WorldWideScience

Sample records for water-miscible organic solvents

  1. The effect of organic water-miscible solvents on the extraction of uranium by TOA

    International Nuclear Information System (INIS)

    Shi Xiukun; Shen Xinghai; Pen Qixiu; Gao Hongchen

    1989-01-01

    The effect of organic water-miscible solvents, such as methanol, ethanol, acetone, dioxane, glycol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofurance (THF) in aqueous phase on the extraction of uranyl sulphate by tri-n-octylamine (TOA) has been investigated. All data obtained showed that the addition of alcohols, ketones etc. into aqueous phase brings about an increase of distribution ratio of uranium, whereas the addition of DMSO, DMF etc. brings about a decrease of distribution ratio of uranium. In the present study, the regularity and mechanism of extraction with TOA are further studied and discussed from the measurements of some physical properties, such as dielectric constant, interface tension etc

  2. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    Science.gov (United States)

    Zhang, Yu-Qing; Shen, Wei-De; Xiang, Ru-Li; Zhuge, Lan-Jian; Gao, Wei-Jian; Wang, Wen-Bao

    2007-10-01

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk

  3. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    International Nuclear Information System (INIS)

    Zhang Yuqing; Shen Weide; Xiang Ruli; Zhuge Lanjian; Gao Weijian; Wang Wenbao

    2007-01-01

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl 2 , the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ε-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13 C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk

  4. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuqing, E-mail: yqzhang@public1.sz.js.cn; Shen Weide; Xiang Ruli [Soochow University, Silk Biotechnol. Lab., School of Life Science (China); Zhuge Lanjian; Gao Weijian; Wang Wenbao [Soochow University, Analytical Center (China)

    2007-10-15

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl{sub 2}, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the {epsilon}-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and {alpha}-helix form (Silk I) into anti-parallel {beta}-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, {sup 13}C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with {beta}-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular

  5. An off-on Fluorescent Sensor for Detecting a Wide Range of Water Content in Organic Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kanghyeon; Lee, Wanjin; Kim, Jae Nyoung; Kim, Hyung Jin [Chonnam National Univ., Gwangju (Korea, Republic of)

    2013-08-15

    This paper describes the synthesis and water sensing properties of a fluorescent photoinduced electron transfer (PET) sensor (5) with an extended operating sensing range. The 1,8-naphthalimide derivative (5) attached with a piperazine group and a carboxylic group was synthesized and applied as a fluorescent water sensor in water-miscible organic solvents. The fluorescence intensity of the dye 5 increased with increasing water content up to 80% (v/v) and the fluorescence intensities were enhanced 45-, 67- and 122-fold in aqueous EtOH, DMF and DMSO solutions, respectively. In aqueous acetone solution, the enhancement of the fluorescence intensities was somewhat lower (30-fold) but the response range was wider (0-90%, v/v)

  6. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  7. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica

    International Nuclear Information System (INIS)

    Turov, V.V.; Gun'ko, V.M.; Tsapko, M.D.; Bogatyrev, V.M.; Skubiszewska-Zieba, J.; Leboda, R.; Ryczkowski, J.

    2004-01-01

    The effects of organic solvents (dimethylsulfoxide-d 6 (DMSO-d 6 ), chloroform-d, acetone-d 6 , and acetonitrile-d 3 ) on the properties of interfacial water at surfaces of silica gel Si-40 and partially silylated fumed silica A-380 were studied by means of the 1 H NMR spectroscopy with freezing-out of adsorbed water at 180 1 H NMR investigations were also analysed on the basis of the structural characteristics of silicas and quantum chemical calculations of the chemical shifts δ H and solvent effects. DMSO-d 6 and acetonitrile-d 3 are poorly miscible with water in silica gel pores in contrast to the bulk liquids. DMSO-d 6 and chloroform-d affect the structure of the interfacial water weaker than acetone-d 6 and acetonitrile-d 3 at amounts of liquids greater than the pore volume. Acetone-d 6 and acetonitrile-d 3 can displace water from pores under this condition. The chemical shift of protons in water adsorbed on silica gel is 3.5-6.5 ppm, which corresponds to the formation of two to four hydrogen bonds per molecule. Water adsorbed on partially silylated fumed silica has two 1 H NMR signals at 5 and 1.1-1.7 ppm related to different structures (droplets and small clusters) of the interfacial water

  8. Evaluating miscible flood projects for acquisition or viability

    International Nuclear Information System (INIS)

    Cassinat, J.C.

    1991-01-01

    Very little information exists regarding evaluating enhanced oil recovery (EOR) projects, in particular miscible floods. Due to the size and scope of most tertiary recovery projects, standard evaluation rules and techniques are too general and vague to adequately model these schemes. A procedure for identifying the risks associated with miscible EOR projects is presented. It is essential to set up a cash flow model that accurately represents the future performance of a miscible flood. Included in the model are the timing of crucial events such as expected solvent breakthrough and the injection of trace gas. The cash flow analysis allows a quick audit procedure and converts production into a monetary or economic evaluation criteria that can easily be compared to other investment alternatives. When evaluating a miscible flood project, forecasting production, solvent and chase gas recovery costs can become quite complex. An organized procedure for an evaluation will ensure that a comprehensive and thorough examination of all the data is completed, and will increase confidence levels associated with decision making. 32 refs., 4 figs., 4 tabs

  9. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  10. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Turov, V.V.; Gun' ko, V.M.; Tsapko, M.D.; Bogatyrev, V.M.; Skubiszewska-Zieba, J.; Leboda, R.; Ryczkowski, J

    2004-05-15

    The effects of organic solvents (dimethylsulfoxide-d{sub 6} (DMSO-d{sub 6}), chloroform-d, acetone-d{sub 6}, and acetonitrile-d{sub 3}) on the properties of interfacial water at surfaces of silica gel Si-40 and partially silylated fumed silica A-380 were studied by means of the {sup 1}H NMR spectroscopy with freezing-out of adsorbed water at 180solvent effects. DMSO-d{sub 6} and acetonitrile-d{sub 3} are poorly miscible with water in silica gel pores in contrast to the bulk liquids. DMSO-d{sub 6} and chloroform-d affect the structure of the interfacial water weaker than acetone-d{sub 6} and acetonitrile-d{sub 3} at amounts of liquids greater than the pore volume. Acetone-d{sub 6} and acetonitrile-d{sub 3} can displace water from pores under this condition. The chemical shift of protons in water adsorbed on silica gel is 3.5-6.5 ppm, which corresponds to the formation of two to four hydrogen bonds per molecule. Water adsorbed on partially silylated fumed silica has two {sup 1}H NMR signals at 5 and 1.1-1.7 ppm related to different structures (droplets and small clusters) of the interfacial water.

  11. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  12. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  13. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying.

    Science.gov (United States)

    Paudel, Amrit; Van den Mooter, Guy

    2012-01-01

    To investigate the influence of solvent properties on the phase behavior and physical stability of spray-dried solid dispersions containing naproxen and PVP K 25 prepared from binary cosolvent systems containing methanol, acetone and dichloromethane. The viscosity, polymer globular size and evaporation rate of the spray-drying feed solutions were characterized. The solid dispersions were prepared by spray-drying drug-polymer solutions in binary solvent blends containing different proportions of each solvent. The phase behavior was investigated with mDSC, pXRD, FT-IR and TGA. Further, physical stability of solid dispersions was assessed by analyzing after storage at 75% RH. The solid dispersions prepared from solvent/anti-solvent mixture showed better miscibility and physical stability over those prepared from the mixtures of good solvents. Thus, solid dispersions prepared from dichloromethane-acetone exhibited the best physicochemical attributes followed by those prepared from methanol-acetone. FT-IR analysis revealed differential drug-polymer interaction in solid dispersions prepared from various solvent blends, upon the exposure to elevated humidity. Spray-drying from a cocktail of good solvent and anti-solvent with narrower volatility difference produces solid dispersions with better miscibility and physical stability resulting from the simultaneous effect on the polymer conformation and better dispersivity of drug.

  14. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  15. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    Science.gov (United States)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  16. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  17. Flash-Point prediction for binary partially miscible aqueous-organic mixtures

    OpenAIRE

    Liaw, Horng-Jang; Chen, Chien Tsun; Gerbaud, Vincent

    2008-01-01

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes and heterogeneous distillation processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of aqueous-organic system. To confirm the predictive efficiency of the derived flash points, the model was verified by comparing the ...

  18. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    Science.gov (United States)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be

  19. Effect of solvent evaporation and coagulation on morphology development of asymmetric membranes

    Science.gov (United States)

    Chandrasekaran, Neelakandan; Kyu, Thein

    2008-03-01

    Miscibility behavior of blends of amorphous polyamide (PA) and polyvinylpyrrolidone (PVP) was studied in relation to membrane formation. Dimethylsulfoxide (DMSO) and water were used as solvent and non-solvent, respectively. Differential scanning calorimetry and cloud point measurements revealed that the binary PA/PVP blends as well as the ternary PA/PVP/DMSO system were completely miscible at all compositions. However, the addition of non-solvent (water) to this ternary system has led to phase separation. Visual turbidity study was used to establish a ternary liquid-liquid phase diagram of the PA-PVP/DMSO/water system. Scanning Electron Microscopy (SEM) showed the development of finger-like and sponge-like cross sectional morphologies during coagulation. Effects of polymer concentration, PA/PVP blend ratio, solvent/non-solvent quality, and evaporation time on the resulting membrane morphology will be discussed.

  20. Transfers of Colloidal Silica from Water into Organic Solvents of Intermediate Polarities

    Science.gov (United States)

    Kasseh; Keh

    1998-01-15

    Dispersions of discrete metal-oxide submicroparticles in organic solvents of medium polarities are uneasy to generate and weakly documented. We address this topic along two general methods focusing on silica. Successive transfers of colloidal particles from water into n-propanol and then into 1,2-dichloroethane by azeotropic distillation yield a stable organosol. The particles are found to be propanol-coated by surface esterification to the extent of 0.40 nm2 per molecule. Alternatively, centrifugation-redispersion cycles make it possible to obtain stable suspensions of unaltered silica in methanol and acetonitrile starting from an aqueous silicasol. Particles are characterized by various methods including nitrogen adsorption, transmission electron microscopy, dynamic light scattering, and electrophoresis. The stabilities of these suspensions in various organic solvents are investigated with special concern for the role of residual water. Stabilization of silica in methanol is inconspicuously related to solvent permittivity and prominently dependent on the presence of adsorbed water. In contrast, the acetonitrile silicasol, which is unaffected by residual water, displays electrophoretic behavior compatible with electrostatic stabilization. Copyright 1998 Academic Press. Copyright 1998Academic Press

  1. Thermophysical properties and solubility of different sugar-derived molecules in deep eutectic solvents

    NARCIS (Netherlands)

    Dietz, C.H.J.T.; Kroon, M.C.; van Sint Annaland, M.; Gallucci, F.

    2017-01-01

    Deep eutectic solvents (DESs) are designer solvents analogous to ionic liquids but with lower preparation cost. Most known DESs are water-miscible, but recently water-immiscible DESs have also been presented, which are a combination of hydrogen bond donors and acceptors with long hydrophobic alkyl

  2. Evaluation of miscibility of poly(epichlorohydrin-co-ethylene oxide) and poly(methylmethacrylate) blends

    International Nuclear Information System (INIS)

    Turchete, Renato; Felisberti, Maria Isabel

    1999-01-01

    The miscibility of blends of poly(methylmethacrylate), (PMMA) and poly(epichlorohydrin-co-ethylene oxide), (ECO) were investigated by differential scanning calorimetry. The ECO was fractionated using two different systems: a solvent-non solvent system and by cooling the solution in tetrahydrofuran in the temperature range from 20 to 0 deg C. The fractions with different composition and molecular weight were used to prepare the blends by casting from solution in tetrahydrofuran. The blends exhibit two glass transitions shifted in relation to the glass transitions of the pure polymers, indicating a partial miscibility. Blends containing copolymer richer in epichlorohydrin segments were more miscible than blends of non-fractionated ECO. (author)

  3. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  4. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    Science.gov (United States)

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  5. Relation between the interfacial tension in an organic solvent-water system and the parameters of the solvating capacity of the solvent

    International Nuclear Information System (INIS)

    Nikitin, S.D.; Shmidt, V.S.

