WorldWideScience

Sample records for water-soluble zns nanocrystals

  1. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  2. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications

    Science.gov (United States)

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-05-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  3. Application of electron crystallography to structure characterization of ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    Jin-Gyu Kim

    2011-07-01

    Full Text Available We chracterized the structure properties of two types of ZnS nanocrystals by electron crystallography. X-ray diffraction analysis for these ZnS nanocrystals was performed to determine their initial structures. Their crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their atomic structures, however, could not be determined because of the weak diffraction intensities as well as the unexpected intensities from impurty. To overcome these problems, the structures of ZnS nanocrystals were resolved by electron crystallography using EF-EPD (energy-filtered electron powder diffraction and HRTEM (high resolution transmission electron microscopy methods. The structrues determined by Rietveld analysis are P63mc (a = 3.8452 Å, c = 18.5453 Å and F-43m (a = 5.4356 Å, respectively. Their crystallite shapes were nanorods and quasi-nanoparticles and the nanorod crystal were grown along the [001] direction. It was revealed that the phase transformation between the cubic sphalerite to the hexagonal wurtzite structure of ZnS nanocrytals was related to their shapes and growth mechanism. Electron cryststallogrpahy, employing EF-EPD and HRTEM methods together, has advantages for structure analysis and property chracterization of nano-sized materials.

  4. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions

    International Nuclear Information System (INIS)

    Choi, S-H; Sasaki, T; Shimizu, Y; Yoon, J-W; Nichols, W T; Sung, Y-E; Koshizaki, N

    2007-01-01

    Cubic ZnS semiconductor nanocrystals with the size of 2 to 5 nm were prepared by pulsed laser ablation in aqueous surfactant solutions of sodium dodecyl sulfate and cetyltrimethylammonium bromide without any further treatments. The obtained suspensions of the nanocrystals have broad photoluminescence emission from 375 to 600 nm. The abundance and emission intensity of the nanocrystals depend on the concentration of the surfactant in solution

  5. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  6. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Varaporn Buraphacheep Junyaprasert

    2015-02-01

    Full Text Available Nanocrystals, a carrier-free colloidal delivery system in nano-sized range, is an interesting approach for poorly soluble drugs. Nanocrystals provide special features including enhancement of saturation solubility, dissolution velocity and adhesiveness to surface/cell membranes. Several strategies are applied for nanocrystals production including precipitation, milling, high pressure homogenization and combination methods such as NanoEdge™, SmartCrystal and Precipitation-lyophilization-homogenization (PLH technology. For oral administration, many publications reported useful advantages of nanocrystals to improve in vivo performances i.e. pharmacokinetics, pharmacodynamics, safety and targeted delivery which were discussed in this review. Additionally, transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.

  7. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO2

    International Nuclear Information System (INIS)

    Bonafos, C.; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R.

    1999-01-01

    Mn doped ZnS nanocrystals have been formed in SiO 2 layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates

  8. Using a precursor in lamellar structure for the synthesis of uniform ZnS nanocrystals

    KAUST Repository

    Xu, Xinjiang

    2011-11-12

    Uniform ZnS nanocrystals of about 15 nm were prepared through a low temperature hydrothermal approach by treating Zn-PhPO nanosheets with Na 2S aqueous solution. Both the precursor and the final product were studied by the means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The photo-luminescent spectrum of the synthesized ZnS nanocrystals showed their good crystalline nature. Based on this study, the precursor structure-controlling effect was discussed, and in addition, the relevant factors possibly affecting the particle formation and the growth possessed were applied in the discussion to interpret the transformation mechanism. Further research showed that both the structure characters of the precursors and the mass transportation which occurred during the synthesis greatly affected the morphology and organization state of the final products. This research may provide some facts on the structure-controlling approaches along with a general method for the preparation of uniform sulfide nanocrystals. © Springer Science+Business Media B.V. 2011.

  9. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C. E-mail: bonafos@el.ub.es; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R

    1999-01-01

    Mn doped ZnS nanocrystals have been formed in SiO{sub 2} layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates.

  10. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization

    International Nuclear Information System (INIS)

    Qing-Song, Huang; Dong-Qing, Dong; Jian-Ping, Xu; Xiao-Song, Zhang; Hong-Min, Zhang; Lan, Li

    2010-01-01

    Spherical organic-bonded ZnS nanocrystals with 4.0±0.2 nm in diameter are synthesized by a liquid-solid-solution method. The photoluminescence spectrum of sample ([S 2− ]/[Zn 2+ ] = 1.0) shows a strong white emission with a peak at 490 nm and ∼ 170 nm full widths at half maximum. By Gauss fitting, the white emission is attributed to the overlap of a blue emission and a green-yellow emission, originating from electronic transitions from internal S 2− vacancies level to valence band and to the internal Zn 2+ vacancy level, respectively. After sealingZnS nanocrystals onto InGaN chips, the device shows CIE coordinates of (0.29,0.30), which indicates their potential applications for white light emitting diodes

  11. Using a precursor in lamellar structure for the synthesis of uniform ZnS nanocrystals

    KAUST Repository

    Xu, Xinjiang; Jiang, Shunping; Wu, Xiaoyuan; Chang, Jinjing; Xu, Jiangping

    2011-01-01

    Uniform ZnS nanocrystals of about 15 nm were prepared through a low temperature hydrothermal approach by treating Zn-PhPO nanosheets with Na 2S aqueous solution. Both the precursor and the final product were studied by the means of X-ray diffraction

  12. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media

    International Nuclear Information System (INIS)

    Fang Zheng; Wu Ping; Zhong Xinhua; Yang Yongji

    2010-01-01

    High-quality water-dispersible Mn 2+ -doped ZnSe core/ZnS shell (Mn:ZnSe/ZnS) nanocrystals have been synthesized directly in aqueous media. Overcoating a high bandgap ZnS shell around the Mn:ZnSe cores can bring forward an efficient energy transfer from the ZnSe host nanocrystals to the dopant Mn. The quantum yields of the dopant Mn photoluminescence in the as-prepared water-soluble Mn:ZnSe/ZnS core/shell nanocrystals can be up to 35 ± 5%. The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell nanocrystals have been characterized by UV-vis, PL spectroscopy, TEM, XRD and ICP elementary analysis. The influences of various experimental variables, including the Mn concentration, the Se/Zn molar ratio as well as the kind and amount of capping ligand used in the core production and shell deposition process, on the luminescent properties of the obtained Mn:ZnSe/ZnS nanocrystals have been systematically investigated.

  13. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai, E-mail: wangyancai1999@163.com [Qilu University of Technology, School of Chemistry and Pharmaceutical Engineering (China)

    2016-09-15

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  14. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    International Nuclear Information System (INIS)

    Jang, Gyoung Gug; Datskos, Panos G; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer, Harry M III; Armstrong, Beth L; Kidder, Michelle; Graham, David E; Moon, Ji-Won

    2015-01-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm. (paper)

  15. Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy.

    Science.gov (United States)

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-08-15

    After use in oral pharmaceutical products, nanocrystals are meanwhile applied to improve the dermal penetration of cosmetic actives (e.g. rutin, hesperidin) and of drugs. By now, nanocrystals are only dermally applied made from poorly soluble actives. The novel concept is to formulate nanocrystals also from medium soluble actives, and to apply a dermal formulation containing additionally nanocrystals. The nanocrystals should act as fast dissolving depot, increase saturation solubility and especially accumulate in the hair follicles, to further increase skin penetration. Caffeine was used as model compound with relevance to market products, and a particular process was developed for the production of caffeine nanocrystals to overcome the supersaturation related effect of crystal growth and fiber formation - typical with medium soluble compounds. It is based on low energy milling (pearl milling) in combination with low dielectric constant dispersion media (water-ethanol or ethanol-propylene glycol mixtures) and optimal stabilizers. Most successful was Carbopol(®) 981 (e.g. 20% caffeine in ethanol-propylene glycol 3:7 with 2% Carbopol, w/w). Nanocrystals with varied sizes can now be produced in a controlled process e.g. 660 nm (optimal for hair follicle accumulation) to 250 nm (optimal for fast dissolution). The short term test proved stability over 2 months of the present formulation being sufficient to perform in vivo testing of the novel concept. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    Science.gov (United States)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  17. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  18. The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS

    Science.gov (United States)

    Cho, Deok-Yong; Xi, Lifei; Boothroyd, Chris; Kardynal, Beata; Lam, Yeng Ming

    2016-03-01

    We have investigated the chemical state of In(Zn)P/ZnS core/shell nanocrystals (NCs) for color conversion applications using hard X-ray absorption spectroscopy (XAS) and photoluminescence excitation (PLE). Analyses of the edge energies as well as the X-ray absorption fine structure (XAFS) reveal that the Zn2+ ions from ZnS remain in the shell while the S2- ions penetrate into the core at an early stage of the ZnS deposition. It is further demonstrated that for short growth times, the ZnS shell coverage on the core was incomplete, whereas the coverage improved gradually as the shell deposition time increased. Together with evidence from PLE spectra, where there is a strong indication of the presence of P vacancies, this suggests that the core-shell interface in the In(Zn)P/ZnS NCs are subject to substantial atomic exchanges and detailed models for the shell structure beyond simple layer coverage are needed. This substantial atomic exchange is very likely to be the reason for the improved photoluminescence behavior of the core-shell particles compare to In(Zn)P-only NCs as S can passivate the NCs surfaces.

  19. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  20. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  1. AgInS{sub 2}-ZnS nanocrystals: Evidence of bistable states using light-induced electron paramagnetic resonance and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Sonia S.; Renard, Olivier; Chevallier, Theo; Le Blevennec, Gilles [Laboratoire d' Innovation pour les Technologies des Energies Nouvelles et les Nanomateriaux, Departement de Technologie des Nano-Materiaux, Service d' Elaboration de Nanomateriaux, Laboratoire de Synthese et Integration des Nanomateriaux, CEA-Grenoble (France); Lombard, Christian; Pepin-Donat, Brigitte [Laboratoire Structure et Proprietes d' Architecture Moleculaire (UMR 5819) CEA-CNRS - UJF/INAC/CEA-Grenoble (France)

    2014-04-15

    The precursor (AgIn){sub x} Zn{sub 2(1-x)}(S{sub 2}CN(C{sub 2}H{sub 5}){sub 2}){sub 4} was used to prepared AgInS{sub 2}-ZnS nanocrystals with different compositions (x = 0.4 and x = 0.7) and with different time of reaction (10 min and 75 min). The photoluminescence features of the nanocrystals were addressed by combining steady-state spectroscopy and light-induced electron paramagnetic resonance. Both techniques showed the contribution of at least two components for the emission, previously assigned to surface and intrinsic states. Light-induced electron paramagnetic resonance allowed detection of the photocreation both of irreversible paramagnetic species that are likely responsible for the nano-crystals degradation assigned to surface states and of reversible paramagnetic species assigned to intrinsic states. Moreover, reversible bistable paramagnetic states were observed. This Letter provides a scheme that might be useful in addressing the well-known problem of aging of the nanocrystals. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Preparation, properties and anticancer effects of mixed As4S4/ZnS nanoparticles capped by Poloxamer 407

    International Nuclear Information System (INIS)

    Bujňáková, Z.; Baláž, M.; Zdurienčíková, M.; Sedlák, J.; Čaplovičová, M.; Čaplovič, Ľ.; Dutková, E.; Zorkovská, A.; Turianicová, E.; Baláž, P.; Shpotyuk, O.

    2017-01-01

    Arsenic sulfide compounds have a long history of application in a traditional medicine. In recent years, realgar has been studied as a promising drug in cancer treatment. In this study, the arsenic sulfide (As 4 S 4 ) nanoparticles combined with zinc sulfide (ZnS) ones in different molar ratio have been prepared by a simple mechanochemical route in a planetary mill. The successful synthesis and structural properties were confirmed and followed via X-ray diffraction and high-resolution transmission electron microscopy measurements. The morphology of the particles was studied via scanning electron microscopy and transmission electron microscopy methods and the presence of nanocrystallites was verified. For biological tests, the prepared As 4 S 4 /ZnS nanoparticles were further milled in a circulation mill in a water solution of Poloxamer 407 (0.5 wt%), in order to cover the particles with this biocompatible copolymer and to obtain stable nanosuspensions with unimodal distribution. The average size of the particles in the nanosuspensions (~ 120 nm) was determined by photon cross-correlation spectroscopy method. Stability of the nanosuspensions was determined via particle size distribution and zeta potential measurements, confirming no physico-chemical changes for several months. Interestingly, with the increasing amount of ZnS in the sample, the stability was improved. The anti-cancer effects were tested on two melanoma cell lines, A375 and Bowes, with promising results, confirming increased efficiency of the samples containing both As 4 S 4 and ZnS nanocrystals. - Highlights: • Mixed As 4 S 4 /ZnS nanoparticles were prepared by dry milling in the first stage • Stable nanosuspensions of As 4 S 4 /ZnS nanoparticles capped by Poloxamer 407 were prepared by wet milling in the second stage • ZnS in the samples is beneficial: higher values of S A , stability, solubility and anticancer activity were improved

  3. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ma, Xiao-Bo [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, Hang [Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Du, Dao-Lin, E-mail: ddl@ujs.edu.cn [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Sun, Jian-Fan [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Feng, Yu-Jie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2015-05-15

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H{sub 2}S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater.

  4. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Xiao, Xiang; Ma, Xiao-Bo; Yuan, Hang; Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui; Du, Dao-Lin; Sun, Jian-Fan; Feng, Yu-Jie

    2015-01-01

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H 2 S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater

  5. Strong visible-light emission of ZnS nanocrystals embedded in sol-gel silica xerogel

    International Nuclear Information System (INIS)

    Yang Ping; Lue, M.-K.; Song, C.-F.; Zhou, G.-J.; Ai, Z.-P.; Xu Dong; Yuan, D.-R.; Cheng, X.-F.

    2003-01-01

    ZnS nanoparticles embedded in novel porous phosphor silica xerogel have been synthesized by sol-gel processing. Their fluorescence properties have been evaluated and compared with those of the Na + -doped and un-doped silica xerogels. Stable and strong visible-light emission of the doped samples has been observed. The relative fluorescence intensities of the samples doped with ZnS nanoparticles (S 2- ions have been obtained by the water solution of NaS) are the highest among all of the doped samples. Its relative fluorescence intensity is about 7.5 times of that of the un-doped silica xerogel and about 300 times of that of pure ZnS nanoparticles. The emission wavelength of the ZnS-doped and Na + -doped samples is the same as that of the un-doped silica xerogel and ZnS nanoparticles (λ em =440-450 nm). This high efficiency luminescence of the doped silica xerogels has been assigned to the luminescence centers of ZnS nanoparticles and Na + in the porous phosphorescence silica xerogel

  6. Probing the structure of CuInS{sub 2}-ZnS core-shell and similar nanocrystals by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dzhagan, Volodymyr, E-mail: dzhagan@isp.kiev.ua [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany); V. E. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028 (Ukraine); Kempken, Björn [Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg (Germany); Valakh, Mykhailo [V. E. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028 (Ukraine); Parisi, Jürgen; Kolny-Olesiak, Joanna [Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg (Germany); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany)

    2017-02-15

    CuInS{sub 2}/ZnS core-shell and alloyed nanocrystals (NCs) are promising candidates for applications in biolabeling, photocatalysis, solar energy conversion, and light emitting diodes. The growth mechanism and subsequent internal structure of such heterogeneous NCs are therefore of crucial importance, as it strongly affects their optical and electronic properties. Here, we investigated using resonant Raman spectroscopy the structure of CuInS{sub 2}/ZnS and Cu-Zn-In-S/ZnS core-shell NCs, as well as the evolution of Cu{sub 2−x}S NCs into CuInS{sub 2}via the heterogeneous Cu{sub 2−x}S/CuInS{sub 2} phase. We demonstrate that the particular phases can be distinguished based on their characteristic Raman modes and tuning the exciting laser energy into resonance with the bandgap of the particular phase.

  7. Facile fabrication and electrochemical behaviors of Mn:ZnS nanocrystals

    International Nuclear Information System (INIS)

    Xie, Ruishi; Li, Yuanli; Liu, Haifeng; Guo, Baogang

    2016-01-01

    Here, we demonstrate the rational design and synthesis of Mn:ZnS nanocrystals with adjustable doping concentrations utilizing a facile, cost effective, and environmentally benign chemical protocol. These nanostructures were investigated as electrode materials for lithium-ion batteries. Compared with pristine ZnS nanocrystals, the Mn:ZnS nanocrystals exhibit significantly improved electrochemical performances in terms of specific capacity and cycling performance. The Mn:ZnS nanocrystal sample with doping concentration of 1 at% displays second discharge capacity of 789.9 mA h g"−"1 at a current density of 24 mA g"−"1, about 2.39 times higher than that of the pure ZnS nanocrystal. Furthermore, the Mn:ZnS nanocrystal electrodes represent much better capacity retention than that of the undoped one. The greatly improved electrochemical performances of the Mn:ZnS nanocrystal samples could be attributed to the following factors. The large specific surface area can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mn into the lattice of ZnS improves charge transfer kinetics and results in a faster Li"+ diffusion rate during the charge–discharge process. It is of great significance to incorporate guest metal ions into nanostructured materials to display especial electrochemical characteristics triggering an effective approach to improve the electrochemical properties.

  8. Facile fabrication and electrochemical behaviors of Mn:ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010 (China); Li, Yuanli, E-mail: yuanlyl@foxmail.com [Department of Materials, Southwest University of Science and Technology, Mianyang, 621010 (China); Liu, Haifeng; Guo, Baogang [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010 (China)

    2016-07-05

    Here, we demonstrate the rational design and synthesis of Mn:ZnS nanocrystals with adjustable doping concentrations utilizing a facile, cost effective, and environmentally benign chemical protocol. These nanostructures were investigated as electrode materials for lithium-ion batteries. Compared with pristine ZnS nanocrystals, the Mn:ZnS nanocrystals exhibit significantly improved electrochemical performances in terms of specific capacity and cycling performance. The Mn:ZnS nanocrystal sample with doping concentration of 1 at% displays second discharge capacity of 789.9 mA h g{sup −1} at a current density of 24 mA g{sup −1}, about 2.39 times higher than that of the pure ZnS nanocrystal. Furthermore, the Mn:ZnS nanocrystal electrodes represent much better capacity retention than that of the undoped one. The greatly improved electrochemical performances of the Mn:ZnS nanocrystal samples could be attributed to the following factors. The large specific surface area can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mn into the lattice of ZnS improves charge transfer kinetics and results in a faster Li{sup +} diffusion rate during the charge–discharge process. It is of great significance to incorporate guest metal ions into nanostructured materials to display especial electrochemical characteristics triggering an effective approach to improve the electrochemical properties.

  9. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    Science.gov (United States)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  10. Nanonization strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  11. Preparation, properties and anticancer effects of mixed As{sub 4}S{sub 4}/ZnS nanoparticles capped by Poloxamer 407

    Energy Technology Data Exchange (ETDEWEB)

    Bujňáková, Z., E-mail: bujnakova@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia); Baláž, M. [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia); Zdurienčíková, M.; Sedlák, J. [Cancer Research Institute, BMC Slovak Academy of Sciences, Dúbravská 9, 84505 Bratislava (Slovakia); Čaplovičová, M. [STU Centre for Nanodiagnostics, Slovak University of Technology, Vazovova 5, 81243 Bratislava (Slovakia); Čaplovič, Ľ. [Faculty of Materials Science and Technology, Slovak University of Technology, Paulínska 16, 91724 Trnava (Slovakia); Dutková, E.; Zorkovská, A.; Turianicová, E.; Baláž, P. [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia); Shpotyuk, O. [Scientific Research Company “Carat”, Stryjska 202, 79031 Lviv (Ukraine); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15., 42200 Czestochowa (Poland); and others

    2017-02-01

    Arsenic sulfide compounds have a long history of application in a traditional medicine. In recent years, realgar has been studied as a promising drug in cancer treatment. In this study, the arsenic sulfide (As{sub 4}S{sub 4}) nanoparticles combined with zinc sulfide (ZnS) ones in different molar ratio have been prepared by a simple mechanochemical route in a planetary mill. The successful synthesis and structural properties were confirmed and followed via X-ray diffraction and high-resolution transmission electron microscopy measurements. The morphology of the particles was studied via scanning electron microscopy and transmission electron microscopy methods and the presence of nanocrystallites was verified. For biological tests, the prepared As{sub 4}S{sub 4}/ZnS nanoparticles were further milled in a circulation mill in a water solution of Poloxamer 407 (0.5 wt%), in order to cover the particles with this biocompatible copolymer and to obtain stable nanosuspensions with unimodal distribution. The average size of the particles in the nanosuspensions (~ 120 nm) was determined by photon cross-correlation spectroscopy method. Stability of the nanosuspensions was determined via particle size distribution and zeta potential measurements, confirming no physico-chemical changes for several months. Interestingly, with the increasing amount of ZnS in the sample, the stability was improved. The anti-cancer effects were tested on two melanoma cell lines, A375 and Bowes, with promising results, confirming increased efficiency of the samples containing both As{sub 4}S{sub 4} and ZnS nanocrystals. - Highlights: • Mixed As{sub 4}S{sub 4}/ZnS nanoparticles were prepared by dry milling in the first stage • Stable nanosuspensions of As{sub 4}S{sub 4}/ZnS nanoparticles capped by Poloxamer 407 were prepared by wet milling in the second stage • ZnS in the samples is beneficial: higher values of S{sub A}, stability, solubility and anticancer activity were improved.

  12. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from

  13. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system

    International Nuclear Information System (INIS)

    Gao Lei; Zhang Dianrui; Chen Minghui

    2008-01-01

    Formulation of poorly soluble drugs is a general intractable problem in pharmaceutical field, especially those compounds poorly soluble in both aqueous and organic media. It is difficult to resolve this problem using conventional formulation approaches, so many drugs are abandoned early in discovery. Nanocrystals, a new carrier-free colloidal drug delivery system with a particle size ranging from 100 to 1000 nm, is thought as a viable drug delivery strategy to develop the poorly soluble drugs, because of their simplicity in preparation and general applicability. In this article, the product techniques of the nanocrystals were reviewed and compared, the special features of drug nanocrystals were discussed. The researches on the application of the drug nanocrystals to various administration routes were described in detail. In addition, as introduced later, the nanocrystals could be easily scaled up, which was the prerequisite to the development of a delivery system as a market product

  14. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Colleges and University Key Laboratory of Minerals Engineering, 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Adsorption of water molecules decreases the reactivity of surface Zn atom. • Copper impurities decrease the band gap of ZnS surface. • Copper impurities enhance the adsorption of xanthate on the ZnS surface. • Water molecules have little influence on the properties of Cu-substituted ZnS surface. • The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface. - Abstracts: The interaction of collector with the mineral surface plays a very important role in the froth flotation of sphalerite. The adsorptions occurred at the interface between the mineral surface and waters; however most of DFT simulations are performed in vacuum, without consideration of water effect. Semiconductor surface has an obvious proximity effect, which will greatly influence the surface reactivity. To understand the mechanism of xanthate interacting with sphalerite surface in the presence of water molecules, the ethyl xanthate molecule adsorption on un-activated and Cu-activated ZnS(110) surface in the absence and presence of water molecules were performed using the density functional theory (DFT) method. The calculated results show that the adsorption of water molecules dramatically changes the properties of ZnS surface, resulting in decreasing the reactivity of surface Zn atoms with xanthate. Copper activation of ZnS surface changes the surface properties, leading to the totally different adsorption behaviors of xanthate. The presence of waters has little influence on the properties of Cu-activated ZnS surface. The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface, which would result in the formation of dixanthogen.

  15. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  16. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals

    Directory of Open Access Journals (Sweden)

    Sun J

    2012-11-01

    Full Text Available Jiao Sun,1 Fan Wang,1,2 Yue Sui,1 Zhennan She,1 Wenjun Zhai,1 Chunling Wang,1 Yihui Deng11College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; 2Beijing Zhijianjinrui Applied Pharmaceutical Science Inc, Beijing, ChinaAbstract: In this paper work, four naked nanocrystals (size range 80–700 nm were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold.Keywords: particle size, solubility, dissolution, nanocrystal, bioavailability, coenzyme Q10

  17. Influence of the dopant concentration on structural, optical and photovoltaic properties of Cu-doped ZnS nanocrystals based bulk heterojunction hybrid solar cells

    Science.gov (United States)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Wagner, Tomas; Nunzi, Jean-Michel

    2017-06-01

    Zinc sulphide (ZnS) and Cu-doped ZnS nanoparticles were synthesized by the wet chemical method. The nanoparticles were characterized by UV-visible, fluorescence, fourier transform infra-red (FTIR) spectrometry, X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Scanning electron microscopy supplemented with EDAX was employed to observe the morphology and chemical composition of the un-doped and doped samples. A significant blue shift of the absorption band with respect to the un-doped zinc sulphide was sighted by increasing the Cu concentration in the doped sample with decreasing the size of nanoparticles. Consequently, the band gap was tuned from 3.13 to 3.49 eV due to quantum confinement. The green emission arises from the recombination between the shallow donor level (sulfur vacancy) and the t2 level of Cu2+. However, the fluorescence emission spectrum of the undoped ZnS nanoparticles was deconvoluted into two bands, which are centered at 419 and 468 nm. XRD analysis showed that the nanomaterials were in cubic crystalline state. XRD peaks show that there were no massive crystalline distortions in the crystal lattice when the Cu concentration (0.05-0.1 M) was increased in the ZnS lattice. However, in the case of Cu-doped samples (0.15-0.2 M), the XRD pattern showed an additional peak at 37° due to incomplete substitution occurring during the experimental reaction step. A comparative study of surfaces of undoped and Cu-doped ZnS nanoparticles were investigated using X-ray photoelectron spectroscopy (XPS). The synthesized nanomaterial in combination with poly(3-hexylthiophene) (P3HT) was used in the fabrication of solar cells. The devices with ZnS nanoparticles showed an efficiency of 0.31%. The overall power conversion efficiency of the solar cells at 0.1 M Cu content in doped ZnS nanoparticles was found to be 1.6 times higher than the

  18. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  19. Prediction and experimental determination of the solubility of exotic scales at high temperatures - Zinc sulfide

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2016-01-01

    The presence of "exotic" scale such as Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) in HP/HT reservoirs has been identified. "Exotic" scale materials come as a new challenge in HP/HT reservoirs. This has led to the development of more advanced tools to predict their behavior...... at extreme conditions. The aim of this work is to include ZnS into the group of scale materials that can be modeled with the Extended UNIQUAC model. Solubility data for ZnS are scarce in the open literature. In order to improve the available data, we study the experimental behavior of ZnS solubility at high...... temperatures. The determination of the solubility of ZnS is carried out at temperatures up to 250°C. Zinc sulfide (99.99%) and ultra-pure water are placed in a vial in a reduced oxygen atmosphere. The sample is placed in a controlled bath and stirred until equilibrium is attained. The suspension is filtered...

  20. Effect of solvent medium on the structural, morphological and optical properties of ZnS nanoparticles synthesized by solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Mendil, R., E-mail: radia.mendil@yahoo.fr [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Ben Ayadi, Z. [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Djessas, K. [Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la thermodynamique, 66100 Perpignan (France); Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 68860, Perpignan Cedex9 (France)

    2016-09-05

    Different morphologies of ZnS have been synthesized by a facile solvothermal approach in a mixed solvent made of Ethylenediamine (EN) and distilled water. The effect of solvent medium on the structural, morphological and optical properties of ZnS nanoparticles were investigated. The formation mechanism of different morphologies was proposed based on the experiment results. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), Raman spectroscopy and UV-Vis-IR spectrophotometer. The results show that phase transformation is easily induced and there is a strong correlation between morphology and structure of the ZnS nanocrystals by changing the solvent. The results also show that we have successfully produced hexagonal phase ZnS nanorods with mixed solvent. The grain sizes in the range of 17–22 nm were obtained according to elaboration conditions. Raman spectra show the intense peak at 346 cm{sup −1}, which is a typical Raman peak of bulk ZnS crystal, no signature of secondary phases. The band gap of ZnS increased from 3.49 to 3.74 eV with an increase in the EN composition in the solvent, implying that the optical properties of these materials are clearly affected by the synthesis medium. - Highlights: • ZnS was prepared at low temperature using solvothermal method. • The phase transformation and shape evolution processes were studied. • The role of solvent (EN/W) has been discussed for formation of ZnS nanostructures with different morphology. • The properties and growth mechanism of ZnS nanoparticles were investigated. • Optical band gap of ZnS powder were investigated using UV vis spectroscopy.

  1. Insights into the microstructural and physical properties of colloidal Fe:ZnSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi, E-mail: rxie@foxmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Yuanli [Department of Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Jiang, Linhai; Zhang, Xingquan [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-30

    Highlights: • We present a facile and environmentally friendly protocol to fabricate Fe:ZnSe nanocrystals. • The microstructural and physical properties of Fe:ZnSe nanocrystals were systematically investigated. • The current synthesis is dramatically simple and highly reproducible, it will facilitate the commercial scale synthesis of highly luminescent water-soluble nanocrystals with surface functionality in the near future. - Abstract: Here, we present a facile and environmentally friendly synthetic protocol to fabricate highly luminescent and water-soluble Fe:ZnSe nanocrystals in aqueous solution at low temperature. The microstructure and various physical properties (e.g., crystal structure, interplanar spacing, lattice parameter, crystalline size, lattice microstrain, intrinsic stress, X-ray density, specific surface area, dislocation density, porosity, agglomeration number) of the Fe:ZnSe nanocrystals were systematically investigated using X-ray diffraction. The particle size and morphology of the Fe:ZnSe nanocrystals were determined by transmission electron microscopy. The optical properties (e.g., absorption and photoluminescence) of the fabricated nanocrystals were explored using ultraviolet–visible absorption and photoluminescence spectroscopies, respectively. The surface functionalization of the Fe:ZnSe nanocrystals by mercaptoacetic acid ligand was evidenced by Fourier transform infrared spectroscopy. To confirm the elementary composition of the obtained nanocrystals, Energy dispersive X-ray spectroscopy was performed. To further shed light upon elemental distribution of the resulting nanocrystals, elemental mapping measurements were conducted. Moreover, the underlying mechanisms were also elucidated. As a consequence, the current investigation not only provides a deep insight into exploring the physical properties of doped nanocrystals, but also demonstrates a useful synthetic strategy for producing water-soluble and highly fluorescent doped

  2. Synthesis of freestanding water-soluble indium oxide nanocrystals capped by alanine nitric acid via ligand exchange for thin film transistors and effects of ligands on the electrical properties

    International Nuclear Information System (INIS)

    Choi, Jin-Kyu; Koh, Ye-Seul; Jeong, Hyun-Dam

    2015-01-01

    We demonstrate synthesis of freestanding water-soluble indium oxide nanocrystals (In 2 O 3 NCs) by ligand exchange to β-alanine nitric acid (Ala·HNO 3 ) and its application for active channel layer in thin film transistors (TFTs), with investigation of the effect of curing temperatures on the TFT properties in terms of thermal behaviour of the ligand molecules at 150, 300, and 350 °C. After ligand exchange from long alkyl ligand (myristic acid, MA) to short Ala·HNO 3 , the mobility of NC TFTs cured at 150 °C increased by over 1 order of magnitude, from 1.3 × 10 −4 cm 2 V -1 s −1 to 4.5 × 10 −3 cm 2 V -1 s −1 , due to enhanced tunnelling rate (Γ) between adjective NCs. Higher curing temperatures such as 300 and 350 °C, inducing thermal decomposition of the organic ligands, led to further enhancement of the mobility, particularly up to 2.2 cm 2 V -1 s −1 for the In 2 O 3 NC-Ala·HNO 3 TFT cured at 350 °C. It is also found that the ligand exchange of In 2 O 3 NC in acidic condition (e.g. HNO 3 ) would be simple and effective to reduce the surface defects by surface etching, which may lead to better device performances. - Graphical abstract: Display Omitted - Highlights: • Freestanding water-soluble In 2 O 3 nanocrystals (NCs) were synthesized by ligand exchange. • Thin film transistors (TFTs) of colloidal NCs were fabricated by spin-coating method. • Water-soluble In 2 O 3 NC TFTs showed higher mobilities due to shorter ligand length. • Surface defects of NCs were notably reduced by surface etching during ligand exchange

  3. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals.

    Science.gov (United States)

    Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R

    2018-05-09

    Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.

  4. Interaction of ZnS nanoparticles with flavins and glucose oxidase: A fluorimetric investigation

    International Nuclear Information System (INIS)

    Chatterjee, Anindita; Priyam, Amiya; Ghosh, Debasmita; Mondal, Somrita; Bhattacharya, Subhash C.; Saha, Abhijit

    2012-01-01

    Interactions of luminescence, water soluble ZnS nanoparticles (NPs) with flavins and glucose oxidase have been thoroughly investigated through optical spectroscopy. The photoluminescence of ZnS nanoparticles was quenched severely (∼60%) by riboflavin while other flavins such as flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) show quenching to different extents under analogous conditions. However, interestingly no effect in luminescence intensity of ZnS NPs was observed with protein bound flavins such as in glucose oxidase. Fluorescence lifetime measurement confirmed the quenching to be static in nature. Scavenging of photo-generated electron of ZnS nanoparticles by the flavin molecules may be attributed to the decrease in luminescence intensity. Quenching of ZnS nanoparticles with flavins follows the linear Stern–Volmer plot. The Stern–Volmer constants decreased in the following order: K S−V (Riboflavin)> K S−V (FAD)> K S−V (FMN). This interaction study could generate useful protocol for the fluorimetric determination of riboflavin (vitamin B 2 ) content and also riboflavin status in biological systems. - Highlights: ► Unique interaction specificity of ZnS nanoparticles with flavins has been explored. ► Unlike protein-bound flavin, fluorescence of free flavins was quenched by ZnS nanoparticles. ► FMN and FAD show quenching to different extents under analogous conditions. ► Fluorescence lifetime measurement confirmed the quenching to be static in nature. ► This study is useful for probing riboflavin in biological systems.

  5. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals.

    Science.gov (United States)

    Sen Gupta, Surashree; Ghosh, Mahua

    2017-10-01

    Octacosanol is a lesser known nutraceutical with the potential for treatment of several inflammatory diseases, high cholesterol, Parkinson's symptoms and tumour growth along with the capacity to improve athletic performance. But its lipophilicity and large structure inhibits extended solubility in water resulting in poor absorption and a low bioavailability. In the present work, sodium salt of octacosyl sulfate was synthesized. It displayed improved water solubility. Its nanocrystals, synthesized by means of nanoprecipitation technique, enhanced diffusion velocity, antioxidant capacity, shelf-life, penetrability and bioavailability. Particle size of the nanocrystals ranged between 197 and 220nm. Both modified octacosanol and its nanocrystals displayed maximum lipid peroxidation activities at a concentration 1000ppm, but nanocrystals demonstrated higher prevention. From freeze-thaw cycles it was evident that normal octacosanol crystals were far more prone to temperature variations than the nanocrystals. A pronounced increase in release/diffusion rate and bioavailability was observed for the nanocrystals of the modified octacosanol. In vitro release kinetics, bioavailability and bioequivalence were studied. Relative bioavailability for gastric passage and pancreatic passage of nanocrystals was 2.58 times and 1.81 times that of normal crystals respectively. Furthermore the nanocrystals displayed a superior in vitro release rate, while following a non-Fickian mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. CdS/ZnS core-shell nanocrystal photosensitizers for visible to UV upconversion.

    Science.gov (United States)

    Gray, Victor; Xia, Pan; Huang, Zhiyuan; Moses, Emily; Fast, Alexander; Fishman, Dmitry A; Vullev, Valentine I; Abrahamsson, Maria; Moth-Poulsen, Kasper; Lee Tang, Ming

    2017-08-01

    Herein we report the first example of nanocrystal (NC) sensitized triplet-triplet annihilation based photon upconversion from the visible to ultraviolet (vis-to-UV). Many photocatalyzed reactions, such as water splitting, require UV photons in order to function efficiently. Upconversion is one possible means of extending the usable range of photons into the visible. Vis-to-UV upconversion is achieved with CdS/ZnS core-shell NCs as the sensitizer and 2,5-diphenyloxazole (PPO) as annihilator and emitter. The ZnS shell was crucial in order to achieve any appreciable upconversion. From time resolved photoluminescence and transient absorption measurements we conclude that the ZnS shell affects the NC and triplet energy transfer (TET) from NC to PPO in two distinct ways. Upon ZnS growth the surface traps are passivated thus increasing the TET. The shell, however, also acts as a tunneling barrier for TET, reducing the efficiency. This leads to an optimal shell thickness where the upconversion quantum yield ( Φ ' UC ) is maximized. Here the maximum Φ ' UC was determined to be 5.2 ± 0.5% for 4 monolayers of ZnS shell on CdS NCs.

  7. Interaction of ZnS nanoparticles with flavins and glucose oxidase: A fluorimetric investigation

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Anindita; Priyam, Amiya; Ghosh, Debasmita; Mondal, Somrita [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 (India); Bhattacharya, Subhash C. [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Saha, Abhijit, E-mail: abhijit@alpha.iuc.res.in [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhannagar, Kolkata 700098 (India)

    2012-03-15

    Interactions of luminescence, water soluble ZnS nanoparticles (NPs) with flavins and glucose oxidase have been thoroughly investigated through optical spectroscopy. The photoluminescence of ZnS nanoparticles was quenched severely ({approx}60%) by riboflavin while other flavins such as flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) show quenching to different extents under analogous conditions. However, interestingly no effect in luminescence intensity of ZnS NPs was observed with protein bound flavins such as in glucose oxidase. Fluorescence lifetime measurement confirmed the quenching to be static in nature. Scavenging of photo-generated electron of ZnS nanoparticles by the flavin molecules may be attributed to the decrease in luminescence intensity. Quenching of ZnS nanoparticles with flavins follows the linear Stern-Volmer plot. The Stern-Volmer constants decreased in the following order: K{sub S-V} (Riboflavin)> K{sub S-V} (FAD)> K{sub S-V} (FMN). This interaction study could generate useful protocol for the fluorimetric determination of riboflavin (vitamin B{sub 2}) content and also riboflavin status in biological systems. - Highlights: Black-Right-Pointing-Pointer Unique interaction specificity of ZnS nanoparticles with flavins has been explored. Black-Right-Pointing-Pointer Unlike protein-bound flavin, fluorescence of free flavins was quenched by ZnS nanoparticles. Black-Right-Pointing-Pointer FMN and FAD show quenching to different extents under analogous conditions. Black-Right-Pointing-Pointer Fluorescence lifetime measurement confirmed the quenching to be static in nature. Black-Right-Pointing-Pointer This study is useful for probing riboflavin in biological systems.

