WorldWideScience

Sample records for waters chemistry transport

  1. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  2. Evaluating the effects of variable water chemistry on bacterial transport during infiltration.

    Science.gov (United States)

    Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S

    2013-07-01

    Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10×10(-3)min(-1) to 3.71×10(-3)min(-1) due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10×10(-3)min(-1) in a constant

  3. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  4. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Rout, D.; Upadhyaya, T.C.; Ravindranath; Selvinayagam, P.; Sundar, R.S.

    2015-01-01

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1 st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  5. PWR water chemistry controls: a perspective on industry initiatives and trends relative to operating experience and the EPRI PWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Choi, S.; Haas, C.; Pender, M.; Perkins, D.

    2010-01-01

    An effective PWR water chemistry control program must address the following goals: Minimize materials degradation (e.g., PWSCC, corrosion of fuel, corrosion damage of steam generator (SG) tubes); Maintain fuel integrity and good performance; Minimize corrosion product transport (e.g., transport and deposition on the fuel, transport into the SGs where it can foul tube surfaces and create crevice environments for the concentration of corrosive impurities); Minimize dose rates. Water chemistry control must be optimized to provide overall improvement considering the sometimes variant constraints of the goals listed above. New technologies are developed for continued mitigation of materials degradation, continued fuel integrity and good performance, continued reduction of corrosion product transport, and continued minimization of plant dose rates. The EPRI chemistry program, in coordination with other EPRI programs, strives to improve these areas through application of chemistry initiatives, focusing on these goals. This paper highlights the major initiatives and issues with respect to PWR primary and secondary system chemistry and outlines the recent, on-going, and proposed work to effectively address them. These initiatives are presented in light of recent operating experience, as derived from EPRI's PWR chemistry monitoring and assessment program, and EPRI's water chemistry guidelines. (author)

  6. Water chemistry and materials degradation in LWR'S

    International Nuclear Information System (INIS)

    Haenninen, H.; Toerroenen, K.; Aaltonen, P.

    1994-01-01

    Water chemistry plays a major role in corrosion, in erosion corrosion and in activity transport in NPPs; it impacts upon the operational safety of LWRs in two main ways: integrity of pressure boundary materials and activity transport and out-of-core radiation fields. A good control of water chemistry can significantly reduce these problems and improve plant safety, but economic pressures are leading to more rigorous operating conditions: fuel burnups are to be increased, higher efficiencies are to be achieved by running at higher temperatures and plant lifetimes are to be extended. Typical water chemistry specifications used in PWR and BWR plants are presented and the chemistry optimization is discussed. The complex interplay of metallurgical, mechanical and environmental factors in environmental sensitive cracking is shown, with details on studies for carbon steels, stainless steels and nickel base alloys. 20 refs., 8 figs., 4 tabs

  7. The water chemistry of CANDU PHW reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-01-01

    This review will discuss the chemistry of the three major water circuits in a CANDU-PHW reactor, viz., the Primary Heat Transport (PHT) water, the moderator and the boiler water. An important consideration for the PHT chemistry is the control of corrosion and of the transport of corrosion products to minimize the growth of radiation fields. In new reactors the PHT will be allowed to boil, requiring reconsideration of the methods used to radiolytic oxygen and elevate the pH. Separation of the moderator from the PHT in the pressure-tubed CANDU design permits better optimization of the chemistry of each system, avoiding the compromises necessary when the same water serves both functions. Major objectives in moderator chemistry are to control (a) the radiolytic decomposition of D 2 0; (b) the concentration of soluble neutron poisons added to adjust reactivity; and (c) the chemistry of shutdown systems. The boiler water and its feed water are treated to avoid boiler tube corrosion, both during normal operation and when perturbations are caused to the feed by, for example, leaks in the condenser tubes which permit ingress of untreated condenser cooling water. Development of a system for automatic analysis and control of feed water to give rapid, reliable response to abnormal conditions is a novel feature which has been developed for incorporation in future CANDU-PHW reactors. (author)

  8. Water chemistry and behavior of materials in PWRs and BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, P; Hanninen, H [VTT Manufacturing Technology, Espoo (Finland)

    1997-09-01

    Water chemistry plays a major role in corrosion and in activity transport in NPP`s. Although a full understanding of all mechanisms involved in corrosion does not exist, controlling of the water chemistry has achieved good results in recent years. Water chemistry impacts upon the operational safety of LWR`s in two main ways: integrity of pressure boundary materials and, activity transport and out-of-core radiation fields. This paper will describe application of water chemistry control in operating reactors to prevent corrosion. Some problems experienced in LWR`s will be reviewed for the design of the nuclear heating reactors (NHR). (author). 18 refs, 10 figs, 5 tabs.

  9. Water chemistry and behavior of materials in PWRs and BWRs

    International Nuclear Information System (INIS)

    Aaltonen, P.; Hanninen, H.

    1997-01-01

    Water chemistry plays a major role in corrosion and in activity transport in NPP's. Although a full understanding of all mechanisms involved in corrosion does not exist, controlling of the water chemistry has achieved good results in recent years. Water chemistry impacts upon the operational safety of LWR's in two main ways: integrity of pressure boundary materials and, activity transport and out-of-core radiation fields. This paper will describe application of water chemistry control in operating reactors to prevent corrosion. Some problems experienced in LWR's will be reviewed for the design of the nuclear heating reactors (NHR). (author). 18 refs, 10 figs, 5 tabs

  10. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  11. Water chemistry in boiling water reactors - A Leibstadt-specific overview

    International Nuclear Information System (INIS)

    Sarott, F.-A.

    2005-01-01

    The boiling water reactor (BWR) consists of two main water circuits: the water-steam cycle and the main cooling water system. In the introduction, the goals and tasks of the BWR plant chemistry are described. The most important objectives are the prevention of system degradation by corrosion and the minimisation of radiation fields. Then a short description of the BWR operation principle, including the water steam cycle, the transport of various impurities by the steam, removing impurities from the condensate, the reactor water clean-up system, the balance of plant and the main cooling water system, is given. Subsequently, the focus is set on the water-steam cycle chemistry. In order to fulfil the somewhat contradictory requirements, the chemical parameters must be well balanced. This is achieved by the water chemistry control method called 'normal water chemistry'. Other additional methods are used for the solution to different problems. The 'zinc addition method' is applied to reduce high radiation levels around the recirculation loops. The 'hydrogen water chemistry method' and the 'noble metal chemical addition method' are used to protect the reactor core components and piping made of stainless steel against stress corrosion cracking. This phenomenon has been observed for about 40 years and is partly due to the strong oxidising conditions in the BWR water. Both mitigation methods are used by the majority of the BWR plants all over the world (including the two Swiss NPPs Muehleberg and Leibstadt). (author)

  12. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  13. Chemistry control challenges in a supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Guzonas, David; Tremaine, Peter; Jay-Gerin, Jean-Paul

    2009-01-01

    The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers to predict and control water chemistry to minimize corrosion and the transport of corrosion products and radionuclides. Meeting this goal requires an enhanced understanding of water chemistry as the temperature and pressure are raised beyond the critical point. A key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis; preliminary studies suggest markedly different behavior than that predicted from simple extrapolations from conventional water-cooled reactor behavior. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. The behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, anions introduced via make-up water or from ion-exchange resins, and radionuclides (e.g., 60 Co) needs to be understood. The formation of neutral complexes increases with temperature, and can become important under near-critical and supercritical conditions; the most important region is from 300-450 C, where the properties of water change dramatically, and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (active and inactive), leading to (a) increased deposition on fuel cladding surfaces, and (b) increased out-of-core radiation fields and worker dose, must be assessed. There are also significant challenges associated with chemistry sampling and monitoring in an SCWR. The typical methods used in current reactor designs (grab samples, on-line monitors at the end of a cooled, depressurized sample line) will be inadequate, and in-situ measurements of key parameters will be required. This paper describes current Canadian activities in SCWR chemistry and chemistry

  14. Primary Water Chemistry Control during a Planned Outage at Bruce Power

    International Nuclear Information System (INIS)

    Ma, Guoping; Nashiem, Rod; Matheson, Shane; Yabar, Berman; Harper, Bill; Roberts, John G.

    2012-09-01

    Bruce Power has developed a comprehensive outage water chemistry program, which includes both primary and secondary chemistry requirements during planned outages. The purpose of the program is to emphasize the chemistry requirements during outages and subsequent start-ups in order to maintain the integrity of the systems, minimise activity transport and radiation fields, reduce the Carbon-14 release, and to ensure that the requirements are integrated with the outage management program. Prior to a planned outage, Station Chemical Technical Sections identify outage chemistry requirements to Operations and Outage Planning and ensure that work necessary to correct system chemistry issues is within outage work scope. The outage water chemistry program provides direction for establishing alternative sampling locations as demanded by the system configuration during the outage and identifies outage prerequisites for nuclear system purification capabilities. These requirements are contained in an outage checklist. The paper mainly highlights the primary water chemistry issues and chemistry control strategies during planned outages and discusses challenges and successes. (authors)

  15. Survey of PWR water chemistry

    International Nuclear Information System (INIS)

    Gorman, J.

    1989-02-01

    This report surveys available information regarding primary and secondary water chemistries of pressurized water reactors (PWRs) and the impact of these water chemistries on reactor operation. The emphasis of the document is on aspects of water chemistry that affect the integrity of the primary pressure boundary and the radiation dose associated with maintenance and operation. The report provides an historical overview of the development of primary and secondary water chemistries, and describes practices currently being followed. Current problems and areas of research associated with water chemistry are described. Recommendations for further research are included. 183 refs., 9 figs., 19 tabs

  16. Managing the water chemistry of a CANDU reactor with an expert system

    International Nuclear Information System (INIS)

    Lamirande, S.; Roberge, P.R.

    1990-01-01

    The aim of this project was to capture the expertise of Ontario Hydro in the water chemistry of the heat transport system (HTS) of the CANDU nuclear reactor and transform it into an Expert System prototype. The end product is an Expert System which can realistically diagnose situations and recommend proper courses of action based on the user's water chemistry analysis

  17. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  18. Control of water chemistry in operating reactors

    International Nuclear Information System (INIS)

    Riess, R.

    1997-01-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ''modified'' B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs

  19. Control of water chemistry in operating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-02-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ``modified`` B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs.

  20. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.

    Science.gov (United States)

    Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-08-01

    The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  1. Water chemistry regimes for VVER-440 units: water chemistry influence on fuel cladding behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.

    1999-01-01

    In this lecture next problems of water chemistry influence on fuel cladding behaviour for VVER-440 units are presented: primary coolant technologies; water chemistry specification and control; fuel integrity considerations; zirconium alloys cladding corrosion (corrosion versus burn-up; water chemistry effect; crud deposition; hydrogen absorption; axial offset anomaly); alternatives for the primary coolant regimes

  2. Proceedings of the water chemistry and materials performance conference

    International Nuclear Information System (INIS)

    Barber, D.

    1986-01-01

    The proceedings contain 11 papers dealing with primary and secondary side water chemistry in CANDU reactors, with the associated problems of activity transport and steam generator corrosion, and also with the use of decontaminating solutions. The individual papers have been abstracted separately

  3. Proceedings of the water chemistry and materials performance conference

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D [ed.; Atomic Energy of Canada Ltd., Sheridan Park, ON (Canada). CANDU Operations

    1987-12-31

    The proceedings contain 11 papers dealing with primary and secondary side water chemistry in CANDU reactors, with the associated problems of activity transport and steam generator corrosion, and also with the use of decontaminating solutions. The individual papers have been abstracted separately.

  4. WATER CHEMISTRY ASSESSMENT METHODS

    Science.gov (United States)

    This section summarizes and evaluates the surfce water column chemistry assessment methods for USEPA/EMAP-SW, USGS-NAQA, USEPA-RBP, Oho EPA, and MDNR-MBSS. The basic objective of surface water column chemistry assessment is to characterize surface water quality by measuring a sui...

  5. Optimum Water Chemistry in radiation field buildup control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien, C. [Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1995-03-01

    Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of low exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.

  6. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  7. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  8. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  9. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Fruzzetti, K.; Garcia, S. [Electric Power Research Inst., Palo Alto, California (United States); Eaker, R. [Richard W. Eaker, LLC, Matthews, North Carolina (United States); Giannelli, J.; Tangen, J. [Finetech, Inc., Parsippany, New Jersey (United States); Gorman, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Sawochka, S. [NWT Corp., San Jose, California (United States)

    2010-07-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  10. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Kim, K.; Fruzzetti, K.; Garcia, S.; Eaker, R.; Giannelli, J.; Tangen, J.; Gorman, J.; Marks, C.; Sawochka, S.

    2010-01-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  11. VVER operational experience - effect of preconditioning and primary water chemistry on radioactivity build-up

    International Nuclear Information System (INIS)

    Zmitko, M.; Kysela, J.; Dudjakova, K.; Martykan, M.; Janesik, J.; Hanus, V.; Marcinsky, P.

    2004-01-01

    The primary coolant technology approaches currently used in VVER units are reviewed and compared with those used in PWR units. Standard and modified water chemistries differing in boron-potassium control are discussed. Preparation of the VVER Primary Water Chemistry Guidelines in the Czech Republic is noted. Operational experience of some VVER units, operated in the Czech Republic and Slovakia, in the field of the primary water chemistry, and radioactivity transport and build-up are presented. In Mochovce and Temelin units, a surface preconditioning (passivation) procedure has been applied during hot functional tests. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. The first operational experience obtained in the course of beginning of these units operation is presented mainly with respect to the corrosion products coolant and surface activities. Effect of the initial passivation performed during hot functional tests and the primary water chemistry on corrosion products radioactivity level and radiation situation is discussed. (author)

  12. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  13. Water chemistry: cause and control of corrosion degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2008-01-01

    The corrosion degradation of a material is directly determined by the water chemistry, material (composition, fabrication procedure and microstructure) and by the stress/strain in the material under operating conditions. Water chemistry plays an important role in both uniform corrosion and localized forms of corrosion of materials. Once we understand how water chemistry is contributing to corrosion of a material, it is logical to modify/change that water chemistry to control the corrosion degradation. In nuclear power plants, different water chemistries have been used in different components/systems. This paper will cover the origin of corrosion degradation in the Primary Heat Transport system of different reactor types, Steam Generator tubing, secondary circuit pipelines, service water pipelines and auxiliary systems and establish the role of water chemistry in causing corrosion degradation. The history of changes in water chemistry adopted in these systems to control corrosion degradation is also described. It is shown by examples that there is an obvious limitation in changing water chemistry to control corrosion degradation and in those cases, a change of material or change of the state of stresses/fabrication procedure becomes necessary. The role of water chemistry as a causative factor and also as a controlling parameter on particular types of corrosion degradation e.g. stress corrosion cracking, flow accelerated corrosion, pitting, crevice corrosion is illustrated. It will be shown that increase in dissolved oxygen content (due to radiolysis in nuclear reactors) is sufficient to make even the de-mineralized water to cause stress corrosion cracking in Boiling Water Reactors. Hydrogen Water Chemistry (by hydrogen injection) to control dissolved oxygen is shown to control the stress corrosion cracking. However, it is not possible to control dissolved oxygen at all parts of the Boiling Water Reactors. Therefore, a further refinement in terms of noble metal

  14. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  15. Activation analysis in water chemistry

    International Nuclear Information System (INIS)

    Szabo, A.; Toth, A.

    1978-01-01

    The potential applications of activation analysis in water chemistry are discussed. The principle, unit operations, the radiation sources and measuring instruments of activation analysis are described. The sensitivity of activation analysis is given in tabulated form for some elements of major importance in water chemistry and the elements readily accessible to determination by measurement of the spontaneous gamma radiation are listed. A few papers selected from the recent international professional literature are finally reviewed, in which the authors report on the results obtained by activation analysis applied to water chemistry. (author)

  16. Secondary water chemistry control practices and results of the Japanese PWR plants

    International Nuclear Information System (INIS)

    Maeda, Akihiro; Shoda, Yasuhiko; Ishihara, Nobuo; Murata, Kazutoyo; Fujiwara, Hiroyuki; Hayakawa, Hitoshi; Matsuda, Tadashi

    2012-09-01

    In Japan, since the start of the operation of the first PWR plant, Mihama Unit-1 in 1970, 24 PWR plants have been built by 2010, and all of them are in operation. Due to the plant-specific needs of management, and by flexibly incorporating the state-of-the-art insights into the design, the system configurations of the plants vary so many as 15 types. Meanwhile, the geographical feature of Japan makes all the Japanese PWR plants to have condensers cooled by sea water, and all the plants have a common system with a full-flow Condensate Polisher System (CPS). To prevent corrosion, continued improvements of the secondary water chemistry management has been performed like other countries, and one of the major features of the Japanese PWR plants is an enhanced provision for the condenser leakage. The water quality of SG (Steam Generator) has been significantly improved by the provision for the sea water leakage, in combination with other improvements in water chemistry management. Also in Japan, almost all of the treatments of the spent polisher resin and the wastewater are performed within the power plant sites. To facilitate the treatment of the waste water and the regeneration of the spent resins, either ammonia or ETA (Ethanol Amine) is selected as the pH adjustment agent for the secondary system water. Also at the ammonia treatment, high pH accomplishes the inhibition of the piping wall thinning and the lower iron transportation into SGs. In addition, the iron transported into the SG is removed by the chemical conditioning treatment called ASCA (Advanced Scale Conditioning Agent). This provides the effective recovery of the SG heat-transfer performance, and the improved SG support plate BEC (Broached Egg Crate) hole blockage rates. Basically in Japan, the secondary water chemistry management has been improved based on a single basic specification, for the variety of the plant configurations, with the plant-specific investigations and analyses. This paper summarizes

  17. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  18. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  19. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  20. BWR water chemistry guidelines and PWR primary water chemistry guidelines in Japan – Purpose and technical background

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirotaka, E-mail: kawamuh@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (Japan); Hirano, Hideo [Central Research Institute of Electric Power Industry (Japan); Katsumura, Yousuke [University of Tokyo (Japan); Uchida, Shunsuke [Tohoku University (Japan); Mizuno, Takayuki [Mie University (Japan); Kitajima, Hideaki; Tsuzuki, Yasuo [Japan Nuclear Safety Institute (Japan); Terachi, Takumi [Institute of Nuclear Safety System, Inc. (Japan); Nagase, Makoto; Usui, Naoshi [Hitachi-GE Nuclear Energy, Ltd. (Japan); Takagi, Junichi; Urata, Hidehiro [Toshiba Corporation (Japan); Shoda, Yasuhiko; Nishimura, Takao [Mitsubishi Heavy Industry, Ltd. (Japan)

    2016-12-01

    Highlights: • Framework of BWR/PWR water chemistry Guidelines in Japan are presented. • Guideline necessity, definitions, philosophy and technical background are mentioned. • Some guideline settings for control parameters and recommendations are explaines. • Chemistry strategy is also mentioned. - Abstract: After 40 years of light water reactor (LWR) operations in Japan, the sustainable development of water chemistry technologies has aimed to ensure the highest coolant system component integrity and fuel reliability performance for maintaining LWRs in the world; additionally, it aimed to achieve an excellent dose rate reduction. Although reasonable control and diagnostic parameters are utilized by each boiling water reactor (BWR) and pressurized water reactor (PWR) owner, it is recognized that specific values are not shared among everyone involved. To ensure the reliability of BWR and PWR operation and maintenance, relevant members of the Atomic Energy Society of Japan (AESJ) decided to establish guidelines for water chemistry. The Japanese BWR and PWR water chemistry guidelines provide strategies to improve material and fuel reliability performance as well as to reduce dosing rates. The guidelines also provide reasonable “control values”, “diagnostic values” and “action levels” for multiple parameters, and they stipulate responses when these levels are exceeded. Specifically, “conditioning parameters” are adopted in the Japanese PWR primary water chemistry guidelines. Good practices for operational conditions are also discussed with reference to long-term experience. This paper presents the purpose, technical background and framework of the preliminary water chemistry guidelines for Japanese BWRs and PWRs. It is expected that the guidelines will be helpful as an introduction to achieve safety and reliability during operations.

  1. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  2. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  3. Measuring Transport of Water Across the Peritoneal Membrane

    Czech Academy of Sciences Publication Activity Database

    Asghar, R. B.; Diskin, A. M.; Španěl, Patrik; Smith, D.; Davies, S. J.

    2003-01-01

    Roč. 64, - (2003), s. 1911-1915 ISSN 0085-2538 R&D Projects: GA ČR GA202/03/0827 Institutional research plan: CEZ:AV0Z4040901 Keywords : deuterium * total body water * solute transport Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.302, year: 2003

  4. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  5. Kinetic Theory and Simulation of Single-Channel Water Transport

    Science.gov (United States)

    Tajkhorshid, Emad; Zhu, Fangqiang; Schulten, Klaus

    Water translocation between various compartments of a system is a fundamental process in biology of all living cells and in a wide variety of technological problems. The process is of interest in different fields of physiology, physical chemistry, and physics, and many scientists have tried to describe the process through physical models. Owing to advances in computer simulation of molecular processes at an atomic level, water transport has been studied in a variety of molecular systems ranging from biological water channels to artificial nanotubes. While simulations have successfully described various kinetic aspects of water transport, offering a simple, unified model to describe trans-channel translocation of water turned out to be a nontrivial task.

  6. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    Science.gov (United States)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  7. Water chemistry guidelines for BWRs

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Jones, R.L.; Welty, C.S.

    1984-01-01

    Guidelines for BWR water chemistry control have been prepared by a committee of experienced utility industry personnel sponsored by the BWR Owners Group on IGSCC Research and coordinated by the Electric Power Research Institute. The guidelines are based on extensive plant operational experience and laboratory research data. The purpose of the guidelines is to provide guidance to the electric utility industry on water chemistry control to help reduce corrosion, especially stress corrosion cracking, in boiling water reactors

  8. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  9. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  10. Some in-reactor loop experiments on corrosion product transport and water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Allison, G.M.

    1978-01-01

    A study of the transport of activated corrosion products in the heat transport circuit of pressurized water-cooled nuclear reactors using an in-reactor loop showed that the concentration of particulate and dissolved corrosion products in the high-temperature water depends on such chemical parameters as pH and dissolved hydrogen concentration. Transients in these parameters, as well as in temperature, generally increase the concentration of suspended corrosion products. The maximum concentration of particles observed is much reduced when high-flow, high-temperature filtration is used. Filtration also reduces the steady-state concentration of particles. Dissolved corrosion products are mainly responsible for activity accumulation on surfaces. The data obtained from this study were used to estimate the rate constants for some of the transfer processes involved in the contamination of the primary heat transport circuit in water-cooled nuclear power reactors

  11. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  12. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  13. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  14. Scientific basis for the choice of primary/secondary water chemistry

    International Nuclear Information System (INIS)

    Garnsey, R.

    1988-01-01

    The purpose of this paper is to illustrate the common scientific basis for the chemistry control strategies which have been developed. The evolution of chemistry control philosophies in some plant designs are outlined as examples. The essential requirement of water chemistry control is to preserve integrity of the circuit under all the environmental conditions experienced within that circuit. There may be specific additional requirements, as in the case of a PWR primary circuit, where boron concentration is used to control reactivity. The crucial requirement or concern can vary. In the primary circuit of a light water reactor the crucial requirement is to supress the activation and transportation of corrosion products and so minimize radiation fields around the circuit. On the secondary side of recirculating steam generators the critical requirement has been to preserve the integrity of generator tubing. In once-through steam generators the critical requirement may be the control of pressure losses associated with corrosion product deposits in the steam generator and the integrity of the turbine in addition to boiler integrity. (Nogami, K.)

  15. Experimental proposals for procedures to investigate the water chemistry, sorption and transport properties of marl

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Alexander, W.R.

    1990-11-01

    The aim of this report is to describe a framework within which laboratory studies on groundwater chemistry, sorption and transport properties might be conducted on samples from rock formations being considered as potential 'host rocks' for the disposal of radioactive waste. Here, Valanginian marl, has been taken as a specific example, but the general principles should be applicable to other systems. Some brief notes are given on sampling and handling procedures and mineralogical characterisation. This is followed by a detailed discussion of the procedures considered necessary to determine a groundwater chemistry of a specific rock matrix. The methods described are particularly appropriate to rocks such as marl i.e. low water content rocks (essentially 'dry') with appreciable clay and carbonate contents. An important conclusion drawn is that simple aqueous phase extractions at different liquid to solid ratios, followed by extrapolation procedures, are not always appropriate and can lead to incorrect water compositions. Some of the uncertainties and difficulties inherently involved in determining sorption parameters from batch, infiltration and diffusion based methods are presented. These methods are then individually discussed in greater detail with some illustrative examples. In the relatively few studies where sorption has been measured in crushed rock tests and compared with the results from intact rock experiments, it is often found that there are discrepancies. An outline for an experiment is described in which results from the two types of test could be quantitatively related to one another via cation exchange capacity measurements. Using this method it might be possible to explain the reasons for such discrepancies. Finally, a brief discussion is given on the possible consequences for experimental studies of gas in Valanginian marl and the swelling of the clay rich components. (author) 8 figs., 4 tabs., 46 refs

  16. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  17. Advances in water chemistry control for BWRs and PWRs

    International Nuclear Information System (INIS)

    Wood, C.J.

    1997-01-01

    This paper is an overview of the effects of water chemistry developments on the current operation of nuclear power plants in the United States, and the mitigation of corrosion-related degradation processes and radiation field build-up processes through the use of advanced water chemistry. Recent modifications in water chemistry to control and reduce radiation fields are outlined, including revisions to the EPRI water chemistry guidelines for BWRs and PWR primary and secondary systems. The change from a single water chemistry specification for all plants to a set of options, from which a plant-specific chemistry programme can be defined, is described. (author)

  18. EPRI PWR primary water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Fruzzetti, Keith

    2014-01-01

    EPRI periodically updates the PWR Primary Water Chemistry Guidelines as new information becomes available and as required by NEI 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). The last revision of the PWR water chemistry guidelines identified an optimum primary water chemistry program based on then-current understanding of research and field information. This new revision provides further details with regard to primary water stress corrosion cracking (PWSCC), fuel integrity, and shutdown dose rates. A committee of industry experts, including utility specialists, nuclear steam supply system (NSSS) and fuel vendor representatives, Institute of Nuclear Power Operations (INPO) representatives, consultants, and EPRI staff collaborated in reviewing the available data on primary water chemistry, reactor water coolant system materials issues, fuel integrity and performance issues, and radiation dose rate issues. From the data, the committee updated the water chemistry guidelines that all PWR nuclear plants should adopt. The committee revised guidance with regard to optimization to reflect industry experience gained since the publication of Revision 6. Among the changes, the technical information regarding the impact of zinc injection on PWSCC initiation and dose rate reduction has been updated to reflect the current level of knowledge within the industry. Similarly, industry experience with elevated lithium concentrations with regard to fuel performance and radiation dose rates has been updated to reflect data collected to date. Recognizing that each nuclear plant owner has a unique set of design, operating, and corporate concerns, the guidelines committee has retained a method for plant-specific optimization. Revision 7 of the Pressurized Water Reactor Primary Water Chemistry Guidelines provides guidance for PWR primary systems of all manufacture and design. The guidelines continue to emphasize plant

  19. Water chemistry control at FBTR

    International Nuclear Information System (INIS)

    Panigrahi, B.S.; Jambunathan, D.; Suresh Kumar, K.V.; Ramanathan, V.; Srinivasan, G.; Ramalingam, P.V.

    2008-01-01

    Condenser cooling and service water systems together serve as the cooling water system of Fast Breeder Test Reactor (FBTR). Palar river water serves as the make-up to the cooling water system. Initially, the service water system alone was commissioned in phases depending upon the arrival of auxiliary equipments at site. During this period, the water was not treated chemically and it also inadvertently remained stagnant for some time in some systems. Thereafter, a threshold chemical treatment was started. However, pin-hole leaks and reduced flow through the heat exchangers were observed and therefore chemical cleaning of headers was done and small diameter pipelines were replaced. Following this a full fledged chemistry control with proprietary formulations was initiated. Later the condenser cooling system was commissioned and the chemical treatment was reviewed. With adoption of improved monitoring methodology and treatment formulation satisfactory corrosion control (< 3 mpy) with minimum deposition problem in this system could be achieved. The primary coolant (primary sodium) of FBTR transfers the nuclear heat to the secondary coolant (secondary sodium) that in turn transfers heat to water in Once Through Steam Generator (OTSG) to generate superheated steam (480 deg C at 125 bar). Efficient water chemistry control plays the vital role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. Therefore, the technical specifications of chemistry parameters of feed/steam water at FBTR are made very stringent to maintain the purity of water at the best attainable level. To meet this stringent feed water and steam quality specifications, online monitoring techniques have been employed in the steam/water circuit to get continuous information about the purity. These monitors have helped significantly in achieving the required feed water quality and running the steam generator for more than 25000 hours without any tube

  20. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  1. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  2. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  3. Water chemistry and corrosion control of cladding and primary circuit components. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-12-01

    Corrosion is the principal life limiting degradation mechanism in nuclear steam supply systems, especially taking into account the trends to increase fuel burnup, thermal rate and cycle length. Primary circuit components of water cooled power reactors have an impact on Zr-based alloys behaviour due to crud (primary circuit corrosion products) formation, transport and deposition on heat transfer surfaces. Crud deposits influence water chemistry, radiation and thermal hydraulic conditions near cladding surface, and by this way-Zr-based alloy corrosion. During the last decade, significant improvements were achieved in the reduction of the corrosion and dose rates by changing the cladding material for one more resistant to corrosion or by the improvement of water chemistry conditions. However, taking into account the above mentioned tendency for heavier fuel duties, corrosion and water chemistry, control will remain a serious task to work with for nuclear power plant operators and scientists, as well as development of generally accepted corrosion model of Zr-based alloys in a water environment in a new millennium. Upon the recommendation of the International Working Group on Water Reactor Fuel Performance and Technology, water chemistry and corrosion of cladding and primary circuit components are in the focus of the IAEA activities in the area of fuel technology and performance. At present the IAEA performs two co-ordinated research projects (CRPs): on On-line High Temperature Monitoring of Water Chemistry and Corrosion (WACOL) and on Activity Transport in Primary Circuits. Two CRPs deal with hydrogen and hydride degradation of the Zr-based alloys. A state-of-the-art review entitled: 'Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants' was published in 1998. Technical Committee meetings on the subject were held in 1985 (Cadarache, France), 1989 (Portland, USA), 1993 (Rez, Czech Republic). During the last few years extensive exchange of experience in

  4. Water chemistry of Atucha II PHWVR. Design concepts and evolution

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Rodriguez, Ivanna; Duca, Jorge; Fernandez, Ricardo; Rico, Jorge

    2007-01-01

    Full text: Atucha II is a pressurized heavy water vessel reactor designed by Siemens-KWU, currently part of AREVA NP, of 745 MWe and similar to Atucha I, which has been in operation over 25 years. The primary heat transport system (PHTS) is composed by vertical channels (277-313 C degrees) that allocate the fuel elements while the moderator circuit is composed by a partially separated circuit (142-173 C degrees). The moderation power is transferred to the feedwater through the moderator heat exchangers (HX). These HXs operate as the last, high pressure water-steam cycle heaters as well. Materials (with exception of fuel channels and fuel sheaths which are made of zirconium alloys) are all austenitic steels while cobalt containing alloys have been all replaced at the design stage. Steam generator and moderator HX tubing are Alloy 800 made. The core is operated without boron except with the first fresh nucleus. The secondary circuit or Balance of plant (BOP) is similar in conception to that of a PWR but the moderator HXs. It is entirely built of ferrous alloys, has a feedwater-deaerator tank and moisture separator. The energy sink is the Rio de la Plata River. The Reactors Chemistry Department, Chemistry Division, National Atomic Energy Commission, in its character of R and D institution has been committed by CNA II-N.A.S.A Project to prepare the water chemistry specifications, water chemistry engineering and manuals, considering the type of reactor, design and construction aspects and operation characteristics, taking into account the current state-of-the art and worldwide standards. This includes conceptual aspects and implementation and operative aspects as well. This documentation will be released after a designer's review as it has been stated in the respective agreement. Respecting the confidentiality agreement between CNEA and NASA and the confidentiality regarding handling original documentation provided by the designer, it is considered illustrative to

  5. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  6. Optimization of secondary side water chemistry in TQNPC

    International Nuclear Information System (INIS)

    Fang Lan

    2007-01-01

    This article briefly introduces the types of corrosion that may be happened on steam generator heat exchange tubes in Qinshan CANDU6 nuclear power station and chemical effects on corrosion. The water chemistry optimization on minimzing deposition and corrosion of steam generators are introduced. The article summarizes the experiences of plant chemistry control and morpholine operation, providing guidance for optimizing secondary side water chemistry in the future, giving reference on selection of secondary side alkali agent and setting water chemistry specifications for other nuclear power stations. (authors)

  7. Survey of Water Chemistry and Corrosion of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-15

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented.

  8. Survey of Water Chemistry and Corrosion of NPP

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-01

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented

  9. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    . In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water...... transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support...... to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity...

  10. Development of Database and Lecture Book for Nuclear Water Chemistry

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Kim, U. C.; Na, J. W.; Choi, B. S.; Lee, E. H.; Kim, K. H.; Kim, K. M.; Kim, S. H.; Im, K. S.

    2010-02-01

    In order to establish a systematic and synthetic knowledge system of nuclear water chemistry, we held nuclear water chemistry experts group meetings. We discussed the way of buildup and propagation of nuclear water chemistry knowledge with domestic experts. We obtained a lot of various opinions that made the good use of this research project. The results will be applied to continuous buildup of domestic nuclear water chemistry knowledge database. Lessons in water chemistry of nuclear power plants (NPPs) have been opened in Nuclear Training and education Center, KAERI to educate the new generation who are working and will be working at the department of water chemistry of NPPs. The lessons were 17 and lesson period was from 12th May through 5th November. In order to progress the programs, many water chemistry experts were invited. They gave lectures to the younger generation once a week for 2 h about their experiences obtained during working on water chemistry of NPPs. The number of attendance was 290. The lessons were very effective and the lesson data will be used to make database for continuous use

  11. Operational experience in water chemistry of PHWRs

    International Nuclear Information System (INIS)

    Krishna Rao, K.S.

