mouth or basin (sec.) limit, given the length is the flow to the mouth (m) and V is the speed you can have flow on the land (m/s). The determination of this time is of utmost importance in agriculture and in General for the management of natural disasters of character hydrological, by losses Economic and material which may cause large avenues of water flow in a way surprising and unexpected. Therefore the overall objective of this study is to determine the map of time of arrival of the flow along the entire basin Rigo to the mouth. In addition It has a target specific, compare two maps of time, one normally calculated with the variable speed in the field and another with constant speed. These physical magnitudes T, S, V, were determined in the information system Geographic ArcGIS 9.2 with ArcINFO extension, in an atmosphere of macro language AML of programming, on the basis of the model Digital of elevation (DEM) of the basin Rigo. Then is they were calculating on scales of pixels of 30 meters, different topographic attributes and hydrological. The determination of these attributes as the direction of the flow, Areas Cumulative drainage, drainage network, Horton parameters, among others were used to calculate per unit of map the length of the flow (S) to the mouth. Was subsequently calculated the speed the flow map on the ground since the law of

  10. Arrival-time distribution of muons in extensive air showers at energies of 1017 eV to 1018 eV

    International Nuclear Information System (INIS)

    Blake, P.R.; Mann, D.M.; Nash, W.F.; O'Connell, B.; Strutt, R.B.

    1982-01-01

    The results of measurements of the rise-time of muon scintillator responses recorded from extensive air showers detected at Haverah Park are described. A high-speed storage oscilloscope recording system has been used to study both the average characteristics of muon time spreads and the fluctuations in arrival-time distributions between individual showers. The average muon time spreads are found to be a function of core distance, zenith angle and muon threshold energy. There is evidence that velocity delays are an important contribution to the muon rise-times for detectors with threshold energies < approximately 500 MeV. Significant fluctuations in the muon time spreads between individual showers are found. The average characteristics of the muon arrival-time distributions are also compared with the shower computer simulations. (author)

  11. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  12. A time-frequency analysis of wave packet fractional revivals

    International Nuclear Information System (INIS)

    Ghosh, Suranjana; Banerji, J

    2007-01-01

    We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals

  13. The time dependent Schrodinger equation revisited I: quantum field and classical Hamilton-Jacobi routes to Schrodinger's wave equation

    International Nuclear Information System (INIS)

    Scully, M O

    2008-01-01

    The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation

  14. Travelling waves in expanding spatially homogeneous space–times

    International Nuclear Information System (INIS)

    Alekseev, George

    2015-01-01

    Some classes of the so-called ‘travelling wave’ solutions of Einstein and Einstein–Maxwell equations in general relativity and of dynamical equations for massless bosonic fields in string gravity in four and higher dimensions are presented. Similarly to the well known plane-fronted waves with parallel rays (pp-waves), these travelling wave solutions may depend on arbitrary functions of a null coordinate which determine the arbitrary profiles and polarizations of the waves. However, in contrast with pp-waves, these waves do not admit the null Killing vector fields and can exist in some curved (expanding and spatially homogeneous) background space–times, where these waves propagate in certain directions without any scattering. Mathematically, some of these classes of solutions arise as the fixed points of Kramer–Neugebauer transformations for hyperbolic integrable reductions of the above mentioned field equations or, in other cases, after imposing the ansatz that these waves do not change the part of the spatial metric transverse to the direction of wave propagation. It is worth noting that the strikingly simple forms of all the solutions presented prospectively make possible the consideration of the nonlinear interaction of these waves with the background curvature and singularities, as well as the collision of such wave pulses with solitons or with each other in the backgrounds where such travelling waves may exist. (paper)

  15. Real-time directional wave data collection

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.; Pednekar, P.S.

    The wave measurements carried out along the east and west coasts off India at 13 locations using the directional waverider buoys are referred in this paper. The total number of buoy days are 4501 and out of which the data collected are 4218 days...

  16. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  17. Arrival metering fuel consumption analysis

    Science.gov (United States)

    2011-01-01

    Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...

  18. Adiabatic theorem for the time-dependent wave operator

    International Nuclear Information System (INIS)

    Viennot, David; Jolicard, Georges; Killingbeck, John P.; Perrin, Marie-Yvonne

    2005-01-01

    The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system

  19. Real-time forecasting of ICME shock arrivals at L1 during the "April Fool’s Day" epoch: 28 March – 21 April 2001

    Directory of Open Access Journals (Sweden)

    W. Sun

    Full Text Available The Sun was extremely active during the "April Fool’s Day" epoch of 2001. We chose this period between a solar flare on 28 March 2001 to a final shock arrival at Earth on 21 April 2001. The activity consisted of two presumed helmet-streamer blowouts, seven M-class flares, and nine X-class flares, the last of which was behind the west limb. We have been experimenting since February 1997 with real-time, end-to-end forecasting of interplanetary coronal mass ejection (ICME shock arrival times. Since August 1998, these forecasts have been distributed in real-time by e-mail to a list of interested scientists and operational USAF and NOAA forecasters. They are made using three different solar wind models. We describe here the solar events observed during the April Fool’s 2001 epoch, along with the predicted and actual shock arrival times, and the ex post facto correction to the real-time coronal shock speed observations. It appears that the initial estimates of coronal shock speeds from Type II radio burst observations and coronal mass ejections were too high by as much as 30%. We conclude that a 3-dimensional coronal density model should be developed for application to observations of solar flares and their Type II radio burst observations.

    Key words. Interplanetary physics (flare and stream dynamics; interplanetary shocks – Magnetosheric physics (storms and substorms

  20. Time-history of shock waves overrunning three-dimensional, cylindrical models

    International Nuclear Information System (INIS)

    Langheim, H.; Loeffler, E.

    To investigate the time-history of the Mach-stem of a shock wave overrunning a nuclear power plant shadowgraphs of threedimensional, cylindrical models with a globe cap were analysed. These models simulating the containment building differ only in the height of the cylinder. They were exposed with shock waves of shock strengths of 1.2 and 1.4, being equal to a peak reflexion overpressure of 0.45 resp. 1.0 bar. The time-histories of the Mach-stem differ only slightly. For this reason it can be stated that these time-histories are independent of the shock strength and the height of the cylinder in the prescribed range of the research program. In comparison with values given in the literature great differences were found at the rear side near the stagnation point of the globe cap resp. the stagnation line of the cylinder. The measured time for overrunning of the shock wave is the same as the time of arrival of the pressure-pulse at the interesting point of the model. This knowledge is a necessary premise for pressure-measurings from which the total load of structure can be determined. (orig.) [de

  1. Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level

    Science.gov (United States)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.

  2. Parsimonious wave-equation travel-time inversion for refraction waves

    KAUST Repository

    Fu, Lei; Hanafy, Sherif M.; Schuster, Gerard T.

    2017-01-01

    We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N

  3. Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods

    DEFF Research Database (Denmark)

    Reikard, Gordon; Pinson, Pierre; Bidlot, Jean

    2011-01-01

    Recently, the technology has been developed to make wave farms commercially viable. Since electricity is perishable, utilities will be interested in forecasting ocean wave energy. The horizons involved in short-term management of power grids range from as little as a few hours to as long as several...... days. In selecting a method, the forecaster has a choice between physics-based models and statistical techniques. A further idea is to combine both types of models. This paper analyzes the forecasting properties of a well-known physics-based model, the European Center for Medium-Range Weather Forecasts...... (ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...

  4. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  5. Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction

    OpenAIRE

    C. M. Scoby; P. Musumeci; J. T. Moody; M. S. Gutierrez

    2010-01-01

    In this paper we study a new geometry setup for electro-optic sampling (EOS) where the electron beam runs parallel to the ⟨110⟩ face of a ZnTe crystal and the probe laser is perpendicular to it and to the beam path. The simple setup is used to encode the time-of-arrival information of a 3.5  MeV

  6. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2002-07-01

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic particle rise times

  7. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    Science.gov (United States)

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  8. Measurements of Overtopping Flow Time Series on the Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    2009-01-01

    A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow the character......A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow...... the characteristics of the overtopping flow are discussed and the simulation algorithm is tested. Measured data is shown from a storm build up in October 2006, from theWave Dragon prototype situated in an inland sea in Northern Denmark. This wave energy converter extracts energy from the waves, by funnelling them...

  9. Transient space-time surface waves characterization using Gabor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-11-01

    Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.

  10. Closed form solutions of two time fractional nonlinear wave equations

    Directory of Open Access Journals (Sweden)

    M. Ali Akbar

    2018-06-01

    Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation

  11. Limits on the speed of gravitational waves from pulsar timing

    International Nuclear Information System (INIS)

    Baskaran, D.; Polnarev, A. G.; Pshirkov, M. S.; Postnov, K. A.

    2008-01-01

    In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so-called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar timing residuals if the speed of gravitational waves is smaller than the speed of light. This fact allows one to place significant constraints on parameter ε, which characterizes the relative deviation of the speed of gravitational waves from the speed of light. We show that the existing constraints from pulsar timing measurements already place stringent limits on ε and consequently on the mass of the graviton m g . The limits on m g -24 are 2 orders of magnitude stronger than the current constraints from Solar System tests. The current constraints also allow one to rule out massive gravitons as possible candidates for cold dark matter in the galactic halo. In the near future, the gravitational wave background from extragalactic super massive black hole binaries, along with the expected submicrosecond pulsar timing accuracy, will allow one to achieve constraints of ε < or approx. 0.4% and possibly stronger.

  12. Airy Wave Packets Accelerating in Space-Time

    Science.gov (United States)

    Kondakci, H. Esat; Abouraddy, Ayman F.

    2018-04-01

    Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.

  13. Parsimonious wave-equation travel-time inversion for refraction waves

    KAUST Repository

    Fu, Lei

    2017-02-14

    We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into O(N2) refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave-equation travel-time inversion. Numerical results show that the parsimonious wave-equation travel-time tomogram has about the same accuracy as the tomogram computed by standard wave-equation travel-time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.

  14. Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations

    Science.gov (United States)

    Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel

    2017-10-01

    The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.

  15. Method for Establishing Direction of Arrival by Use of Signals of Opportunity

    Science.gov (United States)

    2017-08-29

    digital converter (ADC). The analog-to-digital converter sampling process that locks the relative time features of the digital signal processing...path and is sampled by the ADC. The ADC sampling process locks the relative time properties of the individual signals components arriving at...that signal. For each wave vector, the angles that define the direction of arrival are assumed to be identical at each RF port phase center in the

  16. Estimation of arterial arrival time and cerebral blood flow from QUASAR arterial spin labeling using stable spline.

    Science.gov (United States)

    Castellaro, Marco; Peruzzo, Denis; Mehndiratta, Amit; Pillonetto, Gianluigi; Petersen, Esben Thade; Golay, Xavier; Chappell, Michael A; Bertoldo, Alessandra

    2015-12-01

    QUASAR arterial spin labeling (ASL) permits the application of deconvolution approaches for the absolute quantification of cerebral perfusion. Currently, oscillation index regularized singular value decomposition (oSVD) combined with edge-detection (ED) is the most commonly used method. Its major drawbacks are nonphysiological oscillations in the impulse response function and underestimation of perfusion. The aim of this work is to introduce a novel method to overcome these limitations. A system identification method, stable spline (SS), was extended to address ASL peculiarities such as the delay in arrival of the arterial blood in the tissue. The proposed framework was compared with oSVD + ED in both simulated and real data. SS was used to investigate the validity of using a voxel-wise tissue T1 value instead of using a single global value (of blood T1 ). SS outperformed oSVD + ED in 79.9% of simulations. When applied to real data, SS exhibited a physiologically realistic range for perfusion and a higher mean value with respect to oSVD + ED (55.5 ± 9.5 SS, 34.9 ± 5.2 oSVD + ED mL/100 g/min). SS can represent an alternative to oSVD + ED for the quantification of QUASAR ASL data. Analysis of the retrieved impulse response function revealed that using a voxel wise tissue T1 might be suboptimal. © 2014 Wiley Periodicals, Inc.

  17. Real time wave forecasting using wind time history and numerical model

    Science.gov (United States)

    Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.

    Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.

  18. Gravitational wave detection and data analysis for pulsar timing arrays

    NARCIS (Netherlands)

    Haasteren, Rutger van

    2011-01-01

    Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring long-period (months-to-years) astrophysical gravitational waves. In this work we develop a Bayesian data analysis method for projects called pulsar timing arrays; projects aimed to detect these gravitational

  19. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  20. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2016-05-01

    Full Text Available The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.

  1. Nonlinear Localized Dissipative Structures for Long-Time Solution of Wave Equation

    Science.gov (United States)

    2009-07-01

    are described in this chapter. These details are required to compute interference. WC can be used to generate constant arrival time ( Eikonal phase...complicated using Eikonal schemes. Some recent developments in Eikonal methods [2] can treat multiple arrival times but, these methods require extra

  2. Nonlinear time-dependent simulation of helix traveling wave tubes

    International Nuclear Information System (INIS)

    Peng Wei-Feng; Yang Zhong-Hai; Hu Yu-Lu; Li Jian-Qing; Lu Qi-Ru; Li Bin

    2011-01-01

    A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)

  3. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    Science.gov (United States)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  4. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  5. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  6. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei

    2013-09-22

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  7. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic

  8. Wave Functions for Time-Dependent Dirac Equation under GUP

    Science.gov (United States)

    Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen

    2018-04-01

    In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009

  9. Repeatable timing of northward departure, arrival and breeding in Black-tailed Godwits Limosa l. limosa, but no domino effects

    NARCIS (Netherlands)

    Lourenco, Pedro M.; Kentie, Rosemarie; Schroeder, Julia; Groen, Niko M.; Piersma, Theunis; Bairlein, F.; Hooijmeijer, Jos C.E.W.

    2011-01-01

    When early breeding is advantageous, migrants underway to the breeding areas may be time stressed. The timing of sequential events such as migration and breeding is expected to be correlated because of a "domino effect", and would be of particular biological importance if timings are repeatable

  10. Comparison of the CME-associated shock arrival times at the earth using the WSA-ENLIL model with three cone models

    Science.gov (United States)

    Jang, S.; Moon, Y.; Na, H.

    2012-12-01

    We have made a comparison of CME-associated shock arrival times at the earth based on the WSA-ENLIL model with three cone models using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  11. Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction

    Directory of Open Access Journals (Sweden)

    C. M. Scoby

    2010-02-01

    Full Text Available In this paper we study a new geometry setup for electro-optic sampling (EOS where the electron beam runs parallel to the ⟨110⟩ face of a ZnTe crystal and the probe laser is perpendicular to it and to the beam path. The simple setup is used to encode the time-of-arrival information of a 3.5  MeV<10  pC electron bunch on the spatial profile of the laser pulse. The electric field lines inside the dielectric bend at an angle due to a relatively large (n∼3 index of refraction of the ZnTe crystal. We found theoretically and experimentally that the EOS signal can be maximized with a proper choice of incoming laser polarization angle. We achieved single-shot nondestructive measurement of the relative time of arrival between the pump and the probe beams thus improving the temporal resolution of ultrafast relativistic electron diffraction experiments.

  12. Real Time Wave Forecasting Using Wind Time History and Genetic Programming

    Directory of Open Access Journals (Sweden)

    A.R. Kambekar

    2014-12-01

    Full Text Available The significant wave height and average wave period form an essential input for operational activities in ocean and coastal areas. Such information is important in issuing appropriate warnings to people planning any construction or instillation works in the oceanic environment. Many countries over the world routinely collect wave and wind data through a network of wave rider buoys. The data collecting agencies transmit the resulting information online to their registered users through an internet or a web-based system. Operational wave forecasts in addition to the measured data are also made and supplied online to the users. This paper discusses operational wave forecasting in real time mode at locations where wind rather than wave data are continuously recorded. It is based on the time series modeling and incorporates an artificial intelligence technique of genetic programming. The significant wave height and average wave period values are forecasted over a period of 96 hr in future from the observations of wind speed and directions extending to a similar time scale in the past. Wind measurements made by floating buoys at eight different locations around India over a period varying from 1.5 yr to 9.0 yr were considered. The platform of Matlab and C++ was used to develop a graphical user interface that will extend an internet based user-friendly access of the forecasts to any registered user of the data dissemination authority.

  13. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...

  14. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  15. Solitary wave dynamics in time-dependent potentials

    International Nuclear Information System (INIS)

    Abou Salem, Walid K.

    2008-01-01

    The long time dynamics of solitary wave solutions of the nonlinear Schroedinger equation in time-dependent external potentials is rigorously studied. To set the stage, the well-posedness of the Cauchy problem for a generalized nonautonomous nonlinear Schroedinger equation with time-dependent nonlinearities and potential is established. Afterward, the dynamics of NLS solitary waves in time-dependent potentials is studied. It is shown that in the space-adiabatic regime where the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is described by Hamilton's equations, plus terms due to radiation damping. Finally, two physical applications are discussed: the first is adiabatic transportation of solitons and the second is the Mathieu instability of trapped solitons due to time-periodic perturbations

  16. The wave equation on a curved space-time

    International Nuclear Information System (INIS)

    Friedlander, F.G.

    1975-01-01

    It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)

  17. Nonlinear Time-Reversal in a Wave Chaotic System

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven

    2012-02-01

    Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)

  18. Passenger arrival and waiting time distributions dependent on train service frequency and station characteristics: A smart card data analysis

    DEFF Research Database (Denmark)

    Ingvardson, Jesper Bláfoss; Nielsen, Otto Anker; Raveau, Sebastián

    2018-01-01

    Waiting time at public transport stops is perceived by passengers to be more onerous than in-vehicle time, hence it strongly influences the attractiveness and use of public transport. Transport models traditionally assume that average waiting times are half the service headway by assuming random...... Copenhagen Area covering metro, suburban, and regional rail stations thereby giving a range of service headways from 2 to 60 min. It was shown that the proposed mixture distribution is superior to other distributions proposed in the literature. This can improve waiting time estimations in public transport...

  19. Second coordinate readout in drift chambers by timing of the electromagnetic wave propagating along the anode wire

    International Nuclear Information System (INIS)

    Boie, R.A.; Radeka, V.; Rehak, P.; Xi, D.M.