  8. Synthesis of freestanding water-soluble indium oxide nanocrystals capped by alanine nitric acid via ligand exchange for thin film transistors and effects of ligands on the electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin-Kyu; Koh, Ye-Seul; Jeong, Hyun-Dam, E-mail: hdjeong@chonnam.ac.kr

    2015-07-15

    We demonstrate synthesis of freestanding water-soluble indium oxide nanocrystals (In{sub 2}O{sub 3} NCs) by ligand exchange to β-alanine nitric acid (Ala·HNO{sub 3}) and its application for active channel layer in thin film transistors (TFTs), with investigation of the effect of curing temperatures on the TFT properties in terms of thermal behaviour of the ligand molecules at 150, 300, and 350 °C. After ligand exchange from long alkyl ligand (myristic acid, MA) to short Ala·HNO{sub 3}, the mobility of NC TFTs cured at 150 °C increased by over 1 order of magnitude, from 1.3 × 10{sup −4} cm{sup 2}V{sup -1}s{sup −1} to 4.5 × 10{sup −3} cm{sup 2}V{sup -1}s{sup −1}, due to enhanced tunnelling rate (Γ) between adjective NCs. Higher curing temperatures such as 300 and 350 °C, inducing thermal decomposition of the organic ligands, led to further enhancement of the mobility, particularly up to 2.2 cm{sup 2}V{sup -1}s{sup −1} for the In{sub 2}O{sub 3} NC-Ala·HNO{sub 3} TFT cured at 350 °C. It is also found that the ligand exchange of In{sub 2}O{sub 3} NC in acidic condition (e.g. HNO{sub 3}) would be simple and effective to reduce the surface defects by surface etching, which may lead to better device performances. - Graphical abstract: Display Omitted - Highlights: • Freestanding water-soluble In{sub 2}O{sub 3} nanocrystals (NCs) were synthesized by ligand exchange. • Thin film transistors (TFTs) of colloidal NCs were fabricated by spin-coating method. • Water-soluble In{sub 2}O{sub 3} NC TFTs showed higher mobilities due to shorter ligand length. • Surface defects of NCs were notably reduced by surface etching during ligand exchange.

  9. Synthesis and photoluminescence enhancement of PVA capped Mn2+ doped ZnS nanoparticles and observation of tunable dual emission: A new approach

    International Nuclear Information System (INIS)

    Viswanath, R.; Bhojya Naik, H.S.; Yashavanth Kumar, G.S.; Prashanth Kumar, P.N.; Harish, K.N.; Prabhakara, M.C.; Praveen, R.

    2014-01-01

    Highlights: • Synthesis of PVA capped Mn 2+ doped ZnS nanoparticles by chemical precipitation method in air atmosphere. • Characterized by the spectral techniques. • Study on their optical properties. • Calculation of particle size by different techniques. • Investigation of the increased luminescence characteristics (UV to IR region) of Mn 2+ doped ZnS ions at room temperature and the origin of the luminescence observed. - Abstract: This paper reports the enhanced photoluminescence (PL) property of polyvinyl alcohol (PVA) capped Mn 2+ doped ZnS nanocrystals prepared by chemical precipitation method. The surface-modified Mn 2+ doped ZnS nanocrystals resulted in the multi-color property. The morphology and crystallite size were characterized by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The crystallite size was estimated to be 5 nm from HRTEM and calculated as 2–4 nm from peak broadening of the X-ray diffraction (XRD) pattern with cubic zincblende structure. Increase in the band gap with decrease in the crystallite size was observed from the UV–visible absorption spectrum, which confirms the quantum confinement effect. The room temperature photoluminescence (PL) emission measurements revealed the presence of blue (427 nm) and near IR reddish–orange (752 nm) emission bands in addition to the typical yellow–orange (585 nm) bands in all the Mn 2+ doped samples, which were attributed due to transition within the 3ds configuration of Mn 2+ ions incorporation in ZnS host under UV excitation at 320 nm. As far as we know, the reddish–orange bands at 752 nm near IR region along with the blue and yellow–orange colored PL are reported for the first time. In this way, the PL color from these ZnS nanocrystals can be tuned from UV to near infrared region (IR). The synthesized ZnS:Mn NPs can be further functionalized for using them as biolabels

  10. Development Considerations for Nanocrystal Drug Products.

    Science.gov (United States)

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  11. Fabrication and evaluation of smart nanocrystals of artemisinin for ...

    African Journals Online (AJOL)

    Background: Nanocrystals have the potential to substantially increase dissolution rate, solubility with subsequent enhanced bioavailability via the oral route of a range of poor water soluble drugs. Regardless of other issues, scale up of the batch size is the main issue associated with bottom up approach. Material and ...

  12. Preparation and characterization of water-soluble ZnSe:Cu/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Cao, Lixin, E-mail: caolixin@ouc.edu.cn; Su, Ge; Liu, Wei; Xia, Chenghui; Zhou, Huajian

    2013-09-01

    The synthesis and luminescent properties of water-soluble ZnSe:Cu/ZnS core/shell quantum dots (QDs) with different shell thickness are reported in this paper. X-ray powder diffraction (XRD) studies present that the ZnSe:Cu/ZnS core/shell QDs with different shell thickness have a cubic zinc-blende structure. The tests of transmission electron microscope (TEM) pictures exhibit that the QDs obtained are spherical-shaped particles and the average grain size increased from 2.7 to 3.8 nm with the growth of ZnS shell. The emission peak position of QDs has a small redshift from 461 to 475 nm with the growth of ZnS shell within the blue spectral window. The photoluminescence (PL) emission intensity and stability of the ZnSe:Cu core d-dots are both enhanced by coating ZnS shell on the surface of core d-dots. The largest PL intensity of the core/shell QDs is almost 3 times larger than that of Cu doped ZnSe quantum dots (ZnSe:Cu d-dots). The redshift of core/shell QDs compared with the core QDs are observed in both the absorption and the photoluminescence excitation spectra.

  13. Synthesis and photoluminescence enhancement of PVA capped Mn{sup 2+} doped ZnS nanoparticles and observation of tunable dual emission: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Viswanath, R. [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, Karnataka, 577451 (India); Bhojya Naik, H.S., E-mail: hsb_naik@rediffmail.com [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, Karnataka, 577451 (India); Yashavanth Kumar, G.S.; Prashanth Kumar, P.N.; Harish, K.N. [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, Karnataka, 577451 (India); Prabhakara, M.C. [Department of P.G. Studies and Research in Industrial Chemistry, Sir. M.V. Government Science College, Bommanakatte, Shimoga, Bhadravathi, Karnataka, 577302 (India); Praveen, R. [Department of Technical Education, Automobile Technology Branch HMS Polytechnic (Government Aided), Tumkur, Karnataka, 572102 (India)

    2014-05-01

    Highlights: • Synthesis of PVA capped Mn{sup 2+} doped ZnS nanoparticles by chemical precipitation method in air atmosphere. • Characterized by the spectral techniques. • Study on their optical properties. • Calculation of particle size by different techniques. • Investigation of the increased luminescence characteristics (UV to IR region) of Mn{sup 2+} doped ZnS ions at room temperature and the origin of the luminescence observed. - Abstract: This paper reports the enhanced photoluminescence (PL) property of polyvinyl alcohol (PVA) capped Mn{sup 2+} doped ZnS nanocrystals prepared by chemical precipitation method. The surface-modified Mn{sup 2+} doped ZnS nanocrystals resulted in the multi-color property. The morphology and crystallite size were characterized by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The crystallite size was estimated to be 5 nm from HRTEM and calculated as 2–4 nm from peak broadening of the X-ray diffraction (XRD) pattern with cubic zincblende structure. Increase in the band gap with decrease in the crystallite size was observed from the UV–visible absorption spectrum, which confirms the quantum confinement effect. The room temperature photoluminescence (PL) emission measurements revealed the presence of blue (427 nm) and near IR reddish–orange (752 nm) emission bands in addition to the typical yellow–orange (585 nm) bands in all the Mn{sup 2+} doped samples, which were attributed due to transition within the 3ds configuration of Mn{sup 2+} ions incorporation in ZnS host under UV excitation at 320 nm. As far as we know, the reddish–orange bands at 752 nm near IR region along with the blue and yellow–orange colored PL are reported for the first time. In this way, the PL color from these ZnS nanocrystals can be tuned from UV to near infrared region (IR). The synthesized ZnS:Mn NPs can be further functionalized for

  14. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  15. Photoluminescence and electrical impedance measurements on alloyed Zn{sub (1-x)}Cd{sub x}S nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, R. Sakthi Sudar, E-mail: rsakthiss@yahoo.com [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer High yield synthesis of Zn-Cd-S QDs. is achieved by solvothermal-microwave heating. Black-Right-Pointing-Pointer The samples are highly crystalline and the average particle size is {approx}3.5 nm. Black-Right-Pointing-Pointer High luminescent quantum yield and narrow emission spectral widths are obtained. Black-Right-Pointing-Pointer High conduction activation energy is observed in the case of Zn-Cd coexisting QDs. - Abstract: A series of wurtzite Zn{sub (1-x)}Cd{sub x}S (x = 0, 0.25, 0.5, 0.75 and 1) nanocrystals with average crystallite size of 1.98, 1.82, 1.80, 2.04 and 2.51 nm, respectively, have been synthesized by simple solvothermal microwave heating method. The photoluminescence yield is found to be higher in the case of alloyed nanocrystals (x = 0.25, 0.5, 0.75) as compared to ZnS (x = 0) and CdS (x = 1). The optical emission is tuned from blue (440 nm) to orange (575 nm) with the increase of Cd composition in Zn{sub (1-x)}Cd{sub x}S nanocrystal. The impedance analysis for Zn{sub (1-x)}Cd{sub x}S nanocrystals has been measured as a function of frequency and temperature. The real and imaginary part of complex impedance plots exhibit semicircle behavior in the complex plane. The AC activation energies of ZnS, Zn{sub 0.75}Cd{sub 0.25}S, Zn{sub 0.5}Cd{sub 0.5}S, Zn{sub 0.25}Cd{sub 0.75}S and CdS nanocrystals were calculated from electrical conductivity analysis and are found to be 0.188, 0.378, 0.456, 0.284 and 0.255 eV, respectively. The conductivity of the alloyed nanocrystals was higher than that of ZnS and CdS.

  16. Structural, Surface Morphology and Optical Properties of ZnS Films by Chemical Bath Deposition at Various Zn/S Molar Ratios

    Directory of Open Access Journals (Sweden)

    Fei-Peng Yu

    2014-01-01

    Full Text Available In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH2 also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.

  17. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    Science.gov (United States)

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  18. Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals

    Science.gov (United States)

    Sukkabot, Worasak

    2018-05-01

    A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron-hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron-hole interactions is observed with increasing external ZnS shell size. The strong electron-hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.

  19. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Xu, Zhenghe; Liu, Qingxia [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada); Du, Zheng [National Supercomputing Center in Shenzhen, Shenzhen 518055 (China)

    2016-12-15

    Highlights: • Water adsorption has a greater effect on the electron distribution of ZnS surface than PbS surface. • Water adsorption decreases the reactivity of ZnS surface atoms but improves that of PbS. • Thiol collectors cannot interact with the hydrated ZnS surface. • The hydration has little influence on the interaction of thiol collectors with PbS surface. - Abstracts: In froth flotation the molecular interaction between reagents and mineral surfaces take place at the solid liquid interface. In this paper, the effect of water molecule on the three typical thiol collectors (xanthate, dithiocarbomate and dithiophosphate) interactions at the galena (PbS) and sphalerite (ZnS) surfaces has been studied adopting density functional theory (DFT). The results suggests that the presence of water molecule shows a greater influence on the electron distribution of ZnS surface than PbS surface, and reduce the reactivity of ZnS surface atoms but improves the reactivity of PbS surface atoms during the reaction with xanthate. Water adsorption could also reduce the covalent binding between Zn and S atoms but have little influence on Pb-S bond. In the presence of water, xanthate, dithiocarbomate (DTC) and dithiophosphate (DTP) could not adsorb on the sphalerite surface. And for galena (PbS) surface, the interaction of DTP is the strongest, then the DTC and the interaction of xanthate is the weakest. These results agree well with the flotation practice.

  20. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya

    2015-02-12

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class of nanocrystals are major factors limiting their applicability. To remove these undesirable defect states which considerably shorten the lifetimes of photogenerated excited carriers, a detailed understanding about their origin and nature is required. In this report, we monitor the ultrafast charge carrier dynamics of CuInS2 (CIS), CuInSSe (CISSe), and CuInSe2 (CISe) nanocrystals, before and after ZnS shelling, using state-of-the-art time-resolved laser spectroscopy with broadband capabilities. The experimental results demonstrate the presence of both electron and hole trapping intra-bandgap states in the nanocrystals which can be removed significantly by ZnS shelling, and the carrier dynamics is slowed down. Another important observation remains the reduction of carrier lifetime in the presence of Se, and the shelling strategy is observed to be less effective at suppressing trap states. This study provides quantitative physical insights into the role of anion composition and shelling on the charge carrier dynamics in ternary CIS, CISSe, and CISe nanocrystals which are essential to improve their applicability for photovoltaics and optoelectronics.

  1. Preparation, properties and anticancer effects of mixed As4S4/ZnS nanoparticles capped by Poloxamer 407.

    Science.gov (United States)

    Bujňáková, Z; Baláž, M; Zdurienčíková, M; Sedlák, J; Čaplovičová, M; Čaplovič, Ľ; Dutková, E; Zorkovská, A; Turianicová, E; Baláž, P; Shpotyuk, O; Andrejko, S

    2017-02-01

    Arsenic sulfide compounds have a long history of application in a traditional medicine. In recent years, realgar has been studied as a promising drug in cancer treatment. In this study, the arsenic sulfide (As 4 S 4 ) nanoparticles combined with zinc sulfide (ZnS) ones in different molar ratio have been prepared by a simple mechanochemical route in a planetary mill. The successful synthesis and structural properties were confirmed and followed via X-ray diffraction and high-resolution transmission electron microscopy measurements. The morphology of the particles was studied via scanning electron microscopy and transmission electron microscopy methods and the presence of nanocrystallites was verified. For biological tests, the prepared As 4 S 4 /ZnS nanoparticles were further milled in a circulation mill in a water solution of Poloxamer 407 (0.5wt%), in order to cover the particles with this biocompatible copolymer and to obtain stable nanosuspensions with unimodal distribution. The average size of the particles in the nanosuspensions (~120nm) was determined by photon cross-correlation spectroscopy method. Stability of the nanosuspensions was determined via particle size distribution and zeta potential measurements, confirming no physico-chemical changes for several months. Interestingly, with the increasing amount of ZnS in the sample, the stability was improved. The anti-cancer effects were tested on two melanoma cell lines, A375 and Bowes, with promising results, confirming increased efficiency of the samples containing both As 4 S 4 and ZnS nanocrystals. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Studies on the synthesis of cubic ZnS quantum dots, capping and optical–electrical characteristics

    International Nuclear Information System (INIS)

    Saravanan, R. Sakthi Sudar; Pukazhselvan, D.; Mahadevan, C.K.

    2012-01-01

    Highlights: ► Zinc acetate and sodium sulphide as reactants. Cubic QDs of size ∼3 nm in 1:3 reactant ratios with or without capping agent. ► At least 30 times smaller size while using microwave source instead of conventional heating source. ► Widening of band gap from 3.6 eV to 3.94 eV by reducing size of ZnS. ► Better conduction with lower activation energy in wide band gap ZnS. ► Thermionic emission mechanism for conduction phenomenon. - Abstract: This paper presents a comparative analysis of ZnS QDs synthesized by conventional and microwave heating techniques using zinc acetate and sodium sulphide reactants. The size of the quantum dots achieved by the latter technique (∼3 nm) is at least 30 times smaller than the former technique. Incorporation of excess Na 2 S and microwave treatment are the important factors responsible for controlling the size of ZnS nanocrystals. Furthermore, the distribution of quantum dots is highly influenced by the addition of small amount of NaOH. The UV–vis analysis reveals that the band gap can be widened up to 3.94 eV (correspond to ∼3 nm ZnS) from 3.67 eV (correspond to bulk ZnS). Surprisingly better conductivity is observed for the widest band gap ZnS of the present study; this could be due to defects/vacancies present in the system and its influence in the band structure. The higher conductivity value is supported by the smaller activation energy value, smaller dielectric constant and higher dielectric loss, etc. The conduction is further explained by thermionic emission mechanism.

  3. Water-Soluble CdTe/CdS Core/Shell Semiconductor Nanocrystals: How Their Optical Properties Depend on the Synthesis Methods

    Directory of Open Access Journals (Sweden)

    Brener R. C. Vale

    2016-10-01

    Full Text Available We conducted a comparative synthesis of water-soluble CdTe/CdS colloidal nanocrystalline semiconductors of the core/shell type. We prepared the CdS shell using two different methods: a one-pot approach and successive ionic layer adsorption and reaction (SILAR; in both cases, we used 3-mercaptopropionic acid (MPA as the surface ligand. In the one-pot approach, thiourea was added over the freshly formed CdTe dispersion, and served as the sulfur source. We achieved thicker CdS layers by altering the Cd:S stoichiometric ratio (1:1, 1:2, 1:4, and 1:8. The Cd:S ratios 1:1 and 1:2 furnished the best optical properties; these ratios also made the formation of surface defects less likely. For CdTe/CdS obtained using SILAR, we coated the surface of three differently sized CdTe cores (2.17, 3.10, and 3.45 nm with one to five CdS layers using successive injections of the Cd2+ and S2– ions. The results showed that the core size influenced the optical properties of the materials. The deposition of three to five layers over the surface of smaller CdTe colloidal nanocrystals generated strain effects on the core/shell structure.

  4. Effect of structure, size and copper doping on the luminescence properties of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Ch. Satya [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Mishra, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, Dinesh K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, 9190401 (Israel); Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.

  5. Formulation strategy and evaluation of nanocrystal piroxicam orally disintegrating tablets manufacturing by freeze-drying.

    Science.gov (United States)

    Lai, Francesco; Pini, Elena; Corrias, Francesco; Perricci, Jacopo; Manconi, Maria; Fadda, Anna Maria; Sinico, Chiara

    2014-06-05

    Piroxicam (PRX) is a non-steroidal anti-inflammatory drug characterized by a poor water solubility and consequently by a low oral bioavailability. In this work, different nanocrystal orally disintegrating tablets (ODT) were prepared to enhance piroxicam dissolution rate and saturation solubility. PRX nanocrystals were prepared by means of high pressure homogenization technique using poloxamer 188 as stabilizer. Three different ODTs were prepared with the same nanosuspension using different excipients in order to study their effect on the PRX dissolution properties. PRX nanocrystal size and zeta potential were determined by photon correlation spectroscopy. Additional characterization of PRX nanocrystal ODT was carried out by infrared spectroscopy, X-ray powder diffractometry, differential scanning calorimetry. Dissolution study was performed in distilled water (pH 5.5) and compared with PRX coarse suspension ODT, PRX/poloxamer 188 physical mixture, bulk PRX samples and a PRX commercial ODT. All PRX nanocrystal ODT formulations showed a higher drug dissolution rate than coarse PRX ODT. PRX nanocrystal ODT prepared using gelatin or croscarmellose as excipient showed a higher PRX dissolution rate compared with the commercial formulation and ODT prepared using xanthan gum. Overall results confirmed that improved PRX dissolution rate is due to the increased surface-to-volume ratio due to the nanosized drug particle but also revealed the important role of different excipients used. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  7. The cytotoxicity studies of water-soluble InP/ZnSe quantum dots

    International Nuclear Information System (INIS)

    Kiplagat, Ayabei; Sibuyi, Nicole R. S.; Onani, Martin O.; Meyer, Mervin; Madiehe, Abram M.

    2016-01-01

    Biomedical applications require nanocrystals with a narrow emission spectra and low toxicity. One major challenge of using quantum dots (QDs) in biomedical studies has been to synthesize them in large quantities while retaining desirable optical properties. To date, no research has been carried out to scale up the synthesis of InP/ZnSe nanocrystals. In this regard we synthesized InP/ZnSe nanocrystals using lower volumes and masses and scaled up the synthesis while retaining their molar ratios. The properties of the products obtained in small scale and scaled up syntheses were compared in regard to changes in particle size, emission wavelength and the trend of fluorescence of the aliquots. The particle size for the small scale reaction was determined to be 4.18 nm. When the synthesis was scaled up by a factor of 2, 4 and 6, the sizes were found to increase to 4.31, 4.13 and 4.37 nm, respectively. We also demonstrated the ability to tune the emission wavelength by sorting the particles in the crude product to different sizes. The size sorting process gave QDs with varied emission wavelengths and also narrow emission spectra. We further demonstrated a facile method for their water solubility as well as suitability for various biological applications. The toxicity of the synthesized InP/ZnSe nanocrystals was investigated. The cytotoxicity studies were carried out using two different types of non-cancerous human cell lines, namely KMST6 and MCF-12A, which clearly showed that the nanocrystals have low toxicity and are suitable for biological applications.

  8. The cytotoxicity studies of water-soluble InP/ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kiplagat, Ayabei [University of the Western Cape, Department of Chemistry, DST/Mintek Nanotechnology Innovation Centre (South Africa); Sibuyi, Nicole R. S. [University of the Western Cape, Department of Biotechnology, DST/Mintek Nanotechnology Innovation Centre (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [University of the Western Cape, Department of Chemistry, DST/Mintek Nanotechnology Innovation Centre (South Africa); Meyer, Mervin; Madiehe, Abram M. [University of the Western Cape, Department of Biotechnology, DST/Mintek Nanotechnology Innovation Centre (South Africa)

    2016-06-15

    Biomedical applications require nanocrystals with a narrow emission spectra and low toxicity. One major challenge of using quantum dots (QDs) in biomedical studies has been to synthesize them in large quantities while retaining desirable optical properties. To date, no research has been carried out to scale up the synthesis of InP/ZnSe nanocrystals. In this regard we synthesized InP/ZnSe nanocrystals using lower volumes and masses and scaled up the synthesis while retaining their molar ratios. The properties of the products obtained in small scale and scaled up syntheses were compared in regard to changes in particle size, emission wavelength and the trend of fluorescence of the aliquots. The particle size for the small scale reaction was determined to be 4.18 nm. When the synthesis was scaled up by a factor of 2, 4 and 6, the sizes were found to increase to 4.31, 4.13 and 4.37 nm, respectively. We also demonstrated the ability to tune the emission wavelength by sorting the particles in the crude product to different sizes. The size sorting process gave QDs with varied emission wavelengths and also narrow emission spectra. We further demonstrated a facile method for their water solubility as well as suitability for various biological applications. The toxicity of the synthesized InP/ZnSe nanocrystals was investigated. The cytotoxicity studies were carried out using two different types of non-cancerous human cell lines, namely KMST6 and MCF-12A, which clearly showed that the nanocrystals have low toxicity and are suitable for biological applications.

  9. A simple synthesis and characterization of CuS nanocrystals

    Indian Academy of Sciences (India)

    Unknown

    Water-soluble CuS nanocrystals and nanorods were prepared by reacting copper acetate with thioacetamide in ... potential applications in solar cells, IR detectors and lubri- cation (Mane ... ted a solventless synthesis of Cu2S nanorods, by heating copper thiolate .... 2004 Nanoparticles: Building blocks for nano- technology ...

  10. Studying Selective Transparency in ZnS/ Cu/ ZnS Thin Films

    International Nuclear Information System (INIS)

    Ksibe, A.; Howari, H.; Diab, M.

    2009-01-01

    Dielectric/ Metal/ Dielectric (DMD) thin films deposited on glass offer of significant energy saving in buildings and can find other applications of advanced materials design. In an effort to reduce the complexity and cost production of DMD films, physical vapor deposition was used for the laboratory manufacture of ZnS/ Cu/ ZnS films on glass. ZnS was used because of its high refractive index, ease of deposition and low cost; Cu was used because of its low absorption in the visible spectrum and its thermal stability. The films produced were of good quality, with transmittance as high as 85%. The ZnS layers were found not only to antireflect the Ag layer, but also to stabilize the ZnS/ Cu/ ZnS films, improve its adherence on glass and increase the film thermal resistance up to 240 C. The influence of annealing on the optical properties was investigated. The experimental results show that the properties of the multilayers are improved with annealing in air. the change of maximum transmission indicates that, with the increase of annealing temperature, maximum transmittance was change. Multilayer films annealed at after 200 C, show a decrease in the maximum transmittance witch might be due to the diffused Cu atoms onto ZnS layer. (author)

  11. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  12. Morphology-controlled synthesis of ZnS nanostructures via single-source approaches

    International Nuclear Information System (INIS)

    Han, Qiaofeng; Qiang, Fei; Wang, Meijuan; Zhu, Junwu; Lu, Lude; Wang, Xin

    2010-01-01

    ZnS nanoparticles of various morphologies, including hollow or solid spherical, and polyhedral shape, were synthesized from single-source precursor Zn(S 2 COC 2 H 5 ) 2 without using a surfactant or template. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The results indicate that ZnS hollow and solid spheres assembled by nanoparticles can be easily generated by the solution phase thermalysis of Zn(S 2 COC 2 H 5 ) 2 at 80 o C using N, N-dimethylformamide (DMF) and ethylene glycol (EG) or water as solvents, respectively, whereas solvothermal process of the same precursor led to ZnS nanoparticles of polyhedral shape with an average size of 120 nm. The optical properties of these ZnS nanostructures were investigated by room-temperature luminescence and UV-vis diffuse reflectance spectra.

  13. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation.

    Science.gov (United States)

    Chang, Daoxiao; Ma, Yanni; Cao, Guoyu; Wang, Jianhuan; Zhang, Xia; Feng, Jun; Wang, Wenping

    2018-08-01

    Lutein is a kind of natural carotenoids possessing many pharmacological effects. The application of lutein was limited mainly due to its low oral bioavailability caused by poor aqueous solubility. Nanocrystal formulation of lutein was developed to improve the oral bioavailability in this study. The nanosuspension was prepared by the anti-solvent precipitation-ultrasonication method and optimized by Box-Behnken design, followed by freeze-drying to obtain lutein nanocrystals. The nanocrystals were characterized on their physical properties, in vitro dissolution and in vivo absorption performance. Lutein nanocrystals showed as tiny spheres with an average particle size of 110.7 nm. The result of diffractograms indicated that the percent crystallinity of lutein was 89.4% in coarse powder and then declined in nanocrystal formulation. The saturated solubility of lutein in water increased from 7.3 μg/ml for coarse powder up to 215.7 μg/ml for lutein nanocrystals. The dissolution rate of lutein nanocrystals was significantly higher than that of coarse powder or the physical mixture. The C max and AUC 0-24 h of lutein nanocrystals after oral administration in rats was 3.24 and 2.28 times higher than those of lutein suspension, respectively. These results indicated that the nanocrystal formulation could significantly enhance the dissolution and absorption of lutein and might be a promising approach for improving its oral bioavailability.

  14. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.

    Science.gov (United States)

    Li, Shu; Steigerwald, Michael L; Brus, Louis E

    2009-05-26

    We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.

  15. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.

    Science.gov (United States)

    Li, Liang; Reiss, Peter

    2008-09-03

    InP/ZnS core/shell nanocrystals are prepared using a single-step heating-up method relying on the difference in reactivity of the applied InP and ZnS precursors. The obtained particles exhibit size-dependent emission in the range of 480-590 nm, a fluorescence quantum yield of 50-70%, and high photostability.

  16. High quality antireflective ZnS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Tec-Yam, S.; Rojas, J.; Rejón, V.; Oliva, A.I.

    2012-01-01

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl 2 , NH 4 NO 3 , and CS(NH 2 ) 2 were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 °C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300–800 nm wavelength range, and a reflectance below 25% in the UV–Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: ► High quality ZnS thin films were prepared by chemical bath deposition (CBD). ► Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. ► Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  17. Performance Parameters and Characterizations of Nanocrystals: A Brief Review

    Directory of Open Access Journals (Sweden)

    Manasi M. Chogale

    2016-08-01

    Full Text Available Poor bioavailability of drugs associated with their poor solubility limits the clinical effectiveness of almost 40% of the newly discovered drug moieties. Low solubility, coupled with a high log p value, high melting point and high dose necessitates exploration of alternative formulation strategies for such drugs. One such novel approach is formulation of the drugs as “Nanocrystals”. Nanocrystals are primarily comprised of drug and surfactants/stabilizers and are manufactured by “top-down” or “bottom-up” methods. Nanocrystals aid the clinical efficacy of drugs by various means such as enhancement of bioavailability, lowering of dose requirement, and facilitating sustained release of the drug. This effect is dependent on the various characteristics of nanocrystals (particle size, saturation solubility, dissolution velocity, which have an impact on the improved performance of the nanocrystals. Various sophisticated techniques have been developed to evaluate these characteristics. This article describes in detail the various characterization techniques along with a brief review of the significance of the various parameters on the performance of nanocrystals.

  18. Nanocrystals Technology for Pharmaceutical Science.

    Science.gov (United States)

    Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng

    2018-05-17

    Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Panax Notoginseng Saponins as a Novel Nature Stabilizer for Poorly Soluble Drug Nanocrystals: A Case Study with Baicalein

    Directory of Open Access Journals (Sweden)

    Yuanbiao Xie

    2016-08-01

    Full Text Available This study is aimed at seeking a nature saponin-based stabilizer for drug nanosuspensions. A poorly soluble drug (baicalein, BCL was used as a model drug. BCL nanosuspensions with particle size of 156 nm were prepared by means of homogenization and converted into BCL nanocrystals (BCL-NC stabilized with panax notoginseng saponins (PNS. It was found that PNS was able to prevent the aggregation of BCL-NS during storage and improve the redispersibility of BCL-NC after freeze-drying and spray-drying, compared with polymer stabilizer PVPK30. The freeze-dried and spray-dried BCL-NC with PNS exhibited excellent performance as evidenced by scanning_electron_microscope (SEM analysis. It was the reason that PNS possessed the interfacial property (41.69 ± 0.32 mN/m and electrostatic effect (−40.1 ± 1.6 mV, which could easily adsorb onto the surface of hydrophobic BCL nanocrystals and prevent from its aggregation. It is concluded that PNS can be used as an effective nature stabilizer for production of drug nanocrystals.

  20. Two-Stage Crystallizer Design for High Loading of Poorly Water-Soluble Pharmaceuticals in Porous Silica Matrices

    Directory of Open Access Journals (Sweden)

    Leia Dwyer

    2017-05-01

    Full Text Available While porous silica supports have been previously studied as carriers for nanocrystalline forms of poorly water-soluble active pharmaceutical ingredients (APIs, increasing the loading of API in these matrices is of great importance if these carriers are to be used in drug formulations. A dual-stage mixed-suspension, mixed-product removal (MSMPR crystallizer was designed in which the poorly soluble API fenofibrate was loaded into the porous matrices of pore sizes 35 nm–300 nm in the first stage, and then fed to a second stage in which the crystals were further grown in the pores. This resulted in high loadings of over 50 wt % while still producing nanocrystals confined to the pores without the formation of bulk-sized crystals on the surface of the porous silica. The principle was extended to another highly insoluble API, griseofulvin, to improve its loading in porous silica in a benchtop procedure. This work demonstrates a multi-step crystallization principle API in porous silica matrices with loadings high enough to produce final dosage forms of these poorly water-soluble APIs.

  1. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier

    2010-08-24

    High-energy resolution photoelectron spectroscopy (DeltaE InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms.

  2. Effect of temperature on the optical and structural properties of hexadecylamine capped ZnS nanoparticles using Zinc(II) N-ethyl-N-phenyldithiocarbamate as single source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Onwudiwe, Damian C., E-mail: dconwudiwe@webmail.co.za [Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Strydom, Christien [Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Oluwafemi, Oluwatobi S., E-mail: oluwafemi.oluwatobi@gmail.com [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag X1, Mthatha (South Africa); Songca, Sandile P. [Faculty of Science, Engineering and Technology, Walter Sisulu University, P.O. Box 19712, Tecoma, East London (South Africa)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► HDA-capped ZnS nanoparticles were synthesized via thermolysis of a single source precursor. ► Zinc(II) N-ethyl-N-phenyldithiocarbamate was used as the single source precursor. ► The growth temperature was varied to study the optical properties of the nanocrystals. ► Change in growth temperature affects the structural properties of the ZnS nanoparticles. ► Hexagonal wurtzite phase was obtained at lower temperatures while cubic sphalerite phase was obtained at higher growth temperatures. -- Abstract: Reported in this work is the synthesis of HDA (hexadecylamine)-capped ZnS nanoparticles by a single source route using Zinc(II) N-ethyl-N-phenyldithiocarbamate as a precursor. By varying the growth temperature, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated. The as-synthesized nanoparticles were characterized using UV–vis absorption and photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). All the particles exhibited quantum confinement in their optical properties with band edge emission at the early stage of the reaction. The XRD showed transition from hexagonal wurtzite phase to cubic sphalerite phase as the growth temperature increases. The TEM image showed that the particles are small and spherical in shape while the HRTEM image confirmed the crystalline nature of the material.

  3. Highly aqueous soluble CaF2:Ce/Tb nanocrystals: effect of surface functionalization on structural, optical band gap, and photoluminescence properties.

    Science.gov (United States)

    Ansari, Anees A; Parchur, Abdul K; Kumar, Brijesh; Rai, S B

    2016-12-01

    The design of nanostructured materials with highly stable water-dispersion and luminescence efficiency is an important concern in nanotechnology and nanomedicine. In this paper, we described the synthesis and distinct surface modification on the morphological structure and optical (optical absorption, band gap energy, excitation, emission, decay time, etc.) properties of highly crystalline water-dispersible CaF 2 :Ce/Tb nanocrystals (core-nanocrystals). The epitaxial growth of inert CaF 2 and silica shell, respectively, on their surface forming as CaF 2 :Ce/Tb@CaF 2 (core/shell) and CaF 2 :Ce/Tb@CaF 2 @SiO 2 (core/shell/SiO 2 ) nanoarchitecture. X-ray diffraction and transmission electron microscope image shows that the nanocrystals were in irregular spherical phase, highly crystalline (~20 nm) with narrow size distribution. The core/shell nanocrystals confirm that the surface coating is responsible in the change of symmetrical nanostructure, which was determined from the band gap energy and luminescent properties. It was found that an inert inorganic shell formation effectively enhances the luminescence efficiency and silica shell makes the nanocrystals highly water-dispersible. In addition, Ce 3+ /Tb 3+ -co-doped CaF 2 nanocrystals show efficient energy transfer from Ce 3+ to Tb 3+ ion and strong green luminescence of Tb 3+ ion at 541 nm( 5 D 4 → 7 F 5 ). Luminescence decay curves of core and core/shell nanocrystals were fitted using mono and biexponential equations, and R 2 regression coefficient criteria were used to discriminate the goodness of the fitted model. The lifetime values for the core/shell nanocrystals are higher than core-nanocrystals. Considering the high stable water-dispersion and intensive luminescence emission in the visible region, these luminescent core/shell nanocrystals could be potential candidates for luminescent bio-imaging, optical bio-probe, displays, staining, and multianalyte optical sensing. A newly designed CaF 2 :Ce

  4. Rapid synthesis of CdSe nanocrystals in aqueous solution at room ...

    Indian Academy of Sciences (India)

    Administrator

    Water-soluble thioglycolic acid-capped CdSe nanocrystals (NCs) were prepared in aqueous solu- tion at room temperature. We investigated the ... NCs dispersed in buffer solution (pH = 4⋅0). FTIR spectra were recorded on a ... the theory of acid-base equilibrium, the initial pH value of original solution determines the ...

  5. Ibuprofen nanocrystals developed by 22 factorial design experiment: A new approach for poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    A.R. Fernandes

    2017-12-01

    Full Text Available The reduction of the particle size of drugs of pharmaceutical interest down to the nano-sized range has dramatically changed their physicochemical properties. The greatest disadvantage of nanocrystals is their inherent instability, due to the risk of crystal growth. Thus, the selection of an appropriate stabilizer is crucial to obtain long-term physicochemically stable nanocrystals. High pressure homogenization has enormous advantages, including the possibility of scaling up, lack of organic solvents and the production of small particles diameter with low polydispersity index. The sequential use of high shear homogenization followed by high pressure homogenization, can modulate nanoparticles’ size for different administration routes. The present study focuses on the optimization of the production process of two formulations composed of different surfactants produced by High Shear Homogenization followed by hot High Pressure Homogenization. To build up the surface response charts, a 22 full factorial design experiment, based on 2 independent variables, was used to develop optimized formulations. The effects of the production process on the mean particle size and polydispersity index were evaluated. The best ibuprofen nanocrystal formulations were obtained using 0.20% Tween 80 and 1.20% PVP K30 (F1 and 0.20% Tween 80 and 1.20% Span 80 (F2. The estimation of the long-term stability of the aqueous suspensions of ibuprofen nanocrystals was studied using the LUMISizer. The calculated instability index suggests that F1 was more stable when stored at 4 °C and 22 °C, whereas F2 was shown to be more stable when freshly prepared.