    2000-01-01

    The chemistry related problems encountered in the moderator, primary heat transport systems, chemical control in the steam generators and the experience gained in the decontamination campaigns carried out in the primary heat transport systems of Indian PHWRs are highlighted in this paper. (author)

  12. Current status of regulatory aspects relating to water chemistry in Japanese NPPs

    International Nuclear Information System (INIS)

    Sato, Masatoshi

    2014-01-01

    In nuclear power plants, water chemistry of cooling water is carefully monitored and controlled to keep integrity of structures, systems and components, and to reduce occupational radiation exposures. As increasing demand for advanced application of light water cooled reactors, water chemistry control plays more important roles on plant reliability. The road maps on R and D for water chemistry of nuclear power systems have been proposed along with promotion of R and D related water chemistry in Japan. In academic and engineering societies, non-governmental standards for water chemistry are going to be established. In the present paper, recent trends of water chemistry in Japan have been surveyed. The effects of water chemistry on plant safety and radiation exposures have been discussed. In addition, possible contributions of regulation regarding water chemistry control have been confirmed. Major water chemistry regulatory aspects relating to reactor safety and radiation safety are also outlined in this paper. (author)

  13. Water Chemistry Section: progress report (1981-82)

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.; Ramshesh, V.

    1983-01-01

    The activities of the Water Chemistry Section of the Bhabha Atomic Research Centre (BARC), Bombay, during the years 1981 and 1982 are reported in the form of individual summaries. The research activities of the Section cover the following areas: (1) chemistry and thermodynamics of nuclear materials, (2) crystal structure of organo-metallic complexes using X-ray diffraction, (3) thermophysical and phase transition studies, (4) solid state chemistry and thermochemical studies, (5) water and steam chemistry of heavy water plants and phwr type reactors, and (6) uranium isotope exchange studies. A survey is also given of: (i) the Section's participation in advisory and consultancy services in nuclear and thermal power stations, (ii) training activities, and (iii) assistance in chemical analysis by various techniques to other units of BARC and outside agencies. A list of publications and lectures by the staff during the report period is included. (M.G.B.)

  14. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  15. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  16. U.S. experience with hydrogen water chemistry in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Head, R.A.; Indig, M.E.; Ruiz, C.P.; Simpson, J.L.

    1988-01-01

    Hydrogen water chemistry in boiling water reactors is currently being adopted by many utilities in the U.S., with eleven units having completed preimplementation test programs, four units operating permanently with hydrogen water chemistry, and six other units in the process of installing permanent equipment. Intergranular stress corrosion cracking protection is required for the recirculation piping system and other regions of the BWR systems. The present paper explores progress in predicting and monitoring hydrogen water chemistry response in these areas. Testing has shown that impurities can play an important role in hydrogen water chemistry. Evaluation of their effects are also performed. Both computer modeling and in plant measurements show that each plant will respond uniquely to feedwater hydrogen addition. Thus, each plant has its own unique hydrogen requirement for recirculation system protecion. Furthermore, the modeling, and plant measurements show that different regions of the BWR respond differently to hydrogen injection. Thus, to insure protection of components other than the recirculation systems may require more (or less) hydrogen demand than indicated by the recirculation system measurements. In addition, impurities such as copper can play a significant role in establishing hydrogen demand. (Nogami, K.)

  17. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.; Copley, S.E.; Siegwarth, D.P.

    1981-01-01

    Secondary water chemistry studies have been performed at ten operating PWRs for the past several years. The program includes seven PWRs with recirculating U-tube steam generators, and three once-through steam generator (OTSG) PWRs. Program results indicate that during periods of minimal condenser inleakage, condensate polishers do not remove significant quantities of sodium, chloride and sulfate. At higher inlet impurity levels, demineralizer removal efficiencies improve markedly. Corrosion product removal efficiencies generally are 60 to 95% depending on system design and operating practices. Significant quantities of sodium and chloride 'hide out' in steam generators with a portion returning during transients, particularly during plant shutdowns. In OTSG PWRs, a significant portion of the total sodium and chloride transported via the steam is removed with the moisture separator drains (MSD) and returned to the OTSG when MSDs are pumped forward. Partial return of MSDs to the condenser would result in reduced feedwater and steam impurity levels. (author)

  18. Development of water chemistry diagnosis system for BWR primary loop

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu; Uchida, Shunsuke; Ohsumi, Katsumi.

    1988-01-01

    The prototype of a water chemistry diagnosis system for BWR primary loop has been developed. Its purposes are improvement of water chemistry control and reduction of the work burden on plant chemistry personnel. It has three main features as follows. (1) Intensifying the observation of water chemistry conditions by variable sampling intervals based on the on-line measured data. (2) Early detection of water chemistry data trends using a second order regression curve which is calculated from the measured data, and then searching the cause of anomaly if anything (3) Diagnosis of Fe concentration in feedwater using model simulations, in order to lower the radiation level in the primary system. (author)

  19. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  20. Operating experience with steam generator water chemistry in Japanese PWR plants

    International Nuclear Information System (INIS)

    Onimura, K.; Hattori, T.

    1991-01-01

    Since the first PWR plant in Japan started its commercial operation in 1970, seventeen plants are operating as of the end of 1990. First three units initially applied phosphate treatment as secondary water chemistry control and then changed to all volatile treatment (AVT) due to phosphate induced wastage of steam generator tubing. The other fourteen units operate exclusively under AVT. In Japan, several corrosion phenomena of steam generator tubing, resulted from secondary water chemistry, have been experienced, but occurrence of those phenomena has decreased by means of improvement on impurity management, boric acid treatment and high hydrazine operation. Recently secondary water chemistry in Japanese plants are well maintained in every stage of operation. This paper introduces brief summary of the present status of steam generators and secondary water chemistry in Japan and ongoing activities of investigation for future improvement of reliability of steam generator. History and present status of secondary water chemistry in Japanese PWRs were introduced. In order to get improved water chemistry, the integrity of secondary system equipments is essential and the improvement in water chemistry has been achieved with the improvement in equipments and their usage. As a result of those efforts, present status of secondary water is excellent. However, further development for crevice chemistry monitoring technique and an advanced water chemistry data management system is desired for the purpose of future improvement of reliability of steam generator

  1. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  2. Colour chemistry in water

    OpenAIRE

    Cardona, Maria

    2015-01-01

    Atmospheric carbon dioxide (CO2) levels have increased dramatically in the last few decades. Famous for causing global warming, CO2 is also resulting in the acidification of seas and oceans. http://www.um.edu.mt/think/colour-chemistry-in-water/

  3. Experience of Ko-Ri Unit 1 water chemistry

    International Nuclear Information System (INIS)

    Tae Il Lee

    1983-01-01

    The main focus is placed on operational experience in secondary system water chemistry (especially the steam generator) of the Ko-Ri nuclear power plant Unit 1, Republic of Korea, but primary side chemistry is also discussed. The major concern of secondary water chemistry in a PWR is that the condition of the steam generator be well maintained. Full flow deep bed condensate polishers have recently been installed and operation started in July 1982. Boric acid treatment of the steam generator was stopped and only the all volatile treatment method was used thereafter. A review of steam generator integrity, the chemistry control programme, secondary water quality, etc. is considered to be of great value regarding the operation of Unit 1 and future units now under startup testing or construction in the Republic of Korea. (author)

  4. Implications of Lagrangian transport for coupled chemistry-climate simulations

    Science.gov (United States)

    Stenke, A.; Dameris, M.; Grewe, V.; Garny, H.

    2008-10-01

    For the first time a purely Lagrangian transport algorithm is applied in a fully coupled chemistry-climate model (CCM). We use the Lagrangian scheme ATTILA for the transport of water vapour, cloud water and chemical trace species in the ECHAM4.L39(DLR)/CHEM (E39C) CCM. The advantage of the Lagrangian approach is that it is numerically non-diffusive and therefore maintains steeper and more realistic gradients than the operational semi-Lagrangian transport scheme. In case of radiatively active species changes in the simulated distributions feed back to model dynamics which in turn affect the modelled transport. The implications of the Lagrangian transport scheme for stratospheric model dynamics and tracer distributions in the upgraded model version E39C-ATTILA (E39C-A) are evaluated by comparison with observations and results of the E39C model with the operational semi-Lagrangian advection scheme. We find that several deficiencies in stratospheric dynamics in E39C seem to originate from a pronounced modelled wet bias and an associated cold bias in the extra-tropical lowermost stratosphere. The reduction of the simulated moisture and temperature bias in E39C-A leads to a significant advancement of stratospheric dynamics in terms of the mean state as well as annual and interannual variability. As a consequence of the favourable numerical characteristics of the Lagrangian transport scheme and the improved model dynamics, E39C-A generally shows more realistic stratospheric tracer distributions: Compared to E39C high stratospheric chlorine (Cly) concentrations extend further downward and agree now well with analyses derived from observations. Therefore E39C-A realistically covers the altitude of maximum ozone depletion in the stratosphere. The location of the ozonopause, i.e. the transition from low tropospheric to high stratospheric ozone values, is also clearly improved in E39C-A. Furthermore, the simulated temporal evolution of stratospheric Cly in the past is

  5. VGB primary and secondary side water chemistry guidelines for PWR plants

    International Nuclear Information System (INIS)

    Neder, H.; Wolter, D.; Staudt, U.

    2007-01-01

    The recent revision of the VGB Water Chemistry Guidelines was issued in 2005 and published in the second half of 2006. These guidelines are based on the primary and secondary side operating chemistry experience with all Siemens designed pressurized water reactors gained since the beginning of the 1980s. These guidelines cover For the primary side chemistry Modified lithium boron chemistry, Zinc chemistry for dose rate reduction, Enriched boric acid (EBA) chemistry for high duty core design For the secondary side chemistry High all-volatile treatment (AVT) chemistry (high pH operation) Oxygen injection in the secondary side Especially for the secondary side chemistry, compared with the water chemistry guidelines of other organizations worldwide, these Guidelines are less stringent, providing more operational flexibility to the plant operation, and can be applied for all new designs of steam generators with egg-crates or broached hole tube supports and with I 690TT or I 800 tubing materials. This paper gives an overview of the 2006 revision of the VGB Water Chemistry Guidelines for PWR plants and describes the fundamental goals of water chemistry operation strategies. In addition, the reasons for the selected control parameters and action levels, to achieve an adequate plant performance, are presented based on the operating experience. (orig.)

  6. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    Science.gov (United States)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  7. Secondary-water chemistry at Millstone 2

    International Nuclear Information System (INIS)

    Putkey, T.A.; Pearl, W.L.; Sawochka, S.G.

    1983-04-01

    Secondary system chemistry and steam generator corrosion observations at the Millstone 2 pressurized water reactor are summarized. Condenser retubing and retrofit of full-flow condensate polishers led to significant improvements in steam generator blowdown chemistry following observations of denting after one year of operation at elevated blowdown chloride levels. Notwithstanding the chemistry improvements, denting has continued but at a much reduced rate. In addition, extensive pitting of the Alloy 600 tubing between the tubesheet and first support plate has been reported recently

  8. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  9. Primary water chemistry of VVERs-operating experience

    International Nuclear Information System (INIS)

    Kysela, Jan; Zmitko, Milan; Petrecky, Igor

    1998-01-01

    VVER units are operated in mixed boron-potassium-ammonia water chemistry. Several modifications of the water chemistry, differing in boron-potassium co-ordination and in the way how hydrogen concentration is produced and maintain in the coolant, is used. From the operational experience point of view VVER units do not show any significant problems connected with the primary coolant chemistry. The latest results indicate that dose rate levels are slowly returning to the former ones. An improvement of the radiation situation observed last two years is supported by the surface activity measurements. However, the final conclusion on the radiation situation can be made only after evaluation of the several following cycles. Further investigation is also needed to clarify a possible effect of modified water chemistry and shut-down chemistry on radioactivity build-up and dose rate level at Dukovany units. Structure materials composition has a significant effect on radiation situation in the units. It concerns mainly of cobalt content in SG material. There is no clear evidence of possible effect of the SG shut-down regimes on the radiation situation in the units even if the dose rate and surface activity data show wide spread for the individual reactor loops. (S.Y.)

  10. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  11. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  12. On-line water chemistry monitoring for corrosion prevention in ageing nuclear power plants

    International Nuclear Information System (INIS)

    Aaltonen, P.; Jaernstroem, R.; Kvarnstroem, R.; Chanfreau, E.

    1991-01-01

    General corrosion and consequently radiation buildup in nuclear power plants are controlled by the selection of material and the chemical environment. In power plants useful information concerning the kinetics of chemical reactions can be obtained by using high temperature, high pressure measurements for pH, conductivity and electrochemical potentials (ECP) of construction materials or redox-potential. The rates of general or uniform corrosion of materials in contact with the primary coolant are quite low and do not compromise the integrity of the primary circuit. Chemistry control should be applied in the first hand to minimize the dissolution and the transport and subsequent deposition of activated corrosion products to out-of-core regions. A computerized monitoring system for high temperature high pressure pH and electrochemical potential (ECP) has been in continuous use at the Loviisa power plant since 1988. Special emphasis has been put on learning the effect of pH and ECP control during cooldown process in order to further reduce background radiation buildup. During the shutdown for refueling outage in summer 1989 the high temperature water chemistry parameters were monitored. In addition to the high temperature water chemistry parameters concentrations of dissolved corrosion products as well as the activities of the corrosion products were measured. In this paper the results obtained through simultaneous monitoring of water chemistry parameters and concentrations of dissolved corrosion products as well as the activity measurements are presented and discussed. (author)

  13. Chemistry of the water in thermal power plants

    International Nuclear Information System (INIS)

    Freier, R.K.

    1984-01-01

    This textbook and practical manual gives a comprehensive review of the scientific knowledge of water as operating substance and of the chemistry of water in thermal power plants. The fundamentals of water chemistry and of the conventional and nuclear water/steam circuit are described. The contents of the chapters are: 1. The atom, 2. The chemical bond, 3. The dissolving capacity of water, 4. Operational parameters and their measurement, 5. Corrosion, 6. The water/steam coolant loop of conventional plants (WSC), 7. The pressurized water reactor (PWR), 8. The boiling water reactor (BWR), 9. The total and partial desalination properties of ion exchangers, 10. The cooling water, 11. The failure of Harrisburg in a simple presentation. (HK) [de

  14. Coupling between water chemistry and thermal output at unsaturated repositories

    International Nuclear Information System (INIS)

    Walton, J.; LeMone, D.; Casey, D.

    1995-01-01

    This paper summarizes issues in predicting thermohydrology in the near field of a deep geological repository and the implications for performance assessment. Predicted thermohydrology depends on waste package design, and particularly on backfill materials. The coupling between solute concentrations and thermal gradients leads to a prediction of highly variable water chemistry in the near field which is radically different than the initial, undisturbed water chemistry; however, most analyses to date assume that waste package chemistry is approximately the same as initial pore water chemistry. Several alternative, simplified approaches for performance assessment are discussed

  15. Areva's water chemistry guidebook with chemistry guidelines for next generation plants (AREVA EPRTM reactors)

    International Nuclear Information System (INIS)

    Ryckelynck, N.; Chahma, F.; Caris, N.; Guillermier, P.; Brun, C.; Caron-Charles, M.; Lamanna, L.; Fandrich, J.; Jaeggy, M.; Stellwag, B.

    2012-09-01

    Over the years, AREVA globally has maintained a strong expertise in LWR water chemistry and has been focused on minimizing short-term and long-term detrimental effects of chemistry for startup, operation and shutdown chemistry for all key plant components (material integrity and reliability, promote optimal thermal performances, etc.) and fuel. Also AREVA is focused on minimizing contamination and equipment/plant dose rates. Current Industry Guidelines (EPRI, VGB, etc.) provide utilities with selected chemistry guidance for the current operating fleet. With the next generation of PWR plants (e.g. AREVA's EPR TM reactor), materials of construction and design have been optimized based on industry lessons learned over the last 50+ years. To support the next generation design, AREVA water chemistry experts, have subsequently developed a Chemistry Guidebook with chemistry guidelines based on an analysis of the current international practices, plant operating experience, R and D data and calculation codes now available and/or developed by AREVA. The AREVA LWR chemistry Guidebook can be used to help resolve utility and safety authority questions and addresses regulation requirement questions/issues for next generation plants. The Chemistry Guidebook provides water chemistry guidelines for primary coolant, secondary side circuit and auxiliary systems during startup, normal operation and shutdown conditions. It also includes conditioning and impurity limits, along with monitoring locations and frequency requirements. The Chemistry Guidebook Guidelines will be used as a design reference for AREVA's next generation plants (e.g. EPR TM reactor). (authors)

  16. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    Science.gov (United States)

    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (...

  17. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  18. Water chemistry at RBMK plants: Problems and solutions

    International Nuclear Information System (INIS)

    Mamet, V.; Yurmanov, V.

    2002-01-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH 25 value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH 25 value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH 25 maintenance in a slightly acid area. (authors)

  19. Water chemistry at RBMK plants: Problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mamet, V.; Yurmanov, V. [VNIIAES (Russian Federation)

    2002-07-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH{sub 25} value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH{sub 25} value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH{sub 25} maintenance in a slightly acid area. (authors)

  20. Solving vertical transport and chemistry in air pollution models

    International Nuclear Information System (INIS)

    Berkvens, P.J.F.; Botchev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    2000-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions. 30 refs

  1. Safety aspects of water chemistry in light water reactors

    International Nuclear Information System (INIS)

    1988-12-01

    The goals of the water chemistry control programmes are to maximize operational safety and the availability and operating life of primary system components, to maximize fuel integrity, and to control radiation buildup. To achieve these goals an effective corporate policy should be developed and implemented. Essential management responsibilities are: Recognizing of the long-term benefits of avoiding or minimizing: a) system corrosion; b) fuel failure; and c) radiation buildup. The following control or diagnostic parameters are suitable performance indicators: for PWR primary coolant circuits: pH of reactor water (by operating temperature); Concentration of chlorides in reactor water; Hydrogen (or oxygen) in reactor water. For PWR secondary coolant circuits: pH in feedwater; Cation productivity in steam generator blowdown; Iron concentration in feedwater; Oxygen concentration in condensate. And BWR coolant circuits: Conductivity of reactor water; Concentration of chlorides in reactor water; Iron concentration in feedwater; Copper concentration in feedwater. The present document represents a review of the developments in some Member States on how to implement a reasonable water chemistry programme and how to assess its effectiveness through numerical indicators. 12 figs, 20 tabs

  2. Water chemistry

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.

    1986-01-01

    Prior to the accident, the coolants in the primary and secondary systems were within normal chemistry specifications for an operating pressurized water reactor with once-through steam generators. During and immediately after the accident, additional boric acid and sodium hydroxide were added to the primary coolant for control of criticality and radioiodine solubility. A primary to secondary leak developed contaminating the water in one steam generator. For about 5 years after the accident, the primary coolant was maintained at 3800 +. 100 ppm boron and 1000 +. 100 ppm sodium concentrations. Dissolved oxygen was maintained 7.5, corrosion caused by increased dissolved oxygen levels (up to 8 ppm) and higher chloride ion content (up to 5 ppm) is minimized. Chemical control of dissolved oxygen was discontinued and the coolant was processed. Prior to removal of the reactor vessel head, the boron concentration in the coolant was increased to ≅ 5000 ppm to support future defueling operations. Decontamination of the accident generated water is described in terms of contaminated water management. In addition, the decontamination and chemical lay-up conditions for the secondary system are presented along with an overview of chemical management at TMI-2

  3. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Kitada, Toshihiro

    2007-01-01

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  4. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  5. Experience of water chemistry and radiation levels in Swedish BWRs

    International Nuclear Information System (INIS)

    Ivars, R.; Elkert, J.

    1981-01-01

    From the BWR operational experience in Sweden it has been found that the occupational radiation exposures have been comparatively low in an international comparison. One main reason for the favourable conditions is the good water chemistry performance. This paper deals at first with the design considerations of water chemistry and materials selection. Next, the experience of water chemistry and radiation levels are provided. Finally, some methods to further reduce the radiation sources are discussed. (author)

  6. Present status and recent improvements of water chemistry at Russian VVER plants

    International Nuclear Information System (INIS)

    Mamet, V.; Yurmanov, V.

    2001-01-01

    Water chemistry is an important contributor to reliable plant operation, safety barrier integrity, plant component lifetime, radiation safety, environmental impact. Primary and secondary water chemistry guidelines of Russian VVER plants have been modified to meet the new safety standards. At present 14 VVER units of different generation are in operation at 5 Russian NPPs. There are eight 4-loop pressurised water reactors VVER-1000 (1000 MWe) and six 6-loop pressurised water reactors VVER-440 (440 MWe). Generally, water chemistry at East European VVER plants (about 40 VVER-440 and VVER-1000 units in Ukraine, Bulgaria, Slovakia, Czech Republic, Hungary, Finland and Armenia) is similar to water chemistry at Russian VVER plants. Due to similar design and structural materials some water chemistry improvements were introduced at East European plants after they has been successfully implemented at Russian plants and vice versa. Some water chemistry improvements will be implemented at modern VVER plants under construction in Ukraine, Slovakia, Czech Republic, Iran, China, India. (R.P.)

  7. High temperature on-line monitoring of water chemistry and corrosion control in water cooled power reactors. Report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2002-07-01

    This report documents the results of the Co-ordinated Research Project (CRP) on High Temperature On-line Monitoring of Water Chemistry and Corrosion in Water Cooled Power Reactors (1995-1999). This report attempts to provide both an overview of the state of the art with regard to on-line monitoring of water chemistry and corrosion in operating reactors, and technical details of the important contributions made by programme participants to the development and qualification of new monitoring techniques. The WACOL CRP is a follow-up to the WACOLIN (Investigations on Water Chemistry Control and Coolant Interaction with Fuel and Primary Circuit Materials in Water Cooled Power Reactors) CRP conducted by the IAEA from 1986 to 1991. The WACOLIN CRP, which described chemistry, corrosion and activity-transport aspects, clearly showed the influence of water chemistry on corrosion of both fuel and reactor primary-circuit components, as well as on radiation fields. It was concluded that there was a fundamental need to monitor water-chemistry parameters in real time, reliably and accurately. The objectives of the WACOL CRP were to establish recommendations for the development, qualification and plant implementation of methods and equipment for on-line monitoring of water chemistry and corrosion. Chief investigators from 18 organizations representing 15 countries provided a variety of contributions aimed at introducing proven monitoring techniques into plants on a regular basis and filling the gaps between plant operator needs and available monitoring techniques. The CRP firmly demonstrated that in situ monitoring is able to provide additional and valuable information to plant operators, e.g. ECP, high temperature pH and conductivity. Such data can be obtained promptly, i.e. in real time and with a high degree of accuracy. Reliable techniques and sensor devices are available which enable plant operators to obtain additional information on the response of structural materials in

  8. Some aspects of primary and secondary water chemistry in CANDU reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-09-01

    A brief review of the water chemistry in various circuits of CANDU reactors is given. Then, five particular aspects of recent work are highlighted: (i) Radiation Field Growth: in-reactor and out-reactor studies have related water chemistry to corrosion product deposition on fuel sheaths and subsequent contamination of out-core surfaces. (ii) Metal Oxide Solubility: novel techniques are being used to measure the solubilities of metal oxides at primary circuit conditions. (iii) Decontamination: the use of heavy water as coolant in CANDU reactors led to the development of a unique decontamination strategy and technique, called CAN-DECON, which has attracted the attention of operators of light-water reactors. (iv) Steam Generator Corrosion: mathematical modelling of the water chemistry in the bulk and crevice regions of nuclear steam generators, supported by chemical experiments, has shown why sea water ingress from leaking condensers can be damaging, and has provided a rapid way to evaluate alternative boiler water chemistries. (v) Automatic Control of Feedwater Chemistry: on-line automatic chemical analysis and computer control of feedwater chemistry provides All Volatile Treatment for normal operation with pure feedwater, and carefully controlled sodium phosphate addition when there is detectable sea-water ingress from leaking condensers. (author)

  9. What are today's choices for PWRs water chemistry?

    International Nuclear Information System (INIS)

    Berge, P.

    1998-01-01

    Water chemistry has always been, from the very beginning of operation of power Pressurized Water Reactors (PWRs), an important factor in determining the integrity of many reactor components. For both the primary and secondary coolant circuits, the parameters to control the quality of the chemistry have been subject to changes in time. These changes were dictated mainly by corrosion problems which required an adjustment of the chemistry, before any modification could be made in the design or the selection of materials for the subsequently built reactors or replacement components. The situation today, despite 40 years of experience, still leaves open different options for the specifications of the chemistry of the circuits. These options are sometimes due to differences in design or materials of the circuits, but more often, to the perception by the plant chemists, of the role of the chemistry on the different phenomena which could affect the operation of their plant. Paul Cohen, who was well known in the nuclear industry for the early development of the chemistry in PWRs in the USA, used to say, 'if the head chemist has changed in a plant, the chemistry will change'. The purpose of this lecture is to discuss some of the options which are offered to the chemist in compliance with the basic principles of the chemistry guidelines. (J.P.N.)

  10. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    Science.gov (United States)

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. © 2015 The Fisheries Society of the British Isles.

  11. Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media

    Science.gov (United States)

    Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.

    2017-12-01

    Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.

  12. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  13. Water chemistry experience of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Ishigure, Kenkichi; Abe, Kenji; Nakajima, Nobuo; Nagao, Hiroyuki; Uchida, Shunsuke.

    1989-01-01

    Japanese LWRs have experienced several troubles caused by corrosions of structural materials in the past ca. 20 years of their operational history, among which are increase in the occupational radiation exposures, intergranular stress corrosion cracking (IGSCC) of stainless steel piping in BWR, and steam generator corrosion problems in PWR. These problems arised partly from the improper operation of water chemistry control of reactor coolant systems. Consequently, it has been realized that water chemistry control is one of the most important factors to attain high availability and reliability of LWR, and extensive researches and developments have been conducted in Japan to achieve the optimum water chemistry control, which include the basic laboratory experiments, analyses of plant operational data, loop tests in operating plants and computer code developments. As a result of the continuing efforts, the Japanese LWR plants have currently attained a very high performance in their operation with high availability and low occupational radiation exposures. A brief review is given here on the R and D of water chemistry in Japan. (author)

  14. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ''Corrosion mechanism and Modelling'', ''Corrosion and Hydriding'', ''Plant Experience and Loop Experiments'', Water Chemistry, Current Practice and Emerging Solutions'' and ''On-line Monitoring of Water Chemistry and Corrosion'' were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs

  15. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ``Corrosion mechanism and Modelling``, ``Corrosion and Hydriding``, ``Plant Experience and Loop Experiments``, Water Chemistry, Current Practice and Emerging Solutions`` and ``On-line Monitoring of Water Chemistry and Corrosion`` were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs.

  16. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  17. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  18. Primary water chemistry for NPP with VVER-TOI

    International Nuclear Information System (INIS)

    Susakin, S.N.; Brykov, S.I.; Zadonsky, N.V.; Bystrova, O.S.

    2012-09-01

    Nowadays within the framework of development of the nuclear power industry in Russia the VVER-TOI reactor is under designing (Standard optimized design). The given design provides for improvement of operation safety level, of technical-economic, operational and load-follow characteristics, and for the raise of competitive capacity of reactor plant and NPP as a whole. In VVER-TOI reactor plant design the primary water chemistry has been improved considering operation experience of VVER reactor plants and a possibility of RP operation under load-follow modes from the viewpoint of meeting the following requirements: - suppression of generation of oxidizing radiolytic products under power operation; - assurance of corrosion resistance of structural materials of equipment and pipelines throughout the NPP design service life; - minimization of deposits on surfaces of the reactor core fuel rods and on heat exchange surface of steam generators; - minimization of accumulation of activated corrosion products; - minimization of the amount of radioactive processing waste. In meeting these requirements an important role is devoted to suppression of generation of oxidizing radiolytic products owing to accumulation of hydrogen in the primary coolant. At NPP with VVER-1000 reactor the ammonia-potassium water chemistry is used wherein the hydrogen accumulation is provided at the expense of ammonia proportioning. Usage of ammonia leads to generation of additional amount of radioactive processing waste and to increased irregularity of maintaining the water chemistry under the daily load-follow modes. In VVER TOI design the primary water chemistry is improved by replacing the proportioning of ammonia with the proportioning of gaseous hydrogen. Different process schemes were considered that provide for a possibility of hydrogen accumulation and maintaining owing to direct proportioning of gaseous hydrogen. The obtained results showed that transition to the potassium water chemistry

  19. Research on water chemistry in a nuclear power plant

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Yang, Kyung Rin; Kang, Hi Dong; Koo, Je Hyoo; Hwang, Churl Kew; Lee, Eun Hee; Han, Jung Ho; Kim, Uh Chul; Kim, Joung Soo; Song, Myung Ho; Lee, Deok Hyun; Jeong, Jong Hwan

    1986-12-01

    To prevent the corrosion problems on important components of nuclear power plants, the computerization methods of water chemistry and the analyses of corrosion failures were studied. A preliminary study on the computerization of water chemistry log-sheet data was performed using a personal computer with dBASE-III and LOTUS packages. Recent technical informations on a computerized online chemistry data management system which provides an efficient and thorough method of system-wide monitoring of utility's secondary side chemistry were evaluated for the application to KEPCO's nuclear power plants. According to the evaluation of water chemistry data and eddy current test results, it was likely that S/G tube defect type was pitting. Pitting is believed to result from excess oxygen in make-up and air ingress, sea-water ingress bycondenser leak, and copper in sludge. A design of a corrosion tests apparatus for the tests under simulated operational conditions, such as water chemistry, water flow, high temperature and pressure, etc., of the plant has been completed. The completion of these apparatus will make it possible to do corrosion tests under the conditions mentioned above to find out the cause of corrosion failures, and to device a counter measure to these. The result of corrosion tests with alloy-600 showed that the initiation of pits occurred most severely around 175 deg C which is lower than plant-operation temperature(300 deg C) while their propagation rate had trend to be maximum around 90 deg C. It was conformed that the use of Cu-base alloys in a secondary cooling system accelerates the formation of pits by the leaking of sea-water and expected that the replacement of them can reduce the failures of S/G tubes by pitting. Preliminary works on the examination of pit-formed specimens with bare eyes, a metallurgical microscope and a SEM including EDAX analysis were done for the future use of these techniques to investigate S/G tubes. Most of corrosion products

  20. Development of a diagnostic expert system for secondary water chemistry

    International Nuclear Information System (INIS)

    Suganuma, S.; Ishikawa, S.; Kato, A.; Yamauchi, S.; Hattori, T.; Yoshikawa, T.; Miyamoto, S.

    1990-01-01

    Water chemistry control for the secondary side of the PWR plants is one of the most important tasks for maintaining the reliability of plant equipment and for extending the operating life of the plant. Water chemistry control should be maintained according to the plant chemist' considered judgement which is based on continual experienced observation. Mitsubishi Heavy Industries (MHI) has been developing a comprehensive data management and diagnosis system, which continuously observes the secondary water chemistry data with on-line monitors, immediately diagnosing causes whenever any symptoms of abnormality are detected and does the necessary data management, in order to support plant staff to controll water chemistry. This system has the following three basic functions: data management, diagnosis and simulation. This paper presents the outline of the total system, and then describes in detail the procedure of diagnosis, the structure of the knowledge and its validation process

  1. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions.

    Science.gov (United States)

    Lu, Songhua; Zhu, Kairuo; Song, Wencheng; Song, Gang; Chen, Diyun; Hayat, Tasawar; Alharbi, Njud S; Chen, Changlun; Sun, Yubing

    2018-07-15

    The discharge of microplastics into aquatic environment poses the potential threat to the hydrocoles and human health. The fate and transport of microplastics in aqueous solutions are significantly influenced by water chemistry. In this study, the effect of water chemistry (i.e., pH, foreign salts and humic acid) on the surface charge and aggregation of polystyrene microsphere in aqueous solutions was conducted by batch, zeta potentials, hydrodynamic diameters, FT-IR and XPS analysis. Compared to Na + and K + , the lower negative zeta potentials and larger hydrodynamic diameters of polystyrene microspheres after introduction of Mg 2+ were observed within a wide range of pH (2.0-11.0) and ionic strength (IS, 0.01-500mmol/L). No effect of Cl - , HCO 3 - and SO 4 2- on the zeta potentials and hydrodynamic diameters of polystyrene microspheres was observed at low IS concentrations (10mmol/L). The zeta potentials of polystyrene microspheres after HA addition were decreased at pH2.0-11.0, whereas the lower hydrodynamic diameters were observed at pH<4.0. According to FT-IR and XPS analysis, the change in surface properties of polystyrene microspheres after addition of hydrated Mg 2+ and HA was attributed to surface electrostatic and/or steric repulsions. These investigations are crucial for understanding the effect of water chemistry on colloidal stability of microplastics in aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  3. Water chemistry control practices and data of the European BWR fleet

    International Nuclear Information System (INIS)

    Stellwag, B.; Laendner, A.; Weiss, S.; Huettner, F.

    2010-01-01

    Nineteen BWR plants are in operation in Europe, nine built by ASEA Atom, six by Siemens KWU and four by General Electric. This paper gives an overview of water chemistry operation practices and parameters of the European BWR plants. General design characteristics of the plants are described. Chemistry control strategies and underlying water chemistry guidelines are summarized. Chemistry data are presented and discussed with regard to plant design characteristics. The paper is based on a contract of the European BWR Forum with AREVA on a chemistry sourcebook for member plants. The survey of chemistry data was conducted for the years 2002 to 2008. (author)

  4. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Krol, M.C.; Peters, W.; Verwer, J.G.; Chock, David P.; Carmichael, Gregory R.; Brick, Patricia

    2002-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  5. Solving Vertical Transport and Chemistry in Air Pollution Models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  6. Simulation with Phast of the pore water chemistry experiment results (Mont Terri Url, Switzerland), including transport, thermodynamics, kinetics, and biological activity

    International Nuclear Information System (INIS)

    Tournassat, C.; Gaucher, E.; Pearson, F.J.; Mettler, S.; Wersin, P.