    1987-01-01

    It was shown that there is a linear relation between the empirical DE (diluent effect) and E/sub T/ parameters, which characterize the solvating capacity of the solvent, and the interfacial tension in an organic solvent-water two-phase system. Analysis of the sample correlation coefficients shows that the relation between the interfacial tension and the DE parameters of the solvents is closer to linear than the corresponding relation for the E/sub T/ parameters. During analysis of the data for 31 solvents it was established that the largest inverse correlation coefficient r = -0.98 is obtained with an equation of the DE = a + bσ/rho 1/3, type, were a and b are constants, and rho is the density of the solvent. The regression equation has the following form: DE = 7.586 - 0.147 σ/rho 1/3. Since the interfacial activity of hydrophobic surfactants decreases linearly with increase in the DE values, it follows from the obtained equation that decrease of the interfacial tension at the water-organic solvent interface must lead to a decrease in the interfacial activity of hydrophobic surfactants present in the system

  6. Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions.

    Science.gov (United States)

    Dantan, N; Frenzel, W; Küppers, S

    2000-05-31

    Flow injection methods utilising the Karl Fischer (KF) reaction with spectrophotometric and potentiometric detection are described for the determination of the trace water content in various organic solvents. Optimisation of the methods resulted in an accessible (linear) working range of 0.01-0.2% water for many solvents studied with a typical precision of 1-2% R.S.D. Only 50 mul of organic solvent was injected and the sampling frequency was about 120 samples per h. Since the slopes of the calibration curves were different for different solvents appropriate calibration was required. Problems associated with spectrophotometric detection and caused by refractive index changes were pointed out and a nested-loop configuration was proposed to overcome this kind of interference. The potentiometric method with a novel flow-through detector cell was shown to surpass the performance of spectrophotometric detection in any respect. The characteristics of the procedures developed made them well applicable for on-line monitoring of technical solvent distillations in an industrial plant.

  7. Extraction of Betulin, Trimyristin, Eugenol and Carnosic Acid Using Water-Organic Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Fulgentius N. Lugemwa

    2012-08-01

    Full Text Available A solvent system consisting of ethyl acetate, ethyl alcohol and water, in the volume ratio of 4.5:4.5:1, was developed and used to extract, at room temperature, betulin from white birch bark and antioxidants from spices (rosemary, thyme, sage, and oregano and white oak chips. In addition, under reflux conditions, trimyristin was extracted from nutmeg using the same solvent system, and eugenol from olives was extracted using a mixture of salt water and ethyl acetate. The protocol demonstrates the use of water in organic solvents to extract natural products from plants. Measurement of the free-radical scavenging activity using by 2,2-diphenyl-1-picrylhydrazyl (DPPH indicated that the extraction of plant material using ethyl acetate, ethyl alcohol and water (4.5:4.5:1, v/v/v was exhaustive when carried out at room temperature for 96 h.

  8. Aggregation behavior of cholic acid derivatives in organic solvents and in water

    NARCIS (Netherlands)

    Willemen, H.M.

    2002-01-01

    In this thesis various cholic acid derivatives are reported that display aggregation in water or in organic solvents. Spontaneous aggregation of single molecules into larger, ordered structures occurs at the borderline of solubility. Amphiphilic compounds, or surfactants, which possess a

  9. Phase transitions and phase miscibility of mixed particles of ammonium sulfate, toluene-derived secondary organic material, and water.

    Science.gov (United States)

    Smith, Mackenzie L; You, Yuan; Kuwata, Mikinori; Bertram, Allan K; Martin, Scot T

    2013-09-12

    The phase states of atmospheric particles influence their roles in physicochemical processes related to air quality and climate. The phases of particles containing secondary organic materials (SOMs) are still uncertain, especially for SOMs produced from aromatic precursor gases. In this work, efflorescence and deliquescence phase transitions, as well as phase separation, in particles composed of toluene-derived SOM, ammonium sulfate, and water were studied by hygroscopic tandem differential mobility analysis (HTDMA) and optical microscopy. The SOM was produced in the Harvard Environmental Chamber by photo-oxidation of toluene at chamber relative humidities of toluene-derived SOM and aqueous ammonium sulfate, suggesting phase immiscibility between the two. Optical microscopy of particles prepared for ε = 0.12 confirmed phase separation for RH 0.5, the DRH values of ammonium sulfate in mixtures with SOM produced at toluene-derived SOM and aqueous ammonium sulfate across a limited range of organic volume fractions differentiates this SOM from previous reports for isoprene-derived SOM of full miscibility and for α-pinene-derived SOM of nearly full immiscibility with aqueous ammonium sulfate.

  10. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    Science.gov (United States)

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  11. Micellization behaviour and thermodynamic parameters of 12-2-12 gemini surfactant in (water + organic solvent) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-09-15

    Highlights: > The cmc and {alpha} values of surfactant increased with increasing solvent content and temperature. > The values of ({Delta}G{sub m}{sup 0}) are negative in all cases for the micelle formation becomes less favourable. > The values of negative enthalpy indicate importance of the London dispersion forces for the micellization. > The positive entropy is due to a contribution supplied from the solvent. - Abstract: The effect of organic solvents on micellization behaviour and thermodynamic parameters of a cationic gemini (dimeric) surfactant, C{sub 12}H{sub 25}(CH{sub 3}){sub 2}N{sup +}-(CH{sub 2}){sub 2}-N{sup +}(CH{sub 3}){sub 2}C{sub 12}H{sub 25}.2Br{sup -}, (12-2-12) was studied in aqueous solutions over the range of T = (293.15 to 323.15) K using the conductometric technique. Ethylene glycol (EG), dimethylsulfoxide (DMSO) and 1,4-dioxan (DO) were used as organic solvents with three different contents. The critical micelle concentration (cmc) and the degree of counter ion dissociation ({alpha}) of micelles in the water and in the (water + organic solvent) mixtures including 10%, 20%, and 30% solvent contents were determined. The standard Gibbs free energy ({Delta}G{sub m}{sup 0}), enthalpy ({Delta}H{sub m}{sup 0}) and entropy ({Delta}S{sub m}{sup 0}) of micellization were estimated from the temperature dependence of the cmc values. It was observed that the critical micelle concentration of the gemini surfactant and the degree of counter ion dissociation of the micelle increased as the volume percentage of organic solvent, and temperature increased. The standard Gibbs free energy of micellization was found to be less negative with the increase in the organic solvent content and temperature.

  12. Multiscale structure, interfacial cohesion, adsorbed layers, miscibility and properties in dense polymer-particle mixtures

    Science.gov (United States)

    Schweizer, Ken

    2012-02-01

    A major goal in polymer nanocomposite research is to understand and predict how the chemical and physical nature of individual polymers and nanoparticles, and thermodynamic state (temperature, composition, solvent dilution, filler loading), determine bulk assembly, miscibility and properties. Microscopic PRISM theory provides a route to this goal for equilibrium disordered mixtures. A major prediction is that by manipulating the net polymer-particle interfacial attraction, miscibility is realizable via the formation of thin thermodynamically stable adsorbed layers, which, however, are destroyed by entropic depletion and bridging attraction effects if interface cohesion is too weak or strong, respectively. This and related issues are quantitatively explored for miscible mixtures of hydrocarbon polymers, silica nanospheres, and solvent using x-ray scattering, neutron scattering and rheology. Under melt conditions, quantitative agreement between theory and silica scattering experiments is achieved under both steric stabilization and weak depletion conditions. Using contrast matching neutron scattering to characterize the collective structure factors of polymers, particles and their interface, the existence and size of adsorbed polymer layers, and their consequences on microstructure, is determined. Failure of the incompressible RPA, accuracy of PRISM theory, the nm thickness of adsorbed layers, and qualitative sensitivity of the bulk modulus to interfacial cohesion and particle size are demonstrated for concentrated PEO-silica-ethanol nanocomposites. Temperature-dependent complexity is discovered when water is the solvent, and nonequilibrium effects emerge for adsorbing entangled polymers that strongly impact structure. By varying polymer chemistry, the effect of polymer-particle attraction on the intrinsic viscosity is explored with striking non-classical effects observed. This work was performed in collaboration with S.Y.Kim, L.M.Hall, C.Zukoski and B.Anderson.

  13. Photonic crystal based sensor for organic solvents and for solvent-water mixtures.

    Science.gov (United States)

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S

    2012-12-12

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  14. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Otto S. Wolfbeis

    2012-12-01

    Full Text Available Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  15. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    Science.gov (United States)

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  16. Solvent extraction of thorium(IV) with dibutyldithiophosphoric acid in various organic solvents

    International Nuclear Information System (INIS)

    Curtui, M.; Haiduc, I.

    1994-01-01

    The extraction of thorium(IV) from perchlorate solutions with di-n-butyldithiophosphoric acid (HBudtp) in various organic solvents occurs through an ion exchange mechanism. The extracted species in the organic phase is an eight-coordinate complex Th(Budtp) 4 . The higher values of the distribution ratio obtained in HBudtp-benzene-water system than in HBudtp-n-butanol-water system are explained by higher solubility of the complex species in nonpolar solvents. The position of the extraction curves in the pH-range lower than 0.7 reduces the complexation of thorium(IV) with Budtp - in the aqueous phase and also the hydrolysis process. (author) 8 refs.; 4 figs.; 1 tab

  17. Organic solvents impair life-traits and biomarkers in the New Zealand mudsnail Potamopyrgus antipodarum (Gray) at concentrations below OECD recommendations

    International Nuclear Information System (INIS)

    Lecomte, V.; Noury, P.; Tutundjian, R.; Buronfosse, T.; Garric, J.; Gust, M.