  6. Low temperature synthesis, photoluminescence, magnetic properties of the transition metal doped wurtzite ZnS nanowires

    International Nuclear Information System (INIS)

    Cao, Jian; Han, Donglai; Wang, Bingji; Fan, Lin; Fu, Hao; Wei, Maobin; Feng, Bo; Liu, Xiaoyan; Yang, Jinghai

    2013-01-01

    In this paper, we synthesized the transition metal ions (Mn, Cu, Fe) doped and co-doped ZnS nanowires (NWs) by a one-step hydrothermal method. The results showed that the solid solubility of the Fe 2+ ions in the ZnS NWs was about two times larger than that of the Mn 2+ or Cu 2+ ions in the ZnS NWs. There was no phase transformation from hexagonal to cubic even in a large quantity transition metal ions introduced for all the samples. The Mn 2+ /Cu 2+ /Fe 2+ related emission peaks can be observed in the Mn 2+ ,Cu 2+ and Fe 2+ doped ZnS NWs. The ferromagnetic properties of the co-doped samples were investigated at room temperature. - graphical abstract: The stable wurtzite ZnS:TM 2+ (TM=Mn, Cu, Fe) nanowires with room temperature ferromagnetism properties were obtained. The different elongation of unit cell caused by the different doped ions was observed. Highlights: ► The transition metal ions doped wurtzite ZnS nanowires were synthesized at 180 °C. ► There was no phase transformation from hexagonal to cubic even in a large quantity introduced for all the samples. ► The room temperature ferromagnetism properties of the co-doped nanowires were investigated

  7. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kole, A. K.; Kumbhakar, P. [Nanoscience Laboratory, Department of Physics, National Institute of Technology, Durgapur 713209, West Bengal (India); Tiwary, C. S. [Department of Materials Engineering, Indian Institute of Science (IISc.), Bangalore 560012 (India)

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  8. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: Adsorption effects of water molecules onto nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Ando, Naohisa; Nishiyama, Akira; Horiuchi, Hiromi; Tani, Toshiro

    2007-01-01

    We report here the distinctive modifications of photoluminescence (PL) behaviors in single CdSe/ZnS/TOPO nanocrystals depending on their environments. Long-time traces of PL intensity from single nanocrystals have been obtained in both vacuum and a wet nitrogen atmosphere. While all of the nanocrystals in both environments exhibit PL blinking behaviors, i.e. on-off intermittency of PL intensity, as usual, some of the nanocrystals in the wet nitrogen atmosphere show significant increase in duration time of on-events. As for the duration time of blinking off-events, it is for the moment associated with the occasional events of carrier capturing at trap sites on or near the nanocrystal surfaces. We propose a model in which adsorbed water molecules at the trap sites on the nanocrystal surfaces transform them under light irradiation, which eventually decreases the occurrence of the trapping events due to their inactivation. It in turn increases the PL on-times. In addition to the drastic modification of the blinking profile, we also found that in the PL time traces some kinds of undulated behaviors, i.e. continuous and rather low frequency fluctuation of PL intensity, appear during each on-event in vacuum while they disappear totally in the wet nitrogen atmosphere. These results are also described on the basis of the inactivation model of the trap sites introduced above

  9. Green synthesis of water soluble semiconductor nanocrystals and their applications

    Science.gov (United States)

    Wang, Ying

    II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as

  10. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals

    International Nuclear Information System (INIS)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W.; Rogach, Andrey L.

    2018-01-01

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers

    International Nuclear Information System (INIS)

    Puangpetch, Tarawipa; Chavadej, Sumaeth; Sreethawong, Thammanoon

    2011-01-01

    Graphical abstract: Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability over the 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst. Display Omitted Research highlights: → The 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst was synthesized. → The molecular structure and chemical properties of hole scavengers affected H 2 production rate. → Formic acid exhibited the highest photocatalytic H 2 production enhancement ability. -- Abstract: The hydrogen production via the photocatalytic water splitting under UV irradiation using different compounds as hole scavengers (including methanol, formic acid, acetic acid, propanoic acid, hydrochloric acid, and sulfuric acid) under a low concentration range ( 3 nanocrystal photocatalyst. The results indicated that the hydrogen production efficiency greatly depended on the molecular structure, chemical properties, and concentration of the hole scavengers. Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability. The 2.5 vol.% aqueous formic acid solution system provided the highest photocatalytic hydrogen production rate.

  12. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W; Rogach, Andrey L

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, Surface Modification and Optical Properties of Thioglycolic Acid-Capped ZnS Quantum Dots for Starch Recognition at Ultralow Concentration

    Science.gov (United States)

    Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Ahmadieh, Mahnaz; Mogharei, Azadeh; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2016-11-01

    In this research, water-soluble thioglycolic acid-capped ZnS quantum dots (QDs) are synthesized by the chemical precipitation method. The prepared QDs are characterized using x-ray diffraction and transmission electron microscopy. Results revealed that ZnS QDs have a 2.73 nm crystallite size, cubic zinc blende structure, and spherical morphology with a diameter less than 10 nm. Photoluminescence (PL) spectroscopy is performed to determine the presence of low concentrations of starch. Four emission peaks are observed at 348 nm, 387 nm, 422 nm, and 486 nm and their intensities are quenched by increasing concentration of starch. PL intensity variations in the studied concentrations range (0-100 ppm) are best described by a Michaelis-Menten model. The Michaelis constant ( K m) for immobilized α-amylase in this system is about 101.07 ppm. This implies a great tendency for the enzyme to hydrolyze the starch as substrate. Finally, the limit of detection is found to be about 6.64 ppm.

  14. Synthesis, characterization and spectral temperature-dependence of thioglycerol-CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Brahim, Nassim, E-mail: nassim.benbrahim.fsm@gmail.com [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Poggi, Mélanie [Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Haj Mohamed, Naim Bel; Ben Chaâbane, Rafik; Haouari, Mohamed [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Negrerie, Michel, E-mail: michel.negrerie@polytechnique.fr [Laboratoire d' Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Ben Ouada, Hafedh [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia)

    2016-09-15

    Water-soluble CdSe quantum dots (QDs) have been synthesized with thioglycerol as a stabilizer through a novel hydrothermal route. The obtained thioglycerol capped CdSe (TG-CdSe) nanocrystals were characterized regarding their morphology and structural, thermal and optical properties. The resulting nanocrystals were synthesized in the cubic structure with a near spherical shape, as confirmed by X-ray diffraction and transmission electron microscopy. Combining transmission electron microscopy imaging and calculations using UV–visible absorption spectrum and X-ray diffraction pattern, the diameter of the synthesized nanocrystals was estimated to 2.26 nm. As confirmed by its Fourier transform IR spectrum, thioglycerol was successfully liganded on the surface of the resulting nanocrystals. Band structure parameters of the TG-CdSe nanoparticles were determined and quantum confinement effect was evidenced by optical absorption, fluorescence and Raman measurements. The thermal properties of the TG-CdSe were explored by thermal gravimetric analysis and differential scanning calorimetry. The temperature dependence of both the absorption and fluorescence spectra in the physiological range makes the TG-CdSe nanocrystals sensitive temperature markers, a property that must be taken into account when developing any probing applications, especially for cellular imaging.

  15. Multidentate-Protected Colloidal Gold Nanocrystals: pH Control of Cooperative Precipitation and Surface Layer Shedding

    Science.gov (United States)

    Kairdolf, Brad A.; Nie, Shuming

    2011-01-01

    Colloidal gold nanocrystals with broad size tunability and unusual pH-sensitive properties have been synthesized by using multidentate polymer ligands. Containing both carboxylic functional groups and sterically hindered aliphatic chains, the multidentate ligands are able to both reduce gold precursors and to stabilize gold nanoclusters during nucleation and growth. The “as-synthesized” nanocrystals are protected by an inner coordinating layer and an outer polymer layer, and are soluble in water and polar solvents. When the solution pH is lowered by just 0.6 units (from pH 4.85 to 4.25), the particles undergo a dramatic cooperative transition from being soluble to insoluble, allowing rapid isolation, purification, and redispersion of the multidentate-protected nanocrystals. A surprise finding is that when a portion of the surface carboxylate groups is neutralized by protonation, the particles irreversibly shed their outer polymer layer and become soluble in nonpolar organic solvents. Further, the multidentate polymer coatings are permeable to small organic molecules, in contrast to tightly packed self-assembled monolayers of alkanethiols on gold. These insights are important towards the design of “smart” imaging and therapeutic nanoparticles that are activated by small pH changes in the tumor interstitial space or endocytic organelles. PMID:21510704

  16. Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system.

    Science.gov (United States)

    He, Meng; Huang, Peng; Zhang, Chunlei; Ma, Jiebing; He, Rong; Cui, Daxiang

    2012-05-07

    Herein, we introduce a facile, user- and environmentally friendly (n-octanol-induced) oleic acid (OA)/ionic liquid (IL) two-phase system for the phase- and size-controllable synthesis of water-soluble hexagonal rare earth (RE = La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (size are discussed in detail. More importantly, the mechanism of the (n-octanol-induced) OA/IL two-phase system, the formation of the RE fluoride nanocrystals, and the distinctive size- and morphology-controlling capacity of the system are presented. BmimPF(6) is versatile in term of crystal-phase manipulation, size and shape maintenance, and providing water solubility in a one-step reaction. The luminescent properties of Er(3+)-, Ho(3+)-, and Tm(3+)-doped LaF(3), NaGdF(4), and NaYF(4) nanocrystals were also studied. It is worth noting that the as-prepared products can be directly dispersed in water due to the hydrophilic property of Bmim(+) (cationic part of the IL) as a capping agent. This advantageous feature has made the IL-capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF(4):Yb,Er nanocrystals before and after silica coating was conducted for further biological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Water-assisted size and shape control of CsPbBr{sub 3} perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Zhang, Wei; Zheng, Weitao [Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Yu, William W. [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Chemistry and Physics, Louisiana State University, Shreveport, LA (United States); Rogach, Andrey L. [Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon (China)

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr{sub 3} nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr{sub 3} nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr{sub 3} nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m{sup -2} and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Inorganic nanocrystals as contrast agents in MRI:synthesis, coating and introducing multifunctionality

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L.; Mieszawska, Aneta J.; Fayad, Zahi A.

    2013-01-01

    Inorganic nanocrystals have myriad applications in medicine, which includes their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. For MRI, nanocrystals can produce contrast themselves, of which iron oxides have been most extensively explored, or be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used in imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. Due to these exciting applications, synthesizing and rendering these nanocrystals water-soluble and biocompatible is therefore highly desirable. We will discuss aqueous phase and organic phase methods for synthesizing inorganic nanocrystals such as gold, iron oxides and quantum dots. The pros and cons of the various methods will be highlighted. We explore various methods for making nanocrystals biocompatible, i.e. directly synthesizing nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples will be highlighted and their applications explained. These examples signify that synthesizing biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied for a wide range of applications. Therefore we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. PMID:23303729

  19. From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters.

    Science.gov (United States)

    Chen, Bingkun; Pradhan, Narayan; Zhong, Haizheng

    2018-01-18

    Quantum dots with fabulous size-dependent and color-tunable emissions remained as one of the most exciting inventories in nanomaterials for the last 3 decades. Even though a large number of such dot nanocrystals were developed, CdSe still remained as unbeatable and highly trusted lighting nanocrystals. Beyond these, the ternary I-III-VI family of nanocrystals emerged as the most widely accepted greener materials with efficient emissions tunable in visible as well as NIR spectral windows. These bring the high possibility of their implementation as lighting materials acceptable to the community and also to the environment. Keeping these in mind, in this Perspective, the latest developments of ternary I-III-VI nanocrystals from their large-scale synthesis to device applications are presented. Incorporating ZnS, tuning the composition, mixing with other nanocrystals, and doping with Mn ions, light-emitting devices of single color as well as for generating white light emissions are also discussed. In addition, the future prospects of these materials in lighting applications are also proposed.

  20. On nitrogen solubility in water

    International Nuclear Information System (INIS)

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  1. Water-soluble dietary fibers and cardiovascular disease.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2008-05-23

    One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.

  2. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  3. EDTA-assisted hydrothermal synthesis, characterization and photoluminescent properties of Mn{sup 2+}-doped ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Viswanath, R. [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451 (India); Bhojya Naik, H.S., E-mail: hsb_naik@rediffmail.com [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451 (India); Yashavanth Kumar, G.S.; Prashanth Kumar, P.N.; Arun Kumar, G. [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451 (India); Praveen, R. [Department of Technical Education, Automobile Technology Branch HMS Polytechnic (Government Aided), Tumkur-572102 (India)

    2014-09-15

    In this paper, undoped ZnS and Mn{sup 2+}-doped ZnS nanocrystals were synthesized through a facile EDTA-assisted hydrothermal method. The as-synthesized powder samples were systematically characterized by employing the following characterization technique such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), UV–visible optical absorption and photoluminescence (PL) spectroscopy. X-ray diffraction pattern revealed the presence of material in single phase with average crystallite size of about 3 nm and the material remained cubic over the whole Mn solid solution range. Formation of ultrafine, spherical and homogeneous dispersed nanoparticles with size 4 nm was confirmed by HRTEM analysis. Absorption shoulders of the samples were blue-shifted as compared to bulk ZnS (3.6 eV) with decrease in the energy band gap as the Mn concentration increases. The room temperature photoluminescence (PL) spectra of Mn{sup 2+}-doped ZnS nanocrystalline showed extra peaks in yellow–orange and red region in comparison of pure ZnS. Mn induced PL was suggested with the significant enhancement of the PL intensity in ZnS:Mn nanocrystalline due to Mn incorporation. The red shift in the yellow–orange emission peak can be attributed to the change in band structure due to the formation of ZnS:Mn alloy with increase in Mn{sup 2+} concentration. The yellow–orange emission peak corresponds to the {sup 4}T{sub 1}(excited)–{sup 6}A{sub 1}(ground) transition of Mn{sup 2+} ion in Td symmetry in the ZnS host lattice. The emission peak in the red region may be due to Mn{sup 2+} d–d transitions in (Zn Mn)S matrix as some of the nearest neighbors of Mn{sup 2+} are now predominantly S atoms due to their random positioning nature in the nanocrystallite and Mn–Mn interaction at high Mn{sup 2+} concentration. This type of doped semiconductors with multi-band emission can be made bioactive when they are

  4. Observation of ZnS nanoparticles sputtered from ZnS films under 2 MeV Au irradiation

    Science.gov (United States)

    Kuiri, P. K.; Joseph, B.; Ghatak, J.; Lenka, H. P.; Sahu, G.; Acharya, B. S.; Mahapatra, D. P.

    2006-07-01

    ZnS nanoparticles have been observed on catcher foils due to 2 MeV Au ion irradiation of ZnS films thermally evaporated on Si(1 0 0) substrates. The structure and size distribution of nanoclusters collected were studied using transmission electron microscopy for irradiation fluences in the range of 1 × 10 11-1 × 10 15 ions cm -2. The nanoclusters were found to have a hexagonal wurtzite structure. Optical absorption measurements on similarly deposited ZnS on silica glass indicate the film to be also composed of hexagonal wurtzite ZnS. Based on this and available data we argue that the observed nanoparticles on the catcher foils are the results of shock waves induced emission of material chunks with the same atomic coordination as in the target.

  5. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  6. Greener process to synthesize water-soluble Mn.sup.2+-doped CdSSe(ZnS) core(shell) nanocrystals for ratiometric temperature sensing, nanocrystals, and methods implementing nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haw; Hsia, Chih-Hao

    2017-07-04

    Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility may be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.

  7. The influence of sodium salts (iodide, chloride and sulfate) on the formation efficiency of sulfamerazine nanocrystals.

    Science.gov (United States)

    Lou, Hao; Liu, Min; Qu, Wen; Johnson, James; Brunson, Ed; Almoazen, Hassan

    2014-08-01

    The purpose of this study is to evaluate the influence of sodium iodide, sodium chloride and sodium sulfate on the formation efficiency of sulfamerazine nanocrystals by wet ball milling. Sulfamerazine was milled using zirconium oxide beads in a solution containing polyvinylpyrrolidone (PVP) and a sodium salt (iodide, chloride or sulfate). Particle size distributions were evaluated by light diffraction before and after milling. High-performance liquid chromatography was utilized to determine the amount of PVP adsorbed onto sulfamerazine surface. Lyophilized nanocrystals were further characterized by differential scanning calorimetry and dissolution testing. Sulfate ion had more profound effect on reducing particle size via milling than iodide or chloride. We linked our findings to Hofmeister ion series, which indicates that sulfate ions tends to break the water structure, increases the surface tension and lowers the solubility of hydrocarbons in water. We hypothesized that the addition of sulfate ions dehydrated the PVP molecules and enhanced its adsorption onto the sulfamerazine particle surfaces. Consequently, the adsorbed PVP helped to stabilize of the nanosuspension. The nanocrystals that were obtained from the lyophilized milled suspensions exhibited a notable increase in dissolution rate. The addition of sodium sulfate enhanced the formation efficiency of sulfamerazine nanocrystals.

  8. Atomistic tight-binding theory of excitonic splitting energies in CdX(X = Se, S and Te)/ZnS core/shell nanocrystals

    Science.gov (United States)

    Sukkabot, Worasak; Pinsook, Udomsilp

    2017-01-01

    Using the atomistic tight-binding theory (TB) and a configuration interaction description (CI), we numerically compute the excitonic splitting of CdX(X = Se, S and Te)/ZnS core/shell nanocrystals with the objective to explain how types of the core materials and growth shell thickness can provide the detailed manipulation of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting, beneficial for the active application of quantum information. To analyze the splitting of the excitonic states, the optical band gaps, ground-state wave function overlaps and atomistic electron-hole interactions tend to be numerically demonstrated. Based on the atomistic computations, the single-particle and excitonic gaps are mainly reduced with the increasing ZnS shell thickness owing to the quantum confinement. In the range of the higher to lower energies, the order of the single-particle gaps is CdSe/ZnS, CdS/ZnS and CdTe/ZnS core/shell nanocrystals, while one of the excitonic gaps is CdS/ZnS, CdSe/ZnS and CdTe/ZnS core/shell nanocrystals because of the atomistic electron-hole interaction. The strongest electron-hole interactions are mainly observed in CdSe/ZnS core/shell nanocrystals. In addition, the computational results underline that the energies of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting are generally reduced with the increasing ZnS growth shell thickness as described by the trend of the electron-hole exchange interaction. The high-to-low splitting of the excitonic states is demonstrated in CdSe/ZnS, CdTe/ZnS and CdS/ZnS core/shell nanocrystals because of the fashion in the electron-hole exchange interaction and overlaps of the electron-hole wave functions. As the resulting calculations, it is expected that CdS/ZnS core/shell nanocrystals are the best candidates to be the source of entangled photons. Finally, the comprehensive information on the excitonic splitting can enable the use of suitable core

  9. Solvothermal synthesis of 3D photonic crystals based on ZnS/opal system

    Energy Technology Data Exchange (ETDEWEB)

    Chang Xin [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Cao Jieming [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)]. E-mail: jmcao@nuaa.edu.cn; Ji Hongmei [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fang Baoqing [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Feng Jie [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Pan Lijia [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang Fang [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Haiyan [Nanomaterials Research Institute, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2005-01-15

    We made photonic crystals composed of artificial opals infiltrated with ZnS semiconductor nanocrystals by using self-assembly and solvothermal methods. SEM images show that the silica spheres exhibit a well-ordered arrangement and the ZnS nanocrystals infiltrate within the opal templates by heterogeneous nucleation and growth processing, and the as-synthesized ZnS nanocrystals reveal a cubic phase from X-ray diffraction pattern. Furthermore, the optical properties of the infiltrated opals with different ZnS filling ratio are also studied by transmission spectroscopy, respectively. It is proposed that the position of the stop band can be easily designed by controlling the infiltration ratio of ZnS. These results demonstrate an easy-to-handle and efficient route to obtain high performance photonic crystal structures.

  10. Solvothermal synthesis of 3D photonic crystals based on ZnS/opal system

    International Nuclear Information System (INIS)

    Chang Xin; Cao Jieming; Ji Hongmei; Fang Baoqing; Feng Jie; Pan Lijia; Zhang Fang; Wang, Haiyan

    2005-01-01

    We made photonic crystals composed of artificial opals infiltrated with ZnS semiconductor nanocrystals by using self-assembly and solvothermal methods. SEM images show that the silica spheres exhibit a well-ordered arrangement and the ZnS nanocrystals infiltrate within the opal templates by heterogeneous nucleation and growth processing, and the as-synthesized ZnS nanocrystals reveal a cubic phase from X-ray diffraction pattern. Furthermore, the optical properties of the infiltrated opals with different ZnS filling ratio are also studied by transmission spectroscopy, respectively. It is proposed that the position of the stop band can be easily designed by controlling the infiltration ratio of ZnS. These results demonstrate an easy-to-handle and efficient route to obtain high performance photonic crystal structures

  11. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei; Hu, Jilin; Li, Jing; Peng, Hongxia

    2016-05-15

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.

  12. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    International Nuclear Information System (INIS)

    Tian, Xiuying; Wen, Jin; Wang, Shumei; Hu, Jilin; Li, Jing; Peng, Hongxia

    2016-01-01

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.

  13. Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection

    Directory of Open Access Journals (Sweden)

    Zhu Chang-Qing

    2008-01-01

    Full Text Available AbstractA new simple method for synthesis of core/shell CdSe/ZnS nanocrystals (NCs is present. By adapting the use of cadmium stearate, oleylamine, and paraffin liquid to a non-injection synthesis and by applying a subsequent ZnS shelling procedure to CdSe NCs cores using Zinc acetate dihydrate and sulfur powder, luminescent CdSe/ZnS NCs with quantum yields of up to 36% (FWHM 42–43 nm were obtained. A seeding-growth technique was first applied to the controlled synthesis of ZnS shell. This method has several attractive features, such as the usage of low-cost, green, and environmentally friendlier reagents and elimination of the need for air-sensitive, toxic, and expensive phosphines solvent. Furthermore, due to one-pot synthetic route for CdSe/ZnS NCs, the approach presented herein is accessible to a mass production of these NCs.

  14. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    Science.gov (United States)

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  15. Elucidating the in vivo fate of nanocrystals using a physiologically based pharmacokinetic model: a case study with the anticancer agent SNX-2112

    Directory of Open Access Journals (Sweden)

    Dong D

    2015-03-01

    Full Text Available Dong Dong,1* Xiao Wang,1* Huailing Wang,1 Xingwang Zhang,2 Yifei Wang,1 Baojian Wu2 1Guangzhou Jinan Biomedicine Research and Development Center, 2Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Introduction: SNX-2112 is a promising anticancer agent but has poor solubility in both water and oil. In the study reported here, we aimed to develop a nanocrystal formulation for SNX-2112 and to determine the pharmacokinetic behaviors of the prepared nanocrystals. Methods: Nanocrystals of SNX-2112 were prepared using the wet-media milling technique and characterized by particle size, differential scanning calorimetry, drug release, etc. Physiologically based pharmacokinetic (PBPK modeling was undertaken to evaluate the drug’s disposition in rats following administration of drug cosolvent or nanocrystals. Results: The optimized SNX-2112 nanocrystals (with poloxamer 188 as the stabilizer were 203 nm in size with a zeta potential of -11.6 mV. In addition, the nanocrystals showed a comparable release profile to the control (drug cosolvent. Further, the rat PBPK model incorporating the parameters of particulate uptake (into the liver and spleen and of in vivo drug release was well fitted to the experimental data following administration of the drug nanocrystals. The results reveal that the nanocrystals rapidly released drug molecules in vivo, accounting for their cosolvent-like pharmacokinetic behaviors. Due to particulate uptake, drug accumulation in the liver and spleen was significant at the initial time points (within 1 hour. Conclusion: The nanocrystals should be a good choice for the systemic delivery of the poorly soluble drug SNX-2112. Also, our study contributes to an improved understanding of the in vivo fate of nanocrystals. Keywords: intravenous delivery, PBPK, tissue distribution, poloxamer 188

  16. Oxidation driven ZnS Core-ZnO shell photocatalysts under controlled oxygen atmosphere for improved photocatalytic solar water splitting

    Science.gov (United States)

    Bak, Daegil; Kim, Jung Hyeun

    2018-06-01

    Zinc type photocatalysts attract great attentions in solar hydrogen production due to their easy availability and benign environmental characteristics. Spherical ZnS particles are synthesized with a facile hydrothermal method, and they are further used as core materials to introduce ZnO shell layer surrounding the core part by partial oxidation under controlled oxygen contents. The resulting ZnS core-ZnO shell photocatalysts represent the heterostructural type II band alignment. The existence of oxide layer also influences on proton adsorption power with an aid of strong base cites derived from highly electronegative oxygen atoms in ZnO shell layer. Photocatalytic water splitting reaction is performed to evaluate catalyst efficiency under standard one sun condition, and the highest hydrogen evolution rate (1665 μmolg-1h-1) is achieved from the sample oxidized at 16.2 kPa oxygen pressure. This highest hydrogen production rate is achieved in cooperation with increased light absorption and promoted charge separations. Photoluminescence analysis reveals that the improved visible light response is obtained after thermal oxidation process due to the oxygen vacancy states in the ZnO shell layer. Therefore, overall photocatalytic efficiency in solar hydrogen production is enhanced by improved charge separations, crystallinity, and visible light responses from the ZnS core-ZnO shell structures induced by thermal oxidation.

  17. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  18. Effect of Cationic Surfactant Head Groups on Synthesis, Growth and Agglomeration Behavior of ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehta SK

    2009-01-01

    Full Text Available Abstract Colloidal nanodispersions of ZnS have been prepared using aqueous micellar solution of two cationic surfactants of trimethylammonium/pyridinium series with different head groups i.e., cetyltrimethylammonium chloride (CTAC and cetyltrimethylpyridinium chloride (CPyC. The role of these surfactants in controlling size, agglomeration behavior and photophysical properties of ZnS nanoparticles has been discussed. UV–visible spectroscopy has been carried out for determination of optical band gap and size of ZnS nanoparticles. Transmission electron microscopy and dynamic light scattering were used to measure sizes and size distribution of ZnS nanoparticles. Powder X-ray analysis (Powder XRD reveals the cubic structure of nanocrystallite in powdered sample. The photoluminescence emission band exhibits red shift for ZnS nanoparticles in CTAC compared to those in CPyC. The aggregation behavior in two surfactants has been compared using turbidity measurements after redispersing the nanoparticles in water. In situ evolution and growth of ZnS nanoparticles in two different surfactants have been compared through time-dependent absorption behavior and UV irradiation studies. Electrical conductivity measurements reveal that CPyC micelles better stabilize the nanoparticles than that of CTAC.

  19. Synthesis of Colloidal Nanocrystal Heterostructures for High-Efficiency Light Emission

    Science.gov (United States)

    Lu, Yifei

    Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications. This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD

  20. Water-soluble resorcin[4]arene based cavitands

    NARCIS (Netherlands)

    Grote gansey, M.H.B.; Grote Gansey, Marcel H.B.; Bakker, Frank K.G.; Feiters, Martinus C.; Geurts, Hubertus P.M.; Verboom, Willem; Reinhoudt, David

    1998-01-01

    Water-soluble resorcin[4]arene based cavitands were obtained in good yields by reaction of bromomethylcavitands with pyridine. Their solubility was determined by conductometry. The behaviour in water depends on the alkyl chain length; the methylcavitand does not aggregate, whereas the pentyl- and

  1. Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification.

    Science.gov (United States)

    Fernandes, A R; Dias-Ferreira, J; Cabral, C; Garcia, M L; Souto, E B

    2018-06-01

    The clinical use of poorly water-soluble drugs has become a big challenge in pharmaceutical development due to the compromised bioavailability of the drugs in vivo. Nanocrystals have been proposed as a formulation strategy to improve the dissolution properties of these drugs. The benefits of using nanocrystals in drug delivery, when compared to other nanoparticles, are related to their production facilities, simple structure, and suitability for a variety of administration routes. High pressure homogenization (HPH) is the most promising production process, which can be employed at low or high temperatures. Ibuprofen nanocrystals with a mean size below 175 nm, and polydispersity below 0.18, have been produced by melt-emulsification, followed by HPH. Two nanocrystal formulations, differing on the surfactant composition, have been produced, their in vitro ibuprofen release tested in Franz diffusion cells and adjusted to several kinetic models (zero order, first order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, Baker-Lonsdale and Weibull model). Cell viability was assessed at 3, 6 and 24 h of incubation on human epithelial colorectal cells (Caco-2) by AlamarBlue ® colorimetric assay. For both formulations, Caco-2 cells viability was dependent on the drug concentration and time of exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe3+ in water

    International Nuclear Information System (INIS)

    Dong, Yingying; Zhang, Hanzhuo; Lei, Fan; Liang, Mei; Qian, Xuefeng; Shen, Peilian; Xu, Hui; Chen, Zhihui; Gao, Junkuo; Yao, Juming

    2017-01-01

    Zr-based MOF structure UiO-66 exhibits unprecedented high thermal and chemical stability, making it to be one of the most used MOFs in various applications. Yet, the poor photoluminescent (PL) properties of UiO-66 limit its applications in luminescent sensing. Herein, a new benzimidazole-functionalized UiO-66 nanocrystal (UiO-66-BI) was successfully fabricated via microwave synthesis. UiO-66-BI displayed octahedral nanocrystal morphology with a diameter smaller than 200 nm and could disperse well in water and common organic solvents. UiO-66-BI demonstrated extended optical absorption in the visible-light region and efficiently improved PL emission compared with UiO-66 pristine. The sensing properties of UiO-66-BI nanocrystals towards different ions were studied, and the results demonstrated that UiO-66-BI showed excellent selective luminescent sensing of Fe 3+ ions in water.

  4. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    OpenAIRE

    Hue Ryan; Gladfelter Wayne; Gresback Ryan; Kortshagen Uwe

    2011-01-01

    Abstract Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown ...

  5. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  6. Ionic-liquid-induced microfluidic reaction for water-soluble Ce1-xTbxF3 nanocrystal synthesis

    International Nuclear Information System (INIS)

    Xie Nan; Luan Weiling

    2011-01-01

    Luminescent lanthanide nanocrystals (NCs) are proposed to be a promising new class of fluorescent labeling agents due to their attractive optical and chemical features including low toxicity, wide photoluminescence (PL) emission and high resistance to photobleaching. In this paper, an ionic-liquid-induced synthesis of Ce 1-x Tb x F 3 nanoparticle was investigated via utilizing a capillary microreactor. Ionic liquid-[bmim]BF 4 acts as both a fluoride source and stabilizing solvent during the reaction, which was shown to be a key factor that governs luminescence intensity of the obtained nanoparticles. The luminescent properties can be greatly improved by optimizing the volume percentage of [bmim]BF 4 . Furthermore, the reaction temperature exerts an influence on the properties of the prepared samples. Experimental results show that the colloidal solutions of Tb 3+ -doped CeF 3 NCs exhibit the characteristic emission of Ce 3+ 5d-4f and Tb 3+5 D 4 - 7 F J (J = 6-3) transitions with 5 D 4 - 7 F 5 green emission at 542 nm as the strongest peak. The as-prepared samples are found dispersible in water with the quantum yield (in aqueous solution) as 12%, which indicates a potential application on biolabels, light-emitting diodes (LEDs) and redox luminescent switches.

  7. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    International Nuclear Information System (INIS)

    Virpal,; Hastir, Anita; Kaur, Jasmeet; Singh, Gurpreet; Singh, Ravi Chand

    2015-01-01

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered at 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states

  8. Synthesis and characterization of spin-coated ZnS thin films

    Science.gov (United States)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  9. Solubility and physical properties of sugars in pressurized water

    International Nuclear Information System (INIS)

    Saldaña, Marleny D.A.; Alvarez, Víctor H.; Haldar, Anupam

    2012-01-01

    Highlights: ► Sugar solubility in pressurized water and density at high pressures were measured. ► Glucose solubility was higher than that of lactose as predicted by their σ-profiles. ► Sugar aqueous solubility decreased with an increase in pressure from 15 to 120 bar. ► Aqueous glucose molecular packing shows high sensitivity to pressure. ► The COSMO-SAC model qualitatively predicted the sugar solubility data. - Abstract: In this study, the solubility, density, and refractive index of glucose and lactose in water as a function of temperature were measured. For solubility of sugars in pressurized water, experimental data were obtained at pressures of (15 to 120) bar and temperatures of (373 to 433) K using a dynamic flow high pressure system. Density data for aqueous sugar solutions were obtained at pressures of (1 to 300) bar and temperatures of (298 to 343) K. The refractive index of aqueous sugar solutions was obtained at 293 K and atmospheric pressure. Activity coefficient models, Van Laar and the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), were used to fit and predict the experimental solubility data, respectively. The results obtained showed that the solubility of both sugars in pressurized water increase with an increase in temperature. However, with the increase of pressure from 15 bar to 120 bar, the solubility of both sugars in pressurized water decreased. The Van Laar model fit the experimental aqueous solubility data with deviations lower than 13 and 53% for glucose and lactose, respectively. The COSMO-SAC model predicted qualitatively the aqueous solubility of these sugars.

  10. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-09-01

    Full Text Available Cetyltrimethyl ammonium bromide cationic (CTAB surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD, scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS. This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  11. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  12. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  13. Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe{sup 3+} in water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yingying; Zhang, Hanzhuo; Lei, Fan; Liang, Mei; Qian, Xuefeng; Shen, Peilian [The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Xu, Hui, E-mail: huixu@cjlu.edu.cn [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Chen, Zhihui, E-mail: huixu.chen@gmail.com [The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Junkuo, E-mail: jkgao@zstu.edu.cn [The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yao, Juming [The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2017-01-15

    Zr-based MOF structure UiO-66 exhibits unprecedented high thermal and chemical stability, making it to be one of the most used MOFs in various applications. Yet, the poor photoluminescent (PL) properties of UiO-66 limit its applications in luminescent sensing. Herein, a new benzimidazole-functionalized UiO-66 nanocrystal (UiO-66-BI) was successfully fabricated via microwave synthesis. UiO-66-BI displayed octahedral nanocrystal morphology with a diameter smaller than 200 nm and could disperse well in water and common organic solvents. UiO-66-BI demonstrated extended optical absorption in the visible-light region and efficiently improved PL emission compared with UiO-66 pristine. The sensing properties of UiO-66-BI nanocrystals towards different ions were studied, and the results demonstrated that UiO-66-BI showed excellent selective luminescent sensing of Fe{sup 3+} ions in water.

  14. Structural evolution and optical properties of oxidized ZnS microrods

    Energy Technology Data Exchange (ETDEWEB)

    Trung, D.Q. [Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); Quang Ninh University of Industry, Yen Tho-Dong Trieu District, Quang Ninh Province (Viet Nam); Thang, P.T.; Hung, N.D. [Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); Huy, P.T., E-mail: huy.phamthanh@hust.edu.vn [Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam)

    2016-08-15

    In this study, we present a simple and versatile way to growth and modify photoemission of high quality ZnS microrods by thermal evaporation method in combination with post oxidation in oxygen environment. The as-grown ZnS microrods show strong near edge luminescence doublets at room temperature indicating the high crystalline quality. Using ultrahigh-resolution scanning electron microscope integrated with energy microanalysis and cathodoluminescence capacity we elucidate the effect of oxidation temperature on microstructure surface, chemical composition and emission spectra of ZnS microrods. Under appropriate oxidation condition, the initial high quality ZnS microrods can be converted into ZnS/ZnO microrod heterostructures or optically active porous ZnO microrods. More particularly, we demonstrate that the emission wavelength of an oxygen-related defect could be tuned in between optical band-gap of ZnS and ZnO upon increasing the oxidation temperature. This research introduces a simple approach to synthesize and tune optical property of high quality ZnS crystals. - Highlights: • High quality optically defect free ZnS microrods were synthesized in large scale. • The structural evolution and changes in optical emission upon oxidation were disclosed. • Luminescence of oxygen-related defect can be tuned using oxidation temperature. • The initial ZnS microrods can be converted into ZnS/ZnO heterostructure. • Porous ZnO microrods with negligible defect emissions were achieved.

  15. The pure rotational spectrum of ZnS (X 1Σ +)

    Science.gov (United States)

    Zack, L. N.; Ziurys, L. M.

    2009-10-01

    The pure rotational spectrum of ZnS (X 1Σ +) has been measured using direct-absorption millimeter/sub-millimeter techniques in the frequency range 372-471 GHz. This study is the first spectroscopic investigation of this molecule. Spectra originating in four zinc isotopologues ( 64ZnS, 66ZnS, 68ZnS, and 67ZnS) were recorded in natural abundance in the ground vibrational state, and data from the v = 1 state were also measured for the two most abundant zinc species. Spectroscopic constants have been subsequently determined, and equilibrium parameters have been estimated. The equilibrium bond length was calculated to be re ˜ 2.0464 Å, which agrees well with theoretical predictions. In contrast, the dissociation energy of DE ˜ 3.12 eV calculated for ZnS, assuming a Morse potential, was significantly higher than past experimental and theoretical estimates, suggesting diabatic interaction with other potentials that lower the effective dissociation energy. Although ZnS is isovalent with ZnO, there appear to be subtle differences in bonding between the two species, as suggested by their respective force constants and bond length trends in the 3d series.

  16. Synthesis of in-situ luminescent ZnS nanoparticles facile with CTAB micelles and their properties study

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Vaishali [Centre for Nanoscience, Central University of Gujarat, Gandhinagar (India); Singh, Man [School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India Telephone: 079-23260210, fax: 079-23260076 (India)

    2016-04-13

    Currently, the development of micelles route is thrust area of research in nanoscience for the control particle size and remarkable properties through chemical co-precipitation method. A 0.9 mM aqueous CTAB micellar solution plays a role as capping agent in the homogeneous solution of 0.5 M ZnSO{sub 4} and 0.5 M Na{sub 2}S for synthesis, further precipitates purified with centrifugation in cold ethanol and millipore water to remove unreacted reagents and ionic salt particles. A resultant, white colored luminescent ZnS nanoparticle out with ∼95% yield is reported. The ZnS nanoparticles have been examined by their luminescence properties, optical properties and crystal structure. The mean particle size of ZnS nanoparticles is found to be ∼10 nm in various technical results and UV-absorption was 80 nm blue shifts moved from 345 nm (bulk material) to 265 nm, showing a quantum size impact. The X-ray diffraction (XRD) pattern shows the immaculate cubic phase. Photoluminescence (PL) investigates the recombination mechanism with blue emission from shallow electron traps at 490 nm in ZnS nanoparticles. An FTIR spectrum and Thermal gravimetric analysis (TGA) gives confirmation of CTAB – cationic surfactant on surface of ZnS nanoparticle as capping agent as well thermal stability of CTAB capped ZnS nanoparticles with respect to temperature.