    2005-01-01

    Full text of publication follows: The Pore water Chemistry (PC-)experiment was initially designed to determine the processes that control the redox properties of pore water in the Opalinus Clay at the Mont Terri URL. However, changes in isotopic data and chemical parameters such as pH, alkalinity, dissolved methane, acetate and sulphate concentrations indicated unexpected microbial activity. The origin of the bacteria is not clear. In the light of published data, an indigenous origin cannot be ruled out. A combined biological and reactive transport model has been developed with the parallel PHAST software to simulate the processes that determine pore water chemistry. The influence of bacterial activity on the system is successfully modelled by considering different reaction pathways scenarios including aceto-genesis, methano-genesis, and methane/acetate oxidation coupled to sulphate reduction. Several conclusions can be clearly stated in the light of the simulation results: - The measured redox potentials (redox electrode) are in line with the S(-II)/S(+VI) redox system. - In the undisturbed pore water, S(-II) and S(+VI) activities are controlled by a mineral assemblage containing pyrite and a Fe carbonate (siderite or ankerite). pH is buffered by mineral phases and SO 4 2- concentration is inherited from the marine sedimentary rock. - Some local redox potentials in the sedimentary rock do not correspond to the measured redox potential; for instance, organic matter/HCO 3 - and CH 4 /HCO 3 - systems are not at equilibrium with the measured redox potential. - Redox disequilibrium can be exploited by micro-organisms as a source of energy for their metabolism. In this experiment CH 4 , acetate and other organic acids were produced and SO 4 2- was reduced to HS - . The redox properties of the system are then governed by kinetics rather than by thermodynamic equilibrium. The unexpected persistence of acetate in the borehole water is one of the consequences of these

  7. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  8. Modelling of Transport of Radioactive Substances in the Primary Circuit of Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    Since the beginning of the development of water cooled nuclear power reactors, it has been known that the materials in contact with the water release some of their corrosion products into the water. As a consequence, some of the corrosion products are neutron-activated while in the reactor core and then create a gamma radiation field when deposited outside the core. These radiation fields are hazardous to the inspection, maintenance and operating staff in the power plant and therefore must be minimized. Many methods have been developed to control these radiation fields, such as the proper selection of materials and surface finishing technologies at the design stage, operating and shutdown water chemistry optimization, and the application of different decontamination methods. The need to understand the causes of this radioactivity transport has resulted in many mathematical models to describe the transport, irradiation and deposition of the radioactive corrosion products out of the core. Early models were empirical descriptions of the transport, irradiation and deposition steps, and these models allowed analytical solution of the resulting differential equations. As the mechanisms responsible for radioactivity transport gradually became better understood, more precise models of the mechanisms were made. Computer codes to solve the equations describing these models are necessary. Accurate codes are invaluable design tools for carrying out cost-benefit analysis during materials selection, for estimating shielding thicknesses and for evaluating water chemistry specifications, for example. Such codes are also useful in operating plants to predict radiation fields at specific locations where shielding may be required during a maintenance shutdown, for example, when control of radiation dose to staff is essential. To complement the previous work of the International Atomic Energy Agency (IAEA) to improve the mechanistic understanding of radioactivity transport, a

  9. A prototype expert system 'SMART' for water chemistry control in reactor water circuits

    International Nuclear Information System (INIS)

    Rangarajan, S.; Narasimhan, S.V.

    1998-01-01

    The operational safety of a power plant depends mainly on the material compatibility of the system materials with the environment. However, for an operating plant, the material is almost fixed and hence one can improve the safety by controlling the surrounding environment. From the economy point of view, the plant availability factor as well as plant life extension (PLEX) are important considerations and these necessitate a systematic approach for continuous parametric monitoring, rapid data analysis and diagnosis for controlling the water chemistry regime. A prototype expert system 'SMART' was developed in BASIC language. The expert system consists of four modules. The DATA HANDLER module controls all the data handling functions and graphical display of the data parameters. It also generates weekly and monthly reports of the water chemistry data. The DATA INTERPRETER module compares the experimental data with the theoretically calculated values and predicts the presence of impurity ingress in the system. The CHEMISTRY EXPERT contains the knowledge base about the various sub-systems. All the water chemistry specifications are translated in the form of IF... THEN.. rules and are stored in this module. The expert system inferences with the forward chain reasoning mechanism to identify the diagnostic parameters by consulting the knowledge base and applying the appropriate rules. The ACTION EXPERT module collects all the diagnostic parameters and suggests the operator, the remedial actions/counter measures that should be taken immediately. This rule based system can be expanded to accommodate different water chemistry regimes. (author)

  10. The secondary water chemistry and its quality specification of PWR steam generators

    International Nuclear Information System (INIS)

    Zhang Guiqin.

    1984-01-01

    Reasonably organizing the secondary water chemistry of a steam generator is of great importance for improving thermal-hydraulic characteristics and avoiding or alleviating probability of its internals failures by corrosion. In this paper emphasis is put on importance and task of the secondary water chemistry, the meaning and the control demand for feedwater and boiler water specification. At the same time, the current situation on the secondary water chemistry of PWR steam generators is reviewed generally. (Author)

  11. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  12. Structural material anomaly detection system using water chemistry data

    International Nuclear Information System (INIS)

    Asakura, Yamato; Nagase, Makoto; Uchida, Shunsuke; Ohsumi, Katsumi.

    1992-01-01

    The concept of an advanced water chemistry diagnosis system for detection of anomalies and preventive maintenance of system components is proposed and put into a concrete form. Using the analogy to a medical inspection system, analyses of water chemistry change will make it possible to detect symptoms of anomalies in system components. Then, correlations between water chemistry change and anomaly occurrence in the components of the BWR primary cooling system are analyzed theoretically. These fragmentary correlations are organized and reduced to an algorithm for the on-line diagnosis system using on-line monitoring data, pH and conductivity. By using actual plant data, the on-line diagnosis model system is verified to be applicable for early and automatic finding of the anomaly cause and for timely supply of much diagnostic information to plant operators. (author)

  13. Carbonate chemistry, water quality, coral measurements

    Data.gov (United States)

    U.S. Environmental Protection Agency — Carbonate chemistry parameters (pH, total alkalinity, and pCO2), water quality parameters (Temperature, salinity, Ca, Mg, PO4, NH3 and NO3) as well as all coral...

  14. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    Science.gov (United States)

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and

  15. Recent experience in water chemistry control at PWR plants

    International Nuclear Information System (INIS)

    Makino, Ichiro

    2000-01-01

    At present, 23 units of PWRs are under operation in all of Japan, among which 11 units are operated by the Kansai Electric Power Co., Inc. (KEP). Plant availability in KEP's PWRs has been improved for the past several years, through their successive stable operation. Recently, a focus is given not only to maintenance of plant integrity, but also to preventive maintenance and water chemistry control. Various measures have been carried out to enhance exposure reduction of the primary water chemistry control in the Japanese PWRs. As a result, environmental dose equivalent rate is decreasing. A secondary system is now under excellent condition because of application of diversified measures for prevention of the SG tube corrosion. At present, the water chemistry control measures which take into account of efficient chemistry control and plant aging deterioration prevention, are being examined to use for both primary and secondary systems in Japanese PWRs, to further enhance their plant integrity and availability. And, some of them are currently being actually applied. (G.K.)

  16. Water chemistry of the JMTR IASCC irradiation loop system

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Oogiyanagi, Jin; Mori, Yuichiro; Saito, Junichi; Tsukada, Takashi

    2006-01-01

    Irradiation assisted stress corrosion cracking (IASCC) is recognized as an important degradation issue of the core-internal material for aged Boiling Water Reactors (BWRs). Therefore, irradiation loop system has been developed and installed in the Japan Materials Testing Reactor to perform the IASCC irradiation test. In the IASCC irradiation test, water chemistry of irradiation field is one of the most important key parameters because it affects initiation and propagation of cracks. This paper summarizes the measurement and evaluation method of water chemistry of IASCC irradiation loop system. (author)

  17. BWR plant-to-fleet water chemistry trends -- Past and present

    International Nuclear Information System (INIS)

    Baston, V.F.; Sundberg, L.L.; Huff, J.M.

    1995-01-01

    Good water chemistry control is important for the integrity and satisfactory performance of BWRs. A historical review of selected chemistry performance indicators (e.g., conductivity) illustrates the improved chemistry control today relative to that in the past as well as the ability to evaluate these operational indicators

  18. Real time water chemistry monitoring and diagnostics

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  19. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC)

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. The CD-ROM attached to this IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  20. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  1. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  2. Reactor water chemistry relevant to coolant-cladding interaction

    International Nuclear Information System (INIS)

    1987-09-01

    The report is a summary of the work performed in a frame of a Coordinated Research Program organized by the IAEA and carried out from 1981 till 1986. It consists of a survey on our knowledge on coolant-cladding interaction: the basic phenomena, the relevant parameters, their control and the modelling techniques implemented for their assessment. Based upon the results of this Coordinated Research Program, the following topics are reviewed on the report: role of water chemistry in reliable operation of nuclear power plants; water chemistry specifications and their control; behaviour of fuel cladding materials; corrosion product behaviour and crud build-up in reactor circuits; modelling of corrosion product behaviour. This report should be of interest to water chemistry supervisors at the power plants, to experts in utility engineering departments, to fuel designers, to R and D institutes active in the field and to the consultants of these organizations. A separate abstract was prepared for each of the 3 papers included in the Annex of this document. Refs, figs, tabs

  3. Chemistry-transport coupling and retroactive effects on material properties within the context of a deep geological repository

    International Nuclear Information System (INIS)

    Bildstein, O.

    2010-06-01

    The author gives an overview of his research and teaching activities. His researches first dealt with the development of a simulation of the chemistry/transport coupling and of the retroactive effects on transport parameters, then with the chemistry/transport modelling and its coupling with mechanics, and finally with the multi-scale investigation of porous materials. Perspectives are discussed and publications are indicated

  4. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  5. Sodium-water clusters and their role in radiation chemistry

    International Nuclear Information System (INIS)

    Dhar, S.; Kestner, N.R.

    1988-01-01

    Studies of sodium-water clusters are presented which could serve as models for the recently suggested intermediate species in the radiation chemistry of water. The ionization potentials and the lower excited states of sodium with n-water molecules are calculated by ab initio quantum chemistry methods. The ionization potential calculated at the SCF level for the water monomer is 4.10 eV, which becomes 4.34 at the MP2 correlation level. The experimental value is 4.379 ± 0.002 eV. Structural data is presented for the lower members of the sodium with n-water clusters. In addition the Hartree-Fock calculations indicate that there should be some strong charge transfer to solvent transitions at higher energies. (author)

  6. Some observations on hydrazine and ammonia based chemistries in PWRs

    International Nuclear Information System (INIS)

    Brunning, J.; Cake, P.; Harper, A.; Sims, H.E.

    1997-01-01

    This paper presents a comparison of factors related to activated corrosion product transport in pressurized water reactors (PWRs) operating hydrazine and ammonia-based chemistries. Measurements of the concentrations of corrosion products in the coolant of reactors operating both chemistry regimes are compared under steady operation and during shutdown. These data allow some comparisons to be drawn of corrosion product transport under ammonia and hydrazine based chemistries. Experimental measurements of electrochemical potential under PWR conditions in the presence and absence of radiation fields and under hydrazine and ammonia chemistries are also presented. (author). 4 refs, 5 figs, 2 tabs

  7. Some observations on hydrazine and ammonia based chemistries in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Brunning, J; Cake, P; Harper, A; Sims, H E [AEA Technology, Oxon (United Kingdom)

    1997-02-01

    This paper presents a comparison of factors related to activated corrosion product transport in pressurized water reactors (PWRs) operating hydrazine and ammonia-based chemistries. Measurements of the concentrations of corrosion products in the coolant of reactors operating both chemistry regimes are compared under steady operation and during shutdown. These data allow some comparisons to be drawn of corrosion product transport under ammonia and hydrazine based chemistries. Experimental measurements of electrochemical potential under PWR conditions in the presence and absence of radiation fields and under hydrazine and ammonia chemistries are also presented. (author). 4 refs, 5 figs, 2 tabs.

  8. Dynamic combinatorial chemistry with diselenides and disulfides in water

    DEFF Research Database (Denmark)

    Rasmussen, Brian; Sørensen, Anne; Gotfredsen, Henrik

    2014-01-01

    Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is......Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is...

  9. Environmental and legal aspects of cooling water chemistry

    International Nuclear Information System (INIS)

    Hoffmann, H.J.

    1988-01-01

    The discharge and management of cooling water and waste water are subject to a number of ecological and legal requirements. For example, waste heat and cooling water constituents may affect surface bodies of water, or waste water discharge may have adverse effects on surface water and ground water. Waste water and cooling water discharge are subject to the Water Management Act (WHG) and the Waste Water Act, with about 50 administrative regulations. The requirements on water chemistry and analysis are gone into. (orig./HP) [de

  10. Design Features of the SMART Water Chemistry

    International Nuclear Information System (INIS)

    Byung Seon Choi; Seong Hoon Kim; Juhyeon Yoon; Doo Jeong Lee; Yoon Yeong Bae; Sung Kyun Zee

    2004-01-01

    The design features for the primary water chemistry for the SMART are introduced from the viewpoint of the system characteristics and the chemical design concept. The most essential differences in water chemistry between the commercially operating PWRs and SMART are characterized by the presence of boron in the water and the operating mode of the purification system. SMART is a soluble boron free reactor, and the ammonia is used as a pH reagent. The material for SMART steam generator is also different from the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. In SMART hydrogen gas which suppresses a generation of oxidizing species by the radiolysis processes in the reactors is not added to the primary coolant, but is normally generated from the radiolysis of the ammonia as the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are in equilibrium, which depend on the decomposition and/or combination rate of the ammonia. The level of permissible oxygen concentration in the primary coolant can be ensured by both suppression of the water radiolysis through maintaining a high enough hydrogen concentration in the primary coolant and by a restriction of the oxygen ingress into the primary coolant with the makeup water. The ammonia chemistry in SMART reactor eliminates the need for hydrogen injection for the control of the dissolved oxygen in the primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of the ammonia decomposition. (authors)

  11. An overview of KANUPP operating experience in chemistry

    International Nuclear Information System (INIS)

    Hashmi, T.

    2010-01-01

    KANUPP is a small CANDU® type PHWR (137MWe), commissioned in 1972 and now operating after life extension (PLEX) since 2004. This paper contains an overview of the plant operating experience in chemistry control over the past year including life extension period. Emphasis is on: Success story; Practices; Future improvements in chemistry programs. Considerable efforts are underway to maintain plant equipment and systems to mitigate the effect of plant ageing. The improvements that have been made at the station are as under: Heat transport system (HTS) chemistry, its effects on construction material; Feed water chemistry on secondary side (considering the condenser leaks). Strict chemistry control is being exercised for the heat transport system (HTS) for its better chemistry control. For short term, the changes are limited to pH adjustments of HTS. This change decreases the rate of thinning of outlet feeders as noted in some CANDUs® due to flow accelerated corrosion (FAC). Water Treatment Plant has been refurbished to get very low total dissolved solids (TDS) de-mineralized water for secondary side systems of the plant. Experience of steam generators flushing before startup, sludge pile analyses mapping, verification of pH from different sampling points of SGs, are the short term mitigating actions to address sludge pile problem in steam generators (SGs). The R and D on HTS and SGs is multifaceted and is aimed at achieving optimum chemistry control. Study is being conducted for improving chemistry control for the material, equipment and systems of the plant. (author)

  12. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, Keith; Choi, Samuel

    2012-09-01

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  13. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  14. CRACKER - a program coupling chemistry and transport. Version 92-11

    Energy Technology Data Exchange (ETDEWEB)

    Emren, A [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Nuclear Technology

    1992-12-01

    CRACKER is a program coupling chemistry and transport. It simulates chemical reactions of groundwater flowing through a plane fracture. Properties like initial composition of the water, mineralogical composition of the rock and temperature gradients and flow velocity of the water serve as input for the modelling. The program is designed to handle heterogeneous rock properties, like redox fronts, regions with different mineralogy etc. It is even able to handle the common situation of a rock violating the phase rule. In the CRACKER model, a rock is formed by a more or less random distribution of minerals across the surfaces of a fracture. Water moves along the fracture (in present version at a constant velocity). No diffusion parallel to the flow direction is simulated. CRACKER is a package of several programs, most of them written in C. Chemical equilibrium calculations are mostly performed by the well-known geochemical program PHREEQE. The main program, CRACKER, manages information flow and determines which subprograms to use for specific tasks. Further it is responsible for the user interface. Essentially a simulation proceeds by alternate call to the HACKER and PHREEQE subprograms. HACKER is responsible for generating the rock, water propagation, mixing of waters and sampling the results. PHREEQE is used to solve the chemical equilibrium equations. The directory structure and the data structures used by CRACKER are described in separate sections. Further, the different subprograms are described with respect to purposes and methods used to handle the problems. The purpose of each first level function in the subprograms is described. (author).

  15. CRACKER - a program coupling chemistry and transport. Version 92-11

    International Nuclear Information System (INIS)

    Emren, A.

    1992-12-01

    CRACKER is a program coupling chemistry and transport. It simulates chemical reactions of groundwater flowing through a plane fracture. Properties like initial composition of the water, mineralogical composition of the rock and temperature gradients and flow velocity of the water serve as input for the modelling. The program is designed to handle heterogeneous rock properties, like redox fronts, regions with different mineralogy etc. It is even able to handle the common situation of a rock violating the phase rule. In the CRACKER model, a rock is formed by a more or less random distribution of minerals across the surfaces of a fracture. Water moves along the fracture (in present version at a constant velocity). No diffusion parallel to the flow direction is simulated. CRACKER is a package of several programs, most of them written in C. Chemical equilibrium calculations are mostly performed by the well-known geochemical program PHREEQE. The main program, CRACKER, manages information flow and determines which subprograms to use for specific tasks. Further it is responsible for the user interface. Essentially a simulation proceeds by alternate call to the HACKER and PHREEQE subprograms. HACKER is responsible for generating the rock, water propagation, mixing of waters and sampling the results. PHREEQE is used to solve the chemical equilibrium equations. The directory structure and the data structures used by CRACKER are described in separate sections. Further, the different subprograms are described with respect to purposes and methods used to handle the problems. The purpose of each first level function in the subprograms is described. (author)

  16. Standard and hydrazine water chemistry in primary circuit of VVER 440 units

    International Nuclear Information System (INIS)

    Burclova, J.

    1992-01-01

    Standard ammonia-potassium-boron water chemistry of 8 units with VVER 440 in CSFR is discussed as well as the corrosion product activity in the coolant during steady state and shut-down period and surface activity, dose rate build-up and occupational radiation exposure. Available data on hydrazine application (USSR, Hungary) indicate the possibility of the radiation field decreasing. Nevertheless the detailed analysis of 55 cycles of operation under standard water chemistry in Czechoslovakia allows to expect the comparable results for both water chemistries. (author)

  17. Automated Water Chemistry Control at University of Virginia Pools.

    Science.gov (United States)

    Krone, Dan

    1997-01-01

    Describes the technologically advanced aquatic and fitness center at the University of Virginia. Discusses the imprecise water chemistry control at the former facility and its intensive monitoring requirements. Details the new chemistry control standards initiated in the new center, which ensure constant chlorine and pH levels. (RJM)

  18. Brunswick-2 water chemistry. Interim report

    International Nuclear Information System (INIS)

    Miller, A.D.

    1981-04-01

    This study summarizes and interprets the nearly half million data points obtained through January of 1978 from the continuous monitoring equipment and data acquisition computers at Brunswick-2. Dissolved oxygen, specific conductance, and pH levels of 12 separate sample points were measured and correlated to plant operation, leading to a more complete understanding of the water chemistry of boiling water reactors. The measured parameters were characterized for various reactor power levels, startups, shutdowns, resin intrusions, etc

  19. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  20. Development of High Temperature Chemistry Measurement System for Establishment of On-Line Water Chemistry Surveillance Network in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, Won Ho; Song, Kyu Seok; Joo, Ki Soo; Choi, Ke Chon; Ha, Yeong Keong; Ahn, Hong Joo; Im, Hee Jung; Maeng, Wan Young

    2010-07-01

    An integrated high-temperature water chemistry sensor (pH, E redox ) was developed for the establishment of the on-line water chemistry surveillance system in nuclear power plants. The basic performance of the integrated sensor was confirmed in high-temperature (280 .deg. C, 150kg/m 2 ) lithium borate solutions by using the relationship between the concentration of lithium ion and pH-E redox values. Especially, the effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. And the relationships between each water chemistry factor (pH, redox potential, electrical conductivity) were induced for enhancing the credibility of water chemistry measurement. In addition, on the basis of the evaluation of a nuclear plant design company, we suggested potential installation positions of the measurement system in a nuclear power plant

  1. Water chemistry and endangered white-clawed Crayfish: a literature review and field study of water chemistry association in Austropotamobius pallipes

    Directory of Open Access Journals (Sweden)

    Haddaway N.R.

    2015-01-01

    Full Text Available Populations of the endangered white-clawed crayfish (Austropotamobius pallipes have rapidly declined in distribution and density in recent decades as a result of invasive crayfish, disease and habitat degradation. The species is thought to be particularly sensitive to water chemistry, and has been proposed as a bio-indicator of water quality. Here we detail the results of a systematic review of the literature regarding the chemistry of waterbodies inhabited by white-clawed crayfish, along with a wide-scale field study of the chemistry of crayfish-inhabited waterbodies in the UK. We use these data to examine potentially significant variables influencing crayfish distribution. Several variables appear to have thresholds that affect crayfish distribution; crayfish presence was associated with high dissolved oxygen, low conductivity, ammonium, sodium, and phosphate, and to a lesser extent low sulphate, nitrate, and total suspended solids. Some variables (magnesium, potassium, sodium, sulphate, nitrate, and total suspended solids may be tolerated at moderate to high concentrations in isolation (indicated by the presence of some populations in high levels of these variables, but suites of chemical conditions may act synergistically in situ and must be considered together. Recent efforts to conserve white-clawed crayfish have included relocations to Ark Sites; novel protected habitats with reduced risk of the introduction of disease, invasive crayfish and habitat degradation. We use our findings to propose the first detailed guidelines for common water chemistry variables of potential Ark Sites for the conservation of the species throughout its European range.

  2. History of the water chemistry for the few tube test model

    International Nuclear Information System (INIS)

    Moss, S.A.; Simpson, J.L.

    1979-09-01

    The water chemistry activities carried out in support of the Few Tube Test are described. This test was conducted to provide design confirmation data for the Clinch River Breeder Reactor Project (CRBRP) steam generators. Proposed CRBRP chemistry was followed; all volatile treatment (AVT) of water was carried out with on-line monitoring capability

  3. Pore water chemistry in the beach sands of central Tamil Nadu, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandrasekar, N.; Gujar, A.R.; Loveson, V.J.; Rajamanickam, G.V.; Moscow, S.; Manickaraj, D.S.; Chandrasekaran, R.; Chaturvedi, S.K.; Mahesh, R.; Sudha, V.; Josephine, P.J.; Deepa, V.

    As the pore water chemistry- has been considered as one of the prominent base parameters to infer the impact of coastal mining in introducing environmental deterioration, a study in pore water chemistry is planned here along the beaches for a length...

  4. Water chemistry: protecting the industry's investment. Making or breaking plant operations

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Good water chemistry is a good way to preserve the life of steam generators and other plant components. Pipe cracks in boiling-water reactors, tube pitting, denting and cracking in pressurized-water reactors are all problems that are surfacing due to poor water chemistry, i.e., the lack of water purity. Water is essential to power generation and is corrosive under the best of conditions. But to a metal system filled with water and subject to high pressure, high temperature, and impurities such as chlorides, the potential for rapid and permanent damage rises to serious proportions. In addition, radiation levels increase from corrosive products circulated through the reactor vessel

  5. Ground water chemistry and water-rock interaction at Olkiluoto

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Front, K.

    1992-02-01

    Bedrock investigations for the final repository for low- and intermediate level wastes (VLJ repository) generated at the Olkiluoto (TVO-I and TVO-II) nuclear power plant, stareted in 1980. Since 1988 the area has been investigated for the final disposal of spent nuclear fuel. In the report the geochemistry at the nuclear waste investigation site, Olkiluoto, is evaluated. The hydrogeological data are collected from boreholes drilled down to 1000-m depth into Proterozoic crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed. The groundwater types are characterized by water-rock interaction but they also show features of other origins. The fresh and brackish waters are contaminated by varying amounts of young meteoric water and brackish seawater. The saline water contains residues of possibly ancient hydrothermal waters, imprints of which are occasionally seen in the rock itself. Different mixing phenomenas are indicated by the isotope contents (O-l8/H-2, H-3) and the Ca/Cl, Na/Cl, HCO 3 /Cl, SO 4 /Cl, Br/Cl, SI(calcite)/SI(dolomite) ratios. The interaction between bedrock and groundwater is reflected by the behaviour of pH, Eh, Ca, Mg, Na, K, Fe, HCO 3 and S0 4 . Dissolution and precipitation of calcite and pyrite, and aluminosilicate hydrolysis play the major role in defining the groundwater composition of the above components

  6. Fluid transport with time on peritoneal dialysis: the contribution of free water transport and solute coupled water transport

    NARCIS (Netherlands)

    Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.

    2009-01-01

    Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up

  7. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  8. On the use of mass-conserving wind fields in chemistry-transport models

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2003-01-01

    Full Text Available A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere.

  9. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  10. Primary water chemistry monitoring from the point of view of radiation build-up

    International Nuclear Information System (INIS)

    Horvath, G.L.; Civin, V.; Pinter, T.

    1997-01-01

    Basic operational principles of a computer code system calculating the primary circuit corrosion product activities based on actual measured plant chemistry data are presented. The code system consists of two parts: FeSolub.prg: calculates the characteristic iron solubilities based on actual primary water chemistry (H 3 BO 3 KOH, ... etc.) and plant load (MW) data. A developed solubility calculation method has been applied fitted to magnetite solubility data of several authors; RADTRAN.exe: calculates primary circuit water and surface corrosion product activities based on results of FeSolub.prg or planned water chemistry data up to the next shutdown. The computer code system is going to be integrated into a general primary water chemistry monitoring and surveillance system. (author). 15 refs, 4 figs, 3 tabs

  11. Water transport and energy.

    Science.gov (United States)

    Fricke, Wieland

    2017-06-01

    Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.

  12. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured...

  13. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  14. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC). Additional Information

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. This CD-ROM attached to the printed IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  15. Primary water chemistry control at units of Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Schunk, J.; Patek, G.; Pinter, T.; Tilky, P.; Doma, A.; Osz, J.

    2010-01-01

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western-type PWR units, taking into consideration some Soviet-Russian modifications. The political changes in 90s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of VVER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The needs for life-time extensions all over the World have made the development of start-up and shut-down chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  16. Primary Water Chemistry Control at Units of Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, J.; Pinter, G. Patek T.; Tilky, P.; Doma, A. [Paks Nuclear Power Plant Co. Ltd., Paks (Hungary); Osz, J. [Budapest University of Technology and Economics, Budapest (Hungary)

    2013-03-15

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western type PWR units, taking into consideration some Russian modifications. The political changes in the 1990s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of WWER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The need for lifetime extensions worldwide has made the development of startup and shutdown chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  17. Predicted effect of power uprating on the water chemistry of commercial boiling water reactors

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Chu, Charles F.; Chang Ching

    2009-01-01

    The approach of power uprating has been adopted by operators of light water reactors in the past few decades in order to increase the power generation efficiency of nuclear reactors. The power uprate strategy is apparently applicable to the three nuclear reactors in Taiwan as well. When choosing among the three types of power uprating, measurement uncertainty, stretch power uprating, and extended power uprating, a deliberate and thorough evaluation is required before a final decision and an optimal selection can be made. One practical way of increasing the reactor power is to deliberately adjust the fuel loading pattern and the control rod pattern and thus to avoid replacing the primary coolant pump with a new one of larger capacity. The power density of the reactor will increase with increasing power, but the mass flow rate in the primary coolant circuit (PCC) of a light water reactor will slightly increase (usually by less than 5 %) or even remain unchanged. Accordingly, an uprated power would induce higher neutron and gamma photon dose rates in the reactor coolant but have a minor or no effect on the mass flow rate of the primary coolant. The radiolysis product concentrations and the electrochemical corrosion potential (ECP) values differ largely in the PCC of a boiling water reactor (BWR). It is very difficult to measure the water chemistry data directly at various locations of an actual reactor. Thus the impact of power uprating on the water chemistry of a BWR operating under hydrogen water chemistry (HWC) can only be theoretically evaluated through computer modelling. In this study, the DEMACE computer code was modified to investigate the impact of power uprating on the water chemistry under a fixed mass flow rate in the primary coolant circuit of a BWR/6 type plant. Simulations were carried out for hydrogen concentrations in feedwater ranging from 0.0 to 2.0 mg . kg -1 and for power levels ranging from 100 % to 120 %. The responses of water chemistry and ECP

  18. Reactive transport modelling of groundwater chemistry in a chalk aquifer at the watershed scale.

    Science.gov (United States)

    Mangeret, A; De Windt, L; Crançon, P

    2012-09-01

    This study investigates thermodynamics and kinetics of water-rock interactions in a carbonate aquifer at the watershed scale. A reactive transport model is applied to the unconfined chalk aquifer of the Champagne Mounts (France), by considering both the chalk matrix and the interconnected fracture network. Major element concentrations and main chemical parameters calculated in groundwater and their evolution along flow lines are in fair agreement with field data. A relative homogeneity of the aquifer baseline chemistry is rapidly reached in terms of pH, alkalinity and Ca concentration since calcite equilibrium is achieved over the first metres of the vadose zone. However, incongruent chalk dissolution slowly releases Ba, Mg and Sr in groundwater. Introducing dilution effect by rainwater infiltration and a local occurrence of dolomite improves the agreement between modelling and field data. The dissolution of illite and opal-CT, controlling K and SiO(2) concentrations in the model, can be approximately tackled by classical kinetic rate laws, but not the incongruent chalk dissolution. An apparent kinetic rate has therefore been fitted on field data by inverse modelling: 1.5×10(-5) mol(chalk)L (-1) water year (-1). Sensitivity analysis indicates that the CO(2) partial pressure of the unsaturated zone is a critical parameter for modelling the baseline chemistry over the whole chalk aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Primary water chemistry monitoring from the point of view of radiation build-up

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G L [Institute for Electrical Power Research, Budapest (Hungary); Civin, V [Hungarian Electricity Generating Board, Budapest (Hungary); Pinter, T [Nuclear Power Plant PAKS, Budapest (Hungary)

    1997-02-01

    Basic operational principles of a computer code system calculating the primary circuit corrosion product activities based on actual measured plant chemistry data are presented. The code system consists of two parts: FeSolub.prg: calculates the characteristic iron solubilities based on actual primary water chemistry (H{sub 3}BO{sub 3}KOH, ... etc.) and plant load (MW) data. A developed solubility calculation method has been applied fitted to magnetite solubility data of several authors; RADTRAN.exe: calculates primary circuit water and surface corrosion product activities based on results of FeSolub.prg or planned water chemistry data up to the next shutdown. The computer code system is going to be integrated into a general primary water chemistry monitoring and surveillance system. (author). 15 refs, 4 figs, 3 tabs.

  20. Water Transport Mediated by Other Membrane Proteins.

    Science.gov (United States)

    Huang, Boyue; Wang, Hongkai; Yang, Baoxue

    2017-01-01

    Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .

  1. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  2. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    Science.gov (United States)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts

  3. Variation of the effectiveness of hydrogen water chemistry in a boiling water reactor during power coastdown operations

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Wang Meiya; Chu, Charles F.; Chang Ching

    2009-01-01

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of a commercial boiling water reactor (BWR) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for a commercial BWR to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic reactor operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the chemical species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power level of 90% for Reactor X. (author)

  4. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  5. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  6. The Influence of Geology and Other Environmental Factors on Stream Water Chemistry and Benthic Invertebrate Assemblages

    OpenAIRE

    Olson, John R.

    2012-01-01

    Catchment geology is known to influence water chemistry, which can significantly affect both species composition and ecosystem processes in streams. However, current predictions of how stream water chemistry varies with geology are limited in both scope and precision, and we have not adequately tested the specific mechanisms by which water chemistry influences stream biota. My dissertation research goals were to (1) develop empirical models to predict natural base-flow water chemistry from ca...

  7. Effect of Water Chemistry Variations on Corrosion of Zr-Alloys for BWR Applications

    International Nuclear Information System (INIS)

    Kim, Young-Jin; Yang- Lin, Pi; Lutz, Dan; Kucuk, Aylin; Cheng, Bo

    2012-09-01

    Two reference water chemistry conditions (60 ppb Zn and 60 μg/cm 2 Pt/Rh with either 500 ppb O 2 and 500 ppb H 2 O 2 , or 150 ppb H 2 ) were chosen for testing at 300 deg. C in refreshed autoclaves. For each reference water chemistry, the potential effects due to three chemical impurities of interest to BWRs (33 ppm Na, 10 ppm Li, and 10 ppm EHC fluid) were evaluated. Zircaloy-2 and GNF-Ziron (a Zr-based alloy with higher Fe additions than Zircaloy-2) cladding tubes were tested and the effects of tubing process variation and pre-filming were investigated. Tested channel materials included Zircaloy-2, Zircaloy-4, GNF-Ziron and NSF (a Zr-based alloy with Sn, Nb and Fe additions). The corrosion weight gain and hydrogen absorption were measured up to 12 months of exposure for a given water chemistry condition. Tests under 150 ppb H 2 based water chemistry, with or without chemical impurities, generally resulted in greater amounts of corrosion after 12 month exposure compared with 500 ppb O 2 and 500 ppb H 2 O 2 based water chemistries. Of the added chemical impurities, only 33 ppm Na addition produced slightly increased corrosion. Under various test conditions, the presence of a thin pre-film resulted in some initial corrosion benefits, but the benefits were no longer evident after 12 months exposure; however, slight hydrogen benefits remained. For GNF-Ziron cladding, hydrogen absorption was generally lower compared with similarly processed Zircaloy-2 under 150 ppb H 2 based water chemistry, when corrosion was generally higher. Of the channel material tested, NSF developed the lowest level of hydrogen absorption, particularly under 150 ppb H 2 based water chemistries. (authors)

  8. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    Science.gov (United States)

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  9. Improved water chemistry controls for minimizing degradation of materials

    International Nuclear Information System (INIS)

    Sawochka, S.G.