    2013-01-01

    Highlights: •Acetone (20 μl l −1 ) accelerates embryonic development in Potamopyrgus antipodarum. •Ethanol (20 μl l −1 ) decreases growth in juvenile mudsnails. •Acetone, ethanol, methanol and DMSO increase E2 levels in snails. •Carrier solvents impair gene expression. •DMSO is to be preferred. -- Abstract: Potamopyrgus antipodarum is a gastropod mollusk proposed for use in the development of reproduction tests within the Organization for Economic Cooperation and Development (OECD). Numerous chemicals, including endocrine disrupters, are relatively water-insoluble, and water-miscible solvents are currently used for testing them. OECD recommends a maximum concentration of 100 μl l −1 . As several studies highlighted effects of lower concentrations of solvents, this study assessed the effects of 20 μl l −1 acetone, ethanol, methanol and dimethylsulfoxide (DMSO) on juvenile and adult snails during 42 days. Ethanol decreased juvenile growth, while acetone increased the rate of embryonic development. All solvents increased estradiol-like levels in adult snails. DMSO only increased mRNA expression of vitellogenin-like gene, while acetone, ethanol and methanol decreased mRNA expression of three nuclear receptor (estrogen receptor-like, ecdysone-induced protein and chicken ovalbumin upstream promoter transcription factor) genes as well as of genes encoding proteins involved in genomic (prohibitin-2) and non-genomic (striatin) pathways of estrogens activity in vertebrates. This study highlights the confounding effects of low concentrations of solvents and recommends avoiding their use. Where solvent use is inevitable, their concentrations and type should be investigated for suitability for the measured endpoints prior to use in chemical testing strategies

  18. Organic solvents impair life-traits and biomarkers in the New Zealand mudsnail Potamopyrgus antipodarum (Gray) at concentrations below OECD recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, V.; Noury, P.; Tutundjian, R. [Irstea, UR MAEP, Laboratoire d’écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex (France); Buronfosse, T. [VetAgro-Sup, Campus vétérinaire, Endocrinology Laboratory, 69280 Marcy l’Etoile (France); Garric, J. [Irstea, UR MAEP, Laboratoire d’écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex (France); Gust, M., E-mail: marion.gust@irstea.fr [Irstea, UR MAEP, Laboratoire d’écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex (France)

    2013-09-15

    Highlights: •Acetone (20 μl l{sup −1}) accelerates embryonic development in Potamopyrgus antipodarum. •Ethanol (20 μl l{sup −1}) decreases growth in juvenile mudsnails. •Acetone, ethanol, methanol and DMSO increase E2 levels in snails. •Carrier solvents impair gene expression. •DMSO is to be preferred. -- Abstract: Potamopyrgus antipodarum is a gastropod mollusk proposed for use in the development of reproduction tests within the Organization for Economic Cooperation and Development (OECD). Numerous chemicals, including endocrine disrupters, are relatively water-insoluble, and water-miscible solvents are currently used for testing them. OECD recommends a maximum concentration of 100 μl l{sup −1}. As several studies highlighted effects of lower concentrations of solvents, this study assessed the effects of 20 μl l{sup −1} acetone, ethanol, methanol and dimethylsulfoxide (DMSO) on juvenile and adult snails during 42 days. Ethanol decreased juvenile growth, while acetone increased the rate of embryonic development. All solvents increased estradiol-like levels in adult snails. DMSO only increased mRNA expression of vitellogenin-like gene, while acetone, ethanol and methanol decreased mRNA expression of three nuclear receptor (estrogen receptor-like, ecdysone-induced protein and chicken ovalbumin upstream promoter transcription factor) genes as well as of genes encoding proteins involved in genomic (prohibitin-2) and non-genomic (striatin) pathways of estrogens activity in vertebrates. This study highlights the confounding effects of low concentrations of solvents and recommends avoiding their use. Where solvent use is inevitable, their concentrations and type should be investigated for suitability for the measured endpoints prior to use in chemical testing strategies.

  19. Ionization and thermodynamic constants of 6-methylquinoline by potentiometry in aqueous and mixed organic-water solvent systems

    International Nuclear Information System (INIS)

    Hafiz, A; Indhar, B.; Khanzada, A.W.K.

    2000-01-01

    The ionization constant pKa and Gibbs's free energy DG of 6-methylquinoline are determined in aqueous solution at different temperatures and in three mixed organic-water solvent systems at 25 deg. C. It is observed that dissociation constant of 6-methylquinoline in aqueous system decreases with the increase of temperature. The curve is a parabolic. It is noted that pKa values of this compound are higher than those of quinoline and 8-methylquinoline. In case of mixed organic-water solvent systems, the influence of these solvents on the ionization equilibria of NH/sub 2/ group has been observed. The pK M/A and pK T/A values versus percent composition decrease gradually with increase in percent of organic solvents The curve of the pK/sub a/ versus percent composition is a distorted parabola. The data have been obtained potentiometrically by titrating 6-methylquinoline solutions with HCl. The values of dissociation constant were obtained from these data by a computer program written in GW-BASIC. From pKa values Gibbs's free energies DG for the respective pKa values have also been calculated. (author)

  20. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2011-01-01

    Highlights: → Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. → Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. → Correlation with UNIQUAC, Wilson and NRTL models. → Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM 3 Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  1. Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification Nueva esterasa tolerante a los solventes orgánicos aislada por metagenómica: ideas sobre la clasificación de las esterasas/lipasas

    Directory of Open Access Journals (Sweden)

    Renaud Berlemont

    2013-03-01

    Full Text Available In order to isolate novel organic solvent-tolerant (OST lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1 contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 a/ß hydrolase subgroup (abH04.04. Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4 compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.Con el fin de aislar nuevas variantes de lipasas tolerantes a solventes organicos (OST, se construyo una libreria metagenomica a partir de ADN obtenido de una muestra de suelo de bosque templado. A traves de un monitoreo en dos etapas, basado en la deteccion de actividades, se aislo un clon con actividad lipolitica en presencia de solventes organicos. La secuenciacion del plasmido pRBest recuperado del clon positivo revelo la presencia de un

  2. PCB extraction from ORNL tank WC-14 using a unique solvent

    International Nuclear Information System (INIS)

    Bloom, G.A.; Lucero, A.J.; Koran, L.J.; Turner, E.N.

    1995-09-01

    This report summarizes the development work of the Engineering Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) for an organic extraction method for removing polychlorinated biphenyls (PCBs) from tank WC-14. Tank WC-14 is part of the ORNL liquid low-level radioactive tank waste system and does not meet new secondary containment and leak detection regulations. These regulations require the tank to be taken out of service, and remediated before tank removal. To remediate the tank, the PCBs must be removed; the tank contents can then be transferred to the Melton Valley Storage Tanks before final disposal. The solvent being used for the PCB extraction experiments is triethylamine, an aliphatic amine that is soluble in water below 60 degrees F but insoluble in water above 90 degrees F. This property will allow the extraction to be carried out under fully miscible conditions within the tank; then, after tank conditions have been changed, the solvent will not be miscible with water and phase separation will occur. Phase separation between sludge, water, and solvent will allow solvent (loaded with PCBs) to be removed from the tank for disposal. After removing the PCBs from the sludge and removing the sludge from the tank, administrative control of the tank can be transferred to ORNL's Environmental Restoration Program, where priorities will be set for tank removal. Experiments with WC-14 sludge show that greater than 90% extraction efficiencies can be achieved with one extraction stage and that PCB concentration in the sludge can be reduced to below 2 ppm in three extractions. It is anticipated that three extractions will be necessary to reduce the PCB concentration to below 2 ppm during field applications. The experiments conducted with tank WC-14 sludge transferred less than 0.03% of the original alpha contamination and less than 0.002% of the original beta contamination

  3. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  4. The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

    International Nuclear Information System (INIS)

    Van Hook, W.A.

    2000-01-01

    A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering

  5. Miscibility Studies on Polymer Blends Modified with Phytochemicals

    Science.gov (United States)

    Chandrasekaran, Neelakandan; Kyu, Thein

    2009-03-01

    The miscibility studies related to an amorphous poly(amide)/poly(vinyl pyrrolidone) [PA/PVP] blend with a crystalline phytochemical called ``Mangiferin'' is presented. Phytochemicals are plant derived chemicals which intrinsically possess multiple salubrious properties that are associated with prevention of diseases such as cancer, diabetes, cardiovascular disease, and hypertension. Incorporation of phytochemicals into polymers has shown to have very promising applications in wound healing, drug delivery, etc. The morphology of these materials is crucial to applications like hemodialysis, which is governed by thermodynamics and kinetics of the phase separation process. Hence, miscibility studies of PA/PVP blends with and without mangiferin have been carried out using dimethyl sulfoxide as a common solvent. Differential scanning calorimetry studies revealed that the binary PA/PVP blends were completely miscible at all compositions. However, the addition of mangiferin has led to liquid-liquid phase separation and liquid-solid phase transition in a composition dependent manner. Fourier transformed infrared spectroscopy was undertaken to determine specific interaction between the polymer constituents and the role of possible hydrogen bonding among three constituents will be discussed.

  6. Dissolution of organic solvents from painted surfaces into water

    International Nuclear Information System (INIS)

    Wren, J.C.; Jobe, D.J.; Sanipelli, G.G.; Ball, J.M.

    2000-01-01

    The presence of volatile iodine in containment buildings is one of the major safety concerns in the potential event of nuclear reactor accidents. Organic impurities in containment water, originating from various painted structural surfaces and organic materials, could have a significant impact on iodine volatility following an accident. To determine the source and magnitude of organic impurities and their effects on time-dependent iodine volatility, the dissolution for organic constituents from paints used in reactor buildings has been studied under postulated accident conditions. The studies of the organic dissolution from carbon steel coupons coated with zinc-primed vinyl, epoxy-primed polyurethane or epoxy paints over the temperature range 25-90 deg C are reported. Relatively large activation energies were measured for the release of the principal organic compounds from painted surfaces, suggesting it is the release of the solvents from the paint matrix rather than their diffusion through the solution that is the rate determining step for the dissolution mechanism. The similarities in the values of activation energies for the dissolution of different organic compounds from the paints suggest the release rate is independent of the nature of the painted surface or the type of organic being released from the surface. These two observations indicate that it may be possible to write a generalized rate expression for the release of organic compounds from painted surfaces in containment following an accident. The possible implications of these results for predicting iodine volatility in containment are also discussed. (author)

  7. Process for the production of sodium carbonate anhydrate

    OpenAIRE

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of sodium carbonate and sodium bicarbonate, in a mixture containing water and an organic, water miscible or partly water miscible solvent, which solvent influences the transition temperature below which sodium...

  8. Empirical parameters for solvent acidity, basicity, dipolarity, and polarizability of the ionic liquids [BMIM][BF4] and [BMIM][PF6].

    Science.gov (United States)

    del Valle, J C; García Blanco, F; Catalán, J

    2015-04-02

    The empirical solvent scales for polarizability (SP), dipolarity (SdP), acidity (SA), and basicity (SB) have been successfully used to interpret the solvatochromism of compounds dissolved in organic solvents and their solvent mixtures. Providing that the published solvatochromic parameters for the ionic liquids 1-(1-butyl)-3-methylimidazolium tetrafluoroborate, [BMIM][BF4] and 1-(1-butyl)-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], are excessively widespread, their SP, SdP, SA, and SB values are measured herein at temperatures from 293 to 353 K. Four key points are emphasized herein: (i) the origin of the solvatochromic solvent scales--the gas phase, that is the absence of any medium perturbation--; (ii) the separation of the polarizability and dipolarity effects; (iii) the simplification of the probing process in order to obtain the solvatochromic parameters; and (iv) the SP, SdP, SA, and SB solvent scales can probe the polarizability, dipolarity, acidity, and basicity of ionic liquids as well as of organic solvents and water-organic solvent mixtures. From the multiparameter approach using the four pure solvent scales one can draw the conclusion that (a) the solvent influence of [BMIM][BF4] parallels that of formamide at 293 K, both of them miscible with water; (b) [BMIM][PF6] shows a set of solvatochromic parameters similar to that of chloroacetonitrile, both of them water insoluble; and (c) that the corresponding solvent acidity and basicity of the ionic liquids can be explained to a great extent from the cation species by comparing the empirical parameters of [BMIM](+) with those of the solvent 1-methylimidazole. The insolubility of [BMIM][PF6] in water as compared to [BMIM][BF4] is tentatively connected to some extent to the larger molar volume of the anion [PF6](-), and to the difference in basicity of [PF6](-) and [BF4](-).

  9. Ionic Liquids in Selective Oxidation: Catalysts and Solvents.

    Science.gov (United States)

    Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang

    2017-05-24

    Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.

  10. Organic Solvent Tropical Report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    2000-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines

  11. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  12. Iodine removing method in organic solvent

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Sakurai, Manabu

    1988-01-01

    Purpose: To effectively remove iodine in an organic solvent to thereby remove iodine in the solvent that can be re-used or put to purning treatment. Method: Organic solvent formed from wastes of nuclear facilities is mixed with basic lead acetate, or silica gel or activated carbon incorporated with such a compound to adsorb iodine in the organic solvent to the basic lead acetate. Then, iodine in the organic solvent is removed by separating to eliminate the basic lead acetate adsorbing iodine from the organic solvent or by passing the organic solvent through a tower or column charged or pre-coated with silica gel or activated carbon incorporated with lead acetate. By using basic lead acetate as the adsorbents, iodine can effective by adsorbed and eliminated. Thus, the possibility of circumstantial release of iodine can be reduced upon reusing or burning treatment of the organic solvent. (Kamimura, M.)