  17. Prepare core–multishell CdSe/ZnS nanocrystals with pure color and controlled emission by tri-n-octylphosphine-assisted method

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cuiling, E-mail: rencl@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Hao, Junjie, E-mail: haojj@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Chen, Hongli [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Wang, Kai, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Wu, Dan [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2015-10-30

    Graphical abstract: The core–multishell CdSe/ZnS QDs synthesized by the TOP-assisted SILAR method represent pure color, high luminescence and controlled emission wavelength, which can be continuously tuned by simply varying the emission of the core nanocrystals. - Highlights: • The prepared core–multishell QDs have pure color emission (FWHM, <25 nm) even after coating with 3-monolayer ZnS. • The emission wavelength can be continuously adjusted by simply varying the ODA:Cd ratio for preparing the core nanocrystals. • The CdSe/ZnS QDs still have good optical properties synthesized at 30 multi scales. • The knowledge gained in this study enabled us to better understand the mechanism of TOP-assisted method. - Abstract: Core–multishell semiconductor nanocrystals have great potential in light emitting devices (LEDs) display, fluorescent biomarkers and luminescent solar concentrators. However, their applications are strongly limited due to the wide full-width at half-maximum (FWHM), inaccurate controllable emission wavelength, and decreased quantum yield as the shell coverage growth. So there still remains a great challenge for improving the photoluminescence properties of core–multishell quantum dots. In this work, tri-n-octylphosphine (TOP) assisted method was used to prepare CdSe/ZnS QDs with narrow FWHM and controlled emission wavelength, the influence of experimental conditions on the photoluminescent properties of the core–multishell QDs were investigated. The experimental results indicated this is an effective method to prepare core–multishell QDs with pure color emission (FWHM value is smaller than 25 nm after coating with 3 monolayers of ZnS), accurately controlled emission and high QY (>95%). This is the smallest FWHM for core–multishell QDs. The emission wavelength of the as-prepared core–multishell QDs can be continuously tuned by simply varying the emission of the core nanocrystals. Furthermore, the knowledge gained in this study

  18. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    Science.gov (United States)

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  19. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    OpenAIRE

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-01-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si h...

  20. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  1. Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters

    Directory of Open Access Journals (Sweden)

    Gradzielski Michael

    2008-01-01

    Full Text Available Abstract Synthesis of semiconductor nanoparticles with new photophysical properties is an area of special interest. Here, we report synthesis of ZnS nanoparticles in aqueous micellar solution of Cetyltrimethylammonium bromide (CTAB. The size of ZnS nanodispersions in aqueous micellar solution has been calculated using UV-vis spectroscopy, XRD, SAXS, and TEM measurements. The nanoparticles are found to be polydispersed in the size range 6–15 nm. Surface passivation by surfactant molecules has been studied using FTIR and fluorescence spectroscopy. The nanoparticles have been better stabilized using CTAB concentration above 1 mM. Furthermore, room temperature absorption and fluorescence emission of powdered ZnS nanoparticles after redispersion in water have also been investigated and compared with that in aqueous micellar solution. Time-dependent absorption behavior reveals that the formation of ZnS nanoparticles depends on CTAB concentration and was complete within 25 min.

  2. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine

    Science.gov (United States)

    2012-01-01

    Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352

  3. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability.

    Science.gov (United States)

    Morakul, Boontida; Suksiriworapong, Jiraphong; Leanpolchareanchai, Jiraporn; Junyaprasert, Varaporn Buraphacheep

    2013-11-30

    Nanocrystals is one of effective technologies used to improve solubility and dissolution behavior of poorly soluble drugs. Clarithromycin is classified in BCS class II having low bioavailability due to very low dissolution behavior. The main purpose of this study was to investigate an efficiency of clarithromycin nanocrystals preparation by precipitation-lyophilization-homogenization (PLH) combination method in comparison with high pressure homogenization (HPH) method. The factors influencing particle size reduction and physical stability were assessed. The results showed that the PLH technique provided an effective and rapid reduction of particle size of nanocrystals to 460 ± 10 nm with homogeneity size distribution after only the fifth cycle of homogenization, whereas the same size was attained after 30 cycles by the HPH method. The smallest nanocrystals were achieved by using the combination of poloxamer 407 (2%, w/v) and SLS (0.1%, w/v) as stabilizers. This combination could prevent the particle aggregation over 3-month storage at 4 °C. The results from SEM showed that the clarithromycin nanocrystals were in cubic-shaped similar to its initial particle morphology. The DSC thermogram and X-ray diffraction pattern of nanocrystals were not different from the original drug except for intensity of peaks which indicated the presenting of nanocrystals in the crystalline state and/or partial amorphous form. In addition, the dissolution of the clarithromycin nanocrystals was dramatically increased as compared to the coarse clarithromycin. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. High yield growth of uniform ZnS nanospheres with strong photoluminescence properties

    International Nuclear Information System (INIS)

    Li, Yuan; Li, Qing; Wu, Huijie; Zhang, Jin; Lin, Hua; Nie, Ming; Zhang, Yu

    2013-01-01

    Graphical abstract: High-yield ZnS nanospheres with an average diameter of 80 nm were fabricated successfully in aqueous solution at 100 °C by the assistance of surfactant PVP. It was found that PVP plays a crucial role in the formation of uniform ZnS nanospheres. A possible self-assembling growth mechanism was proposed. The UV–vis spectrum indicates that the as-prepared ZnS nanospheres exhibit a dramatic blue-shift. PL spectrum reveals that the ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. Highlights: ► High-yield ZnS nanospheres were generated conveniently in aqueous solution. ► The amount of surfactant PVP plays a crucial role on the morphology and size of the products. ► A tentative explanation for the growth mechanism of ZnS nanospheres was proposed. ► The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. ► PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. - Abstract: High yield ZnS nanospheres were generated conveniently in aqueous solution with the assistance of surfactant polyvinyl pyrrolidone (PVP). The products were characterized by XRD, EDX, XPS, FESEM, TEM and HRTEM. The as-prepared ZnS nanospheres were uniform with an average diameter of 80 nm. The role of PVP in the forming of ZnS nanospheres was investigated. The results indicated that surfactant PVP plays a crucial role on the morphology and size of the products. Moreover, a tentative explanation for the growth mechanism of ZnS nanospheres was proposed. UV–vis and PL absorption spectrum were used to investigate the optical properties of ZnS nanospheres. The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm.

  5. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    Science.gov (United States)

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  6. Semiconductor nanocrystals for novel optical applications

    Science.gov (United States)

    Moon, Jong-Sik

    Inspired by the promise of enhanced spectral response, photorefractive polymeric composites photosensitized with semiconductor nanocrystals have emerged as an important class of materials. Here, we report on the photosensitization of photorefractive polymeric composites at visible wavelengths through the inclusion of narrow band-gap semiconductor nanocrystals composed of PbS. Through this approach, internal diffraction efficiencies in excess of 82%, two-beam-coupling gain coefficients in excess of 211 cm-1, and response times 34 ms have been observed, representing some of the best figures-of-merit reported on this class of materials. In addition to providing efficient photosensitization, however, extensive studies of these hybrid composites have indicated that the inclusion of nanocrystals also provides an enhancement in the charge-carrier mobility and subsequent reduction in the photorefractive response time. Through this approach with PbS as charge-carrier, unprecedented response times of 399 micros were observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency and with internal diffraction efficiencies of 72% and two- beam-coupling gain coefficients of 500 cm-1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of the enhanced charge mobility without the accompaniment of superfluous traps. Finally, water soluble InP/ZnS and CdSe/ZnS quantum dots interacted with CPP and Herceptin to apply them as a bio-maker. Both of quantum dots showed the excellent potential for use in biomedical imaging and drug delivery applications. It is anticipated that these approaches can play a significant role in the eventual commercialization of these classes of materials.

  7. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characterization of Sn Doped ZnS thin films synthesized by CBD

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Ayan; Mitra, Partha, E-mail: mitrapartha1@rediffmail.com [Department of Physics, The University of Burdwan, Burdwan (India)

    2017-03-15

    Zinc sulphide (ZnS) thin film were prepared using chemical bath deposition (CBD) process and tin (Sn) doping was successfully carried out in ZnS. Structural, morphological and microstructural characterization was carried out using XRD, TEM, FESEM and EDX. XRD and SAED pattern confirms presence of hexagonal phase. Rietveld analysis using MAUD software was used for particle size estimation. A constantly decreasing trend in particle size was observed with increasing tin incorporation in ZnS film which was due to enhanced microstrain resulting for tin incorporation. The particle size of prepared hexagonal wurtzite ZnS was around 14-18 nm with average size of ~16.5 nm. The bandgap of the film increases from ~ 3.69 eV for ZnS to ~ 3.90 eV for 5% Sn doped ZnS film which might be due to more ordered hexagonal structure as a result of tin incorporation. Band gap tenability property makes Sn doped ZnS suitable for application in different optoelectronics devices. PL study shows variation of intensity with excitation wavelength and a red shift is noticed for increasing excitation wavelength. (author)

  9. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  10. Study on REE bound water-soluble polysaccharides in plant

    International Nuclear Information System (INIS)

    Wang Yuqi; Guo Fanqing; Xu Lei; Chen Hongmin; Sun Jingxin; Cao Guoyin

    1999-01-01

    The binding of REE with water-soluble polysaccharides (PSs) in leaves of fern Dicranopteris Dichotoma (DD) has been studied by molecular activation analysis. The cold-water-soluble and hot-water-soluble PSs in leaves of DD were obtained by using biochemical separation techniques. The PSs of non-deproteinization and deproteinization, were separated on Sephadex G-200 gel permeation chromatography. The absorption curves of elution for the PSs were obtained by colorimetry, and the proteins were detected using Coomassic brilliant G-250. Eight REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in these PSs were determined by instrumental neutron activation analysis. The results obtained show that the REEs are bound firmly with the water-soluble PSs in the plant. A measurement demonstrates that the PSs bound with REEs are mainly of smaller molecular weight (10,000 to 20,000 Dalton)

  11. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xinjuan, E-mail: wangxj@hnu.edu.cn [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Zhang Qinglin [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Zou Bingsuo, E-mail: zoubs@bit.edu.cn [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Micro-nano Technology Center and School of MSE, BIT, Beijing 100081 (China); Lei Aihua; Ren Pinyun [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China)

    2011-10-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 {mu}m were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn{sup 2+} ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  12. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    International Nuclear Information System (INIS)

    Wang Xinjuan; Zhang Qinglin; Zou Bingsuo; Lei Aihua; Ren Pinyun

    2011-01-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  13. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    Directory of Open Access Journals (Sweden)

    Annika Tuomela

    2016-05-01

    Full Text Available Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed.

  14. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals

    Science.gov (United States)

    Qiao, Bo; Song, Pengjie; Cao, Jingyue; Zhao, Suling; Shen, Zhaohui; Gao, Di; Liang, Zhiqin; Xu, Zheng; Song, Dandan; Xu, Xurong

    2017-11-01

    Lead halide perovskite materials are thriving in optoelectronic applications due to their excellent properties, while their instability due to the fact that they are easily hydrolyzed is still a bottleneck for their potential application. In this work, water-resistant, monodispersed and stably luminescent cesium lead bromine perovskite nanocrystals coated with CsPb2Br5 were obtained using a modified non-stoichiometric solution-phase method. CsPb2Br5 2D layers were coated on the surface of CsPbBr3 nanocrystals and formed a core-shell-like structure in the synthetic processes. The stability of the luminescence of the CsPbBr3 nanocrystals in water and ethanol atmosphere was greatly enhanced by the photoluminescence-inactive CsPb2Br5 coating with a wide bandgap. The water-stable enhanced nanocrystals are suitable for long-term stable optoelectronic applications in the atmosphere.

  15. Effect of Cr doping on structural and magnetic properties of ZnS nanoparticles

    International Nuclear Information System (INIS)

    Virpal,; Singh, Jasvir; Sharma, Sandeep; Singh, Ravi Chand

    2016-01-01

    The structural, optical and magnetic properties of pure and Cr doped ZnS nanoparticles were studied at room temperature. X-ray diffraction analysis confirmed the absence of any mixed phase and the cubic structure of ZnS in pure and Cr doped ZnS nanoparticles. Fourier transfer infrared spectra confirmed the Zn-S stretching bond at 664 cm"−"1 of ZnS in all prepared nanoparticles. The UV-Visible absorption spectra showed blue shift which became even more pronounced in Cr doped ZnS nanoparticles. However, at relatively higher Cr concentrations a slower red shift was shown by the doped nanoparticles. This phenomenon is attributed to sp-d exchange interaction that becomes prevalent at higher doping concentrations. Further, magnetic hysteresis measurements showed that Cr doped ZnS nanoparticles exhibited ferromagnetic behavior at room temperature.

  16. Solubility of carbohydrates in heavy water.

    Science.gov (United States)

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Water-Soluble Vitamin E-Tocopheryl Phosphate.

    Science.gov (United States)

    Zingg, Jean-Marc

    The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases. © 2018 Elsevier Inc. All rights reserved.

  18. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    Science.gov (United States)

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I.-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  19. Photoluminescence of ZnS: Mn quantum dot by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Yun Hu

    2018-01-01

    Full Text Available ZnS: Mn quantum dots (QDs with the average grain size from 4.2 to 7.2 nm were synthesized by a hydrothermal method. All samples were cubic zinc blende structure (β-ZnS measured using X-ray diffraction (XRD. And the main diffraction peaks of ZnS: Mn shifted slightly towards higher angle in comparison with the intrinsic ZnS because of the substitution of Mn2+ for Zn2+. Due to the small grain size (4-7 nm effect, the poor dispersion and serious reunion phenomenon for the samples were observed from transmission electron microscopy (TEM. ZnS: Mn QDs had four peaks centered at 466, 495, 522, and 554 nm, respectively, in the photoluminescence (PL spectra, in which the band at 554 nm absent in the intrinsic ZnS: Mn is attributed to the doping of Mn2+ in the lattice sites. As the concentration of Mn2+ increasing from 0% to 0.6 at%, the intensity of the PL emission also increased. But the concentration reached 0.9 at%, quenching of PL emission occurred. The peak in ZnS: Mn QDs observed at 490 cm-1 was originated from the stretching vibration of the Mn–O bonds in the Fourier transform infrared (FTIR spectra. And the small changes about this peak compared with the previous reports at 500 cm-1 can be attributed to the formation of quantum dots. This method we utilized to synthesize ZnS: Mn QDs is very simple, low cost, and applicable for other semiconductor QD materials.

  20. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    Science.gov (United States)

    Chang, Shu-Quan; Kang, Bin; Dai, Yao-Dong; Zhang, Hong-Xu; Chen, Da

    2011-11-01

    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan. PACS: 81.07.Ta; 78.67.Hc; 82.35.Np; 87.85.Rs.

  1. Preparation of sensitized ZnS and its photocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang Haitao; Chen Xinyi; Li Zhaosheng; Kou Jiahui; Yu Tao; Zou Zhigang

    2007-01-01

    In this paper, sensitized ZnS with visible light driven photocatlytic ability was successfully prepared. The obtained ZnS was characterized by x-ray diffraction, UV-visible diffuse reflectance spectra and Fourier transform infrared spectra. The photocatalytic property of the prepared ZnS was evaluated by decomposing methyl orange (MO). These sensitized ZnS powders with a proper molar ratio showed higher photocatalytic activity than TiO 2 (P25) under visible light (λ > 420 nm) irradiation. A possible explanation for the visible light activity of the prepared ZnS was proposed

  2. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes

    Directory of Open Access Journals (Sweden)

    Chen M

    2017-08-01

    Full Text Available Min Chen,1,2 Wanqing Li,3 Xun Zhang,1 Ye Dong,1 Yabing Hua,1 Hui Zhang,1 Jing Gao,1 Liang Zhao,2 Ying Li,1 Aiping Zheng1 1State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 2School of Pharmacy, Jinzhou Medical University, Jinzhou, 3School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN-38 is a potent broad-spectrum antitumor drug derived from irinotecan hydrochloride (CPT-11. Due to its poor solubility and instability of the active lactone ring, its clinical use is significantly limited. As one of the most promising formulations for poorly water-soluble drugs, nanocrystals have attracted increasing attention. In order to solve these problems and evaluate the antitumor effect of SN-38 in vitro and in vivo, two nanocrystals with markedly different particle sizes were prepared. Dynamic light scattering and transmission electron microscopy were used to investigate the two nanocrystals. The particle sizes of SN-38 nanocrystals A (SN-38/NCs-A and SN-38 nanocrystals B (SN-38/NCs-B were 229.5±1.99 and 799.2±14.44 nm, respectively. X-ray powder diffraction analysis showed that the crystalline state of SN-38 did not change in the size reduction process. An accelerated dissolution velocity of SN-38 was achieved by nanocrystals, and release rate of SN-38/NCs-A was significantly faster than that of SN-38/NCs-B. Cellular uptake, cellular cytotoxicity, pharmacokinetics, animal antitumor efficacy, and tissue distribution were subsequently examined. As a result, enhanced intracellular accumulation in HT1080 cells and cytotoxicity on different tumor cells were observed for SN-38/NCs-A compared to that for SN-38/NCs-B and solution. Besides, compared to the SN-38 solution, SN-38/NCs-A had a higher bioavailability after intravenous injection; while the bioavailability of SN-38/NCs-B was even lower than

  3. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability.

    Science.gov (United States)

    Jain, Sanyog; Reddy, Venkata Appa; Arora, Sumit; Patel, Kamlesh

    2016-10-01

    Candesartan cilexetil (CC), an ester prodrug of candesartan, is BCS class II drug with extremely low aqueous solubility limiting its oral bioavailability. The present research aimed to develop a nanocrystalline formulation of CC with improved saturation solubility in gastrointestinal fluids and thereby, exhibiting enhanced oral bioavailability. CC nanocrystals were prepared using a low energy antisolvent precipitation methodology. A combination of hydroxypropyl methylcellulose (HPMC) and Pluronic® F 127 (50:50 w/w) was found to be optimum for the preparation of CC nanocrystals. The particle size, polydispersity index (PDI), and zeta potential of optimized formulation was found to be 159 ± 8.1 nm, 0.177 ± 0.043, and -23.7 ± 1.02 mV, respectively. Optimized formulation was found to possess irregular, plate-like morphology as evaluated by scanning electron microscopy and crystalline as evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). A significant increase in saturation solubility and dissolution rate of the optimized nanosuspension was observed at all the tested pH conditions. Optimized CC nanocrystals exhibited a storage stability of more than 3 months when stored under cold and room temperature conditions. In vitro Caco-2 permeability further revealed that CC nanocrystals exhibited nearly 4-fold increase in permeation rate compared to the free CC. In vivo oral bioavailability studies of optimized CC nanocrystals in murine model revealed 3.8-fold increase in the oral bioavailability and twice the C max as compared with the free CC when administered orally. In conclusion, this study has established a crystalline nanosuspension formulation of CC with improved oral bioavailability in murine model. Graphical Abstract Antisolvent precipitation methodology for the preparation of Candesartan Cilexetil nanocrystals for enhanced solubility and oral bioavailability.

  4. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  5. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  6. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  7. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  8. Synthesis and characterization of sol–gel derived ZnS : Mn ...

    Indian Academy of Sciences (India)

    Unknown

    The films were then (in less than ~ 10 s) transferred to an oven preset at the ... (5 at.%) nanocrystalline ZnS film. Figure 3. d{ln(αhν)}/d(hν) vs hν plots for (a) undoped and. (b) Mn2+ doped nanocrystalline ZnS film (α in cm–1, hν in eV). Figure 1. .... 2⋅8 nm and 2⋅12 nm in case of undoped and doped ZnS nanocrystalline ...

  9. Substrate dependent hierarchical structures of RF sputtered ZnS films

    Science.gov (United States)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  10. Leaching behavior of water-soluble carbohydrates from almond hulls

    Science.gov (United States)

    Over 58% of the dry matter content of the hulls from the commercial almond (Prunus dulcis (Miller) D.A. Webb) is soluble in warm water (50-70°C) extraction. The water-soluble extractables include useful amounts of fermentable sugars (glucose, fructose, sucrose), sugar alcohols (inositol and sorbito...

  11. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles

    International Nuclear Information System (INIS)

    Meerabai Devi, L; Negi, Devendra P S

    2011-01-01

    We have used fluorescent ZnS nanoparticles as a probe for the determination of adenine. A typical 2 x 10 -7 M concentration of adenine quenches 39.3% of the ZnS fluorescence. The decrease in ZnS fluorescence as a function of adenine concentration was found to be linear in the concentration range 5 x 10 -9 -2 x 10 -7 M. The limit of detection (LOD) of adenine by this method is 3 nM. Among the DNA bases, only adenine quenched the fluorescence of ZnS nanoparticles in the submicromolar concentration range, thus adding selectivity to the method. The amino group of adenine was important in determining the quenching efficiency. Steady-state fluorescence experiments suggest that one molecule of adenine is sufficient to quench the emission arising from a cluster of ZnS consisting of about 20 molecules. Time-resolved fluorescence measurements indicate that the adenine molecules block the sites on the surface of ZnS responsible for emission with the longest lifetime component. This method may be applied for the determination of adenine in biological samples since the measurements have been carried out at pH 7.

  12. Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide.

    Science.gov (United States)

    Praus, Petr; Dvorský, Richard; Horínková, Petra; Pospíšil, Miroslav; Kovář, Petr

    2012-07-01

    ZnS nanoparticles were precipitated in aqueous dispersions of cationic surfactant cetyltrimethylammonium bromide (CTAB). The sphere radii of ZnS nanoparticles calculated by using band-gap energies steeply decreased from 4.5 nm to 2.2 nm within CTAB concentrations of 0.4-1.5 mmol L(-1). Above the concentration of 1.5 mmol L(-1), the radii were stabilized at R=2.0 nm and increased up to R=2.5 nm after 24 h. The hydrodynamic diameters of CTAB-ZnS structures observed by the dynamic light scattering (DLS) method ranged from 130 nm to 23 nm depending on CTAB concentrations of 0.5-1.5 mmol L(-1). The complex structures were observed by transmission electron microscopy (TEM). At the higher CTAB concentrations, ZnS nanoparticles were surrounded by CTA(+) bilayers forming positively charged micelles with the diameter of 10nm. The positive zeta-potentials of the micelles and their agglomerates were from 16 mV to 33 mV. Wurtzite and sphalerite nanoparticles with R=2.0 nm and 2.5 nm covered by CTA(+) were modeled with and without water. Calculated sublimation energies confirmed that a bilayer arrangement of CTA(+) on the ZnS nanoparticles was preferred to a monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl)trimethoxysilane as a capping molecule

    International Nuclear Information System (INIS)

    Li Hui; Shih, Wan Y; Shih, W-H

    2007-01-01

    We have examined the synthesis and stability of ZnS quantum dots (QDs) using an all-aqueous route at pH = 12 with (3-mercaptopropyl)trimethoxysilane (MPS) as the capping molecule. The MPS-capped ZnS QDs obtained were well dispersed with a particle size around 5 nm and a cubic zinc blende crystalline structure. The QDs exhibited optimal photoluminescence (PL) emission when the MPS:Zn:S ratio was between 1/4:2:1 and 1/2:2:1. Compared with the earlier obtained ZnS QDs capped with 3-mercaptopropionic acid (MPA), the MPS-capped ZnS QDs exhibited a similar, high quantum yield, 42% and 25% for MPS:Zn:S 1/2:2:1 and 1/4:2:1, respectively, but much better photostability. With the MPS:Zn:S ratio of 1/4:2:1, we showed that at room temperature and under the normal laboratory lighting conditions, the MPS-capped QDs were able to maintain their PL intensity for more than 50 days without degradation. We further showed that the MPS-capped QDs were stable not only in their synthesis solution but also in deionized (DI) water and in phosphate buffer saline (PBS) solution. The QDs with MPS:Zn:S=1/2:2:1 were able to stay at 50 deg. C for more than 20 h without degrading the PL intensity. They were also stable under continuous UV exposure for 3 h. With the high quantum yield and significantly improved photostability, the MPS-capped ZnS QDs could be good imaging tools for many biological applications

  14. Effect of surfactants on the fluorescence spectra of water-soluble ...

    Indian Academy of Sciences (India)

    TECS

    Effect of surfactants on the fluorescence spectra of water-soluble. MEHPPV ... polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhi- ..... in other words the variation of emission intensity.

  15. Some physicochemical aspects of water-soluble mineral flotation.

    Science.gov (United States)

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    Science.gov (United States)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  17. Highly sensitive luminescent sensor for cyanide ion detection in aqueous solution based on PEG-coated ZnS nanoparticles.

    Science.gov (United States)

    Mehta, Surinder K; Salaria, Khushboo; Umar, Ahmad

    2013-03-15

    Using polyethylene glycol (PEG) coated ZnS nanoparticles (NPs), a novel and highly sensitive luminescent sensor for cyanide ion detection in aqueous solution has been presented. ZnS NPs have been used to develop efficient luminescence sensor which exhibits high reproducibility and stability with the lowest limit of detection of 1.29×10(-6) mol L(-1). The observed limit of detection of the fabricated sensor is ~6 times lower than maximum value of cyanide permitted by United States Environmental Protection Agency for drinking water (7.69×10(-6) mol L(-1)). The interfering studies show that the developed sensor possesses good selectivity for cyanide ion even in presence of other coexisting ions. Importantly, to the best of our knowledge, this is the first report which demonstrates the utilization of PEG- coated ZnS NPs for efficient luminescence sensor for cyanide ion detection in aqueous solution. This work demonstrates that rapidly synthesized ZnS NPs can be used to fabricate efficient luminescence sensor for cyanide ion detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-03-05

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy.

  19. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    International Nuclear Information System (INIS)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi; Liu Baoting

    2008-01-01

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy

  20. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  1. A first-principles study on hydrogen in ZnS: Structure, stability and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Sheng-Yi, E-mail: ayikongjian@gmail.com [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Meng, Xing, E-mail: mengxingjlu@163.com [College of Physics, Jilin University, Changchun 130012 (China)

    2015-02-20

    Based on first-principles calculations, the local structures and their energetic stability for impurity hydrogen (H) in semiconductor ZnS are investigated. H is most favorable to dwell in the bond center (BC) site in ZnS. The antibonding site of Zn (AB{sub Zn}) has close energy with BC. The antibonding site of S (AB{sub S}) and interstitial (I{sub H}) site have 0.19 eV and 0.44 eV energy cost, separately. The bond strength with S and Zn determines the stability of impurity H in ZnS. Meanwhile, H is highly moveable in ZnS. At the room temperature, H can overcome the barrier to diffuse through the neighboring BC site. - Highlights: • Local structures for hydrogen in ZnS are investigated. • Impurity level of hydrogen is modulated by bonding with S or Zn. • Hydrogen is highly moveable in ZnS.

  2. Evaluation of undoped ZnS single crystal materials for x-ray imaging applications

    Science.gov (United States)

    Saleh, Muad; Lynn, Kelvin G.; McCloy, John S.

    2017-05-01

    ZnS-based materials have a long history of use as x-ray luminescent materials. ZnS was one of the first discovered scintillators and is reported to have one of the highest scintillator efficiencies. The use of ZnS for high energy luminescence has been thus far limited to thin powder screens, such as ZnS:Ag which is used for detecting alpha radiation, due to opacity to its scintillation light, primarily due to scattering. ZnS in bulk form (chemical vapor deposited, powder processed, and single crystal) has high transmission and low scattering compared to powder screens. In this paper, the performance of single crystalline ZnS is evaluated for low energy x-ray (PLE) of several undoped ZnS single crystals is compared to their Radioluminescence (RL) spectra. It was found that the ZnS emission wavelength varies on the excitation source energy.

  3. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  4. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  5. Electrophoretic properties of BSA-coated quantum dots.

    Science.gov (United States)

    Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas

    2010-02-01

    Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.

  6. Structure and photoluminescence properties of ZnS films grown on porous Si substrates

    Science.gov (United States)

    Wang, Cai-feng; Hu, Bo; Yi, Hou-hui; Li, Wei-bing

    2011-11-01

    ZnS films were deposited on porous silicon (PS) substrates with different porosities. With the increase of PS substrate porosity, the XRD diffraction peak intensity decreases and the surface morphology of the ZnS films becomes rougher. Voids appear in the films, due to the increased roughness of PS structure. The photoluminescence (PL) spectra of the samples before and after deposition of ZnS were measured to study the effect of substrate porosity on the luminescence properties of ZnS/PS composites. As-prepared PS substrates emit strong red light. The red PL peak of PS after deposition of ZnS shows an obvious blueshift. As PS substrate porosity increases, the trend of blueshift increases. A green emission at about 550 nm was also observed when the porosity of PS increased, which is ascribed to the defect-center luminescence of ZnS. The effect of annealing time on the structural and luminescence properties of ZnS/PS composites were also studied. With the increase of annealing time, the XRD diffraction peak intensity and the self-activated luminescence intensity of ZnS increase, and, the surface morphology of the ZnS films becomes smooth and compact. However, the red emission intensity of PS decreases, which was associated with a redshift. White light emission was obtained by combining the luminescence of ZnS with the luminescence of PS.

  7. Synthesis and green up-conversion fluorescence of colloidal La0.78Yb0.20Er0.02F3/SiO2 core/shell nanocrystals

    International Nuclear Information System (INIS)

    Wang Yan; Qin Weiping; Zhang Jisen; Cao Chunyan; Zhang Jishuang; Jin Ye; Zhu Peifen; Wei Guodong; Wang Guofeng; Wang Lili

    2007-01-01

    Water-soluble PVP-stabilized hexagonal-phase La 0.78 Yb 0.20 Er 0.02 F 3 nanocrystals (NCs) were synthesized by hydrothermal method. The NCs were coated with a very thin silica shell, and amino groups were introduced to the surface of silica shells by copolymerization of 3-aminopropyl(triethoxy)silane. The core/shell NCs can be dispersed in ethanol and water to form stable colloidal solution. The transmission electron microscopy (TEM), selected area electron diffraction (SAED), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the core/shell materials. In addition, the green up-conversion fluorescence mechanism of La 0.78 Yb 0.20 Er 0.02 F 3 /SiO 2 NCs was studied with a 980-nm diode laser as excitation source. The water solubility, small core/shell particles size, and well colloidal stability mean the green up-conversion fluorescence NCs have potential applications in bioassay. - Graphical abstract: Colloidal La 0.78 Yb 0.20 Er 0.02 F 3 /SiO 2 Core/Shell nanocrystals (NCs) were synthesized and the free amino groups were introduced to the surface of silica shells by copolymerization 3-aminopropyl(triethoxy)silane. The NCs can be dispersed in ethanol and water to form stable colloidal solution. In addition, the NCs exhibit green up-conversion fluorescence under 980-nm excitation

  8. Surfactant and template free synthesis of porous ZnS nanoparticles

    International Nuclear Information System (INIS)

    Akhtar, Muhammad Saeed; Riaz, Saira; Mehmood, Rana Farhat; Ahmad, Khuram Shahzad; Alghamdi, Yousef; Malik, Mohammad Azad; Naseem, Shahzad

    2017-01-01

    ZnS thin films composed of porous nanoparticles have been deposited on to glass substrates by combining three simple synthesis methodologies i.e. chemical bath deposition, co-precipitation and spin coating. The XRD results reveal the cubic phase of ZnS thin films crystallized at nano scale. The crystallite size estimated by Scherrer formula was 3.4 nm. The morphology of the samples was analyzed through scanning electron microscopy (SEM) and is evident that thin films are composed of porous nanoparticles with an average size of 150 nm and pores of 40 nm on almost every grain. Crystallinity, phase and morphology were further confirmed via transmission electron microscopy (TEM). The stoichiometry and phase purity of thin films were determined by energy dispersive X-ray (EDX) spectrum and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The surface topography and homogeneity of thin films were analyzed by atomic force microscopy (AFM) and obtained root mean square roughness (4.0326 nm) reveals the morphologically homogeneous growth of ZnS on glass substrates. The UV–Vis spectroscopy and photoluminescence (PL) were carried out to estimate the band gap and observe the emission spectra in order to speculate the viability of ZnS porous nanoparticles in optoelectronic devices and sensors. - Highlights: • ZnS thin films composed of porous nanoparticles have been deposited. • Methodology is based on a combination of three techniques. • Cubic phase ZnS nanoparticles deposited onto glass substrates. • Films characterized by UV/Vis, PL, XRD, SEM, TEM, AFM and XPS.

  9. Surfactant and template free synthesis of porous ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Muhammad Saeed [Division of Science and Technology, University of Education, College Road Township, Lahore (Pakistan); Schools of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Riaz, Saira [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore-54590 (Pakistan); Mehmood, Rana Farhat [University of Education, Lahore, D.G. Khan Campus, Kangan Road, Dera Ghazi Khan (Pakistan); Ahmad, Khuram Shahzad [Environmental Sciences Department, Fatima Jinnah Women University, The Mall, Rawalpindi (Pakistan); Alghamdi, Yousef [Department of Chemistry, Faculty of Science & Art –Rabigh, King Abdulaziz University, Jeddah (Saudi Arabia); Malik, Mohammad Azad, E-mail: Azad.malik@manchester.ac.uk [Schools of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Department of Chemistry, University of Zululand, Private Bag X1001, Kwa-Dlangezwa, 3886 (South Africa); Naseem, Shahzad [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore-54590 (Pakistan)

    2017-03-01

    ZnS thin films composed of porous nanoparticles have been deposited on to glass substrates by combining three simple synthesis methodologies i.e. chemical bath deposition, co-precipitation and spin coating. The XRD results reveal the cubic phase of ZnS thin films crystallized at nano scale. The crystallite size estimated by Scherrer formula was 3.4 nm. The morphology of the samples was analyzed through scanning electron microscopy (SEM) and is evident that thin films are composed of porous nanoparticles with an average size of 150 nm and pores of 40 nm on almost every grain. Crystallinity, phase and morphology were further confirmed via transmission electron microscopy (TEM). The stoichiometry and phase purity of thin films were determined by energy dispersive X-ray (EDX) spectrum and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The surface topography and homogeneity of thin films were analyzed by atomic force microscopy (AFM) and obtained root mean square roughness (4.0326 nm) reveals the morphologically homogeneous growth of ZnS on glass substrates. The UV–Vis spectroscopy and photoluminescence (PL) were carried out to estimate the band gap and observe the emission spectra in order to speculate the viability of ZnS porous nanoparticles in optoelectronic devices and sensors. - Highlights: • ZnS thin films composed of porous nanoparticles have been deposited. • Methodology is based on a combination of three techniques. • Cubic phase ZnS nanoparticles deposited onto glass substrates. • Films characterized by UV/Vis, PL, XRD, SEM, TEM, AFM and XPS.

  10. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    International Nuclear Information System (INIS)

    Melnig, V.; Apostu, M.-O.; Foca, N.

    2008-01-01

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  11. Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water-soluble light-emitting nanoparticles were prepared from hydroxyl group functionalized oligos(p-phenyleneethynylene) (OHOPEL) and water-soluble polymers(PEG,PAA,and PG) by non-covalent bond self-assembly.Their structure and optoelectronic properties were investigated through dynamic light scattering(DLS) ,UV and PL spectroscopy.The optical properties of OHOPEL-based water-soluble nanoparticles exhibited the same properties as that found in OHOPEL films,indicating the existence of interchain-aggregation of OHOPELs in the nanoparticles.OHOPEL-based nanoparticles prepared from conjugated oligomers show smaller size and lower dispersity than nanoparticles from conjugated polymers,which means that the structures of water-soluble nanoparticles are linked to the conjugated length.Furthermore,the OHOPEL/PG and OHOPEL/PAA systems produced smaller particles and lower polydispersity than the OHOPEL/PEG system,indicating that there may exist influence of the strength of non-covalent bonds on the size and degree of dispersity of the nanoparticles.

  12. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  13. Solubility Measurements and Modeling of Zinc, Lead and Iron Sulfides at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    Solubility measurements of sulfides in aqueous solutions are necessary to understand the behaviour of these scaling minerals in geothermal and oil reservoirs. The low solubility levels of Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) make the solubility measurements a challenging...... oxygen atmosphere to avoid the risk of oxidation of sulfide minerals. The solution is kept in an equilibrium cell at constant temperature and pressure with continuous stirring. The concentration of Zn2+, Pb2+, Fe2+ and S2- are measured using Inductively Coupled Plasma Optical Emission spectrometry (ICP...

  14. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    Science.gov (United States)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

  15. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  16. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    Science.gov (United States)

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  17. Flexible and fragmentable tandem photosensitive nanocrystal skins

    Science.gov (United States)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  18. Solubility of corrosion products in high temperature water

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Narasimhan, S.V.

    1995-01-01

    A short review of solubility of corrosion products at high temperature in either neutral or alkaline water as encountered in BWR, PHWR and PWR primary coolant reactor circuits is presented in this report. Based on the available literature, various experimental techniques involved in the study of the solubility, theory for fitting the solubility data to the thermodynamic model and discussion of the published results with a scope for future work have been brought out. (author). 17 refs., 7 figs

  19. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  20. Photoluminescent properties of ZnS nanoparticles prepared by electro-explosion of Zn wires

    International Nuclear Information System (INIS)

    Goswami, Navendu; Sen, P.

    2007-01-01

    We study the photoluminescent properties of ZnS nanoparticles without the influence of dopants or magnetic impurities. The ZnS nanoparticles reported in this case were synthesized by a novel method of electro-explosion of wire (EEW). The nanoparticles were prepared employing electro-explosion of pure zinc wires in a cell filled with sulfide ions to produce a free-standing compound ZnS semiconductor. To investigate the structural and optical properties, these nanoparticles were characterized by X-ray powder diffraction (XRD), atomic force microscopy (AFM), UV-visible and photoluminescence (PL) spectroscopy. Consistent with the enhancement of the PL intensity of the 443 nm peak due to deep blue emission of ZnS particles, the XRD of the nanoparticles reveals a hexagonal phase of ZnS nanocrystallites prepared by our novel synthesis technique

  1. Solubility studies of Np(V) in simulated underground water

    International Nuclear Information System (INIS)

    Zhang Yingjie; Ren Lilong; Jiao Haiyang; Yao Jun; Su Xiguang; Fan Xianhua

    2004-01-01

    The solubility of Np(V) in simulated underground water has been measured with the variation of pH, storage time (0-100 days). All experiments were performed in an Ar glove box which contained high purity Ar, with an oxygen content of less than 5ppm. Experimental results show that the solubility of Np(V) in simulated underground water decreased with increasing pH value of solution; the solubility of Np(V) in simulated underground water determined at different pH is : pH=6.96, [Np(V)]=(3.52±0.37) x 10 -4 mol/L; pH=8.04, [Np(V)]=(8.24±0.32) x 10 -5 mol/L; pH=9.01, [Np(V)]=(3.04±0.48) x 10'- 5 mol/L, respectively. (author)

  2. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    Science.gov (United States)

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L.; Kortshagen, Uwe R.