    1980-11-01

    The feasibility of using an anode wire and surrounding electrodes in drift chambers as a transmission line for second coordinate readout has been studied. The method is based on propagation of the electromagnetic wave along the anode wire is determined by measurement, in an optimized electronic readout system, of the time difference between the arrivals of the signal to the ends of the wire. The resolution obtained on long wires (approx. 2 meters) is about 2 cm FWHM for minimum ionizing particles at a gas gain of approx. = 10 5

  20. Closed form solutions of two time fractional nonlinear wave equations

    Science.gov (United States)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  1. Pulsar timing arrays: the promise of gravitational wave detection.

    Science.gov (United States)

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  2. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy Todd

    2014-09-01

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

  3. Interface waves propagating along tensile fractures in dolomite

    International Nuclear Information System (INIS)

    Roy, S.; Pyrak-Nolte, L.J.

    1995-01-01

    Elastic interface waves have been observed in induced tensile fractures in dolomite rock cores. Multiscaling wavelet analysis distinguishes the interface wave from bulk shear waves, quantifies the interface wave spectral content, and determines the arrival time of peak energy. The dominant seismic energy is concentrated in the slow interface wave, with little or no detectable energy in the fast wave. As stress across the fracture increases, the slow interface wave velocity increases, and the frequency of the spectral peak shifts to higher frequencies. The shear dynamic specific stiffness of the fracture was calculated from the peak energy arrival time as a function of stress. 13 refs., 5 figs., 1 tab

  4. Arrival and Conquests in the Viceroyalty of Peru in Times of Francisco de Borja y Aragón, Príncipe de Esquilache (1615-1621

    Directory of Open Access Journals (Sweden)

    María Inés Zaldívar Ovalle

    2014-11-01

    Full Text Available In the context of the Relación, by Francisco de Borja y Aragón, this paper will report on the exploratory travels —named Arrival and Conquests— of Spanish encomenderos and soldiers between 1615 and 1621. In this context, the present study highlights some of the difficulties Esquilache faced in the exercise of power as head of the Viceroyalty of Peru. We focus our attention on the specific event named Spanish Government. The reasons discussed this time, are closely related to the battle between soldiers and trustees to obtain personal profit. The latter was a current struggle, dating from the origins of the viceroyalty. However, at the time of the events, such conflicts had worsened due to a complex political and economic situation.

  5. Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    Science.gov (United States)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.

  6. Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem

    Science.gov (United States)

    Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.

    2008-01-01

    The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.

  7. A high-speed, reconfigurable, channel- and time-tagged photon arrival recording system for intensity-interferometry and quantum optics experiments

    Science.gov (United States)

    Girish, B. S.; Pandey, Deepak; Ramachandran, Hema

    2017-08-01

    We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.

  8. Improvement of a picking algorithm real-time P-wave detection by kurtosis

    Science.gov (United States)

    Ishida, H.; Yamada, M.

    2016-12-01

    Earthquake early warning (EEW) requires fast and accurate P-wave detection. The current EEW system in Japan uses the STA/LTAalgorithm (Allen, 1978) to detect P-wave arrival.However, some stations did not trigger during the 2011 Great Tohoku Earthquake due to the emergent onset. In addition, accuracy of the P-wave detection is very important: on August 1, 2016, the EEW issued a false alarm with M9 in Tokyo region due to a thunder noise.To solve these problems, we use a P-wave detection method using kurtosis statistics. It detects the change of statistic distribution of the waveform amplitude. This method was recently developed (Saragiotis et al., 2002) and used for off-line analysis such as making seismic catalogs. To apply this method for EEW, we need to remove an acausal calculation and enable a real-time processing. Here, we propose a real-time P-wave detection method using kurtosis statistics with a noise filter.To avoid false triggering by a noise, we incorporated a simple filter to classify seismic signal and noise. Following Kong et al. (2016), we used the interquartilerange and zero cross rate for the classification. The interquartile range is an amplitude measure that is equal to the middle 50% of amplitude in a certain time window. The zero cross rate is a simple frequency measure that counts the number of times that the signal crosses baseline zero. A discriminant function including these measures was constructed by the linear discriminant analysis.To test this kurtosis method, we used strong motion records for 62 earthquakes between April, 2005 and July, 2015, which recorded the seismic intensity greater equal to 6 lower in the JMA intensity scale. The records with hypocentral distance picks. It shows that the median error is 0.13 sec and 0.035 sec for STA/LTA and kurtosis method. The kurtosis method tends to be more sensitive to small changes in amplitude.Our approach will contribute to improve the accuracy of source location determination of

  9. Quaternion wave equations in curved space-time

    Science.gov (United States)

    Edmonds, J. D., Jr.

    1974-01-01

    The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.

  10. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  11. Stochastic prey arrivals and crab spider giving-up times: simulations of spider performance using two simple "rules of thumb".

    Science.gov (United States)

    Kareiva, Peter; Morse, Douglass H; Eccleston, Jill

    1989-03-01

    We compared the patch-choice performances of an ambush predator, the crab spider Misumena vatia (Thomisidae) hunting on common milkweed Asclepias syriaca (Asclepiadaceae) umbles, with two stochastic rule-of-thumb simulation models: one that employed a threshold giving-up time and one that assumed a fixed probability of moving. Adult female Misumena were placed on milkweed plants with three umbels, each with markedly different numbers of flower-seeking prey. Using a variety of visitation regimes derived from observed visitation patterns of insect prey, we found that decreases in among-umbel variance in visitation rates or increases in overall mean visitation rates reduced the "clarity of the optimum" (the difference in the yield obtained as foraging behavior changes), both locally and globally. Yield profiles from both models were extremely flat or jagged over a wide range of prey visitation regimes; thus, differences between optimal and "next-best" strategies differed only modestly over large parts of the "foraging landscape". Although optimal yields from fixed probability simulations were one-third to one-half those obtained from threshold simulations, spiders appear to depart umbels in accordance with the fixed probability rule.

  12. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2010-01-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  13. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  14. Prevalence and time trends in diabetes and physical inactivity among adult West African populations: the epidemic has arrived.

    Science.gov (United States)

    Abubakari, A R; Lauder, W; Jones, M C; Kirk, A; Agyemang, C; Bhopal, R S

    2009-09-01

    To determine the prevalence and distribution of, and trends in, physical inactivity and diabetes in adult West African populations. Systematic review and meta-analysis. Literature searches were conducted using four electronic databases. Journal hand searches and examination of citations of relevant articles were also undertaken. To be included, studies had to be population based, use clearly defined criteria for measuring diabetes and physical inactivity, present data that allowed calculation of the prevalence of diabetes or physical inactivity, and sample adult participants. Studies retrieved were appraised critically. Meta-analysis was performed using the DerSimonian-Laird random effect model. Twenty-one reports were retrieved for diabetes and 15 reports were retrieved for physical in/activity. Most studies (10 for diabetes and six for physical activity) were conducted solely among urban populations. The prevalence of diabetes in West Africa was approximately 4.0% [95% confidence interval (CI) 2.0-9.0] in urban adults and 2.6% (95%CI 1.5-4.4) in rural adults, and was similar in men and women [prevalence ratio (PR) 1.36, 95%CI 0.96-1.92]. Cumulative time trend analyses suggested an increase in the prevalence of diabetes among adults in urban West Africa, from approximately 3.0% (95%CI 1.0-7.0) to 4.0% (95%CI 2.0-9.0) in the past 10 years. The prevalence of inactivity in West Africa was 13% (95%CI 9.0-18.0). An association was found between physical inactivity and being older (> or = 50 years) (PR 1.82, 95%CI 1.36-2.44), female gender (PR 1.62, 95%CI 1.41-1.87) and urban residence (PR 2.04, 95%CI 1.58-2.63). Diabetes and physical inactivity are important public health issues in urban West Africa, with similar prevalences to wealthy industrialized countries. There is an urgent need for policy makers, politicians and health promotion experts to put measures in place to encourage active lifestyles and control diabetes in urban West Africa.

  15. Pn-waves Travel-time Anomaly beneath Taiwan from Dense Seismic Array Observations and its Possible Tectonic Implications

    Science.gov (United States)

    Lin, Y. Y.; Huang, B. S.; Ma, K. F.; Hsieh, M. C.

    2015-12-01

    We investigated travel times of Pn waves, which are of great important for understanding the Moho structure in Taiwan region. Although several high quality tomographic studies had been carried out, observations of Pn waves are still the most comprehensive way to elucidate the Moho structure. Mapping the Moho structure of Taiwan had been a challenging due to the small spatial dimension of Taiwan island with two subduction systems. To decipher the tectonic structure and understanding of earthquake hazard, the island of Taiwan have been implemented by several high density seismic stations, including 71 short-period stations of Central Weather Bureau Seismic Network (CWBSN) and 42 broardband stations of Broadband Array in Taiwan for Seismology (BATS). High quality seismic records of these stations would be used to identify precise Pn-wave arrival times. After station-elevation correction, we measure the difference between the observed and theoretical Pn arrivals from the IASPI 91 model for each station. For correcting uncertainties of earthquake location and origin time, we estimate relative Pn anomaly, ΔtPn , between each station and a reference station. The pattern of ΔtPn reflects the depth anomaly of Moho beneath Taiwan. In general, Pn waves are commonly observed from shallow earthquake at epicentral distance larger than 120 km. We search the global catalog since 2005 and the criteria are M > 5.5, focal depth 150 km. The 12 medium earthquakes from north Luzon are considered for analysis. We choose a station, TWKB, in the most southern point of Taiwan as the reference station due to that all events are from the south. The results indicate obvious different patterns of ΔtPn from different back-azimuths. The ΔtPn pattern of the events in the first group from the south south-east indicates that the Pn arrivals delay suddenly when the Pn waves pass through the Central Range, suggesting the Moho becomes deep rapidly. However, we cannot recognize the same pattern when

  16. Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time

    Science.gov (United States)

    Shapiro Key, Joey; Yunes, Nico; Grimberg, Irene

    2015-01-01

    Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time is a gravitational wave astronomy planetarium show in production by a collaboration of scientists, filmmakers, and artisits from the Center for Gravitational Wave Astonomy (CGWA) at the University of Texas at Brownsville (UTB) and Montana State University (MSU). The project builds on the success of the interdisciplinary Celebrating Einstein collaboration. The artists and scientists who created the A Shout Across Time original film and the Black (W)hole immersive art installation for Celebrating Einstein are teaming with the Museum of the Rockies Taylor Planetarium staff and students to create a new full dome Digistar planetarium show that will be freely and widely distributed to planetaria in the US and abroad. The show uses images and animations filmed and collected for A Shout Across Time and for Black (W)hole as well as new images and animations and a new soundtrack composed and produced by the MSU School of Music to use the full capability of planetarium sound systems. The planetarium show will be narrated with ideas drawn from the Celebrating Einstein danced lecture on gravitational waves that the collaboration produced. The combination of products, resources, and team members assembled for this project allows us to create an original planetarium show for a fraction of the cost of a typical show. In addition, STEM education materials for G6-12 students and teachers will be provided to complement and support the show. This project is supported by the Texas Space Grant Consortium (TSGC), Montana Space Grant Consortium (MSGC), and the American Physical Society (APS).

  17. Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A

    Science.gov (United States)

    Shoemaker, Ian M.; Murase, Kohta

    2018-04-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) from its first neutron star-neutron star merger at a distance of ˜40 Mpc from the Earth. The associated electromagnetic (EM) detection of the event, including the short gamma-ray burst within Δ t ˜2 s after the GW arrival, can be used to test various aspects of sources physics and GW propagation. Using GW170817 as the first GW-EM example, we show that this event provides a stringent direct test that GWs travel at the speed of light. The gravitational potential of the Milky Way provides a potential source of Shapiro time delay difference between the arrival of photons and GWs, and we demonstrate that the nearly coincident detection of the GW and EM signals can yield strong limits on anomalous gravitational time delay, through updating the previous limits taking into account details of Milky Way's gravitational potential. Finally, we also obtain an intriguing limit on the size of the prompt emission region of GRB 170817A, and discuss implications for the emission mechanism of short gamma-ray bursts.

  18. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-11-04

    Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.

  19. The scalar wave equation in a Schwarzschild space-time

    International Nuclear Information System (INIS)

    Schmidt, B.G.; Stewart, J.M.

    1979-01-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)

  20. Wave forecasting in near real time basis by neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.; Prabaharan, N.

    ., forecasting of waves become an important aspect of marine environment. This paper presents application of the neural network (NN) with better update algorithms, namely rprop, quickprop and superSAB for wave forecasting. Measured waves off Marmagoa, Goa, India...

  1. A simulation study of Linsley's approach to infer elongation rate and fluctuations of the EAS maximum depth from muon arrival time distributions

    International Nuclear Information System (INIS)

    Badea, A.F.; Brancus, I.M.; Rebel, H.; Haungs, A.; Oehlschlaeger, J.; Zazyan, M.

    1999-01-01

    The average depth of the maximum X m of the EAS (Extensive Air Shower) development depends on the energy E 0 and the mass of the primary particle, and its dependence from the energy is traditionally expressed by the so-called elongation rate D e defined as change in the average depth of the maximum per decade of E 0 i.e. D e = dX m /dlog 10 E 0 . Invoking the superposition model approximation i.e. assuming that a heavy primary (A) has the same shower elongation rate like a proton, but scaled with energies E 0 /A, one can write X m = X init + D e log 10 (E 0 /A). In 1977 an indirect approach studying D e has been suggested by Linsley. This approach can be applied to shower parameters which do not depend explicitly on the energy of the primary particle, but do depend on the depth of observation X and on the depth X m of shower maximum. The distribution of the EAS muon arrival times, measured at a certain observation level relatively to the arrival time of the shower core reflect the pathlength distribution of the muon travel from locus of production (near the axis) to the observation locus. The basic a priori assumption is that we can associate the mean value or median T of the time distribution to the height of the EAS maximum X m , and that we can express T = f(X,X m ). In order to derive from the energy variation of the arrival time quantities information about elongation rate, some knowledge is required about F i.e. F = - ∂ T/∂X m ) X /∂(T/∂X) X m , in addition to the variations with the depth of observation and the zenith-angle (θ) dependence, respectively. Thus ∂T/∂log 10 E 0 | X = - F·D e ·1/X v ·∂T/∂secθ| E 0 . In a similar way the fluctuations σ(X m ) of X m may be related to the fluctuations σ(T) of T i.e. σ(T) = - σ(X m )· F σ ·1/X v ·∂T/∂secθ| E 0 , with F σ being the corresponding scaling factor for the fluctuation of F. By simulations of the EAS development using the Monte Carlo code CORSIKA the energy and angle

  2. Association of time structures of solar bursts at millimetric waves and at metric waves

    International Nuclear Information System (INIS)

    Sawant, H.S.; Kaufmann, P.; Correia, E.; Costa, J.E.R.; Zlobec, P.; Messerotti, M.; Fornasari, L.

    Due to the lack of simultaneous high sensitivity/time resolution observations at mm-lambda, cm-lambda and m-lambda a program on such investigations has been carried out with data obtained by INPE at Itapetinga and by the Astronomical Observatory of Trieste. Preliminary results obtained by comparing mm-wave burst structures with 408, 327 and 237 MHz indicate that i) for majority of major time structures (time scales of the order of 1 sec) observed at 22 GHz bursts, corresponding type III bursts have been observed at 237 Mhz, however ii) start times at mm-lambda and m-lambda are not often coincident at two wavelengths. These observations favour the hypothesis of (a) time dependent acceleration of energetic electrons and (b) burst emission is the response to a multiple injection of energetic electrons. (Author) [pt

  3. Forecasting Water Waves and Currents: A Space-time Approach

    NARCIS (Netherlands)

    Ambati, V.R.

    2008-01-01

    Forecasting water waves and currents in near shore and off shore regions of the seas and oceans is essential to maintain and protect our environment and man made structures. In wave hydrodynamics, waves can be classified as shallow and deep water waves based on its water depth. The mathematical

  4. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  5. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  6. Time scale of scour around a pile in combined waves and current

    DEFF Research Database (Denmark)

    Petersen, Thor Ugelvig; Sumer, B. Mutlu; Fredsøe, Jørgen

    The time scale of the scour process around a circular vertical pile is studied in combined waves and current. A series of tests were carried out in a flume with pile diameters 40 mm and 75 mm, in both steady current, waves and combined waves and current. In the combined wave and current flow regime...... the waves and the current were co-directional. All the tests were conducted in the live bed regime. The time scale of scour in combined waves and current is governed by three parameters, namely the current-velocity-to-wave-velocity ratio (Ucw), the Keulegan–Carpenter number (KC) and Shields parameter (Θw...

  7. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    Science.gov (United States)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  8. Elastodynamic metasurface: Depolarization of mechanical waves and time effects

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, Claude, E-mail: claude.boutin@entpe.fr [Ecole Nationale des Travaux Publics de l' Etat, Université de Lyon, LGCB, UMR CNRS 5513, Vaulx-en-Velin (France); Schwan, Logan [Acoustics Research Center, University of Salford, Newton Building, Salford M5 4WT (United Kingdom); Dietz, Matthew S. [Department of Civil Engineering, University of Bristol, Queen' s Building, Bristol BS8 1TR (United Kingdom)

    2015-02-14

    We report the concept of microstructured surfaces with inner resonance in the field of elastodynamics, so-called elastodynamic metasurfaces. Such metasurfaces allow for wavefield manipulation of mechanical waves by tuning the boundary conditions at specific frequencies. In particular, they can be used to depolarize elastic waves without introducing heterogeneities in the medium itself; the physical means to do so in homogeneous elastic media used to remain, surprisingly, an open question while depolarization is commonplace in electromagnetism. The principle relies on the anisotropic behaviour of a subwavelength array of resonators: Their subwavelength configuration confines the Bragg interferences scattered by resonators into a boundary layer. The effective behaviour of the resonating array is expressed with homogenization as an unconventional impedance, the frequency-dependence, and anisotropy of which lead to depolarization and time effects. The concept of the elastodynamic metasurface is tested experimentally and results bear testament to its efficacy and robustness. Elastodynamic metasurfaces are easily realized and analytically predictable, opening new possibilities in tomography techniques, ultrasonics, geophysics, vibration control, materials and structure design.