  13. Low-Temperature Miscibility of Ethanol-Gasoline-Water Blends in Flex Fuel Applications

    DEFF Research Database (Denmark)

    Johansen, T.; Schramm, Jesper

    2009-01-01

    The miscibility of blends of gasoline and hydrous ethanol was investigated experimentally at - 25 degrees C and - 2 degrees C. Furthermore, the maximum water content was found for ethanol in flex fuel blends. The results strongly indicate that blends containing ethanol with a water content above...... that of the ethanol/water azeotrope (4.4% water by mass) can be used as Flex Fuel blends together with gasoline at ambient temperatures of 25 degrees C and 2 degrees C, without phase separation occurring. Additionally, it was shown that the ethanol purity requirement of ethanol-rich flex fuel blends falls...... with increasing ethanol content in the gasoline-rich flex fuel blend....

  14. A Colorful Solubility Exercise for Organic Chemistry

    Science.gov (United States)

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  15. Large-scale enzymatic production of natural flavour esters in organic solvent with continuous water removal.

    Science.gov (United States)

    Gubicza, L; Kabiri-Badr, A; Keoves, E; Belafi-Bako, K

    2001-11-30

    A new, large-scale process was developed for the enzymatic production of low molecular weight flavour esters in organic solvent. Solutions for the elimination of substrate and product inhibitions are presented. The excess water produced during the process was continuously removed by hetero-azeotropic distillation and esters were produced at yields of over 90%.

  16. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    Science.gov (United States)

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  17. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid).

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Jiang, Tao; Krogman, Nicholas R; Singh, Anurima; Allcock, Harry R; Laurencin, Cato T

    2008-01-01

    Previously we demonstrated the ability of ethyl glycinato substituted polyphosphazenes to neutralize the acidic degradation products and control the degradation rate of poly(lactic acid-glycolic acid) (PLAGA) by blending. In this study, blends of high strength poly[(50% ethyl alanato) (50% p-phenyl phenoxy) phosphazene] (PNEA(50)PhPh(50)) and 85:15 PLAGA were prepared using a mutual solvent approach. Three different solvents, methylene chloride (MC), chloroform (CF) and tetrahydrofuran (THF) were studied to investigate solvent effects on blend miscibility. Three different blends were then fabricated at various weight ratios namely 25:75 (BLEND25), 50:50 (BLEND50), and 75:25 (BLEND75) using THF as the mutual solvent. The miscibility of the blends was evaluated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Among these, BLEND25 was miscible while BLEND50 and BLEND75 were partially miscible. Furthermore, BLEND25 formed apatite layers on its surface as evidenced in a biomimetic study performed. These novel blends showed cell adhesion and proliferation comparable to PLAGA. However, the PNEA(50)PhPh(50) component in the blends was able to increase the phenotypic expression and mineralized matrix synthesis of the primary rat osteoblasts (PRO) in vitro. Blends of high strength PNEA(50)PhPh(50) and 85:15 PLAGA are promising biomaterials for a variety of musculoskeletal applications.

  18. Solvent for urethane adhesives and coatings and method of use

    Science.gov (United States)

    Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  19. (Liquid + liquid) equilibria for ternary mixtures of (water + propionic acid + organic solvent) at T = 303.2 K

    International Nuclear Information System (INIS)

    Ghanadzadeh, H.; Ghanadzadeh Gilani, A.; Bahrpaima, Kh.; Sariri, R.

    2010-01-01

    Experimental tie-line results and phase diagrams were obtained for the ternary systems of {water + propionic acid + organic solvent (cyclohexane, toluene, and methylcyclohexane)} at T = 303.2 K and atmospheric pressure. The organic solvents were two cycloaliphatic hydrocarbons (i.e., cyclohexane and methylcyclohexane) and an aromatic hydrocarbon (toluene). The experimental tie-lines values were also compared with those calculated by the UNIQUAC and NRTL models. The consistency of the values of the experimental tie-lines was determined through the Othmer-Tobias and Hands plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients and separation factors. The Kamlet LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems. The LSER model values showed a good regression to the experimental results.

  20. COMPARISON OF SORPTION ENERGTICS FOR HYDROPHOBIC ORGANIC CHEMICALS BY SYNTHETIC AND NATURAL SORBENTS FROM METHANOL/WATER SOLVENT MIXTURES

    Science.gov (United States)

    Reversed-phase liquid chromatography (RPLC) was used to investigate the thermodynamics and mechanisms of hydrophobic organic chemical (HOC) retention from methanol/water solvent mixtures. The enthalpy-entropy compensation model was used to infer that the hydro- phobic sorptive me...

  1. Enhanced oil recovery (EOR) by miscible CO{sub 2} and water flooding of asphaltenic and non-asphaltenic oils

    Energy Technology Data Exchange (ETDEWEB)

    Chukwudeme, E. A.; Hamouda, A. A. [Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger (Norway)

    2009-07-01

    An EOR study has been performed applying miscible CO{sub 2} flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane), model oil (n-C10, SA, toluene and 0.35 wt % asphaltene) and crude oil (10 wt % asphaltene) obtained from the Middle East. Stearic acid (SA) is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO{sub 2} flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years) it is shown that there is almost no difference between the recovered oils by water and CO{sub 2}, after which (> 3 years) oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO{sub 2} flooding of asphaltenic oil at combined temperatures and pressures of 50 {sup o}C/90 bar and 70 {sup o}C/120 bar (no significant difference between the two cases, about 1%) compared to 80 {sup o}C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO{sub 2} flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure. (author)

  2. Characterization of Catalytic Fast Pyrolysis Oils: The Importance of Solvent Selection for Analytical Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, Jack R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ware, Anne E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-25

    Two catalytic fast pyrolysis (CFP) oils (bottom/heavy fraction) were analyzed in various solvents that are used in common analytical methods (nuclear magnetic resonance - NMR, gas chromatography - GC, gel permeation chromatography - GPC, thermogravimetric analysis - TGA) for oil characterization and speciation. A more accurate analysis of the CFP oils can be obtained by identification and exploitation of solvent miscibility characteristics. Acetone and tetrahydrofuran can be used to completely solubilize CFP oils for analysis by GC and tetrahydrofuran can be used for traditional organic GPC analysis of the oils. DMSO-d6 can be used to solubilize CFP oils for analysis by 13C NMR. The fractionation of oils into solvents that did not completely solubilize the whole oils showed that miscibility can be related to the oil properties. This allows for solvent selection based on physico-chemical properties of the oils. However, based on semi-quantitative comparisons of the GC chromatograms, the organic solvent fractionation schemes did not speciate the oils based on specific analyte type. On the other hand, chlorinated solvents did fractionate the oils based on analyte size to a certain degree. Unfortunately, like raw pyrolysis oil, the matrix of the CFP oils is complicated and is not amenable to simple liquid-liquid extraction (LLE) or solvent fractionation to separate the oils based on the chemical and/or physical properties of individual components. For reliable analyses, for each analytical method used, it is critical that the bio-oil sample is both completely soluble and also not likely to react with the chosen solvent. The adoption of the standardized solvent selection protocols presented here will allow for greater reproducibility of analysis across different users and facilities.

  3. Microfluidic Extraction of Biomarkers using Water as Solvent

    Science.gov (United States)

    Amashukeli, Xenia; Manohara, Harish; Chattopadhyay, Goutam; Mehdi, Imran

    2009-01-01

    A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would

  4. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems

    NARCIS (Netherlands)

    Stuart, MCA; van de Pas, JC; Engberts, JBFN; Pas, John C. van de

    Ternary systems of surfactants, water and organic solvents were studied by monitoring the steady-state fluorescence of the versatile solvatochromic probe Nile Red. We found not only that Nile Red can be used throughout the whole isotropic regions in the phase diagram, but also that subtle changes in

  5. Miscibility of dl-α-tocopherol β-glucoside in DPPC monolayer at air/water and air/solid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Neunert, G. [Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznan (Poland); Makowiecki, J.; Piosik, E.; Hertmanowski, R. [Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan (Poland); Polewski, K. [Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznan (Poland); Martynski, T., E-mail: tomasz.martynski@put.poznan.pl [Faculty of Technical Physics, Poznan University of Technology, 60-965 Poznan (Poland)

    2016-10-01

    The role of newly synthesized tocopherol glycosidic derivative in modifying molecular organization and phase transitions of phospholipid monolayer at the air/water interface has been investigated. Two-component Langmuir films of dl-α-tocopheryl β-D-glucopyranoside (BG) mixed with dipalmitoyl phosphatidylcholine (DPPC) in the whole range of mole fractions were formed at the water surface. An analysis of surface pressure versus mean molecular area (π-A) isotherms and Brewster angle microscope images showed that the presence of BG molecules changes the structure and packing of the DPPC monolayer in a BG concentration dependent manner. BG molecules incorporated into DPPC monolayer inhibit its liquid expanded to liquid condensed phase transition proportionally to the BG concentration. The monolayers were also transferred onto solid substrates and visualized using an atomic force microscope. The results obtained indicate almost complete miscibility of BG and DPPC in the monolayers at surface pressures present in the biological cell membrane (30-35·10{sup -3} N·m{sup -1}) for a BG mole fraction as high as 0.3. This makes the monolayer less packed and more disordered, leading to an increased permeability. The results support our previous molecular dynamics simulation data. - Highlights: • Langmuir films of α-tocopherol derivative with DPPC was studied thermodynamically. • Mixed DPPC/BG films were transferred onto mica substrates for topography imaging by using AFM. • Miscibility of BG/DPPC films at surface pressures present in membranes was observed up to MF = 0.3.

  6. Studies on the absorption of uranium and plutonium on macroporous anion-exchange resins from mixed solvent media

    International Nuclear Information System (INIS)

    Chetty, K.V.; Mapara, P.M.; Godbole, A.G.; Swarup, Rajendra

    1995-01-01

    The ion-exchange studies on uranium and plutonium using macroporous anion-exchange resins from an aqueous-organic solvent mixed media were carried out to develop a method for their separation. Out of the several water miscible organic solvents tried, methanol and acetone were found to be best suited. Distribution data for U(VI) and Pu(IV) for three macroporous resins Tulsion A-27(MP) (strong base), Amberlyst A-26(MP) (strong base) and Amberlite XE-270(MP) (weak base) as a function of (i) nitric acid concentration (ii) organic solvent concentration were obtained. Based on the data separation factors for Pu/U were calculated. Column experiments using Tulsion A-27(MP) from a synthetic feed (HNO 3 - methanol and HNO 3 - acetone) containing Pu and U in different ratios were carried out. Plutonium was recovered from the bulk of the actual solution generated during the dissolution of plutonium bearing fuels. The method has the advantage of loading plutonium from as low as 1M nitric acid in presence of methanol or acetone and could be used satisfactorily for its recovery from solutions containing plutonium and uranium. (author). 11 refs., 4 figs., 16 tabs

  7. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking.

    Science.gov (United States)

    Bicudo, Rafaela Costa Souza; Santana, Maria Helena Andrade

    2012-03-01

    Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.

  8. Improving the industrial production of 6-APA: enzymatic hydrolysis of penicillin G in the presence of organic solvents.

    Science.gov (United States)

    Abian, Olga; Mateo, César; Fernández-Lorente, Gloria; Guisán, José M; Fernández-Lafuente, Roberto

    2003-01-01

    The hydrolysis of penicillin G in the presence of an organic solvent, used with the purpose of extracting it from the culture medium, may greatly simplify the industrial preparation of 6-APA. However, under these conditions, PGA immobilized onto Eupergit displays very low stability (half-life of 5 h in butanone-saturated water) and a significant degree of inhibition by the organic solvent (30%). The negative effect of the organic solvent strongly depended on the type of solvent utilized: water saturated with butanone (around 28% v/v) had a much more pronounced negative effect than that of methylisobutyl ketone (MIBK) (solubility in water was only 2%). These problems were sorted out by using a new penicillin G acylase derivative designed to work in the presence of organic solvents (with each enzyme molecule surrounded by an hydrophilic artificial environment) and a suitable organic solvent (MIBK). Using such solvent, this derivative kept its activity unaltered for 1 week at 32 degrees C. Moreover, the enzyme activity was hardly inhibited by the presence of the organic solvent. In this way, the new enzyme derivative thus prepared enables simplification of the industrial hydrolysis of penicillin G.