    1986-01-01

    The Electric Power Research Institute and the Steam Generator Owners Group have sponsored several efforts to develop secondary water chemistry guidelines to minimize pressurized water reactor (PWR) steam generator tubing degradation. To develop these guidelines, chemical species known to accelerate corrosion of Alloy 600 were identified, and values for normal and abnormal chemistry situations were established. For example, sodium hydroxide was known to accelerate Alloy 600 intergranular attack stress corrosion cracking; thus, guidelines were developed for blowdown sodium concentrations in recirculating steam generator systems. Similarly, formation of acidic solutions, particularly as a result of chloride ingress at seawater sites, was known to accelerate denting; thus, chloride guidelines were established. A blowdown cation conductivity limit was established to minimize concentrations of other anionic species. Guidelines also were developed for condensate and feedwater chemistry to minimize general corrosion of system materials, thereby minimizing sludge and deposit buildup in the steam generators

  10. The terminator "toy" chemistry test: a simple tool to assess errors in transport schemes

    Directory of Open Access Journals (Sweden)

    P. H. Lauritzen

    2015-05-01

    Full Text Available This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X + X → X2 and dissociation (X2 → X + X. This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum XT = X + 2X2 should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.

  11. Free water transport, small pore transport and the osmotic pressure gradient

    NARCIS (Netherlands)

    Parikova, Alena; Smit, Watske; Zweers, Machteld M.; Struijk, Dirk G.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients occurs through the small pores and water channels, the latter allowing free water transport (FWT). The osmotic gradient is known to be one of the major determinants of water transport. The objective of the study was to analyse the

  12. Advanced studies in chemistry control with morpholine

    International Nuclear Information System (INIS)

    Riddle, J.M.

    1992-07-01

    Prior studies at Beaver Valley Unit 1 and at Prairie Island found that the substitution of morpholine for ammonia reduced corrosion and iron transport in the feedtrain of pressurized water reactors. The benefits of using morpholine encouraged other utilities to consider morpholine water chemistry. Calvert Cliffs Unit 1 was the first domestic PWR with deep-bed condensate polishers to use morpholine water chemistry. Typically a bed is operated in the hydrogen cycle for eight to ten days, followed by an additional 25 days in the morpholine cycle. Morpholine reduced feedwater iron levels by 28 percent. With morpholine treatment at Calvert Cliffs Unit 1, corrosion product transport in feedwater was reduced by a factor of 1.3 -- 1.4. Morpholine treatment at higher levels at Prairie Island Unit 2 provided a factor of 2.3 reduction in feedwater iron transport, in agreement with data from Electricity de France. EdF data show that the factor increases as the pH for ammonia chemistry is reduced from 9.5. When possible, the factors were compared at a pH of 9.2 for morpholine at room temperature. Aqueous solutions of morpholine thermally decompose at increasing rates with temperature above about 288 degree C (550 degree F). Oxygen and several metal oxides appear to increase the rate of decomposition to a small extent. Acetate, formate, and various amines, including ammonia, are the principal decomposition products

  13. A preliminary analysis of water chemistry of the Mkuze Wetland ...

    African Journals Online (AJOL)

    In order to investigate the water chemistry of this system, water samples were collected throughout the study area from surface water, groundwater, pan and reed swamp sites, as well as a rainwater sample. These were analysed for chloride, sodium, potassium, calcium, magnesium, iron and silicon. Four main water bodies ...

  14. Operating experience in correcting severe secondary chemistry upsets by controlling makeup water organics (TOC)

    International Nuclear Information System (INIS)

    Flint, W.G.; Mc Intosh, R.J.

    1986-01-01

    In this paper following observations are presented: conductivity and chloride excursions in steam condensate were directly linked to makeup water quality. Data strongly suggests that the breakdown of makeup water organics was responsible for substandard condensate water quality; although the short-term effects of gross organic contamination have been documented, the longer term consequences of continuous exposure by moderate organic levels needs to be addressed; a greater understanding of the organic removal efficiency of the various water purification technologies is essential to controlling TOC contamination; and a much better understanding of makeup plant chemistry and the interrelationship of makeup water contamination and plant chemistry has proven essential to optimizing plant performance and guaranteeing the best possible steam chemistry. The role of the chemistry group as an active participant in operations has been proven at Kewaunee Nuclear Plant

  15. Secondary cycle water chemistry for 500 MWe pressurised heavy water reactor (PHWR) plant: a case study

    International Nuclear Information System (INIS)

    Bhandakkar, A.; Subbarao, A.; Agarwal, N.K.

    1995-01-01

    In turbine and secondary cycle system of 500 MWe PHWR, chemistry of steam and water is controlled in secondary cycle for prevention of corrosion in steam generators (SGs), feedwater system and steam system, scale and deposit formation on heat transfer surfaces and carry-over of solids by steam and deposition on steam turbine blades. Water chemistry of secondary side of SGs and turbine cycle is discussed. (author). 8 refs., 2 tabs., 1 fig

  16. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

  17. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    E. Thomas

    2004-01-01

    breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation

  18. Experience on KKNPP VVER 1000 MWe water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Pillai, Suresh Kumar

    2015-01-01

    Kudankulam Nuclear Power Project consists of pressurized water reactor (VVER) 2 x 1000 MWe constructed in collaboration with Russian Federation at Kudankulam in Tirunelveli District, Tamilnadu. Unit - 1 attained criticality on July 13 th 2013 and the unit was synchronized to grid on 22 nd October 2013. This paper highlights experience gained on water chemistry regime for primary and secondary circuit. (author)

  19. Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS

    OpenAIRE

    Sumintadireja, Prihadi; Irawan, Dasapta Erwin; Rezky, Yuanno; Gio, Prana Ugiana; Agustin, Anggita

    2016-01-01

    This file is the dataset for the following paper "Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS". Authors: Prihadi Sumintadireja1, Dasapta Erwin Irawan1, Yuano Rezky2, Prana Ugiana Gio3, Anggita Agustin1

  20. Burning water: The water footprint of biofuel-based transport

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims to replace 10 percent of total transport fuels by biofuels by 2020. This study calculates the water footprint (WF) of different transport modes using bio-ethanol, biodiesel or

  1. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    Science.gov (United States)

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  2. On interpreting studies of tracer transport by deep cumulus convection and its effects on atmospheric chemistry

    Directory of Open Access Journals (Sweden)

    M. G. Lawrence

    2008-10-01

    Full Text Available Global chemistry-transport models (CTMs and chemistry-GCMs (CGCMs generally simulate vertical tracer transport by deep convection separately from the advective transport by the mean winds, even though a component of the mean transport, for instance in the Hadley and Walker cells, occurs in deep convective updrafts. This split treatment of vertical transport has various implications for CTM simulations. In particular, it has led to a misinterpretation of several sensitivity simulations in previous studies in which the parameterized convective transport of one or more tracers is neglected. We describe this issue in terms of simulated fluxes and fractions of these fluxes representing various physical and non-physical processes. We then show that there is a significant overlap between the convective and large-scale mean advective vertical air mass fluxes in the CTM MATCH, and discuss the implications which this has for interpreting previous and future sensitivity simulations, as well as briefly noting other related implications such as numerical diffusion.

  3. Roles of transport and chemistry processes in global ozone change on interannual and multidecadal time scales

    Science.gov (United States)

    Sekiya, T.; Sudo, K.

    2014-04-01

    This study investigates ozone changes and the individual impacts of transport and chemistry on those changes. We specifically examine (1) variation related to El Niño Southern Oscillation, which is a dominant mode of interannual variation of tropospheric ozone, and (2) long-term change between the 2000s and 2100s. During El Niño, the simulated ozone shows an increase (1 ppbv/K) over Indonesia, a decrease (2-10 ppbv/K) over the eastern Pacific in the tropical troposphere, and an increase (50 ppbv/K) over the eastern Pacific in the midlatitude lower stratosphere. These variations fundamentally agree with those observed by Microwave Limb Sounder/Tropospheric Emission Spectrometer instruments. The model demonstrates that tropospheric chemistry has a strong impact on the variation over the eastern Pacific in the tropical lower troposphere and that transport dominates the variation in the midlatitude lower stratosphere. Between the 2000s and 2100s, the model predicts an increase in the global burden of stratospheric ozone (0.24%/decade) and a decrease in the global burden of tropospheric ozone (0.82%/decade). The increase in the stratospheric burden is controlled by stratospheric chemistry. Tropospheric chemistry reduces the tropospheric burden by 1.07%/decade. However, transport (i.e., stratosphere-troposphere exchange and tropospheric circulation) causes an increase in the burden (0.25%/decade). Additionally, we test the sensitivity of ozone changes to increased horizontal resolution of the representation of atmospheric circulation and advection apart from any aspects of the nonlinearity of chemistry sensitivity to horizontal resolution. No marked difference is found in medium-resolution or high-resolution simulations, suggesting that the increased horizontal resolution of transport has a minor impact.

  4. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. (For full text of the abstract see 25:072321)

  5. Irradiation capability of Japanese materials test reactor for water chemistry experiments

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Hata, Kuniki; Chimi, Yasuhiro; Nishiyama, Yutaka; Nakamura, Takehiko

    2012-09-01

    Appropriate understanding of water chemistry in the core of LWRs is essential as chemical species generated due to water radiolysis by neutron and gamma-ray irradiation govern corrosive environment of structural materials in the core and its periphery, causing material degradation such as stress corrosion cracking. Theoretical model calculation such as water radiolysis calculation gives comprehensive understanding of water chemistry at irradiation field where we cannot directly monitor. For enhancement of the technology, accuracy verification of theoretical models under wide range of irradiation conditions, i.e. dose rate, temperature etc., with well quantified in-pile measurement data is essential. Japan Atomic Energy Agency (JAEA) has decided to launch water chemistry experiments for obtaining data that applicable to model verification as well as model benchmarking, by using an in-pile loop which will be installed in the Japan Materials Testing Reactor (JMTR). In order to clarify the irradiation capability of the JMTR for water chemistry experiments, preliminary investigations by water radiolysis / ECP model calculations were performed. One of the important irradiation conditions for the experiments, i.e. dose rate by neutron and gamma-ray, can be controlled by selecting irradiation position in the core. In this preliminary study, several representative irradiation positions that cover from highest to low absorption dose rate were chosen and absorption dose rate at the irradiation positions were evaluated by MCNP calculations. As a result of the calculations, it became clear that the JMTR could provide the irradiation conditions close to the BWR. The calculated absorption dose rate at each irradiation position was provided to water radiolysis calculations. The radiolysis calculations were performed under various conditions by changing absorption dose rate, water chemistry of feeding water etc. parametrically. Qualitatively, the concentration of H 2 O 2 , O 2 and

  6. Chemistry control approach of pre commissioning and power operation of primary and auxiliary system of KGS-3 and 4 and trouble shooting made

    International Nuclear Information System (INIS)

    Bennet Raj, N.; Sahu, B.S.; Kumar, Vineet; Valluri, J.

    2008-01-01

    KGS (Kaiga Generating Station) 3 and 4 is a 220 MWe pressurized heavy water reactor (PHWR) using heavy water (D 2 O) as moderator and primary heat coolant and the secondary system is light water which is used to make the steam for generating the power. The chemistry control approach made for the successful commissioning and subsequent power operation of the unit is discussed here. The chemistry control is of two parts first part covers the pre commissioning chemistry control and the second part covers the commissioning chemistry control. During commissioning all systems were preserved by proper chemistry control and regular recirculation of system to avoid stagnancy. The major pre commissioning and commissioning chemistry control are depicted below: Pre commissioning chemistry control of primary heat transport (PHT) system and auxiliaries; Pre commissioning chemistry control of moderator system; Primary heat transport system hot conditioning with light water; Commissioning chemistry control of End Shield System (ESC) and Calandria Vault Cooling (CVC) system; Heavy water addition and its chemistry control in moderator system; and Heavy water addition and its chemistry control in PHT system. During power operation dew point in annular gas monitoring system (AGMS) of KGS unit 3 was maintaining in higher side under recirculation. The increase of dew point could be due to ingress of heavy water or light water. A new device was developed to collect condensate and the chemistry of the condensate was checked. The result indicated the ingress of light water. (author)

  7. Chemistry in production of heavy water and industrial solvents

    International Nuclear Information System (INIS)

    Thomas, P.G.

    2015-01-01

    Industries are the temples of modern science built on the robust foundation of science and technology. The genesis of giant chemical industries is from small laboratories where the scientific thoughts are fused and transformed into innovative technologies Heavy water production is an energy intensive giant chemical industry where various hazardous and flammable chemicals are handled, extreme operating conditions are maintained and various complex chemical reactions are involved. Chemistry is the back bone to all chemical industrial activities and plays a lead role in heavy water production also. Heavy Water Board has now mastered the technology of design, construction, operation and maintenance of Heavy Water plants as well as fine tuning of the process make it more cost effective and environment friendly. Heavy Water Board has ventured into diversified activities intimately connected with our three stages of Nuclear Power Programme. Process development for the production of nuclear grade solvents for the front end and back end of our nuclear fuel cycle is one area where we have made significant contributions. Heavy Water Board has validated, modified and fine-tuned the synthesis routes for TBP, D2EHPA, TOPO, TAPO TIAP, DNPPA, D2EHPA-II, DHOA etc and these solvents were accepted by end users. Exclusive campaigns were carried out in laboratory scale, bench scale and pilot plant scale before scaling up to industrial scale. The process chemistry is understood very well and chemical parameters were monitored in every step of the synthesis. It is a continual improvement cycle where fine tuning is carried out for best quality and yield of product at lowest cost. In this presentation, an attempt is made to highlight the role of chemistry in the production of Heavy Water and industrial solvents

  8. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  9. Fuel Chemistry Research | Transportation Research | NREL

    Science.gov (United States)

    Fuel Chemistry Research Fuel Chemistry Research Photo of a hand holding a beaker containing a clear oils. Photo by Dennis Schroeder, NREL NREL's fuel chemistry research explores how biofuels, advanced , emissions control catalysts, and infrastructure materials. Results from NREL's fuel chemistry studies feed

  10. Smart Cities Will Need Chemistry

    Directory of Open Access Journals (Sweden)

    Alexandru WOINAROSCHY

    2016-06-01

    Full Text Available A smart city is a sustainable and efficient urban centre that provides a high quality of life to its inhabitants through optimal management of its resources. Chemical industry has a key role to play in the sustainable evolution of the smart cities. Additionally, chemistry is at the heart of all modern industries, including electronics, information technology, biotechnology and nano-technology. Chemistry can make the smart cities project more sustainable, more energy efficient and more cost effective. There are six broad critical elements of any smart city: water management systems; infrastructure; transportation; energy; waste management and raw materials consumption. In all these elements chemistry and chemical engineering are deeply involved.

  11. Influence of climate on alpine stream chemistry and water sources

    Science.gov (United States)

    Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.

    2018-01-01

    The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.

  12. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  13. Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan

    Science.gov (United States)

    Nakagawa, K.; Amano, H.

    2017-12-01

    Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.

  14. Operational experience, evolution and developments in water chemistry in Indian Nuclear Power Plants - an overview

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    2000-01-01

    Lessons learnt from the experiences at nuclear power plants have enriched the understanding of corrosion behaviour in water systems. The need for proper water chemistry control not only during operation but also during fabrication and preoperational tests is clearly seen. It should not be construed that maintenance of proper water chemistry is a panacea for all corrosion and other associated problems. Unless adequate care is taken in selection of material and sound design and fabrication practices are followed, no regime of water chemistry can help in eliminating failure due to corrosion

  15. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  16. Bottled water, spas, and early years of water chemistry

    Science.gov (United States)

    Back, William; Landa, Edward R.; Meeks, Lisa

    1995-01-01

    Although hot springs have been used and enjoyed for thousands of years, it was not until the late 1700s that they changed the course of world civilization by being the motivation for development of the science of chemistry. The pioneers of chemistry such as Priestley, Cavendish, Lavoisier, and Henry were working to identify and generate gases, in part, to determine their role in carbonated beverages. In the 18th century, spas in America were developed to follow the traditional activities of popular European spas. However, they were to become a dominant political and economic force in American history on three major points: (1) By far the most important was to provide a place for the leaders of individual colonies to meet and discuss the need for separation from England and the necessity for the Revolutionary War; (2) the westward expansion of the United States was facilitated by the presence of hot springs in many locations that provided the economic justification for railroads and settlement; and (3) the desire for the preservation of hot springs led to the establishment of the National Park Service. Although mineral springs have maintained their therapeutic credibility in many parts of the world, they have not done so in the United States. We suggest that the American decline was prompted by: (1) the establishment of The Johns Hopkins School of Medicine in 1893; (2) enactment of the Pure Food and Drug Act of 1907; and (3) the remarkable achievement of providing safe water supplies for American cities by the end of the 1920s. The current expanding market for bottled water is based in part on bottled water being an alternative beverage Ito alcohol and sweetened drinks and the inconsistent palatability and perceived health hazards of some tap waters.

  17. Water Chemistry and Chemistry Monitoring at Thermal and Nuclear Power Plants: Problems and Tasks (Based on Proceedings of Conferences)

    Science.gov (United States)

    Larin, B. M.

    2018-02-01

    In late May-early June 2017, two international science and technology conferences on problems of water chemistry and chemistry monitoring at thermal and nuclear power plants were held. The participants of both the first conference held at OAO VTI and the second conference that took place at NITI formulated the problems of the development of the regulatory base and implementation of promising water treatment technologies and outlined the ways of improving the water chemistry and chemistry monitoring at TPPs and NPPs for the near future. It was pointed out that the new amine-containing VTIAMIN agent developed by OAO VTI had been successfully tested on the power-generating units equipped with steam-gas plants to establish the minimum excess of the film-forming amine in the power-generating unit circuit that ensures the protection of the metal as 5-10 μg/dm3. A flow-injection technique for the analysis of trace concentrations of chlorides was proposed; the technique applied to the condensate of the 1000-MW steam turbine of the NPP power-generating unit yields the results comparable with the results obtained by the ion chromatography and the potentiometric method using the solver electrode. The participants of the conferences were demonstrated new Russian instruments to analyze the water media at the TPPs and NPPs, including the total organic carbon analyzer and the analyzer of mineral impurities in the condensate and feed water, that won a gold medal at the 45th International Exhibition of Inventions held in Geneva this April.

  18. The Seasonal cycle of the Tropical Lower Stratospheric Water Vapor in Chemistry-Climate Models in Comparison with Observations

    Science.gov (United States)

    Wang, X.; Dessler, A. E.

    2017-12-01

    The seasonal cycle is one of the key features of the tropical lower stratospheric water vapor, so it is important that the climate models reproduce it. In this analysis, we evaluate how well the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and the Whole Atmosphere Community Climate Model (WACCM) reproduce the seasonal cycle of tropical lower stratospheric water vapor. We do this by comparing the models to observations from the Microwave Limb Sounder (MLS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERAi). We also evaluate if the chemistry-climate models (CCMs) reproduce the key transport and dehydration processes that regulate the seasonal cycle using a forward, domain filling, diabatic trajectory model. Finally, we explore the changes of the seasonal cycle during the 21st century in the two CCMs. Our results show general agreement in the seasonal cycles from the MLS, the ERAi, and the CCMs. Despite this agreement, there are some clear disagreements between the models and the observations on the details of transport and dehydration in the TTL. Finally, both the CCMs predict a moister seasonal cycle by the end of the 21st century. But they disagree on the changes of the seasonal amplitude, which is predicted to increase in the GEOSCCM and decrease in the WACCM.

  19. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  20. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    Science.gov (United States)

    Robinson, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  1. The Effect of Water Chemistry on the Removal of Arsenic from Drinking Water During Iron Removal Treatment

    Science.gov (United States)

    This research investigates the effects of water chemistry, oxidant type and concentration on the removal of iron and arsenic from drinking water. The research will be conducted using one of the National Risk Management Research Laboratory’s Water Supply and Water Resources Divisi...

  2. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  3. Effect of condenser water in-leakage on steam generator water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.

    1978-01-01

    Corrosive environments may be generated within steam genrators from condenser cooling water in-leakage. Theoretical as well as experimental evaluation of the aggressiveness of such environments is being carried out for the condenser-cooling waters used at CANDU-PHW nuclear power stations. Calculations have shown that highly concentrated chloride solutions - acidic in the case of sea-water in-leakage, and alkaline in the rest of the cases considered - would be produced within the steam generator. Experiments in a model boiler showed that sea-water in-leakage caused rapid corrosion of carbon steel components when only AVT (all volatile treatment) was used for water chemistry control. Use of a non-volatile reagent, as in the congruent phosphate treatment, avoided the rapid corrosion of carbon steel. On the basis of our studies, congruent phosphate treatment during sea water in-leakage appears desirable. (author)

  4. Water chemistry data acquisition, processing, evaluation and diagnostic systems in Light Water Reactors: Future improvement of plant reliability and safety

    International Nuclear Information System (INIS)

    Uchida, S.; Takiguchi, H.; Ishigure, K.

    2006-01-01

    Data acquisition, processing and evaluation systems have been applied in major Japanese PWRs and BWRs to provide (1) reliable and quick data acquisition with manpower savings in plant chemical laboratories and (2) smooth and reliable information transfer among chemists, plant operators, and supervisors. Data acquisition systems in plants consist of automatic and semi-automatic instruments for chemical analyses, e. g., X-ray fluorescence analysis and ion chromatography, while data processing systems consist of PC base-sub-systems, e.g., data storage, reliability evaluation, clear display, and document preparation for understanding the plant own water chemistry trends. Precise and reliable evaluations of water chemistry data are required in order to improve plant reliability and safety. For this, quality assurance of the water chemistry data acquisition system is needed. At the same time, theoretical models are being applied to bridge the gaps between measured water chemistry data and the information desired to understand the interaction of materials and cooling water in plants. Major models which have already been applied for plant evaluation are: (1) water radiolysis models for BWRs and PWRs; (2) crevice radiolysis model for SCC in BWRs; and (3) crevice pH model for SG tubing in PWRs. High temperature water chemistry sensors and automatic plant diagnostic systems have been applied in only restricted areas. ECP sensors are gaining popularity as tools to determine the effects of hydrogen injection in BWR systems. Automatic plant diagnostic systems based on artificial intelligence will be more popular after having sufficient experience with off line diagnostic systems. (author)

  5. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  6. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  7. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.

    Science.gov (United States)

    Chen, Ming; Wang, Dengjun; Yang, Fan; Xu, Xiaoyun; Xu, Nan; Cao, Xinde

    2017-11-01

    Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10-50 mM), electrolyte type (NaCl and CaCl 2 ), and natural organic matter (0-10 mg L -1 humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl 2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained (∼57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl 2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Water chemistry in WWER reactors

    International Nuclear Information System (INIS)

    Yurmanov, V.A.; Mamet, V.A.; Shestakov, Yu.M.; Amosov, M.M.

    1997-01-01

    In this paper ''Water Chemistry in WWER Reactors'', are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH T values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ''soft decontamination'' involving changing the KOH concentration and, hence, the pH T before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs

  9. Water chemistry in WWER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yurmanov, V A; Mamet, V A; Shestakov, Yu M; Amosov, M M [All-Russian Scientific Research Inst. for Nuclear Power Plants Operation, Moscow (Russian Federation)

    1997-02-01

    In this paper ``Water Chemistry in WWER Reactors``, are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH{sub T} values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ``soft decontamination`` involving changing the KOH concentration and, hence, the pH{sub T} before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs.

  10. Coupled transport and chemistry in clay stone studied by advective displacement: experiments and model

    International Nuclear Information System (INIS)

    Landesman, C.; Grambow, B.; Bailly, C.; Ribet, S.; Perrigaud, K.; Baty, V.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. Full text of publication entered in this record. For assessing the mass transfer resistance of the Callovo-Oxfordian clay rock formation in case of implementing a nuclear waste repository, various strongly coupled processes need to be understood and quantified both in near and far field: multi-species diffusion/advection, mineral/pore water interaction, interaction with the waste matrix and engineered barrier material, radionuclide retention, colloid transport, pore water chemistry evolution etc. To study many of these processes in their interrelationship simultaneously, a series of high pressure stainless steel advection cell was designed and clay cores from different locations of different calcite and clay contents were machined to fit the inner diameter of the cells with a precision of 50 μm. After assembling, simulated oxygen free clay pore water with bromine tracer was pushed by a High Pressure pump through the reactor by a pressure of up 100 bars at temperatures between 20 and 90 deg. C and the out-flowing water was collected, protected from air and analyzed by ICP-MS, COT meter and ion chromatography in regular time intervals. The water flow rate was between 0.02 and 1.2 mL/ d, corresponding to a clay rock permeabilities between 10 -12 and 10 -14 m/s at 25 deg. C. Permeabilities increase with temperature as expected due to reduction of viscosity of water. The experiments last up to 2 years. The first drops of out flowing allow estimating the initial pore water composition. This is particular useful to assess mobile natural organic matter contents, Se concentrations and temperature effect on clay water composition. Results show that only very small organic molecules are mobile. Temperature had only little effect on water composition. After few months both tritiated (HTO) water and 36 Cl were added and from the evolution of the activities in the out flowing water dispersion coefficients and accessible

  11. Technical specifications for PWR secondary water chemistry

    International Nuclear Information System (INIS)

    Weeks, J.R.; van Rooyen, D.

    1977-08-01

    The bases for establishing Technical Specifications for PWR secondary water chemistry are reviewed. Whereas extremely stringent control of secondary water needs to be maintained to prevent denting in some units, sound bases for establishing limits that will prevent stress corrosion, wastage, and denting do not exist at the present time. This area is being examined very thoroughly by industry-sponsored research programs. Based on the evidence available to date, short term control limits are suggested; establishment of these or other limits as Technical Specifications is not recommended until the results of the research programs have been obtained and evaluated

  12. Variation of the Effectiveness of Hydrogen Water Chemistry in a Boiling Water Reactor during Startup Operations

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya

    2012-09-01

    For mitigating intergranular stress corrosion cracking (IGSCC) in an operating boiling water reactor (BWR), the technology of hydrogen water chemistry (HWC) aiming at coolant chemistry improvement has been adopted worldwide. However, the hydrogen injection system employed in this technology was designed to operate only at power levels greater than 30% of the rated power or at coolant temperatures of greater than 450 deg. F. This system is usually in an idle and standby mode during a startup operation. The coolant in a BWR during a cold shutdown normally contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent startup operation. At some plants, the feasibility of hydrogen water chemistry during startup operations has been studied, and its effectiveness on suppressing SCC initiation was evaluated. It is technically difficult to directly procure water chemistry data at various locations of an operating reactor. Accordingly, the impact of startup operation on water chemistry in the PCC of a BWR operating under normal water chemistry (NWC) or HWC can only be theoretically evaluated through computer modelling. In this study, a well-developed computer code DEMACE was used to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of components in the PCC of a domestic BWR during startup operations in the presence of HWC. Simulations were carried out for [H2] FW s ranging from 0.0 to 2.0 parts per million (ppm) and for power levels ranging from 2.5% to 11.3% during startup operations. Our analyses indicated that for power levels with steam generation in the core, a higher power level would tend to promote a more oxidizing coolant environment for the structural components and therefore lead to less HWC

  13. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry.

    Science.gov (United States)

    Cremer, Paul S; Flood, Amar H; Gibb, Bruce C; Mobley, David L

    2017-12-19

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists - with their expertise in macrocyclic synthesis and measuring supramolecular interactions - have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  14. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry

    Science.gov (United States)

    Cremer, Paul S.; Flood, Amar H.; Gibb, Bruce C.; Mobley, David L.

    2018-01-01

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists -- with their expertise in macrocyclic synthesis and measuring supramolecular interactions -- have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  15. Passive water and ion transport by cotransporters

    DEFF Research Database (Denmark)

    Loo, D D; Hirayama, B A; Meinild, A K

    1999-01-01

    the Lp of control oocytes. Passive Na+ transport (Na+ leak) was obtained from the blocker-sensitive Na+ currents in the absence of substrates (glucose and GABA). 2. Passive Na+ and water transport through SGLT1 were blocked by phlorizin with the same sensitivity (inhibitory constant (Ki), 3-5 micro......1. The rabbit Na+-glucose (SGLT1) and the human Na+-Cl--GABA (GAT1) cotransporters were expressed in Xenopus laevis oocytes, and passive Na+ and water transport were studied using electrical and optical techniques. Passive water permeabilities (Lp) of the cotransporters were determined from......M). When Na+ was replaced with Li+, phlorizin also inhibited Li+ and water transport, but with a lower affinity (Ki, 100 microM). When Na+ was replaced by choline, which is not transported, the SGLT1 Lp was indistinguishable from that in Na+ or Li+, but in this case water transport was less sensitive...

  16. IAEA interlaboratory exercise for water chemistry

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Jeon, Young Shin; Choi, Ke Chun; Kim, Yong Bok; Kim, Jong Gu; Kim, Won Ho

    2003-09-01

    KAERI Analytical laboratory participated in the IAEA Interlaboratory exercise for water chemistry of groundwater(RAS/8/084). 13 items such as pH, electroconductivity, HCO 3 , Cl, SO 4 , SiO 2 , B, Li, Na, K, Ca, Mg and NH 3 were analyzed. The result of this exercise showed that KAERI laboratory was ranked on the top level of the participants. Major analytical methods applied for this activity were ICP-AES, AAS, IC, pH meter, conductometer and acid titration

  17. The chemistry of salt-affected soils and waters

    Science.gov (United States)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  18. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  19. The water footprint of biofuel-based transport

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2011-01-01

    The EU target to replace 10 percent of transport fuels by renewables by 2020 requires additional water. This study calculates water footprints (WFs) of transport modes using first generation bio-ethanol, biodiesel or bio-electricity and of European transport if 10 percent of transport fuels is

  20. Water Chemistry Control Technology to Improve the Performance of Nuclear Power Plants for Extended Fuel Cycles

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Na, J. W.; Lee, E. H.

    2010-07-01

    Ο To Develop the technology to manage the problems of AOA and radiation, corrosion as long term PWR operation. Ο To Establish the advanced water chemical operating systems. - Development of the proper water chemistry guidelines for long term PWR operation. AOA(Axial Offest Anomaly) has been reported in many PWR plants in the world, including Korea, especially in the plants of higher burn-up and longer cycle operation or power up-rate. A test loop has been designed and made by KAERI, in order to investigate and mitigate AOA problems in Korea. This project included the study of hydrodynamic simulation and the modeling about AOA. The analysis of radioactive crud was performed to investigate of NPPs primary water chemical effect on AOA and to reduce the radioactive dose rate. The high temperature measurement system was developed to on-line monitor of water chemistry in nuclear power plants. The effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. The inhibition technology for fouling and SCC of SG tube was evaluated to establish the water chemistry technology of corrosion control of nuclear system. The high temperature and high pressure crevice chemistry analysis test loop was manufactured to develop the water chemistry technology of crevice chemistry control

  1. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    International Nuclear Information System (INIS)

    Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan

    2012-01-01

    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.

  2. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  3. The research of materials and water chemistry for supercritical water-cooled reactors in Research Centre Rez

    International Nuclear Information System (INIS)

    Zychova, Marketa; Fukac, Rostislav; Vsolak, Rudolf; Vojacek, Ales; Ruzickova, Mariana; Vonkova, Katerina

    2012-09-01

    Research Centre Rez (CVR) is R and D company based in the Czech Republic. It was established as the subsidiary of the Nuclear Research Institute Rez plc. One of the main activities of CVR is the research of materials and chemistry for the generation IV reactor systems - especially the supercritical water-cooled one. For these experiments is CVR equipped by a supercritical water loop (SCWL) and a supercritical water autoclave (SCWA) serving for research of material and Supercritical Water-cooled Reactor (SCWR) environment compatibility experiments. SCWL is a research facility designed to material, water chemistry, radiolysis and other testing in SCWR environment, SCWA serves for complementary and supporting experiments. SCWL consists of auxiliary circuits (ensuring the required parameters as temperature, pressure and chemical conditions in the irradiation channel, purification and measurements) and irradiation channel (where specimens are exposed to the SCWR environment). The design of the loop is based on many years of experience with loop design for various types of corrosion/water chemistry experiments. Designed conditions in the test area of SCWL are 600 deg. C and 25 MPa. SCWL was designed in 2008 within the High Performance Light Water Reactor Phase 2 project and built during 2008 and 2009. The trial operations were performed in 2010 and 2011 and were divided into three phases - the first phase to verify the functionality of auxiliary circuits of the loop, the second phase to verify the complete facility (auxiliary circuits and functional irradiation channel internals) and the third phase to verify the feasibility of corrosion tests with the complete equipment and specimens. All three trial operations were very successful - designed conditions and parameters were reached. (authors)

  4. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  5. Variational data assimilation schemes for transport and transformation models of atmospheric chemistry

    Science.gov (United States)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena; Antokhin, Pavel

    2016-04-01

    The work is devoted to data assimilation algorithm for atmospheric chemistry transport and transformation models. In the work a control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the constrained minimum of the target functional combining a control function norm with a norm of the misfit between measured data and its model-simulated analog. Transport and transformation processes model is acting as a constraint. The constrained minimization problem is solved with Euler-Lagrange variational principle [1] which allows reducing it to a system of direct, adjoint and control function estimate relations. This provides a physically-plausible structure of the resulting analysis without model error covariance matrices that are sought within conventional approaches to data assimilation. High dimensionality of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the data assimilation algorithms. Computational issues with complicated models can be solved by using a splitting technique. Within this approach a complex model is split to a set of relatively independent simpler models equipped with a coupling procedure. In a fine-grained approach data assimilation is carried out quasi-independently on the separate splitting stages with shared measurement data [2]. In integrated schemes data assimilation is carried out with respect to the split model as a whole. We compare the two approaches both theoretically and numerically. Data assimilation on the transport stage is carried out with a direct algorithm without iterations. Different algorithms to assimilate data on nonlinear transformation stage are compared. In the work we compare data assimilation results for both artificial and real measurement data. With these data we study the impact of transformation processes and data assimilation to the performance of the modeling system [3]. The

  6. Implementation and evaluation of pH-dependent cloud chemistry and wetdeposition in the chemical transport model REM-Calgrid

    NARCIS (Netherlands)

    Banzhaf, S.; Schaap, M.; Kerschbaumer, A.; Reimer, E.; Stern, R.; Swaluw, E. van der; Builtjes, P.

    2012-01-01

    The Chemistry Transport Model REM-Calgrid (RCG) has been improved by implementing an enhanced description of aqueous-phase chemistry and wet deposition processes including droplet pH. A sensitivity study on cloud and rain droplet pH has been performed to investigate its impact on model sulphate

  7. Water chemistry related problems in captive power plant of Heavy Water Plant [Manuguru

    International Nuclear Information System (INIS)

    Prasada Rao, G.; Mohapatra, C.