  9. Recent developments in guided wave travel time tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zon, Tim van; Volker, Arno [TNO, Stieltjesweg 1, P.O. box 155 2600 AD Delft (Netherlands)

    2014-02-18

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.

  10. Assessing ground compaction via time lapse surface wave analysis

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016

  11. Magnetospheric conditions at the time of enhanced wave-particle interactions near the plasmapause

    International Nuclear Information System (INIS)

    Foster, J.C.; Rosenberg, T.J.; Lanzerotti, L.J.

    1976-01-01

    The morphology of geomagnetic and particle disturbances occurring in the American sector during the 0700--1000 UT time interval on January 2, 1971, is examined. This period includes the VLF/X ray burst correlation event that was detected near the plasmapause at Lapprox.4 in the vicinity of Siple Station, Antarctica (Rosenberg et al., 1971; Foster and Rosenberg, 1976a). It is found that a sequence of substorm intensifications occurred (0730, 0820, 0850, and 0925 UT), successive intensifications tending to occur more westwardly than the preceding ones. The last intensification in the sequence was confined principally to latitudes higher than the nominal auroral zone. Injections of energetic electrons into the night side magnetosphere were observed at Lapprox.6.6 during the intensifications at approx.0820 and approx.0850 UT. The onset and pronounced temporal and spectral features of the electron precipitation at Lapprox.4 near dawn can be related to these electron injections when cross-L inward convection and azimuthal drit are considered. It is suggested that injected electrons penetrated at least to the region just outside the plasmapause during the substorm and that simultaneous electron precipitation and VLF wave generation were associated with the onset of cyclotron resonance interactions following the arrival of the electrons on the field line over Siple Station

  12. Versatile directional searches for gravitational waves with Pulsar Timing Arrays

    Science.gov (United States)

    Madison, D. R.; Zhu, X.-J.; Hobbs, G.; Coles, W.; Shannon, R. M.; Wang, J. B.; Tiburzi, C.; Manchester, R. N.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Dempsey, J.; Keith, M.; Kerr, M.; Lasky, P.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D.; Rosado, P.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.

    2016-02-01

    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be `phased-up' to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.

  13. Time-domain Hydroelasticity Theory of Ships Responding to Waves

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui

    1997-01-01

    free surface flow. The general interface boundary condition is used in the mathematical formulation of the fluid motion around the flexible structure. The general time-domain theory is simplified to a slender-body theory for the analysis of wave-induced global responses of monohull ships. The structure...... is represented by a non-uniform beam, while the generalized hydrodynamic coefficients can be obtained from two-dimensional potential flow theory. The linear slender body theory is generalized to treat the non-linear loading effects of rigid motion and structural response of ships travelling in rough seas....... The non-linear hydrostatic restoring force and hydrodynamic momentum action are considered. A numerical solution is presented for the slender body theory. Numerical examples are given for two ship cases with different geometry features, a warship hull and the S175 containership with two different bow...

  14. A time-localized response of wave growth process under turbulent winds

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2007-06-01

    Full Text Available Very short time series (with lengths of approximately 40 s or 5~7 wave periods of wind velocity fluctuations and wave elevation were recorded simultaneously and investigated using the wavelet bispectral analysis. Rapid changes in the wave and wind spectra were detected, which were found to be intimately related to significant energy transfers through transient quadratic wind-wave and wave-wave interactions. A possible pattern of energy exchange between the wind and wave fields was further deduced. In particular, the generation and variation of the strong wave-induced perturbation velocity in the wind can be explained by the strengthening and diminishing of the associated quadratic interactions, which cannot be unveiled by linear theories. On small time scales, the wave-wave quadratic interactions were as active and effective in transferring energy as the wind-wave interactions. The results also showed that the wind turbulence was occasionally effective in transferring energy between the wind and the wave fields, so that the background turbulence in the wind cannot be completely neglected. Although these effects are all possibly significant over short times, the time-localized growth of the wave spectrum may not considerably affect the long-term process of wave development.

  15. Time-domain analysis of frequency dependent inertial wave forces on cylinders

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....

  16. Measurements of Waves in a Wind-wave Tank Under Steady and Time-varying Wind Forcing.

    Science.gov (United States)

    Zavadsky, Andrey; Shemer, Lev

    2018-02-13

    This manuscript describes an experimental procedure that allows obtaining diverse quantitative information on temporal and spatial evolution of water waves excited by time-dependent and steady wind forcing. Capacitance-type wave gauge and Laser Slope Gauge (LSG) are used to measure instantaneous water surface elevation and two components of the instantaneous surface slope at a number of locations along the test section of a wind-wave facility. The computer-controlled blower provides airflow over the water in the tank whose rate can vary in time. In the present experiments, the wind speed in the test section initially increases quickly from rest to the set value. It is then kept constant for the prescribed duration; finally, the airflow is shut down. At the beginning of each experimental run, the water surface is calm and there is no wind. Operation of the blower is initiated simultaneously with the acquisition of data provided by all sensors by a computer; data acquisition continues until the waves in the tank fully decay. Multiple independent runs performed under identical forcing conditions allow determining statistically reliable ensemble-averaged characteristic parameters that quantitatively describe wind-waves' variation in time for the initial development stage as a function of fetch. The procedure also allows characterizing the spatial evolution of the wave field under steady wind forcing, as well as decay of waves in time, once the wind is shut down, as a function of fetch.

  17. Surface Wave Focusing and Acoustic Communications in the Surf Zone

    National Research Council Canada - National Science Library

    Preisig, James

    2004-01-01

    The forward scattering of acoustic signals off of shoaling surface gravity waves in the surf zone results in a time-varying channel impulse response that is characterized by intense, rapidly fluctuating arrivals...

  18. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    . The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase

  19. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2017-11-01

    Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.

  20. Boundary value problems in time for wave equations on RN

    Directory of Open Access Journals (Sweden)

    M. W. Smiley

    1990-01-01

    Full Text Available Let Lλ denote the linear operator associated with the radially symmetric form of the wave operator ∂t2−Δ+λ together with the side conditions of decay to zero as r=‖x‖→+∞ and T-periodicity in time. Thus Lλω=ωtt−(ωrr+N−1rωr+λω, when there are N space variables. For δ,R,T>0 let DT,R=(0,T×(R,+∞ and Lδ2(D denote the weighted L2 space with weight function exp(δr. It is shown that Lλ is a Fredholm operator from dom(Lλ⊂L2(D onto Lδ2(D with non-negative index depending on λ. If [2πj/T]2<λ≤[2π(j+1/T]2 then the index is 2j+1. In addition it is shown that Lλ has a bounded partial inverse Kλ:Lδ2(D→Hδ1(D⋂Lδ∞(D, with all spaces weighted by the function exp(δr. This provides a key ingredient for the analysis of nonlinear problems via the method of alternative problems.

  1. Coded acoustic wave sensors and system using time diversity

    Science.gov (United States)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  2. Experimental Results of Guided Wave Travel Time Tomography

    Science.gov (United States)

    Volker, Arno; Mast, Arjan; Bloom, Joost

    2010-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Both economical and social requirements are pushing the industry to even higher levels of availability, reliability and safety of installations. The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections reducing uncertainty and extending inspection intervals. Guided wave travel time tomography is a promising method to monitor the wall thickness quantitatively over large areas. Obviously the robustness and reliability of such a monitoring system is of paramount importance. Laboratory experiments have been carried out on a 10″ pipe with a nominal wall thickness of 8 mm. Multiple, inline defects have been created with a realistic morphology. The depth of the defects was increased stepwise from 0.5 mm to 2 mm. Additionally the influences of the presence of liquid inside the pipe and surface roughness have been evaluated as well. Experimental results show that this method is capable of providing quantitative wall thickness information over a distance of 4 meter, with a sufficient accuracy such that results can be used for trending. The method has no problems imaging multiple defects.

  3. The gravitational-wave discovery space of pulsar timing arrays

    Science.gov (United States)

    Cutler, Curt; Burke-Spolaor, Sarah; Vallisneri, Michele; Lazio, Joseph; Majid, Walid

    2014-02-01

    Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive black hole binaries, cosmic strings, and the stochastic background from early-Universe phase transitions. In this paper, by contrast, our aim is to investigate the PTA potential for discovering unanticipated sources. We derive significant constraints on the available discovery space based solely on energetic and statistical considerations: we show that a PTA detection of GWs at frequencies above ˜10-5 Hz would either be an extraordinary coincidence or violate "cherished beliefs;" we show that for PTAs GW memory can be more detectable than direct GWs, and that, as we consider events at ever higher redshift, the memory effect increasingly dominates an event's total signal-to-noise ratio. The paper includes also a simple analysis of the effects of pulsar red noise in PTA searches, and a demonstration that the effects of periodic GWs in the ˜10-7-10-4.5 Hz band would not be degenerate with small errors in standard pulsar parameters (except in a few narrow bands).

  4. The Universe is Like a Hollowed Sphere. The Wave Concept of Time

    Directory of Open Access Journals (Sweden)

    Andrzej W. Głuszak

    2015-07-01

    Full Text Available There is space for new ideas of the essence and the entity of time. The article refers to our time concept as a special wave type and presents results of our investigations on this subject. Thus, time defined as waves and an energy carrier could give explanation to multiple unclear phenomena. It could explicate gravity, organization in the planetary systems and light speed limit. A hypothesis that matter exists due to time wave motion would emerge from the elementary particle mass generation by the waves. Time becomes the main driving force in the Universe. The discussed thoughts need further analyses and verification but their confirmation may mean civilization changes.

  5. GPS/Loran-C interoperability for time and frequency applications: A survey of the times of arrival of Loran-C transmissions via GPS common mode/common view satellite observations

    Science.gov (United States)

    Penrod, Bruce; Funderburk, Richard; Dana, Peter

    1990-01-01

    The results from this survey clearly indicate that the Global Positioning System (GPS) time transfer capability is superior to that of the Loran-C system for absolute timing accuracy, and that even with the most careful calibration of the Loran-C receiver delay and propagation path, inexplicable time of arrival (TOA) biases remain which are larger than the variations across all of the transmitters. Much more data covering years would be needed to show that these biases were stable enough to be removed with a one time site calibration. The synchronization of the transmissions is excellent, all showing low parts in 10(exp 13) offsets versus the United States Naval Observatory (USNO) master clock. With the exception of the Searchlight transmitter, all of the transmissions exhibit timing stabilities over the entire period of less than 300 ns RMS which is at the observed levels of GPS under selective availability (SA). The Loran-C phase instabilities take place over a much greater time interval than those being forced onto the GPS signals under SA, providing for better medium to short term frequency stability. Data show that all but the most distant transmitters offer better than three parts in 10(exp 11) stability at this averaging time. It is in the frequency control area where GPS/Loran-C interoperation will offer some synergistic advantages over GPS alone under SA.

  6. Time-resolved measurement of global synchronization in the dust acoustic wave

    Science.gov (United States)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  7. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2012-01-01

    convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A

  8. Dominant winter-time mesospheric wave signatures over a low ...

    Indian Academy of Sciences (India)

    10.1016/j.jastp.2008.09.017. Taori A, Taylor M J and Franke S 2005 Terdiurnal wave signatures in the upper mesospheric tempera- ture and their association with the wind fields at low latitudes (20. °. N); J. Geophys. Res. 110 D09S06, doi: 10.1029/2004JD004564. Taori A and Taylor M J 2006 Characteristics of wave.

  9. Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    OpenAIRE

    Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall

    1998-01-01

    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...

  10. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    Science.gov (United States)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  11. The Young-Feynman two-slits experiment with single electrons: Build-up of the interference pattern and arrival-time distribution using a fast-readout pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Frabboni, Stefano [Department of Physics, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Gabrielli, Alessandro [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy); Carlo Gazzadi, Gian [CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Giorgi, Filippo [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy); Matteucci, Giorgio [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); Pozzi, Giulio, E-mail: giulio.pozzi@unibo.it [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); Cesari, Nicola Semprini; Villa, Mauro; Zoccoli, Antonio [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2012-05-15

    The two-slits experiment for single electrons has been carried out by inserting in a conventional transmission electron microscope a thick sample with two nano-slits fabricated by Focused Ion Beam technique and a fast recording system able to measure the electron arrival-time. The detector, designed for experiments in future colliders, is based on a custom CMOS chip equipped with a fast readout chain able to manage up to 10{sup 6} frames per second. In this way, high statistic samples of single electron events can be collected within a time interval short enough to measure the distribution of the electron arrival-times and to observe the build-up of the interference pattern. -- Highlights: Black-Right-Pointing-Pointer We present the first results obtained regarding the two-slits Young-Feynman experiment with single electrons. Black-Right-Pointing-Pointer We use two nano-slits fabricated by Focused Ion Beam technique. Black-Right-Pointing-Pointer We insert in the transmission electron microscope a detector, designed for experiments in future colliders. Black-Right-Pointing-Pointer We record the build-up of high statistic single electron interference patterns. Black-Right-Pointing-Pointer We measure the time distribution of electron arrivals.

  12. Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite

    Science.gov (United States)

    Gan, Q.; Oberheide, J.

    2017-12-01

    The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.

  13. Cluster Observations of Non-Time Continuous Magnetosonic Waves

    Science.gov (United States)

    Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.

    2016-01-01

    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.

  14. Null geodesics and wave front singularities in the Gödel space-time

    Science.gov (United States)

    Kling, Thomas P.; Roebuck, Kevin; Grotzke, Eric

    2018-01-01

    We explore wave fronts of null geodesics in the Gödel metric emitted from point sources both at, and away from, the origin. For constant time wave fronts emitted by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses where spatially disconnected portions of the wave front appear, connect to the main wave front, and then later break free and vanish. These blue sky metamorphoses in the constant time wave fronts highlight the non-causal features of the Gödel metric. We introduce a concept of physical distance along the null geodesics, and show that for wave fronts of constant physical distance, the reorganization of the points making up the wave front leads to the removal of cusp ridges.

  15. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    Science.gov (United States)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  16. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.; Zhao, W. [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-05-15

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  17. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    International Nuclear Information System (INIS)

    Zhang, Y.; Huang, S. L.; Wang, S.; Zhao, W.

    2016-01-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  18. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals.

    Science.gov (United States)

    Zhang, Y; Huang, S L; Wang, S; Zhao, W

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of wave detection signals.

  19. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin; Meessen, Patrick

    2003-01-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  20. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias; O' Loughlin, Martin; Meessen, Patrick [SISSA/ISAS, Via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: meessen@sissa.it

    2003-09-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  1. There is no evidence for a temporal link between pathogen arrival and frog extinctions in north-eastern Australia.

    Directory of Open Access Journals (Sweden)

    Ben L Phillips

    Full Text Available Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd has recently spread, causing amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset, the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of environmental factors in driving the global amphibian declines, and should be a major focus of future research.

  2. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    Science.gov (United States)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  3. Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers-Fisher Equation

    International Nuclear Information System (INIS)

    Deng Xijun; Han Libo; Li Xi

    2009-01-01

    In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified. (general)

  4. A new iterative solver for the time-harmonic wave equation

    NARCIS (Netherlands)

    Riyanti, C.D.; Erlangga, Y.A.; Plessix, R.E.; Mulder, W.A.; Vuik, C.; Oosterlee, C.

    2006-01-01

    The time-harmonic wave equation, also known as the Helmholtz equation, is obtained if the constant-density acoustic wave equation is transformed from the time domain to the frequency domain. Its discretization results in a large, sparse, linear system of equations. In two dimensions, this system can

  5. ''Free-space'' boundary conditions for the time-dependent wave equation

    International Nuclear Information System (INIS)

    Lindman, E.L.

    1975-01-01

    Boundary conditions for the discrete wave equation which act like an infinite region of free space in contact with the computational region can be constructed using projection operators. Propagating and evanescent waves coming from within the computational region generate no reflected waves as they cross the boundary. At the same time arbitrary waves may be launched into the computational region. Well known projection operators for one-dimensional waves may be used for this purpose in one dimension. Extensions of these operators to higher dimensions along with numerically efficient approximations to them are described for higher-dimensional problems. The separation of waves into ingoing and outgoing waves inherent in these boundary conditions greatly facilitates diagnostics

  6. Space-time evolution of whistler mode wave growth in the magnetosphere

    International Nuclear Information System (INIS)

    Carlson, C.R.; Helliwell, R.A.; Inan, U.S.

    1990-01-01

    A new model is developed to simulate the space-time evolution of a propagating coherent whistler mode wave pulse in the magnetosphere. The model is applied to the case of single frequency (2-6 kHz) wave pulses injected into the magnetosphere near L ≅ 4, using the VLF transmitting facility at Siple Station, Antarctica. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons of the radiation belts. Application of this model reproduces observed exponential wave growth up to a saturated level. Additionally, the model predicts the observed initial linear increase in the output frequency versus time. This is the first time these features have been reproduced using applied wave intensities small enough to be consistent with satellite measurements. The center velocities of the electrons entering the wave pulse are selected in a way which maximizes the growth rate. The results show the importance of the transient aspects in the wave growth process. The growth established as the wave propagates toward the geomagnetic equator results in a spatially advancing wave phase structure due mainly to the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are established which result in a linearly increasing output frequency with time

  7. Tunneling time distribution by means of Nelson's quantum mechanics and wave-particle duality

    International Nuclear Information System (INIS)

    Hara, Koh'ichiro; Ohba, Ichiro

    2003-01-01

    We calculate a tunneling time distribution by means of Nelson's quantum mechanics and investigate its statistical properties. The relationship between the average and deviation of tunneling time suggests the existence of 'wave-particle duality' in the tunneling phenomena

  8. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.

    Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...

  9. Relation between equal-time and light-front wave functions

    International Nuclear Information System (INIS)

    Miller, Gerald A.; Tiburzi, Brian C.