  9. Organic solvent topical report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    1999-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed

  10. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  11. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    Science.gov (United States)

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    Directory of Open Access Journals (Sweden)

    Deepthy Alex

    2014-01-01

    Full Text Available Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol.

  13. Multiple sclerosis and organic solvents

    DEFF Research Database (Denmark)

    Mortensen, J T; Brønnum-Hansen, Henrik; Rasmussen, K

    1998-01-01

    We investigated a possible causal relation between exposure to organic solvents in Danish workers (housepainters, typographers/printers, carpenters/cabinetmakers) and onset of multiple sclerosis. Data on men included in the Danish Multiple Sclerosis Register (3,241 men) were linked with data from......, and butchers. Over a follow-up period of 20 years, we observed no increase in the incidence of multiple sclerosis among men presumed to be exposed to organic solvents. It was not possible to obtain data on potential confounders, and the study design has some potential for selection bias. Nevertheless......, the study does not support existing hypotheses regarding an association between occupational exposure to organic solvents and multiple sclerosis....

  14. Interaction enthalpies of solid human serum albumin with water-dioxane mixtures: comparison with water and organic solvent vapor sorption

    International Nuclear Information System (INIS)

    Sirotkin, Vladimir A.; Faizullin, Djihanguir A.

    2004-01-01

    Enthalpy changes (ΔH tot ) on the immersion of dehydrated human serum albumin (HSA) into water-dioxane mixtures have been measured using a Setaram BT-2.15 calorimeter at 298 K. Thermodynamic activity of water was varied from 0 to 1. Calorimetric results are discussed together with the FTIR-spectroscopic data on water and organic solvent vapor adsorption/desorption isotherms on solid HSA. Dioxane sorption exhibits a pronounced hysteresis. Calorimetric and dioxane desorption dependencies consist of two parts. No dioxane sorption was observed in low water activity region (a w tot values are close to zero. At water activity about 0.5 the sharp exothermic drop of the interaction enthalpy values was observed. This exothermic drop is accompanied by the sharp increase in the amount of sorbed dioxane and additional water sorption (compared with that for pure water). Dioxane adsorption branch resembles a smooth curve. In this case, solid HSA binds more than 300 mol dioxane/mol HSA at low water activities. By using a water activity-based comparison we distinguished between dioxane-assisted and dioxane-competitive effect on water sorption. The obtained results demonstrate that the hydration 'history' of solid protein is an important factor that controls as the state of protein macromolecule as well as the sorption of low-molecular organic molecules

  15. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  16. Organic solvents in electromembrane extraction: recent insights

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-01-01

    the introduction. Under the influence of an electrical field, EME is based on electrokinetic migration of the analytes through a supported liquid membrane (SLM), which is an organic solvent immobilized in the pores of the polymeric membrane, and into the acceptor solution. Up to date, close to 150 research...... articles with focus on EME have been published. The current review summarizes the performance of EME with different organic solvents and discusses several criteria for efficient solvents in EME. In addition, the authors highlight their personal perspective about the most promising organic solvents for EME...... and have indicated that more fundamental work is required to investigate and discover new organic solvents for EME....

  17. Compositional and Relative Permeability Hysteresis Effects on Near-Miscible WAG

    DEFF Research Database (Denmark)

    Christensen, Jes Reimer; Stenby, Erling Halfdan; Skauge, Arne

    1998-01-01

    Evaluation of compositional effects and fluid flow description on near-miscible (water-alternating-gas) WAG modeling have been studied for a North Sea oil field starting production in 1998. A sector model with four wells was applied to simulate a heterogeneous sandstone reservoir, and a compositi......Evaluation of compositional effects and fluid flow description on near-miscible (water-alternating-gas) WAG modeling have been studied for a North Sea oil field starting production in 1998. A sector model with four wells was applied to simulate a heterogeneous sandstone reservoir......, and a compositional model was used to compare different production strategies e.g. waterflooding and a near-miscible (WAG) injection. In the WAG scheme both dry and wet (rich) hydrocarbon gases have been considered for injection. The phase behaviour was quantified by comparing the performance of the different...... injection gases. Result obtained shows the WAG injection gives improved recovery compared to water injection, due to better sweep and lower residual oil saturation. Simulations with and without relative permeability hysteresis (two-phase model) were compared. The effect of trapped gas on oil recovery does...

  18. Exploring orange peel treatment with deep eutectic solvents and diluted organic acids

    NARCIS (Netherlands)

    van den Bruinhorst, A.; Kouris, P.; Timmer, J.M.K.; de Croon, M.H.J.M.; Kroon, M.C.

    2016-01-01

    The disintegration of orange peel waste in deep eutectic solvents and diluted organic acids is presented in this work. The albedo and flavedo layers of the peel were studied separately, showing faster disintegration of the latter. Addition of water to the deep eutectic solvents lowered the amount of

  19. Metal-doped organic foam and method of making same. [Patent application

    Science.gov (United States)

    Rinde, J.A.

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  20. The stability of high-Tc BSCCO/Ag superconducting microcomposites in water, some inorganic solutions and organic solvents

    International Nuclear Information System (INIS)

    Gao, W.; Chen, J.; Yang, C.O.; McNabb, D.; Sande, J. vander

    1992-01-01

    Bi(Pb)-Sr-Ca-Cu-O/Ag (BSCCO/Ag) superconducting microcomposites with zero-resistance temperatures from 102 to 108 K and critical current densities of ∝600 A/cm 2 at 77 K were produced by oxidation and annealling of metallic precursor alloys. The stabilities and degradation behavior of BSCCO/Ag specimens in various environments were studied by a combination of mass loss measurement, electrical transport measurement and microstructural observation. The environmental conditions used in the present work were moist air, distilled water, aqueous solutions of NaCl, NaOH and acetic acid, and organic solvents methanol and acetone. Although there is a general tendency toward a decrease in critical current density after a long exposure to most of the testing conditions, the specimens containing a high percent of Ag (≥70 wt.%) showed very little decrease in Tc and J c up to 200 days of exposure in moist air and distilled water, and up to 20 days in NaCl solution, methanol and acetone. It was found that the superconducting ''2223'' phase is stable in water, neutral solutions and the organic solvents, reacts very slowly with basic solutions, and dissolves rapidly in acidic solutions. Some non-superconducting Ca-rich oxides dissolve in water and neutral and basic solutions and therefore damage the connection of the superconducting grains in low-Ag containing specimens. The excellent stability of the BSCCO/Ag superconducting microcomposites containing high Ag provides an important advantage for their potential industrial application. (orig.)

  1. 40 CFR 52.254 - Organic solvent usage.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Organic solvent usage. 52.254 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.254 Organic solvent usage. (a) This... (d) of this section and the architectural coatings and solvent disposal emission limitations...

  2. The properties of anion-exchange resines in mixtures of organic solvents and water

    International Nuclear Information System (INIS)

    Naveh, J.

    1978-02-01

    The behaviour of anion-exchange resins in water and mixtures of organic solvents and water was studied with special reference to the swelling of the polymer and to the density and enthalpy changes accompanying the swelling. A linear dependence was found between the swelling of dry resin and 1/X (X being the nominal cross-linking percent of the polymer). This dependence is interpreted theoretically. The nominal cross-linking percent,defined by the quantity ratio of the components, is corrected for real cross-linking percent. For the swelling of the resin in dilute aqueous alcohols, a preference for the alcohol was found which is enhanced as the molecular weight of the alcohol increases. Moreover, for certain mole fractions, the preference of the perchlorate form of the resin is greater than that of the chloride form. The temperature dependence of the swelling was measured and the invasion of an electrolyte (LiCl), dissolved in the aqueous-organic phase, into the resine phase was determined. Contrary to what usually happens in pure aqueous phase, where the electrolyte is rejected in accordance with the Donnan law, an almost total invasion of the electrolyte into the resin phase occurs. (author)

  3. Uranium recovery from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    McCullough, J.F.; Phillips, J.F. Jr.; Tate, L.R.

    1979-01-01

    A method of recovering uranium from wet-process phosphoric acid is claimed where the acid is treated with a mixture of an ammonium salt or ammonia, a reducing agent, and then a miscible solvent. Solids are separated from the phosphoric acid liquid phase. The solid consists of a mixture of metal phosphates and uranium. It is washed free of adhering phosphoric acid with fresh miscible solvent. The solid is dried and dissolved in acid whereupon uranium is recovered from the solution. Miscible solvent and water are distilled away from the phosphoric acid. The distillate is rectified and water discarded. All miscible solvent is recovered for recycle. 5 claims

  4. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  5. A comparison of the activities of three beta-galactosidases in aqueous-organic solvent mixtures

    NARCIS (Netherlands)

    Yoon, JH; Mckenzie, D

    2005-01-01

    The hydrolytic activities of beta-galactosidases from three different sources have been determined in various 50% (v/v) organic solvent-buffer mixtures with a view to finding solvent systems of reduced water content suitable for the synthesis of glycosides and oligosaccharides. K. fragilis

  6. Gold recovery from organic solvents using galvanic stripping

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; O`Keefe, T.J. [Univ. of Missouri, Rolla, MO (United States). Dept. of Metallurgical Engineering

    1995-08-01

    A novel process using solid metals for the direct reduction of more noble metal ions from solvent extraction organics has been developed. Base metals recovery has been the principal focus of investigations to date but feasibility tests have now also been made on galvanically stripping selected precious metals. In this study gold (III) was loaded from an aqueous HAuCl{sub 4}{center_dot}3H{sub 2}O solution into a mixed organic 40 vol.% TBP, 10 vol.% D2EHPA in kerosene. The direct precipitation of metallic gold from the loaded organic phase using zinc powder and iron, aluminum and copper slabs at 70 C was successfully demonstrated. The gold reduction rates were relatively fast even though the conductivity of the organic solutions is very low. The reaction rates were studied as a function of the variables zinc particulate size, oxygen and nitrogen atmosphere, water content in the organic phase, organic ratios and temperature. The gold morphology was usually powdery or dendritic in nature but continuous films were obtained in some instances. Activation energies were calculated and possible reaction mechanisms are discussed. In general, the results obtained were very promising and showed that gold can be successfully cemented from selected organic solvents by galvanic stripping using less noble solid metal reductants.

  7. Quantitative relations between interaction parameter, miscibility and function in organic solar cells

    KAUST Repository

    Ye, Long; Hu, Huawei; Ghasemi, Masoud; Wang, Tonghui; Collins, Brian A; Kim, Joo-Hyun; Jiang, Kui; Carpenter, Joshua H.; Li, Hong; Li, Zhengke; McAfee, Terry; Zhao, Jingbo; Chen, Xiankai; Lai, Joshua Lin Yuk; Ma, Tingxuan; Bredas, Jean-Luc; Yan, He; Ade, Harald

    2018-01-01

    Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction-function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous-amorphous interaction parameter, χaa(T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative 'constant-kink-saturation' relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χaa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general.

  8. Quantitative relations between interaction parameter, miscibility and function in organic solar cells

    KAUST Repository

    Ye, Long

    2018-02-02

    Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction-function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous-amorphous interaction parameter, χaa(T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative \\'constant-kink-saturation\\' relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χaa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general.