    2011-12-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  3. Synthesis and characterization of Mn2+-doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Keywords. Nanoparticles; nanocomposite; Mn2+-doped ZnS; annealing; X-ray diffrac- tion; FTIR; ultra violet. ... is an important wide band gap semiconductor, has attracted much attention owing to its wide applications ... semiconductor nanoparticles ZnS : Mn2+ is used as phosphors and also in thin film electroluminescent ...

  4. Structural and optical properties of nanocrystalline ZnS and ZnS:Al films

    Science.gov (United States)

    Hurma, T.

    2018-06-01

    ZnS and ZnS:Al films have been deposited by ultrasonic spray pyrolysis (USP) method. Three different atomic ratios of aluminium were used as the dopant element. The effects of aluminum incorporation on structural and optical properties of the ZnS films have been investigated. The XRD analysis showed that the cubic structure of the ZnS was not much affected by Al doping. The crystal size of the films decreased, as the Al ratio increased. Al incorporation caused an increase in the intensity of ZnS films' peaks observed in Raman spectra and nearly symmetrical peaks were observed. Al doping caused a small decrease in optical band gap of the ZnS film. The coating of ZnS:Al films on the surface was quite good and there were not any deformation in their crystallization levels. Reflectance values of films are about 5% in the visible region but a little decrease is seen with aluminum doping. We can say that Al doping tends to improve the optical properties of the ZnS:Al films when compared with the undoped ZnS.

  5. UV Photocatalytic Activity for Water Decomposition of SrxBa1−xNb2O6 Nanocrystals with Different Components and Morphologies

    Directory of Open Access Journals (Sweden)

    Guoqiang Han

    2017-01-01

    Full Text Available Strontium barium niobate SrxBa1-xNb2O6 (SBN nanocrystals with different components (x=0.2, 0.4, 0.6, and 0.8 were synthesized by Molten Salt Synthesis (MSS method at various reaction temperatures (T = 950°C, 1000°C, 1050°C, and 1100°C. The SBN nanocrystals yielded through flux reactions possess different morphologies and sizes with a length of about ~100 nm~7 μm and a diameter of about ~200~500 nm. The Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD techniques were used to study the compositions, structures, and morphologies of the nanocrystals. The absorption edges of the SBN nanocrystals are at a wavelength region of approximate 390 nm, which corresponds to band-gap energy of ~3.18 eV. The SBN nanocrystals with different sizes display different photocatalytic activity under ultraviolet light in decomposition of water. The SBN60 nanocrystals exhibit stable photocatalytic rates (~100~130 μmol of H2·g−1·h−1 for hydrogen production. The SBN nanocrystals can be a potential material in the application of photocatalysis and micro/nanooptical devices.

  6. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  7. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  9. doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Mn2+-doped ZnS nanoparticles were prepared by chemical arrested precipitation method. The samples were heated at 300, 500, 700 and 900°C. The average particle size was determined from the X-ray line broadening. Samples were characterized by XRD, FTIR and UV. The composition was verified by EDAX spectrum.

  10. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  11. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. White light photoluminescence from ZnS films on porous Si substrates

    International Nuclear Information System (INIS)

    Wang Caifeng; Li Weibing; Li Qingshan; Hu Bo

    2010-01-01

    ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique. White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated. (semiconductor materials)

  13. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  14. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing

    Science.gov (United States)

    Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan

    2015-03-01

    We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.

  15. Radiculography with water-soluble contraste medium

    International Nuclear Information System (INIS)

    Araujo Pinheiro, R.S. de

    1987-01-01

    The etiologic diagnosis of the lumbar pain is discussed. The radiculography with water-soluble contrast medium is used and 250 cases are studied. Some practical criteria of indication executation and interpretation of the examination are reported. (M.A.C.) [pt

  16. Using fluorescence measurement of zinc ions liberated from ZnS nanoparticle labels in bioassay for Escherichia coli O157:H7

    International Nuclear Information System (INIS)

    Cowles, Chad L.; Zhu Xiaoshan; Pai, Chi-Yun

    2011-01-01

    In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.

  17. Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting

    Science.gov (United States)

    Gadiyar, Chethana; Loiudice, Anna; Buonsanti, Raffaella

    2017-02-01

    Colloidal nanocrystals (NCs) are among the most modular and versatile nanomaterial platforms for studying emerging phenomena in different fields thanks to their superb compositional and morphological tunability. A promising, yet challenging, application involves the use of colloidal NCs as light absorbers and electrocatalysts for water splitting. In this review we discuss how the tunability of these materials is ideal to understand the complex phenomena behind storing energy in chemical bonds and to optimize performance through structural and compositional modification. First, we describe the colloidal synthesis method as a means to achieve a high degree of control over single material NCs and NC heterostructures, including examples of the role of the ligands in modulating size and shape. Next, we focus on the use of NCs as light absorbers and catalysts to drive both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), together with some of the challenges related to the use of colloidal NCs as model systems and/or technological solution in water splitting. We conclude with a broader prospective on the use of colloidal chemistry for new material discovery.

  18. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol.

    Science.gov (United States)

    Zoghbi, Abdelmoumin; Geng, Tianjiao; Wang, Bo

    2017-11-01

    Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.

  19. Investigation of thioglycerol stabilized ZnS quantum dots in electroluminescent device performance

    Science.gov (United States)

    Ethiraj, Anita Sagadevan; Rhen, Dani; Lee, D. H.; Kang, Dae Joon; Kulkarni, S. K.

    2016-05-01

    The present work is focused on the investigation of thioglycerol (TG) stabilized Zinc Sulfide Quantum dots (ZnS QDs) in the hybrid electroluminescence (EL) device. Optical absorption spectroscopy clearly indicates the formation of narrow size distributed ZnS in the quantum confinement regime. X-ray Diffraction (XRD), Photoluminescence (PL), Energy Dispersive X-ray Spectroscopy (EDS) data supports the same. The hybrid EL device with structure of ITO (indium tin oxide)//PEDOT:PSS ((poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)//HTL (α NPD- N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1'-phenyl)-4,4'-diamine// PVK:ZnS QDs//ETL(PBD- 2-tert-butylphenyl- 5-biphenyl-1,3,4-oxadiazole)//LiF:Al (Device 1) was fabricated. Reference device without the ZnS QDs were also prepared (Device 2). The results show that the ZnS QDs based device exhibited bright electroluminescence emission of 24 cd/m2 at a driving voltage of 16 Volts under the forward bias conditions as compared to the reference device without the ZnS QDs, which showed 6 cd/m2 at ˜22 Volts.

  20. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  1. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  2. The effect of ZnS segregation on Zn-rich CZTS thin film solar cells

    International Nuclear Information System (INIS)

    Li, Wei; Chen, Jian; Yan, Chang; Hao, Xiaojing

    2015-01-01

    Highlights: • Secondary phase segregation in CZTS based solar cells has been studied by TEM. • A “Zn layer exchange” behaviour was found in sulphurisation of Zn/SnCu stacked layers. • XAS reveals a large spike-like CBO (>0.86 eV) between CZTS and ZnS. • Larger ZnS secondary phase proportion increases solar cell’s V oc but limits J sc . - Abstract: Analysis of ZnS segregation behaviour and its influence on the device performance has been made on the Zn-rich Cu 2 ZnSnS 4 thin film solar cells. Cross-sectional transmission electron microscopy images reveal that ZnS is the main secondary phase in the Cu 2 ZnSnS 4 layer obtained from a sulphurised Zn/CuSn metallic stack. The excess Zn diffuses from back contact region to top surface of Cu 2 ZnSnS 4 layer accumulating in the form of ZnS. The solar cell with a higher Zn concentration shows a large quantity of isolated ZnS grains at Cu 2 ZnSnS 4 top surface which is close to CdS/Cu 2 ZnSnS 4 heterojunction interface. Soft X-ray absorption spectroscopy indicates a large spike-like conduction band offset between Cu 2 ZnSnS 4 and ZnS. Consequently, such much ZnS precipitates would increase series resistance and generate lower short-circuit current and external quantum efficiency. However, appropriate amount of ZnS at the space charge region of the solar cell has beneficial effects by reducing the heterojunction interface recombination. Therefore, an improved open-circuit voltage and a higher shunt resistance are achieved. This paper provides a possible method to intentionally segregate ZnS at the space charge region by depositing the Zn layer at the bottom of co-sputtered CuSn layer. Although it is difficult to synthesis a pure phase Cu 2 ZnSnS 4 absorber, we can utilise the ZnS secondary phase to improve the Cu 2 ZnSnS 4 solar performance by controlling the Zn-excess amount

  3. Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhi, Masoud, E-mail: shahrokhimasoud37@gmail.com

    2016-12-30

    Highlights: • The electronic and optical properties of ZnS honeycomb sheet are investigated. • The electronic properties were analyzed at three levels of GW approach. • The optical properties of these materials are investigated using the BSE approach. • Optical properties of ZnS sheet strongly dominated by excitonic effects. • Spectrum is dominated by strongly bound Frenkel excitons. - Abstract: Using ab-initio density functional theory calculations combined with many-body perturbation formalism we carried out the electronic structure and optical properties of 2D graphene-like ZnS structure. The electronic properties were analyzed at three levels of many-body GW approach (G{sub 0}W{sub 0}, GW{sub 0} and GW) constructed over a Generalized Gradient Approximation functional. Our results indicate that ZnS sheet has a direct band gap at the Γ-point. Also it is seen that inclusion of electron–electron interaction does not change the sort of direct semiconducting band gap in ZnS sheet. The optical properties and excitonic effects of these materials are investigated using the Bethe-Salpeter equation (BSE) approach. The formation of first exciton peaks at 3.86, 4.26, and 4.57 eV with large binding energy of 0.36, 0.49 and 0.73 eV using G{sub 0}W{sub 0} + BSE, GW{sub 0} + BSE and GW + BSE, respectively, was observed. We show that the optical absorption spectrum of 2D ZnS structure is dominated by strongly bound Frenkel excitons. The enhanced excitonic effects in the ZnS monolayer sheet can be useful in designing optoelectronic applications.

  4. Synthesis and Characteristics of ZnS Nanospheres for Heterojunction Photovoltaic Device

    Science.gov (United States)

    Chou, Sheng-Hung; Hsiao, Yu-Jen; Fang, Te-Hua; Chou, Po-Hsun

    2015-06-01

    The synthesis of ZnS nanospheres produced using the microwave hydrothermal method was studied. The microstructure and surface and optical properties of ZnS nanospheres on glass were characterized using scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. The influence of deposition time on the transmission and photovoltaic performance was determined. The power conversion efficiency of an Al-doped ZnO/ZnS nanosphere/textured p-Si device improved from 0.93 to 1.77% when the thickness of the ZnS nanostructured film was changed from 75 to 150 nm.

  5. Review: kinetics of water-soluble contrast media in the central nervous system

    International Nuclear Information System (INIS)

    Sage, M.R.

    1983-01-01

    In neuroradiology, intraarterial, intravenous, and intrathecal injections of water-soluble contrast media are made. With the growing importance of water-soluble myelography, interventional angiography, and enhanced computed tomography (CT), it is essential to have a clear understanding of the response of the nervous system to such procedures. The blood, cerebrospinal fluid (CSF), and extracellular fluid of the parenchyma form the fluid compartments of the brain with three interfaces between, namely, the blood-brain interface, the CSF-brain interface, and the blood-CSF interface. One of more of these interfaces are exposed to water-soluble contrast media after intraarterial, intravenous, or intrathecal administration. The behavior of water-soluble contrast media at these interfaces is discussed on the basis of local experience and a review of the literature

  6. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  7. Synthesis of ZnS nanoparticles on a solid surface: Atomic force microscopy study

    International Nuclear Information System (INIS)

    Yuan Huizhen; Lian Wenping; Song Yonghai; Chen Shouhui; Chen Lili; Wang Li

    2010-01-01

    In this work, zinc sulfide (ZnS) nanoparticles had been synthesized on DNA network/mica and mica surface, respectively. The synthesis was carried out by first dropping a mixture of zinc acetate and DNA on a mica surface for the formation of the DNA networks or zinc acetate solution on a mica surface, and subsequently transferring the sample into a heated thiourea solution. The Zn 2+ adsorbed on DNA network/mica or mica surface would react with S 2- produced from thiourea and form ZnS nanoparticles on these surfaces. X-ray diffraction and atomic force microscopy (AFM) were used to characterize the ZnS nanoparticles in detail. AFM results showed that ZnS nanoparticles distributed uniformly on the mica surface and deposited preferentially on DNA networks. It was also found that the size and density of ZnS nanoparticles could be effectively controlled by adjusting reaction temperature and the concentration of Zn 2+ or DNA. The possible growth mechanisms have been discussed in detail.

  8. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    International Nuclear Information System (INIS)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.; Prochnow, David Adrian; Schulte, Louis D.; DeBurgomaster, Paul Christopher; Fife, Keith William; Rubin, Jim; Worl, Laura Ann

    2016-01-01

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3 O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3 , and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate

  9. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  10. Synthesis of ZnS thin films from aqueous caustic of trisodium citrate and their properties

    Directory of Open Access Journals (Sweden)

    Martyn A. Sozanskyi

    2015-12-01

    Full Text Available Zinc sulfide (ZnS thin films due to their properties are widely used in various electronic optical devices. They are produced by several methods, among which – vacuum sublimation, high frequency sputtering method, quasiclosed volume method, sol-gel method, electrodeposition. These methods have high energy consumption which increases the price of ZnS thin films. Aim: The aim of this work is to establish the optimal parameters of the synthesis of ZnS thin films of the aqueous caustic and the correlation between content of zinc in the synthesized films determined by the method of stripping voltammetry and thickness, structural, morphological and optical parameters. Materials and Methods: The ZnS thin films were obtained from aqueous caustics of zinc-containing salt using chemical deposition. Fresh solution of zinc-containing salt, trisodium citrate (Na3C6H5O7 as a complexing agent, thiourea ((NH22CS and ammonium hydroxide (NH4OH was used for the synthesis of ZnS films by chemical deposition. The deposition was performed on prepared glass substrates with the area of 5,76 cm2. Results: The phase mixture of the films has been determined. It showed the presence of ZnS compounds in the cubic modification (sphalerite. Stripping voltammetry was used to determine the mass of zinc in the ZnS films on various conditions of synthesis, namely on the concentration of the initial zinc-containing salt, trisodium citrate, thiourea, deposition time and temperature. The surface morphology, optical properties, the thickness of the ZnS resulting films have been studied. Conclusions: The optimal conditions for the synthesis of ZnS films were found based on these data. Three-dimensional surface morphology of ZnS film studies showed its smoothness, uniformity, integrity and confirmed the correctness of determining the optimal synthesis parameters.

  11. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  12. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  13. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  14. Highly porous ZnS microspheres for superior photoactivity after Au and Pt deposition and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Shilpa; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-11-15

    Graphical abstract: Highly porous ZnS microsphere of size 2–5 μm having large surface area ca. 173.14 m{sup 2} g{sup −1} exhibits superior photocatalytic activity for the oxidation of 4-nitrophenol under UV light irradiation. The rate of photooxidation has been significantly improved by Au and Pt deposition and after sintering, respectively, due to rapid electron acceptance by metal from photoexcited ZnS and growth of crystalline ZnS phase. - Highlights: • Photoactive ZnS microsphere of size 2–5 μm was prepared by hydrothermal route. • Highly porous cubic spherical ZnS crystals possess a large surface area, 173 m{sup 2} g{sup −1}. • 1 wt% Au and Pt photodeposition highly quenched the photoluminescence at 437 nm. • Sintering and metal loading notably improve the photooxidation rate of 4-nitrophenol. • Pt co-catalyst always exhibits superior photoactivity of ZnS microsphere than Au. - Abstract: This work highlights the enhanced photocatalytic activity of porous ZnS microspheres after Au and Pt deposition and heat treatment at 500 °C for 2 h. Microporous ZnS particles of size 2–5 μm with large surface area 173.14 m{sup 2} g{sup −1} and pore volume 0.0212 cm{sup 3} g{sup −1} were prepared by refluxing under an alkaline medium. Photoluminescence of ZnS at 437 nm attributed to sulfur or zinc vacancies were quenched to 30% and 49%, respectively, after 1 wt% Au and Pt loading. SEM images revealed that each ZnS microparticle consist of several smaller ZnS spheres of size 2.13 nm as calculated by Scherrer's equation. The rate of photooxidation of 4-nitrophenol (10 μM) under UV (125 W Hg arc–10.4 mW/cm{sup 2}) irradiation has been significantly improved by Au and Pt deposition followed by sintering due to better electron capturing capacity of deposited metals and growth of crystalline ZnS phase with less surface defects.

  15. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi, E-mail: kamphysics@gmail.com; Gujarati, Vivek P.; Chaki, S. H. [Department of Physics, Sardar Patel University, VallabhVidyanagr-388120,Anand, Gujarat, India. (India)

    2016-05-06

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn{sup 2+} an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  16. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery.

    Science.gov (United States)

    Patel, Viral; Sharma, Om Prakash; Mehta, Tejal

    2018-04-01

    Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. Area covered: This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. Expert opinion: The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.

  17. Intestinal absorption of water-soluble vitamins in health and disease.

    Science.gov (United States)

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  18. Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results

    International Nuclear Information System (INIS)

    Freire, Mara G.; Carvalho, Pedro J.; Santos, Luis M.N.B.F.; Gomes, Ligia R.; Marrucho, Isabel M.; Coutinho, Joao A.P.

    2010-01-01

    This work aims at providing experimental and theoretical information about the water-perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution.

  19. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method.

    Science.gov (United States)

    Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan

    2014-01-01

    To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure

  20. Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com

    2016-09-15

    Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method. The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.

  1. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    International Nuclear Information System (INIS)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-01-01

    Bi 2 S 3 /ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi 2 S 3 /ZnS composite. The results shown that Bi 2 S 3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi 2 S 3 /ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi 2 S 3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi 2 S 3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi 2 S 3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process

  2. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    Science.gov (United States)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-10-01

    Bi2S3/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi2S3/ZnS composite. The results shown that Bi2S3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi2S3/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi2S3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi2S3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi2S3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  3. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  4. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    Science.gov (United States)

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  5. Solubility study of Tc(IV) in a granitic water

    International Nuclear Information System (INIS)

    Liu, D.J.; Yao, J.; Wang, B.; Bruggeman, C.; Maes, N.

    2007-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 .nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 .nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium(IV) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49 ∝ 1.86) x 10 -9 mol L -1 d -1 under aerobic conditions, while no Tc(IV) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  6. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation.

    Science.gov (United States)

    Liu, Chen; Chang, Daoxiao; Zhang, Xinhui; Sui, Hong; Kong, Yindi; Zhu, Rongyue; Wang, Wenping

    2017-11-01

    Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm 2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.

  7. Gd doping induced weak ferromagnetic ordering in ZnS nanoparticles synthesized by low temperature co-precipitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Palvinder [Department of Physics, Punjabi University, Patiala, Punjab, 147002 (India); Kumar, Sanjeev, E-mail: sanjeev04101977@gmail.com [Applied Science Department, PEC University of Technology, Chandigarh, 160012 (India); Chen, Chi-Liang, E-mail: chen.cl@nsrrc.org.tw [National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan (China); Yang, Kai-Siang [National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan (China); Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Wei, Da-Hua [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Dong, Chung-Li [Department of Physics, Tamkang University, Tamsui, Taiwan (China); Srivastava, C. [Materials Engineering Department, Indian Institute of Science, Bangalore, 560012 (India); Rao, S.M. [Department of Physics, Punjabi University, Patiala, Punjab, 147002 (India); Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan (China)

    2017-01-15

    Zn{sub 1−x}Gd{sub x}S nanoparticles with Gd concentration x = 0.00, 0.02 and 0.04 were synthesized by the chemical co-precipitation technique using thioglycerol as capping agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, X-ray absorption near-edge structure (XANES) and vibrating sample magnetometer (VSM) were employed to characterize the as synthesized Gd doped ZnS nanoparticles. XRD and TEM studies show the formation of cubic ZnS nanoparticles with an average size in the range 5–10 nm. The doping did not alter the phase of the ZnS. The PL spectra of doped ZnS nanoparticles showed the presence of sulphur vacancies in the lattice. XANES of Gd doped ZnS nanoparticles depicts spectral changes may arise from charge transfer between host Zn and dopant Gd ions. A VSM study shows that the weak ferromagnetic behaviour increases with increase in Gd doping ZnS nanoparticles. - Highlights: • Gd doped ZnS nanoparticles synthesized using co-precipitation technique. • PL studies depict sulphur and zinc vacancies in Gd doped ZnS nanoparticles. • XANES studies depict the charge transfer between host Zn and dopant Gd ions. • Room temperature weak ferromagnetism is observed in Gd doped ZnS nanoparticles.

  8. Gd doping induced weak ferromagnetic ordering in ZnS nanoparticles synthesized by low temperature co-precipitation technique

    International Nuclear Information System (INIS)

    Kaur, Palvinder; Kumar, Sanjeev; Chen, Chi-Liang; Yang, Kai-Siang; Wei, Da-Hua; Dong, Chung-Li; Srivastava, C.; Rao, S.M.

    2017-01-01

    Zn_1_−_xGd_xS nanoparticles with Gd concentration x = 0.00, 0.02 and 0.04 were synthesized by the chemical co-precipitation technique using thioglycerol as capping agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, X-ray absorption near-edge structure (XANES) and vibrating sample magnetometer (VSM) were employed to characterize the as synthesized Gd doped ZnS nanoparticles. XRD and TEM studies show the formation of cubic ZnS nanoparticles with an average size in the range 5–10 nm. The doping did not alter the phase of the ZnS. The PL spectra of doped ZnS nanoparticles showed the presence of sulphur vacancies in the lattice. XANES of Gd doped ZnS nanoparticles depicts spectral changes may arise from charge transfer between host Zn and dopant Gd ions. A VSM study shows that the weak ferromagnetic behaviour increases with increase in Gd doping ZnS nanoparticles. - Highlights: • Gd doped ZnS nanoparticles synthesized using co-precipitation technique. • PL studies depict sulphur and zinc vacancies in Gd doped ZnS nanoparticles. • XANES studies depict the charge transfer between host Zn and dopant Gd ions. • Room temperature weak ferromagnetism is observed in Gd doped ZnS nanoparticles.

  9. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  10. One-step synthesis of graphitic-C 3 N 4 /ZnS composites for enhanced supercapacitor performance

    KAUST Repository

    Wei, Binbin

    2017-11-24

    A series of graphitic-C3N4/ZnS (g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The optimized g-C3N4/ZnS composite shows a highest specific capacitance of 497.7 F/g at 1 A/g and good cycling stability with capacitance retention of 80.4% at 5 A/g after 1000 cycles. Moreover, g-C3N4/ZnS composites display an improved supercapacitor performance in terms of specific capacitance compared to the pure g-C3N4 and ZnS. In addition, our designed symmetric supercapacitor device based on g-C3N4/ZnS composite electrodes can exhibit an energy density of 10.4 Wh/kg at a power density of 187.3 W/kg. As a result, g-C3N4/ZnS composites are expected to be a prospective material for supercapacitors and other energy storage applications.

  11. One-step synthesis of graphitic-C 3 N 4 /ZnS composites for enhanced supercapacitor performance

    KAUST Repository

    Wei, Binbin; Liang, Hanfeng; Wang, Rongrong; Zhang, Dongfang; Qi, Zhengbing; Wang, Zhoucheng

    2017-01-01

    A series of graphitic-C3N4/ZnS (g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The optimized g-C3N4/ZnS composite shows a highest specific capacitance of 497.7 F/g at 1 A/g and good cycling stability with capacitance retention of 80.4% at 5 A/g after 1000 cycles. Moreover, g-C3N4/ZnS composites display an improved supercapacitor performance in terms of specific capacitance compared to the pure g-C3N4 and ZnS. In addition, our designed symmetric supercapacitor device based on g-C3N4/ZnS composite electrodes can exhibit an energy density of 10.4 Wh/kg at a power density of 187.3 W/kg. As a result, g-C3N4/ZnS composites are expected to be a prospective material for supercapacitors and other energy storage applications.

  12. Solubility study of Tc(Ⅳ) in a granitic water

    International Nuclear Information System (INIS)

    Liu Dejun; Yao Jun; Wang Bo

    2008-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 -nH 2 O. Hence, the mobility of Tc(Ⅳ) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium (Ⅳ) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(Ⅳ) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(Ⅳ) were studied. The concentration of total technetium and Tc(Ⅳ) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(Ⅳ) in simulated groundwater and redistilled water is about (1.49-1.86)x10 -9 mol·L -1 d -1 under aerobic conditions, while no Tc(Ⅳ) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(Ⅳ) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  13. Effect of starting pH and stabilizer/metal ion ratio on the photocatalytic activity of ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Devi, L. Meerabai; Negi, Devendra P.S., E-mail: dpsnegi@nehu.ac.in

    2013-09-16

    ZnS nanoparticles have been synthesized using the amino acid histidine as a stabilizing agent. The syntheses were carried out by varying the starting pH and histidine/Zn{sup 2+} ratio. The as-prepared ZnS nanoparticles were characterized by various analytical techniques. The photocatalytic activity of the ZnS nanoparticles was determined by studying the degradation of methyl orange. The ZnS nanoparticles synthesized with 1:1 histidine/Zn{sup 2+} ratio and starting pH of 10.3 were found to exhibit the highest photocatalytic activity. Nearly 95% of methyl orange was degraded in 30 min of irradiation using the photocatalyst. Particle size was not the main factor in determining the photocatalytic activity of the ZnS nanoparticles. Fluorescence lifetime measurements indicated that photocatalytic activity of the ZnS nanoparticles was enhanced with increase in their fluorescence lifetime. - Graphical abstract: Display Omitted - Highlights: • Photocatalytic activity of ZnS nanoparticles dependent on synthesis parameters. • About 95% of methyl orange degraded in 30 min of irradiation using optimal ZnS nanoparticles. • Particle size is not the main factor in determining the photocatalytic activity of ZnS. • Photocatalytic activity of ZnS was enhanced with increase in fluorescence lifetime.

  14. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    Science.gov (United States)

    1983-09-01

    Hutchinson, et al.,1979 ) with the marine algae, Chlorella vulgaris and Chlamydomonas angulosa, suggests that the toxicity of hydrocarbons is a...water-soluble petroleum components on the growth of Chlorella vulgaris Beijernck. Environ. Poll. 9: 157. Morrow, J.E., et al. 1975. Effects of some...P.B., and T.C. Hutchison. 1975. The effects of water-soluble petroleum components on the growth of Chlorella vulqaris Beijerinck. Environ. Poll. 9

  15. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  16. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  17. Stability studies of CdSe nanocrystals in an aqueous environment

    DEFF Research Database (Denmark)

    Xi, Lifei; Lek, Jun Yan; Liang, Yen Nan

    2011-01-01

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH − ) while photo......-generated holes oxidize CdSe to Cd2 + and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments...

  18. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dandan [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Du, Yi, E-mail: duyi234@126.com [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Tian, Xiuying, E-mail: xiuyingt@yahoo.com [Department of Chemistry and Materials Science, Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China)

    2014-12-15

    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  19. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  20. Thermoluminescence properties of graphene–nano ZnS composite

    International Nuclear Information System (INIS)

    Sharma, Geeta; Gosavi, S.W.

    2014-01-01

    This work describes the thermoluminescence (TL) of graphene oxide (GO), reduced graphene oxide (RGO) and graphene–nano ZnS composite. Graphene oxide was synthesized using Hummer's method and then reduced to graphene by hydrazine hydrate. G–ZnS was synthesized via in-situ reduction of graphene oxide (GO) and zinc nitrate [Zn(NO 3 ) 2 ] by sodium sulfide (Na 2 S). The structures of samples were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). XRD pattern confirmed the formation of graphene oxide, reduced graphene oxide and G–ZnS lattice. The p-XRD spectrum of G–ZnS shows peaks of ZnS superimposed on those of graphene and the particle size of ZnS in the complex is less than 10 nm. Ultra thin graphene and graphene oxide sheets with size ranging between tens to several hundreds of square nanometers are observed in TEM images. The TEM micrographs of G–ZnS show that ZnS particles are embedded in graphene sheets and the average particle size of ZnS particles in the composite is less than 10 nm. Samples of RGO, GO and G–ZnS were exposed to different doses of γ-rays in the range of 1 Gy to 50 kGy. The reduced graphene oxide (RGO) did not show any thermoluminescence emission. The thermoluminescence glow curve of GO has a single broad peak whose peak position varied between 500 and 550 K with an absorbed dose increasing from 1 Gy to 5000 Gy. GO shows most intense TL peak, positioned at 523.6 K for a dose of 10 kGy. The glow curves of G–ZnS over the entire range of irradiation have single peak positioned between 492 and 527 K with variation in dose from 1 Gy to 50 kGy. G–ZnS shows the most intense TL glow curve for a dose of 50 kGy. The TL response curve of G–ZnS is found to be linear over a larger dose range from 1 Gy to 50 kGy whereas the response curve of GO shows linearity only at low doses up to 100 Gy. -- Highlights: • Graphene oxide, reduced graphene oxide and graphene–nano ZnS were synthesized. • TL of

  1. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Harish, G.S.; Sreedhara Reddy, P.

    2015-01-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm −1 ) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping

  2. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  3. Intestinal absorption of water-soluble vitamins in health and disease

    OpenAIRE

    Said, Hamid M.

    2011-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth an...

  4. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  5. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  6. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  7. Solubility and precipitation of Fe on reduced TiO{sub 2}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Busiakiewicz, Adam, E-mail: adambus@uni.lodz.pl

    2014-01-01

    The solubility of Fe in reduced rutile TiO{sub 2} crystals and the followed precipitation on the (001) surface have been studied using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) in ultra-high vacuum. The first step includes dissolving Fe in reduced TiO{sub 2} at 1073 K by the means of thermal diffusion and as a result the saturated solid solution is formed. Then, it undergoes fast cooling which leads to obtaining a supersaturated solid solution. When this supersaturated crystal is annealed at low temperatures of about 500 K, Fe starts to precipitate on the (001) surface forming spherical Fe-containing nanoparticles. The fast migration of Fe cations to the surface and their precipitation at relatively low temperatures are caused by high diffusion anisotropy and the reduction of the TiO{sub 2}. At about 900 K, the size of nanoparticles increases and they are transformed into nanocrystals with clearly visible facets. Simultaneously, the number of the nanocrystals substantially decreases. The partial oxidation of Fe is also observed around 900 K, which is related to strong metal support interaction between Fe and reduced TiO{sub 2}(001). The XPS and STM results suggest that the nanocrystals are mostly composed of mixed Fe/Ti oxides like FeTiO{sub 3} of ilmenite structure. Above 973 K, the nanocrystals disappear which is explained by the restored solubility of Fe cations in the reduced TiO{sub 2}. The process of the nanoparticle precipitation at lower temperatures is repeatable and the precipitation and disappearance of Fe-containing nanocrystals on TiO{sub 2}(001) are also a fully reversible phenomenon easily controlled by annealing temperature. - Highlights: • The supersaturated solid solution of Fe in TiO{sub 2}(001) is obtained at 1073 K. • Fe precipitates forming nanoparticles above 500 K and nanocrystals above 900 K. • Nanocrystals are ascribed to formation of FeTiO{sub 3} compound.

  8. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Sandoval-Paz, M.G. [Department of Physics, Faculty of Physics and Mathematics, University of Concepción, Concepción (Chile); Cabello, G. [Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Campus Fernando May, Chillán (Chile); Flores, M.; Fernández, H. [Department of Physics, Faculty of Physics and Mathematics, University of Chile, Beauchef 850, Santiago (Chile); Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile)

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  9. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    Science.gov (United States)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  10. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  11. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  13. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  14. Stability studies of CdSe nanocrystals in an aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Xi Lifei; Lek, Jun Yan; Liang, Yen Nan; Zhou Wenwen; Yan Qingyu; Hu Xiao; Chiang, Freddy Boey Yin; Lam, Yeng Ming [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore); Boothroyd, Chris, E-mail: ymlam@ntu.edu.sg [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2011-07-08

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH{sup -}) while photo-generated holes oxidize CdSe to Cd{sup 2+} and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments (bioimaging and dye-sensitized solar cells).

  15. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  16. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    Science.gov (United States)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  17. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  18. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An In-Situ Electron Microscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Eskelsen, Jeremy R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Xu, Jie [Univ. of Texas, El Paso, TX (United States). Geological Sciences; Chiu, Michelle Y. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Wilkins, Branford O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Pierce, Eric M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2017-12-19

    The dissolution of metal sulfides, such as ZnS, plays an important role in the fate of metal contaminants in the environment. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, the biogenic ZnS nanoparticles were produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium, whereas the abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H2S-rich gas or Na2S solution. For biogenic synthesis, we prepared two types of samples, in the presence or absence of trace silver (Ag). The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were primarily examined using high-resolution transmission electron microscopy coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ~10 nm) than the abiogenic ones (i.e., ~3–5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ~3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell coupled to a transmission electron microscope (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m2) have

  19. Effects of ZnS layer on the performance improvement of the photosensitive ZnO nanowire arrays solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Hafiz Muhammad Asif [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Gao, Yanping; Xing, Yonglei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Kong, Ling Bing, E-mail: ELBKong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore)

    2016-08-01

    The impact of ZnS layer as an interface modification on the photosensitive ZnO nanowire arrays solar cells was studied. CdS, CdSe and ZnS were deposited on ZnO nanowire arrays by SILAR method. When a ZnS layer was deposited, the quantum dot barrier was indirectly become in contact with the electrolyte, which thus restrained the flow of electrons. The CdS sensitized solar cells has an efficiency of 0.55% with the deposition of the ZnS(3) layer, that is, with a deposition of three times, whereas the CdS/CdSe co-sensitized solar cells has an efficiency of 2.03% with the deposition of the ZnS(1) layer. It was also noted that as the thickness of the of ZnS layer was increased, V{sub oc}, I{sub sc} and efficiencies of both the solar cells were first increased and then decreased. In addition, the CdS/N719 solar cells has an efficiency of 0.75% with the deposition of the ZnS(2) layer. - Highlights: • The impact of ZnS layer on the photosensitive ZnO nanowire solar cells was studied. • ZnS layer restrained the flow of electrons to the electrolyte. • CdS/CdSe co-sensitized solar cells have higher efficiency than CdS solar cells. • When ZnS layer was increased, V{sub oc} and I{sub sc} firstly increased and then decreased.

  20. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Science.gov (United States)

    2010-07-01

    ... in water is a significant parameter because: (A) The spatial and temporal movement (mobility) of a... Solubility in Water of Slightly Soluble, Low Volatility Organic Substances ER15DE00.054 1 = Leveling vessel...

  1. Application To Bilayer System With Water-Soluble Contrast Enhancing Material

    Science.gov (United States)

    Yabuta, Mitsuo; Ito, Naoki; Yamazaki, Hiroyuki; Nakayama, Toshimasa

    1987-09-01

    We have developed ,a water-soluble contrast enhancing material, TAD-436 ( Tokyo Ohka. Anti-Defocus Material ) which is consisted of a water-soluble diazonium salt as bleaching compounds and a water-soluble anion type polymer as binder polymers. Needless to say that water is used as solvent in TAD; therefore, it can be spincoated directly on a positive photoresist layer of a quinonediazide-novolak resin type without causing intermixing and furtheremore the bilayer can be developed without stripping TAD immediately after exposure. TAD shows a satisfactory bleaching characteristics on g-line, increases r-value of underlying photoresist and reduces the thickness loss of photoresist layer in unexposed area. Application to bilayer system with TAD will raise the resolution of underlying photoresist and when the focus depth is changed it will make the change in the resist profile small. As the result of it, the notches in the resist patterns on steps is reduced, making the difference in the linewidth between the top and the bottom of steps small.

  2. Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS

    International Nuclear Information System (INIS)

    Dong, Ming; Zhang, Jinfeng; Yu, Jiaguo

    2015-01-01

    Semiconductor zinc sulphide (ZnS) has two common phases: hexagonal wurtzite and cubic zinc-blende structures. The crystal structures, energy band structures, density of states (DOS), bond populations, and optical properties of wurtzite and zinc-blende ZnS were investigated by the density functional theory of first-principles. The similar band gaps and DOS of wurtzite and zinc-blende ZnS were found and implied the similarities in crystal structures. However, the distortion of ZnS 4 tetrahedron in wurtzite ZnS resulted in the production of spontaneous polarization and internal electric field, which was beneficial for the transfer and separation of photogenerated electrons and holes

  3. SEMICONDUCTOR MATERIALS: White light photoluminescence from ZnS films on porous Si substrates

    Science.gov (United States)

    Caifeng, Wang; Qingshan, Li; Bo, Hu; Weibing, Li

    2010-03-01

    ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique. White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated.

  4. Green synthesis of ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach

    International Nuclear Information System (INIS)

    Molaei, M.; Bahador, A.R.; Karimipour, M.

    2015-01-01

    In this work, ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) were synthesized using a one-pot, rapid and room temperature photochemical method. UV illumination provided the required energy for the chemical reactions. Synthesized NCs were characterized using X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence (PL) spectroscopy. XRD pattern indicated cubic zinc blende structure for ZnSe NCs and the TEM image indicated round-shaped particles, most of which had a diameter of about 3 nm. Band gap of ZnSe NCs was obtained as about 3.6 eV, which was decreased by increasing the illumination time. Synthesized NCs indicated intensive and narrow emission in the UV-blue area (370 nm) related to the excitonic recombination and a broad band emission with a peak located at about 490 nm originated from the DAP (donor–acceptor pairs) recombination. ZnS shell was grown on ZnSe cores using a reaction based on the photo-sensitivity of Na 2 S 2 O 3 . For ZnSe@ZnS core–shell NCs, XRD diffraction peaks shifted to higher angles. TEM image indicated a shell around cores and most of the ZnSe@ZnS NCs have a diameter of about 5 nm. After the ZnS growth, ZnSe excitonic emission shifted to the longer wavelength and PL intensity was increased considerably. PL QY was obtained about 11% and 17% for ZnSe and ZnSe@ZnS core–shell QDs respectively. - Highlights: • A green photochemical approach was reported for synthesis of ZnSe NCs. • ZnS shell was grown around ZnSe using a new method. • Synthesis method was rapid, simple and at room temperature. • ZnSe NCs indicated a narrow UV-blue and a broad DAP emissions. • PL intensity was increased considerably by ZnS shell growth

  5. Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres

    Science.gov (United States)

    Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath

    2018-02-01

    The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.