    2010-01-01

    The relation between equal-time and light-front wave functions is studied using models for which the four-dimensional solution of the Bethe-Salpeter wave function can be obtained. The popular prescription of defining the longitudinal momentum fraction using the instant-form free kinetic energy and third component of momentum is found to be incorrect except in the nonrelativistic limit. One may obtain light-front wave functions from rest-frame, instant-form wave functions by boosting the latter wave functions to the infinite momentum frame. Despite this difficulty, we prove a relation between certain integrals of the equal-time and light-front wave functions.

  10. Global Time Tomography of Finite Frequency Waves with Optimized Tetrahedral Grids.

    Science.gov (United States)

    Montelli, R.; Montelli, R.; Nolet, G.; Dahlen, F. A.; Masters, G.; Hung, S.

    2001-12-01

    frequency seismic waves sensitive to three-dimensional structure off rays. Dahlen et al (2000) used the Born approximation to find a double-ray sum representation of the 3D Fréchet kernel. Destructive interference among adjacent frequencies in the broad-band pulse renders a cross-correlation traveltime measurement sensitive only to the wave speed in a hollow banana-shaped region surrounding the unperturbed geometrical ray. We combined the banana-doughnut kernel with the formalism for the adaptive parametrization based on resolution criterion for a long-period body wave data set. Both absolute and differential times are computed using cross-correlation of each observed arrival with a synthetic pulse contructed by convolving the impulse response of the instrument at Albuquerque (ANMO) and an attenuation operator for the preliminary reference earth model (PREM). We shall present some first results illustrating the effects of using banana-doughnut Fréchet kernels instead of ray theory on the contruction of optimized Delaunay meshes.

  11. San andreas fault zone head waves near parkfield, california.

    Science.gov (United States)

    Ben-Zion, Y; Malin, P

    1991-03-29

    Microearthquake seismograms from the borehole seismic network on the San Andreas fault near Parkfield, California, provide three lines of evidence that first P arrivals are "head" waves refracted along the cross-fault material contrast. First, the travel time difference between these arrivals and secondary phases identified as direct P waves scales linearly with the source-receiver distance. Second, these arrivals have the emergent wave character associated in theory and practice with refracted head waves instead of the sharp first breaks associated with direct P arrivals. Third, the first motion polarities of the emergent arrivals are reversed from those of the direct P waves as predicted by the theory of fault zone head waves for slip on the San Andreas fault. The presence of fault zone head waves in local seismic network data may help account for scatter in earthquake locations and source mechanisms. The fault zone head waves indicate that the velocity contrast across the San Andreas fault near Parkfield is approximately 4 percent. Further studies of these waves may provide a way of assessing changes in the physical state of the fault system.

  12. Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves

    Science.gov (United States)

    2011-09-01

    measure elastic properties of thin isotropic materials and laminated composite plates. Two types of waves propagate a symmetric wave and antisymmetric...compare it to the original signal. In this time reversal procedure wave propagation from point-A to point-B and can be modeled as a convolution ...where * is the convolution operator and transducer transmit and receive transfer function are neglected for simplification. In the frequency

  13. Producing accurate wave propagation time histories using the global matrix method

    International Nuclear Information System (INIS)

    Obenchain, Matthew B; Cesnik, Carlos E S

    2013-01-01

    This paper presents a reliable method for producing accurate displacement time histories for wave propagation in laminated plates using the global matrix method. The existence of inward and outward propagating waves in the general solution is highlighted while examining the axisymmetric case of a circular actuator on an aluminum plate. Problems with previous attempts to isolate the outward wave for anisotropic laminates are shown. The updated method develops a correction signal that can be added to the original time history solution to cancel the inward wave and leave only the outward propagating wave. The paper demonstrates the effectiveness of the new method for circular and square actuators bonded to the surface of isotropic laminates, and these results are compared with exact solutions. Results for circular actuators on cross-ply laminates are also presented and compared with experimental results, showing the ability of the new method to successfully capture the displacement time histories for composite laminates. (paper)

  14. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    Science.gov (United States)

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  15. Feasibility analysis of real-time physical modeling using WaveCore processor technology on FPGA

    NARCIS (Netherlands)

    Verstraelen, Martinus Johannes Wilhelmina; Pfeifle, Florian; Bader, Rolf

    2015-01-01

    WaveCore is a scalable many-core processor technology. This technology is specifically developed and optimized for real-time acoustical modeling applications. The programmable WaveCore soft-core processor is silicon-technology independent and hence can be targeted to ASIC or FPGA technologies. The

  16. Stress wave timing nondestructive evaluation tools for inspecting historic structures : a guide for use and interpretation.

    Science.gov (United States)

    Robert Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk

    2000-01-01

    This guide was prepared to assist inspectors in the use of stress wave timing instruments and various methods of locating and defining areas of decay in timber members in historic structures. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in historic structures and (b) the principles of stress wave...

  17. Control and synchronisation in switched arrival systems

    NARCIS (Netherlands)

    Rem, B.; Armbruster, H.D.

    2003-01-01

    A chaotic model of a production flow called the switched arrival system is extended to include switching times and maintenance. The probability distribution of the chaotic return times is calculated. Scheduling maintenance, loss of production due to switching, and control of the chaotic dynamics is

  18. Atomic collisions in the presence of laser radiation - Time dependence and the asymptotic wave function

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1982-01-01

    A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.

  19. Angle of arrival estimation using spectral interferometry

    International Nuclear Information System (INIS)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R.; Krishna Mohan, R.

    2010-01-01

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  20. Angle of arrival estimation using spectral interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  1. Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

    KAUST Repository

    Dutta, Gaurav

    2013-08-20

    Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images in highly attenuative geological environments. To account for this distortion, we propose to use the visco-acoustic wave equation for least-squares reverse time migration. Numerical tests on synthetic data show that least-squares reverse time migration with the visco-acoustic wave equation corrects for this distortion and produces images with better balanced amplitudes compared to the conventional approach. © 2013 SEG.

  2. Real time algorithms for sharp wave ripple detection.

    Science.gov (United States)

    Sethi, Ankit; Kemere, Caleb

    2014-01-01

    Neural activity during sharp wave ripples (SWR), short bursts of co-ordinated oscillatory activity in the CA1 region of the rodent hippocampus, is implicated in a variety of memory functions from consolidation to recall. Detection of these events in an algorithmic framework, has thus far relied on simple thresholding techniques with heuristically derived parameters. This study is an investigation into testing and improving the current methods for detection of SWR events in neural recordings. We propose and profile methods to reduce latency in ripple detection. Proposed algorithms are tested on simulated ripple data. The findings show that simple realtime algorithms can improve upon existing power thresholding methods and can detect ripple activity with latencies in the range of 10-20 ms.

  3. Introductory Earth science education by near real time animated visualization of seismic wave propagation across Transportable Array of USArray

    Science.gov (United States)

    Attanayake, J.; Ghosh, A.; Amosu, A.

    2010-12-01

    Students of this generation are markedly different from their predecessors because they grow up and learn in a world of visual technology populated by touch screens and smart boards. Recent studies have found that the attention span of university students whose medium of instruction is traditional teaching methods is roughly fifteen minutes and that there is a significant drop in the number of students paying attention over time in a lecture. On the other hand, when carefully segmented and learner-paced, animated visualizations can enhance the learning experience. Therefore, the instructors are faced with the difficult task of designing more complex teaching environments to improve learner productivity. We have developed an animated visualization of earthquake wave propagation across a generic transect of the Transportable Array of the USArray from a magnitude 6.9 event that occurred in the Gulf of California on August 3rd 2009. Despite the fact that the proto-type tool is built in MATLAB - one of the most popular programming environments among the seismology community, the movies can be run as a standalone stream with any built-in media player that supports .avi file format. We infer continuous ground motion along the transect through a projection and interpolation mechanism based on data from stations within 100 km of the transect. In the movies we identify the arrival of surface waves that have high amplitudes. However, over time, although typical Rayleigh type ground motion can be observed, the motion at any given point becomes complex owing to interference of different wave types and different seismic properties of the subsurface. This clearly is different from simple representations of seismic wave propagation in most introductory textbooks. Further, we find a noisy station that shows unusually high amplitude. We refrain from deleting this station in order to demonstrate that in a real world experiment, generally, there will be complexities arising from

  4. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    Science.gov (United States)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  5. Investigation of interfacial wave structure using time-series analysis techniques

    International Nuclear Information System (INIS)

    Jayanti, S.; Hewitt, G.F.; Cliffe, K.A.

    1990-09-01

    The report presents an investigation into the interfacial structure in horizontal annular flow using spectral and time-series analysis techniques. Film thickness measured using conductance probes shows an interesting transition in wave pattern from a continuous low-frequency wave pattern to an intermittent, high-frequency one. From the autospectral density function of the film thickness, it appears that this transition is caused by the breaking up of long waves into smaller ones. To investigate the possibility of the wave structure being represented as a low order chaotic system, phase portraits of the time series were constructed using the technique developed by Broomhead and co-workers (1986, 1987 and 1989). These showed a banded structure when waves of relatively high frequency were filtered out. Although these results are encouraging, further work is needed to characterise the attractor. (Author)

  6. Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

    KAUST Repository

    Dutta, Gaurav; Lu, Kai; Wang, Xin; Schuster, Gerard T.

    2013-01-01

    Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images

  7. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo; Tan, Jun; Song, Peng; Li, Jin-shan; Xia, Dong-ming; Liu, Zhao-lun

    2017-01-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy

  8. Discretization of space and time in wave mechanics: the validity limit

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, it is shown that wave mechanics must necessarily have a specific applicability limit: in a discrete context, unlike in a continuous one, frequencies can not have arbitrarily high values.

  9. Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint

    Science.gov (United States)

    Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian

    2017-10-01

    The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.

  10. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    Science.gov (United States)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  11. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    Science.gov (United States)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  12. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  13. Time-dependent approach to electron scattering and ionization in the s-wave model

    International Nuclear Information System (INIS)

    Ihra, W.; Draeger, M.; Handke, G.; Friedrich, H.

    1995-01-01

    The time-dependent Schroedinger equation is integrated for continuum states of two-electron atoms in the framework of the s-wave model, in which both electrons are restricted to having vanishing individual orbital angular momenta. The method is suitable for studying the time evolution of correlations in the two-electron wave functions and yields probabilities for elastic and inelastic electron scattering and for electron-impact ionization. The spin-averaged probabilities for electron-impact ionization of hydrogen in the s-wave model reproduce the shape of the experimentally observed integrated ionization cross section remarkably well for energies near and above the maximum

  14. Forced solitary Rossby waves under the influence of slowly varying topography with time

    International Nuclear Information System (INIS)

    Yang Hong-Wei; Yin Bao-Shu; Yang De-Zhou; Xu Zhen-Hua

    2011-01-01

    By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg—de Vries (KdV)—Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves. (general)

  15. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  16. Extracting continuum information from Ψ(t) in time-dependent wave-packet calculations

    International Nuclear Information System (INIS)

    Madsen, L. B.; Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Fernandez, J.

    2007-01-01

    The theory of measurement projection operators in grid-based time-dependent wave-packet calculations involving electronic continua in atoms and molecules is discussed. A hierarchy of projection operators relevant in their individual restricted configuration spaces is presented. At asymptotically large distances from the scattering or interaction center the projection operators involve plane waves only. To reach this asymptotic regime, however, large propagation times and large boxes may be required. At somewhat smaller distances from the scattering center, the projection operators are expressed in terms of analytical single-center Coulomb scattering waves with incoming wave boundary conditions. If propagation of the wave packet to these asymptotic regimes is impeded, the projection operators involve the exact scattering states which are not readily available in the wave-packet calculation and hence must be supplied by an additional, typically very demanding, calculation. The present approach suggests an exact way of analyzing the timely problem of the one-electron continuum in nonperturbative calculations. A key feature is that the propagated wave packet includes every interaction of the full Hamiltonian. The practicality of the proposed method is illustrated by the nontrivial example of strong-field ionization of the molecular hydrogen ion. Finally, the extension of the presented ideas to single and double ionization of two-electron systems is discussed

  17. A time reversal damage imaging method for structure health monitoring using Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Cao Ya-Ping; Sun Xiu-Li; Chen Xian-Hua; Yu Jian-Bo

    2010-01-01

    This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably

  18. Generic short-time propagation of sharp-boundaries wave packets

    Science.gov (United States)

    Granot, E.; Marchewka, A.

    2005-11-01

    A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.

  19. On shallow water waves in a medium with time-dependent

    Directory of Open Access Journals (Sweden)

    Hamdy I. Abdel-Gawad

    2015-07-01

    Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.

  20. The Bloch wave operator: generalizations and applications: Part I. The time-independent case

    CERN Document Server

    Killingbeck, J P

    2003-01-01

    This is part 1 of a two-part review on wave operator theory and methods. The basic theory of the time-independent wave operator is presented in terms of partitioned matrix theory for the benefit of general readers, with a discussion of the links between the matrix and projection operator approaches. The matrix approach is shown to lead to simple derivations of the wave operators and effective Hamiltonians of Loewdin, Bloch, Des Cloizeaux and Kato as well as to some associated variational forms. The principal approach used throughout stresses the solution of the nonlinear equation for the reduced wave operator, leading to the construction of the effective Hamiltonians of Bloch and of Des Cloizeaux. Several mathematical techniques which are useful in implementing this approach are explained, some of them being relatively little known in the area of wave operator calculations. The theoretical discussion is accompanied by several specimen numerical calculations which apply the described techniques to a selection ...

  1. Numerical simulation of electromagnetic wave propagation using time domain meshless method

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi

    2012-01-01

    The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)

  2. Short time propagation of a singular wave function: Some surprising results

    Science.gov (United States)

    Marchewka, A.; Granot, E.; Schuss, Z.

    2007-08-01

    The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.

  3. On a Batch Arrival Queuing System Equipped with a Stand-by Server during Vacation Periods or the Repairs Times of the Main Server

    Directory of Open Access Journals (Sweden)

    Rehab F. Khalaf

    2011-01-01

    Full Text Available We study a queuing system which is equipped with a stand-by server in addition to the main server. The stand-by server provides service to customers only during the period of absence of the main server when either the main server is on a vacation or it is in the state of repairs due to a sudden failure from time to time. The service times, vacation times, and repair times are assumed to follow general arbitrary distributions while the stand-by service times follow exponential distribution. Supplementary variables technique has been used to obtain steady state results in explicit and closed form in terms of the probability generating functions for the number of customers in the queue, the average number of customers, and the average waiting time in the queue while the MathCad software has been used to illustrate the numerical results in this work.

  4. Boat, wake, and wave real-time simulation

    Science.gov (United States)

    Świerkowski, Leszek; Gouthas, Efthimios; Christie, Chad L.; Williams, Owen M.

    2009-05-01

    We describe the extension of our real-time scene generation software VIRSuite to include the dynamic simulation of small boats and their wakes within an ocean environment. Extensive use has been made of the programmabilty available in the current generation of GPUs. We have demonstrated that real-time simulation is feasible, even including such complexities as dynamical calculation of the boat motion, wake generation and calculation of an FFTgenerated sea state.

  5. Sensitivity and response time improvements in millimeter-wave spectrometers

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.

    1980-09-01

    A new version of a microwave spectrometer for the detection of gaseous pollutants and other atmospheric constituents is described. The spectrometer, which operates in the vicinity of 70 GHz, employs a Fabry-Perot resonator as a sample cell and uses superhetrodyne detection for high sensitivity. The spectrometer has been modified to incorporate a frequency doubler modulated at 30 MHz to permit operation with a single Gunn oscillator source. As a result, faster response time and somewhat greater sensitivity are obtained. The spectrometer is capable of detecting a minimum concentration of 1 ppM of SO 2 diluted in air with a 1 second time constant. For OCS diluted in air, the minimum detectable concentration is 800 ppB and with a 10 second time constant 300 ppB

  6. Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    International Nuclear Information System (INIS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.

    2011-01-01

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3x10 -21 to 1.4x10 -20 on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0x10 44 to 1.3x10 45 erg.

  7. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.

    Science.gov (United States)

    Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q

    2013-03-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

  8. Subsurface signatures and timing of extreme wave events along the ...

    Indian Academy of Sciences (India)

    The diagnostic event signatures include the extent and elevation of the deposits, as well as morphologic similarity ... Historical archives of the origin, timing, and impact of tsunamis, storms, and floods along the mar- gins of ... High-resolution GPR studies (by the IIT Madras group) of erosional signatures from the beach ridge.

  9. Long-time tail in the two-wave model

    International Nuclear Information System (INIS)

    Hatori, T.; Abe, Y.; Irie, H.; Kaufman, A.N.

    1984-01-01

    The velocity time-correlation function is found, both theoretically and numerically, to decay with the power law for the chaotic orbit governed by a Hamiltonian, H = v 2 /2 - Mcosx - Pcos[k(x-t)], M, P and k being parameters. (author)

  10. Optimization of incident EC wave polarization in real-time polarization scan experiments on LHD

    International Nuclear Information System (INIS)

    Tsujimura, Toru I.; Mizuno, Yoshinori; Makino, Ryohei

    2016-01-01

    Real-time polarization scan experiments were performed on the Large Helical Device (LHD) to search an optimal incident wave polarization for electron cyclotron resonance heating. The obtained optimal polarization state to maximize the power absorption to the LHD plasma is compared with the ray-tracing code that includes mode content analyses, which indicates that the calculated results are generally in good agreement with the experimental results. The analyses show that optimal coupling to plasma waves requires a fine adjustment for an incident wave polarization even for perpendicular injection due to the finite density profile and the magnetic shear at the peripheral region. (author)

  11. Electron and VLF travel time differences for wave-particle interactions at L=4: Pt. 2

    International Nuclear Information System (INIS)

    Rash, J.P.S.; Scourfield, M.W.J.; Dougherty, M.K.