  9. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    International Nuclear Information System (INIS)

    Li, Song; Feng, Guang; Cummings Peter, T; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Dai, Sheng

    2014-01-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance–electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation. (paper)

  10. One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water

    Science.gov (United States)

    Xiang, Yuqian; Pang, Youyou; Jiang, Xiaomei; Huang, Jie; Xi, Fengna; Liu, Jiyang

    2018-01-01

    Absorbent materials integrated with superhydrophobicity, superoleophilicity and flame-retardancy are highly desired in the adsorption/removal of flammable oils/organic compounds as well as reducing the risk of fire and explosion. Here, one-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy was presented. Using raw melamine (ME) sponge as the supporting matrix, the formation of polydopamine (PDA) nanoaggregates via in-situ self-polymerization of high-concentrated dopamine and the covalent grafting of hydrophobic n-dodecylthiol (DT) onto PDA were combined in a feasible alkaline water/ethanol medium. As investigated by scanning electron microscopy (SEM) and X-ray energy-dispersive spectroscopy (EDS), the as-prepared ME/PDA/DT sponge possessed hierarchical structure with submicron PDA nanoaggregates containing DT motif (low surface energy) on 3D interconnected porous network. It exhibited superhydrophobic (water contact angle 157.7°) and superoleophilic (oily/organic solvent contact angle 0° properties. Owing to the highly porous structure, superhydrophobic property, chemical and mechanical stability, the ME/PDA/DT sponge exhibited outstanding absorbency properties of oily organic solvents including fast absorption kinetics, high absorption capacity, and easy reusability. Also, the ME/PDA/DT sponge could be used for one-line continuous organic solvent/water separation. More interestingly, the ME/PDA/DT sponge demonstrated improved flame-retardant property as compared to the intrinsic flame-retardant nature of the raw melamine sponge. Consequently, the risk of fire and explosion was expected to reduce when the fabricated sponge was used as an absorbent for flammable oils and organic compounds. The ease of the one-step superhydrophobic/superoleophilic modification and the promising feature of the obtained materials exhibit great potential for application in oils/organic solvents clean-up.

  11. The use of organic solvents in mutagenicity testing.

    Science.gov (United States)

    Abbondandolo, A; Bonatti, S; Corsi, C; Corti, G; Fiorio, R; Leporini, C; Mazzaccaro, A; Nieri, R; Barale, R; Loprieno, N

    1980-10-01

    13 organic substances (dimethylsulfoxide, methanol, ethanol, n-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol, dl-sec-amyl alcohol, ethylene glycol, ethylene glycol monomethyl ether, 1,4-diethylene dioxide, acetone, methyl acetate and formamide) were considered from the standpoint of their use as solvents for water-insoluble chemicals to be tested for mutagenicity. First, the effect of these solvents on cell survival was studied in the yeast Schizosaccharomyces pombe and in V79 Chinese hamster cells. 8 solvents showing relatively low toxicity on either cell system (dimethylsulfoxide, ethanol, ethylene glycol, ethylene glycol monomethyl ether, 1,4-diethylene dioxide, acetone, methyl acetate and formamide) were tested for their effect on aminopyrine demethylase. 4 solvents (ethanol, 1,4-diethylene dioxide, methyl acetate and formamide) showed a more or less pronounced adverse effect on the microsomal enzymic activity. The remaining 4 and methanol (whose effect on aminopyrine demethylase was not testable) were assayed for mutagenicity in S. pombe. They all gave negative results both with and without the post-mitochondrial fraction from mouse liver.

  12. Solvent extraction for remediation of manufactured gas plant sites

    International Nuclear Information System (INIS)

    Luthy, R.G.; Dzombak, D.A.; Peters, C.; Ali, M.A.; Roy, S.B.

    1992-12-01

    This report presents the results of an initial assessment of the feasibility of solvent extraction for removing coal tar from the subsurface or for treating contaminated soil excavated at manufactured gas plant (MGP) sites. In situ solvent extraction would involve injection, recovery, and reclamation for reinjection of an environmentally-benign, water-miscible solvent. Accelerated dissolution and removal of coaltar from the subsurface might be desirable as a remedial approach if excavation is not practical (e.g., the site underlies facilities in current use), direct pumping of coal tar is ineffective, and bioremediation is not feasible because of the presence of high concentrations of coal tar. Both laboratory experiments and engineering evaluations were performed to provide a basis for the initial feasibility assessment. Laboratory work included identification and evaluation of promising solvents, measurement of fundamental properties of coal tar-solvent-water systems, and measurement of rates of dissolution of coal tar in porous media into flowing solvent-water solutions. Engineering evaluations involved identification of common hydrogeologic features and contaminant distributions at MGP sites, and identification and evaluation of possible injection-recovery well deployment schemes. A coupled flow-chemistry model was developed for simulation of the in situ process and evaluation of the well deployment schemes. Results indicate that in situsolvent extraction may be able to recover a significant amount of coal tar from the subsurface within a reasonable time frame (on the order of one year or so) provided that subsurface conditions are conducive to process implementation. Some important implementation issues remain to be addressed

  13. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation

    Directory of Open Access Journals (Sweden)

    Nelson Caicedo

    2001-07-01

    Full Text Available This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR. These peroxidases were obtained from different sources (microbial and vegetable and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyrene and anthracene, organic-nitrogenated compounds (diphenylamine, monoaromatic phenolic molecules (guayacol and dyes (methyl orange and ABTS. The reaction systems were composed of mono-phase water mixtures and organic miscible solvent (methanol, ethanol, isopropanol, acetonitrile, tetrahydrofuran, dimethyl sulfoxide and dimethyl formamide, on which both peroxidases' catalytic activity was evaluated. The two enzymes' catalytic activity was observed on the evaluated substrates in most of these assays. However, PPR did not show biocatalytic oxidation for methyl orange dye and some PAHs. This enzyme did show the best tolerance to the evaluated solvents. Its catalytic activity was appreciably enhanced when low hydrophobic solvents were used. The kcat was calculated from this experimental data (as kinetic parameter leading to each enzyme's biocatalytic performance on substrates being compared.

  14. Organic Solvent Tropical Report [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    2000-06-21

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines.

  15. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  16. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...... applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  17. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.

    2013-04-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case

  18. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent...

  19. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1...

  20. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1...

  1. Viscous fingering effects in solvent displacement of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Cuthiell, D. [Suncor Energy, Fort McMurray, AB (Canada); Kissel, G.; Jackson, C.; Frauenfeld, T.W.J.; Fisher, D. [Alberta Research Council, Devon, AB (Canada); Rispler, K. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2004-07-01

    Vapour Extraction (VAPEX) is a solvent-based process that is analogous to steam-assisted gravity drainage (SAGD) for the recovery of heavy oil. A cyclic solvent process is preferred for thin reservoirs, particularly primary-depleted reservoirs. In a cyclic steam stimulation process, a solvent is injected into the reservoir for a period of time before oil is produced from the well. Viscous fingering is a phenomena that characterizes several solvent-based processes for the recovery of heavy oil. A combined experimental and simulation study was conducted to characterize viscous fingering under heavy oil recovery conditions (high ratio of oil to solvent viscosity). Four experiments were conducted in heavy oil-saturated sand packs. Three involved injection of a miscible, liquid solvent at the bottom of the sand pack. The heavy oil in these experiments was displaced upwardly. The fourth experiment involved top-down injection of a gaseous solvent. The miscible liquid displacement was dominated by one solvent finger which broke through to a producing well at the other end of the sand pack. Breakthrough times were similar to that at lower viscosity. The fourth experiment showed fingering along with features of a gravity-driven VAPEX process. Key features of the experiment and realistic fingering patterns were numerically simulated using a commercial reservoir simulator. It was emphasized that accurate modelling of dispersion is necessary in matching the observed phenomena. The simulations should include the capillary effects because of their significance for gaseous fingering and the VAPEX processes. 17 refs., 2 tabs., 20 figs.

  2. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  3. Enthalpy of solution of α- and β-cyclodextrin in water and in some organic solvents

    International Nuclear Information System (INIS)

    Belica, Sylwia; Sadowska, Monika; Stępniak, Artur; Graca, Anna; Pałecz, Bartłomiej

    2014-01-01

    Highlights: • A great influence of crystalline water on the energetic of dissolving compounds. • The strongest interaction between β-cyclodextrin and DMSO. • The enthalpic pair interaction coefficient, h βCD-EtOH , obtained is positive. • Predominating effects of the partial dehydration of the molecules – βCD-EtOH. -- Abstract: The calorimetric measurements of solution enthalpy of α-cyclodextrin, β-cyclodextrin in water (H 2 O), dimetyloformamid (DMF), dimethyl sulfoxide (DMSO) and aqueous ethanol solutions (H 2 O + EtOH) at 298.15 K were made. The experimental results were used to calculate the enthalpic coefficients of the interactions between cyclodextrin and ethanol molecules in water based on McMillan–Mayer’s model. The results were compared with literature data and with hydrodynamic radii of cyclodextrin in examined solvents and with donor numbers of these solvents. In order to check, if the inclusion complex formation between the solvent with the highest enthalpy of solution and cyclodextrin has happened, the calorimetric isothermal titration measurements were made and the results were interpreted

  4. Thermodynamic study of the transfer of acetanilide and phenacetin from water to different organic solvents.

    Science.gov (United States)

    Baena, Yolima; Pinzón, Jorge A; Barbosa, Helber J; Martínez, Fleming

    2005-06-01

    The molar (K(C)(o/w)) and rational (K(X)(o/w)) partition coefficients in the octanol/buffer, i-propyl myristate/buffer, chloroform/buffer, and cyclohexane/buffer systems were determined for acetanilide and phenacetin at 25.0, 30.0, 35.0, and 40.0 degrees C. In all cases except for cyclohexane, the K(C)(o/w) and K(X)(o/w) values were greater than unity. This demonstrates that these two drugs have predominantly lipophilic behavior. Gibbs and van't Hoff thermodynamic analyses have revealed that the transfer of these drugs from water to organic solvents is spontaneous and that it is mainly driven enthalpically for i-propyl myristate and chloroform, and entropy-driven for octanol and cyclohexane.

  5. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  6. Psychomotor Effects of Mixed Organic Solvents on Rubber Workers

    Directory of Open Access Journals (Sweden)

    O Aminian

    2014-04-01

    Full Text Available Background: Exposure to organic solvents is common among workers. Objective: To assess neurobehavioral effects of long-term exposure to organic solvents among rubber workers in Tehran, Iran. Methods: Across-sectional study was conducted on 223 employees of a rubber industry. The participants completed a data collection sheet on their occupational and medical history, and demographic characteristics including age, work experience, education level; they performed 6 psychiatric tests on the neurobehavioral core test battery (NCTB that measure simple reaction time, short-term memory (digit span, Benton, eye-hand coordination (Purdue pegboard, pursuit aiming, and perceptual speed (digit symbol. Results: Workers exposed and not exposed to organic solvents had similar age and education distribution. The mean work experience of the exposed and non-exposed workers was 5.9 and 4.4 years, respectively. The exposed workers had a lower performance compared to non-exposed workers in all psychomotor tests. After controlling for the confounders by logistic regression analysis, it was found that exposure to organic solvents had a significant effect on the results of digit symbols, digit span, Benton, aiming, and simple reaction time tests. No significant effect was observed in pegboard test. Conclusion: Occupational exposure to organic solvent can induce subtle neurobehavioral changes among workers exposed to organic solvents; therefore, periodical evaluation of the central nervous system by objective psychomotor tests is recommended among those who are chronically exposed to organic solvents.