  6. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  7. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  8. CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals

    Science.gov (United States)

    Guardia, Pablo; Estradé, Sònia; Peiró, Francesca; Cabot, Andreu

    2018-01-01

    The manufacturing of semiconducting films using solution-based approaches is considered a low cost alternative to vacuum-based thin film deposition strategies. An additional advantage of solution processing methods is the possibility to control the layer nano/microstructure. Here, we detail the production of mesoporous CuGaS2 (CGS) and ZnS layers from spin-coating and subsequent cross-linking through chalcogen-chalcogen bonds of properly functionalized nanocrystals (NCs). We further produce NC-based porous CGS/ZnS bilayers and NC-based CGS–ZnS composite layers using the same strategy. Photoelectrochemical measurements are used to demonstrate the efficacy of porous layers, and particularly the CGS/ZnS bilayers, for improved current densities and photoresponses relative to denser films deposited from as-produced NCs. PMID:29621198

  9. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  10. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  11. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  12. Electrocatalytic activity of ZnS nanoparticles in direct ethanol fuel cells

    Science.gov (United States)

    Bredol, Michael; Kaczmarek, Michał; Wiemhöfer, Hans-Dieter

    2014-06-01

    Low temperature fuel cells consuming ethanol without reformation would be a major step toward the use of renewable energy sources from biomass. However, the necessary electrodes and electrocatalysts still are far from being perfect and suffer from various poisoning and deactivation processes. This work describes investigations on systems using carbon/ZnS-based electrocatalysts for ethanol oxidation in complete membrane electrode assemblies (MEAs). MEAs were built on Nafion membranes with active masses prepared from ZnS nanoparticles and Vulcan carbon support. Under operation, acetic acid and acetaldehyde were identified and quantified as soluble oxidation products, whereas the amount of CO2 generated could not be quantified directly. Overall conversion efficiencies of up to 25% were estimated from cells operated over prolonged time. From polarization curves, interrupt experiments and analysis of reaction products, mass transport problems (concentration polarization) and breakthrough losses were found to be the main deficiencies of the ethanol oxidation electrodes fabricated so far.

  13. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  14. Microfluidic Fabrication of Hydrocortisone Nanocrystals Coated with Polymeric Stabilisers

    Directory of Open Access Journals (Sweden)

    David F. Odetade

    2016-12-01

    Full Text Available Hydrocortisone (HC nanocrystals intended for parenteral administration of HC were produced by anti-solvent crystallisation within coaxial assemblies of pulled borosilicate glass capillaries using either co-current flow of aqueous and organic phases or counter-current flow focusing. The organic phase was composed of 7 mg/mL of HC in a 60:40 (v/v mixture of ethanol and water and the anti-solvent was milli-Q water. The microfluidic mixers were fabricated with an orifice diameter of the inner capillary ranging from 50 µm to 400 µm and operated at the aqueous to organic phase flow rate ratio ranging from 5 to 25. The size of the nanocrystals decreased with increasing aqueous to organic flow rate ratio. The counter-current flow microfluidic mixers provided smaller nanocrystals than the co-current flow devices under the same conditions and for the same geometry, due to smaller diameter of the organic phase stream in the mixing zone. The Z-average particle size of the drug nanocrystals increased from 210–280 nm to 320–400 nm after coating the nanocrystals with 0.2 wt % aqueous solution of hydroxypropyl methylcellulose (HPMC in a stirred vial. The differential scanning calorimetry (DSC and X-ray powder diffraction (XRPD analyses carried out on the dried nanocrystals stabilized with HPMC, polyvinyl pyrrolidone (PVP, and sodium lauryl sulfate (SLS were investigated and reported. The degree of crystallinity for the processed sample was lowest for the sample stabilised with HPMC and the highest for the raw HC powder.

  15. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    Science.gov (United States)

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  16. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  17. Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition

    Science.gov (United States)

    Reidy, Christopher; Tate, Janet

    2011-10-01

    Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.

  18. Room temperature ferromagnetism and half metallicity in nickel doped ZnS: Experimental and DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Muhammad Saeed [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan); Malik, Mohammad Azad, E-mail: Azad.malik@manchester.ac.uk [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Riaz, Saira; Naseem, Shahzad [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan)

    2015-06-15

    The nickel doped nanocrystalline ZnS thin films were deposited onto glass substrates by chemical bath deposition (CBD). Also ZnS:Ni nanoparticles were synthesized by CBD/co-precipitation method. Powder X-ray diffraction (p-XRD) studies demonstrate that both thin films and nanoparticles correspond to sphalerite (cubic) phase of ZnS with slight shift towards higher 2θ values due to incorporation of nickel in the ZnS lattice. The crystallite sizes estimated by Scherrer equation were 4 and 2.6 nm for ZnNiS thin films and nanoparticles, respectively. Scanning Electron Microscopy (SEM) images reveal that the morphology of thin films is based on quasi-spherical particles with nano scale dimensions. Energy Dispersive X-ray (EDX) spectroscopy confirms that the as-deposited thin films have a stoichiometry consistent with the nickel doped ZnS. Full-potential linearized augmented plane wave (FP-L/APW) method based on spin-polarized density functional theory (DFT) was employed to investigate the electronic and magnetic properties of ZnNiS for the doping concentration. Exchange-correlation functional was studied using generalized gradient approximation (GGA + U) method. Electronic band structures and density of states (DOS) demonstrate 100% spin polarization (half metallicity) with ferromagnetic exchange interactions. Superconducting quantum interference device (SQUID) analysis confirms the theoretical observation of ferromagnetism in nickel doped ZnS. These ZnS based half metallic ferromagnets seem to have virtuous applications in future spintronic devices. - Highlights: • ZnS.Ni thin films and nanoparticles were deposited onto glass substrates by CBD. • p-XRD correspond to sphalerite (cubic) phase of ZnS with slight shift in peaks. • DFT was employed to investigate the properties of ZnS.Ni. • DOS demonstrate 100% spin polarization with ferromagnetic exchange interactions. • SQUID analysis confirms the theoretical observations of nickel doped ZnS.

  19. Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Yoshida, Erina; Takahashi, Kei; Shibata, Katsumi

    2010-01-01

    Recent studies showed that the urinary excretion of the water-soluble vitamins can be useful as a nutritional index. To determine how fasting affects urinary excretion of water-soluble vitamins, a human study and an animal experiment were conducted. In the human study, the 24-h urinary excretion of water-soluble vitamins in 12 healthy Japanese adults fasting for a day was measured. One-day fasting drastically decreased urinary thiamin content to 30%, and increased urinary riboflavin content by 3-fold. Other water-soluble vitamin contents did not show significant change by fasting. To further investigate the alterations of water-soluble vitamin status by starvation, rats were starved for 3 d, and water-soluble vitamin contents in the liver, blood and urine were measured during starvation. Urinary excretion of thiamin, riboflavin, vitamin B(6) metabolite 4-pyridoxic acid, nicotinamide metabolites and folate decreased during starvation, but that of vitamin B(12), pantothenic acid and biotin did not. As for blood vitamin levels, only blood vitamin B(1), plasma PLP and plasma folate levels decreased with starvation. All water-soluble vitamin contents in the liver decreased during starvation, whereas vitamin concentrations in the liver did not decrease. Starvation decreased only concentrations of vitamin B(12) and folate in the skeletal muscle. These results suggest that water-soluble vitamins were released from the liver, and supplied to the peripheral tissues to maintain vitamin nutrition. Our human study also suggested that the effect of fasting should be taken into consideration for subjects showing low urinary thiamin and high urinary riboflavin.

  20. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun

    2008-06-06

    A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.

  1. Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi Reza

    2016-06-01

    Full Text Available ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD, ultraviolet (UV visible absorption and photoluminescence (PL spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.

  2. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals

    Science.gov (United States)

    Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu

    2015-05-01

    High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  3. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  4. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    International Nuclear Information System (INIS)

    Lu, Y. F.; Cao, X. A.

    2014-01-01

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions

  5. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Science.gov (United States)

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  6. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  7. Spectroscopic characterization of ligands on the surface of water dispersible NaGdF4:Ln3+ nanocrystals

    International Nuclear Information System (INIS)

    Cichos, J.; Karbowiak, M.

    2012-01-01

    For electronic or biomedical applications it is desirable to have ligand-free water-dispersible nanocrystals (NCs). The commonly used FTIR spectroscopy often provides a direct evidence for molecules on the surface. In some cases, however, the strong bands of solvent molecules may obscure the peaks of surface bounded ligands. We show that in this regard the emission spectroscopy may be used as a more reliable probing tool. The relevant information can be obtained from emission and excitation spectra, emission decay times as well as from analysis of relative efficiency of excitation energy transfer from Gd 3+ to Eu 3+ ions. Using these methods we tested samples obtained by various synthetic routes and indicated that only nitrosonium tetrafluoroborate (NOBF 4 ) removes successfully the organic ligands from the nanocrystals surface, yielding organic ligand-free NCs dispersible in aqueous solutions. The conclusions drawn from emission spectroscopy are useful for interpretation of results of FTIR, Raman and NMR studies. The detailed assignment of FTIR peaks for oleate-capped and oleate-free NCs is also provided. Finally, we point to the risk of drawing erroneous conclusions about colloidal stability of nanocrystals if refractive indexes of NCs and medium are similar.

  8. Spectroscopic characterization of ligands on the surface of water dispersible NaGdF4:Ln3+ nanocrystals

    Science.gov (United States)

    Cichos, J.; Karbowiak, M.

    2012-05-01

    For electronic or biomedical applications it is desirable to have ligand-free water-dispersible nanocrystals (NCs). The commonly used FTIR spectroscopy often provides a direct evidence for molecules on the surface. In some cases, however, the strong bands of solvent molecules may obscure the peaks of surface bounded ligands. We show that in this regard the emission spectroscopy may be used as a more reliable probing tool. The relevant information can be obtained from emission and excitation spectra, emission decay times as well as from analysis of relative efficiency of excitation energy transfer from Gd3+ to Eu3+ ions. Using these methods we tested samples obtained by various synthetic routes and indicated that only nitrosonium tetrafluoroborate (NOBF4) removes successfully the organic ligands from the nanocrystals surface, yielding organic ligand-free NCs dispersible in aqueous solutions. The conclusions drawn from emission spectroscopy are useful for interpretation of results of FTIR, Raman and NMR studies. The detailed assignment of FTIR peaks for oleate-capped and oleate-free NCs is also provided. Finally, we point to the risk of drawing erroneous conclusions about colloidal stability of nanocrystals if refractive indexes of NCs and medium are similar.

  9. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Energy Technology Data Exchange (ETDEWEB)

    Hudlikar, Manish; Joglekar, Shreeram [University of Pune, Division of Biochemistry, Department of Chemistry (India); Dhaygude, Mayur [National Chemical Laboratory, Polymer Science and Engineering Division (India); Kodam, Kisan, E-mail: kodam@chem.unipune.ac.in [University of Pune, Division of Biochemistry, Department of Chemistry (India)

    2012-05-15

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S{sup -2}) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S{sup -2}) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S{sup -2}) ions.

  10. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Science.gov (United States)

    Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan

    2012-05-01

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S-2) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S-2) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S-2) ions.

  11. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    International Nuclear Information System (INIS)

    Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan

    2012-01-01

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV–vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S −2 ) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S −2 ) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S −2 ) ions.

  12. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  13. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  14. Aggregation and Photophysical Properties of Water-Soluble Sapphyrins

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk; Král, V.

    2004-01-01

    Roč. 395, - (2004), s. 82-86 ISSN 0009-2614 R&D Projects: GA AV ČR KSK4040110 Keywords : water-soluble * sapphyrins * photophysical Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2004

  15. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  16. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  17. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    International Nuclear Information System (INIS)

    Çakır, Dilek; Göl, Cem; Çakır, Volkan; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya; Kantekin, Halit

    2015-01-01

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, 1 H NMR, 13 C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies

  18. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  19. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    International Nuclear Information System (INIS)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw

    2008-01-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  20. SYNTHESIS AND PHYSICAL-CHEMICAL PROPERTIES OF WATER-SOLUBLE 3-BENZYLXANTHINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    K. V. Аleksandrova

    2015-04-01

    Full Text Available Introduction Nowadays, research of novel biological active compounds with low toxicity, are carried out among different classes of organic compounds of natural and synthetic genesis. One of the main ways of these studies is search of water-soluble compounds – convenient objects for pharmacological researches. In recent years researchers paid attention to xanthine derivatives, because of their high variativity of possible chemical modification and ability to form different salts with wide spectrum of biological action. Thus, among water-soluble xanthine derivatives were found compounds with pronounced antioxidant, diuretic and analeptic properties. Primary methods of obtaining water-soluble xanthine derivatives are direct interaction of bases with xanthine molecule or insertion basic or acidic residues in positions 7 or 8 of xanthine bicycle. According from the above, search of biologically active compounds among water-soluble substituted xanthines is prospective and actual. The aim of the study was development of synthetic ways of obtaining novel water-soluble derivatives of 3-benzyl-8-methylxanthine and studying their physical and chemical properties. Material and methods Melting points of obtained compounds were determined by capillary method on PTP (M device. ІR-spectra of synthesized compounds were recorded on the Bruker Alpha device (company «Bruker» – Germany on 4000-400 sm-1 with using console ATR (direct insertion of compound. 1Н NMR-spectra were recorded on the Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standart – ТМС. Elemental analysis was made on Elementar Vario L cube device. Chromatoraphic studies were made on the plates Sorbfil-AFV-UV (company «Sobrpolimer» –Russia. Systhems for chromatography: «acetone-propanol-2» in ratio 2:3, «propanol-2-benzene» in ratio 10:1 and exersized in UV-light in wave 200-300 nm. Results and discussion We developed methodic of synthesis

  1. Solubility of Aragonite in Subduction Water-Rich Fluids

    Science.gov (United States)

    Daniel, I.; Facq, S.; Petitgirard, S.; Cardon, H.; Sverjensky, D. A.

    2017-12-01

    Carbonate dissolution in subduction zone fluids is critical to the carbon budget in subduction zones. Depending on the solubility of carbonate minerals in aqueous fluids, the subducting lithosphere may be either strongly depleted and the mantle metasomatized if the solubility is high, as recently suggested by natural samples or transport carbon deeper into the Earth's mantle if the solubility is low enough [1, 2]. Dissolution of carbonate minerals strongly depends on pressure and temperature as well as on the chemistry of the fluid, leading to a highly variable speciation of aqueous carbon. Thanks to recent advances in theoretical aqueous geochemistry [3, 4], combined experimental and theoretical efforts now allow the investigation of speciation and solubility of carbonate minerals in aqueous fluids at PT conditions higher than previously feasible [4, 5]. In this study, we present new in situ X-ray fluorescence measurements of aragonite dissolution up to 5 GPa and 500°C and the subsequent thermodynamic model of aragonite solubility in aqueous fluids thanks to the Deep Earth Water model. The amount of dissolved aragonite in the fluid was calculated from challenging and unprecedented measurements of the Ca fluorescence K-lines at low-energy. Experiments were performed at the ESRF, beamline ID27 using a dedicated design of an externally-heated diamond anvil cell and an incident high-flux and highly focused monochromatic X-Ray beam at 20 keV. The results show a spectacularly high solubility of aragonite at HP-HT in water, further enhanced in presence of NaCl and silica in the solution. [1] Frezzotti, M. L. et al. (2011) doi:10.1038/ngeo1246. [2] Ague, J. J. and Nicolescu, S. (2014) doi:10.1038/ngeo2143. [3] Pan, D. et al. (2013) doi: 10.1073/pnas.1221581110. [4] Sverjensky, D. A et al. (2014) doi: 10.1016/j.gca.2013.12.019. [5] Facq, S. et al. (2014) doi: 10.1016/j.gca.2014.01.030.

  2. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  3. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-01-01

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  4. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  5. Temperature dependence of morphology, structural and optical properties of ZnS nanostructures synthesized by wet chemical route

    International Nuclear Information System (INIS)

    Navaneethan, M.; Archana, J.; Nisha, K.D.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C.

    2010-01-01

    Research highlights: → ZnS nanoparticles and nanorods have been synthesized by wet chemical route. → Higher annealing temperature influenced the change in morphology due to aggregation of the nanoparticles. → The temperature dependent optical properties were investigated. → Absorption edge of nanoparticles (295 nm) and nanorods (326 nm) were shifted towards shorter wavelength compared to bulk ZnS (337 nm) due to the quantum confinement effect. → ZnS nanoparticles exhibit high photoluminescence intensity than that of ZnS nanorods annealed at 180 o C. - Abstract: ZnS nanostructures have been synthesized by simple wet chemical route and annealed at two different temperatures of 50 o C and 180 o C. From the measurements of transmission electron microscopy and contact-mode atomic force microscopy, it is found that annealed temperature changes the morphology from nanoparticles to nanorods. The optical properties of the synthesized ZnS nanomaterial have been characterized by UV-visible absorption spectroscopy and photoluminescence spectroscopy. The structural and elemental analyses were carried out by powder X-ray diffraction pattern and energy dispersive X-ray absorption spectroscopy, respectively. Absorption edge of the nanoparticles (295 nm) and nanorods (326 nm) was shifted towards shorter wavelength compared to bulk ZnS (337 nm) due to the quantum confinement effect.

  6. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  7. A novel drug delivery of 5-fluorouracil device based on TiO{sub 2}/ZnS nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça Faria, Henrique Antonio, E-mail: henrique.fisica@ifsc.usp.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil); Nanomedicine and Nanotoxicology Laboratory, São Carlos Institute of Physics, University of São Paulo. Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos, SP CEP: 13566-590 (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil)

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO{sub 2}) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO{sub 2} has typically been within ultraviolet spectrum. In this study, the surface modification of TiO{sub 2} nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO{sub 2} nanotubes used in this work were obtained by sol–gel template synthesis. The ZnS quantum dots were deposited onto TiO{sub 2} nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO{sub 2}/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO{sub 2} nanotubes exhibited a high emission at 380 nm (3.26 eV), whereas TiO{sub 2}/ZnS exhibited an emission at 410 nm (3.02 eV). The TiO{sub 2}/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells—CHO) suggesting that TiO{sub 2}/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO{sub 2}/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO{sub 2}/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. - Highlights: • TiO{sub 2}/ZnS nanotubes showed a redshift in fluorescence spectrum. • Cytotoxicity against mammalian cells revealed biocompatibility of the nanotubes. • TiO{sub 2}/ZnS proved an efficient delivery system for anti-tumor 5-fluorouracil.

  8. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  9. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. Copyright © 2015. Published by Elsevier Ltd.

  10. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  11. Effect of Au irradiation energy on ejection of ZnS nanoparticles from ZnS film

    Science.gov (United States)

    Kuiri, P. K.; Ghatak, J.; Joseph, B.; Lenka, H. P.; Sahu, G.; Mahapatra, D. P.; Tripathi, A.; Kanjilal, D.; Mishra, N. C.

    2007-01-01

    ZnS films deposited on Si have been irradiated with Au ions at 35 keV, 2, and 100 MeV. Sputtered particles, collected on catcher foils during irradiation, were analyzed using transmission electron microscopy. For the case of 35 keV Au irradiation, no nanoparticle (NP) could be observed on the catcher foil. However, NPs 2-7 nm in size, have been observed on the catcher foils for MeV irradiations at room temperature. For particle sizes ≥3 nm, the distributions could be fitted to power law decays with decay exponents varying between 2 and 3.5. At 2 MeV, after correction for cluster breakup effects, the decay exponent has been found to be close to 2, indicating shock waves induced ejection to be the dominant mechanism. The corrected decay exponent for the 100 MeV Au irradiation case has been found to be about 2.6. Coulomb explosion followed by thermal spike induced vaporization of ZnS seems to be the dominant mechanism regarding material removal at such high energy. In such a case the evaporated material can cool down going into the fragmentation region forming clusters.

  12. Photoactivation and perturbation of photoluminescent properties of aqueous ZnS nanoparticles: Probing the surfactant-semiconductor interfaces

    International Nuclear Information System (INIS)

    Mehta, S.K.; Kumar, Sanjay

    2011-01-01

    Graphical abstract: The variation in PL emission intensity of growing ZnS NPs during first hour of their growth depends upon the nature of surfactants used for their stabilization. Highlights: ► Photoluminescence (PL) intensity of growing ZnS NPs increases linearly with time. ► Significant PL enhancement in anionic surfactant stabilized ZnS NPs on irradiation. ► PL decay with delay time after removing from UV-irradiation in all the surfactants. ► Better PL stability of ZnS NPs stabilized in anionic surfactants than cationic ones. - Abstract: The in situ photochemistry of aqueous colloidal ZnS has been studied in relation to variety of the surfactants as surface passivating agents. The photoluminescence (PL) intensity of ZnS nanoparticles (NPs) has been drastically enhanced as compared to their bare counterparts due to surface passivation by surfactants depending upon their molecular structure. Cationic surfactants of alkyltrimethylammonium bromide series with different chain lengths (C 16 , C 14 and C 12 ) have been tested. The PL emission of ZnS NPs decreases with decrease in chain length because of ineffective stabilization and passivation of surface because the larger sized NPs were produced in the surfactant with smaller chain length. On the other hand, three anionic surfactants with C 12 chain length with different head groups have been capable of comparatively effective passivation to produce stable NPs with better luminescence. The changing nature of surface states during growth and long time ripening of ZnS NPs has also been monitored by comparing time evolution PL emission in different surfactants. The influence of UV-light irradiation in enhancing the PL emission has been found to be surfactant structure dependent with maximum enhancement observed with the surfactants having π-electrons in their head group functionalities. The anionic surfactants also display better tendency to retain the enhanced PL of ZnS NPs for longer time durations.

  13. Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curran, Christopher D. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Lu, Li [Department of Materials Science and Engineering; Lehigh University; Bethlehem; USA; Kiely, Christopher J. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Department of Materials Science and Engineering; McIntosh, Steven [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA

    2018-01-01

    Ultra-small CuxCe1-xO2-δnanocrystals were prepared through a room temperature, aqueous synthesis method, achieving high copper doping and low water gas shift activation energy.

  14. Renal excretion of water-soluble contrast media after enema in the neonatal period.

    Science.gov (United States)

    Kim, Hee Sun; Je, Bo-Kyung; Cha, Sang Hoon; Choi, Byung Min; Lee, Ki Yeol; Lee, Seung Hwa

    2014-08-01

    When abdominal distention occurs or bowel obstruction is suspected in the neonatal period, a water-soluble contrast enema is helpful for diagnostic and therapeutic purposes. The water-soluble contrast medium is evacuated through the anus as well as excreted via the kidneys in some babies. This study was designed to evaluate the incidence of renal excretion after enemas using water-soluble contrast media and presume the causes. Contrast enemas using diluted water-soluble contrast media were performed in 23 patients under 2 months of age. After the enema, patients were followed with simple abdominal radiographs to assess the improvement in bowel distention, and we could also detect the presence of renal excretion of contrast media on the radiographs. Reviewing the medical records and imaging studies, including enemas and consecutive abdominal radiographs, we evaluated the incidence of renal excretion of water-soluble contrast media and counted the stay duration of contrast media in urinary tract, bladder, and colon. Among 23 patients, 12 patients (52%) experienced the renal excretion of water-soluble contrast media. In these patients, stay-in-bladder durations of contrast media were 1-3 days and stay-in-colon durations of contrast media were 1-10 days, while stay-in-colon durations of contrast media were 1-3 days in the patients not showing renal excretion of contrast media. The Mann-Whitney test for stay-in-colon durations demonstrated the later evacuation of contrast media in the patients with renal excretion of contrast media (p = 0.07). The review of the medical records showed that 19 patients were finally diagnosed as intestinal diseases, including Hirschsprung's disease, meconium ileum, meconium plug syndrome, and small bowel atresia or stenosis. Fisher's exact test between the presence of urinary excretion and intestinal diseases indicated a statistically significant difference (p = 0.04). The intestinal diseases causing bowel obstruction may increase the

  15. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  16. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  17. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  18. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  19. Water solubility of synthetic pyrope at high temperature and pressure up to 12GPa

    Science.gov (United States)

    Huang, S.; Chen, J.

    2012-12-01

    Water can be incorporated into normally anhydrous minerals as OH- defects and transported into the mantle. Its existence in the mantle may affect property of minerals, such as elasticity, electrical conductivity and rheological properties. As the secondary mineral in the mantle, garnet has not been extensively studied for its water solubility and there is discrepancies among the existing experiments on the water solubility in the garnet change at pressures and temperatures. Geiger et al., 1991 investigated water content in synthetic pyrope and concluded 0.02wt% to 0.07wt% OH- substitution. Lu et al., 1997 found 198ppm water in the Dora Miara pyrope at 100Kbar and 1000°C. Withers et al., 1998 claimed that water solubility in pyrope reached 1000ppm at 5GPa and then decreased as pressure increasing; above 7GPa, no water was detected. Mookherjee et al., 2009 also explored pyrope-rich garnet, which contains water up to 0.1%wt at 5-9GPa and temperatures 1373K-1473K. Here we report a study of water solubility of synthetic single crystal pyrope at pressures 4-12GPa and temperature 1000°C. Single crystals of pyrope were synthesized using multi-anvil press and water contents in these samples were measured using FTIR. We have observed OH- peak at 3650 cm-1 along this pressure range, although Withers, 1998 reported water contents decrease to undetectable level above 7GPa. Water solubility in pyrope will be reported as a function of pressure up to 12 GPa at 1000°C.

  20. Process for the production of furfural from pentoses and/or water soluble pentosans

    NARCIS (Netherlands)

    De Jong, W.; Marcotullio, G.

    2012-01-01

    The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution

  1. Efficient photocatalytic degradation of malachite green dye under visible irradiation by water soluble ZnS:Mn/ZnS core/shell nanoparticles

    Science.gov (United States)

    Khaparde, Rohini A.; Acharya, Smita A.

    2018-05-01

    ZnS:Mn/ ZnS core/shell nanoparticles was prepared by two step synthesis method. In first step, oleic acid - coated Mn doped ZnS core nanoparticles were prepared which were charged through ligand exchange. Shell of ZnS NPs was finally deposited upon the surface of charged Mn doped ZnS core. Scanning electron microscopy (SEM) image exhibit morphological confirmation of ZnS:Mn/ZnS core/shell. As Nano ZnS are the most suitable candidates for photocatalyst that extensively involved in degradation and complete mineralization of various toxic organic pollutants owing to its high efficiency, strong oxidizing power, non-toxicity, high photochemical and biological stability, corrosive resistance and low cost. Photodegradation of malachite green is systematically investigated by adding different molar proportional of ZnS:Mn/ZnS core/shell in the dye. The rate of de-coloration of dye is detected by UV-VIS absorption spectroscopy. Efficient detoriation in the colour of dye is attributed to the core /shell morphology of the particles.

  2. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  3. Temperature and sodium chloride effects on the solubility of anthracene in water

    International Nuclear Information System (INIS)

    Arias-Gonzalez, Israel; Reza, Joel; Trejo, Arturo

    2010-01-01

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg -1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10 -8 to 143 . 10 -8 ) mol . kg -1 . Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol -1 . The standard molar Gibbs free energies, Δ tr G o , enthalpies, Δ tr H o , and entropies, Δ tr S o , for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated Δ tr G o values were positive [(20 to 1230) J . mol -1 ]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  4. Synthesis and Structural Characterization of ZnS Quantum Dots

    International Nuclear Information System (INIS)

    Selim, H.; Khalil, M.M.H.; Al-Kotb, M.S.; Kotkata, M.F.; Amer, H.H.

    2013-01-01

    Zinc sulfide QDs have been synthesized via a simple reaction of Zn (CH 3 COO) 2 and Na 2 S in the presence of sodium dodecyl sulphate (SDS) acting as an anionic capping material. The structure as well as characterization of the synthesized materials has been studied by XRD, EDX, SEM, TEM, TGA and FT-IR spectroscopy. Analysis of the obtained results revealed products of zinc blende ZnS nanoparticles with an average size of 5.3±0.2 nm in diameter distributed spherically and uniformly. The UV-visible absorption spectrum of the synthesized ZnS nanoparticles reflects an energy gap of 4.30 eV

  5. Selective Photooxidation Reactions using Water-Soluble Anthraquinone Photocatalysts

    NARCIS (Netherlands)

    Zhang, W.; Gacs, Jenő; Arends, I.W.C.E.; Hollmann, F.

    2017-01-01

    The aerobic organocatalytic oxidation of alcohols was achieved by using water-soluble sodium anthraquinone sulfonate. Under visible-light activation, this catalyst mediated the aerobic oxidation of alcohols to aldehydes and ketones. The photo-oxyfunctionalization of alkanes was also possible

  6. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  7. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  8. Comparison of water sorption and solubility of Acropars and Meliodent heat cure acrylic resins

    Directory of Open Access Journals (Sweden)

    Golbidi F

    2006-06-01

    Full Text Available Background and Aim: Water sorption and solubility are important properties of acrylic resins. Denture base acrylic resins have low solubility. This solubility results from the leaching out of unreacted monomer and water soluble additives into the oral fluids. The solubility of denture bases can cause oral soft tissue reactions. In addition, water absorbed into this material acts as a plasticizer and decreases the mechanical properties such as hardness, transverse strength, fatigue limit and also can change the color and dimensional stability. The aim of this study was to compare the water sorption and solubility of Acropars and Meliodent heat cure acrylic resins. Materials and Methods: This experimental study was performed on the basis of ADA specification No.12 and ISO No.1567 and standards NO: 2571 of Institute of Standards & Industrial Research of Iran. Six disc form samples of each acrylic resin were prepared, with the dimension of 50×0.5 mm. After desiccating, the samples were kept in an oven for 24 hours and weighed. Then they were immersed in water, kept in oven for 7 days and weighed again. After this phase, the samples were carried to a dessicator, for 24 hours and kept in an oven for drying and were weighed for the third time. Data were analyzed with Mann Whitney and one sample t-test. P<0.05 was considered as the limit of significance. Results: Water sorption mean values were 30.5±0.1 µg/mm3 or 0.76±0.01 mg/cm2 for Meliodent samples and 30.7±0.87 µg/mm3 or 0.77±0.009 mg/cm2 for Acropars samples. No significant difference was observed in water sorption of these two materials (P=0.9. Meliodent acrylic resin showed lower solubility (1.7±0.097 µg/mm3 or 0.042±0.001 mg/cm2 than Acropars acrylic resin (2.5±0.13 µg/mm3 or 0.062±0.001 mg/cm2 (P=0.002. Conclusion: Acropars heat cure acrylic resin matched well with the requirements of the international standards for water sorption, but its solubility was not favorable. This problem

  9. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting.

    Science.gov (United States)

    Fominykh, Ksenia; Chernev, Petko; Zaharieva, Ivelina; Sicklinger, Johannes; Stefanic, Goran; Döblinger, Markus; Müller, Alexander; Pokharel, Aneil; Böcklein, Sebastian; Scheu, Christina; Bein, Thomas; Fattakhova-Rohlfing, Dina

    2015-05-26

    Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome our dependency on fossil fuels. Searching for novel catalytic materials for electrochemical oxygen generation is essential for improving the total efficiency of water splitting processes. We report the synthesis, structural characterization, and electrochemical performance in the oxygen evolution reaction of Fe-doped NiO nanocrystals. The facile solvothermal synthesis in tert-butanol leads to the formation of ultrasmall crystalline and highly dispersible FexNi1-xO nanoparticles with dopant concentrations of up to 20%. The increase in Fe content is accompanied by a decrease in particle size, resulting in nonagglomerated nanocrystals of 1.5-3.8 nm in size. The Fe content and composition of the nanoparticles are determined by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy measurements, while Mössbauer and extended X-ray absorption fine structure analyses reveal a substitutional incorporation of Fe(III) into the NiO rock salt structure. The excellent dispersibility of the nanoparticles in ethanol allows for the preparation of homogeneous ca. 8 nm thin films with a smooth surface on various substrates. The turnover frequencies (TOF) of these films could be precisely calculated using a quartz crystal microbalance. Fe0.1Ni0.9O was found to have the highest electrocatalytic water oxidation activity in basic media with a TOF of 1.9 s(-1) at the overpotential of 300 mV. The current density of 10 mA cm(-2) is reached at an overpotential of 297 mV with a Tafel slope of 37 mV dec(-1). The extremely high catalytic activity, facile preparation, and low cost of the single crystalline FexNi1-xO nanoparticles make them very promising catalysts for the oxygen evolution reaction.

  10. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    Science.gov (United States)

    Rashad, M. M.; Rayan, D. A.; El-Barawy, K.

    2010-01-01

    Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.

  11. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Rashad, M M; Rayan, D A; El-Barawy, K

    2010-01-01

    Nanocrystallite Mn doped Zn 1-X S (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn 2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200 o C for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn 2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn 2+ ions up to 0.2.

  12. Role of magnesium in ZnS structure: Experimental and theoretical investigation

    Directory of Open Access Journals (Sweden)

    M. Y. Shahid

    2016-02-01

    Full Text Available Wide band gap semiconductor materials are extending significant applications in electronics and optoelectronics industry. They are showing continued advancement in ultraviolet to infrared LEDs and laser diodes. Likewise the band gap tunability of ZnS with intentional impurities such as Mg and Mn are found useful for optoelectronic devices. Information from literature indicates slight blue shift in the band gap energy of ZnS by Mg doping but nevertheless, we report a reasonable red shift (3.48 eV/356 nm to 2.58 eV/480 nm in ZnS band gap energy in Mg-ZnS structure. Theoretical model based on first principle theory using local density approximation revealed consistent results on Mg-ZnS structure. Similarly, structural, morphological, optical and electrical properties of the as grown Mg-ZnS were studied by XRD, SEM, FTIR, EDS, UV-Vis Spectrophotometer and Hall measurement techniques.

  13. CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals

    Directory of Open Access Journals (Sweden)

    Taisiia Berestok

    2018-04-01

    Full Text Available The manufacturing of semiconducting films using solution-based approaches is considered a low cost alternative to vacuum-based thin film deposition strategies. An additional advantage of solution processing methods is the possibility to control the layer nano/microstructure. Here, we detail the production of mesoporous CuGaS2 (CGS and ZnS layers from spin-coating and subsequent cross-linking through chalcogen-chalcogen bonds of properly functionalized nanocrystals (NCs. We further produce NC-based porous CGS/ZnS bilayers and NC-based CGS–ZnS composite layers using the same strategy. Photoelectrochemical measurements are used to demonstrate the efficacy of porous layers, and particularly the CGS/ZnS bilayers, for improved current densities and photoresponses relative to denser films deposited from as-produced NCs.

  14. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2017-10-01

    Full Text Available Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from its bindings, the difficulty of free vitamin absorption, gastrointestinal problems, medication, and often alcoholism. Among water-soluble vitamins, B12 is the only one with a sufficient storage level in the body, capable of preventing deficiency symptoms for a long period of time in cases of vitamin-deficient nutrition. Each type of vitamin is dealt with separately in discussing the beneficial outcomes of their overconsumption regarding health, while the authors of the article also present cases with contradictory results. Daily requirements are set forth for every water-soluble vitamin and information is provided on the types of nutrients that help us to the water-soluble vitamins essential for the organism.

  15. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  16. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID ® (AF), BFLUID ® (BF), PARESAFE ® (PS) and PAREPLUS ® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli , Serratia marcescens , Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans , they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  17. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  18. Water Soluble Polymers for Pharmaceutical Applications

    OpenAIRE

    Veeran Gowda Kadajji; Guru V. Betageri

    2011-01-01

    Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1) synthetic and (2) natural. Drug polymer conjugates, block copolymers, hydrogel...

  19. Femtosecond study of laser dyes soluble in water: coumarins

    International Nuclear Information System (INIS)

    Cassara, Laurence

    1996-01-01

    Coumarins build up one of the great families of laser dyes, and this research thesis addresses the study of four water-soluble coumarins (ATC, DMATC, DATC, and CHOS) which are analogue to conventional coumarins (C120, C311, C1, and C102). These molecules are made water-soluble by substitution of the methyl group in position 4 by a polyether group. Mechanisms of deactivation are studied by means of time-resolved fluorescence and transient adsorption methods which allow the reaction dynamics of coumarins after light excitation to be studied. Several time scales, from femto- to nano-second, have been reached and allowed various processes to be studied: relaxation, solvation dynamics, solute orientation diffusion, process of deactivation of radiative and non-radiative relaxation in various solvents [fr

  20. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol+water cosolvent mixtures at different temperatures.

    Science.gov (United States)

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-12-01

    The solubilities of bioactive compound vanillin were measured in various propane-1,2-diol+water cosolvent mixtures at T=(298-318)K and p=0.1 MPa. The experimental solubility of crystalline vanillin was determined and correlated with calculated solubility. The results showed good correlation of experimental solubilities of crystalline vanillin with calculated ones. The mole fraction solubility of crystalline vanillin was recorded highest in pure propane-1,2-diol (7.06×10(-2) at 298 K) and lowest in pure water (1.25×10(-3) at 298 K) over the entire temperature range investigated. Thermodynamic behavior of vanillin in various propane-1,2-diol+water cosolvent mixtures was evaluated by Van't Hoff and Krug analysis. The results showed an endothermic, spontaneous and an entropy-driven dissolution of crystalline vanillin in all propane-1,2-diol+water cosolvent mixtures. Based on solubility data of this work, vanillin has been considered as soluble in water and freely soluble in propane-1,2-diol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthesis and Characterization of Water-soluble Conjugates of Cabazitaxel Hemiesters-Dextran.