    1984-01-01

    The cyclotron resonance or gyroresonance interaction has been widely invoked as a generation mechanism for discrete VLF emissions and plasmaspheric hiss. This interaction involves electrons and VLF waves travelling in opposite directions along a geomagnetic field line. We examine, for an interaction region in the equatorial plane at L=4, the energy of the resonant electrons as a function of VLF wave frequency and ambient equatorial electron density. Then for two different spatial configurations of the interaction and two standard plasma distribution models we examine the difference in travel times to a ground-based observer in the Southern hemisphere for the electrons and waves taking part in the interaction. This difference in travel times is shown as a function of VLF wave frequency and equatorial electron density. The results, and their significance for observations of auroral electrons and VLF at Sanae, Antarctica, are discussed and compared with similar results for the Cerenkov interaction discussed in an earlier paper

  12. Time development of drift wave with loss-cone in an inhomogeneous low β plasma

    International Nuclear Information System (INIS)

    Pandey, R.P.; Sharan, R.R.; Prasad, Ramesh; Mishra, S.P.; Tiwari, M.S.

    1995-01-01

    Using particle aspect analysis, a generalized dispersion relation for the time-dependent electrostatic drift waves propagating through inhomogeneous low β magnetoplasma (β being the ratio of plasma pressure to the magnetic pressure) has been derived in the presence of the loss-cone distribution index (J). The dispersion characteristics and time-dependent growth/damping rates of the wave have been computed. The distribution index seems to modify the dispersion characteristics and hence the growth rate. The computed growth rate is time-dependent, increasing with the increase of time, while the growth rate decreases with the increase of the loss-cone distribution index. In the case when growth rate increasing sufficiently with time, becomes comparable to the real frequency of the wave, the present linear theory loses its validity. The applicability of the result for the space plasma has been indicated particularly for the parameters suited to plasmapause region. (author). 30 refs., 5 figs

  13. Freely floating structures trapping time-harmonic water waves (revisited)

    OpenAIRE

    Kuznetsov, Nikolay; Motygin, Oleg

    2014-01-01

    We study the coupled small-amplitude motion of the mechanical system consisting of infinitely deep water and a structure immersed in it. The former is bounded above by a free surface, whereas the latter is formed by an arbitrary finite number of surface-piercing bodies floating freely. The mathematical model of time-harmonic motion is a spectral problem in which the frequency of oscillations serves as the spectral parameter. It is proved that there exist axisymmetric structures consisting of ...

  14. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, G; Burke-Spolaor, S; Champion, D [Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710 (Australia); Archibald, A [Department of Physics, McGill University, Montreal, PQ, H3A 2T8 (Canada); Arzoumanian, Z [CRESST/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Backer, D [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bailes, M; Bhat, N D R [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn VIC 3122 (Australia); Burgay, M [Universita di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato (Canada) (Italy); Cognard, I; Desvignes, G; Ferdman, R D [Station de Radioastronomie de Nanay, Observatoire de Paris, 18330 Nancay (France); Coles, W [Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA (United States); Cordes, J [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Demorest, P [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Finn, L [Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Freire, P [Max-Planck-Institut fuer Radioastronomie, Auf Dem Huegel 69, 53121, Bonn (Germany); Gonzalez, M [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, J [Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Hotan, A, E-mail: george.hobbs@csiro.a [Department of Imaging and Applied Physics, Curtin University, Bentley, WA (Australia)

    2010-04-21

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (approx 10{sup -9}-10{sup -8} Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.

  15. Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping

    Directory of Open Access Journals (Sweden)

    Jieqiong Wu

    2015-09-01

    Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.

  16. Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.

  17. Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.

  18. Concept of an ionizing time-domain matter-wave interferometer

    OpenAIRE

    Nimmrichter, Stefan; Haslinger, Philipp; Hornberger, Klaus; Arndt, Markus

    2011-01-01

    We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Optical gratings may have periods as ...

  19. Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Koichi Narahara

    2012-01-01

    Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.

  20. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  1. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    Science.gov (United States)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  2. Pn seismic wave travel time at the Semipalatinsk Test Site - Borovoe seismic station trace

    International Nuclear Information System (INIS)

    An, V.A.; Kaazik, P.B.; Ovchinnikov, V.M.

    2001-01-01

    This paper preparation involved 160 explosions at the Degelen Site conducted in 1961-1989 and 89 explosions at the Balapan Site conducted in 1968-1989. Pn wave travel time was tied to the sea level in accordance with velocity characteristics of the explosion hypocenter medium; and to average epicentral distance for every site basing on their local travel time curves of Pn wave relative to Borovoe station. Maximum amplitude of mean-year travel times variations is 0.3-0.5 s as at the Nevada Test Site - Borovoe trace and Mirniy (Antarctica). However, the linear trend in contrast to previous traces has negative sign (0.08 s for Degelen and 0.1 s for Balapan). Thus, Pn wave velocity increases with calendar time. (author)

  3. Pulsar timing residuals due to individual non-evolving gravitational wave sources

    International Nuclear Information System (INIS)

    Tong Ming-Lei; Zhao Cheng-Shi; Yan Bao-Rong; Yang Ting-Gao; Gao Yu-Ping

    2014-01-01

    The pulsar timing residuals induced by gravitational waves from non-evolving single binary sources are affected by many parameters related to the relative positions of the pulsar and the gravitational wave sources. We will analyze the various effects due to different parameters. The standard deviations of the timing residuals will be calculated with a variable parameter fixing a set of other parameters. The orbits of the binary sources will be generally assumed to be elliptical. The influences of different eccentricities on the pulsar timing residuals will also be studied in detail. We find that the effects of the related parameters are quite different, and some of them display certain regularities

  4. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION

    OpenAIRE

    Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.

    2013-01-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and technique...

  5. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  6. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.M.P. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Fry, C.D. [Exploration Physics International, Inc., Huntsville, AL (United States); Dryer, M. [Exploration Physics International, Inc., Huntsville, AL (United States); NOAA Space Environment Center, Boulder, CO (United States); Heynderickx, D. [D-H Consultancy, Leuven (Belgium); Kecskemety, K. [KFKI Research Institute for Particle and Nuclear Physics, Budapest (Hungary); Kudela, K. [Institute of Experimental Physics, Kosice (Slovakia); Balaz, J. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Institute of Experimental Physics, Kosice (Slovakia)

    2012-07-01

    The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2) numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay) of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events) associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50 %). This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50 %, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter ''Probability of Detection, yes'' (PODy) which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed), yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The

  7. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2012-02-01

    Full Text Available The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2 numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50%. This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50%, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter "Probability of Detection, yes" (PODy which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed, yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The statistical

  8. Exact Time-Dependent Wave Functions of a Confined Time-Dependent Harmonic Oscillator with Two Moving Boundaries

    International Nuclear Information System (INIS)

    Lo, C.F.

    2009-01-01

    By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schroedinger equation describing a quantum one-dimensional harmonic oscillator of time-dependent frequency confined in an infinite square well with the two walls moving along some parametric trajectories. Based upon the orthonormal basis of quasi-stationary wave functions, the exact propagator of the system has also been analytically derived. Special cases like (i) a confined free particle, (ii) a confined time-independent harmonic oscillator, and (iii) an aging oscillator are examined, and the corresponding time-dependent wave functions are explicitly determined. Besides, the approach has been extended to solve the case of a confined generalized time-dependent harmonic oscillator for some parametric moving boundaries as well. (general)

  9. Multi-wave solutions of the space–time fractional Burgers and Sharma–Tasso–Olver equations

    Directory of Open Access Journals (Sweden)

    Emad A.-B. Abdel-Salam

    2016-03-01

    Full Text Available Based on the improved generalized exp-function method, the space–time fractional Burgers and Sharma–Tasso–Olver equations were studied. The single-wave, double-wave, three-wave and four-wave solution discussed. With the best of our knowledge, some of the results are obtained for the first time. The improved generalized exp-function method can be applied to other fractional differential equations.

  10. Multi-wave solutions of the space–time fractional Burgers and Sharma–Tasso–Olver equations

    OpenAIRE

    Emad A.-B. Abdel-Salam; Gamal F. Hassan

    2016-01-01

    Based on the improved generalized exp-function method, the space–time fractional Burgers and Sharma–Tasso–Olver equations were studied. The single-wave, double-wave, three-wave and four-wave solution discussed. With the best of our knowledge, some of the results are obtained for the first time. The improved generalized exp-function method can be applied to other fractional differential equations.

  11. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  12. Stabilization of the Wave Equation with Boundary Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.

  13. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  14. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    International Nuclear Information System (INIS)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-01-01

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited

  15. On scattering of scalar waves in static space-times, particularly Schwarzschild

    International Nuclear Information System (INIS)

    Beig, R.

    1982-01-01

    This paper aims at laying foundations of a rigorous scattering theory for scalar waves in a static space-time. The treatment includes geometries which can be thought of as representing the exterior of a black hole. Schwarzschild space-time, as a particular example, is studied in more detail. (Auth.)

  16. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time

  17. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    Science.gov (United States)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  18. Bilinear Time-frequency Analysis for Lamb Wave Signal Detected by Electromagnetic Acoustic Transducer

    Science.gov (United States)

    Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu

    2018-03-01

    Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.

  19. Some performance measures for vacation models with a batch Markovian arrival process

    Directory of Open Access Journals (Sweden)

    Sadrac K. Matendo

    1994-01-01

    Full Text Available We consider a single server infinite capacity queueing system, where the arrival process is a batch Markovian arrival process (BMAP. Particular BMAPs are the batch Poisson arrival process, the Markovian arrival process (MAP, many batch arrival processes with correlated interarrival times and batch sizes, and superpositions of these processes. We note that the MAP includes phase-type (PH renewal processes and non-renewal processes such as the Markov modulated Poisson process (MMPP.

  20. Character of GPR wave in air and processed method

    International Nuclear Information System (INIS)

    Shi Jianping; Zhang Zhiyong; Deng Juzhi

    2009-01-01

    The wave reflected by objects in the air is unavoidable because electromagnetic wave of GPR was send to all directions. There are three air reflection types: directly arrived wave, system ring and reflection wave. The directly arrived waves don't disturb the recognition of the reflections from earth because they affect the first short time of GPR trace record. But system ring and reflection from air are the mainly part of disturbs. The time and distance curve of reflection from air can be classified into two types: hyperbola type and line type. The reflection from air and from earth can be recognized by calculating the velocity of electromagnetic wave. Line type reflection can be filtered by background remove and 2-D filter; by comparing the migrated profiles with velocity in air and ground, the interpretation will become more exact. (authors)

  1. Comparison of interplanetary CME arrival times and solar wind parameters based on the WSA-ENLIL model with three cone types and observations

    Science.gov (United States)

    Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock

    2014-09-01

    We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of ± 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc ˜0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.

  2. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    Science.gov (United States)

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  3. An Architecture for On-Line Measurement of the Tip Clearance and Time of Arrival of a Bladed Disk of an Aircraft Engine

    Directory of Open Access Journals (Sweden)

    José Miguel Gil-García

    2017-09-01

    Full Text Available Safety and performance of the turbo-engine in an aircraft is directly affected by the health of its blades. In recent years, several improvements to the sensors have taken place to monitor the blades in a non-intrusive way. The parameters that are usually measured are the distance between the blade tip and the casing, and the passing time at a given point. Simultaneously, several techniques have been developed that allow for the inference—from those parameters and under certain conditions—of the amplitude and frequency of the blade vibration. These measurements are carried out on engines set on a rig, before being installed in an airplane. In order to incorporate these methods during the regular operation of the engine, signal processing that allows for the monitoring of those parameters at all times should be developed. This article introduces an architecture, based on a trifurcated optic sensor and a hardware processor, that fulfills this need. The proposed architecture is scalable and allows several sensors to be simultaneously monitored at different points around a bladed disk. Furthermore, the results obtained by the electronic system will be compared with the results obtained by the validation of the optic sensor.

  4. Knowledge-based scheduling of arrival aircraft

    Science.gov (United States)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  5. Characterizing Global Flood Wave Travel Times to Optimize the Utility of Near Real-Time Satellite Remote Sensing Products

    Science.gov (United States)

    Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.

    2017-12-01

    Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired

  6. A Powerful Twin Arrives

    Science.gov (United States)

    1999-11-01

    First Images from FORS2 at VLT KUEYEN on Paranal The first, major astronomical instrument to be installed at the ESO Very Large Telescope (VLT) was FORS1 ( FO cal R educer and S pectrograph) in September 1998. Immediately after being attached to the Cassegrain focus of the first 8.2-m Unit Telescope, ANTU , it produced a series of spectacular images, cf. ESO PR 14/98. Many important observations have since been made with this outstanding facility. Now FORS2 , its powerful twin, has been installed at the second VLT Unit Telescope, KUEYEN . It is the fourth major instrument at the VLT after FORS1 , ISAAC and UVES.. The FORS2 Commissioning Team that is busy installing and testing this large and complex instrument reports that "First Light" was successfully achieved already on October 29, 1999, only two days after FORS2 was first mounted at the Cassegrain focus. Since then, various observation modes have been carefully tested, including normal and high-resolution imaging, echelle and multi-object spectroscopy, as well as fast photometry with millisecond time resolution. A number of fine images were obtained during this work, some of which are made available with the present Press Release. The FORS instruments ESO PR Photo 40a/99 ESO PR Photo 40a/99 [Preview - JPEG: 400 x 345 pix - 203k] [Normal - JPEG: 800 x 689 pix - 563kb] [Full-Res - JPEG: 1280 x 1103 pix - 666kb] Caption to PR Photo 40a/99: This digital photo shows the twin instruments, FORS2 at KUEYEN (in the foreground) and FORS1 at ANTU, seen in the background through the open ventilation doors in the two telescope enclosures. Although they look alike, the two instruments have specific functions, as described in the text. FORS1 and FORS2 are the products of one of the most thorough and advanced technological studies ever made of a ground-based astronomical instrument. They have been specifically designed to investigate the faintest and most remote objects in the universe. They are "multi-mode instruments" that

  7. Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation

    Science.gov (United States)

    Ryaben'kii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.

    2001-12-01

    We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special nondeteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of “nonreflecting kernels” nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The nondeteriorating algorithm, which is the core of the new ABCs, is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimensional spaces. It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the unmodified scheme. In this paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABC algorithm.

  8. Potential use of metabolic breath tests to assess liver disease and prognosis: has the time arrived for routine use in the clinic?

    Science.gov (United States)

    Stravitz, R Todd; Ilan, Yaron

    2017-03-01

    The progression of liver disease may be unique among organ system diseases in that progressive fibrosis compromises not only the sufficiency of hepatocyte mass but also impairs blood flow to the liver, resulting in porto-systemic shunting. Although liver biopsy as an assessment of fibrosis has become the key biomarker of and target for new therapies, it is invasive and subject to sampling error, and cannot quantify metabolic function or porto-systemic shunting. Measurement of the hepatic venous pressure gradient accommodates some of the deficiencies of biopsy but requires expertise not widely available and misses minor changes in hepatocellular mass and thereby information about metabolic function. Thus, an unmet need in clinical hepatology remains unfulfilled: a noninvasive biomarker which quantitates both the hepatocellular insufficiency and porto-systemic shunting inherent in progressive hepatic fibrosis. Ideally, such a biomarker should correlate with clinical endpoints including liver-related survival and cirrhotic complications, be performed at the point-of-care, and be affordable and easy to use. This review, an expert opinion, summarizes background and recent data suggesting that metabolic breath tests may now meet these requirements and have a valid place in clinical hepatology to supplant the time-honoured assessment of hepatic fibrosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods

    Science.gov (United States)

    Idris, Ahmad; Harahap, Indra S. H.; Ali, Montassir Osman Ahmed

    2018-04-01

    This study evaluated failure probabilities of jack up units on the framework of time dependent reliability analysis using uncertainty from different sea states representing different return period of the design wave. Surface elevation for each sea state was represented by Karhunen-Loeve expansion method using the eigenfunctions of prolate spheroidal wave functions in order to obtain the wave load. The stochastic wave load was propagated on a simplified jack up model developed in commercial software to obtain the structural response due to the wave loading. Analysis of the stochastic response to determine the failure probability in excessive deck displacement in the framework of time dependent reliability analysis was performed by developing Matlab codes in a personal computer. Results from the study indicated that the failure probability increases with increase in the severity of the sea state representing a longer return period. Although the results obtained are in agreement with the results of a study of similar jack up model using time independent method at higher values of maximum allowable deck displacement, it is in contrast at lower values of the criteria where the study reported that failure probability decreases with increase in the severity of the sea state.

  10. ¿Ha llegado la hora de la gestión de las listas de espera? Has the time arrived for the management of waiting lists?

    Directory of Open Access Journals (Sweden)

    E. Bernal

    2002-10-01

    Full Text Available Las personas que ocupan una lista de espera sufren a menudo un riesgo adicional derivado del tiempo que pasa hasta que obtienen tratamiento; sin embargo, en otras ocasiones, las personas en lista no tienen necesidad del tratamiento por el que esperan. Ambos argumentos, contrastables con evidencias empíricas, serían suficientes para afirmar que debe llegar la gestión a las listas de espera dejando a un lado políticas más o menos oportunistas. Por políticas oportunistas se entiende mantener la mala información sobre listas o su "maquillaje", utilizar programas de autoconcertación sin más horizonte que llegar a final de año sin lista de más de seis meses, etcétera. El panorama no es del todo oscuro. Algunas iniciativas de gestión (incluso de Política con mayúscula se van abriendo paso y pueden entrar en la agenda de los próximos años. Así, cabe destacar la aplicación de tiempos de atención garantizada o la priorización de las listas en función de criterios explícitos. En todo caso, conviene recordar que, con la excepción de las colas producidas en las salas de espera de los centros de salud y aquéllas que se producen en las puertas de urgencias, el resto de colas del sistema están mediadas por la decisión de un médico. Así que una estrategia ineludible para gestionar las listas de espera consiste en atenuar los problemas derivados de la incertidumbre (o ignorancia con respecto al diagnóstico o al pronóstico de los pacientes.Individuals on the waiting list frequently suffer an additional risk caused by the mean time until they receive treatment; however, other individuals do not need the treatment for which they are waiting. Both arguments, which can be contrasted with empirical evidence, would be sufficient to affirm that waiting list management should be implemented, leaving aside policies that are more of less opportunistic. Opportunistic policies are understood as those providing misinformation on waiting lists or

  11. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  12. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  13. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Science.gov (United States)

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  14. Travelling wave solutions for some time-delayed equations through factorizations

    International Nuclear Information System (INIS)

    Fahmy, E.S.