    2000-01-01

    This study is intended to improve the power generating capacity of Turbo Generator-3 in CPP. It was observed that steam flow through TG-3 was not as per rated; however there were no abnormal vibrations. After stopping and opening the turbine, deposits were found on turbine blade. Turbine blade scales were analysed for all the stages, HP, middle, LP, casings. Boiler drum water, feed water, DM water, filter water chemistry were studied. LP blade scale mainly consists of silica, whereas HP blade scale consists of iron oxide, sodium phosphate, silica etc. It was concluded that less generating capacity of power was because of scaling on turbine blade. (author)

  8. The hydrochemistry of glacial Ebba River (Petunia Bay, Central Spitsbergen): Groundwater influence on surface water chemistry

    Science.gov (United States)

    Dragon, Krzysztof; Marciniak, Marek; Szpikowski, Józef; Szpikowska, Grażyna; Wawrzyniak, Tomasz

    2015-10-01

    The article presents the investigation of surface water chemistry changes of the glacial Ebba River (Central Spitsbergen) during three melting seasons of 2008, 2009 and 2010. The twice daily water chemistry analyses allow recognition of the surface water chemistry differentiation. The surface water chemistry changes are related to the river discharge and changes in the influence of different water balance components during each melting season. One of the most important process that influence river water component concentration increase is groundwater inflow from active layer occurring on the valley area. The significance of this process is the most important at the end of the melting season when temperatures below 0 °C occur on glaciers (resulting in a slowdown of melting of ice and snow and a smaller recharge of the river by the water from the glaciers) while the flow of groundwater is still active, causing a relatively higher contribution of groundwater to the total river discharge. The findings presented in this paper show that groundwater contribution to the total polar river water balance is more important than previously thought and its recognition allow a better understanding of the hydrological processes occurring in a polar environment.

  9. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    Ballast water discharges in the coastal environs have caused a great concern over the recent periods as they account for transporting marine organisms from one part of the world to the other. The movement of discharged ballast water as well...

  10. Apparatus for ground water chemistry investigations in field caissons

    International Nuclear Information System (INIS)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed

  11. The coordinated development of China' s inland water transport%The coordinated development of China' s inland water transport

    Institute of Scientific and Technical Information of China (English)

    Deng Aimin; Tian Feng; Haasis H.D; Mao Lang; Cai Jia

    2012-01-01

    The coordinated development is the core of sustainable development and the hot issue of international research. Inland water transport (IWT) is an important part of the water resources exploiting system and comprehensive transport system under socio-economic context of river basin, and also the country' s sustainable development priorities to achieve resource-conserving and environment-friendly strategy. Based on the coordinated development content, the paper combined Germany' s successful development experience, explored the elements and problem of the coordinated development of IWT system of China' s national economic strategy and basin economy, water resourse system, comprehensive transport system, and system itself, and their countermeasures and suggestions, in order to facilitate rapid and coordinated development of China' s inland water transport.

  12. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  13. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  14. Mutual complementation between water chemistry and isotope techniques

    International Nuclear Information System (INIS)

    Matthess, G.

    1976-01-01

    In the water chemistry and isotope methods which applied together enable more extensive statements to be made than each on its own, the following regions of cooperation are brought out: 1) Isotopes as conservative indicators a) microbial decomposition of organic substances in the anaerobic and aerobic region; b) precipitation and coprecipitation; c) mechanical filtration, adsorption and coprecipitation; d) gas exchange; e) dilution by infiltration; 2) geochemical observations as additional basis for isotope investigations; 3) the investigation of the water content substances as additional help to isotope hydrology. (HK/LH) [de

  15. Materials behavior in alternate (hydrogen) water chemistry in the Ringhals-1 boiling water reactor

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Cubicciotti, D.; Trolle, M.

    1986-01-01

    In-plant studies on the intergranular stress corrosion cracking (IGSCC) of sensitized austenitic stainless steel (SS) have been performed at the Swedish Ringhals-1 boiling water reactor (BWR). The studies have covered the present [full-temperature (normal)] water chemistry (PWC) and the alternate (primary) water chemistry (AWC) with hydrogen addition. The test techniques applied were constant extension rate testing (CERT) and electrochemical potential (ECP) measurements. The program was covered by extensive environment monitoring. The results verify earlier laboratory studies which show that sensitized austenitic SS is susceptible to IGSCC in PWC, but not in AWC. Other pressure-bearing BWR construction materials are not adversely affected by AWC. The boundary conditions in Ringhals-1 have been established for an AWC, which is defined as an environment that does not produce IGSCC in sensitized SS. The results are compared with a similar program at Dresden-2, and the points of agreement and discordance in the results are discussed. The relevance of ECP measurements for the control of AWC is discussed

  16. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  17. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen

    2002-01-01

    The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium...... and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...... sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins...

  18. An evaluation of selection criteria on primary water chemistry parameters for SMART

    International Nuclear Information System (INIS)

    Choi, B. S.; Kim, S. H.; Yun, J. H.; Bae, Y. Y.; Gee, S. G.

    2003-01-01

    The selection criteria on the primary water chemistry of SMART by comparing the chemical design features with those of the current operating PWRs is analyzed. The most essential differences in water chemistry between the PWRs and SMART reactor is characterized by the presence of boron in water. SMART is boron free reactor, and the ammonia is used as a pH reagent. In SMART reactor hydrogen gas is not added to the primary coolant, but is normally generated from the radiolysis of ammonia of the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are steady state concentrations, which depend on the decomposition/combination rate of ammonia. Ammonia chemistry in SMART reactor has many advantages in that no hydrogen gas injection is needed to control the dissolved oxygen in primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of ammonia decomposition

  19. Water and solute transport across the peritoneal membrane.

    Science.gov (United States)

    Morelle, Johann; Devuyst, Olivier

    2015-09-01

    We review the molecular mechanisms of peritoneal transport and discuss how a better understanding of these mechanisms is relevant for dialysis therapy. Peritoneal dialysis involves diffusion and osmosis through the highly vascularized peritoneal membrane. Computer simulations, expression studies and functional analyses in Aqp1 knockout mice demonstrated the critical role of the water channel aquaporin-1 (AQP1) in water removal during peritoneal dialysis. Pharmacologic regulation of AQP1, either through increased expression or gating, is associated with increased water transport in rodent models of peritoneal dialysis. Water transport is impaired during acute peritonitis, despite unchanged expression of AQP1, resulting from the increased microvascular area that dissipates the osmotic gradient across the membrane. In long-term peritoneal dialysis patients, the fibrotic interstitium also impairs water transport, resulting in ultrafiltration failure. Recent data suggest that stroke and drug intoxications might benefit from peritoneal dialysis and could represent novel applications of peritoneal transport in the future. A better understanding of the regulation of osmotic water transport across the peritoneum offers novel insights into the role of water channels in microvascular endothelia, the functional importance of structural changes in the peritoneal interstitium and the transport of water and solutes across biological membranes in general.

  20. Decontamination flange film characterization for a boiling water reactor under hydrogen water chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Garbauskas, M.F.; Bozeman, J.

    1996-01-01

    Stainless steel artifacts removed from a boiling water reactor class 4 plant that operated under hydrogen water chemistry and experienced a difficult decontamination were submitted for oxide film characterization. The results reported for the corrosion film composition and structure are consistent with existing theoretical concepts for stainless steel corrosion, spinel structure site preferences (octahedral or tetrahedral) for transition metal ions, and potential-pH diagrams. The observed zinc effects on film stability and lower cobalt incorporation are also consistent with these theoretical concepts

  1. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  2. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  3. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  4. WATER SUPPLY OF TRANSPORT OBJECTS

    OpenAIRE

    Badyuk, N. S.

    2009-01-01

    Badyuk N. S. WATER SUPPLY OF TRANSPORT OBJECTS. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 3 (17), 2009 г. P. 96-104 DOI http://dx.doi.org/10.5281/zenodo.1020024 http://dspace.nbuv.gov.ua/bitstream/handle/123456789/23091/13-Badyuk.pdf?sequence=1 WATER SUPPLY OF TRANSPORT OBJECTS Badyuk N. S. Ukrainian Research Institute for Medicine of Transport, Odessa, Ukraine Summary In the work presented they discuss several peculiarities of wa...

  5. Radiation Protection Aspects of Primary Water Chemistry and Source-term Management Report

    International Nuclear Information System (INIS)

    2014-04-01

    Since the beginning of the 1990's, occupational exposures in nuclear power plant has strongly decreased, outlining efforts achieved by worldwide nuclear operators in order to reach and maintain occupational exposure as low as reasonably achievable (ALARA) in accordance with international recommendations and national regulations. These efforts have focused on both technical and organisational aspects. According to many radiation protection experts, one of the key features to reach this goal is the management of the primary system water chemistry and the ability to avoid dissemination of radioactivity within the system. It outlines the importance for radiation protection staff to work closely with chemistry staff (as well as operation staff) and thus to have sufficient knowledge to understand the links between chemistry and the generation of radiation field. This report was prepared with the primary objective to provide such knowledge to 'non-chemist'. The publication primarily focuses on three topics dealing with water chemistry, source term management and remediation techniques. One key objective of the report is to provide current knowledge regarding these topics and to address clearly related radiation protection issues. In that mind, the report prepared by the EGWC was also reviewed by radiation protection experts. In order to address various designs, PWRs, VVERs, PHWRs and BWRs are addressed within the document. Additionally, available information addressing current operating units and lessons learnt is outlined with choices that have been made for the design of new plants. Chapter 3 of this report addresses current practices regarding primary chemistry management for different designs, 'how to limit activity in the primary circuit and to minimise contamination'. General information is provided regarding activation, corrosion and transport of activated materials in the primary circuit (background on radiation field generation). Primary chemistry aspects that

  6. Water transport by the renal Na(+)-dicarboxylate cotransporter

    DEFF Research Database (Denmark)

    Meinild, A K; Loo, D D; Pajor, A M

    2000-01-01

    . This solute-coupled influx of water took place in the absence of, and even against, osmotic gradients. There was a strict stoichiometric relationship between Na(+), substrate, and water transport of 3 Na(+), 1 dicarboxylate, and 176 water molecules/transport cycle. These results indicate that the renal Na......This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport...... was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 showed an increase in osmotic water permeability, which was directly correlated with the expression level of NaDC-1. When NaDC-1 was transporting substrates, there was a concomitant increase in oocyte volume...

  7. Fundamental R and D program on water chemistry of supercritical pressure water under radiation field

    International Nuclear Information System (INIS)

    Katsumura, Yosuke; Kiuchi, Kiyoshi; Wada, Yoichi; Yotsuyanagi, Tadasu

    2003-01-01

    In a supercritical water-cooled reactor, property of water changes significantly around the critical point. It is expected that irradiation and change of water property will affect the chemistry and material corrosion. Deep understanding of interactions between supercritical water and materials under irradiation is important. However, comprehensive data on radiolysis, kinetics, corrosion and thermodynamics have not been obtained due to the severe experimental condition. To get such data by experiments and computer simulations, a national program funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT) has been started since December 2002. (author)

  8. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  9. Stepwise Inquiry into Hard Water in a High School Chemistry Laboratory

    Science.gov (United States)

    Kakisako, Mami; Nishikawa, Kazuyuki; Nakano, Masayoshi; Harada, Kana S.; Tatsuoka, Tomoyuki; Koga, Nobuyoshi

    2016-01-01

    This study focuses on the design of a learning program to introduce complexometric titration as a method for determining water hardness in a high school chemistry laboratory. Students are introduced to the different properties and reactions of hard water in a stepwise manner so that they gain the necessary chemical knowledge and conceptual…

  10. Model for radionuclide transport in running waters

    International Nuclear Information System (INIS)

    Jonsson, Karin; Elert, Mark

    2005-11-01

    , however, the approximation of equilibrium chemistry is assumed to be sufficient for order of magnitude predictions when a constant inflow of radionuclides is considered. A first sensitivity analysis of the model is performed in which different model parameters have been varied. At the time for the model development, almost no detailed site-specific information about e.g. channel geometry or sediment characteristics were available. Simulations were therefore performed for a hypothetical case, where the ranges of possible parameter values was based on literature information, generalizations from other stream systems and some site-specific information such as large-scale information of the morphology at the present sites. For order of magnitude predictions of the concentration or amount of radionuclides in the different parts of the stream ecosystem, a yearly mean value of the water flow was assumed to be sufficient. Therefore, the further sensitivity analyses were performed for constant flow conditions. The sensitivity analyses indicated that the main retention along the stream is due to uptake within the sediment. Initially, the uptake will cause a retardation of the solute transport. The sediment capacity is however limited and after saturation, the outflow of radionuclides in the longitudinal direction will be completely determined by the inflow to the system. The time for reaching this equilibrium and the equilibrium concentration in the sediment varies however with different conditions and radionuclides, e.g. due to sorption characteristics, sedimentation velocity and advective velocity within the sediment. The degree of variation caused by different factors is, however, different. In the simulations performed in this study, the time for reaching equilibrium ranges from less than a year to a couple of hundred years. For predictions of the dose to humans, the accumulated amount in the sediment should also be considered and not only the concentration in the stream water

  11. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    , however, the approximation of equilibrium chemistry is assumed to be sufficient for order of magnitude predictions when a constant inflow of radionuclides is considered. A first sensitivity analysis of the model is performed in which different model parameters have been varied. At the time for the model development, almost no detailed site-specific information about e.g. channel geometry or sediment characteristics were available. Simulations were therefore performed for a hypothetical case, where the ranges of possible parameter values was based on literature information, generalizations from other stream systems and some site-specific information such as large-scale information of the morphology at the present sites. For order of magnitude predictions of the concentration or amount of radionuclides in the different parts of the stream ecosystem, a yearly mean value of the water flow was assumed to be sufficient. Therefore, the further sensitivity analyses were performed for constant flow conditions. The sensitivity analyses indicated that the main retention along the stream is due to uptake within the sediment. Initially, the uptake will cause a retardation of the solute transport. The sediment capacity is however limited and after saturation, the outflow of radionuclides in the longitudinal direction will be completely determined by the inflow to the system. The time for reaching this equilibrium and the equilibrium concentration in the sediment varies however with different conditions and radionuclides, e.g. due to sorption characteristics, sedimentation velocity and advective velocity within the sediment. The degree of variation caused by different factors is, however, different. In the simulations performed in this study, the time for reaching equilibrium ranges from less than a year to a couple of hundred years. For predictions of the dose to humans, the accumulated amount in the sediment should also be considered and not only the concentration in the stream water

  12. Road maps on research and development plans for water chemistry of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke; Fuse, Motomasa; Takamori, Kenro; Tsuchiuchi, Yoshihiro; Maeda, Noriyoshi

    2008-01-01

    Water chemistry of nuclear power plants has played an important role in reduction of personnel doses, structural materials and fuel integrity assurance, and reduction of radioactive wastes production. Further contributions are requested for advanced utilization of the LWR, advanced fuels and aging management of plants. Since water chemistry has an effect on all structure and materials immersed and at the same time affected by them, the optimum control not sticking to specific issues and covering the whole plant is required for these requests. Taking account of roles and activities of the industry, governmental institutes and academia, road maps on research and development plans for water chemistry were compiled into identified eleven items with targets and counter measures taken, such as common basic technologies, dose reduction, SCC mitigation, fuel cans corrosion/hydrogen absorption mitigation, condition based maintenance and flow accelerated corrosion mitigation. (T. Tanaka)

  13. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  14. Water transport in desert alluvial soil

    International Nuclear Information System (INIS)

    Kearl, P.M.

    1982-04-01

    Safe storage of radioactive waste buried in an arid alluvial soil requires extensive site characterization of the physical process influencing moisture movement which could act as a transport medium for the migration of radionuclides. The field portion of this study included an infiltration plot instrumented with thermocouple psychrometers and neturon moisture probe access holes. Baseline information shows a zone of higher moisture content at approximately 1.5 m (5 ft) in depth. A sprinkler system simulated a 500-year precipitation event. Results revealed water penetrated the soil to 0.9 m (2.9 ft). Due to the low moisture content, vapor transport was primarily responsible for water movement at this depth. Temperature gradients are substantially responsible for vapor transport by preferentially sorting water-vapor molecules from the surrounding air by using the soil as a molecular sieve. Adsorbed and capillary water vapor pressure increases in response to a temperature increase and releases additional water to the soil pore atmosphere to be diffused away

  15. Eddy transport of water vapor in the Martian atmosphere

    Science.gov (United States)

    Murphy, J. R.; Haberle, Robert M.

    1993-01-01

    Viking orbiter measurements of the Martian atmosphere suggest that the residual north polar water-ice cap is the primary source of atmospheric water vapor, which appears at successively lower northern latitudes as the summer season progresses. Zonally symmetric studies of water vapor transport indicate that the zonal mean meridional circulation is incapable of transporting from north polar regions to low latitudes the quantity of water vapor observed. This result has been interpreted as implying the presence of nonpolar sources of water. Another possibility is the ability of atmospheric wave motions, which are not accounted for in a zonally symmetric framework, to efficiently accomplish the transport from a north polar source to the entirety of the Northern Hemisphere. The ability or inability of the full range of atmospheric motions to accomplish this transport has important implications regarding the questions of water sources and sinks on Mars: if the full spectrum of atmospheric motions proves to be incapable of accomplishing the transport, it strengthens arguments in favor of additional water sources. Preliminary results from a three dimensional atmospheric dynamical/water vapor transport numerical model are presented. The model accounts for the physics of a subliming water-ice cap, but does not yet incorporate recondensation of this sublimed water. Transport of vapor away from this water-ice cap in this three dimensional framework is compared with previously obtained zonally symmetric (two dimensional) results to quantify effects of water vapor transport by atmospheric eddies.

  16. Dictionary of water chemistry. English/German/French. Woerterbuch der Wasserchemie. Deutsch/Englisch/Franzoesisch

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, F von

    1985-01-01

    This dictionary presents a compilation of the most important terms related to water composition and quality. Technical terms used to describe water purification and other technical processes are also included. In fact, terms come from all areas of water chemistry: they concern water sampling, water analysis and its statistical interpretation, the evalutation of results as indicators for planing and operating water purification and waste-water plants.

  17. Ammonia role in WWER primary circuit water chemistry optimization

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Stjagkin, P.S.; Chvedova, M.N.; Slobodov, A.A.

    1999-01-01

    Ammonia influence on iron crud's solubility at 300 deg. C and different relations of boric acid and alkaline cation sum are considered. Reduction of dose rate on WWER-440 steam generators at average ammonia concentration increasing is empirically explained. Practical recommendations on optimization of WWER primary circuit water chemistry are given. (author)

  18. The chemistry of water reactor fuel

    International Nuclear Information System (INIS)

    Potter, P.E.

    1990-01-01

    In this paper, the authors discuss features of the changes in chemical constitution which occur in fuel and fuel rods for water reactors during operation and in fault conditions. The fuel for water reactors consists of pellets of urania (UO 2 ) clad in Zircaloy. An essential step in the prediction of the fate of all the radionuclides in a fault or accident is to possess a detailed knowledge of their chemical behavior at all stages of the development of such incidents. In this paper, the authors consider: the chemical constitution of fuel during operation at temperatures corresponding to rather low ratings, together with a quite detailed discussion of the chemistry within the fuel-clad gap; the behavior of fuel subjected to higher temperatures and ratings than those of contemporary fuel; and the changes in constitution on failure of fuel rods in fault or accident conditions

  19. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  20. Illustration of the Alliances platform chemistry/transport coupling capacities through the simulation of a cement/clay interaction

    International Nuclear Information System (INIS)

    Dimier, A.; Michau, N.; Montarnal, Ph.; Corrihons, F.

    2003-01-01

    Safety studies in a subsurface environment and in an underground waste disposal necessitate numerical tools for reactive transport modelling. In these systems, hydrogeological and chemical processes are closely related and their interdependence must be analysed to study migration of species. We will illustrate here the capacities of the Alliances tool to simulate such a phenomenology by studying the evolution of a clay/cement interface over time. The goal being defined, the two main employed software to build up a multidimensional tool have been chosen, namely PhreeqC and Chess for chemistry. A common model has been developed whose aim is to allow models comparison while switching between the chemistry tools. For transport, Castem and Mt3d-99 have been introduced with the same philosophy of structure. It is worth noting that other tools could be introduced, the only requirement being to satisfy the specific data-model and building up the appropriate methods. Qualification cases have been built up to define the platform application field. It has been defined with one and two dimensional cases enabling a comparison with analytic solutions or an intercomparison with other reactive transport codes. To illustrate this in the chemistry coupling field, we focus on a clay cement interface with an ion exchange linked to the Ca-montmorillonite. This case has been defined at ANDRA to be used as a reference test case for chemistry coupling validation. Results show a good agreement between platform results and whose of PhreeqC with its own internal coupling. The clay/cement interface is reproduced with the same accuracy

  1. Water-rock interaction and chemistry of groundwaters from the Canadian Shield

    International Nuclear Information System (INIS)

    Frape, S.K.; Fritz, P.; McNutt, R.H.

    1984-01-01

    The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature ground waters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg l -1 . The isotopic composition of these shallow waters reflects local, present day precipitations. In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18 O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated pockets. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. (author)

  2. Measuring restoration progress using pore- and surface-water chemistry across a chronosequence of formerly afforested blanket bogs.

    Science.gov (United States)

    Gaffney, Paul P J; Hancock, Mark H; Taggart, Mark A; Andersen, Roxane

    2018-08-01

    During the restoration of degraded bogs and other peatlands, both habitat and functional recovery can be closely linked with nutrient cycling, which is reflected in pore- and surface-water chemistry. Several peatland restoration studies have shown that the time required for recovery of target conditions is slow (>10 years); for heavily-impacted, drained and afforested peatlands of northern Scotland, recovery time is unknown. We monitored pore- and surface-water chemistry across a chronosequence of formerly drained, afforested bog restoration sites spanning 0-17 years, using a space-for-time substitution, and compared them with open blanket bog control sites. Our aims were to measure rate of recovery towards bog conditions and to identify the best suite of water chemistry variables to indicate recovery. Our results show progress in recovery towards bog conditions over a 0-17 year period post-restoration. Elements scavenged by trees (Mg, Na, S) completely recovered within that period. Many water chemistry variables were affected by the restoration process itself, but recovered within 11 years, except ammonium (NH 4 + ), Zn and dissolved organic carbon (DOC) which remained elevated (when compared to control bogs) 17 years post restoration. Other variables did not completely recover (water table depth (WTD), pH), exhibiting what we term "legacy" effects of drainage and afforestation. Excess N and a lowered WTD are likely to slow the recovery of bog vegetation including key bog plants such as Sphagnum mosses. Over 17 years, we measured near-complete recovery in the chemistry of surface-water and deep pore-water but limited progress in shallow pore-water. Our results suggest that at least >17 years are required for complete recovery of water chemistry to bog conditions. However, we expect that newer restoration methods including conifer harvesting (stem plus brash) and the blocking of plough furrows (to increase the WTD) are likely to accelerate the restoration process

  3. Effects of iron on arsenic speciation and redox chemistry in acid mine water

    Science.gov (United States)

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2005-01-01

    Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.

  4. Chemistry of cost effective water treatment programme in HWP (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Laxmana Prasad, K.

    2008-01-01

    In order to develop a water treatment programme following points must be kept in mind: Effectiveness to achieve desired water quality objectives; Compliance with regulatory requirements; Cost minimization; Safety; Easy operation and protection to equipments. Heavy Water Plant (Manuguru) laboratory has developed treatment programs to treat raw water and cooling water which satisfy the above requirements and has been in use for last several years successfully without any problem. These treatment programs have been given to other plants in Heavy Water Board for implementation. This paper describes the chemistry of the treatment program and cost minimization achieved. Further these treatments have helped the plant in achieving ΦZero Discharge and indirectly reduced the production cost. The chemistry parameters are monitored regularly to ascertain the effectiveness of these treatments. The areas where significant benefits derived are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and development of in-house cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments helped the plant in achieving Zero discharge and indirectly reduced production cost of heavy water. The dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15 - 20 Lakhs in a year besides other advantages. The changeover of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs. 1.4 Crore a year along with other advantages. The change over of proprietary formulation to in-house formulation in cooling water treatment has resulted a saving about Rs. 11 Lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored (author)

  5. Flow Accelerated Corrosion: Effect of Water Chemistry and Database Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Kim, Kyung Mo; Lee, Gyeong Geun; Kim, Dong Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Flow accelerated corrosion (FAC) of carbon steel piping in pressurized water reactors (PWRs) has been a major issue in nuclear industry. Severe accidents at Surry Unit 2 in 1986 and Mihama Unit 3 in 2004 initiated the world wide interest in this area. FAC is a dissolution process of the protective oxide layer on carbon steel or low-alloy steel when these parts are exposed to flowing water (single-phase) or wet steam (two-phase). In a single-phase flow, a scalloped, wavy, or orange peel and in a two-phase flow, tiger striping is observed, respectively. FAC is affected by many parameters, like material composition, pH, dissolved oxygen (DO), flow velocity, system pressure, and steam quality. This paper describes the water chemistry factors influencing on FAC and the database is then constructed using literature data. In order to minimize FAC in NPPs, the optimal method is to control water chemistry parameters. However, quantitative data about FAC have not been published for proprietary reason even though qualitative behaviors of FAC have been well understood. A database was constructed using experimental data in literature. Accurate statistical analysis will be performed using this database to identify the relationship between the FAC rate and test environment.

  6. Students' Conceptions of Water Transport

    Science.gov (United States)

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.

    2010-01-01

    Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…

  7. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  8. Monitoring and evaluation of plant and hydrological controls on arsenic transport across the water sediment interface

    Science.gov (United States)

    Jaffe, P. R.; MacDonald, L. H.; Paull, J.

    2009-12-01

    Plants and hydrology influence the transport of arsenic in wetlands by changing the dominant redox chemistry in the subsurface, and different plant and hydrological regimes can serve as effective barriers or promoters of metal transport. Inorganic arsenic, especially arsenate, binds to iron oxides in wetlands. In flooded wetland sediments, organic carbon from plants consumes oxygen and promotes reductive iron dissolution, which leads to arsenic release, while plants simultaneously create microoxic regimes around root hairs that oxidize and precipitate iron, promoting arsenic capture. Hydrology influences arsenic mobility by promoting wetting and drying cycles. Such cycles can lead to rapid shifts from anaerobic to aerobic conditions, and vice versa, with lasting impact on the oxidation state of iron and, by extension, the mobility of arsenic. Remediation strategies should take these competing conditions into account, and to help inform these strategies this study examines the chemistry of an industrially contaminated wetland when the above mechanisms aggregate. The study tests whether, in bulk, plants promote iron reduction or oxidation in intermittently flooded or consistently flooded sediments, and how this impacts arsenic mobility. This research uses a novel dialysis-based monitoring technique to examine the macro-properties of arsenic transport at the sediment water interface and at depth. Dialysis-based monitoring allows long-term seasonal trends in anaerobic porewater and allows active hypothesis testing on the influence of plants on redox chemistry. This study finds that plants promote iron reduction and that iron-reducing zones tend to correlate with zones with mobile arsenic. However, one newly reported and important finding of this study is that a brief summer drought that dried and oxidized sediments with a long history of iron-reduction zone served to effectively halt iron reduction for many months, and this corresponded to a lasting decline in

  9. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    Science.gov (United States)

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  10. Applicability of oxygenated water chemistry for PWR secondary systems

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden); Takiguchi, H.; Otoha, K. [Japan Atomic Power Co., Tokyo (Japan)

    2002-07-01

    Introduction of oxygenated water chemistry (OWC) in PWR secondary side is considered as a means to reduce the transportation of corrosion products into the steam generator and thus also minimizing crevice deposits and subsequent materials problems. One main concern, however, is the risk of inter-granular attack (IGA) in crevices. In order to study effects on crevice tube IGA by OWC, a series of experiments were performed in a steam generator (SG) simulating loop. This comprised a SG tube and a tube support plate (TSP) together forming the crevice. The over-all objective of the work accounted here was to demonstrate that it is possible to operate the steam generator secondary side with OWC without causing intolerable IGA or other types of attack on the tube in the crevice area. Tubes of sensitized Alloy 600 were exposed during a total of nine experiments in an autoclave using a TSP/tube arrangement with an asymmetric crevice design. Experiments were performed at high and low pH and potential under open and packed crevice conditions. The aggressiveness of the crevice environment was also further increased by addition of carbonate and chloride. Furthermore the tube was pressurized. Experimental parameters were monitored on the primary side as well as in the secondary bulk phase and in the crevice. (authors)

  11. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    Science.gov (United States)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  12. A spatial and seasonal assessment of river water chemistry across North West England.

    Science.gov (United States)

    Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C

    2010-01-15

    This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important

  13. Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells

    International Nuclear Information System (INIS)

    Meier, Frank; Eigenberger, Gerhart

    2004-01-01

    The water transport number (drag coefficient) and the hydraulic permeability were measured for Nafion. The results show a significant increase of both parameters with increasing water content indicating that they are strongly influenced by the membrane microstructure. Based on these experimental studies a new model approach to describe water transport in the H 2 -PEFC membrane is presented. This approach considers water transport by electro-osmosis caused by the proton flux through the membrane and by osmosis caused by a gradient in the chemical potential of water. It is parametrized by the measured data for the water transport number and the hydraulic permeability of Nafion. First simulation results applying this approach to a one-dimensional model of the H 2 -PEFC show good agreement with experimental data. Therefore, the developed model can be used for a new insight into the dominating mechanisms of water transport in the membrane

  14. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  15. Relationships between precipitation and surface water chemistry in three Carolina bays

    International Nuclear Information System (INIS)

    Monegue, R.L.; Jagoe, C.H.

    1995-01-01

    Carolina Bays are shallow freshwater wetlands, the only naturally occurring lentic systems on the southeastern coastal plain. Bays are breeding sites for many amphibian species, but data on precipitation/surface water relationships and long-term chemical trends are lacking. Such data are essential to interpret major fluctuations in amphibian populations. Surface water and bulk precipitation were sampled bi-weekly for over two years at three bays along a 25 km transect on the Savannah River Site in South Carolina. Precipitation chemistry was similar at all sites; average pH was 4.56, and the major ions were H + (30.8 % of total), and SO 4 (50.3% of total). H + was positively correlated with SO 4 , suggesting the importance of anthropogenic acids to precipitation chemistry. All three bays, Rainbow Bay (RB), Thunder Bay (TB), and Ellenton Bay (EB), contained soft (specific conductivity 5--90 microS/cm), acidic water (pH 4.0--5.9) with DOM from 4--40 mg/L. The major cation for RB, TB, and EB, respectively, was: Mg (30.8 % of total); Na (27% of total); and Ca (34.2% of total). DOM was the major anion for all bays, and SO 4 represented 13 to 28 % of total anions. H + was not correlated to DOM or SO, in RB; H + was positively correlated to DOM and SO 4 in TB, and negatively correlated to DOM and SO 4 in EB. Different biogeochemical processes probably control pH and other chemical variables in each bay. While surface water H + was not directly correlated with precipitation H + , NO 3 , or SO 4 , precipitation and shallow groundwater are dominant water sources for these bays. Atmospheric inputs of anthropogenic acids and other chemicals are important factors influencing bay chemistry

  16. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations

    Science.gov (United States)

    Orbe, Clara; Yang, Huang; Waugh, Darryn W.; Zeng, Guang; Morgenstern, Olaf; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Plummer, David A.; Scinocca, John F.; Josse, Beatrice; Marecal, Virginie; Jöckel, Patrick; Oman, Luke D.; Strahan, Susan E.; Deushi, Makoto; Tanaka, Taichu Y.; Yoshida, Kohei; Akiyoshi, Hideharu; Yamashita, Yousuke; Stenke, Andreas; Revell, Laura; Sukhodolov, Timofei; Rozanov, Eugene; Pitari, Giovanni; Visioni, Daniele; Stone, Kane A.; Schofield, Robyn; Banerjee, Antara

    2018-05-01

    Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  17. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  18. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  19. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  20. Steam Generator Owners Group PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Green, S.J.

    1985-01-01

    In 1981 the Steam Generator Owners Group (SGOG), a group of domestic and foreign pressurized water reactor (PWR) owners, developed and issued the PWR secondary water chemistry guidelines. The guidelines were prepared in response to the growing recognition that a majority of the problems causing reduced steam generator reliability (e.g., denting, wasteage, pitting, etc.) were related to secondary (steam) side water purity. The guidelines were subsequently issued as an Electric Power Research Institute (EPRI) report. In 1984 they were revised to reflect industry experience in adopting the original issuance and to incorporate new information on causes of corrosion damage. The guidelines have been endorsed and their adoption recommended by the SGOG

  1. IAEA programme on water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Nechaev, A.F.; Skjoeldebrand, R.

    1988-01-01

    The paper reviews the past future efforts of the IAEA, directed to ensure optimal water chemistry regimes in nuclear power plants. Corrosion of structural materials resulting from the interaction of the coolant with the internal surfaces comprising the primary heat transfer and auxiliary circuits of water reactors, creates two main problems. The first is an operational problem resulting in an increase in the core pressure drop or overheating of the fuel elements induced by crud buildup on the fuel cladding. The second problem is related to occupational radiation exposures arising from contamination of out-of-flux surfaces by corrosion products activated in the reactor core. These are the problems of reliability and safety which together with economics could be considered as the 'three whales' of nuclear power. The main goals of international cooperation in reactor water chemistry are: (1) to create a balanced and well-grounded methodological basis for corresponding regulatory and engineering solutions on a national level and (2) to improve 'the models and predictive capability of specialists for conditions that are different from or perhaps just beyond the realm of experience'. Continuing efforts are required to guarantee the highest reliability and safety standards under favorable economic indices of nuclear power plants, and to obtain understanding of such significant potential for solving the remaining problems. (Nogami, K.)

  2. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  3. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    2017-01-01

    Jan 1, 2017 ... processing in the Okavango Delta, Botswana. Keotshephile ... 4Climate System Analysis Group, University of Cape Town, South Africa ... input and final fate of solutes is of critical ecological importance ... a wetland system therefore requires an in-depth understanding of the water chemistry of that system.