  7. Occupational exposure to organic solvents and sleep-disordered breathing.

    Science.gov (United States)

    Ulfberg, J; Carter, N; Talbäck, M; Edling, C

    1997-01-01

    To investigate whether people with occupational exposure to organic solvents have a higher prevalence of obstructive sleep apnea syndrome (OSAS) than the general population and to examine the relationship between snoring and exposure to organic solvents. Consecutive patients, aged 30-64 years, referred during a 3-year period to the sleep laboratory at Avesta Hospital, Sweden, because of suspected OSAS made up the patient groups. Following admission, patients underwent a simplified sleep apnea investigation and were divided into two groups, OSAS (n = 320) and snorers (n = 443). A random sample of 296 men and 289 women aged 30-64 years obtained from a register of all country residents maintained by the county tax authority served as referents (controls). Both patients and referents responded to two questionnaires, including questions about occupation, exposure to organic solvents, and other chemical and physical agents. Men with OSAS or snoring and women with snoring had more often been occupationally exposed to organic solvents than the referents, showing an almost twofold increase in risk for those exposed during whole workdays. For men, the risk of OSAS or snoring increased with increasing exposure. The result indicates that occupational exposure to organic solvents might cause sleep apnea. A new observation is that even snoring could be caused by exposure to organic solvents. It is important to elucidate whether exposure to organic solvents is a cause of OSAS, because such a finding may have important implications for prevention and treatment of sleep disturbances.

  8. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines.

    Science.gov (United States)

    Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V

    2003-04-01

    Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.

  9. Handbook of organic solvent properties

    CERN Document Server

    Smallwood, Ian

    2012-01-01

    The properties of 72 of the most commonly used solvents are given, tabulated in the most convenient way, making this book a joy for industrial chemists to use as a desk reference. The properties covered are those which answer the basic questions of: Will it do the job? Will it harm the user? Will it pollute the air? Is it easy to handle? Will it pollute the water? Can it be recovered or incinerated? These are all factors that need to be considered at the early stages of choosing a solvent for a new product or process.A collection of the physical properties of most commonly used solvents, their

  10. Validation of a UV Spectrometric Method for the Assay of Tolfenamic Acid in Organic Solvents

    Directory of Open Access Journals (Sweden)

    Sofia Ahmed

    2015-01-01

    Full Text Available The present study has been carried out to validate a UV spectrometric method for the assay of tolfenamic acid (TA in organic solvents. TA is insoluble in water; therefore, a total of thirteen commonly used organic solvents have been selected in which the drug is soluble. Fresh stock solutions of TA in each solvent in a concentration of 1 × 10−4 M (2.62 mg% were prepared for the assay. The method has been validated according to the guideline of International Conference on Harmonization and parameters like linearity, range, accuracy, precision, sensitivity, and robustness have been studied. Although the method was found to be efficient for the determination of TA in all solvents on the basis of statistical data 1-octanol, followed by ethanol and methanol, was found to be comparatively better than the other studied solvents. No change in the stock solution stability of TA has been observed in each solvent for 24 hours stored either at room (25±1°C or at refrigerated temperature (2–8°C. A shift in the absorption maxima has been observed for TA in various solvents indicating drug-solvent interactions. The studied method is simple, rapid, economical, accurate, and precise for the assay of TA in different organic solvents.

  11. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  12. Is Water a Universal Solvent for Life?

    Science.gov (United States)

    Pohorill, Andrew

    2012-01-01

    There are strong reasons to believe that the laws, principles and constraints of physics and chemistry are universal. It is much less clear how this universality translates into our understanding of the origins of life. Conventionally, discussions of this topic focus on chemistry that must be sufficiently rich to seed life. Although this is clearly a prerequisite for the emergence of living systems, I propose to focus instead on self-organization of matter into functional structures capable of reproduction, evolution and responding to environmental changes. In biology, most essential functions are largely mediated by noncovalent interactions (interactions that do not involve making or breaking chemical bonds). Forming chemical bonds is only a small part of what living systems do. There are specific implications of this point of view for universality. I will concentrate on one of these implications. Strength of non-covalent interactions must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. This balance, however, is not a natural property of complex chemical systems. Instead, it has to be achieved with the aid of an appropriate solvent for life. In particular, potential solvents for life must be characterized by a high dielectric constant to ensure solubility of polar species and sufficient flexibility of biological structures stabilized by electrostatic interactions. Among these solvents, water exhibits a remarkable trait that it also promotes solvophobic (hydrophobic) interactions between non-polar species, typically manifested by a tendency of these species to aggregate and minimize their contacts with the aqueous solvent. Hydrophobic interactions are responsible, at least in part, for many self-organization phenomena in biological systems, such as the formation

  13. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    Directory of Open Access Journals (Sweden)

    O’neil W. Guthrie

    2016-01-01

    Full Text Available Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.

  14. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    Science.gov (United States)

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  15. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction.

    Science.gov (United States)

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.

  16. Conformational isomerism of phenolic procyanidins: preferred conformations in organic solvents and water

    Science.gov (United States)

    Tsutomu Hatano; Richard W. Hemingway

    1997-01-01

    NMR studies of catechin-{4α→8)-epicatechin (I) and catechin-{4α→8)-catechin (2) provided complete assignment of the proton and carbon resonances for both the more extended and compact conformers in the free phenolic form. When 1 is in organic solvents, the more extended rotamer is preferred over the more compact rotamer (10:7), but...

  17. Effect of stratification on segregation in carbon dioxide miscible flooding in a water-flooded oil reservoir

    International Nuclear Information System (INIS)

    Bhatti, A.A.; Mahmood, S.M.; Amjad, B.

    2013-01-01

    Oil reservoirs are subjected to tertiary recovery by deploying any enhanced oil recovery (EOR) technique for the recovery of left over oil. Amongst many EOR methods one of the widely applied worldwide is CO/sub 2/ flooding through miscible, near miscible or immiscible displacement processes. CO/sub 2/ flooding process responds to a number of reservoir and fluid characteristics. These characteristics have strong effect on overall efficiency of the displacement process. Better understanding of the effect of different characteristics on displacement process is important to plan an efficient displacement process. In this work, the effect of stratification resulting in gravity segregation of the injected fluid is studied in an oil reservoir which is water-flooded during secondary phase of recovery. Sensitivity analysis is performed through successive simulation on Eclipse 300 (compositional) reservoir simulator. Process involves the continuous CO/sub 2/ injection in an oil reservoir with more than 1/3rd of original oil in place left after water flooding. Reservoir model with four different permeability layers is studied. Four patterns by changing the arrangement of the permeabilities of the layers are analysed. The effect of different arrangement or stratification on segregation of CO/sub 2/ and ultimately on the incremental oil recovery, is investigated. It has been observed that out of four arrangements, upward fining pattern relatively overcame the issue of the segregation of CO/sub 2/ and consequently 33% more oil with half injection volume is recovered when compared with the downward fining pattern. (author)

  18. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass fraction...

  19. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass...

  20. Substitution of Organic Solvents in Selected Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas; Rasmussen, Pia Brunn

    1997-01-01

    Volatile organic solvents (VOC)are becoming increasingly unwanted in industrial processes. Substitution of VOC with non-volatile, low-toxic compounds is a possibility to reduce VOC-use. It has been successfully demonstrated, that organic solvents used in cleaning processes in sheet offset printing...

  1. Combined Exposure of Methylene Chloride and Carbon Monoxide in Smoking and Nonsmoking Paint Strippers.

    Science.gov (United States)

    1983-12-01

    colorless volatile liquid whose solubility in water is minimal. It is completely miscible with most organic solvents (1). It is nonflammable and has a...University oi Utah will provide you, without charge, emergency and temporary medical tratament not otherwise covered by Insurance. Furthermore, if your

  2. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  3. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  4. Organic solvent topical report

    International Nuclear Information System (INIS)

    Cowley, W.L.

    1998-01-01

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel

  5. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  6. The solvation of L-serine in mixtures of water with some aprotic solvents at 298.15 K

    Science.gov (United States)

    Mezhevoi, I. N.; Badelin, V. G.

    2009-03-01

    The integral enthalpies of solution Δsol H m of L-serine in mixtures of water with acetonitrile, 1,4-dioxane, dimethylsulfoxide (DMSO), and acetone were measured by solution calorimetry at organic component concentrations up to 0.31 mole fractions. The standard enthalpies of solution (Δsol H°), transfer (Δtr H°), and solvation (Δsolv H°) of L-serine from water into mixed solvents were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of aqueous-organic solvents contained extrema. The calculated enthalpy coefficients of pair interactions of the amino acid with cosolvent molecules were positive and increased in the series acetonitrile, 1,4-dioxane, DMSO, acetone. The results obtained were interpreted from the point of view of various types of interactions in solutions and the influence of the nature of organic solvents on the thermochemical characteristics of solutions.

  7. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  8. Preferential solvation of single ions in mixed solvents: Part 1. New experimental approach and solvation of monovalent ions in methanol-water and acetonitrile-water mixture. Part 2. Theoretical computation and comparison with experimental data

    International Nuclear Information System (INIS)

    Rege, Aarti C.; Venkataramani, B.; Gupta, A.R.

    1999-06-01

    Preferential solvation of single ion solutions has been studied with Li + , Na + , K + and Ag +- forms of Dowex 50W resins of different cross-linkings in methanol-water and acetonitrile (AN)- water mixtures. The solvent uptake by this alkali metal ionic forms of Dowex 50W resins was studied in an isopiestic set-up using 2,4,6 and 8 m LiCl solutions in 11.0, 20.8, 44.3 and 70.2 % (w/w) methanol-water mixtures and that of Na +- and Ag +- forms using 14.6 to 94.3 % (w/w) AN - water mixtures. The solvent sorbed in the resin phase was extracted by Rayleigh-type distillation and analysed gas chromatographically. The data were analysed by the N s (mole fraction of the organic solvent in the resin phase) vs n t au (total solvent content in the resin phase) plots and separation factor, alpha(ratio of mole fraction of the solvents in the resin and solution phases) or N s vs m (molality in the resin phase) plots. The limiting values of these plots gave the composition of the solvent in the primary solvation shell around the single ion. The compositions of the primary solvation shell around Li + , Na + , and K + in methanol-water mixtures and Na + and Ag + in acetonitrile (AN) - water mixtures have been computed using Franks equation and the approach of Marcus and compared with the experimental results obtained with the above mentioned ionic forms of Dowex 50W resins in different mixed solvents. The experimental results for Li + showed good agreement with the values computed using Franks equation for all methanol-water composition. However, in the case of Na + and K + in methanol-water mixtures and Na + in AN-water mixtures, there was agreement only at lower organic solvent content and the Franks equation predicted higher values for the organic solvent in the primary solvation shell around the cation at higher organic solvent content as compared to experimental results

  9. Subcritical-Water Extraction of Organics from Solid Matrices

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  10. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    Science.gov (United States)

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.

  11. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 5 Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends As specified in § 63.5758(a)(6), when detailed organic HAP content data for...

  12. Characterization of Physical and Mechanical Properties of Miscible Lactose-Sugars Systems.

    Science.gov (United States)

    Li, Runjing; Roos, Yrjö H; Miao, Song

    2017-09-01

    Lactose-sugars systems were produced by spray drying. They were lactose, lactose-glucose (4:1) mixtures, lactose-maltose (4:1) mixtures, lactose-sucrose (4:1) mixtures, lactose-trehalose (4:1) mixtures, and lactose-corn syrup solids (CSS) (4:1) mixtures. The physical characteristics, water sorption behavior, glass transition, and mechanical properties of miscible lactose-sugars systems were investigated. Lactose-glucose mixtures had larger particle size than other lactose-sugars systems after spray drying. The presence of glucose or sucrose in lactose-sugars mixtures decreased the glass transition temperatures of amorphous systems, while the presence of maltose and trehalose had only minor impact on the glass transition temperatures. Moreover, glucose accelerated the crystallization of amorphous system at 0.44 a w , but its presence delayed the loss of sorbed water at higher water activities (≥0.54 a w ). Mechanical property study indicated that glucose and sucrose in amorphous system could result in an increase of molecular mobility, while the presence of CSS could decrease the free volume and maintain the stiffness of the miscible systems. © 2017 Institute of Food Technologists®.