    2008-01-01

    In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers-Huxley, time-delayed convective Fishers, and the generalized time-delayed Burgers-Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases

  15. Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation

    International Nuclear Information System (INIS)

    Alcaraz, Raúl; Martínez, Arturo; Hornero, Fernando; Rieta, José J

    2012-01-01

    This paper proposes the first non-invasive method for direct and short-time regularity quantification of atrial fibrillatory (f) waves from the surface ECG in atrial fibrillation (AF). Regularity is estimated by computing individual morphological variations among f waves, which are delineated and extracted from the atrial activity (AA) signal, making use of an adaptive signed correlation index. The algorithm was tested on real AF surface recordings in order to discriminate atrial signals with different organization degrees, providing a notably higher global accuracy (90.3%) than the two non-invasive AF organization estimates defined to date: the dominant atrial frequency (70.5%) and sample entropy (76.1%). Furthermore, due to its ability to assess AA regularity wave to wave, the proposed method is also able to pursue AF organization time course more precisely than the aforementioned indices. As a consequence, this work opens a new perspective in the non-invasive analysis of AF, such as the individualized study of each f wave, that could improve the understanding of AF mechanisms and become useful for its clinical treatment. (paper)

  16. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo

    2017-06-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.

  17. Advances on the automatic estimation of the P-wave onset time

    Directory of Open Access Journals (Sweden)

    Luz García

    2016-09-01

    Full Text Available This work describes the automatic picking of the P-phase arrivals of the 3*106 seismic registers originated during the TOMO-ETNA experiment. Air-gun shots produced by the vessel “Sarmiento de Gamboa” and contemporary passive seismicity occurring in the island are recorded by a dense network of stations deployed for the experiment. In such scenario, automatic processing is needed given: (i the enormous amount of data, (ii the low Signal-to-Noise ratio of many of the available registers and, (iii the accuracy needed for the velocity tomography resulting from the experiment. A preliminary processing is performed with the records obtained from all stations. Raw data formats from the different types of stations are unified, eliminating defective records and reducing noise through filtering in the band of interest for the phase picking. The Advanced Multiband Picking Algorithm (AMPA is then used to process the big database obtained and determine the travel times of the seismic phases. The approach of AMPA, based on frequency multiband denoising and enhancement of expected arrivals through optimum detectors, is detailed together with its calibration and quality assessment procedure. Examples of its usage for active and passive seismic events are presented.

  18. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan; Radwan, Hany; Dalcí n, Lisandro D.; Calo, Victor M.

    2013-01-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  19. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan

    2013-05-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  20. Time domain simulation of piezoelectric excitation of guided waves in rails using waveguide finite elements

    CSIR Research Space (South Africa)

    Loveday, PW

    2007-03-01

    Full Text Available Piezoelectric transducers are commonly used to excite waves in elastic waveguides such as pipes, rock bolts and rails. While it is possible to simulate the operation of these transducers attached to the waveguide, in the time domain, using...

  1. Numerical study of the time evolution of a wave packet in quantum mechanics

    International Nuclear Information System (INIS)

    Segura, J.; Fernandez de Cordoba, P.

    1993-01-01

    We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)

  2. Wave packet dynamics and photofragmentation in time-dependent quadratic potentials

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1996-01-01

    We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...

  3. Global time asymmetry as a consequence of a wave packets theorem

    International Nuclear Information System (INIS)

    Castagnino, Mario A.; Gueron, Jorge; Ordonez, Adolfo R.

    2002-01-01

    When t→∞ any wave packet in the Liouvillian representation of the density matrices becomes a Hardy class function from below. This fact, in the global frame of the Reichenbach diagram, is used to explain the observed global time asymmetry of the universe

  4. Time reversed Lamb wave for damage detection in a stiffened aluminum plate

    International Nuclear Information System (INIS)

    Bijudas, C R; Mitra, M; Mujumdar, P M

    2013-01-01

    According to the concept of time reversibility of the Lamb wave, in the absence of damage, a Lamb wave signal can be reconstructed at the transmitter location if a time reversed signal is sent back from the receiver location. This property is used for baseline-free damage detection, where the presence of damage breaks down the time reversibility and the mismatch between the reconstructed and the input signal is inferred as the presence of damage. This paper presents an experimental and a simulation study of baseline-free damage detection in a stiffened aluminum plate by time reversed Lamb wave (TRLW). In this study, single Lamb wave mode (A 0 ) is generated and sensed using piezoelectric (PZT) transducers through specific transducer placement and amplitude tuning. Different stiffening configurations such as plane and T-stiffeners are considered. Damage cases of disbonding of stiffeners from the base plate, and vertical and embedded cracks in the stiffened plate, are studied. The results show that TRLW based schemes can efficiently identify the presence of damage in a stiffened plate. (paper)

  5. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    Science.gov (United States)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  6. Local time stepping with the discontinuous Galerkin method for wave propagation in 3D heterogeneous media

    NARCIS (Netherlands)

    Minisini, S.; Zhebel, E.; Kononov, A.; Mulder, W.A.

    2013-01-01

    Modeling and imaging techniques for geophysics are extremely demanding in terms of computational resources. Seismic data attempt to resolve smaller scales and deeper targets in increasingly more complex geologic settings. Finite elements enable accurate simulation of time-dependent wave propagation

  7. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...

  8. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...

  9. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to

  10. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves

    NARCIS (Netherlands)

    M.H.N. van Velzen (M. H N); A.J. Loeve (Arjo J.); S.P. Niehof (Sjoerd); E.G. Mik (Egbert)

    2017-01-01

    textabstractPhotoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of

  11. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves

    NARCIS (Netherlands)

    van Velzen, M.H.N.; Loeve, A.J.; Niehof, S.P.; Mik, E.G.

    2017-01-01

    Photoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of the PW

  12. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    Science.gov (United States)

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  13. The characteristic response of whistler mode waves to interplanetary shocks

    Science.gov (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  14. Speaker Localisation Using Time Difference of Arrival

    Science.gov (United States)

    2008-04-01

    School of Electrical and Electronic Engineering of the University of Adelaide. His area of expertise and interest is in Signal Processing including audio ...support of Theatre intelligence capabilities. His recent research interests include: information visualisation , text and data mining, and speech and...by: steering microphone arrays to improve the quality of audio pickup for recording, communication and transcription; enhancing the separation – and

  15. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    Science.gov (United States)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

  16. The development of efficient numerical time-domain modeling methods for geophysical wave propagation

    Science.gov (United States)

    Zhu, Lieyuan

    This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The

  17. Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method

    Science.gov (United States)

    Miyazaki, Yutaka; Tsuchiya, Takao

    2012-07-01

    The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.

  18. Improving Students' Understanding of Waves by Plotting a Displacement-Time Graph in Class

    Science.gov (United States)

    Wei, Yajun

    2012-04-01

    The topic of waves is one that many high school physics students find difficult to understand. This is especially true when using some A-level textbooks1,2used in the U.K., where the concept of waves is introduced prior to the concept of simple harmonic oscillations. One of the challenges my students encounter is understanding the difference between displacement-time graphs and displacement-position graphs. Many students wonder why these two graphs have the same sinusoidal shape. Having the students use multimedia simulations allows them to see, in a hands-on fashion, the relationship between the two graphs.

  19. Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises

    Science.gov (United States)

    Tinto, Massimo

    2018-04-01

    We propose a data processing technique to cancel monopole and dipole noise sources (such as clock and ephemeris noises, respectively) in pulsar timing array searches for gravitational radiation. These noises are the dominant sources of correlated timing fluctuations in the lower-part (≈10-9-10-8 Hz ) of the gravitational wave band accessible by pulsar timing experiments. After deriving the expressions that reconstruct these noises from the timing data, we estimate the gravitational wave sensitivity of our proposed processing technique to single-source signals to be at least one order of magnitude higher than that achievable by directly processing the timing data from an equal-size array. Since arrays can generate pairs of clock and ephemeris-free timing combinations that are no longer affected by correlated noises, we implement with them the cross-correlation statistic to search for an isotropic stochastic gravitational wave background. We find the resulting optimal signal-to-noise ratio to be more than one order of magnitude larger than that obtainable by correlating pairs of timing data from arrays of equal size.

  20. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    Science.gov (United States)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  1. Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)

    2009-05-01

    We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.

  2. Isolation of gravitational waves from displacement noise and utility of a time-delay device

    Energy Technology Data Exchange (ETDEWEB)

    Somiya, Kentaro [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Goda, Keisuke [LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chen, Yanbei [Max-Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Mikhailov, Eugeniy E [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States)

    2007-05-15

    Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies.

  3. Computer-games for gravitational wave science outreach: Black Hole Pong and Space Time Quest

    International Nuclear Information System (INIS)

    Carbone, L; Bond, C; Brown, D; Brückner, F; Grover, K; Lodhia, D; Mingarelli, C M F; Fulda, P; Smith, R J E; Unwin, R; Vecchio, A; Wang, M; Whalley, L; Freise, A

    2012-01-01

    We have established a program aimed at developing computer applications and web applets to be used for educational purposes as well as gravitational wave outreach activities. These applications and applets teach gravitational wave physics and technology. The computer programs are generated in collaboration with undergraduates and summer students as part of our teaching activities, and are freely distributed on a dedicated website. As part of this program, we have developed two computer-games related to gravitational wave science: 'Black Hole Pong' and 'Space Time Quest'. In this article we present an overview of our computer related outreach activities and discuss the games and their educational aspects, and report on some positive feedback received.

  4. Isolation of gravitational waves from displacement noise and utility of a time-delay device

    International Nuclear Information System (INIS)

    Somiya, Kentaro; Goda, Keisuke; Chen, Yanbei; Mikhailov, Eugeniy E

    2007-01-01

    Interferometers with kilometer-scale arms have been built for gravitational-wave detections on the ground; ones with much longer arms are being planned for space-based detection. One fundamental motivation for long baseline interferometry is from displacement noise. In general, the longer the arm length L, the larger the motion the gravitational-wave induces on the test masses, until L becomes comparable to the gravitational wavelength. Recently, schemes have been invented, in which displacement noise can be evaded by employing differences between the influence of test-mass motions and that of gravitational waves on light propagation. However, in these schemes, such differences only becomes significant when Lapproaches the gravitational wavelength. In this paper, we explore a use of artificial time delay in displacement-noise-free interferometers, which will shift the frequency band of the effect being significant and may improve their shot-noise-limited sensitivity at low frequencies

  5. Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps

    International Nuclear Information System (INIS)

    Lesanovsky, Igor; Klitzing, Wolf von

    2007-01-01

    We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers

  6. Does Viewing Pornography Diminish Religiosity Over Time? Evidence From Two-Wave Panel Data.

    Science.gov (United States)

    Perry, Samuel L

    2017-02-01

    Research consistently shows a negative association between religiosity and viewing pornography. While scholars typically assume that greater religiosity leads to less frequent pornography use, none have empirically examined whether the reverse could be true: that greater pornography use may lead to lower levels of religiosity over time. I tested for this possibility using two waves of the nationally representative Portraits of American Life Study (PALS). Persons who viewed pornography at all at Wave 1 reported more religious doubt, lower religious salience, and lower prayer frequency at Wave 2 compared to those who never viewed porn. Considering the effect of porn-viewing frequency, viewing porn more often at Wave 1 corresponded to increases in religious doubt and declining religious salience at Wave 2. However, the effect of earlier pornography use on later religious service attendance and prayer was curvilinear: Religious service attendance and prayer decline to a point and then increase at higher levels of pornography viewing. Testing for interactions revealed that all effects appear to hold regardless of gender. Findings suggest that viewing pornography may lead to declines in some dimensions of religiosity but at more extreme levels may actually stimulate, or at least be conducive to, greater religiosity along other dimensions.

  7. Spectral and partial-wave decomposition of time-dependent wave functions on a grid: Photoelectron spectra of H and H2+ in electromagnetic fields

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.

    2007-01-01

    We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum

  8. Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Povstenko YZ

    2011-01-01

    Full Text Available Nonaxisymmetric solutions to time-fractional diffusion-wave equation with a source term in cylindrical coordinates are obtained for an infinite medium. The solutions are found using the Laplace transform with respect to time , the Hankel transform with respect to the radial coordinate , the finite Fourier transform with respect to the angular coordinate , and the exponential Fourier transform with respect to the spatial coordinate . Numerical results are illustrated graphically.

  9. Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model

    Science.gov (United States)

    Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira

    2018-02-01

    We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.

  10. Overview of contaminant arrival distributions as general evaluation requirements

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The environmental consequences of subsurface contamination problems can be completely and effectively evaluated by fulfilling the following five requirements: Determine each present or future outflow boundary of contaminated groundwater; provide the location/arrival-time distributions; provide the location/outflow-quantity distributions; provide these distributions for each individual chemical or biological constituent of environmental importance; and use the arrival distributions to determine the quantity and concentration of each contaminant that will interface with the environment as time passes. The arrival distributions on which these requirements are based provide a reference point for communication among scientists and public decision makers by enabling complicated scientific analyses to be presented as simple summary relationships

  11. OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS

    International Nuclear Information System (INIS)

    Ellis, J. A.; Siemens, X.; Creighton, J. D. E.

    2012-01-01

    Supermassive black hole binaries (SMBHBs) are expected to emit a continuous gravitational wave signal in the pulsar timing array (PTA) frequency band (10 –9 to 10 –7 Hz). The development of data analysis techniques aimed at efficient detection and characterization of these signals is critical to the gravitational wave detection effort. In this paper, we leverage methods developed for LIGO continuous wave gravitational searches and explore the use of the F-statistic for such searches in pulsar timing data. Babak and Sesana have used this approach in the context of PTAs to show that one can resolve multiple SMBHB sources in the sky. Our work improves on several aspects of prior continuous wave search methods developed for PTA data analysis. The algorithm is implemented fully in the time domain, which naturally deals with the irregular sampling typical of PTA data and avoids spectral leakage problems associated with frequency domain methods. We take into account the fitting of the timing model and have generalized our approach to deal with both correlated and uncorrelated colored noise sources. We also develop an incoherent detection statistic that maximizes over all pulsar-dependent contributions to the likelihood. To test the effectiveness and sensitivity of our detection statistics, we perform a number of Monte Carlo simulations. We produce sensitivity curves for PTAs of various configurations and outline an implementation of a fully functional data analysis pipeline. Finally, we present a derivation of the likelihood maximized over the gravitational wave phases at the pulsar locations, which results in a vast reduction of the search parameter space.

  12. Arrival and Departure Patterns of Public Sector Employees before and after Implementation of Flexitime.

    Science.gov (United States)

    Ronen, Simcha

    1981-01-01

    Examined the effects of a flexible working hours schedule on the arrival and departure times of 162 public sector employees. Results indicated that workers, when scheduling their own workday, deviate only moderately from their preflexitime arrival/departure times; and they tend to develop relatively stable arrival/departure patterns. (Author/RC)

  13. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  14. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    International Nuclear Information System (INIS)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.

    2017-01-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  15. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, Florida (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, California (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: Colin.Joyce@unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: rgnuno@ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA (United States)

    2017-05-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  16. Prediction of the Low Frequency Wave Field on Open Coastal Beaches

    National Research Council Canada - National Science Library

    Ozkan-Haller, H. T

    2005-01-01

    ... (both abrupt and gradual) affect the resulting low frequency wave climate. 3. The assessment of the importance of interactions between different modes of time-varying motions in the nearshore region, as well as interactions between these modes and the incident wave field. 4. To arrive at a predictive understanding of low frequency motions.

  17. Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs

    Science.gov (United States)

    Smilansky, Uzy; Schanz, Holger

    2018-02-01

    We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.

  18. Acoustic and Shear-Wave Velocities in Hydrate-Bearing Sediments Offshore Southwestern Taiwan: Tomography, Converted Waves Analysis and Reverse-Time Migration of OBS Records

    Directory of Open Access Journals (Sweden)

    Philippe Schnurle

    2006-01-01

    Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.

  19. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    Science.gov (United States)

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  20. Real-Time Leaky Lamb Wave Spectrum Measurement and Its Application to NDE of Composites

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph

    1999-01-01

    Numerous analytical and theoretical studies of the behavior of leaky Lamb waves (LLW) in composite materials were documented in the literature. One of the key issues that are constraining the application of this method as a practical tool is the amount of data that needs to be acquired and the slow process that is involved with such experiments. Recently, a methodology that allows quasi real-time acquisition of LLW dispersion data was developed. At each angle of incidence the reflection spectrum is available in real time from the experimental setup and it can be used for rapid detection of the defects. This technique can be used to rapidly acquire the various plate wave modes along various angles of incidence for the characterization of the material elastic properties. The experimental method and data acquisition technique will be described in this paper. Experimental data was used to examine a series of flaws including porosity and delaminations and demonstrated the efficiency of the developed technique.

  1. Time-resolved wave profile measurements in copper to Megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  2. Space-time topology optimization for one-dimensional wave propagation

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2009-01-01

    -dimensional transient wave propagation in an elastic rod with time dependent Young's modulus. By two simulation examples it is demonstrated how dynamic structures can display rich dynamic behavior such as wavenumber/frequency shifts and lack of energy conservation. The optimization method's potential for creating...... structures with novel dynamic behavior is illustrated by a simple example; it is shown that an elastic rod in which the optimized stiffness distribution is allowed to vary in time can be much more efficient in prohibiting wave propagation compared to a static bandgap structure. Optimized designs in form...... of spatio-temporal laminates and checkerboards are generated and discussed. The example lays the foundation for creating designs with more advanced functionalities in future work....

  3. On the background estimation by time slides in a network of gravitational wave detectors

    International Nuclear Information System (INIS)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis

    2010-01-01

    Time shifting the outputs of gravitational wave detectors operating in coincidence is a convenient way to estimate the background in a search for short-duration signals. However, this procedure is limited as increasing indefinitely the number of time shifts does not provide better estimates. We show that the false alarm rate estimation error saturates with the number of time shifts. In particular, for detectors with very different trigger rates, this error saturates at a large value. Explicit computations are done for two detectors, and for three detectors where the detection statistic relies on the logical 'OR' of the coincidences of the three couples in the network.