  4. Chemistry in water reactors: operating experience and new developments. 2 volumes

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings of the International conference on chemistry in water reactors (Operating experience and new developments), Volume 1, are divided into 8 sessions bearing on: (session 1) Primary coolant activity, corrosion products (5 conferences), (session 2) Dose reduction (4 conferences), (session 3) New developments (4 conferences), poster session: Primary coolant chemistry (16 posters), (session 4) Decontamination (5 conferences), poster session (2 posters), (session 5) BWR-Operating experience (3 conferences), (session 6) BWR-Modelling of operating experience (4 conferences), (session 7) BWR-Basic studies (4 conferences), (session 8) BWR-New technologies (3 conferences)

  5. Molecular Dynamics Simulation for Surface and Transport Properties of Fluorinated Silica Nanoparticles in Water or Decane: Application to Gas Recovery Enhancement

    Directory of Open Access Journals (Sweden)

    Sepehrinia Kazem

    2017-05-01

    Full Text Available Determination of surface and transport properties of nanoparticles (NPs is essential for a variety of applications in enhanced oil and gas recoveries. In this paper, the impact of the surface chemistry of silica NPs on their hydro- and oleo-phobic properties as well as their transport properties are investigated in water or decane using molecular dynamics simulation. Trifluoromethyl or pentafluoroethyl groups as water and oil repellents are placed on the NPs. It is found that the density and residence time of liquid molecules around the NPs are modulated considerably with the existence of the functional groups on the NPs’ surfaces. Also, much larger density fluctuations for liquids close to the surface of the NPs are observed when the number of the groups on the NPs increases, indicating increased hydrophobicity. In addition, the diffusion coefficient of the NPs in either water or decane increases with increasing the number or length of the fluorocarbon chains, demonstrating non-Brownian behavior for the NPs. The surface chemistry imparts a considerable contribution on the diffusion coefficient of the NPs. Finally, potential of mean force calculations are undertaken. It is observed that the free energy of adsorption of the NPs on a mineral surface is more favorable than that of the aggregation of the NPs, which suggests the NPs adsorb preferably on the mineral surface.

  6. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  7. Drone Transport of Chemistry and Hematology Samples Over Long Distances.

    Science.gov (United States)

    Amukele, Timothy K; Hernandez, James; Snozek, Christine L H; Wyatt, Ryan G; Douglas, Matthew; Amini, Richard; Street, Jeff

    2017-11-02

    We addressed the stability of biological samples in prolonged drone flights by obtaining paired chemistry and hematology samples from 21 adult volunteers in a single phlebotomy event-84 samples total. Half of the samples were held stationary, while the other samples were flown for 3 hours (258 km) in a custom active cooling box mounted on the drone. After the flight, 19 chemistry and hematology tests were performed. Seventeen analytes had small or no bias, but glucose and potassium in flown samples showed an 8% and 6.2% bias, respectively. The flown samples (mean, 24.8°C) were a mean of 2.5°C cooler than the stationary samples (mean, 27.3°C) during transportation to the flight field as well as during the flight. The changes in glucose and potassium are consistent with the magnitude and duration of the temperature difference between the flown and stationary samples. Long drone flights of biological samples are feasible but require stringent environmental controls to ensure consistent results. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  8. Effects of selected water chemistry variables on copper pitting propagation in potable water

    International Nuclear Information System (INIS)

    Ha Hung; Taxen, Claes; Williams, Keith; Scully, John

    2011-01-01

    Highlights: → The effects of water composition on pit propagation kinetics on Cu were separated from pit initiation and stabilization using the artificial pit method in a range of dilute HCO 3 - , SO 4 2- and Cl - -containing waters. → The effective polarization and Ohmic resistance of pits were lower in SO4 2- -containing solutions and greater in Cl - -containing solutions. → Relationship between the solution composition and the corrosion product identity and morphology were found. → These, in turn controlled the corrosion product Ohmic resistance and subsequently the pit growth rate. - Abstract: The pit propagation behavior of copper (UNS C11000) was investigated from an electrochemical perspective using the artificial pit method. Pit growth was studied systematically in a range of HCO 3 - , SO 4 2- and Cl - containing-waters at various concentrations. Pit propagation was mediated by the nature of the corrosion products formed both inside and over the pit mouth (i.e., cap). Certain water chemistry concentrations such as those high in sulfate were found to promote fast pitting that could be sustained over long times at a fixed applied potential but gradually stifled in all but the lowest concentration solutions. In contrast, Cl - containing waters without sulfate ions resulted in slower pit growth and eventual repassivation. These observations were interpreted through understanding of the identity, amount and porosity of corrosion products formed inside and over pits. These factors controlled their resistive nature as characterized using electrochemical impedance spectroscopy. A finite element model (FEM) was developed which included copper oxidation kinetics, transport by migration and diffusion, Cu(I) and Cu(II) solid corrosion product formation and porosity governed by equilibrium thermodynamics and a saturation index, as well as pit current and depth of penetration. The findings of the modeling were in good agreement with artificial pit experiments

  9. Pore-water chemistry effects on the compressibility behaviour of Boom Clay

    International Nuclear Information System (INIS)

    Deng, Y.F.; Cui, Y.J.; Tang, A.M.; Nguyen, X.P.; Li, X.L.; Maarten, V.G.

    2010-01-01

    Document available in extended abstract form only. Boom clay is a thick deposit of over-consolidated marine clay, and belongs to the Oligocene series. Its hydraulic conductivity has been investigated since many years in Belgium within the site characterization program related to the performance assessment of potential geological disposal of high-level radioactive waste in this formation. Recently, the work of Wemaere et al. (2008) shows a significant variability of the hydraulic conductivity of the Boom clay. Indeed, they performed measurements on soil cores taken from four distant boreholes at various depths. The vertical hydraulic conductivity was found to vary from 3 x 10 -12 to 10 x 10 -12 m/s. It is suspected that this variability would be partly related to the water chemistry effects. Indeed, De Craen et al. (2006) shows that the pore-water chemical composition of soil cores taken from the Essen site is significantly different from that at the Mol site. If the pore water chemistry has strong effect on the hydraulic conductivity, its effect on the mechanical behaviour needs to be investigated too. The aim of this paper is to verify whether there are significant effects of pore-water chemistry on the soil compressibility. This study would be helpful to transpose the knowledge obtained from the Mol site to other sites of Boom clay formation where the geochemical components are different from the former site, as the hydro-mechanical characteristics of Boom clay at the Mol site has been widely investigated since the last decades. Two soil cores were taken from the Essen site at a depth of 227 m (Ess83) and 240 m (Ess96). Based on the geochemical analysis presented by De Craen et al. (2006), synthetic water having similar chemical composition of the in-situ pore-water was prepared. The identification geotechnical characteristics of these cores are shown in Table 2. It can be observed that the clay content (particle size < 2 μm) is relatively high (more than 50

  10. Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine

    International Nuclear Information System (INIS)

    Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

    2013-01-01

    Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine

  11. A Water Chemistry Perspective on Flowback Reuse with Several Case Studies, March 30, 2011

    Science.gov (United States)

    This presentation discusses the reuse of frac flowback from a water chemistry perspective. Two examples of flowback reuse, where a minimal water treatment has been used, describe the rationale for why the practice is considered acceptable.

  12. Assistance in chemistry and chemical processes related to primary, secondary and ancillary systems of nuclear power plants

    International Nuclear Information System (INIS)

    Chocron, Mauricio A.; Becquart, Elena T.; Iglesias, Alberto M.; La Gamma, Ana M.; Villegas, Marina

    2003-01-01

    Argentina is currently running two nuclear power plants: Atucha I (CNA I) and Embalse (CNE) operated by Nucleoelectrica Argentina (NASA) whereas the National Atomic Energy Commission (CNEA), among other activities, is responsible for research and development in the nuclear field, operates research reactors and carries out projects related to them. In particular, the Reactor Chemistry Section personnel (currently part of the Chemistry Dept.) has been working on the field of reactor water chemistry for more than 25 years, on research and support to the NPPs chemistry department. Though the most relevant tasks have been connected to primary and secondary circuits chemistry, ancillary systems show along the time unexpected problems or feasible improvements originated in the undergoing operating time as well as in phenomena not foreseen by the constructors. In the present paper are presented the tasks performed in relation to the following systems of Embalse NPP: 1) Heavy water upgrade column preliminary water treatment; 2) Liquid waste system preliminary water treatment; and 3) Primary heat transport system coolant crud composition. (author)

  13. An evaluation of the Cray T3D programming paradigms in atmospheric chemistry/transport models

    NARCIS (Netherlands)

    J.G. Blom (Joke); C. Keßler (Carsten); J.G. Verwer (Jan)

    1996-01-01

    textabstractIn this paper we compare the different programming paradigms available on the Cray T3D for the implementation of a 3D prototype of an Atmospheric Chemistry/Transport Model. We discuss the amount of work needed to convert existing codes to the T3D and the portability of the resulting

  14. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Domski

    2003-07-21

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The

  15. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    P.S. Domski

    2003-01-01

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The current in

  16. Water Chemistry and Clad Corrosion/Deposition Including Fuel Failures. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-03-01

    Corrosion is a principal life limiting degradation mechanism in nuclear steam supply systems, particularly taking into account the trends in increasing fuel burnup, thermal ratings and cycle length. Further, many plants have been operating with varying water chemistry regimes for many years, and issues of crud (deposition of corrosion products on other surfaces in the primary coolant circuit) are of significant concern for operators. At the meeting of the Technical Working Group on Fuel Performance and Technology (TWGFPT) in 2007, it was recommended that a technical meeting be held on the subject of water chemistry and clad corrosion and deposition, including the potential consequences for fuel failures. This proposal was supported by both the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR) and the Technical Working Group on Advanced Technologies for Heavy Water Reactors (TWG-HWR), with a recommendation to hold the meeting at the National Nuclear Energy Generating Company ENERGOATOM, Ukraine. This technical meeting was part of the IAEA activities on water chemistry, which have included a series of coordinated research projects, the most recent of which, Optimisation of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC) (IAEATECDOC-1666), concluded in 2010. Previous technical meetings were held in Cadarache, France (1985), Portland, Oregon, USA (1989), Rez, Czech Republic (1993), and Hluboka nad Vltavou, Czech Republic (1998). This meeting focused on issues associated with the corrosion of fuel cladding and the deposition of corrosion products from the primary circuit onto the fuel assembly, which can cause overheating and cladding failure or lead to unplanned power shifts due to boron deposition in the clad deposits. Crud deposition on other surfaces increases radiation fields and operator dose and the meeting considered ways to minimize the generation of crud to avoid

  17. ETA chemistry experience and assessment on CPP in Korea

    International Nuclear Information System (INIS)

    Park, K.K.; Lee, J.B.; Yoon, S.W.

    2002-01-01

    To reduce FAC of carbon steel in secondary system, water treatment chemistry was converted to ETA at Kori unit 1. Full scale tests to choose the optimum concentration of ETA were conducted and the evaluation after one cycle operation with ETA was also performed. Optimum concentration of ETA in final feed water was determined as 1.8 ppm. At this condition, iron concentration was reduced by 69.8% in final feed water and 69.7% in heater drain compared to ammonia-AVT. The amount of sludge removed from each steam generator was 11.3 kg, which was 88.2% lower than that of ammonia-AVT. With successful results of Kori unit 1, Applications of ETA were extended to other PWRs. Iron transport was found to be reduced significantly. Also, the output of electric power increased by 9 MWe at Young-Kwang unit 1. However, fouling of ion exchange resin in CPP was appeared. ETA appears to have a solvent function in the initial stage of ETA chemistry. Resin was restored when the fouling was removed with hot water and sodium bicarbonates. In particular, the MR type anion resin may be effective in resistance to fouling when ETA-chemistry is used. (authors)

  18. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    D. Wang

    2013-07-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and would decrease those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9% in the B1 scenario

  19. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    International Nuclear Information System (INIS)

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  20. Plant–Water Relations (1): Uptake and Transport

    Science.gov (United States)

    2014-01-01

    Summary Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow tracheary elements are just one of many adaptations that enable plants to cope with a very dry atmosphere. This lecture examines the physical laws that govern water uptake and transport, the biological properties of cells and plant tissues that facilitate it, and the strategies that enable plants to survive in diverse environments

  1. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  2. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  3. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity) and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  4. Quantification of free water transport in peritoneal dialysis

    NARCIS (Netherlands)

    Smit, Watske; Struijk, Dirk G.; Ho-Dac-Pannekeet, Marja M.; Krediet, Raymond T.

    2004-01-01

    BACKGROUND: In peritoneal dialysis (PD) total net ultrafiltration (NUF) is dependent on transport through small pores and through water channels in the peritoneum. These channels are impermeable to solutes, and therefore, crystalloid osmotic-induced free water transport occurs through them. Several

  5. WATER CHEMISTRY IN DIFFERENTLY FERTILIZED CARP POUNDS

    Directory of Open Access Journals (Sweden)

    Krešimir Fašaić

    1997-07-01

    Full Text Available Water chemistry in carp ponds - fry carp ponds, each of them 2.5 acres big and 1.5 meter deep, as well as in inflow water in the ponds was researched. Fourty days old carp fingerlings were bread in the ponds; stock density of the three day old larvae was 1,000.000 ind˙ha-1. The fingerlings were fed with trouvit and flour. In the ponds and the inflow water the following chemical parameters were examined: : 02, C02, CaC03-, RC03-, outgoing of KMn04, N02-, N03-, NR4+, urea, PO43-, P205 and pH. During the breeding season substantial deviations of all the chemical parameters were stated, but within values that satisfy the needs of the carp ponds. The applied quantity of the mineral fertilizer did not cause a very explicit eutrophication of water in the treated ponds. Certain differences in the quantity of the respective chemical indicators in the fertilized pond variants compared to the nonfertilized variant were insignificant (P**0.05, except the pH value, which increased significantly in the fertilized variants (P<0.05. Compared with the inflow water, in all experimental ponds the quantity of the mineral nitrogen and phosphorus fractions (P<0.05, (P<0.05 has increased. (Tables 5 and 6

  6. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    International Nuclear Information System (INIS)

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  7. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys

    Science.gov (United States)

    Tyapkov, V. F.

    2014-07-01

    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  8. Effects of water chemistry and fluid dynamics on wall thinning behavior. Part 1. Development of FAC model focused on water chemistry and composition of material

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Domae, Masafumi; Ohta, Joji; Yoneda, Kimitoshi; Inada, Fumio

    2009-01-01

    Flow Accelerated Corrosion (FAC), which is one of the important subjects at fossil and nuclear power plans, is caused by the accelerated dissolution of protective oxide film due to the turbulent flow. The influence factors on FAC such as water chemistry, material, and fluid dynamics are closely related to the oxide property so that the risk of FAC can be reduced by the suitable control of water chemistry. There are some FAC models and evaluation codes of FAC rate. Some of them are used in wall thinning management of nuclear power plant in some country. Nevertheless, these FAC codes include many empirical parameters so that some uncertainty to evaluate the synergistic effectiveness of factors are the controversial point for the application of FAC code to wall thinning management in Japanese nuclear power plant. In this study, a FAC model that can evaluate the effect of temperature, NH3 concentration, chromium content, and dissolved oxygen concentration on FAC rate was developed by considering the diffusion of dissolved species. The critical dissolved oxygen concentration, which can inhibit FAC, was also calculated by this model. (author)

  9. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  10. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  11. Effect of water chemistry on the aggregation and photoluminescence behavior of carbon dots.

    Science.gov (United States)

    Bayati, Mohamed; Dai, Jingjing; Zambrana, Austin; Rees, Chloe; Fidalgo de Cortalezzi, Maria

    2018-03-01

    Carbon dots are rapidly emerging carbon-based nanomaterials that, due to their growing applications, will inevitable find their way to natural waters; however, their environmental fate is mostly unknown. Carbon dots with different surface functionality were fabricated and characterized by TEM and FT-IR. Their surface charge, given by the zeta potential, and their hydrodynamic diameter in suspension were investigated under a variety of environmentally relevant conditions. The effect of ionic strength was studied in the presence of monovalent (NaCl) and divalent (CaCl 2 ) cations, for pH levels from 3 to 11; humic acid was used as a model for dissolved natural organic matter. Total potential energies of interactions were modeled by classical DLVO theory. The experimental results showed that water chemistry altered the surface charge of the nanomaterials, but their hydrodynamic size could not be correlated to those changes. Evidence of specific interactions was found for the amino functionalized particles in most cases, as well as the plain carbon dots in the presence of Ca 2+ and humic acid. Nanoparticles remained largely stable in suspension, with some exception at the highest ionic strength considered. DLVO theory did not adequately capture the aggregation behavior of the system. Moreover, cation and/or humic acid adsorption negatively affected the emission intensity of the particles, suggesting limitations to their use in natural water sensing applications. The particular stability shown by the carbon dots results in exposure to organisms in the water column and the possibility of contamination transported to significant distances from their source. Copyright © 2017. Published by Elsevier B.V.

  12. Some aspects of correction additions optimisation of water chemistry regime of Kozloduy NPP power units 3 and 4

    International Nuclear Information System (INIS)

    Topalova, I.

    2005-01-01

    Optimization of the water-chemistry regime is a major corrective measure for minimization of the corrosion processes of the nuclear power unit equipment. Research done in NPP Kozloduy III - IV power units concerning the migration of the corrosion products in the water of secondary circuit as well as the connection between corrosion processes and fluctuation in parameters of the applied water-chemistry regime are reported. Analysis of the dependences obtained lead to conclusions for optimization of the water chemistry regime of secondary circuit and minimization of the corrosion processes and improvement of corrosion condition of metal surfaces. The research is done for the circuit of each of the 8 turbines of the two power units for a period of 10 days. Data received is quantitatively representative /40-50 points/ for performing of analysis and reaching certain conclusions for the water chemistry regime and development of corrosion processes. Dependence of iron and copper concentration in the work medium on the pH, ammonia and hydrazine concentration as well as the dependence of pH on ammonia concentration in case of different quantity and composition of corrosion products on the different power units' equipment metal surfaces are shown. (author)

  13. Stream water chemistry in watersheds receiving different atmospheric inputs of H+, NH4+, NO3-, and SO42-1

    Science.gov (United States)

    Stottlemyer, R.

    1997-01-01

    Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3-, and SO42-. Volume-weighted precipitation H+, NH4+, NO3-, and SO42- concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3- and SO42- concentrations, but the highest stream water NO3and SO42- concentrations. Among sites, the ratio of mean monthly upstream NO3- concentration to precipitation NO3- concentration declined (p 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha-1 y-1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.

  14. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  15. The Economics of Bulk Water Transport in Southern California

    Directory of Open Access Journals (Sweden)

    Andrew Hodges

    2014-12-01

    Full Text Available Municipalities often face increasing demand for limited water supplies with few available alternative sources. Under some circumstances, bulk water transport may offer a viable alternative. This case study documents a hypothetical transfer between a water utility district in northern California and urban communities located on the coast of central and southern California. We compare bulk water transport costs to those of constructing a new desalination facility, which is the current plan of many communities for increasing supplies. We find that using water bags to transport fresh water between northern and southern California is in some instances a low-cost alternative to desalination. The choice is constrained, however, by concerns about reliability and, thus, risk. Case-study results demonstrate the challenges of water supply augmentation in water-constrained regions.

  16. Assessment of rain water chemistry in the Lucknow metropolitan city

    Science.gov (United States)

    Sharma, Purnima; Rai, Vibhuti

    2018-05-01

    Lucknow metropolitan city is one of the most populated cities of India, which have been facing many problems such as chaotic urbanization, overpopulation, water scarcity, waterlogging, etc., among these water scarcity is one of the important problem. Rain water harvesting is a futuristic tool for mitigation of water scarcity problem through conservation and storage of rain water. This rain water can be used for all purposes by human beings, thus it is necessary to check the chemistry of rain water. The rain water samples were collected from the five zones of Lucknow city. For the comparative study, water samples have been collected from two different dates first from first rainfall and second after 3 days of interval in the second rainfall. The heavy metal concentrations were found in both first and second rainfall water samples in all zones of Lucknow city. The concentration of chromium, cadmium and lead were found to be sufficiently high in several samples. These heavy metals show the concentration above the permissible limit as set by WHO, which can cause various adverse health impacts.

  17. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Eiichi [Omiya Technical Institute, Saitama-ken (Japan)

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  18. Water quality control program in experimental circuits

    International Nuclear Information System (INIS)

    Cegalla, Miriam A.

    1996-01-01

    The Water Quality Control Program of the Experimental Circuits visualizes studying the water chemistry of the cooling in the primary and secondary circuits, monitoring the corrosion of the systems and studying the mechanism of the corrosion products transport in the systems. (author)

  19. Aespoe HRL - Geoscientific evaluation 1997/4. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Hydrogeology, groundwater chemistry and transport of solutes

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, I; Gustafson, Gunnar [VBB Viak AB, Goeteborg (Sweden); Wikberg, P [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-06-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, hydrogeology, hydrochemistry and rock mechanics. Prior to the excavation in 1990 predictions were made for the excavation phase concerning: geology, ground water flow and chemistry, transport of solutes and mechanical stability. This report presents a comparison between these predictions and the observations made during the excavation. Also, investigation methods for the 700-2874 m sections of the tunnel are evaluated. 157 refs, 190 figs, 37 tabs.

  20. Aespoe HRL - Geoscientific evaluation 1997/4. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Hydrogeology, groundwater chemistry and transport of solutes

    International Nuclear Information System (INIS)

    Rhen, I.; Gustafson, Gunnar; Wikberg, P.

    1997-06-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, hydrogeology, hydrochemistry and rock mechanics. Prior to the excavation in 1990 predictions were made for the excavation phase concerning: geology, ground water flow and chemistry, transport of solutes and mechanical stability. This report presents a comparison between these predictions and the observations made during the excavation. Also, investigation methods for the 700-2874 m sections of the tunnel are evaluated

  1. Water chemistry in 179 randomly selected Swedish headwater streams related to forest production, clear-felling and climate.

    Science.gov (United States)

    Löfgren, Stefan; Fröberg, Mats; Yu, Jun; Nisell, Jakob; Ranneby, Bo

    2014-12-01

    From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.

  2. Controls of Ca/Mg/Fe activity ratios in pore water chemistry models of the Callovian-Oxfordian clay formation

    International Nuclear Information System (INIS)

    Lerouge, C.; Grangeon, S.; Wille, G.; Flehoc, C.; Gailhanou, H.; Gaucher, E.C.; Tournassat, C.; Vinsot, A.; Made, B.; Altmann, S.

    2013-01-01

    In the pore water chemistry model of the Callovian-Oxfordian clay formation, the divalent cations Ca, Mg, and Fe are controlled by equilibrium reactions with pure carbonates: calcite for Ca, dolomite for Mg, and siderite for Fe. Results of a petrological study and computing of the Ca/Mg and Ca/Fe activity ratios based on natural pore water chemistry provide evidence that equilibrium with pure calcite and pure dolomite is a reasonable assumption for undisturbed pore waters; on the other hand, siderite cannot be considered at equilibrium with pore waters at the formation scale. (authors)

  3. Controls of Ca/Mg/Fe activity ratios in pore water chemistry models of the Callovian-Oxfordian clay formation

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, C.; Grangeon, S.; Wille, G.; Flehoc, C.; Gailhanou, H.; Gaucher, E.C.; Tournassat, C. [BRGM av. Claude Guillemin BP6009 45060 Orleans cedex 2 (France); Vinsot, A. [ANDRA Meuse/Haute-Marne Underground research Laboratory (URL), RD 960, 55290 Bure (France); Made, B.; Altmann, S. [ANDRA - Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)

    2013-07-01

    In the pore water chemistry model of the Callovian-Oxfordian clay formation, the divalent cations Ca, Mg, and Fe are controlled by equilibrium reactions with pure carbonates: calcite for Ca, dolomite for Mg, and siderite for Fe. Results of a petrological study and computing of the Ca/Mg and Ca/Fe activity ratios based on natural pore water chemistry provide evidence that equilibrium with pure calcite and pure dolomite is a reasonable assumption for undisturbed pore waters; on the other hand, siderite cannot be considered at equilibrium with pore waters at the formation scale. (authors)

  4. Analysis of realization of the water chemistry modes in the NPP with the RBMK-1000 and main directions of their improvement

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Tyapkov, V.F.; Belous, V.N.; Egorova, T.M.; Gost'kov, V.V.; Tishkov, V.M.; Yatsko, O.V.

    2005-01-01

    Paper deals with the analysis of normalization of the RBMK reactor NPP water chemistry conditions. One analyzed the imposed restrictions at deviation of the normalized parameters from the ones recommended for the normal operating conditions. Paper contains data on water chemistry management and describes measures to improve radiation situation near NPP reactor equipment. One studied the reasons of corrosion damage of the RBMK-1000 reactor NPP pipelines and the ways to prevent them via optimization and improvement of water chemistry conditions [ru

  5. Hot functional test chemistry - long term experience

    International Nuclear Information System (INIS)

    Vonkova, K.; Kysela, J.; Marcinsky, M.; Martykan, M.

    2010-01-01

    Primary circuit materials undergo general corrosion in high temperature, deoxygenated, neutral or mildly alkaline solutions to form thin oxide films. These oxide layers (films) serve as protective film and mitigate the further corrosion of primary materials. Inner chromium-rich oxide layer has low cation diffusion coefficients and thus control iron and nickel transport from the metal surface to the outer layer and their dissolution into the coolant. Much less corrosion products are generated by the compact, integral and stable oxide (passivation) layer. For the latest Czech and Slovak stations commissioned (Temelin and Mochovce) a modified Hot Functional Test (HFT) chemistry was developed in the NRI Rez. Chromium rich surface layer formatted due to modified HTF chemistry ensures lower corrosion rates and radiation field formation and thus also mitigates crud formation during operation. This procedure was also designed to prepare the commissioned unit for the further proper water chemistry practise. Mochovce 1 (SK) was the first station commissioned using these recommendations in 1998. Mochovce 2 (1999) and Temelin 1 and 2 (CZ - 2000 and 2002) were subsequently commissioned using these guidelines too. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. Samples from Mochovce indicated that duplex oxide layers up to 20 μm thick were produced, which were mainly magnetite substituted with nickel and chromium (e.g. 60-65% Fe, 18-28% Cr, 9-12% Ni, <1% Mn and 1-2% Si on a stainless steel primary circuit sample). Long term operation experience from both nuclear power plants are discussed in this paper. Radiation field, occupational radiation exposure and corrosion layers evolution during the first c. ten years of operation are

  6. Control of corrosion and aggression in drinking water systems.

    Science.gov (United States)

    Loewenthal, R E; Morrison, I; Wentzel, M C

    2004-01-01

    Corrosion and/or aggression are common problems arising in pipelines transporting terrestrial waters. The kinetics and severity of such events depend on both the quality of the water being transported and the material properties of the pipeline. Irrespective of the nature of the problem, its solution (or at least its minimisation) is strongly linked to control of pH, calcium concentration and carbonate chemistry of the water (stabilisation). However, application of such chemistry to water treatment problems is complex and time consuming. Various numerical, graphical and computer techniques have been developed to address this, but these are either of insufficient accuracy, too time consuming or lacking in generality. In this paper algorithms are presented for solving a broad spectrum of problems related to control of mineral precipitation/aggression, pH and chemical dosing in water treatment. These have been incorporated into a computer software package, STASOFT, which offers the requisite framework for use in water treatment. Various stabilisation problems pertinent to water supply are addressed.

  7. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC

  8. Study on the influence of water chemistry on fuel cladding behaviour of LWR in Japan

    International Nuclear Information System (INIS)

    Mishima, Y.

    1983-01-01

    This article presents the results of the study on the influence of water chemistry on fuel cladding behaviour, which has been performed for more than ten years on BWRs and PWRs in Japan. The post irradiation examination (P.I.E.) program of commercial reactor fuel assembly which was explained at Tokyo meeting in 1981 includes an investigation of the characteristics and build-up conditions of crud deposited on mainly BWR fuel cladding. This article also provides a summary of the results of the investigation and shows how the results are utilized for establishing effective water chemistry measures

  9. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis

    NARCIS (Netherlands)

    Parikova, Alena; Smit, Watske; Struijk, Dirk G.; Zweers, Machteld M.; Krediet, Raymond T.

    2005-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients is across the small pores and water channels, the latter allowing free water transport. The objective of the study was to investigate the contribution of each transport route on transcapillary ultrafiltration (TCUF). METHODS: Standard

  10. Water supply, waste water cleaning and waste disposal. 2. rev. ed.

    International Nuclear Information System (INIS)

    Knoch, W.

    1994-01-01

    The first part of the book contains fundamentals of chemistry, always having environmental protection in mind. Numerous examples are calculated. The second part gives detailed explanations of the material-scientific and analytical bases of the indispensable resource water and its conditioning, waste water cleaning and sludge treatment. Collection, transport, handling, disposal and recycling of unavoidable wastes and toxic wastes are finally dealt with. (orig./EF) [de

  11. Water induced sediment levitation enhances downslope transport on Mars.

    Science.gov (United States)

    Raack, Jan; Conway, Susan J; Herny, Clémence; Balme, Matthew R; Carpy, Sabrina; Patel, Manish R

    2017-10-27

    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: "levitation" of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought.

  12. Overview of VVER water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Sundar, R.S.

    2007-01-01

    Kudankulam Nuclear Power project is having twin units of 1000MWe of VVER type. This paper highlights the different analytical techniques that are followed to maintain the system chemistry within the technical specifications. This paper also briefs the different chemicals that are added to the systems and how they are monitored. Basic differences with respect to chemistry between a PHWR and VVER are also highlighted in this paper. (author)

  13. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    Science.gov (United States)

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-11-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  14. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  15. 5. International seminar on primary and secondary side water chemistry of nuclear power plants

    International Nuclear Information System (INIS)

    2001-01-01

    The major subjects of the meetings are: water chemistry of primary and secondary coolant circuits of PWR type reactors (mainly WWER types), corrosion of steam generators, decontamination processes, treatment of radioactive waste waters and related subjects. All the 29 papers were individually indexed and abstracted for the INIS database. (R.P.)

  16. 5. International seminar on primary and secondary side water chemistry of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The major subjects of the meetings are: water chemistry of primary and secondary coolant circuits of PWR type reactors (mainly WWER types), corrosion of steam generators, decontamination processes, treatment of radioactive waste waters and related subjects. All the 29 papers were individually indexed and abstracted for the INIS database. (R.P.)

  17. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  18. Influence of intermittent water releases on groundwater chemistry at the lower reaches of the Tarim River, China.

    Science.gov (United States)

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun

    2009-11-01

    Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.

  19. Investigation of primary cooling water chemistry following the partial meltdown of Pu-Be neutron source in Tehran Research Reactor Core (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hossein, E-mail: hkhalafi@aeoi.org.i [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-03-15

    Research highlights: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry. Water chemistry of primary cooling before, during and after of above incident was compared. Training importance. Management of nuclear incident and accident. - Abstract: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry was main aim of this study. Leaving the neutron source in the core after reactor power exceeds a few hundred Watts was the main reason for its partial meltdown. Water chemistry of primary cooling before, during and after of above incident was compared. Activity of some radio-nuclides such as Ba-140, La-140, I-131, I-132, Te-132 and Xe-135 increased. Other radio-nuclides such as Nd-147, Xe-133, Sr-91, I-133 and I-135 are also detected which were not existed before this incident.

  20. Chemistry of water and steam in power plants and related technologies. Glossary of terms and definitions English - German; German - English

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, H.P.; Teutenberg, U.

    2006-07-01

    This new edition of a technical dictionary is an evaluation of the technical terms found in the domestic and foreign literature and in information brochures of specialist firms, directives, guidelines, standards, etc. This dictionary contains more than 3,000 terms mainly with definitions with respect to the chemistry of water and steam in power plants along with the related types of water (untreated water, feedwater and boiler water, make-up water, waste water) and the water treatment processes (ion exchange, membrane process, etc.), water conditioning and chemical analysis, internal cleaning of steam generating plants (e.g. flushing, boiling-out, pre-operational and operational acid cleaning, steam blowing) as well as fundamentals of water chemistry. The technical knowledge of the authors, Heinz-Peter Schmitz, FDBR, with more than 25 years professional experience as translator/official in charge of documentation and Ulrich Teutenberg, Babcock/Hitachi with more than 30 years professional experience as senior consultant for water chemistry and commissioning is reflected in this dictionary. Part 1 contains the English-German version, Part 2 the German-English version. (orig.)

  1. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    Science.gov (United States)

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  2. Plant water relations I: uptake and transport

    Science.gov (United States)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  3. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  4. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  5. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  6. Hydrogeology, water chemistry, and transport processes in the zone of contribution of a public-supply well in Albuquerque, New Mexico, 2007-9

    Science.gov (United States)

    Bexfield, Laura M.; Jurgens, Bryant C.; Crilley, Dianna M.; Christenson, Scott C.

    2012-01-01

    The National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey began a series of groundwater studies in 2001 in representative aquifers across the Nation in order to increase understanding of the factors that affect transport of anthropogenic and natural contaminants (TANC) to public-supply wells. One of 10 regional-scale TANC studies was conducted in the Middle Rio Grande Basin (MRGB) in New Mexico, where a more detailed local-scale study subsequently investigated the hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of one 363-meter (m) deep public-supply well in Albuquerque. During 2007 through 2009, samples were collected for the local-scale study from 22 monitoring wells and 3 public-supply (supply) wells for analysis of major and trace elements, arsenic speciation, nutrients, dissolved organic carbon, volatile organic compounds (VOCs), dissolved gases, stable isotopes, and tracers of young and old water. To study groundwater chemistry and ages at various depths within the aquifer, the monitoring wells were divided into three categories: (1) each shallow well was screened across the water table or had a screen midpoint within 18.3 m of the water level in the well; (2) each intermediate well had a screen midpoint between about 27.1 and 79.6 m below the water level in the well; and (3) each deep well had a screen midpoint about 185 m or more below the water level in the well. The 24-square-kilometer study area surrounding the "studied supply well" (SSW), one of the three supply wells, consists of primarily urban land within the MRGB, a deep alluvial basin with an aquifer composed of unconsolidated to moderately consolidated deposits of sand, gravel, silt, and clay. Conditions generally are unconfined, but are semiconfined at depth. Groundwater withdrawals for public supply have substantially changed the primary direction of flow from northeast to southwest under predevelopment

  7. Primary circuit water chemistry during shutdown period at Kalinin NPP

    International Nuclear Information System (INIS)

    Gorbatenko, S.; Otchenashev, G.; Yurmanov, V.

    2005-01-01

    The primary circuit water chemistry feature at Kalinin NPP is using of special up-dated regime during the period of unit shutdown for refueling. The main objective of up-dated regime is removing from the circuit long time living corrosion products on SVO-2 ion exchange filters with the purpose of dose rates reduction from the equipment and in such a way reduction of maintenance personnel overexposure. (N.T.)