    Science.gov (United States)

    Parhizkar, Elahehnaz; Ahmadi, Fatemeh; Daneshamouz, Saeid; Mohammadi-Samani, Soliman; Sakhteman, Amirhossein; Parhizkar, Golnaz

    2017-11-24

    Cabazitaxel (CTX) is a second- generation taxane derivative, a class of potent anticancer drugs with very low water solubility. CTX is used in patients with resistant prostate cancer unresponsive to the first generation taxane, docetaxel. Currently marketed formulations of CTX contain high concentrations of surfactant and ethanol, which cause severe hypersensitivity reactions in patients. In order to increase its solubility, two hemiester analogs; CTX-succinate and CTX-glutarate were synthesized and characterized. To improve the solubility of hemiesters even more, dextran as a biocompatible polymer was also conjugated to hemiester analogs. MTT assay was performed on MCF-7 cell line to evaluate the cytotoxicity effect of hemiesters and conjugates. Based on the results, hemiester analogs increased water solubility of the drug up to about 3 and 8 fold. Conjugation to dextran enhanced the CTX solubility to more than 1500 fold. These conjugates released the conjugated CTX in less than 24 hours in a pH dependent manner and showed proper hemocompatibility characteristics. The hemiesters had approximately similar cytotoxicity in comparison with CTX and the dextran conjugates showed higher cytotoxicity effect on MCF-7 cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    Liu, Haitao

    2007-01-01

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  3. Effect of Annealing Temperature and Spin Coating Speed on Mn-Doped ZnS Nanocrystals Thin Film by Spin Coating

    Directory of Open Access Journals (Sweden)

    Noor Azie Azura Mohd Arif

    2017-01-01

    Full Text Available ZnS:Mn nanocrystals thin film was fabricated at 300°C and 500°C via the spin coating method. Its sol-gel was spin coated for 20 s at 3000 rpm and 4000 rpm with metal tape being used to mold the shape of the thin film. A different combination of these parameters was used to investigate their influences on the fabrication of the film. Optical and structural characterizations have been performed. Optical characterization was analyzed using UV-visible spectroscopy and photoluminescence spectrophotometer while the structural and compositional analysis of films was measured via field emission scanning electron microscopy and energy dispersive X-ray. From UV-vis spectra, the wavelength of the ZnS:Mn was 250 nm and the band gap was within the range 4.43 eV–4.60 eV. In room temperature PL spectra, there were two emission peaks centered at 460 nm and 590 nm. Under higher annealing temperature and higher speed used in spin coating, an increase of 0.05 eV was observed. It was concluded that the spin coating process is able to synthesize high quality spherical ZnS:Mn nanocrystals. This conventional process can replace other high technology methods due to its synthesis cost.

  4. FOR CU-DOPED ZnS 'ALLOY

    African Journals Online (AJOL)

    2005-01-20

    Jan 20, 2005 ... electron transport property of thin films. may be characterized by the conductivity of the ... 3H20 were prepared and added drop by drop' to. 100ml of ZnS .... higher temperatures there is sufficient thermal activation fo~. I some electrons to .... telluride film on crystalline silicon, J. Appl. Phys. 54 (3): 1383-1389.

  5. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  6. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Lizhen [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China); Chen, Qirong [Beijing Center for Physical and Chemical Analysis (BCPCA) (China); Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu, E-mail: xfmeng@cnu.edu.cn [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China)

    2015-05-15

    High-temperature phase-stable rice-like anatase TiO{sub 2} nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N{sub 2} adsorption–desorption isotherms. The results showed that TiO{sub 2} nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m{sup 2}/g. Unexpectedly, the rice-like TiO{sub 2} nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO{sub 2} nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO{sub 2} nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  7. The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F.S.; Shih, Han C.

    2012-01-01

    Highlights: ► ZnS nanowires have been achieved by thermal evaporation. ► The nanowires were 20–50 nm in diameter and up to tens of nanometers in length. ► Single-crystalline wurtzite and sphalerite ZnS phase are coexist in the nanowires. ► The ZnS nanowires showed almost identical blue luminescence at room temperature. ► ZnS nanowires may be appropriate for use in UV/blue LED phosphor materials. - Abstract: Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20–50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ∼581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.

  8. Nonlinear spectroscopy of excitons and biexcitons in ZnS

    International Nuclear Information System (INIS)

    Pavlov, L.I.; Paskov, P.P.; Lalov, I.J.

    1989-01-01

    Four- photon spectroscopy on exciton and biexciton states in ZnS is reported at T = 10 K. The Nd:YAG laser is used as a fundamental source in the experimental setup. Second harmonic radiation ω 2 pumps the dye laser of ω 1 tunable frequency. The ZnS single crystal is placed in an optical cryostat for resonant spectroscopy at low temperature. Four-photon mixing ω 3 = 2ω 1 -ω 2 signal is separated by MDR-23 monochromator and is registered by a laser photometer. The hexagonal ZnS crystal is experimentally investigated when the waves ω 1 and ω 2 propagate colinear with the optical axis. The crystal is cut along the (1120) plane. The photon 2ℎω 1 energy scans over the range 3.895-3.940 eV. The dispersion of I 3 (ω 3 ) upon 2ℎω 1 is obtained. Three resonances are registered E M = 3.8964, E B 1 = 3.9010 and E B 2 = 3.9311 eV. The recorded low temperature resonance in dispersion of nonlinearity χ (3) are identified with B 1 s and B 2 s excitons as well as with biexciton in ZnS which is observed for the first time in this crystal. An experimental dependence of the signal I 3 (ω 3 ) intensity upon the pump I 1 (ω 1 ) is obtained. The E M resonance is saturated with the I 1 (ω 1 ) enhancement while the E B 1 resonance increases. Authors explain such a behaviour by the fact that the recombination probability of the biexcitons to excitons increases with the pump level growth. Estimations for the exciton density and the bounding energy are given. (author)

  9. Halobenzoquinone-mediated assembly of amino acid modified Mn-doped ZnS quantum dots for halobenzoquinones detection in drinking water.

    Science.gov (United States)

    Jiao, Zhe; Zhang, Pengfei; Chen, Hongwei; Li, Jingwen; Zhong, Zhengquan; Fan, Hongbo; Cheng, Faliang

    2018-10-05

    Halobenzoquinones (HBQs) were reported as disinfection byproducts (DBPs) which had potential risk of bladder cancer. In this paper, a highly selective analytical method for HBQs was developed by HBQs-mediated assembly of amino acid modified Mn-doped ZnS/Quantum Dots (Mn: ZnS QDs). In the presence HBQs, a charge-transfer complex (CTC) was formed between aromatic rings of HBQs and the primary amino groups on the surface of the QDs. The formation of CTC led to the aggregation of QDs, as a result fluorescence decreasing occurred. The decrease was correlated with the concentration of HBQs. Then a fluorescence sensor array for discrimination of three kinds of HBQs including 2,6-Dichloro-1,4-benzoquinone (DCBQ), 2,6-Dibromo-1,4-benzoquinone (DBBQ) and 2,3,6-trichloro-1,4-benzoquinone (TCBQ) was developed. Four kinds of amino acids including cysteine, threonine, tyrosine and tryptophan were embellished on the Mn: ZnS QDs. The different extents of aggregation led to different fluorescence decreasing effect, thus distinct fluorescence patterns were created. It showed that three kinds of HBQs could be discriminated successfully by fluorescence sensor array at a range of concentrations through principal component analysis (PCA). The unknown samples were predicted by with a stepwise linear discriminant analysis (SLDA) using Mahalanobis distance as a selection criterion with accuracy of 100%. Remarkably, the practicability of the proposed sensor array was further validated by identification of three kinds of HBQs at different concentrations in real drinking water samples. Compared to LC/MS/MS, this fluorescent sensor array-based method was proved to be more convenient since the nanoparticles can be prepared flexibly according to the property of the target. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    KAUST Repository

    Li, Feifei

    2013-05-21

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis of highly luminescent core-shell UCNCs in the "aqueous" phase under mild conditions using innocuous reagents. A microwave-assisted approach allowed for layer-by-layer epitaxial growth of a hydrophilic NaGdF4 shell on NaYF4:Yb, Er cores. During this process, surface defects of the nanocrystals could be gradually passivated by the homogeneous shell deposition, resulting in obvious enhancement in the overall upconversion emission efficiency. In addition, the up-down conversion dual-mode luminescent NaYF4:Yb, Er@NaGdF4:Ce, Ln (Eu, Tb, Sm, Dy) nanocrystals were also synthesized to further validate the successful formation of the core-shell structure. More significantly, based on their superior solubility and stability in water solution, high upconversion efficiency and Gd-doped predominant X-ray absorption, the as-prepared NaYF4:Yb, Er@NaGdF4 core-shell UCNCs exhibited high contrast in in vitro cell imaging and in vivo X-ray computed tomography (CT) imaging, demonstrating great potential as multiplexed luminescent biolabels and CT contrast agents.

  11. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    Science.gov (United States)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  12. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, M M; Rayan, D A; El-Barawy, K [Central Metallurgical Research and Development Institute PO Box: 87 Helwan, Cairo (Egypt)

    2010-01-01

    Nanocrystallite Mn doped Zn{sub 1-X}S (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn{sup 2+} ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200{sup o}C for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn{sup 2+} ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn{sup 2+} ions up to 0.2.

  13. Synthesis and properties of chemical bath deposited ZnS multilayer films

    International Nuclear Information System (INIS)

    Kamoun Allouche, N.; Ben Nasr, T.; Turki Kamoun, N.; Guasch, C.

    2010-01-01

    Zinc sulphide multilayer films are prepared by chemical bath deposition from different host solutions. X-ray diffraction and scanning electron microscopy are used to characterize the structural properties of the films. The surface composition of the films is studied by Auger electrons spectroscopy, and optical properties are studied by spectrophotometric measurements. X-ray diffraction patterns reveal distinct single crystalline phase with preferential orientation along the (1 1 1) plane of the zinc blende structure for the ZnS multilayer. The spacing between (1 1 1) planes of ZnS is well matched to the spacing between (1 1 2) planes of the chalcopyrite CuInS 2 . After heat treatment all films show a near stoichiometric surface composition as indicated in their AES data. UV-vis measurements show that ZnS multilayer films prepared from the zinc sulphate solution have more than 70% transmission in the wavelengths above 350 nm and an optical band gap of about 3.76 eV.

  14. One-step synthesis and antibacterial property of water-soluble silver nanoparticles by CGJ bio-template

    International Nuclear Information System (INIS)

    Zhu Zichun; Wu Qingsheng; Chen Ping; Yang Xiaohong

    2011-01-01

    In this article, a new synthetic method of nanoparticles with fresh Chinese gooseberry juice (CGJ) as bio-template was developed. One-step synthesis of highly water-soluble silver nanoparticles at room temperature without using any harmful reducing agents and special capping agent was fulfilled with this method. In the process, the products were obtained by adding AgNO 3 to CGJ, which was used as reducing agent, capping agent, and the bio-template. The products of silver nanoparticles with diameter of 10–30 nm have strong water solubility and excellent antibiotic function. With the same concentration 0.047 μg mL −1 , the antibacterial effect of water-soluble silver particles by fresh CGJ was 53%, whereas only 27% for silver nanoparticles synthesized using the template method of fresh onion inner squama coat (OISC). The excellent water solubility of the products would enable them have better applications in the bio-medical field. The synthetic method would also have potential application in preparing other highly water-soluble particles, because of its simple apparatus, high yield, mild conditions, and facile operation.

  15. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jaime Salazar

    2014-01-01

    Full Text Available Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals.

  16. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  17. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  18. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    Science.gov (United States)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  19. Aqueous Synthesis of ZnSe/ZnS-2-R-Benzothiazole Nanocrystals with White Emission

    Directory of Open Access Journals (Sweden)

    Ying-Fan Liu

    2016-01-01

    Full Text Available We prepared water-soluble white light-emitting ZnSe/ZnS-2-R-benzothiazole nanocrystals (NCs, R = 2-hydroxy-5-(2,5-dimethyl-thienyl-phenyl. The penicillamine (Pen capped ZnSe/ZnS NCs were firstly prepared with high photoluminescence quantum yields (PL QY of 40%. Then they bond to 2-R-benzothiazole molecules, resulting in white light-emitting ZnSe/ZnS-2-R-benzothiazole NCs with QY of 75% over a 375 to 650 nm range of emission, which can be applied to white light-emitting diodes. The ZnSe/ZnS-2-R-benzothiazole NCs with two emission bands at around 451 and 557 nm were discussed and the possible mechanism of the interaction of ZnSe/ZnS NCs with 2-R-benzothiazole was also proposed.

  20. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    International Nuclear Information System (INIS)

    Gunning, D.B.; Barua, A.B.; Olson, J.A.

    1990-01-01

    Retinoyl β-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl β-glucuronide, retinoyl β-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates

  1. Growth and characterization of high quality ZnS thin films by RF sputtering

    Science.gov (United States)

    Mukherjee, C.; Rajiv, K.; Gupta, P.; Sinha, A. K.; Abhinandan, L.

    2012-06-01

    High optical quality ZnS films are deposited on glass and Si wafer by RF sputtering from pure ZnS target. Optical transmittance, reflectance, ellipsometry, FTIR and AFM measurements are carried out. Effect of substrate temperature and chamber baking for long duration on film properties have been studied. Roughness of the films as measured by AFM are low (1-2Å).

  2. Short Communication Relationships between the water solubility of ...

    African Journals Online (AJOL)

    132. Short Communication. Relationships between the water solubility of roughage dry matter and certain chemical characteristics. J.W. Cilliers- and H.J. Cilliers. North West Agricultural Development lnstitute, Private. Bag X804, Potchefstroom, 2520 Republic of South Africa. Received 17 May 1995; accepted 8 August 1995.

  3. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  4. Vacancy-type defects in electron and proton irradiated ZnO and ZnS

    International Nuclear Information System (INIS)

    Brunner, S.; Puff, W.; Logar, B.; Baumann, H.

    1997-01-01

    A study aimed at investigating basic properties of radiation induced effects in ZnO and ZnS has been presented. Positron annihilation experiments (both lifetime and Doppler-broadening measurements) were performed on polycrystalline samples. For ZnO it was found that both electron and proton irradiation caused significant changes in the positron annihilation characteristics and several annealing stages were observed, related to the annealing of variously sized vacancy complexes. The lifetime in defected, proton irradiated polycrystalline ZnS samples, grown by chemical vapour deposition, indicates the formation of large defect complexes. The annealing of proton irradiated ZnS in air at temperatures between 650 C and 750 C leads to significant oxidation and transformation into ZnO. 10 refs, 2 figs, 1 tab

  5. Vacancy-type defects in electron and proton irradiated ZnO and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S.; Puff, W.; Logar, B. [Technische Univ., Graz (Austria). Inst. fuer Kernphysik; Mascher, P. [McMaster Univ., Hamilton, ON (Canada). Dept. of Biology; Balogh, A.G. [Technische Hochschule Darmstadt (Germany); Baumann, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    1997-10-01

    A study aimed at investigating basic properties of radiation induced effects in ZnO and ZnS has been presented. Positron annihilation experiments (both lifetime and Doppler-broadening measurements) were performed on polycrystalline samples. For ZnO it was found that both electron and proton irradiation caused significant changes in the positron annihilation characteristics and several annealing stages were observed, related to the annealing of variously sized vacancy complexes. The lifetime in defected, proton irradiated polycrystalline ZnS samples, grown by chemical vapour deposition, indicates the formation of large defect complexes. The annealing of proton irradiated ZnS in air at temperatures between 650 C and 750 C leads to significant oxidation and transformation into ZnO. 10 refs, 2 figs, 1 tab.

  6. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  7. Solubility limit of Mn{sup 2+} ions in Zn{sub 1−x}Mn{sub x}Te nanocrystals grown within an ultraviolet-transparent glass template

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandra dos Santos, E-mail: alemestrado@gmail.com [Universidade Federal de Uberlândia, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física (Brazil); Silva, Sebastião William da; Morais, Paulo Cesar de [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Dantas, Noelio Oliveira [Universidade Federal de Uberlândia, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física (Brazil)

    2016-05-15

    This paper reports on the synthesis of Zn{sub 1−x}Mn{sub x}Te nanocrystals (NCs) (with 0 ≤ x ≤ 0.800) within a PZABP glass system (P{sub 2}O{sub 5}–ZnO–Al{sub 2}O{sub 3}–BaO–PbO) using the fusion method. The as-grown samples were investigated by optical absorption measurements, atomic force microscopy, X-ray diffraction, and Raman spectroscopy. The mean radius of the as-produced NCs (around R ≈ 2.2 nm) was well below the exciton Bohr radius of the bulk ZnTe (5.2 nm). All the characterization techniques employed in this report confirmed the successful inclusion of Mn{sup 2+} ions in the ZnTe-based NCs (Zn{sub 1−x}Mn{sub x}Te NCs) up to the nominal solubility limit of x = 0.100. Above this solubility limit (around x = 0.100), one can observe the formation of MnO and α-MnO{sub 2} NCs, since the nucleation rate for the formation of these NCs is greater than that of Zn{sub 1−x}Mn{sub x}Te NCs, at high x concentrations.Graphical abstract.

  8. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  9. Green synthesis of ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M., E-mail: m.molaei@vru.ac.ir; Bahador, A.R.; Karimipour, M.

    2015-10-15

    In this work, ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) were synthesized using a one-pot, rapid and room temperature photochemical method. UV illumination provided the required energy for the chemical reactions. Synthesized NCs were characterized using X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence (PL) spectroscopy. XRD pattern indicated cubic zinc blende structure for ZnSe NCs and the TEM image indicated round-shaped particles, most of which had a diameter of about 3 nm. Band gap of ZnSe NCs was obtained as about 3.6 eV, which was decreased by increasing the illumination time. Synthesized NCs indicated intensive and narrow emission in the UV-blue area (370 nm) related to the excitonic recombination and a broad band emission with a peak located at about 490 nm originated from the DAP (donor–acceptor pairs) recombination. ZnS shell was grown on ZnSe cores using a reaction based on the photo-sensitivity of Na{sub 2}S{sub 2}O{sub 3}. For ZnSe@ZnS core–shell NCs, XRD diffraction peaks shifted to higher angles. TEM image indicated a shell around cores and most of the ZnSe@ZnS NCs have a diameter of about 5 nm. After the ZnS growth, ZnSe excitonic emission shifted to the longer wavelength and PL intensity was increased considerably. PL QY was obtained about 11% and 17% for ZnSe and ZnSe@ZnS core–shell QDs respectively. - Highlights: • A green photochemical approach was reported for synthesis of ZnSe NCs. • ZnS shell was grown around ZnSe using a new method. • Synthesis method was rapid, simple and at room temperature. • ZnSe NCs indicated a narrow UV-blue and a broad DAP emissions. • PL intensity was increased considerably by ZnS shell growth.

  10. Water-soluble, triflate-based, pyrrolidinium ionic liquids

    International Nuclear Information System (INIS)

    Moreno, M.; Montanino, M.; Carewska, M.; Appetecchi, G.B.; Jeremias, S.; Passerini, S.

    2013-01-01

    Highlights: • Water-soluble, pyrrolidinium triflate ILs as solvents for extraction processes. • Electrolyte components for high safety, electrochemical devices. • Effect of the oxygen atom in the alkyl main side chain of pyrrolidinium cation. -- Abstract: The physicochemical and electrochemical properties of the water-soluble, N-methoxyethyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 1(2O1) OSO 2 CF 3 ) ionic liquid (IL) were investigated and compared with those of commercial N-butyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 14 OSO 2 CF 3 ). The results have shown that the transport properties are well correlated with the rheological and thermal behavior. The incorporation of an oxygen atom in the pyrrolidinium cation aliphatic side chain resulted in enhanced flexibility of the ether side chain, this supporting for the higher ionic conductivity, self-diffusion coefficient and density of PYR 1(2O1) OSO 2 CF 3 with respect to PYR 14 OSO 2 CF 3 , whereas no relevant effect on the crystallization of the ionic liquid was found. Finally, the presence of the ether side chain material in the pyrrolidinium cation led to a reduction in electrochemical stability, particularly on the cathodic verse

  11. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    Science.gov (United States)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  12. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  13. Tuning photoluminescence of ZnS nanoparticles by silver

    Indian Academy of Sciences (India)

    Wintec

    Ag@ZnS core-shell nanoparticles. ... doped ZnS NPs and thus changes the emission charac- teristics. We also ... Nanoparticles; photoluminescence; silver; zinc sulfide; doping. 1. ..... Sooklal K, Brain S, Angel M and Murphy C J 1996 J. Phys.

  14. Formation of noble metal nanocrystals in the presence of biomolecules

    Science.gov (United States)

    Burt, Justin Lockheart

    for producing multiply-branched gold nanocrystals. Two conditions were necessary to achieve multiply-branched structures: rapid kinetics, and strongly acidic pH. By exploiting ascorbic acid complexation with BSA to moderate reaction kinetics, and using sodium hydroxide to provide basic pH, the two conditions for branching were negated, and well-dispersed ˜2.5nm gold nanocrystals were obtained. This protocol represents a novel, environmentally benign approach to producing biocompatible nanocrystals, relying on proteins, ascorbic acid, sodium hydroxide, and water, all at ambient temperature.

  15. Bioremediation prospects of fungi isolated from water soluble ...

    African Journals Online (AJOL)

    The fungi associated with water soluble fraction (WSF) of crude oil from two different locations were investigated. The samples were collected from Ezibin oil well (Sample A), Okwagbe village in Ughelli South Local Government Area of Delta State and from NPDC laboratory (Sample B) in Benin City, Oredo Local ...

  16. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  17. Novel micellar systems for the formulation of poorly water soluble drugs : biocompatibility aspects and pharmaceutical applications

    OpenAIRE

    Dumontet Mondon, Karine

    2010-01-01

    Amongst the large number of novel drugs, 95% are lipophilic and poorly water soluble. Particularly, this renders their aqueous formulation very difficult. In this regard this thesis focused on polymeric micelles based on novel MPEG-hexPLA copolymers forming a hydrophilic shell and a very hydrophobic core that favors the incorporation of poorly water soluble drugs. Although the drug hydrophobicity and water solubility are the main parameters in respect to their incorporation efficiency, struct...

  18. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  19. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized; Luminiscencia opticamente estimulada de ZnO obtenido por tratamiento termico de ZnS sintetizado quimicamente

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R. [Universidad de Sonora, A.P. 130, Hermosillo (Mexico)

    2005-07-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  20. Method of cross-linking polyvinyl alcohol and other water soluble resins

    Science.gov (United States)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  1. Water concentration controlled hydrolysis and crystallization in n-octanol to TiO{sub 2} nanocrystals with size below 10 nm

    Energy Technology Data Exchange (ETDEWEB)

    Wang Meilan [School of Chemical and Biological Science and Engineering, Yantai University, Yantai 264005 (China); He Tao, E-mail: htzy79@yahoo.com.cn [School of Chemical and Biological Science and Engineering, Yantai University, Yantai 264005 (China); Pan Yanfei; Liao Weiping [School of Chemical and Biological Science and Engineering, Yantai University, Yantai 264005 (China); Zhang Shangzhou; Du Wei [School of Environment and Materials Engineering, Yantai University, Yantai 264005 (China)

    2011-11-01

    Highlights: {yields} Controlled hydrolysis of alkoxide was realized by adjusting water concentration. {yields} Carrying out hydrolysis under different water concentration gave hydrolyzed intermediate with different composition. {yields} A precise size control below 10 nm for anatase TiO{sub 2} nanocrystals was realized. - Abstract: Hydrolysis of tetrabutyl titanate (TBT) and crystallization from hydrolyzed intermediates were carried out in a simple ternary system including n-octanol, TBT and water. Anatase TiO{sub 2} nanocrystals (NCS) were prepared with precise size control below 10 nm. The hydrolysis rate at different water concentration (C{sub water}) was evaluated by measuring the induction time before turbidity changing of the synthetic solution. Fourier transform infrared spectrum (FT-IR) and thermogravimetric/differential thermal analysis (TG/DTA) techniques were applied to make clear the composition of hydrolyzed intermediates obtained at different C{sub water}. Powder X-ray diffraction (XRD) technique was used to track the crystallization process of TiO{sub 2} NCS. Transmission electron microscopy (TEM), XRD, FT-IR and TG/DTA techniques were used to characterize the particular properties of NCS. The C{sub water} controlled mechanism responsible for the slow hydrolysis and crystallization were discussed. Since no other organic capping ligands or rapid injecting techniques were used to limit NCS' growth and the solvent n-octanol can be easily separated and reused, this simple synthetic process is of green chemistry and has application potential in large-scale preparation of inorganic NCS.

  2. Identification of conduction and hot electron property in ZnS, ZnO and SiO2

    International Nuclear Information System (INIS)

    Huang Jinzhao; Xu Zheng; Zhao Suling; Li Yuan; Yuan Guangcai; Wang Yongsheng; Xu Xurong

    2007-01-01

    The impact excitation and ionization is the most important process in layered optimization scheme and solid state cathodoluminescence. The conduction property (semiconductor property) of SiO 2 , ZnS and ZnO is studied based on organic/inorganic electroluminescence. The hot electron property (acceleration and multiplication property) of SiO 2 and ZnS is investigated based on the solid state cathodoluminescence. The results show that the SiO 2 has the fine hot electron property and the conduction property is not as good as ZnO and ZnS

  3. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  4. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    Science.gov (United States)

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  5. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    Science.gov (United States)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  6. The effect of varied pH on the luminescence characteristics of antibody-mercaptoacetic acid conjugated ZnS nanowires

    Science.gov (United States)

    Chaudhry, Madeeha; Rehman, Malik Abdul; Gul, Asghari; Qamar, Raheel; Bhatti, Arshad Saleem

    2017-11-01

    We demonstrate here that the effect of varied pH of the media on the photoluminescence (PL) properties of mercaptoacetic acid (MAA) and digoxin antibody (Ab) conjugated zinc sulphide (ZnS) nanowires. The charge-transfer kinetics from MAA to ZnS and vice versa showed a profound effect on the luminescence of ZnS defect states. The PL intensity of the ZnS defect states showed strong dependence on the value of pH with respect to the pKa of MAA. The carboxyl and thiol group of MAA in the protonated (pH pKa) states resulted in the quenched PL intensity. While for pH ∼ pKa, the PL intensity was regained as there was equal probability of both protonated and deprotonated carboxyl and thiol groups. These findings indicated that pH of the environment is a key parameter for the use of MAA-Ab conjugated ZnS nanowires as an optical biomarker.

  7. Synthesis, characterization and optical properties of polymer-based ZnS nanocomposites.

    Science.gov (United States)

    Tiwari, A; Khan, S A; Kher, R S; Dhoble, S J; Chandel, A L S

    2016-03-01

    Nanostructured polymer-semiconductor hybrid materials such as ZnS-poly(vinyl alcohol) (ZnS-PVA), ZnS-starch and ZnS-hydroxypropylmethyl cellulose (Zns-HPMC) are synthesized by a facile aqueous route. The obtained nanocomposites are characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/vis spectroscopy and photoluminescence (PL). XRD studies confirm the zinc blende phase of the nanocomposites and indicate the high purity of the samples. SEM studies indicate small nanoparticles clinging to the surface of a bigger particle. The Energy Dispersive Analysis by X-rays (EDAX) spectrum reveals that the elemental composition of the nanocomposites consists primarily of Zn:S. FTIR studies indicate that the polymer matrix is closely associated with ZnS nanoparticles. The large number of hydroxyl groups in the polymer matrix facilitates the complexation of metal ions. The absorption spectra of the specimens show a blue shift in the absorption edge. The spectrum reveals an absorption edge at 320, 310 and 325 nm, respectively. PL of nanocomposites shows broad peaks in the violet-blue region (420-450 nm). The emission intensity changes with the nature of capping agent. The PL intensity of ZnS-HPMC nanocomposites is found to be highest among the studied nanocomposites. The results clearly indicate that hydroxyl-functionalized HPMC is much more effective at nucleating and stabilizing colloidal ZnS nanoparticles in aqueous suspensions compared with PVA and starch. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. 3D FTO/FTO-Nanocrystal/TiO2 Composite Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Wang, Zhiwei; Li, Xianglin; Ling, Han; Tan, Chiew Kei; Yeo, Loo Pin; Grimsdale, Andrew Clive; Tok, Alfred Iing Yoong

    2018-05-01

    A 3D fluorine-doped SnO 2 (FTO)/FTO-nanocrystal (NC)/TiO 2 inverse opal (IO) structure is designed and fabricated as a new "host and guest" type of composite photoanode for efficient photoelectrochemical (PEC) water splitting. In this novel photoanode design, the highly conductive and porous FTO/FTO-NC IO acts as the "host" skeleton, which provides direct pathways for faster electron transport, while the conformally coated TiO 2 layer acts as the "guest" absorber layer. The unique composite IO structure is fabricated through self-assembly of colloidal spheres template, a hydrothermal method and atomic layer deposition (ALD). Owing to its large surface area and efficient charge collection, the FTO/FTO-NC/TiO 2 composite IO photoanode shows excellent photocatalytic properties for PEC water splitting. With optimized dimensions of the SnO 2 nanocrystals and the thickness of the ALD TiO 2 absorber layers, the 3D FTO/FTO-NC/TiO 2 composite IO photoanode yields a photocurrent density of 1.0 mA cm -2 at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5 illumination, which is four times higher than that of the FTO/TiO 2 IO reference photoanode. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and characterization of samarium-doped ZnS nanoparticles: A novel visible light responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hanifehpour, Younes, E-mail: y_hanifehpour@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Soltani, Behzad; Amani-Ghadim, Ali Reza; Hedayati, Behnam [Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of); Khomami, Bamin [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Joo, Sang Woo, E-mail: swjoo1@gmail.com [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-04-15

    Highlights: • Sm-doped ZnS Nanomaterials were synthesized by hydrothermal method. • The as-prepared compounds were characterized by XRD, TEM, XPS, SEM and UV techniques. • The photocatalytic effect of compounds was determined by Reactive Red 43 degradation. • The degradation of RRed 43 followed the Langmuir–Hinshelwood kinetic model. - Abstract: We prepared pure and samarium-doped ZnS (Sm{sub x}Zn{sub 1−x}S{sub 1+0.5x}) nanoparticles via hydrothermal process at 160 °C for 24 h. XRD analysis shows that the particles were well crystallized and corresponds to a cubic sphalerite phase. SEM and TEM images indicate that the sizes of the particles were in the range of 20–60 nm. The photocatalytic activity of Sm-doped ZnS nanoparticles was evaluated by monitoring the decolorization of Reactive Red 43 in aqueous solution under visible light irradiation. The color removal efficiency of Sm{sub 0.04}Zn{sub 0.96}S and pure ZnS was 95.1% and 28.7% after 120 min of treatment, respectively. Among the different amounts of dopant agent used, 4% Sm-doped ZnS nanoparticles indicated the highest decolorization. We found that the presence of inorganic ions such as Cl{sup −}, CO{sub 3}{sup 2−} and other radical scavengers such as buthanol and isopropyl alcohol reduced the decolorization efficiency.

  11. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  12. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug

    International Nuclear Information System (INIS)

    Kakinoki, Atsufumi; Kaneo, Yoshiharu; Tanaka, Tetsuro; Hosokawa, Yoshitsugu

    2008-01-01

    Paclitaxel (PTX) is an antitumor agent for the treatment of various human cancers. Cremophor EL and ethanol are used to formulate PTX in commercial injection solutions, because of its poor solubility in water. However, these agents cause severe allergic reaction upon intravenous administration. The aim of this study is to synthesize water-soluble macromolecular prodrugs of PTX for enhancing the therapeutic efficacy. Poly (vinyl alcohol) (PVA, 80 kDa), water-soluble synthetic polymer, was used as a drug carrier which is safe and stable in the body. The 2'-hydroxyl group of PTX was reacted with succinic anhydride and then carboxylic group of the succinyl spacer was coupled to PVA via ethylene diamine spacer, resulting the water-soluble prodrug of poly (vinyl alcohol)-paclitaxel conjugate (PVA-SPTX). The solubility of PTX was greatly enhanced by the conjugation to PVA. The release of PTX from the conjugate was accelerated at the neutral to basic conditions in in vitro release experiment. [ 125 I]-labeled PVA-SPTX was retained in the blood circulation for several days and was gradually distributed into the tumorous tissue after intravenous injection to the tumor-bearing mice. PVA-SPTX inhibited the growth of sarcoma 180 cells subcutaneously inoculated in mice. It was suggested that the water-solubility of PTX was markedly enhanced by the conjugation to PVA, and PVA-SPTX effectively delivered PTX to the tumorous tissue due to the enhanced permeability and retention (EPR) effect. (author)

  13. Quantitative analysis of soluble elements in environmental waters by PIXE

    International Nuclear Information System (INIS)

    Niizeki, T.; Kawasaki, K.; Adachi, M.; Tsuji, M.; Hattori, T.

    1999-01-01

    We have started PIXE research for environmental science at Van de Graaff accelerator facility in Tokyo Institute of Technology. Quantitative measurements of soluble fractions in river waters have been carried out using the preconcentrate method developed in Tohoku University. We reveal that this PIXE target preparation can be also applied to waste water samples. (author)

  14. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    International Nuclear Information System (INIS)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-01-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive

  15. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei, E-mail: djw@suda.edu.cn

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive.

  16. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  17. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO2, leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO2 nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ∼150 μA cm-2, which is the highest value ever reported in any plasmonic Au/TiO2 system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications. © 2012 American Chemical Society.

  18. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method

    International Nuclear Information System (INIS)

    Wang, Liping; Huang, Shungang; Sun, Yujie

    2013-01-01

    A general route to synthesize transition metal ions doped ZnS nanoparticles with hexagonal phase by means of a conventional reverse micelle at a low temperature is developed. The synthesis involves N,N-dimethylformamide, Zn(AC) 2 solution, thiourea, ammonia, mercaptoacetic acid, as oil phase, water phase, sulfide source, pH regulator, and surfactant, respectively. Thiourea, ammonia and mercaptoacetic acid are demonstrated crucial factors, whose effects have been studied in detail. In addition, the FT-IR spectra suggest that mercaptoacetic acid may form complex chelates with Zn 2+ in the preparation. In the case of Cu 2+ as a doped ion, hexagonal ZnS:Cu 2+ nanoparticles were synthesized at 95 °C for the first time. The X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements show that the ZnS:Cu 2+ nanoparticles are polycrystalline and possess uniform particle size. The possible formation mechanism of the hexagonal doped ZnS is discussed.

  19. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    Science.gov (United States)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Characterization of ZnS nanoparticles synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Iranmanesh Parvaneh; Nourzpoor Mohsen; Saeednia Samira

    2015-01-01

    ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum. (paper)

  1. Low-temperature growth and photoluminescence property of ZnS nanoribbons.

    Science.gov (United States)

    Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen

    2005-10-06

    At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.

  2. Effect of water soluble carrier on dissolution profiles of diclofenac sodium.

    Science.gov (United States)

    Cwiertnia, Barbara

    2013-01-01

    Pharmaceutical aviailability of diclofenac sodium from solid dispersions of PEG 6000 have been studied in comparison to those of the corresponding physical mixtures and pure diclofenac sodium. The diclofenac sodium is poorly water soluble drug. The properties of diclofenac sodium-PEG 6000 solid dispersions have been determined by the methods of differential scanning calorimetry (DSC), X-ray diffraction and scanning electron microscopy (SEM). The effect of PEG 6000 on the solubility of selected diclofenac sodium dispersions has been studied. The solubility of diclofenac sodium from its solid dispersion has been found to increase in the presence of PEG 6000.

  3. Controlled extracellular biosynthesis of ZnS quantum dots by sulphate reduction bacteria in the presence of hydroxypropyl starch as a mediator

    Science.gov (United States)

    Qi, Shiyue; Zhang, Mi; Guo, Xingming; Yue, Lei; Wang, Jia; Shao, Ziqiang; Xin, Baoping

    2017-06-01

    Metal sulphide quantum dots (QDs) have broad applications. Sulphate-reducing bacteria (SRB) have been recognized as synthesizers of metal sulphides, with the characteristics of a high-production efficiency and easy product harvest. However, SRB are incapable of synthesizing metal sulphide QDs. In the present study, cheap hydroxypropyl starch (HPS) was used to assist SRB in manufacturing the ZnS QDs. The results exhibited that the HPS accelerated the growth of SRB and reduction of SO4 2+ into S2-, while it blocked the precipitation between S2- and Zn2+ to control the nucleation and growth of ZnS, resulting in the formation of ZnS QDs. When the HPS concentration increased from 0.2 to 1.6 g/L, the average crystal size (ACS) of ZnS QDs dropped from 5.95 to 3.34 nm, demonstrating the controlled biosynthesis of ZnS QDs. The ZnS QDs were coated or adhered to by both HPS and proteins, which played an important role in the controlled biosynthesis of ZnS QDs. The remarkable blue shift of the narrow UV absorption peak was due to the quantum confinement effect. The sequential variation in the colour of the photoluminescence spectrum (PL) from red to yellow suggested a tunable PL of the ZnS QDs. The current work demonstrated that SRB can fabricate the formation of ZnS QDs with a controlled size and tunable PL at a high-production rate of approximately 8.7 g/(L × week) through the simple mediation of HPS, with the yield being 7.46 times the highest yield in previously reported studies. The current work is of great importance to the commercialization of the biosynthesis of ZnS QDs.

  4. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males.

    Science.gov (United States)

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans.

  5. Relationship between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    Directory of Open Access Journals (Sweden)

    Katsumi Shibata

    2014-01-01

    Full Text Available Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B 12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans.

  6. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  7. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    International Nuclear Information System (INIS)

    Qi Guozhen; Wang Jindi; Lin Yiqing

    1999-01-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed

  8. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Guozhen, Qi; Jindi, Wang; Yiqing, Lin [Inst. of Fine Chemicals ECUST, Shanghai (China)

    1999-07-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed.

  9. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  10. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-06-01

    Full Text Available Aqueous suspensions of polysaccharide (cellulose, chitin or starch nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

  11. Prominent ethanol sensing with Cr2O3 nanoparticle-decorated ZnS nanorods sensors

    Science.gov (United States)

    Sun, Gun-Joo; Kheel, Hyejoon; Ko, Tae-Gyung; Lee, Chongmu; Kim, Hyoun Woo

    2016-08-01

    ZnS nanorods and Cr2O3 nanoparticle-decorated ZnS nanorods were synthesized by using facile hydrothermal techniques, and their ethanol sensing properties were examined. X-ray diffraction and scanning electron microscopy revealed good crystallinity and size uniformity for the ZnS nanorods. The Cr2O3 nanoparticle-decorated ZnS nanorod sensor showed a stronger response to ethanol than the pristine ZnS nanorod sensor. The responses of the pristine and the decorated nanorod sensors to 200 ppm of ethanol at 300 °C were 2.9 and 13.8, respectively. Furthermore, under these conditions, the decorated nanorod sensor showed a longer response time (23 s) and a shorter recovery time (20 s) than the pristine one did (19 and 35 s, respectively). Consequently, the total sensing time of the decorated nanorod sensor (42 s) was shorter than that of the pristine one (55 s). The decorated nanorod sensor showed excellent selectivity to ethanol over other volatile organic compound gases including acetone, methanol, benzene, and toluene whereas the pristine one failed to show selectivity to ethanol over acetone. The improved sensing performance of the decorated nanorod sensor is attributed to a modulation of the width of the conduction channel and the height of the potential barrier at the ZnS-Cr2O3 interface accompanying the adsorption and the desorption of ethanol gas, and the greater surface-to-volume ratio of the decorated nanorods which was greater than that of the pristine one due to the existence of the ZnS-Cr2O3 interface.