  4. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  5. Probability distribution of wave packet delay time for strong overlapping of resonance levels

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1983-01-01

    Time behaviour of nuclear reactions in the case of high level densities is investigated basing on the theory of overlapping resonances. In the framework of a model of n equivalent channels an analytical expression is obtained for the probability distribution function for wave packet delay time at the compound nucleus production. It is shown that at strong overlapping of the resonance levels the relative fluctuation of the delay time is small at the stage of compound nucleus production. A possible increase in the duration of nuclear reactions with the excitation energy rise is discussed

  6. On the background estimation by time slides in a network of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis, E-mail: mwas@lal.in2p3.f [LAL, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France)

    2010-01-07

    Time shifting the outputs of gravitational wave detectors operating in coincidence is a convenient way to estimate the background in a search for short-duration signals. However, this procedure is limited as increasing indefinitely the number of time shifts does not provide better estimates. We show that the false alarm rate estimation error saturates with the number of time shifts. In particular, for detectors with very different trigger rates, this error saturates at a large value. Explicit computations are done for two detectors, and for three detectors where the detection statistic relies on the logical 'OR' of the coincidences of the three couples in the network.

  7. Time- and Frequency-domain Comparisons of the Wavepiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Read, Robert; Bingham, Harry

    Analysis of wave-energy converters is most frequently undertaken in the time-domain. This formulation allows the direct inclusion of nonlinear time-varying loads such as power take-off (PTO) reactions, mooring forces, and viscous drag. However, integrating the governing equations of motion...... forces arising from both the PTO reactions and the non-negligible viscous drag acting on the plate. Equivalent linear damping coeffcients are used to model these forces in the frequency domain, while they are included explicitly in the time domain. The main idea of this paper is to quantify...

  8. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  9. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    International Nuclear Information System (INIS)

    Diot, G; Walaszek, H; Kouadri-David, A; Guégan, S; Flifla, J

    2014-01-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave

  10. Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Raposo

    2017-11-01

    Full Text Available Well-posedness and exponential stability of nonlocal time-delayed of a wave equation with a integral conditions of the 1st kind forms the center of this work. Through semigroup theory we prove the well-posedness by the Hille-Yosida theorem and the exponential stability exploring the dissipative properties of the linear operator associated to damped model using the Gearhart-Huang-Pruss theorem.

  11. THE NEW SOLUTION OF TIME FRACTIONAL WAVE EQUATION WITH CONFORMABLE FRACTIONAL DERIVATIVE DEFINITION

    OpenAIRE

    Çenesiz, Yücel; Kurt, Ali

    2015-01-01

    – In this paper, we used new fractional derivative definition, the conformable fractional derivative, for solving two and three dimensional time fractional wave equation. This definition is simple and very effective in the solution procedures of the fractional differential equations that have complicated solutions with classical fractional derivative definitions like Caputo, Riemann-Liouville and etc. The results show that conformable fractional derivative definition is usable and convenient ...

  12. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  13. Nonlinear elastic wave spectroscopy in symbiosis with time reversal for localization of defects: TR-NEWS

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Vejvodová, Šárka; Převorovský, Zdeněk

    2009-01-01

    Roč. 19, č. 2 (2009), s. 14-14 ISSN 1213-3825. [NDT in PROGRESS. 12.11.2009-14.11.2009, Praha] R&D Projects: GA ČR GA106/07/1393; GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear elastic wave spectroscopy (NEWS) * ESAM * time reversal (TR) * TR-NEWS imaging * tomography * DORT Subject RIV: BI - Acoustics

  14. Automated detection and association of surface waves

    Directory of Open Access Journals (Sweden)

    C. R. D. Woodgold

    1994-06-01

    Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.

  15. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  16. Kinetic energy and angular momentum of free particles in the gyratonic pp-waves space-times

    Science.gov (United States)

    Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.; Carneiro, F. L.

    2018-06-01

    Gyratonic pp-waves are exact solutions of Einstein’s equations that represent non-linear gravitational waves endowed with angular momentum. We consider gyratonic pp-waves that travel in the z direction and whose time dependence on the variable is given by Gaussians, so that the waves represent short bursts of gravitational radiation propagating in the z direction. We evaluate numerically the geodesics and velocities of free particles in the space-time of these waves, and find that after the passage of the waves both the kinetic energy and the angular momentum per unit mass of the particles are changed. Therefore there is a transfer of energy and angular momentum between the gravitational field and the free particles, so that the final values of the energy and angular momentum of the free particles may be smaller or larger in magnitude than the initial values.

  17. On propagation of electromagnetic and gravitational waves in the expanding Universe

    International Nuclear Information System (INIS)

    Gladyshev, V O

    2016-01-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object. (paper)

  18. Order of arrival affects competition in two reef fishes.

    Science.gov (United States)

    Geange, Shane W; Stier, Adrian C

    2009-10-01

    Many communities experience repeated periods of colonization due to seasonally regenerating habitats or pulsed arrival of young-of-year. When an individual's persistence in a community depends upon the strength of competitive interactions, changes in the timing of arrival relative to the arrival of a competitor can modify competitive strength and, ultimately, establishment in the community. We investigated whether the strength of intracohort competitive interactions between recent settlers of the reef fishes Thalassoma hardwicke and T. quinquevittatum are dependent on the sequence and temporal separation of their arrival into communities. To achieve this, we manipulated the sequence and timing of arrival of each species onto experimental patch reefs by simulating settlement pulses and monitoring survival and aggressive interactions. Both species survived best in the absence of competitors, but when competitors were present, they did best when they arrived at the same time. Survival declined as each species entered the community progressively later than its competitor and as aggression by its competitor increased. Intraspecific effects of resident T. hardwicke were similar to interspecific effects. This study shows that the strength of competition depends not only on the identity of competitors, but also on the sequence and timing of their interactions, suggesting that when examining interaction strengths, it is important to identify temporal variability in the direction and magnitude of their effects. Furthermore, our findings provide empirical evidence for the importance of competitive lotteries in the maintenance of species diversity in demographically open marine systems.

  19. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    Science.gov (United States)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  20. Expression for time travel based on diffusive wave theory: applicability and considerations

    Science.gov (United States)

    Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.

    2017-12-01

    Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the

  1. Theory of electromagnetic cyclotron wave growth in a time-varying magnetoplasma

    International Nuclear Information System (INIS)

    Gail, W.B.

    1990-01-01

    The time-dependent growth rate for parallel propagating electromagnetic cyclotron waves is derived for a magnetoplasma which is characterized by a time dependent compressional perturbation superimposed on an equilibrium configuration. Such perturbations are commonly observed in the Earth's magnetosphere as a consequence of resonant field line oscillations, solar-wind disturbances, and other phenomena. The time dependencies of the magnetic field, thermal plasma density, energetic particle distribution function, and resonance condition are first related through a single dimensionless time parameter b(t) using the ideal MHD assumption. For cases in which the particle distribution can be described by F(α, E) = f(E)sin a(E) α, the time dependent wave growth rate is then given by γ≅ γ 0 (1 + Λ) where γ 0 is the equilibrium growth rate and Λ(b) is a function of the equilibrium parameters and the time parameter b. The term |Λ| is generally small compared to 1, and the effect is a small modulation of the equilibrium growth rate by Λ. If the particle distribution is locally near marginal stability, however, |Λ| is large compared to 1, and the growth rate modulation can be much larger than for a distribution which is not near marginal stability. The results suggest that particle populations which are near marginal stability may be strongly influenced by perturbations in the magnetic field and plasma. Marginally stable distributions may thus play an important role in magnetospheric dynamics as well as determination of radiation belt characteristics

  2. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    Science.gov (United States)

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  3. Hyperspherical time-dependent method with semiclassical outgoing waves for double photoionization of helium

    International Nuclear Information System (INIS)

    Kazansky, A.K.; Selles, P.; Malegat, L.

    2003-01-01

    The hyperspherical time-dependent method with semiclassical outgoing waves for study of double photoionization of helium is presented. It is closely related to the hyperspherical R-matrix method with semiclassical outgoing waves [Phys. Rev. A 65, 032711 (2002)]: both split configuration space into two regions to solve the stationary inhomogeneous Schroedinger equation associated with the one-photon ionization problem, and both apply the same treatment to the outer region. However, the two methods differ radically in their treatments of the problem in the inner region: the most recent one applies a time-dependent approach for calculating the stationary wave function, while the previous one uses a R-matrix treatment. The excellent agreement observed between the triple differential cross sections obtained from these two basically different methods provides very strong support for both of them. Importantly, the very different numerical structures of both methods might make the most recent one a better candidate for investigating the near-threshold region

  4. Expert AE signal arrival detection

    Czech Academy of Sciences Publication Activity Database

    Chlada, Milan; Převorovský, Zdeněk

    2011-01-01

    Roč. 6, 3/4 (2011), s. 191-205 ISSN 1741-8410. [NDT in PROGRESS /4./. Praha, 05.11.2007-07.11.2007] R&D Projects: GA MPO(CZ) FR-TI1/274; GA ČR GA101/07/1518 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * signal arrival detection Subject RIV: BI - Acoustics http://www.inderscience.com/search/index.php?mainAction=search& action =record&rec_id=43215&prevQuery=&ps=10&m=or

  5. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    Science.gov (United States)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  6. X-36 arrival at Dryden

    Science.gov (United States)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel steady the X-36 Tailless Fighter Agility Research Aircraft following arrival at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The aircraft is being hoisted out of it's shipping crate. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds

  7. Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation

    International Nuclear Information System (INIS)

    Martínez, Arturo; Alcaraz, Raúl; Rieta, José J

    2012-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, increasing the risk of stroke and all-cause mortality. Its mechanisms are poorly understood, thus leading to different theories and controversial interpretation of its behavior. In this respect, it is unknown why AF is self-terminating in certain individuals, which is called paroxysmal AF (PAF), and not in others. Within the context of biomedical signal analysis, predicting the onset of PAF with a reasonable advance has been a clinical challenge in recent years. By predicting arrhythmia onset, the loss of normal sinus rhythm could be addressed by means of preventive treatments, thus minimizing risks for the patients and improving their quality of life. Traditionally, the study of PAF onset has been undertaken through a variety of features characterizing P-wave spatial diversity from the standard 12-lead electrocardiogram (ECG) or from signal-averaged ECGs. However, the variability of features from the P-wave time course before PAF onset has not been exploited yet. This work introduces a new alternative to assess time diversity of the P-wave features from single-lead ECG recordings. Furthermore, the method is able to assess the risk of arrhythmia 1 h before its onset, which is a relevant advance in order to provide clinically useful PAF risk predictors. Results were in agreement with the electrophysiological changes taking place in the atria. Hence, P-wave features presented an increasing variability as PAF onset approximates, thus suggesting intermittently disturbed conduction in the atrial tissue. In addition, high PAF risk prediction accuracy, greater than 90%, has been reached in the two considered scenarios, i.e. discrimination between healthy individuals and PAF patients and between patients far from PAF and close to PAF onset. Nonetheless, more long-term studies have to be analyzed and validated in future works. (paper)

  8. Effect of wave-function localization on the time delay in photoemission from surfaces

    International Nuclear Information System (INIS)

    Zhang, C.-H.; Thumm, U.

    2011-01-01

    We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a latt of attractive Gaussian-shaped core potentials of width σ. The parameter σ/a latt thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of σ/a latt latt > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near σ/a latt =0.3 from relatively large values below σ/a latt ∼0.2 to much smaller delays above σ/a latt ∼0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.

  9. Application of weighted early-arrival waveform inversion to shallow land data

    KAUST Repository

    Yu, Han

    2014-03-01

    Seismic imaging of deep land targets is usually difficult since the near-surface velocities are not accurately estimated. Recent studies have shown that inverting traces weighted by the energy of the early-arrivals can improve the accuracy of estimating shallow velocities. In this work, it is explained by showing that the associated misfit gradient function tends to be sensitive to the kinetics of wave propagation and insensitive to the dynamics. A synthetic example verifies the theoretical predictions and shows that the effects of noise and unpredicted amplitude variations in the inversion are reduced using this weighted early arrival waveform inversion (WEWI). We also apply this method to a 2D land data set for estimating the near-surface velocity distribution. The reverse time migration images suggest that, compared to the tomogram inverted directly from the early arrival waveforms, the WEWI tomogram provides a more convincing velocity model and more focused reflections in the deeper part of the image. © 2014 Elsevier B.V.

  10. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  11. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    Science.gov (United States)

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  12. Satellite- versus temperature-derived green wave indices for predicting the timing of spring migration of avian herbivores

    NARCIS (Netherlands)

    Shariati Najafabadi, M.; Najafabadi, M.S.; Darvishzadeh, R.; Skidmore, A.K.; Kölzsch, Andrea; Vrieling, A.; Nolet, Bart A.; Exo, Klaus-Michael; Meratnia, Nirvana; Havinga, Paul J.M.; Stahl, Julia; Toxopeus, A.G.

    2015-01-01

    According to the green wave hypothesis, herbivores follow the flush of spring growth of forage plants during their spring migration to northern breeding grounds. In this study we compared two green wave indices for predicting the timing of the spring migration of avian herbivores: the

  13. Quasi-Birth-and-Death Processes with Rational Arrival Process Components

    DEFF Research Database (Denmark)

    Bean, Nigel G.; Nielsen, Bo Friis

    to develop an analytic method for such a process, that parallels the analysis of a traditional QBD. We demonstrate the analysis by considering a queue where the arrival process and the sequence of service times are derived from two different RAPs that are not just Markovian Arrival processes. We also...... introduce an element of correlation between the arrival process and the sequence of service times.......In this paper we introduce the concept of a Quasi-Birth-and-Death process (QBD) with Rational Arrival Process components. We use the physical interpretation of a Rational Arrival Process (RAP), developed by Asmussen and Bladt, to consider such a Markov process. We exploit this interpretation...

  14. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    Science.gov (United States)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  15. Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond

    Science.gov (United States)

    Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore

    2017-10-01

    Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.

  16. Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian [University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yue, Jason [National Taiwan Normal University, Department of Physics, Taipei (China)

    2017-08-15

    We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T{sub p}, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T{sub n} ∝ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ∝ 10{sup -9}-10{sup -7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory. (orig.)

  17. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    International Nuclear Information System (INIS)

    Lin, Shi-Rong; Zhang, Ruo-Yang; Ma, Yi-Rong; Jia, Wei; Zhao, Qing

    2016-01-01

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  18. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shi-Rong [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Ruo-Yang [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Ma, Yi-Rong; Jia, Wei [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-07-29

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  19. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    International Nuclear Information System (INIS)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier

  20. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    Science.gov (United States)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.

  1. STEREO WAVES Capabilities for Studying Initiation and Early-time Dynamics of Solar Eruptions

    Science.gov (United States)

    Kaiser, M. L.

    2005-01-01

    In 2006, NASA will launch the twin STEREO spacecraft from Kennedy Space Center into a pair of heliocentric orbits near 1 AU such that the spacecraft will move away from Earth (ahead and behind) at about 22 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the heliosphere. Additionally, STEREO will study the mechanisms and sites of solar energetic particle (SEP) acceleration and determine 3-D time-dependent traces of the magnetic topology, temperature, density and velocity of the solar wind between the sun and Earth. To accomplish these goals, each STEREO spacecraft will be equipped with set of optical and particles and fields instruments including the STEREO WAVES (SWAVES) instrument which will use radio waves to track the location of CME-driven shocks (via type I1 bursts) and the 3-D topology of open field lines along which energetic particles flow (via the ubiquitous type I11 bursts). Type 11 bursts very often commence with a series of special type 111 bursts (called SA or type 111-L bursts) that likely coincide with CME liftoff time, thus SWAVES should be able to determine this time to within 15 sec. It is also known that the occurrence of SEP events is usually accompanied by type I1 radio bursts at decametric wavelengths as well as strong type III bursts at all wavelengths. SWAVES will be able to determine the initiation of these bursts to within 15 sec, and from the simultaneous measurements from the two spacecraft, should be able to triangulate their source locations. The utility of radio observations and the capabilities of SWAVES will be illustrated by showing a number of examples using the similar Wind WAVES instrument in combination with SOH0 coronagraph and RHESSI high energy X-ray/gamma ray observations.

  2. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Han, Yiping, E-mail: yphan@xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Ai, Xia [National Key Laboratory of Science and Technology on Test physics and Numerical Mathematical, Beijing 100076 (China); Liu, Xiuxiang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  3. Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.

  4. Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium

    International Nuclear Information System (INIS)

    Mori, W.B.; Katsouleas, T.

    1992-01-01

    A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with time varying dielectric properties [e.g., ε=ε(x-v 0 t)] is identified. In particular, when a laser ionizes a gas through which it propagates, a force is exerted on the medium at the ionization front that is proportional to (∇ε)E 2 rather than the usual (ε-1)∇E 2 . This force excites a wake in the plasma medium behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with 1D particle-in-cell simulations

  5. Cost, Time, and Risk Assessment of Different Wave Energy Converter Technology Development Trajectories: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Laird, Daniel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Costello, Ronan [Wave Venture; Roberts, Jesse [Sandia National Laboratories; Bull, Diana [Sandia National Laboratories; Babarit, Aurelien [Ecole Centrale de Nantes; Nielsen, Kim [Ramboll; Ferreira, Claudio Bittencourt [DNV-GL; Kennedy, Ben [Wave Venture

    2017-09-14

    This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.

  6. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  7. A Combined Time Domain Impedance Probe And Plasma Wave Receiver System For Small Satellite Applications.

    Science.gov (United States)

    Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.

    2017-12-01

    A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.