  8. Water regime of steam power plants

    International Nuclear Information System (INIS)

    Oesz, Janos

    2011-01-01

    The water regime of water-steam thermal power plants (secondary side of pressurized water reactors (PWR); fossil-fired thermal power plants - referred to as steam power plants) has changed in the past 30 years, due to a shift from water chemistry to water regime approach. The article summarizes measures (that have been realised by chemists of NPP Paks) on which the secondary side of NPP Paks has become a high purity water-steam power plant and by which the water chemistry stress corrosion risk of heat transfer tubes in the VVER-440 steam generators was minimized. The measures can also be applied to the water regime of fossil-fired thermal power plants with super- and subcritical steam pressure. Based on the reliability analogue of PWR steam generators, water regime can be defined as the harmony of construction, material(s) and water chemistry, which needs to be provided in not only the steam generators (boiler) but in each heat exchanger of steam power plant: - Construction determines the processes of flow, heat and mass transfer and their local inequalities; - Material(s) determines the minimal rate of general corrosion and the sensitivity for local corrosion damage; - Water chemistry influences the general corrosion of material(s) and the corrosion products transport, as well as the formation of local corrosion environment. (orig.)

  9. Mercury Redox Chemistry in Waters of the Eastern Asian Seas: From Polluted Coast to Clean Open Ocean.

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Yin, Yongguang; Chen, Jinsheng; Wang, Shiwei

    2016-03-01

    We performed incubation experiments using seawaters from representative marine environments of the eastern Asian seas to determine the mercury (Hg) available for photoreduction (Hgr(II)), to investigate the Hg redox reaction kinetics, and to explore the effect of environmental factors and water chemistry on the Hg redox chemistry. Results show that Hgr(II) accounted for a considerable fraction of total Hg (THg) (%Hgr(II)/THg: 24.90 ± 10.55%, n = 27) and positively correlated with THg. Filtration decreased the Hgr(II) pool of waters with high suspended particulate matter (SPM). The positive linear relationships were found between pseudo-first order rate constants of gross Hg(II) photoreduction (kr) and gross Hg(0) photo-oxidation (ko) with photosynthetically active radiation (PAR). Under the condition of PAR of 1 m mol m(-2) s(-1), the kr were significantly (p < 0.05) lower than ko (kr/ko: 0.86 ± 0.22). The Hg(0) dark oxidation were significantly higher than the Hg(II) dark reduction. The Hg(II) dark reduction was positively correlated to THg, and the anaerobic condition favored the Hg(II) dark reduction. Filtration significantly influenced the Hg photoredox chemistry of waters with high SPM. UVB radiation was important for both Hg(II) photoreduction and Hg(0) photo-oxidation, and the role of other wavebands in photoinduced transformations of Hg varied with the water chemistry.

  10. Parametric tests of the effects of water chemistry impurities on corrosion of Zr-alloys under simulated BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, S; Ito, K [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan); Lin, C C [GE Nucklear Energy (United States); Cheng, B [Electric Power Research Inst. (United States); Ikeda, T [Toshiba Corp. (Japan); Oguma, M [Hitachi, Ltd (Japan); Takei, T [Tokyo Electric Power Co., Inc. (Japan); Vitanza, C; Karlsen, T M [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-02-01

    The Halden BWR corrosion test loop was constructed to evaluate the impact of water chemistry variables, heat flux and boiling condition on corrosion performance of Zr-alloys in a simulated BWR environment. The loop consists of two in-core rigs, one for testing fuel rod segments and the other for evaluating water chemistry variables utilizing four miniautoclaves. Ten coupon specimens are enclosed in each miniautoclave. The Zr-alloys for the test include Zircaloy-2 having different nodular corrosion resistance and five new alloys. The first and second of the six irradiation tests planned in this program were completed. Post-irradiation examination of those test specimens have shown that the test loop is capable of producing nodular corrosion on the fuel rod cladding tested under the reference chemistry condition. The miniautoclave tests showed that nodular corrosion could be formed without flux and boiling under some water chemistry conditions and the new alloys, generally, had higher corrosion resistance than the Zircaloy in high oxygen environments. (author). 5 refs, 4 figs, 5 tabs.

  11. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  12. Fission product chemistry in severe nuclear reactor accidents, specialists' meeting at JRC-Ispra, 15-17 January 1990

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-05-01

    A specialists' meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions). (author)

  13. Modelling the urban air quality in Hamburg with the new city-scale chemistry transport model CityChem

    Science.gov (United States)

    Karl, Matthias; Ramacher, Martin; Aulinger, Armin; Matthias, Volker; Quante, Markus

    2017-04-01

    Air quality modelling plays an important role by providing guidelines for efficient air pollution abatement measures. Currently, most urban dispersion models treat air pollutants as passive tracer substances or use highly simplified chemistry when simulating air pollutant concentrations on the city-scale. The newly developed urban chemistry-transport model CityChem has the capability of modelling the photochemical transformation of multiple pollutants along with atmospheric diffusion to produce pollutant concentration fields for the entire city on a horizontal resolution of 100 m or even finer and a vertical resolution of 24 layers up to 4000 m height. CityChem is based on the Eulerian urban dispersion model EPISODE of the Norwegian Institute for Air Research (NILU). CityChem treats the complex photochemistry in cities using detailed EMEP chemistry on an Eulerian 3-D grid, while using simple photo-stationary equilibrium on a much higher resolution grid (receptor grid), i.e. close to industrial point sources and traffic sources. The CityChem model takes into account that long-range transport contributes to urban pollutant concentrations. This is done by using 3-D boundary concentrations for the city domain derived from chemistry-transport simulations with the regional air quality model CMAQ. For the study of the air quality in Hamburg, CityChem was set-up with a main grid of 30×30 grid cells of 1×1 km2 each and a receptor grid of 300×300 grid cells of 100×100 m2. The CityChem model was driven with meteorological data generated by the prognostic meteorology component of the Australian chemistry-transport model TAPM. Bottom-up inventories of emissions from traffic, industry, households were based on data of the municipality of Hamburg. Shipping emissions for the port of Hamburg were taken from the Clean North Sea Shipping project. Episodes with elevated ozone (O3) were of specific interest for this study, as these are associated with exceedances of the World

  14. Quantification of osmotic water transport in vivo using fluorescent albumin.

    Science.gov (United States)

    Morelle, Johann; Sow, Amadou; Vertommen, Didier; Jamar, François; Rippe, Bengt; Devuyst, Olivier

    2014-10-15

    Osmotic water transport across the peritoneal membrane is applied during peritoneal dialysis to remove the excess water accumulated in patients with end-stage renal disease. The discovery of aquaporin water channels and the generation of transgenic animals have stressed the need for novel and accurate methods to unravel molecular mechanisms of water permeability in vivo. Here, we describe the use of fluorescently labeled albumin as a reliable indicator of osmotic water transport across the peritoneal membrane in a well-established mouse model of peritoneal dialysis. After detailed evaluation of intraperitoneal tracer mass kinetics, the technique was validated against direct volumetry, considered as the gold standard. The pH-insensitive dye Alexa Fluor 555-albumin was applied to quantify osmotic water transport across the mouse peritoneal membrane resulting from modulating dialysate osmolality and genetic silencing of the water channel aquaporin-1 (AQP1). Quantification of osmotic water transport using Alexa Fluor 555-albumin closely correlated with direct volumetry and with estimations based on radioiodinated ((125)I) serum albumin (RISA). The low intraperitoneal pressure probably accounts for the negligible disappearance of the tracer from the peritoneal cavity in this model. Taken together, these data demonstrate the appropriateness of pH-insensitive Alexa Fluor 555-albumin as a practical and reliable intraperitoneal volume tracer to quantify osmotic water transport in vivo. Copyright © 2014 the American Physiological Society.

  15. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by a random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. The modular-structured code was applied to three problems: a) incongruent dissolution of hydrated silicate gels, b) dissolution of portlandite and c) calcite dissolution and hypothetical dolomite precipitation. This allows for a comparison with other codes and their applications. The incongruent dissolution of cement phases, important for degradation of cementitious materials in a repository, can be included in the model without the problems which occur with a directly coupled code. The handling of a sharp multi-mineral front system showed a much faster calculation time compared to a directly coupled code application. Altogether, the results are in good agreement with other code calculations. Hence, the chosen modular concept of MCOTAC is more open to an easy extension of the code to include additional processes like sorption, kinetically controlled processes, transport in two or three spatial dimensions, and adaptation to new developments in computing (hardware and software), an important factor for applicability. (author) figs., tabs., refs

  16. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  17. Current status of water chemistry in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8{open_square} of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  18. Current status of water chemistry in Japan

    International Nuclear Information System (INIS)

    Ishigure, K.

    2002-01-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8□ of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  19. The role of water chemistry and geomorphic control in the presence of Didymosphenia geminata in Quebec

    Science.gov (United States)

    Gillis, C.; Gabor, R. S.; Cullis, J. D.; Ran, L.; Hassan, M. A.

    2010-12-01

    Didymosphenia geminata (didymo), an invasive diatom, was first officially observed and identified in the Matapedia River in Eastern Quebec in July 2006. This Atlantic salmon fishing river has several characteristics shown to favor didymo's ability to form thick, extensive benthic mats, including stable flow and oligotrophic nutrient conditions. Since the incursion, rapid colonization and inter-catchment transfer processes were observed, notably in surrounding watersheds on the Gaspé Peninsula as well as in northern New-Brunswick. All affected watersheds share favorable characteristics for didymo growth, including high light, low nutrient waters, and stable substrate. The nearby North Shore of the St. Lawrence, which also contains rivers with conditions that would favor didymo growth, has not yet shown didymo presence. This system provides a comparison to identify necessary parameters for didymo growth, with differences primarily due to geology-driven water chemistry. Pre-incursion water chemistry was compared between the two regions. Rivers in the region where didymo is present displayed a high alkalinity and corresponding higher pH, due to increases concentrations of magnesium and calcium, than rivers in regions where didymo has not appeared. Also, rivers with didymo show a lower amount of color-causing compounds, such as organic carbon, and clearer water, which supports the theory that high light levels encourage didymo growth. In addition to water chemistry, channel morphology, bed stability and flow patterns are also believed to be key elements in determining the presence of this benthic diatom. In 2007, channel morphology, bed texture, bankfull depth and width, local bed slope and didymo presence were surveyed on a 65 km stretch of the Matapedia River. Relative frequency of didymo presence showed that didymo blooms are most likely to appear in cobble-riffles than in any other morphologies. In fact, cobble riffles promote didymo establishment due to shallow

  20. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  1. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  2. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-07-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  3. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    International Nuclear Information System (INIS)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro

    1999-01-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  4. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon; Araque, Juan C.; Hoek, Eric M. V.; Escobedo, Fernando A.

    2013-01-01

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  5. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon

    2013-10-08

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  6. Tropospheric Bromine Chemistry: Implications for Present and Pre-industrial Ozone and Mercury

    Science.gov (United States)

    Parella, J. P.; Jacob, D. J.; Liang, Q.; Zhang, Y.; Mickley, L. J.; Miller, B.; Evans, M. J.; Yang, X.; Pyle, J. A.; Theys, N.; hide

    2012-01-01

    We present a new model for the global tropospheric chemistry of inorganic bromine (Bry) coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM). Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone mixing ratios by mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.

  7. Radiation inactivation studies of renal brush border water and urea transport

    International Nuclear Information System (INIS)

    Verkman, A.S.; Dix, J.A.; Seifter, J.L.; Skorecki, K.L.; Jung, C.Y.; Ausiello, D.A.

    1985-01-01

    Radiation inactivation was used to determine the nature and molecular weight of water and urea transport pathways in brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. BBMV were frozen to -50 degrees C, irradiated with 1.5 MeV electrons, thawed, and assayed for transport or enzyme activity. The freezing process had no effect on enzyme or transport kinetics. BBMV alkaline phosphatase activity gave linear ln(activity) vs. radiation dose plots with a target size of 68 +/- 3 kDa, similar to previously reported values. Water and solute transport were measured using the stopped-flow light-scattering technique. The rates of acetamide and osmotic water transport did not depend on radiation dose (0-7 Mrad), suggesting that transport of these substances does not require a protein carrier. In contrast, urea and thiourea transport gave linear ln(activity) vs. dose curves with a target size of 125-150 kDa; 400 mM urea inhibited thiourea flux by -50% at 0 and 4.7 Mrad, showing that radiation does not affect inhibitor binding to surviving transporters. These studies suggest that BBMV urea transport requires a membrane protein, whereas osmotic water transport does not

  8. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    Science.gov (United States)

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  9. Simulation of Water Chemistry using and Geochemistry Code, PHREEQE

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.H. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    This report introduces principles and procedures of simulation for water chemistry using a geochemistry code, PHREEQE. As and example of the application of this code, we described the simulation procedure for titration of an aquatic sample with strong acid to investigate the state of Carbonates in aquatic solution. Major contents of this report are as follows; Concepts and principles of PHREEQE, Kinds of chemical reactions which may be properly simulated by PHREEQE, The definition and meaning of each input data, An example of simulation using PHREEQE. (author). 2 figs., 1 tab.

  10. Optimum coolant chemistry in BWRs

    International Nuclear Information System (INIS)

    Lin, C.C.; Cowan, R.L.; Kiss, E.

    2004-01-01

    LWR water chemistry parameters are directly or indirectly related to the plant's operational performance and for a significant amount of Operation and Maintenance (O and M) costs. Obvious impacts are the operational costs associated with water treatment, monitoring and associated radwaste generation. Less obvious is the important role water chemistry plays in the magnitude of drywell shutdown dose rates, fuel corrosion performance and, (probably most importantly) materials degradation such as from stress corrosion cracking of piping and Reactor Pressure Vessel (RPV) internal components. To improve the operational excellence of the BWR and to minimize the impact of water chemistry on O and M costs. General Electric has developed the concept of Optimum Water Chemistry (OWC). The 'best practices' and latest technology findings from the U.S., Asia and Europe are integrated into the suggested OWC Specification. This concept, together with cost effective ways to meet the requirement, are discussed. (author)

  11. Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan

    Science.gov (United States)

    Stottlemyer, R.; Toczydlowski, D.

    1999-01-01

    We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering

  12. Soil water and xylem chemistry in declining sugar maple stands in Pennsylvania

    Science.gov (United States)

    David R. DeWalle; Bryan R. Swistock; William E. Sharpe

    1999-01-01

    Evidence is accumulating that decline of sugar maple, Acer saccharum Marsh., in northern Pennsylvania may be related to overall site fertility as reflected in the chemistry of soil water and bolewood xylem. In this paper we discuss factors related to varying site fertility, including effects of soil liming, past glacialion, topographic position and...

  13. Barriers to Superfast Water Transport in Carbon Nanotube Membranes

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Ritos, Konstantinos; Cruz-Chu, Eduardo R.

    2013-01-01

    Carbon nanotube (CNT) membranes hold the promise of extraordinary fast water transport for applications such as energy efficient filtration and molecular level drug delivery. However, experiments and computations have reported flow rate enhancements over continuum hydrodynamics that contradict each...... over the continuum predictions. These rates are far below those reported experimentally. The results suggest that the reported superfast water transport rates cannot be attributed to interactions of water with pristine CNTs alone....

  14. Examination of water quality changes during transportation of different fish

    Directory of Open Access Journals (Sweden)

    Istvan Nemeth

    2015-12-01

    Full Text Available Introduction The growth of population is increasing intensively (7.3 billion people in 2015 and it generates growing importance of fish farming. Primarily, fish meat could provide protein requirements for population so more and more attention must be paid to each sections of farming, for example fish transportation. A badly organized transportation technology can significantly reduce high quality stocks which were produced over several years. Deterioration of transport may occur on each fish distinctly. Bacterial or fungal diseases appear either immediately or days later. During our work, changes in several freshwater (peaceful or predator fish species (of different ages were monitored and analyzed during transport. There were two reasons why we examined the main physical and chemical parameters of the water. On one hand, we were curious to know how much the individuals exposed to heavy loads, which we tried to identify with some stress tests. On the other hand, we would develop a national water carrier monitoring system for the practice. Materials and methods Delivery technologies (foil sack and transport tankers used in practice was applied in the experiment of the study in a real road transport. The physical and chemical data were monitored and checked with the use of multiparameter instruments and photometrial tests. Physiological and stress tests were analyzed from blood plasma of each fish, primarily plasma glucose determination was used. Results After analysis of examined fish species and each ages, it is obvious that either short or long delivery times we choose physical and chemical properties of the transport water would change dramatically, even adequate oxygen balance was ensured. Values of individuals exposed to stress were more significant compared to baseline values. Conclusion We could define concrete changes in key parameters of the transport water with the number of realtime transport implementation which is a good help to

  15. X-radiation effect on water transport in ascite cells of Ehrlich carcinoma

    International Nuclear Information System (INIS)

    Barnov, V.A.; Ajvazishvili, M.A.; Kartvelishvili, I.I.; Tushishvili, D.I.

    1988-01-01

    Effect of local X radiation with doses 0.05 and 0.15 C/kg on water transport in ascitic cells of Erlich carcinoma is studied in rats. To study water transport through cell membranes, tritium mark was used. It is concluded that radiation effect on water transport in cells of Erlich carcinoma may be related to change in ionic permittivity of the membrane, because small changes in transmembrane ion transport affect immediately the osmotic motion of water. 5 refs

  16. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products spanning the 1987/1988 El Nino Southern Oscillation (ENSO)...

  17. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  18. Water chemistry and soil radon survey at the Poas volcano (Costa Rica

    Directory of Open Access Journals (Sweden)

    J. L. Seidel

    2005-06-01

    Full Text Available Radon-in-soil monitoring at the Poas volcano (Costa Rica has been performed together with water chemistry from the hot crater lake since 1981 and 1983 respectively. The results are discussed as a function of the eruptive evolution of the volcano over a 13 years period (1981-1994. It is shown that no definitely clear precursory radon signals have been recorded. On the contrary, ionic species concentrations are likely to be considered good precursors, together with the temperature variations of the crater lake water.

  19. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  20. Nanoscale Titanium Dioxide (nTiO2) Transport in Water-Saturated Natural Sediments: Influence of Soil Organic Matter and Fe/Al Oxyhydroxides

    Science.gov (United States)

    Fisher-Power, L.; Cheng, T.

    2017-12-01

    Transport of engineered nanoparticles (ENP) in subsurface environments has important implications to water quality and soil contamination. Although extensive research has been conducted to understand the effects of water chemistry on ENP transport, less attention has been paid to influences from the transport medium/matrix. The objective of this research is to investigate the effects of natural organic matter (NOM) and Fe/Al oxyhydroxides in a natural sediment on ENP transport. A sediment was collected and separated into four portions, one of which was unmodified, and the others treated to remove specific components (organic matter, Fe/Al oxyhydroxides, or both organic matter and Fe/Al oxyhydroxides). Transport of nanoscale titanium dioxide (nTiO2) in columns packed with quartz sand and each of the four types of the sediment under water-saturated conditions was studied. Our results showed that nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH = 5, nTiO2 transport in all the sediments was low, as positively-charged nTiO2 was attracted to negatively charged NOM, quartz, and other minerals. nTiO2 transport was slightly enhanced in columns packed with untreated sediment or Fe/Al oxyhydroxides removed sediment due to dissolved organic matter generated by the partial dissolution of NOM, which adsorbed onto nTiO2 surface and reversed its zeta potential to negative. When influent pH = 9, nTiO2 transport was generally high since negatively-charged nTiO2 was repelled by negatively charged transport medium. However, in columns packed with the organic matter removed sediment or the Fe/Al oxyhydroxides removed sediment, nTiO2 transport was low. This was attributable to pH buffering by the sediment, which decreased pore water pH in the column, resulting in zeta potential change and electrostatic attraction between Fe/Al oxyhydroxides and nTiO2. This research demonstrates that electrostatic forces between nTiO2 and mineral/organic components

  1. Nano and Mesoscale Ion and Water Transport in Perfluorosulfonic AcidMembranes

    Science.gov (United States)

    2017-10-01

    Nano- and Mesoscale Ion and Water Transport in Perfluorosulfonic-Acid Membranes A. R. Crothers a,b , C. J. Radke a,b , A. Z. Weber a a...Berkeley, CA 94720, USA Water and aqueous cations transport along multiple length scales in perfluorosulfonic-acid membranes. Molecular interactions...as a function of hydration. A resistor network upscales the nanoscale properties to predict effective membrane ion and water transport and their

  2. Cycle water chemistry based on film forming amines at power plants: evaluation of technical guidance documents

    Science.gov (United States)

    Dyachenko, F. V.; Petrova, T. I.

    2017-11-01

    Efficiency and reliability of the equipment in fossil power plants as well as in combined cycle power plants depend on the corrosion processes and deposit formation in steam/water circuit. In order to decrease these processes different water chemistries are used. Today the great attention is being attracted to the application of film forming amines and film forming amine products. The International Association for the Properties of Water and Steam (IAPWS) consolidated the information from all over the World, and based on the research studies and operating experience of researchers and engineers from 21 countries, developed and authorized the Technical Guidance Document: “Application of Film Forming Amines in Fossil, Combined Cycle, and Biomass Power Plants” in 2016. This article describe Russian and International technical guidance documents for the cycle water chemistries based on film forming amines at fossil and combined cycle power plants.

  3. Active water transport in unicellular algae: where, why, and how.

    Science.gov (United States)

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  5. Modelling of water and chloride transport in concrete during yearly wetting/drying cycles

    NARCIS (Netherlands)

    Van Der Zanden, A.J.J.; Taher, A.; Arends, T.

    2015-01-01

    The simultaneous transport of water and chloride in concrete has been modelled. The water transport is described with a concentration dependent diffusion coefficient. The chloride transport is modelled with a convective part, caused by the water transport, and a diffusive part, caused by the

  6. Concerted orientation induced unidirectional water transport through nanochannels.

    Science.gov (United States)

    Wan, Rongzheng; Lu, Hangjun; Li, Jinyuan; Bao, Jingdong; Hu, Jun; Fang, Haiping

    2009-11-14

    The dynamics of water inside nanochannels is of great importance for biological activities as well as for the design of molecular sensors, devices, and machines, particularly for sea water desalination. When confined in specially sized nanochannels, water molecules form a single-file structure with concerted dipole orientations, which collectively flip between the directions along and against the nanotube axis. In this paper, by using molecular dynamics simulations, we observed a net flux along the dipole-orientation without any application of an external electric field or external pressure difference during the time period of the particular concerted dipole orientations of the molecules along or against the nanotube axis. We found that this unique special-directional water transportation resulted from the asymmetric potential of water-water interaction along the nanochannel, which originated from the concerted dipole orientation of the water molecules that breaks the symmetry of water orientation distribution along the channel within a finite time period. This finding suggests a new mechanism for achieving high-flux water transportation, which may be useful for nanotechnology and biological applications.

  7. Water chemistry experience following an extensive power up-rate in Oskarshamn 3 BWR

    International Nuclear Information System (INIS)

    Wegemar, Boerje; Nilsson, Jimmy; Lejon Johan; Bergfors, Asa; Arnberg, Bo

    2012-09-01

    The Swedish Oskarshamn 3 BWR plant, operated by OKG, was first connected to the grid in 1985. The plant has been power up-rated in two steps; from the original design, 3020 MWth, to 3300 MWth (109%, 1989) and recently to 3900 MWth (129%, 2009). Westinghouse Electric Sweden AB (former ASEA-Atom, OEM of the plant) was rewarded a major contract in the recently implemented up-rating project, the PULS project. The PULS project is quite unique since no operating experience has to date been reported from a similar major power up-rate in a BWR plant. Water chemistry experience from the first period of operation following the implementation of the PULS project is reported and discussed in the paper. Reported chemistry and radiochemistry measurements in feedwater (FW) and reactor water (RW) include corrosion products, activated corrosion products, dissolved oxygen and impurities like chloride, sulfate etc. Furthermore, a comparison of water quality prior to implementation of the PULS project is included. Several process systems have been modified, one of them being the condensate cleanup system (CCU), a Pre-coat filter system. The design criteria for the CCU system include the filter run-lengths, pressure drop before back-washing and requirements on water chemistry quality. The paper describes in some detail the CCU system modifications being implemented in order to fulfil the design criterion. CCU cleanup efficiency, operating temperature and influence of hydrogen peroxide on the CCU resin are all important issues being covered in the paper. As for the latter, it is well known that oxygen and hydrogen peroxide (from radiolysis in the core region) might cause partial deterioration of CCU standard cation resin resulting in increased RW sulfate concentrations. This aspect is covered in the paper as well. The reactor water cleanup system (RWCU) in Oskarshamn 3 consists of deep bed ion exchange filters (mixed bed filter). The purpose of RWCU is to maintain a low level of

  8. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  9. Water transport in graphene nano-channels

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Oyarzua, Elton; Walther, J. H.

    The transport of water in nanopores is of both fundamental and practical interest. Graphene Channels (GCs) are potential building blocks for nanofluidic devices dueto their molecularly smooth walls and exceptional mechanical properties. Numerous studies have found a significant flow rate enhancem......The transport of water in nanopores is of both fundamental and practical interest. Graphene Channels (GCs) are potential building blocks for nanofluidic devices dueto their molecularly smooth walls and exceptional mechanical properties. Numerous studies have found a significant flow rate...... between the chirality of the graphene walls and the slip length has not been established. In this study, we perform non-equilibrium molecular dynamics simulations of water flow in single- and multi-walled GCs. We examine the influence on the flow rates of dissipating the viscous heat produced...... by connecting the thermostat to the water molecules, the CNT wall atoms or both of them. From the atomic trajectories, we compute the fluid flow rates in GCs with zig-zag and armchair walls, heights from 1 to 4 nm and different number of graphene layers on the walls. A relation between the chirality, slip...

  10. Influence of hydrazine primary water chemistry on corrosion of fuel cladding and primary circuit components

    International Nuclear Information System (INIS)

    Iourmanov, V.; Pashevich, V.; Bogancs, J.; Tilky, P.; Schunk, J.; Pinter, T.

    1999-01-01

    Earlier at Paks 1-4 NPP standard ammonia chemistry was in use. The following station performance indicators were improved when hydrazine primary water chemistry was introduced: occupational radiation exposures of personnel; gamma-radiation dose rates near primary system components during refuelling and maintenance outages. The reduction of radiation exposures and radiation fields were achieved without significant expenses. Recent results of experimental studies allowed to explain the mechanism of hydrazine dosing influence on: corrosion rate of structure materials in primary coolant; behaviour of soluble and insoluble corrosion products including long-life corrosion-induced radionuclides in primary system during steady-state and transient operation modes; radiolytic generation of oxidising radiolytic products in core and its corrosion activity in primary system; radiation situation during refuelling and maintenance outages; foreign material degradation and removal (including corrosion active oxidant species) from primary system during abnormal events. Operational experience and experimental data have shown that hydrazine primary water chemistry allows to reduce corrosion wear and thereby makes it possible to extend the life-time of plant components in primary system. (author)

  11. Transport of hydrate slurry at high water cut

    OpenAIRE

    Melchuna , Aline; Cameirão , Ana; Herri , Jean-Michel; Ouabbas , Yamina; Glenat , Philippe

    2014-01-01

    Poster; International audience; Oil transportation in pipelines at the end of field production life implies to flow high quantities of water which represents the dominant phase. The process of crystallization of gas hydrates in this system needs to be studied and compared to the opposite one widely studied in the literature where water is the dispersed phase. The laboratory is equipped with the Archimede flow loop where the hydrate crystallization and transport are monitored. The flow loop is...

  12. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  13. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  14. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  15. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  16. Ground water chemistry and water-rock interaction at Kivetty

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Leino-Forsman, H.

    1992-10-01

    The geochemistry of the groundwater at one of the investigation areas for nuclear waste, Kivetty (Kongingas) in central Finland is evaluated. The hydrogeological data is collected from boreholes drilled down to 1000-m depth into crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed

  17. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1989-09-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. The following areas are discussed in detail: - the origins of the corrosion products and of cobalt-59 in the reactor feedwaters, - the consolidation of the cobalt in the fuel pin deposits (activation), - the release and transport of cobalt-60, - the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarised. Corrosion chemistry aspects of the cobalt build-up in the primary circuit have already been studied on a broad basis and are continuing to be researched in a number of centers. The crystal chemistry of chromium-nickel steel corrosion products poses a number of yet unanswered questions. There are major loopholes associated with the understanding of activation processes of cobalt deposited on the fuel pins and in the mass transfer of cobalt-60. For these processes, the most important influence stems from factors associated with colloid chemistry. Accumulation of data from different BWRs contributes little to the understanding of the activity build-up. However, there are examples that the problem of activity build-up can be kept under control. Although many details for a quantitative understanding are still missing, the most important correlations are visible. The activity build-up in the BWR recirculation systems cannot be kept low by a single measure. Rather a whole series of measures is necessary, which influences not only cobalt-60 deposition but also plant and operation costs. (author) 26 figs., 13 tabs., 90 refs

  18. Transport of water through the tropical tropopause

    Science.gov (United States)

    Kley, D.; Schmeltekopf, A. L.; Kelly, K.; Winkler, R. H.; Thompson, T. L.; Mcfarland, M.

    1982-01-01

    Total water was measured in the high troposphere and low stratosphere over Panama during ten aircraft flights. The results show that convective storms provide the means of transporting water into the stratosphere. From a consideration of the anvil heights over different areas of the tropical zone, it follows that a negative gradient of water vapor mixing ratio with altitude must exist over most of the lower stratosphere.

  19. The development of a neutralizing amines based reagent for maintaining the water chemistry for medium and high pressures steam boilers

    Science.gov (United States)

    Butakova, M. V.; Orlov, K. A.; Guseva, O. V.

    2017-11-01

    An overview of the development for neutralizing amine based reagent for water chemistry of steam boilers for medium and high pressures was given. Total values of the neutralization constants and the distribution coefficients of the compositions selected as a main criteria for reagent composition. Experimental results of using this new reagent for water chemistry in HRSG of power plant in oil-production company are discussed.

  20. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  1. Seasonal Variation in Water Chemistry Parameters in the Clayburn - Willband Watershed, Abbotsford, British Columbia.

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Faculty and students from the University of the Fraser Valley (UFV) have conducted time series sampling of the Fraser River at Fort Langley and six Fraser Valley tributaries as a member of the Global Rivers Observatory (GRO, www.globalrivers.org) coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Clayburn - Willband - Stoney watershed has become a focus of the sampling being conducted by faculty and students from the Geography and Biology Departments at UFV. Water chemistry data (water temperature, dissolved oxygen, conductivity, pH and turbidity) and samples (nutrients, major ions and bacteria) have been collected weekly from sites on these creeks. These watersheds are threatened by increasing urban development, increasing idustrial activity, and expansion of agricultural landuse within the watershed. Documenting the seasonal changes in the water chemistry as measured during the onset of the heavy fall and winter precipitation events, the wet and cool winters and springs, and the hot and dry summers will assist in attempts to protect these important salmon spawning streams from anthropogenic activity.

  2. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Shunsuke Uchida; Eishi Ibe; Katsumi Ohsumi

    1994-01-01

    Application of hydrogen water chemistry to moderate corrosive circumstances is a promising approach to preserve structural integrities of major components and structures in the primary cooling system of BWRs. The benefits of HWC application are usually accompanied by several disadvantages. After evaluating merits and demerits of HWC application, it is concluded that optimal amounts of hydrogen injected into the feed water can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. (authors). 1 fig., 4 refs

  3. Studies and research concerning BNFP: transportation of radioactive material by water

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1980-11-01

    Currently there are many limitations imposed on the shipment of radioactive material from nuclear power plants. In this regard, many questions have arisen related to the feasibility of substituting water transportation of these materials as a backup or supplement to the highway and rail modes which are now in use. This study addresses the results of studies performed by Allied-General Nuclear Services concerning the water transportation of spent nuclear fuel and radwaste materials. The report presents both an overview of the possible applications, problems, and means of solution, and specific information related to one particular site. In particular, a detailed case study of a nuclear plant site located on a navigable waterway (Chesapeake Bay) was made. The study concludes that there are some real advantages in using water transport, which are particularly evident if a site is not served by rail or its primary transport route lies near populous areas. Whereas, water transport has been used extensively in Europe and Japan, it has been virtually bypassed in the United States. A recommendation is made to continue examination of water transport, including the development of necessary standards for possible future operations

  4. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  5. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  6. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  7. Arctic water tracks retain phosphorus and transport ammonium

    Science.gov (United States)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  8. Can Unmanned Aerial Systems (Drones Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Directory of Open Access Journals (Sweden)

    Timothy K Amukele

    Full Text Available Unmanned Aerial Systems (UAS or drones could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests.Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total: two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results.Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal, was 97%. Length of flight had no impact on the results.Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  9. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Science.gov (United States)

    Amukele, Timothy K; Sokoll, Lori J; Pepper, Daniel; Howard, Dana P; Street, Jeff

    2015-01-01

    Unmanned Aerial Systems (UAS or drones) could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests. Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total): two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results. Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program) performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic) CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal), was 97%. Length of flight had no impact on the results. Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  10. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  11. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    2012-01-01

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  12. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  13. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. © 2014 American Society of Plant Biologists. All Rights Reserved.

  14. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  15. Hydrogen water chemistry for BWRs: A status report on the EPRI development program

    International Nuclear Information System (INIS)

    Jones, R.L.; Nelson, J.L.

    1990-01-01

    Many BWRs have experienced extensive intergranular stress corrosion cracking (IGSCC) in their austenitic stainless steel coolant system piping, resulting in serious adverse impacts on plant capacity factors, O and M costs, and personnel radiation exposures. A major research program to provide remedies for BWR pipe cracking was co-funded by EPRI, GE, and the BWR Owners Group for IGSCC Research between 1979 and 1988. Results from this program show that the likelihood of IGSCC depends on reactor water chemistry (particularly on the concentrations of ionic impurities and oxidizing radiolysis products) as well as on material condition and the level of tensile stress. Tests have demonstrated that the concentration of oxidizing radiolysis products in the recirculating water of a BWR can be reduced substantially by injecting hydrogen into the feedwater. Recent plant data show that the use of hydrogen injection can reduce the rate of IGSCC to insignificant levels if the concentration of ionic impurities in the reactor water is kept sufficiently low. This approach to the control of BWR pipe cracking is called hydrogen water chemistry (HWC). This paper presents a review of the results of EPRI's HWC development program from 1980 to the present. In addition, plans for additional work to investigate the feasibility of adapting HWC to protect the BWR vessel and major internal components from potential stress corrosion cracking problems are summarized. (orig.)