  12. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Uddandarao, Priyanka, E-mail: uddandaraopriyanka@gmail.com; B, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2016-05-15

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  13. Optimizing colloidal nanocrystals for applications

    International Nuclear Information System (INIS)

    Sytnyk, M.

    2015-01-01

    In the scientific literature colloidal nanocrystals are presented as promising materials for multiple applications, in areas covering optoelectronics, photovoltaics, spintronics, catalysis, and bio-medicine. On the marked are, however, only a very limited number of examples found, indeed implementing colloidal nanocrystals. Thus the scope of this thesis was to modify nanocrystals and to tune their properties to fulfill specific demands. While some modifications could be achieved by post synthetic treatments, one key problem of colloidal nanocrystals, hampering there widespread application is the toxicity of their constituents. To develop nanocrystals from non-toxic materials has been a major goal of this thesis as well. Roughly, the results in this thesis could be subdivided into three parts: (i) the development of ion exchange methods to tailor the properties of metallic and metal-oxide based nanocrystal heterostructures, (ii), the synthesis of semiconductor nanocrystals from non-toxic materials, and (iii) the characterization of the nanocrystals by measurements of their morphology, chemical composition, magnetic-, optical-, and electronic properties. In detail, the thesis is subdivided into an introductory chapter, 4 chapters reporting on scientific results, a chapter reporting the used methods, and the conclusions. The 4 chapters devoted to the scientific results correspond to manuscripts, which are either currently in preparation, or have been published in highly ranked scientific journals such as NanoLetters (chapter 2), ACS Nano (chapter 4), or JACS (chapter 5). Thus, these chapters provide also an extra introduction and conclusion section, as well as separate reference lists. Chapter 2 describes a cation exchange process which is used to tune and improve the magnetic properties of different iron-oxide based colloidal nanocrystal-heterostructures. The superparamagnetic blocking temperature, magnetic remanence, and coercivity is tuned by replacing Fe2+ by Co2

  14. Solubility of root-canal sealers in water and artificial saliva.

    Science.gov (United States)

    Schäfer, E; Zandbiglari, T

    2003-10-01

    To compare the weight loss of eight different root-canal sealers in water and in artificial saliva with different pH values. For standardized samples (n = 12 per group), ring moulds were filled with epoxy resin (AH 26, AH Plus)-, silicone (RSA RoekoSeal)-, calcium hydroxide (Apexit, Sealapex)-, zinc oxide-eugenol (Aptal-Harz)-, glass-ionomer (Ketac Endo)- and polyketone (Diaket)-based sealers. These samples were immersed in double-distilled water or artificial saliva with different pH values (7.0, 5.7 and 4.5) for 30 s, 1 min, 2 min, 5 min, 10 min, 20 min, 1 h, 2 h, 10 h, 24 h, 48 h, 72 h, 14 days and 28 days. Mean loss of weight was determined and analysed statistically using a one-way anova and Student-Newman-Keuls test for all pairwise comparisons. Most sealers were of low solubility, although Sealapex, Aptal-Harz and Ketac Endo showed a marked weight loss in all liquids. Even after 28 days of storage in water, AH 26, AH Plus, RSA RoekoSeal, and Diaket showed less than 3% weight loss. At exposure times greater than 14 days, Sealapex showed the significantly greatest weight loss of all sealers tested (P < 0.05). Aptal-Harz and Ketac Endo were significantly more soluble in saliva (pH 4.5) than in water (P < 0.05). Under the conditions of the present study, AH Plus showed the least weight loss of all sealers tested, independent of the solubility medium used. Sealapex, Aptal-Harz and Ketac Endo had a marked weight loss in all liquids.

  15. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  16. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  17. Tainting by short-term exposure of Atlantic salmon to water soluble petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Ackman, R.G.; Heras, H.

    1992-01-01

    Experiments were conducted to examine the extent of tainting of salmon by exposure to the soluble fraction of petroleum hydrocarbons. The experiments were conducted on Atlantic salmon in tanks containing seawater artificially contaminated at three different concentrations with the soluble fraction of a North Sea crude. The salmon flesh was analyzed by gas chromatography and taste tests were conducted on cooked salmon samples to determine the extent of tainting. Salmon in control tanks with uncontaminated seawater had muscle accumulations of total hydrocarbons of ca 1 ppM. The muscle accumulations of total hydrocarbons in the salmon were 13.5 ppM, 25.6 ppM, and 31.3 ppM for water soluble fraction concentrations of 0.45, 0.87, and 1.54 ppM respectively. The threshold for taint was clearly inferred to be less than 0.45 ppM of water soluble fraction. 18 refs., 2 figs

  18. [HYGIENIC ASSESSMENT OF WATER-SOLUBLE VITAMINS CONTENT IN THE FOOD RATION OF ADOLESCENTS].

    Science.gov (United States)

    Kozubenko, O V; Turchaninov, D V; Boyarskaya, L A; Glagoleva, O N; Pogodin, I S; Luksha, E A

    2015-01-01

    Adequate, balanced nutrition is a precondition for the formation of health of the younger generation. The study of the dietary intake and peculiarities of the chemical composition offood is needed to substantiate measures aimed at the correction of the ration of adolescents. Hygienic evaluation of the content of water soluble vitamins in foods and the ration of teenage population of the Omsk region. TASKS OF THE STUDY: 1. To determine levels of water-soluble vitamins content in foods forming the basis of the ration of the population the Omsk region. 2. On the base of a study of the actual nutrition of adolescents to determine the levels of water-soluble vitamins consumption. 3. To give a hygienic assessment of adolescent nutrition in the Omsk region in terms of provision with water-soluble vitamins, and to identify priority directions of the alimentary correction of the revealed disorders. The analysis of 389 food samples for the content of water-soluble vitamins (B1, B2, B6, PP C, folic acid) was performed with the use of reversed-phase HPLC high pressure on the Shimadzu LC-20 Prominence detector. The hygienic assessment of the actual nutrition of adolescents aged 13-17 years (sample survey; n = 250; 2012-2014) in the Omsk region was performed by the method of the analysis of food consumption frequency. There were noted significantly lower concentrations of vitamin B1 and B2 in the studied samples of cereals, bread and vegetables in comparison with reference data. Consumption levels of vitamins B1, B2, PP folic acid in the diet of adolescents in the Omsk region are lower than recommended values. In the structure of nutrition there is not enough milk dairy products--in 82.4 ± 2.4%, fish and sea products in 90.8 ± 1.8% of adolescents. The actual nutrition of the adolescent population of the Omsk region is irrational, unbalanced in quantitative and qualitative terms, and does not provide the necessary level of consumption of most important water-soluble vitamins

  19. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    Science.gov (United States)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  20. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  1. Formulation of a Novel Nano emulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    International Nuclear Information System (INIS)

    Vatsraj, S.; Pathak, H.; Chauhan, K.

    2014-01-01

    The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w) nano emulsion (NE) system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nano emulsion was explored using transmission electron microscopy (TEM). The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nano emulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nano emulsion system.

  2. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  3. Application of Chlorophyll as Sensitizer for ZnS Photoanode in a Dye-Sensitized Solar Cell (DSSC)

    Science.gov (United States)

    Panda, B. B.; Mahapatra, P. K.; Ghosh, M. K.

    2018-03-01

    Zinc sulphide thin films have been synthesized by the electrodeposition method onto stainless steel substrate followed by dipping in acetone solution of chlorophyll in different time intervals to form photosensitised thin films. The photoelectrochemical parameters of the films have been studied using the photoelectrochemical cell having the cell configuration as follows {{photoelectrode/NaOH}}({1{{M}}} ) + {{S}}({1{{M}}} ) + {{N}}{{{a}}_2}{{S}}({1{{M}}} ){{/C}} ({{{graphite}}} ) . The photoelectrochemical characterization of the semiconductor film and dye-sensitised films has been carried out by measuring current-voltage (I-V) in the dark, power output and photoresponse. The study proves that the conductivity of both ZnS film and dye-sensitised ZnS films are n-type. The power output curves illustrate that open circuit voltage (V oc) and short circuit current (I sc) increase from 0.210 V to 0.312 V and from 0.297 mA to 0.533 mA, respectively. The fill factor initially decreases from 0.299 to 0.213 and then increases to 0.297 irregularly whereas efficiency increases from 0.047% to 0.123%. The UV-Vis absorbance spectrum of chlorophyll in acetone shows the presence of chlorophyll. The structural morphology of the ZnS thin films has also been analysed by using x-ray diffraction technique (XRD) and a scanning electron microscope (SEM). The XRD pattern shows the formation of nanocrystalline ZnS thin films of size 65 nm and the SEM images confirm the formation of fibrous film of ZnS. The energy diffraction analysis of x-ray confirms the formation of ZnS thin films.

  4. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ranganaik Viswanath

    2014-01-01

    Full Text Available Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectrometry (FTIR, thermogravimetric-differential scanning calorimetry (TG-DSC, and UV-visible and photoluminescence (PL spectroscopy were employed to characterize the as-synthesized ZnS and ZnS:Y nanoparticles, respectively. XRD and TEM studies show the formation of cubic ZnS:Y particles with an average size of ~4.5 nm. The doping did not alter the phase of the zinc sulphide, as a result the sample showed cubic zincblende structure. The UV-visible spectra of ZnS and ZnS:Y nanoparticles showed a band gap energy value, 3.85 eV and 3.73 eV, which corresponds to a semiconductor material. A luminescence characteristics such as strong and stable visible-light emissions in the orange region alone with the blue emission peaks were observed for doped ZnS nanoparticles at room temperature. The PL intensity of orange emission peak was found to be increased with an increase in yttrium ions concentration by suppressing blue emission peaks. These results strongly propose that yttrium doped zinc sulphide nanoparticles form a new class of luminescent material.

  5. Development plan of Pu NDA system using ZnS ceramic scintillator

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Soyama, Kazuhiko; Seya, Michio; Ohzu, Akira; Haruyama, Mitsuo; Takase, Misao; Sakasai, Kaoru; Nakamura, Tatsuya; Toh, Kentaro

    2012-01-01

    Alternative techniques to neutron detection by He-3 for nuclear security and safeguards systems are necessary to be developed since He-3 shortage is serious. With support of Japanese government (the Ministry of Education, Culture, Sports, and Technology), we have started an R and D project of Pu NDA system using ZnS ceramic scintillator. Here we present development plan, production of a new type of ZnS ceramic scintillator experimentally and basic design of a PCAS alternative Pu NDA system. We are planning the demonstration tests using the alternative NDA system comparing with the current PCAS in which the He-3 counters are installed. (author)

  6. Synthesis of ZnS films on Si(100) wafers by using chemical bath deposition assisted by the complexing agent ethylenediamine

    Science.gov (United States)

    Zhu, He-Jie; Wang, Xue-Mei; Gao, Xiao-Yong

    2015-07-01

    Low-cost synthesis of high-quality ZnS films on silicon wafers is of much importance to the ZnSbased heterojunction blue light-emitting device integrated with silicon. Thus, a series of ZnS films were chemically synthesized at low cost on Si(100) wafers at 353 K under a mixed acidic solution with a pH of 4 with zinc acetate and thioacetamide as precursors and with ethylenediamine and hydrochloric acid as the complexing agent and the pH value modifier, respectively. The effects of the ethylenediamine concentration on the crystallization, surface morphology, and optical properties of the ZnS films were investigated by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, and fluorescence spectroscopy. A mechanism for the formation of ZnS film under an acidic condition was also proposed. All of the ZnS films were polycrystalline in nature, with a dominant cubic phase and a small amounts of hexagonal phases. The crystallization and the surface pattern of the films were clearly improved with increasing ethylenediamine concentration due to its enhanced complexing role. The absorption edge of the films almost underwent a blue shift with increasing ethylenediamine concentration, which was largely attributed to the quantum confinement effects caused by the small particle size of the polycrystalline ZnS films. Defect species and the corresponding strengths of the ZnS films were strongly affected by the ethylenediamine concentration.

  7. Water-soluble chelating polymers for removal of actinides from wastewater

    International Nuclear Information System (INIS)

    Jarvinen, G.D.

    1997-01-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent

  8. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  9. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    OpenAIRE

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) ...

  10. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots.

    Science.gov (United States)

    Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen

    2011-01-01

    Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  11. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  12. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum

    Directory of Open Access Journals (Sweden)

    Maryam Khaksari

    2017-04-01

    Full Text Available Two separate liquid chromatography (LC-mass spectrometry (MS methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B1, B2, B3 (nicotinamide, B5, B6 (pyridoxine, B7, B9 and B12 while the fat-soluble vitamin method detected vitamins A, D3, 25(OHD3, E and K1. These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD and limits of quantification (LOQ are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  13. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-04-01

    Two separate liquid chromatography (LC)-mass spectrometry (MS) methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 6 (pyridoxine), B 7 , B 9 and B 12 while the fat-soluble vitamin method detected vitamins A, D 3 , 25(OH)D 3, E and K 1 . These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD) and limits of quantification (LOQ) are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  14. Comparison of Tensile, Permeability and Color Properties of Starch-based Bionanocomposites Containing Two Types of Fillers: Sodium Montmorilonite and Cellulose Nanocrystal

    Directory of Open Access Journals (Sweden)

    Nooshin Noushirvani

    2013-01-01

    Full Text Available The objective of this research was to compare the tensile, permeability, solubility and color properties of plasticized starch-polyvinyl alcohol-Montmo-rillonite (PS-PVA-MMT and plasticized starch-polyvinyl alcohol-cellulose nanocrystal (PS-PVA-NCC bionanocomposite flms. The results showed that adding MMT (7%, increased the ultimate tensile strenght from 4.2 MPa to 4.61 MPa, however, NCC (7% did not show signifcant (p < 0.5 effect on the ultimate tensile strength. Addition of MMT decreased while NCC  increased  the  strain-to-break of  the flms. The solubility in water decreased from 23.56% to 18.77% and 11.75% for the flms containing NCC and MMT, respectively. Similarly, water vapor permeability value of 7.41 ×10-7 g/m.h.Pa was dropped to 7.05×10-7 g/m.h.Pa and 6.19×10-7 g/m.h.Pa in flms containing NCC and MMT, respectively. The results showed that the effects of MMT on tensile and permeability were higher than NCC, which can be attributed to differences in the structure and hydrophilicity of two nanoparticles.

  15. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  16. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.

    Science.gov (United States)

    Rissanen, K; Hölttä, T; Bäck, J

    2018-04-20

    Most plant-based emissions of volatile organic compounds (VOCs) are considered mainly temperature dependent. However, certain oxygenated VOCs (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in xylem sap. Yet, further understanding on the role of transport has been lacking until present. We used shoot-scale long-term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of three water soluble OVOC: methanol, acetone and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the three OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in xylem sap from their sources in roots and stem to leaves and to ambient air. This article is protected by copyright. All rights reserved.

  17. Ab Initio factorized LCAO calculations of the electronic band structure of ZnSe, ZnS, and the (ZnSe)1(ZnS)1 strained-layer superlattice

    International Nuclear Information System (INIS)

    Marshall, T.S.; Wilson, T.M.

    1992-01-01

    The authors report on the results of electronic band structure calculations of bulk ZnSe, bulk ZnS and the (ZnSe) 1 (ZnS) 1 , strained-layer superlattice (SLS) using the ab initio factorized linear combination of atomic orbitals method. The bulk calculations were done using the standard primitive nonrectangular 2-atom zinc blende unit cell, while the SLS calculation was done using a primitive tetragonal 4-atom unit cell modeled from the CuAu I structure. The analytic fit to the SLS crystalline potential was determined by using the nonlinear coefficients from the bulk fits. The CPU time saved by factorizing the energy matrix integrals and using a rectangular unit cell is discussed

  18. Facile Synthesis of Uniform Zinc-blende ZnS Nanospheres with Excellent Photocatalytic Activity toward Methylene Blue Degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Si-Yan; YANG Liu-Sai; LV Ying-Ying; YU Le-Shu; HUANG Hai-Jin; WU Li-Dan

    2017-01-01

    Uniform and well-dispersed ZnS nanospheres have been successfully synthesized via a facile chemical route.The crystal structure,morphology,surface area and photocatalytic properties of the sample were characterized by powder X-ray diffraction (XRD),scanning electron microscopy (SEM),Brunauer-Emmett-Teller (BET) and ultraviolet-visible (UV-vis) spectrum.The results of characterizations indicate that the products are identified as mesoporous zinc-blende ZnS nanospheres with an average diameter of 200 nm,which are comprised of nanoparticles with the crystallite size of about 3.2 nm calculated by XRD.Very importantly,photocatalytic degradation of methylene blue (MB)shows that the as-prepared ZnS nanospheres exhibit excellent photocatalytic activity with nearly 100% of MB decomposed after UV-light irradiation for 25 min.The excellent photocatalytic activity of ZnS nanospheres can be ascribed to the large specific surface area and hierarchical mesoporous structure.

  19. Solid-state ZnS quantum dot-sensitized solar cell fabricated by the Dip-SILAR technique

    International Nuclear Information System (INIS)

    Mehrabian, M; Mirabbaszadeh, K; Afarideh, H

    2014-01-01

    Solid-state quantum dot sensitized solar cells (QDSSCs) were fabricated with zinc sulfide quantum dots (ZnS QDs), which served as the light absorber and the recombination blocking layer simultaneously. ZnS QDs were prepared successfully by a novel successive ionic layer adsorption and reaction technique based on dip-coating (Dip-SILAR). The dependences of the photovoltaic parameters on the number of SILAR cycles (n) were investigated. The cell with n = 6 (particle average size ∼9 nm) showed an energy conversion efficiency of 2.72% under the illumination of one sun (AM 1.5, 100 mW cm −2 ). Here we investigate also the cohesion between ZnS QDs and ZnO film to obtain a well-covering QD layer. (paper)

  20. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    Science.gov (United States)

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-02-20

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  1. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    Science.gov (United States)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  2. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    International Nuclear Information System (INIS)

    Chowdhury, S.; Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-01-01

    The present study compares structural and optical modifications of bare and silica (SiO 2 ) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni 12+ ion beam with fluences 10 12 to 10 13 ions/cm 2 . Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one

  3. Photoemission studies of semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Hamad, K.S.; Roth, R.; Alivisatos, A.P.

    1997-01-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface

  4. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    Science.gov (United States)

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  5. pKa Determination of water-soluble calix[4]arenes

    NARCIS (Netherlands)

    Shinkai, Seiji; Araki, Koji; Grootenhuis, P.D.J.; Reinhoudt, David

    1991-01-01

    Neutral, water-soluble 5,11,17,23-tetrakis[bis-(2-hydroxyethyl)aminosulphonyl]calix[4]arene-25,26,27,28-tetraol and 5,11,17,23-tetranitrocalix[4]arene-25,26,27,28-tetraol have been synthesized and the pKa values of the OH groups determined in an aqueous system.

  6. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Eng-Poh, E-mail: epng@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Awala, Hussein [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ghoy, Jia-Pei [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Vicente, Aurélie [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ling, Tau Chuan [Institute of Biological Sciences, Faculty of Science, University of Malaya (Malaysia); Ng, Yun Hau [School of Chemical Engineering, The University of New South Wales, Sydney (Australia); Mintova, Svetlana [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Adam, Farook, E-mail: farook@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia)

    2015-06-01

    Synthesis of EMT zeolite nanocrystals from rice husk ash biomass (RHA) under continuous ultrasonic irradiation is reported. The aging, nucleation and crystallization stages of EMT zeolite in the system were monitored at ambient temperature, and compared with the conventional hydrothermal method. It was found that ultrasonic wave induced rapid crystal growth of the nanosized EMT zeolite. Complete crystallization of EMT nanocrystals was achieved within 24 h which was much faster than conventional hydrothermal synthesis (36 h). Furthermore, XRD and TEM analyses revealed that more nuclei were formed during the nucleation stage, allowing the preparation of smaller zeolite nanocrystals with high crystallinity. The results also showed that sonocrystallization produced EMT zeolite with high yield (ca. 80%). The ultrasound-prepared EMT nanocrystals were also found to have high porosity and high hydrophilicity, making the material promising for water sorption applications including vapor sensing, heat pump and adsorption technologies. - Highlights: • Nanosized EMT zeolites are formed from rice husk ash under ultrasonic irradiation. • The effects of ultrasonic waves in nanosized EMT zeolite synthesis are studied. • Ultrasound induces rapid crystal growth and produces high zeolite yield. • Smaller zeolite nanocrystals with high crystallinity and large defect sites are obtained. • Improved surface hydrophilicity of crystals is beneficial for water sorption applications.

  8. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  9. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  10. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower ... Journal Home > Vol 11, No 1 (2012) > ... The objective of the present work was to determine the mechanisms of tolerance of four ...

  11. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    OpenAIRE

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  13. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles.

    Science.gov (United States)

    Tiwari, A; Dhoble, S J; Kher, R S

    2015-11-01

    Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L-cysteine (L-Cys) having -SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L-Cysteine-capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn(2+) and S(2-) precursors. The effect of buffer on the PL intensity of L-Cys-capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals

    International Nuclear Information System (INIS)

    Zhou Yi; Li Yunchao; Zhong Haizheng; Hou Jianhui; Ding Yuqin; Yang Chunhe; Li Yongfang

    2006-01-01

    A series of ternary tetrapodal nanocrystals of CdSe x Te 1-x with x = 0 (CdTe), 0.23, 0.53, 0.78, 1 (CdSe) were synthesized and used to fabricate hybrid nanocrystal/polymer solar cells. Herein, the nanocrystals acted as electron acceptors, and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as an electron donor. It was found that the open circuit voltage (V oc ), short-circuit current (J sc ) and power conversion efficiency (η) of the devices all increased with increasing Se content in the CdSe x Te 1-x nanocrystals under identical experimental conditions. The solar cell based on the blend of tetrapodal CdSe nanocrystals and MEH-PPV (9:1 w/w) showed the highest power conversion efficiency of 1.13% under AM 1.5, 80 mW cm -2 , and the maximum incident photon to converted current efficiency (IPCE) of the device reached 47% at 510 nm. The influence of nanocrystal composition on the photovoltaic properties of the hybrid solar cells was explained by the difference of the band level positions between MEH-PPV and the nanocrystals

  15. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  16. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  17. Morphologically different WO3 nanocrystals in photoelectrochemical water oxidation

    International Nuclear Information System (INIS)

    Biswas, Soumya Kanti; Baeg, Jin-Ook; Moon, Sang-Jin; Kong, Ki-jeong; So, Won-Wook

    2012-01-01

    Different morphologies of WO 3 nanocrystals such as nanorods and nanoplates have been obtained under hydrothermal conditions using ammonium metatungstate as the precursor in presence of different organic acids such as citric, oxalic, and tartaric acid in the reaction medium. Detailed characterization of the crystal structure, particle morphology, and optical band gap of the synthesized powders have been done by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and solid-state UV–visible spectroscopy study. The as-synthesized materials are WO 3 hydrates with orthorhombic phase which transform to the hexagonal WO 3 through dehydration upon heating at 350 °C. The resultant products are crystalline with nanoscale dimensions. Finally, the photoactivity of the synthesized materials annealed at 500 °C has been compared employing in photoelectrochemical water oxidation under the illumination of AM 1.5G simulated solar light (100 mWcm −2 ). The photocurrent measurements upon irradiation of light exhibit obvious photocatalytic activity with a photocurrent of about 0.77, 0.61, and 0.65 mAcm −2 for the WO 3 film derived with the oxalic acid, tartaric, and citric acid assisting agents, respectively, at 1.8 V versus Ag/AgCl electrode.

  18. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  19. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  20. Effect of substrate porosity on photoluminescence properties of ZnS films prepared on porous Si substrates by pulsed laser deposition

    Science.gov (United States)

    Wang, Cai-Feng; Li, Qing-Shan; Zhang, Li-Chun; Lv, Lei; Qi, Hong-Xia

    2007-05-01

    ZnS films were deposited on porous Si (PS) substrates with different porosities by pulsed laser deposition. The photoluminescence spectra of the samples were measured to study the effect of substrate porosity on luminescence properties of ZnS/porous Si composites. After deposition of ZnS films, the red photoluminescence peak of porous Si shows a slight blueshift compared with as-prepared porous Si samples. With an increase of the porosity, a green emission at about 550 nm was observed which may be ascribed to the defect-center luminescence of ZnS films, and the photoluminescence of ZnS/porous Si composites is very close to white light. Good crystal structures of the samples were observed by x-ray diffraction, showing that ZnS films were grown in preferred orientation. Due to the roughness of porous Si surface, some cracks appear in ZnS films, which could be seen from scanning electron microscope images.

  1. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.

    2016-01-01

    70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product......In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...... is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation...

  2. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NARCIS (Netherlands)

    Baker, M.B.; Albertazzi, L.; Voets, Ilja K.; Leenders, C.M.A.; Palmans, A.R.A.; Pavan, G.M.; Meijer, E. W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers:

  3. Simple and greener synthesis of highly photoluminescence Mn{sup 2+}-doped ZnS quantum dots and its surface passivation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongbo; Liang, Xuhua; Ma, Xuan; Hu, Yahong [School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi’an, Shannxi, 710069 (China); Hu, Xiaoyun; Li, Xinghua [Department of Physics, Northwest University, No. 229 Taibai North Road, Xi’an, Shannxi, 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi’an, Shannxi, 710069 (China)

    2014-10-15

    Graphical abstract: TEM and HRTEM (inset) images of the as-prepared Mn{sup 2+}-doped ZnS QDs and the passivation mechanism model of GSH-capped ZnS QDs (b). - Highlights: • Highly photoluminescent Mn{sup 2+}-doped ZnS quantum dots were synthesized by a simple synthetic method. • The effects of Mn{sup 2+} doping concentration, reaction time and temperature on PL intensity were investigated. • The mechanism of surface passivation was described. - Abstract: In this paper, we reported a simple synthetic method of highly photoluminescent (PL) and stable Mn{sup 2+}-doped ZnS quantum dots (QDs) with glutathione (GSH) as the capping molecule and focused on mechanism of the surface passivation of QDs. The Mn{sup 2+}-doped ZnS QDs that was synthesized in basic solution (pH 10) at 120 °C for 5 h exhibited blue trap-state emission around 418 nm and a strong orange-red emission at about 580 nm with an excitation wavelength of 330 nm. The optimum doping concentration is determined to be 1.5 at.%, and the present Mn{sup 2+}-doped ZnS QDs synthesized under the optimal reaction condition exhibited a quantum yield of 48%. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) indicated that the Mn{sup 2+}-doped ZnS QDs were 3–5 nm in size with a zinc blend structure. More importantly, the PL intensity and chemical stability can be improved using organic ligand modification strategies, it was found that GSH could passivate surface defects very efficiently by comparing and analyzing the results of the different organic ligands modification. The cadmium-free Mn{sup 2+}-doped ZnS QDs well-passivated with GSH as capping molecule acquired the advantages of strong PL and excellent chemical stability, which are important to QD applications.

  4. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  5. Spatial and temporal variability of water soluble carbon for a cropped field

    International Nuclear Information System (INIS)

    Liss, H.J.; Rolston, D.E.

    1983-01-01

    The water soluble carbon from soil extracts was taken from a two-hundred point grid established on a 1.2 ha field. The sampling was in the fall after the harvest of a sorghum crop. The concentrations ranged from 23.8 ppm to 274.2 ppm. Over 90 per cent of the concentrations were grouped around the mean of 40.3 ppm. The higher values caused the distribution to be greatly skewed such that neither normal nor log normal distributions characterized the data very well. The moisture content from the same samples followed normal distribution. Changes in the mean, the variance and the distribution of water soluble carbon were followed on 0.4 ha of the 1.2 ha in a grid of sixty points during a crop of wheat and a subsequent crop of sorghum. The mean increased in the spring, decreased in the summer and increased again in the fall. The spring and summer concentrations are well characterized by log normal distributions. The spatial dependence of water soluble carbon was examined on a fifty-five point transect across the field spaced every 1.37 m. The variogram indicated little or no dependence at this spacing. (author)

  6. Study of electrostatically self-assembled thin films of CdS and ZnS nanoparticle semiconductors

    Science.gov (United States)

    Suryajaya

    In this work, CdS and ZnS semiconducting colloid nanoparticles coated with organic shell, containing either SO[3-] or NH[2+] groups, were deposited as thin films using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy and spectroscopic ellipsometry - for optical properties; atomic force microscopy (AFM) - for morphology study; mercury probe - for electrical characterisation; and photon counter - for electroluminescence study. UV-vis spectra show a substantial blue shift of the main absorption band of both CdS and ZnS, either in the form of solutions or films, with respect to the bulk materials. The calculation of nanoparticles' radii yields the value of about 1.8 nm for both CdS and ZnS.The fitting of standard ellipsometry data gave the thicknesses (d) of nanoparticle layers of around 5 nm for both CdS and ZnS which corresponds well to the size of particles evaluated from UV-vis spectral data if an additional thickness of the organic shell is taken into account. The values of refractive index (n) and extinction coefficient (k) obtained were about 2.28 and 0.7 at 633 nm wavelength, for both CdS and ZnS.Using total internal reflection (TIRE), the process of alternative deposition of poly-allylamine hydrochloride (PAH) and CdS (or ZnS) layers could be monitored in-situ. The dynamic scan shows that the adsorption kinetic of the first layer of PAH or nanoparticles was slower than that of the next layer. The fitting of TIRE spectra gavethicknesses of about 7 nm and 12 nm for CdS and ZnS, respectively. It supports the suggestion of the formation of three-dimensional aggregates of semiconductor nanoparticles intercalated with polyelectrolyte.AFM images show the formation of large aggregates of nanoparticles, about 40-50 nm, for the films deposited from original colloid solutions, while smaller aggregates, about 12-20 nm, were obtained if the colloid solutions were diluted.Current-voltage (I-V) and capacitance

  7. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Nayereh, E-mail: nayereh.soltani@gmail.com [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Saion, Elias; Yunus, W. Mahmood Mat; Erfani, Maryam; Navasery, Manizheh; Bahmanrokh, Ghazaleh [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Rezaee, Kadijeh [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2014-01-30

    Coating of ZnS and CdS nanoparticles with organic and inorganic materials can extend their light absorption in the visible region and their stability against photo-corrosion. Such materials could emerge as excellent photocatalysts for the elimination of pollutants from aqueous media using solar energy. In this study, PVP (polyvinyl pyrrolidone)-capped ZnS and CdS nanoparticles, ZnS/CdS and CdS/ZnS core shell nanoparticles were synthesized by microwave irradiation method and characterized using different techniques. The XRD patterns exhibited cubic and hexagonal structures for coated ZnS and CdS nanoparticles, respectively. Morphological evaluation of TEM images showed that the nanoparticles are generally spherical in shape. The UV–visible spectra confirmed a shift in the band gap of coated nanoparticles to longer or shorter wavelengths due to size and potential-well effects. The photocatalytic activity of nanoparticles toward dye degradation under visible light was found to be improved after coating. PVP-capped ZnS and CdS exhibited an enhancement in the initial methylene blue degradation efficiency by a factor of about 1.3. ZnS nanoparticles coated by CdS displayed the initial efficiency 3.2 times higher than bare ZnS. The maximum dye removal was obtained in presence of CdS/ZnS core shells which is 1.4 times more efficient than bare CdS.

  8. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  10. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    Science.gov (United States)

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  11. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    Science.gov (United States)

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  12. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    Science.gov (United States)

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.

  13. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  14. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2011-01-01

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  15. Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method

    Science.gov (United States)

    Lalithadevi, B.; Mohan Rao, K.; Ramananda, D.

    2018-05-01

    Following a green synthesis method, zinc sulfide (ZnS) nanoparticles were prepared by chemical co-precipitation technique using starch as capping agent. Microwave irradiation was used as heating source. X-ray diffraction studies indicated that nanopowders obtained were polycrystalline possessing ZnS simple cubic structure. Transmission electron microscopic studies indicated that starch limits the agglomeration by steric stabilization. Interaction between ZnS and starch was confirmed by Fourier transform infrared spectroscopy as well as Raman scattering studies. Quantum size effects were observed in optical absorption studies while quenching of defect states on nanoparticles was improved with increase in starch addition as indicated by photoluminescence spectra.

  16. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    OpenAIRE

    Csapó J.; Albert Cs.; Prokisch J.

    2017-01-01

    Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from ...

  17. First-principle study on magnetic properties of Mn/Fe codoped ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hongxia, E-mail: chenhongxia1@sina.com [College of Physical Science and Electronic Techniques, Yancheng Teachers University, Yancheng 224002 (China); Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-07-15

    We studied the magnetic properties of Mn/Fe codoped ZnS comparatively with and without defects using first-principle calculation. The calculated results indicate that the Mn/Fe codoped ZnS system tends to stabilize in a ferrimagnetic (FiM) configuration. To obtain a ferromagnetic (FM) configuration, we consider the doped system with defects, such as S or Zn vacancy. The calculated results indicate that the doped system with Zn vacancy favors FiM states. Although the FM states of the doped system with S vacancy are more stable than the FiM states in negative charge states, the FM states are not stable enough to exist. Finally, we replaced an S atom by a C atom in the doped system. The C atom prefers to substitute the S atom connecting Mn and Fe atoms. The formation energy of this defect is -0.40 eV, showing that Mn/Fe/C codoped ZnS can be fabricated easily by experiments. Furthermore, the FM state was lower in energy than the FiM state by 114 meV. Such a large energy difference between the FM and FiM states implies that room temperature ferromagnetism could be expected in such a system. - Highlights: Black-Right-Pointing-Pointer Mn/Fe codoped ZnS system tends to stabilize in a ferrimagnetic configuration with or without defects. Black-Right-Pointing-Pointer By additional C codoping, the doped system tends to stabilize in a ferromagnetic configuration. Black-Right-Pointing-Pointer Energy difference between ferrimagnetic and ferromagnetic states is 114 meV. Black-Right-Pointing-Pointer This indicates room temperature ferromagnetism can be likely in such a system.

  18. Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study

    Science.gov (United States)

    Popov, Ilya S.; Vorokh, Andrey S.; Enyashin, Andrey N.

    2018-06-01

    Synthesis from aqueous solutions is an affordable method for fabrication of II-VI semiconductors. However, application of this method often imposes a disorder of crystal lattice, manifesting as a rich variety of polytypes arising from wurtzite and zinc blende phases. The origin of this disordering still remains debatable. Here, the influence of the most likely impurity at water environment - substitutional oxygen - on the polytypic equilibrium of zinc sulphide is studied by means of density-functional tight-binding method. According to calculations, the inclusion of such oxygen does not affect the polytypic equilibrium. Apart of thermodynamic stability, the electronic and elastic properties of ZnS polytypes are studied as the function of oxygen distribution.

  19. Spectrofluorimetric determination of some water-soluble vitamins.

    Science.gov (United States)

    Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Abdel-Latif, Niveen M; Mohamed, Marwa R

    2011-01-01

    Two simple and sensitive spectrofluorimetric methods were developed for determination of three water-soluble vitamins (B1, B2, and B6) in mixtures in the presence of cyanocobalamin. The first one was for thiamine determination, which depends on the oxidation of thiamine HCl to thiochrome by iodine in an alkaline medium. The method was applied accurately to determine thiamine in binary, ternary, and quaternary mixtures with pyridoxine HCl, riboflavin, and cyanocobalamin without interference. In the second method, riboflavin and pyridoxine HCl were determined fluorimetrically in acetate buffer, pH 6. The three water-soluble vitamins (B1, B2, and B6) were determined spectrofluorimetrically in binary, ternary, and quaternary mixtures in the presence of cyanocobalamin. All variables were studied in order to optimize the reaction conditions. Linear relationship was obeyed for all studied vitamins by the proposed methods at their corresponding lambda(exc) or lambda(em). The linear calibration curves were obtained from 10 to 500 ng/mL; the correlation ranged from 0.9991 to 0.9999. The suggested procedures were applied to the analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical dosage forms from different manufacturers. The RSD range was 0.46-1.02%, which indicates good precision. No interference was observed from common pharmaceutical additives. Good recoveries (97.6 +/- 0.7-101.2 +/- 0.8%) were obtained. Statistical comparison of the results with reported methods shows excellent agreement and indicates no significant difference in accuracy and precision.

  20. Water-soluble resist for environmentally friendly lithography

    Science.gov (United States)

    Lin, Qinghuang; Simpson, Logan L.; Steinhaeusler, Thomas; Wilder, Michelle; Willson, C. Grant; Havard, Jennifer M.; Frechet, Jean M. J.

    1996-05-01

    This paper describes an 'environmentally friendly,' water castable, water developable photoresist system. The chemically amplified negative-tone resist system consists of three water-soluble components: a polymer, poly(methyl acrylamidoglycolate methyl ether), [poly(MAGME)]; a photoacid generator, dimethyl dihydroxyphenylsulfonium triflate and a crosslinker, butanediol. Poly(MAGME) was synthesized by solution free radical polymerization. In the three-component resist system, the acid generated by photolysis of the photoacid generator catalyzes the crosslinking of poly(MAGME) in the exposed regions during post-exposure baking, thus rendering the exposed regions insoluble in water. Negative tone relief images are obtained by developing with pure water. The resist is able to resolve 1 micrometer line/space features (1:1 aspect ratio) with an exposure dose of 100 mJ/cm2 at 248 nm. The resist can be used to generate etched copper relief images on printed circuit boards using aqueous sodium persulfate as the etchant. The crosslinking mechanism has been investigated by model compound studies using 13C NMR. These studies have revealed that the acid catalyzed reaction of the poly(MAGME) with butanediol proceeds via both transesterification and transacetalization (transaminalization) reactions at low temperatures, and also via transamidation at high temperatures.