  8. Noncontact sphygmomanometer based on pulse-wave transit time between the face and hand

    Science.gov (United States)

    Nakano, Kazuya; Ohnishi, Takashi; Nishidate, Izumi; Haneishi, Hideaki

    2018-02-01

    Systolic blood pressure (SBP) is highly sensitive to various factors such as psychological stress, and hence its continuous monitoring is essential to evaluate different health conditions. However, conventional sphygmomanometers cannot continuously measure SBP given the time-consuming setup based on a pressure cuff. Moreover, continuous biological signal monitoring is more comfortable when no sensors are attached. A solution for continuous SBP estimation is based on pulse transit time (PTT), which determines the time difference between two pulse waves at different body parts. In previous studies, we successfully measured the PTT using a contactless setup composed by two digital color cameras recording the face and hand of subjects. Then, the acquired images were transformed into blood volume by combining multiple regression analysis and a Monte Carlo method. As a result, the delay among images allowed to determine the PPT from pulse waves. In this study, we simultaneously measured SBP and PTT by using a sphygmomanometer and the two cameras, respectively. We evaluated SBP increases (i.e., stressful situations) and the corresponding PPT by asking participants to either grasp a handgrip or momentarily interrupting breath. We also determined the SBP and PTT without asking for such exercises. Comparison results show that the mean PTT under stress was significantly lower than that without stress, which is consistent with an increased SBP. Finally, we related the SBP and PTT by a nonlinear formula with a coefficient of determination of 0.59, thus confirming the effectiveness of the proposed system.

  9. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  10. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    Science.gov (United States)

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  11. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  12. Current density waves in open mesoscopic rings driven by time-periodic magnetic fluxes

    International Nuclear Information System (INIS)

    Yan Conghua; Wei Lianfu

    2010-01-01

    Quantum coherent transport through open mesoscopic Aharonov-Bohm rings (driven by static fluxes) have been studied extensively. Here, by using quantum waveguide theory and the Floquet theorem we investigate the quantum transport of electrons along an open mesoscopic ring threaded by a time-periodic magnetic flux. We predicate that current density waves could be excited along such an open ring. As a consequence, a net current could be generated along the lead with only one reservoir, if the lead additionally connects to such a normal-metal loop driven by the time-dependent flux. These phenomena could be explained by photon-assisted processes, due to the interaction between the transported electrons and the applied oscillating external fields. We also discuss how the time-average currents (along the ring and the lead) depend on the amplitude and frequency of the applied oscillating fluxes.

  13. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang

    2013-07-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.

  14. Improved modified energy ratio method using a multi-window approach for accurate arrival picking

    Science.gov (United States)

    Lee, Minho; Byun, Joongmoo; Kim, Dowan; Choi, Jihun; Kim, Myungsun

    2017-04-01

    To identify accurately the location of microseismic events generated during hydraulic fracture stimulation, it is necessary to detect the first break of the P- and S-wave arrival times recorded at multiple receivers. These microseismic data often contain high-amplitude noise, which makes it difficult to identify the P- and S-wave arrival times. The short-term-average to long-term-average (STA/LTA) and modified energy ratio (MER) methods are based on the differences in the energy densities of the noise and signal, and are widely used to identify the P-wave arrival times. The MER method yields more consistent results than the STA/LTA method for data with a low signal-to-noise (S/N) ratio. However, although the MER method shows good results regardless of the delay of the signal wavelet for signals with a high S/N ratio, it may yield poor results if the signal is contaminated by high-amplitude noise and does not have the minimum delay. Here we describe an improved MER (IMER) method, whereby we apply a multiple-windowing approach to overcome the limitations of the MER method. The IMER method contains calculations of an additional MER value using a third window (in addition to the original MER window), as well as the application of a moving average filter to each MER data point to eliminate high-frequency fluctuations in the original MER distributions. The resulting distribution makes it easier to apply thresholding. The proposed IMER method was applied to synthetic and real datasets with various S/N ratios and mixed-delay wavelets. The results show that the IMER method yields a high accuracy rate of around 80% within five sample errors for the synthetic datasets. Likewise, in the case of real datasets, 94.56% of the P-wave picking results obtained by the IMER method had a deviation of less than 0.5 ms (corresponding to 2 samples) from the manual picks.

  15. On Long-Time Instabilities in Staggered Finite Difference Simulations of the Seismic Acoustic Wave Equations on Discontinuous Grids

    KAUST Repository

    Gao, Longfei; Ketcheson, David I.; Keyes, David E.

    2017-01-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application

  16. Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2018-06-01

    We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low-frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters - namely eccentricity and environmental coupling, which can lead to differences of ˜5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜10-15 yr) and severe red noise (˜20-30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.

  17. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity

    International Nuclear Information System (INIS)

    Ferraioli, Giovanna; Tinelli, Carmine; Zicchetti, Mabel; Above, Elisabetta; Poma, Gianluigi; Di Gregorio, Marta; Filice, Carlo

    2012-01-01

    Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer™ (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93–0.98) and 0.93 (95% confidence interval, 0.90–0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69–0.98) and 0.65 (95% confidence interval, 0.39–0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82–0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.

  18. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraioli, Giovanna, E-mail: giovanna.ferraioli@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Tinelli, Carmine, E-mail: ctinelli@smatteo.pv.it [Clinical Epidemiology and Biometric Unit, IRCCS San Matteo Hospital Foundation, Viale Golgi 19, 27100 Pavia (Italy); Zicchetti, Mabel, E-mail: mabel.zicchetti@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Above, Elisabetta, E-mail: betta.above@gmail.com [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Poma, Gianluigi, E-mail: gigi.poma@libero.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Di Gregorio, Marta, E-mail: martadigregorio@virgilio.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Filice, Carlo, E-mail: carfil@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy)

    2012-11-15

    Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer Trade-Mark-Sign (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93-0.98) and 0.93 (95% confidence interval, 0.90-0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69-0.98) and 0.65 (95% confidence interval, 0.39-0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82-0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.

  19. Time-domain analysis of second-harmonic generation of primary Lamb wave propagation in an elastic plate

    International Nuclear Information System (INIS)

    Deng Ming-Xi; Xiang Yan-Xun

    2010-01-01

    Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform

  20. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    Science.gov (United States)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  1. Real-time beam tracing for control of the deposition location of electron cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M., E-mail: matthias.reich@ipp.mpg.de; Bilato, R.; Mszanowski, U.; Poli, E.; Rapson, C.; Stober, J.; Volpe, F.; Zille, R.

    2015-11-15

    Highlights: • We successfully integrated a real-time EC beam tracing code at ASDEX Upgrade. • The calculation of EC beam deposition location is fast enough for control purposes. • The accuracy of the deposition location calculation exceeds equivalent measurements. • The implementation method is by design portable to larger fusion devices. - Abstract: Plasma control techniques that use electron cyclotron (EC) resonance heating and current drive such as control of neoclassical tearing modes require accurate control of the deposition location of EC beams. ASDEX Upgrade has successfully implemented a real-time version of the beam-tracing code TORBEAM into its real-time diagnostic system to act as a globally available module that calculates current deposition location and its sensitivity from other real-time diagnostic measurements for all its moveable EC wave launchers. Based on a highly (100×) accelerated version of TORBEAM, the software implementation as a diagnostic process uses parallelization and achieves cycle times of 15–20 ms for determining the radial deposition location of 12 beams in the plasma. This cycle time includes data input–output overhead arising from the use of available real-time signals. The system is by design portable to other machines such as ITER.

  2. Time-delay interferometric ranging for space-borne gravitational-wave detectors

    International Nuclear Information System (INIS)

    Tinto, Massimo; Vallisneri, Michele; Armstrong, J.W.

    2005-01-01

    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser-phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays, and we study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as time-delay interferometric ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times ∼10 4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated interspacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the Synthetic LISA software package

  3. Shear waves in near surface 3D media-SH-wavefield separation, refraction time migration and tomography

    Science.gov (United States)

    Woelz, Susanne; Rabbel, Wolfgang; Mueller, Christof

    2009-05-01

    When investigating topographically irregular layers in the near surface with shear waves, it is of particular importance to consider the 3D-nature of wave propagation. Depending on the layer geometry and on the spatial arrangement of source- and receiver-points significant lateral ray bending can occur causing side-swipe traveltime effects and complicated polarisation patterns. As an example we present a study where 3D-shear wave refraction measurements were applied in order to reconstruct the geometry of a silted ancient harbour basin at the archaeological site of Miletus (West Turkey). Seismic signals were generated with a three-component vector force and recorded with three-component geophones arranged in 2D-arrays of 1 m grid spacing. Since a correct identification of refracted S-wave arrivals is a precondition to traveltime interpretation we investigated a method to decompose these wavefields with respect to their polarisation and azimuth of propagation. Taking advantage of the 2D-geophone arrangement we applied the following processing approach: In case of general lateral heterogeneity a decomposition can be performed by applying the curl and divergence operations to the vector wavefields recorded in 2D-arrays. The separated tangential and normal components to the wavefront in a plane are finally enhanced by combining the different force components in order to eliminate the radiation characteristics of the source. The decomposed wavefield was then the basis for 3D-refractor imaging through a newly formulated map migration of the refracted traveltime field. This technique was developed to map coherent basement structure on the meter-scale. Supplemental tomographic inversion using the refractor topography model as input provided a plausible velocity model, exhibiting characteristic anomalies such as a prominent low velocity zone overlain by a high velocity layer in the refractor. The seismic velocity structure suggests that the harbour basin was locally filled

  4. Principles of space-time-matter cosmology, particles and waves in five dimensions

    CERN Document Server

    Overduin, James

    2018-01-01

    This book is a summing up of the prospects for unification between relativity and particle physics based on the extension of Einstein's theory of General Relativity to five dimensions. This subject was first established by Paul Wesson in his previous best-seller, Space-Time-Matter, and discussed from a different perspective in Five-Dimensional Physics, both published by World Scientific in 1999 and 2006 respectively. This third book brings the field up to date and details many new developments and connections to particle theory and wave mechanics in particular. It was in largely finished form at the time of Paul Wesson's untimely death in 2015, and has been completed and expanded by his former student and longtime collaborator, James Overduin.

  5. Wave optics modeling of real-time holographic wavefront compensation systems using OSSim

    Science.gov (United States)

    Carbon, Margarita A.; Guthals, Dennis M.; Logan, Jerry D.

    2005-08-01

    OSSim (Optical System Simulation) is a wave-optics, time-domain simulation toolbox with both optical and data processing components developed for adaptive optics (AO) systems. Diffractive wavefront control elements have recently been added that accurately model optically and electrically addressed spatial light modulators as real time holographic (RTH) devices in diffractive wavefront control systems. The developed RTH toolbox has found multiple applications for a variety of Boeing programs in solving problems of AO system analysis and design. Several complex diffractive wavefront control systems have been modeled for compensation of static and dynamic aberrations such as imperfect segmented primary mirrors and atmospheric and boundary layer turbulence. The results of OSSim simulations of RTH wavefront compensation show very good agreement with available experimental data.

  6. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    International Nuclear Information System (INIS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-01-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd 3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho 3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb 3+ to Yb 3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar + laser, Kr + laser, Ti:sapphire laser, etc

  7. Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure

    Science.gov (United States)

    Xie, J. "; Schaff, D. P.

    2010-12-01

    Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.

  8. Strengthening economy through tourism sector by tourist arrival prediction

    Science.gov (United States)

    Supriatna, A.; Subartini, B.; Hertini, E.; Sukono; Rumaisha; Istiqamah, N.

    2018-03-01

    Tourism sector has a tendency to be proposed as a support for national economy to many countries with various of natural resources, such as Indonesia. The number of tourist is very related with the success rate of a tourist attraction, since it is also related with planning and strategy. Hence, it is important to predict the climate of tourism in Indonesia, especially the number of domestic or international tourist in the future. This study uses Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method to predict the number of tourist arrival to tourism strategic areas in Nusa Tenggara Barat. The prediction was done using the international and domestic tourist arrival to Nusa Tenggara Barat data from January 2008 to June 2016. The established SARIMA method was (0,1,1)(0,0,2)12 with MAPE error of 15.76. The prediction for the next six time periods showed that the highest number of tourist arrival is during September 2016 with 330,516 tourist arrivals. Prediction of tourist arrival hopefully might be used as reference for local and national government to make policies to strengthen national economy for a long period of time

  9. Frequency variations of gravity waves interacting with a time-varying tide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Zhang, S.D.; Yi, F.; Huang, K.M.; Gan, Q.; Gong, Y. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan, Hubei (China); Zhang, Y.H. [Nanjing Univ. of Information Science and Technology (China). College of Hydrometeorolgy

    2013-11-01

    Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when aGW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal-GW interactions are more complicated than usually taken into account by GW parameterizations in global models.

  10. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  11. Real-Time Characterization of Materials Degradation Using Leaky Lamb Wave

    Science.gov (United States)

    Shiuh, S.; Bar-Cohen, Y.

    1997-01-01

    Leaky Lamb wave (LLW) propagation in composite materials has been studied extensively since it was first observed in 1982. The wave is induced using a pitch-catch arrangement and the plate wave modes are detected by searching minima in the reflected spectra.

  12. Imaging the Mediterranean upper mantle by p- wave travel time tomography

    Directory of Open Access Journals (Sweden)

    A. Morelli

    1997-06-01

    Full Text Available Travel times of P-waves in the Euro-Mediterranean region show strong and consistent lateral variations, which can be associated to structural heterogeneity in the underlying crust and mantle. We analyze regional and tele- seismic data from the International Seismological Centre data base to construct a three-dimensional velocity model of the upper mantle. We parameterize the model by a 3D grid of nodes -with approximately 50 km spacing -with a linear interpolation law, which constitutes a three-dimensional continuous representation of P-wave velocity. We construct summary travel time residuals between pairs of cells of the Earth's surface, both inside our study area and -with a broader spacing -on the whole globe. We account for lower mantle heterogeneity outside the modeled region by using empirical corrections to teleseismic travel times. The tomo- graphic images show generai agreement with other seismological studies of this area, with apparently higher detail attained in some locations. The signature of past and present lithospheric subduction, connected to Euro- African convergence, is a prominent feature. Active subduction under the Tyrrhenian and Hellenic arcs is clearly imaged as high-velocity bodies spanning the whole upper mantle. A clear variation of the lithospheric structure beneath the Northem and Southern Apennines is observed, with the boundary running in correspon- dence of the Ortona-Roccamonfina tectonic lineament. The western section of the Alps appears to have better developed roots than the eastern, possibly reflecting à difference in past subduction of the Tethyan lithosphere and subsequent continental collision.

  13. Is timing noise important in the gravitational wave detection of neutron stars?

    International Nuclear Information System (INIS)

    Jones, D.I.

    2004-01-01

    In this paper we ask whether the phenomenon of timing noise long known in electromagnetic pulsar astronomy is likely to be important in gravitational wave (GW) observations of spinning-down neutron stars. We find that timing noise is strong enough to be of importance only in the young pulsars, which must have larger triaxialities than theory predicts for their GW emission to be detectable. However, assuming that their GW emission is detectable, we list the pulsars for which timing noise is important, either because it is strong enough that its neglect by the observer would render the source undetectable or else because it is a measurable feature of the GW signal. We also find that timing noise places a limit on the observation duration of a coherent blind GW search, and suggest that hierarchical search techniques might be able to cope with this problem. Demonstration of the presence or absence of timing noise in the GW channel would give a new probe of neutron star physics

  14. Mission Specialist Scott Parazynski arrives at KSC

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski notes the time on his watch upon his late arrival aboard a T-38 jet at the Shuttle Landing Facility. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  15. Time-lapse changes of P- and S-wave velocities and shear wave splitting in the first year after the 2011 Tohoku earthquake, Japan: shallow subsurface

    Science.gov (United States)

    Sawazaki, Kaoru; Snieder, Roel

    2013-04-01

    We detect time-lapse changes in P- and S-wave velocities (hereafter, VP and VS, respectively) and shear wave splitting parameters associated with the 2011 Tohoku earthquake, Japan, at depths between 0 and 504 m. We estimate not only medium parameters but also the 95 per cent confidence interval of the estimated velocity change by applying a new least squares inversion scheme to the deconvolution analysis of KiK-net vertical array records. Up to 6 per cent VS reduction is observed at more than half of the analysed KiK-net stations in northeastern Japan with over 95 per cent confidence in the first month after the main shock. There is a considerable correlation between the S-wave traveltime delay and the maximum horizontal dynamic strain (MDS) by the main shock motion when the strain exceeds 5 × 10- 4 on the ground surface. This correlation is not clearly observed for MDS at the borehole bottom. On the contrary, VP and shear wave splitting parameters do not show systematic changes after the Tohoku earthquake. These results indicate that the time-lapse change is concentrated near the ground surface, especially in loosely packed soil layers. We conclude that the behaviour of VP, VS and shear wave splitting parameters are explained by the generation of omnidirectional cracks near the ground surface and by the diffusion of water in the porous subsurface. Recovery of VS should be related to healing of the crack which is proportional to the logarithm of the lapse time after the main shock and/or to decompaction after shaking.

  16. Guided Waves in Structures for SHM The Time - domain Spectral Element Method

    CERN Document Server

    Ostachowicz, Wieslaw; Krawczuk, Marek; Zak, Arkadiusz

    2011-01-01

    Presents the state of the art in the modelling, analysis and experimental investigation of elastic wave propagation using a technique of rapidly increasing interest and development Addressing an important issue in the field of guided-wave-based damage identification and structural health monitoring,Guided Waves in Structures for SHM presents the modelling, analysis and experimental investigation of elastic wave propagation in engineering structures made of isotropic or composite materials. The authors begin by summarising present-day knowledge on elastic wave propagation in solids, focusing on

  17. SOUND-SPEED TOMOGRAPHY USING FIRST-ARRIVAL TRANSMISSION ULTRASOUND FOR A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  18. Geological structure analysis in Central Java using travel time tomography technique of S waves

    International Nuclear Information System (INIS)

    Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.

    2016-01-01

    Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho. (paper)

  19. Analysis of a time fractional wave-like equation with the homotopy analysis method

    International Nuclear Information System (INIS)

    Xu Hang; Cang Jie

    2008-01-01

    The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, when h f =h g =-1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus

  20. Effective modeling and reverse-time migration for novel pure acoustic wave in arbitrary orthorhombic anisotropic media

    Science.gov (United States)

    Xu, Shigang; Liu, Yang

    2018-03-01

    The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.