  16. Prediction of thermophysical and transport properties of ternary organic non-electrolyte systems including water by polynomials

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan D.

    2013-01-01

    Full Text Available The description and prediction of the thermophysical and transport properties of ternary organic non-electrolyte systems including water by the polynomial equations are reviewed. Empirical equations of Radojković et al. (also known as Redlich-Kister, Kohler, Jacob-Fitzner, Colinet, Tsao-Smith, Toop, Scatchard et al. and Rastogi et al. are compared with experimental data of available papers appeared in well know international journals (Fluid Phase Equilibria, Journal of Chemical and Engineering Data, Journal of Chemical Thermodynamics, Journal of Solution Chemistry, Journal of the Serbian Chemical Society, The Canadian Journal of Chemical Engineering, Journal of Molecular Liquids, Thermochimica Acta, etc.. The applicability of empirical models to estimate excess molar volumes, VE, excess viscosities, ηE, excess free energies of activation of a viscous flow,

  17. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  18. Dynamic combinatorial chemistry to identify binders of ThiT, an S-component of the energy-coupling factor transporter for thiamine

    NARCIS (Netherlands)

    Monjas, Leticia; Swier, Lotteke J Y M; Setyawati, Inda; Slotboom, Dirk Jan; Hirsch, Anna Katharina Herta

    2017-01-01

    We applied dynamic combinatorial chemistry (DCC) to identify ligands of ThiT, the S-component of the energy-coupling factor (ECF) transporter for thiamine in Lactococcus lactis. We used a pre-equilibrated dynamic combinatorial library (DCL) and saturation-transfer difference (STD) NMR spectroscopy

  19. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    Science.gov (United States)

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  20. Impact of carbonation on water transport properties of cement-based materials

    International Nuclear Information System (INIS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  1. Transport behavior of water molecules through two-dimensional nanopores

    International Nuclear Information System (INIS)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-01-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules

  2. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  3. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    Science.gov (United States)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  4. Early hydrogen water chemistry in the boiling water reactor: industry-first demonstration

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Hydrogen injection into the BWR feedwater during power operation has resulted in significant IGSCC reductions. Further, noble metal application (NMCA) during shutdown or On-line NobleChem TM (OLNC) during power operation has greatly reduced the required hydrogen injection rate by catalyzing the hydrogen-oxygen reaction on the metal surfaces, reducing the electrochemical corrosion potential (ECP) at operating temperature to well below the mitigation ECP of -230 mV (SHE) at reactor water hydrogen to oxidant (O 2 + H 2 O 2 ) molar ratios of ≥2. Since IGSCC rates increase markedly at reduced temperature, and the potential for crack initiation exists, additional crack mitigation was desired. To close this gap in mitigation, the EPRI BWR Startup ECP Reduction research and development program commenced in 2008 to undertake laboratory and feasibility studies for adding a reductant to the reactor water system during start-ups. Under this program, ECP reductions of noble metal treated stainless steel sufficient to mitigate IGSCC at startup temperatures were achieved in the laboratory in the absence of radiation at hydrogen, hydrazine and carbohydrazide to oxygen molar ratios of ≥ 2, ≥1.5 and ≥0.7, respectively. Based on the familiarity of operating BWRs with using hydrogen, a demonstration of hydrogen injection during the startup of an actual BWR using noble metals was planned. This process, named EHWC (Early Hydrogen Water Chemistry), differs from the HDS (Hydrogen During Startup) approach that has been successful in Japan in that HDS injects sufficient hydrogen for bulk oxidant reduction whereas EHWC injects a smaller amount of hydrogen, sufficient to achieve a hydrogen:oxidant molar ratio of at least two at noble metal treated surfaces. The industry-first EHWC demonstration was performed at Exelon's Peach Bottom 3 nuclear power plant in October 2011. Prior to EHWC, Peach Bottom 3 had one NMCA (October 1999) and five annual OLNC applications (starting in 2007

  5. Ammonia chemistry at SMART

    International Nuclear Information System (INIS)

    Na, J. W.; Seong, G. W.; Lee, E. H.; Kim, W. C.; Choi, B. S.; Kim, J. P.; Lee, D. J.

    1999-01-01

    Ammonia is used as the pH control agent of primary water at SMART (System-integrated Modular Advanced ReacTor). Some of this ammonia is decomposed to hydrogen and nitrogen by radiation in the reactor core. The produced hydrogen gas is used for the removal of dissolved oxygen in the coolant. Some of nitrogen gas in pressurizer is dissolved into the primary water. Because ammonia, hydrogen and nitrogen which is produced by ammonia radiolysis are exist in the coolant at SMART, ammonia chemistry at SMART is different with lithium-boron chemistry at commercial PWR. In this study, the pH characteristics of ammonia and the solubility characteristics of hydrogen and nytrogen were analyzed for the management of primary water chemistry at SMART

  6. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute......A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  7. Chemistry in power plants 2011

    International Nuclear Information System (INIS)

    2011-01-01

    to makeup water and cycle chemistry measurements; (20) Optical measurement of dissolved oxygen at ppb level. A comparison of amperometric and optical methods; (21) Alternative insulating fluids in comparison to traditional mineral oil; (22) Online analysis and sustainable quality assurance in the cooling water treatment of the E.ON power plant Shamrock in Herne; (23) Mercury removal in cool-fired power plants - a chemical challenge; (24) TOC process analyzers for condensate, steam or boiler feed water; (25) Innovative methods for maintaining and monitoring the transport preservation for turbo generators; (26) Determination of ash content and calorific values of coals directly on the conveyor belt? (27) Modern chromatographic procedures in the analytical power plant chemistry - optimization of time, costs and analytical performance; (28) Treatment of waste water from the flue gas cleaning; (29) Hygroscopicity of alkaline earth halides and lower working temperature of surface filter in Ca(OH) 2 sorption processes for cleaning exhaust gases; (30) Troubleshooting at reverse osmosis performance decrease; (31) Effect of charges in the operating mode on the behaviour of memory in wet FGD plants.

  8. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  9. Co-regulation of water and K(+) transport in sunflower plants during water stress recovery.

    Science.gov (United States)

    Benlloch, Manuel; Benlloch-González, María

    2016-06-01

    16-day-old sunflower (Helianthus annuus L.) plants were subjected to deficit irrigation for 12 days. Following this period, plants were rehydrated for 2 days to study plant responses to post-stress recovery. The moderate water stress treatment applied reduced growth in all plant organs and the accumulation of K(+) in the shoot. After the rehydration period, the stem recovered its growth and reached a similar length to the control, an effect which was not observed in either root or leaves. Moreover, plant rehydration after water stress favored the accumulation of K(+) in the apical zone of the stem and expanding leaves. In the roots of plants under water stress, watering to field capacity, once the plants were de- topped, rapidly favored K(+) and water transport in the excised roots. This quick and short-lived response was not observed in roots of plants recovered from water stress for 2 days. These results suggest that the recovery of plant growth after water stress is related to coordinated water and K(+) transport from the root to the apical zone of the ​​stem and expanding leaves. This stimulation of K(+) transport in the root and its accumulation in the cells of the growing zones of the ​​stem must be one of the first responses induced in the plant during water stress recovery. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Expert system for diagnostics and status monitoring of NPP water chemistry condition

    International Nuclear Information System (INIS)

    Shvedova, M.N.; Kritski, V.G.; Zakharova, S.V.; Benediktov, V.B.; Nikolaev, F.V.

    2002-01-01

    Water chemistry condition (WCC) has been the subject of constant study and improvement up to the present day. It is connected with the presence of a direct relationship between the violation of water chemistry regulation on the one hand and components reliability of the circuit's equipment and cost-effectiveness of their operation on the other. It dictates the necessity to apply different optimization methods in the field of monitoring and use of information analytical and diagnostic systems to assess WCC quality, control and support. LI ''VNIPIET'' employees have, for several years, been developing an expert diagnostic system for supporting WCC and status monitoring of RBMK - reactor NPPs [2]. This system has not only conveniently organized the traditional functions of information acquisition and storage, a complete presentation of information in the form of tables, graphs of a dynamical changes of parameters and formation regular reports, diagnostic functions and issuing recommendations on WCC correction, but it also allows the assessment of confidence in the diagnosis made, relying on a wide range of numerical estimates, which were calculated by the use of expert data, and to make a credible prediction of an existing situation development. (authors)

  11. Radiation chemistry of the liquid state

    International Nuclear Information System (INIS)

    Buxton, G.V.

    1987-01-01

    More is known about the radiation chemistry of water than any other liquid. From a practical viewpoint out knowledge is virtually complete, and water radiolysis now provides a very convenient way of generating an enormous variety of unstable species under well-defined conditions. This facility, coupled with the techniques of pulse radiolysis, has opened up new areas in aqueous inorganic, organic, and biochemistry that cannot be readily studied by thermal or photochemical methods. This chapter is aimed, therefore, at those who wish to use radiolytic methods to generate and study unstable species in aqueous solution. The basic features of the radiation chemistry of water are described first to show how the primary radical and molecular products evolve with time and to delineate the bounds of useful experimental conditions. Next, the properties of the primary radicals are summarized, and examples are given to show how the primary radicals can be converted into secondary radicals, often of a single kind. This is an important aspect of the radiation chemistry of aqueous solutions. Lastly, the impact of our knowledge of the radiation chemistry of water on advances in general chemistry is illustrated by examples from the fields of inorganic and organic chemistry

  12. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    Science.gov (United States)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  13. Activity transport models for PWR primary circuits; PWR-ydinvoimalaitoksen primaeaeripiirin aktiivisuuskulkeutumismallit

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, V; Rosenberg, R [VTT Chemical Technology, Otaniemi (Finland)

    1995-03-01

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR`s. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.).

  14. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli

    International Nuclear Information System (INIS)

    Li Mei; Lin Daohui; Zhu Lizhong

    2013-01-01

    The dissolution of ZnO nanoparticles (nano-ZnO) plays an important role in the toxicity of nano-ZnO to the aquatic organisms. The effects of water chemistry such as pH, ionic components, and dissolved organic matter (DOM) on the dissolution of nano-ZnO and its toxicity to Escherichia coli (E. coli) were investigated in synthetic and natural water samples. The results showed that the toxicity of nano-ZnO to E. coli depended on not only free Zn 2+ but also the coexisting cations which could reduce the toxicity of Zn 2+ . Increasing solution pH, HPO 4 2− , and DOM reduced the concentration of free Zn 2+ released from nano-ZnO, and thus lowered the toxicity of nano-ZnO. In addition, both Ca 2+ and Mg 2+ dramatically reduced the toxicity of Zn 2+ to E. coli. These results highlight the importance of water chemistry on the toxicity evaluation of nano-ZnO in natural waters. - Highlights: ► The effects of water chemistry on the toxicity of nano-ZnO were investigated. ► Increasing solution pH, HPO 4 2− , and DOM reduced nano-ZnO toxicity to E. coli. ► Ca 2+ and Mg 2+ could dramatically reduce the toxicity of nano-ZnO to E. coli. ► Free Zn 2+ ions and water hardness together controlled nano-ZnO toxicity in waters. - The toxicity of nano-ZnO to E. coli depended on not only free Zn 2+ but also Ca 2+ and Mg 2+ which could reduce the toxicity of Zn 2+ .

  15. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  16. Relative transport of water (H2O) and tritiated water (HTO) across cellulose acetate (CA) membranes

    International Nuclear Information System (INIS)

    Prabhakar, S.; Misra, B.M.; Ramani, M.P.S.

    1986-01-01

    The relative transport characteristics of water (H 2 O) and tritiated water (HTO) were evaluated through cellulose acetate membranes under osmosis, reverse osmosis and pervaporation. The results indicate that the relative transport is independent of the process. The anamolous observations under osmotic conditions are explained. (orig.)

  17. Acidic deposition: State of science and technology. Report 14. Methods for projecting future changes in surface water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Thornton, K.W.; Marmorek, D.; Ryan, P.F.; Heltcher, K.; Robinson, D.

    1990-09-01

    The objectives of the report are to: critically evaluate methods for projecting future effects of acidic deposition on surface water acid-base chemistry; review and evaluate techniques and procedures for analyzing projection uncertainty; review procedures for estimating regional lake and stream population attributes; review the U.S. Environmental Protection Agency (EPA) Direct/Delayed Response Project (DDRP) methodology for projecting the effects of acidic deposition on future changes in surface water acid-base chemistry; and present the models, uncertainty estimators, population estimators, and proposed approach selected to project the effects of acidic deposition on future changes in surface water acid-base chemistry in the NAPAP 1990 Integrated Assessment and discuss the selection rationale

  18. Water-Chemistry and Its Utility Systems in CCP Power Units (Review)

    Science.gov (United States)

    Larin, B. M.

    2018-01-01

    Damageability of heat transfer surfaces of waste heat recovery steam generators (HRSG) of combined- cycle plants (CCP) can be reduced due to an increase in the quality of make-up and feed water, the use of phosphate-alkaline or amino compound water chemistry (WC), and improved chemical quality control of the heat carrier and make-up water preparation techniques. Temporary quality standards for the heat medium developed by the All-Russia Thermal Engineering institute (VTI) for CCP power units are presented in comparison with the IAPWS standards; preferences for the choice of a WC type for some power units commissioned in Russia in the first decade of this century are shown; and operational data on the quality of feed, boiler water, and steam for two large CCP-450 and CCP-425 power units are given. The state and prospects for the development of chemical-technological monitoring systems and CCP water treatment plants are noted. Estimability of some CCP diagnostic parameters by measuring specific electric conductivity and pH is shown. An extensive bibliography on this topic is given.

  19. Major ion chemistry of the Son River, India

    Indian Academy of Sciences (India)

    The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO 3 − are ...

  20. Loop capabilities in Rez for water chemistry and corrosion control of cladding and in-core components

    International Nuclear Information System (INIS)

    Kysela, J.; Zmitko, M.; Srank, J.; Vsolak, R.

    1999-01-01

    Main characteristics of LVR-15 research reactor and its irradiation facilities are presented. For testing of cladding, internals and RPV materials specialised loop are used. There are now five high pressure loops modelling PWR, WWER or BWR water environment and chemistry. Loops can be connected with instrumented in-pile channels enable slow strain rate testing, 1CT or 2CT specimens loading and electrically heated rods exposition. Reactor dosimetry including neutronic parameters measurements and calculations and mock-up experiments are used. Water chemistry control involves gas (O 2 , H 2 ) dosing system, Orbisphere H 2 /O 2 measurement, electrochemical potential (ECP) measurements and specialised analytical chemistry laboratory. For cladding corrosion studies in-pile channels with four electrically heated rods with heat flux up to 100 W/cm 2 , void fraction 5 % at the outlet, inlet temperature 320 deg. C and flow velocity 3 m/s were development and tested. For corrosion layer investigation there is eddy current measurements and PIE techniques which use crud thickness measurement, chemical analyses of the crud, optical metallography, hydrogen analysis, SEM and TEM. (author)

  1. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  2. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  3. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  4. Comparison of French and German NPP water chemistry programs

    International Nuclear Information System (INIS)

    Staudt, U.; Odar, S.; Stutzmann, A.

    2002-01-01

    PWRs in the western hemisphere obey basically the same rules concerning design, choice of material and operational mode. In spite of these basic similarities, the manufacturers of PWRs in different countries developed different solutions in respect to single components in the steam/water cycle. Looking specifically at France and Germany, the difference in the tubing material of the steam generators (Inconel 600/690 chosen by Framatome and Incoloy 800 chosen by the former Siemens KWU) led to specific differences in the respective chemistry programs and in some respect to different 'philosophies' in operating the water/steam cycle. Compared to this, basic differences in operating the reactor coolant system cannot be observed. Nevertheless specific solutions as zinc injection and the use of enriched B-10 are applied in German PWRs. The application of such measures arises from a specific dose rate situation in older PWRs (zinc injection) or from economic reasons mainly (B-10). (authors)

  5. Comparison of French and German NPP water chemistry programs

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, U. [VGB Powertech (Germany); Odar, S. [Framatome ANP GmbH (Germany); Stutzmann, A. [EDF/GDL (France)

    2002-07-01

    PWRs in the western hemisphere obey basically the same rules concerning design, choice of material and operational mode. In spite of these basic similarities, the manufacturers of PWRs in different countries developed different solutions in respect to single components in the steam/water cycle. Looking specifically at France and Germany, the difference in the tubing material of the steam generators (Inconel 600/690 chosen by Framatome and Incoloy 800 chosen by the former Siemens KWU) led to specific differences in the respective chemistry programs and in some respect to different 'philosophies' in operating the water/steam cycle. Compared to this, basic differences in operating the reactor coolant system cannot be observed. Nevertheless specific solutions as zinc injection and the use of enriched B-10 are applied in German PWRs. The application of such measures arises from a specific dose rate situation in older PWRs (zinc injection) or from economic reasons mainly (B-10). (authors)

  6. Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment

    Science.gov (United States)

    Bousserez, N.; Attie, J. L.; Peuch, V. H.; Michou, M.; Pfister, G.; Edwards, D.; Emmons, L.; Arnold, S.; Heckel, A.; Richter, A.; hide

    2007-01-01

    We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper.

  7. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    Science.gov (United States)

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  8. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    Directory of Open Access Journals (Sweden)

    M. Mena

    2005-06-01

    Full Text Available Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period. No anthropogenic pollution from Volatile Organic Compounds (VOCs was observed. An overview of the soil radon behaviour as a function of the volcanic activity in the period 1994-2002 is also discussed.

  9. Electrochemical potential measurements in boiling water reactors; relation to water chemistry and stress corrosion

    International Nuclear Information System (INIS)

    Indig, M.E.; Cowan, R.L.

    1981-01-01

    Electrochemical potential measurements were performed in operating boiling water reactors to determine the range of corrosion potentials that exist from cold standby to full power operation and the relationship of these measurements to reactor water chemistry. Once the corrosion potentials were known, experiments were performed in the laboratory under electrochemical control to determine potentials and equivalent dissolved oxygen concentrations where intergranular stress corrosion cracking (IGSCC) would and would not occur on welded Type-304 stainless steel. At 274 0 C, cracking occurred at potentials that were equivalent to dissolved oxygen concentration > 40 to 50 ppb. With decreasing temperature, IGSCC became more difficult and only severely sensitized stainless steel would crack. Recent in-reactor experiments combined with the previous laboratory data, have shown that injection of small concentrations of hydrogen during reactor operation can cause a significant decrease in corrosion potential which should cause immunity to IGSCC. (author)

  10. Water chemistry of secondary circuit and SG currently status NPP 'Kozloduy' 3

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, K. [Kozloduy NPP (Bulgaria)

    2002-07-01

    The author gives a historical review of the secondary water chemistry regimes of NPP Kozloduy Unit 3. Results of eddy current inspection on the steam generator of Unit 5 and quantity of the deposits on the surfaces of steam generator during 1989-2001 inspections are given. (uke)

  11. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  12. New methods For Modeling Transport Of Water And Solutes In Soils

    DEFF Research Database (Denmark)

    Møldrup, Per

    Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...

  13. Determination of concentration of radon, volatile organic compounds (VOC) and water chemistry in springs near to Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez M, B.E.; Cisniega, G.; Valdes, C.; Armienta, M.A.; Mena, M.

    2004-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both the meteorological parameters and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed stability along the monitoring period indicating also differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (Author)

  14. Interannual Variability in the Meridional Transport of Water Vapor

    Science.gov (United States)

    Cohen, Judah L.; Salstein, David A.; Rosen, Richard D.

    2000-01-01

    The zonal-mean meridional transport of water vapor across the globe is evaluated using the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis for 1948-97. The shape of the meridional profile of the climatological mean transport closely resembles that of previous mean climate descriptions, but values tend to be notably larger than in climatologies derived from radiosonde-only-based analyses. The unprecedented length of the NCEP-NCAR dataset invites a focus on interannual variations in the zonal-mean moisture transport, and these results for northern winter are highlighted here. Although interannual variability in the transport is typically small at most latitudes, a significant ENSO signal is present, marked by a strengthening of water vapor transports over much of the winter hemisphere during warm events. Because of an increase in tropical sea surface temperatures and in the frequency of warm events relative to cold events in the latter half of the 50-yr record, this interannual signal projects onto an overall trend toward enhanced meridional moisture transports in the global hydrological cycle.

  15. Impact of Interfacial Water Transport in PEMFCs on Cell Performance

    International Nuclear Information System (INIS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Pasaogullari, Ugur; Wang, Chao-Yang

    2014-01-01

    Coupled cell performance evaluation, liquid water visualization by neutron radiography (NRG) and numerical modeling based on multiphase mixture (M2) model were performed with three types of GDMs: Micro Porous Layer (MPL) free; Carbon Paper (CP) with MPL; and CP free to investigate interfacial liquid water transport phenomena in PEMFCs and its effect on cell performance. The visualized results of MPL free GDM with different wettability of bi-polar plates (BPPs) showed hydrophilic BPP improved liquid water transport at the interface between CP and channel. Numerical modeling results indicated that this difference with BPP wettability was caused by the liquid water coverage difference on CP surface. Thus, controlling liquid water coverage is the one of the key strategies for improving cell performance. Additionally, liquid water distributions across the cell for three types of GDMs were compared and significant difference in liquid water content at the interface between Catalyst Layer (CL) and GDM was observed. Numerical modeling suggests this difference is influenced by the gap at the interface and that the MPL could minimize this effect. The CP free cell (i.e. only MPL) showed the best performance and the lowest liquid water content. There were multiple impacts of interfacial liquid water transport both at CL-GDM and GDM-channel interfaces. High hydrophobicity and fine structure of MPLs contributed to enhanced liquid water transport at GDM-channel interface and as a result reduced the liquid water coverage. At the same time, MPL improves contact at the CL-GDM interface in the same manner as seen in CP with MPL case. Thus, the CP free concept showed the best performance. It is suggested that the design of the interface between each component of the PEMFC has a great impact on cell performance and plays a significant role in achievement of high current density operation and cost reduction in FCEVs

  16. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Stellwag, B.; Aaltonen, P.; Hickling, J.

    1997-01-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  17. Investigating water transport through the xylem network in vascular plants.

    Science.gov (United States)

    Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo

    2014-04-01

    Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

  18. Development status of nuclear power in China and fundamental research progress on PWR primary water chemistry in China

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei; Xu, Yuming

    2015-01-01

    China's non-fossil fuels are expected to reach 20% in primary energy ratio by 2030. It is urgent for China to speed up the development of nuclear power to increase energy supply, reduce gas emissions and optimize resource allocation. Chinese government slowed down the approval of new nuclear power plant (NPP) projects after Fukushima accident in 2011. At the end of 2012, the State Council approved the nuclear safety program and adjusted long-term nuclear power development plan (2011-2020), the new NPP's projects have been restarted. In June 2015, there are 23 operating units in mainland in China with total installed capacity of about 21.386 GWe; another 26 units are under construction with total installed capacity of 28.5 GWe. The main type of reactors in operation and under construction in China is pressurized water reactor (PWR), including the first AP1000 NPPs in the world (units 1 in Sanmen) and China self-developed Hualong one NPPs (units 5 and 6 in Fuqing). Currently, China's nuclear power development is facing historic opportunities and also a series of challenges. One of the most important is the safety and economy of nuclear power. The optimization of primary water chemistry is one of the most effective ways to minimize radiation field, mitigate material degradation and maintain fuel performance in PWR NPPs, which is also a preferred path to achieve both safety and economy for operating NPPs. In recent years, an increased attention has been paid to fundamental research and engineering application of PWR primary water chemistry in China. The present talk mainly consists of four parts: (1) development status of China's nuclear power industry; (2) safety of nuclear power and operating water chemistry; (3) fundamental research progress on Zn-injected water chemistry in China; (4) summary and future. (author)

  19. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  20. Integration of prognostic aerosol-cloud interactions in a chemistry transport model coupled offline to a regional climate model

    Science.gov (United States)

    Thomas, M. A.; Kahnert, M.; Andersson, C.; Kokkola, H.; Hansson, U.; Jones, C.; Langner, J.; Devasthale, A.

    2015-06-01

    To reduce uncertainties and hence to obtain a better estimate of aerosol (direct and indirect) radiative forcing, next generation climate models aim for a tighter coupling between chemistry transport models and regional climate models and a better representation of aerosol-cloud interactions. In this study, this coupling is done by first forcing the Rossby Center regional climate model (RCA4) with ERA-Interim lateral boundaries and sea surface temperature (SST) using the standard cloud droplet number concentration (CDNC) formulation (hereafter, referred to as the "stand-alone RCA4 version" or "CTRL" simulation). In the stand-alone RCA4 version, CDNCs are constants distinguishing only between land and ocean surface. The meteorology from this simulation is then used to drive the chemistry transport model, Multiple-scale Atmospheric Transport and Chemistry (MATCH), which is coupled online with the aerosol dynamics model, Sectional Aerosol module for Large Scale Applications (SALSA). CDNC fields obtained from MATCH-SALSA are then fed back into a new RCA4 simulation. In this new simulation (referred to as "MOD" simulation), all parameters remain the same as in the first run except for the CDNCs provided by MATCH-SALSA. Simulations are carried out with this model setup for the period 2005-2012 over Europe, and the differences in cloud microphysical properties and radiative fluxes as a result of local CDNC changes and possible model responses are analysed. Our study shows substantial improvements in cloud microphysical properties with the input of the MATCH-SALSA derived 3-D CDNCs compared to the stand-alone RCA4 version. This model setup improves the spatial, seasonal and vertical distribution of CDNCs with a higher concentration observed over central Europe during boreal summer (JJA) and over eastern Europe and Russia during winter (DJF). Realistic cloud droplet radii (CD radii) values have been simulated with the maxima reaching 13 μm, whereas in the stand

  1. Comparative study of water chemistry and surface oxide composition on alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Bjoernkvist, L.; Norring, K.; Nyborg, L.

    1993-01-01

    The Ringhals 3 steam generators experience secondary IGSCC on the tubes at support plate locations. Its sister unit Ringhals 4 is so far without IGSCC. Extensive work has been carried out in order to determine the local chemistry in crevices and the composition of deposits and oxide films on the tubes. Hot soaks of the SG:s at zero power has been performed and the water chemistry in occluded crevices of the SGs was predicted to be alkaline, pH 300degreesC = 10. In addition to eddy current testing, a large number of tubes have been pulled and destructively examined. These analysis include SEM/EDS characterization of TSP crevice deposits and Auger electron spectroscopy (AES) with depth profiling to reveal the composition of the tube OD oxide film. The AES analysis show an outer oxide rich in Fe 3 O 4 , mostly deposited. The actual Alloy 600 oxide is found below the magnetite and is 1-2 μm thick. The composition profile of the oxide exhibits a Cr-depletion relative to Ni in the outer part of the oxide, whereas an enrichment is found in depth. In order to correlate the water chemistry to the oxide composition profiles and deposits on pulled tubes, reference samples were prepared in an autoclave. The environments were chosen similar to the predicted Ringhals 3 and 4 crevice chemistry. Exposure both in an alkaline (pH 320degreesC∼ 9.9) and an acidic (pH 320degreesC ∼4.3) environment, containing sodium, chloride and sulphate, was studied. Some samples were also found on the Alloy 600 samples exposed to alkaline environment. Thus the prediction of alkaline chemistry was verified. The enrichment of chromium relative to nickel was shown to be potential and time dependent resulting in an increased Cr/Ni ratio at Cr-max with increasing potential and time

  2. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  3. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  4. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    International Nuclear Information System (INIS)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H.

    2016-01-01

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH_T was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle

  5. Processes affectin the chemistry of waters passing through a high elevator Sierra Nevada watershed. [U. S. A

    Energy Technology Data Exchange (ETDEWEB)

    Nodvin, S.C.

    1987-01-01

    The Eastern Brook Lakes watershed is located in the Sierra Nevada Mountains of California and spans and elevational range from 3060 to 3780 m. Changes in stream and lake chemistries along spatial and temporal flowpaths demonstrate that both terrestrial and aquatic processes were important in regulating surface water chemistries within the 250 ha watershed. Streams generally showed increasing pH, alkalinity, and conductance values with decreasing elevation. Large changes in stream chemistries occurred over short distances at locations such as alpine meadows. During the spring, stream alkalinities and conductance values decreased while stream pH values increased with time. pH values reached their maximim in June when alkalinity and conductance values were at their minimum values. Internal lake processes strongly influenced the chemistry of Upper Eastern Brook Lake. During spring and summer, lake waters exhibited near-neutral pH, low conductance (10-12 ..mu..S/cm), low alkalinity (100-120 ..mu..Eq/L), and undetectable ammonium. Under the ice, major changes in lake chemistry occurred associated with oxygen depletion in the hypolimnion. pH values decreased with time towards a minimum of 6.3 at 6 m depth. Other parameters increased w time and depth under the ice, reaching maximum values as follows: conductance > 80 ..mu..S/cm/sup -1/ Gran's alkalinity > 370 ..mu..Eq/L/sup -1/, and ammonium > 50 /sup m/u/sup E/q/L/sup -1/. 5 figures, 10 references.

  6. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  7. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Aaltonen, P [Technical Research Centre of Finland, Espoo (Finland); Hickling, J [CML GmbH, Erlangen (Germany)

    1997-02-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ``on-line`` and ``in-situ`` characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. (Abstract Truncated)

  8. Predicted Variations of Water Chemistry in the Primary Coolant Circuit of a Supercritical Water Reactor

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Liu, Hong-Ming; Lee, Min

    2012-09-01

    In response to the demand over a higher efficiency for a nuclear power plant, various types of Generation IV nuclear reactors have been proposed. One of the new generation reactors adopts supercritical light water as the reactor coolant. While current in-service light water reactors (LWRs) bear an average thermal efficiency of 33%, the thermal efficiency of a supercritical water reactor (SCWR) could generally reach more than 44%. For LWRs, the coolants are oxidizing due to the presence of hydrogen peroxide and oxygen, and the degradation of structural materials has mainly resulted from stress corrosion cracking. Since oxygen is completely soluble in supercritical water, similar or even worse degradation phenomena are expected to appear in the structural and core components of an SCWR. To ensure proper designs of the structural components and suitable selections of the materials to meet the requirements of operation safety, it would be of great importance for the design engineers of an SCWR to be fully aware of the state of water chemistry in the primary coolant circuit (PCC). Since SCWRs are still in the stage of conceptual design and no practical data are available, a computer model was therefore developed for analyzing water chemistry variation and corrosion behavior of metallic materials in the PCC of a conceptual SCWR. In this study, a U.S. designed SCWR with a rated thermal power of 3575 MW and a coolant flow rate of 1843 kg/s was selected for investigating the variations in redox species concentration in the PCC. Our analyses indicated that the [H 2 ] and [H 2 O 2 ] at the core channel were higher than those at the other regions in the PCC of this SCWR. Due to the self-decomposition of H 2 O 2 , the core channel exhibited a lower [O 2 ] than the upper plenum. Because the middle water rod region was in parallel with the core channel region with relatively high dose rates, the [H 2 ] and [H 2 O 2 ] in this region were higher than those in the other regions

  9. 41 CFR 302-10.5 - May I transport a mobile home over water?

    Science.gov (United States)

    2010-07-01

    ... transport a mobile home over water? Yes, you may transport a mobile home over water when both the points of... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May I transport a mobile home over water? 302-10.5 Section 302-10.5 Public Contracts and Property Management Federal Travel...

  10. Relation between water chemistry and operational safety

    International Nuclear Information System (INIS)

    Oliveira, M.F. de.

    1991-01-01

    This report describes the relation between chemistry/radiochemistry and operational safety, the technics bases for chemical and radiochemical parameters and an analysis of the Annual Report of Angra I Operation and OSRAT Mission report to 1989 in this area too. Furthermore it contains the transcription of the technical Specifications related to the chemistry and radiochemistry for Angra I. (author)

  11. Groundwater fluxes into a submerged sinkhole area, Central Italy, using radon and water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tuccimei, P. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy)]. E-mail: tuccimei@uniroma3.it; Salvati, R. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy); Capelli, G. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy); Delitala, M.C. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy); Primavera, P. [Dipartimento di Scienze Geologiche, Universita ' Roma Tre' , Largo San Leonardo Murialdo 1, 00146 Rome (Italy)

    2005-10-15

    The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a {sup 222}Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment-water interface. The total value of groundwater discharge into Green Lake and Black Lake ({approx}540 {+-} 160 L s{sup -1}) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 {+-} 90 L s{sup -1}). Besides being an indirect test for the reliability of the Rn-budget 'tool', it confirms that both Green and Black Lake are effectively springs and not simply 'water filled' sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.

  12. Groundwater fluxes into a submerged sinkhole area, Central Italy, using radon and water chemistry

    International Nuclear Information System (INIS)

    Tuccimei, P.; Salvati, R.; Capelli, G.; Delitala, M.C.; Primavera, P.

    2005-01-01

    The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222 Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment-water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s -1 ) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s -1 ). Besides being an indirect test for the reliability of the Rn-budget 'tool', it confirms that both Green and Black Lake are effectively springs and not simply 'water filled' sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk

  13. On water transport in polymer electrolyte membranes during the passage of current

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This article discusses an approach to model the water transport in the membranes of PEM fuel cells during operation. Starting from a frequently utilized equation the various transport mechanisms are analyzed in detail. It is shown that the commonly used approach to simply balance the electro......-osmotic drag (EOD) with counter diffusion and/or hydraulic permeation is flawed, and that any net transport of water through the membrane is caused by diffusion. Depending on the effective drag the cathode side of the membrane may experience a lower hydration than the anode side. The effect of a water......-uptake layer on the net water transport will also be pictured. Finally, the effect of EOD is visualized using “Newton’s cradle”....

  14. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  15. Mathematical Model to Predict the Permeability of Water Transport in Concrete Structure

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Mathematical model to predict the permeability of water transport in concrete has been established, the model is to monitor the rate of water transport in concrete structure. The process of this water transport is based on the constituent in the mixture of concrete. Permeability established a relation on the influence of the micropores on the constituent that made of concrete, the method of concrete placement determine the rate of permeability deposition in concrete structure, permeability es...

  16. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  17. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  18. Ecological aspects of water coal fuel transportation and application

    Directory of Open Access Journals (Sweden)

    Anna SHVORNIKOVA

    2010-01-01

    Full Text Available This paper deals with the aspects of influence of transportation process and burning of water coal fuel on an ecological condition of environment. Also mathematical dependences between coal ash level and power consumption for transportation are presented.

  19. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  20. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    Science.gov (United States)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.