  13. Solvation of hydrocarbons in aqueous-organic mixtures

    International Nuclear Information System (INIS)

    Sedov, I.A.; Magsumov, T.I.; Solomonov, B.N.

    2016-01-01

    Highlights: • Thermodynamic functions of solvation in mixtures of water with acetone and acetonitrile are measured at T = 298.15 K. • Solvation of n-octane and toluene in aqueous-organic mixtures is studied. • When increasing water content, Gibbs free energies grow up steadily, while enthalpies have a maximum. • Hydrocarbons are preferentially solvated with organic cosolvent even in mixtures with rather high water content. • Acetonitrile suppresses the hydrophobic effect less than acetone. - Abstract: We study the solvation of two hydrocarbons, n-octane and toluene, in binary mixtures of water with organic cosolvents. Two polar aprotic cosolvents that are miscible with water in any proportions, acetonitrile and acetone, were considered. We determine the magnitudes of thermodynamic functions of dissolution and solvation at T = 298.15 K in the mixtures with various compositions. Solution calorimetry was used to measure the enthalpies of solution, and GC headspace analysis was applied to obtain limiting activity coefficients of solutes in the studied systems. For the first time, the enthalpies of solution of alkane in the mixtures with high water content were measured directly. We observed well-pronounced maxima of the dependencies of enthalpies of solvation from the composition of solvent and no maxima for the Gibbs free energies of solvation. Two factors are concluded to be important to explain the observed tendencies: high energy cost of reorganization of binary solvent upon insertion of solute molecules and preferential surrounding of hydrocarbons with the molecules of organic cosolvent. Enthalpy-entropy compensation leads to a steady growth of the Gibbs free energies with increasing water content. On the other hand, consideration of the plots of the Gibbs free energy against enthalpy of solvation clearly shows that the solvation properties are changed dramatically after addition of a rather small amount of organic cosolvents. It is shown that they

  14. Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizy, Vahid Alipour

    2012-07-01

    The thesis addresses oil recovery by miscible CO2 flooding from modified sandstone and chalk rocks. Calcite mineral surface is modified with stearic acid (SA) and asphaltene, and the silicate mineral surfaces are modified with N,N-dimethyldodecylamine (NN-DMDA) and asphaltene. The stability of adsorbed polar components in presence of SO4 2- and Mg2 + ions is also investigated. Recovery from sandstone cores is consistently lower than that from chalk cores saturated with the same oil and flooded with CO2 at all miscible flooding conditions. This may be due to the larger permeability contrasts in sandstone cores, which promote the fingering phenomenon. Miscible CO2 flooding for chalk and sandstone cores with distilled water, as initial water saturation, shows also lower oil recovery than cores saturated with different ions. At higher miscible flooding conditions, higher oil recovery is obtained. However, presence of light components (such as C1 or C3) in oil reduced the recovery. Oil recovery in presence of methane (C1) is lower than that in presence of methane and propane (C1/C3). A ternary diagram was constructed in order to understand the CO2 flooding mechanism(s) at the different flooding conditions and in presence of light components. The side effect of the flooding with CO2 is the probability for asphaltene deposition. An approach based on solubility parameter in the liquid, is used to assess the risk for asphaltene deposition during CO2 miscible flooding. The light components (C1/C3) and higher flooding conditions enhanced the risk for asphaltene instability. It is also shown higher amount of asphaltene deposition in chalk cores than that in sandstone cores at similar miscibility conditions.(au)

  15. Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature: Heck, Suzuki-Miyaura and Negishi reactions carried out in the absence of organic solvents, enabled by micellar catalysis.

    Science.gov (United States)

    Lipshutz, Bruce H; Taft, Benjamin R; Abela, Alexander R; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe

    2012-04-01

    Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes 'greener'; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a 'designer' surfactant enables these award-winning coupling reactions to be run in water at room temperature.

  16. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    Science.gov (United States)

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  17. Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers

    KAUST Repository

    Kim, Hyeongjun; Han, A. Reum; Cho, Chulhee; Kang, Hyunbum; Cho, Hanhee; Lee, Mooyeol; Frechet, Jean; Oh, Joonhak; Kim, Bumjoon

    2012-01-01

    organic electronics with air stability, solvent resistance, and thermal stability. Herein, we have developed a simple but powerful approach to achieve solvent-resistant and thermally stable organic electronic devices with a remarkably improved air

  18. Preconcentration of Arsenic in Water Samples Using the Composition-Induced Phase Separation Method and Determination by ETAAS

    Directory of Open Access Journals (Sweden)

    Güçoğlu M.

    2013-04-01

    Full Text Available A new phase transition microextraction method was developed for determination of trace amount of arsenic ions in water samples in this work. The method is based on the critical point of miscibility of solvents. In this method the mixed solution of sample and organic solvent is initially homogeneous but is separated into two phases by adding a secondary solvent (modifier. In acidic medium As(V was complexed with ammonium molybdate, this complex was quantitatively extracted to the mixture of organic solvent (acetonitrile/methyl isobutyl ketone before ETAAS determination. Total inorganic arsenic (III, V was extracted similarly after oxidation of As(III to As(V with nitric acid. Concentration of As(III was calculated by difference in the concentration between total arsenic and As(V. Optimization of the experimental conditions and instrumental parameters was investigated in detail. A detection limit of 0.05 μgL−1 with enrichment factor of 85 was achieved for only 5 mL of sample. The analytical curve was linear in the concentration range of 0.25-4.00 μgL−1. Relative standard deviation (RSD for 10 replicate determinations of 2.0 μgL−1 of As(V was 4,1%. The method was successfully applied to preconcentration and determination of arsenic in real water samples.

  19. Collapse in two good solvents, swelling in two poor solvents: defying the laws of polymer solubility?

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Kremer, Kurt

    2018-01-17

    In this work we discuss two mirror but distinct phenomena of polymer paradoxical properties in mixed solvents: co-non-solvency and co-solvency. When a polymer collapses in a mixture of two miscible good solvents the phenomenon is known as co-non-solvency, while co-solvency is a phenomenon that is associated with the swelling of a polymer in poor solvent mixtures. A typical example of co-non-solvency is provided by poly(N-isopropylacrylamide) in aqueous alcohol, while poly(methyl methacrylate) in aqueous alcohol shows co-solvency. We discuss these two phenomena to compare their microscopic origins and show that both can be understood within generic universal concepts. A broad range of polymers is therefore expected to exhibit these phenomena where specific chemical details play a lesser role than the appropriate combination of interactions between the trio of molecular components.

  20. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    To control chemical hazards in work places, substitution of harmful substances with less harmful or non-toxic products is now a method used in many countries and in many companies. It has previously been demonstrated that it is desirable and possible to use non-volatile, low-toxic vegetable...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  1. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  2. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  3. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    Science.gov (United States)

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  4. Impacts of microbial infestation of water miscible coolants on the performance; Auswirkungen des mikrobiellen Befalls von wassergemischten Kuehlschmierstoffen auf das Arbeitsergebnis

    Energy Technology Data Exchange (ETDEWEB)

    Walter, A.; Koch, T.; Rabenstein, A. [IWT Bremen (Germany)

    2006-08-15

    Water miscible coolants (KSS) with their functions and duties in the manufacturing technique are seen with very high significance. Despite of their benefits to an optimized cutting process, there are always discussions about the ecological and economical terms and conditions which will arise by using these multicomponent mixtures. Microbial contaminations and the resulting disintegration processes represent an important functional and hygienic problem by the application of KSS. Due to their chemical constitution and the working temperature, water miscible KSS provide excellent conditions to the growth of microorganisms like bacteria, yeasts and fungi. The biological utilisable components of the KSS are used by microorganisms as source of nutrition. The degradation process and the involved chemical modification of the ingredients lead to the forfeiture of the desired and required technical qualities of the KSS. The microbial utilisation of water miscible KSS is associated by the formation of new, not defined intermediates, pH decrease, an increase of electrical conductivity and other changes. It comes to an increased wear of tools, increased corrosion of components and workpieces, up to discolouration and stench of the emulsion. The loss of the technical qualities of an emulsion, caused by microbial affection calls for further additives or adding further concentrate. Often it is ignored, that it is impossible to mend a microbial affected KSS by more additives or by doping it with biocides. The mass of aged emulsion, formed by microbial degradation processes, must be disposed. This will cause additional costs to the user, which can be avoided. Practical experience indicates that appropriate exposure to KSS and sufficient prevention to microbial contamination could help to save expenses. Accurate selection and care as well as the correct personal protection by application of KSS will improve operational safety and product quality. On this it is necessary to possess

  5. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  6. Organic solvents from sugar cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Oeser, H

    1970-01-01

    The production of organic solvents by fermentation of low priced cane molasses is discussed. Processes described and illustrated in detail include the production of acetone, butanol, ethanol, acetic acid, ethyl acetate and butyl acetate.

  7. Assessment of Relationship between Spontaneous Abortion and Occupational Exposure to Organic Solvents

    Directory of Open Access Journals (Sweden)

    S Mohammadi

    2011-04-01

    Full Text Available Introduction & Objective: Nowadays, some studies indicate the adverse effects of exposure to chemicals, especially organic solvents on the reproductive system of females. This study aimed to assess the relationship between spontaneous abortion with occupational exposure to organic solvents in pharmaceutical industry. Materials & Methods: This is a cross-sectional and descriptive-analytical study which was carried out in 2010 in one of the pharmaceutical factories located in the suburbs of Tehran. During the study, married women who were working in the factory laboratory units and were exposed to mixed organic solvents were compared with married women who were working in the packing units of the factory without occupational exposure to organic solvents. Frequency of spontaneous abortion and duration of pregnancy were assessed in both two groups. Collected data were analyzed with the SPSS software using t-test, logistic regression, and chi-square test. Results: In the present study, the frequency of spontaneous abortion in employees with exposure to organic solvents mixture was 10.7%. This study showed that even after adjustment for confounding factors, there was a significant correlation between spontaneous abortion and occupational exposure to organic solvents mixture and this correlation increased with increasing levels of exposure to organic solvents. Moreover, a significant correlation was observed between occupational exposure to mixed organic solvents and waiting time to become pregnant (TTP. Furthermore, this study showed that even after adjustment for confounding variables, shift workers were significantly more affected by spontaneous abortion compared to daytime workers (P < 0.001. Conclusion: According to the results of this study, since there is probability of spontaneous abortion resulting from occupational exposure to various chemicals including organic solvents, review of the status of occupational exposure of workers can be helpful

  8. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    Science.gov (United States)

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  9. STABILITY OF BINARY COMPLEXES OF L-ASPARTIC ACID IN ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Binary complexes, Stability constants, Aspartic acid, Speciation, Dioxan. INTRODUCTION. 1,4-Dioxan (Dox) is ... It is miscible with water, oils, and most organic solvents, including aromatic .... of mineral acid in metal ion and ligand solutions was determined using the Gran plot method. [28, 29]. To assess the ...

  10. Thin porphyrin composite membranes with enhanced organic solvent transport

    KAUST Repository

    Phuoc, Duong; Anjum, Dalaver H.; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2018-01-01

    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block

  11. Substitution of Organic Solvents - a Way to improve Working Environment and reduce Emissions to the Atmosphere

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1996-01-01

    solvents as cleaning agents has been reached. However, some barriers to this substitution process, are found outside the printing companies. In designing of machines and auxiliary equipment, the manufacturers must take into account, that cleaning with non-volatile agents should be possible. Even a rather...... the process in order to omit the solvents or to use water-based products. In cases, where a change to water-based is not evident, improvements can be reached by using non-volatile, low-toxic products, typically esters of fatty acids from vegetable oils. In offset printing a drastic reduction of use of organic...

  12. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lugowska, Katarzyna; Pernak, Juliusz

    2007-01-01

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO 3 ], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO 3 ] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO 3 ] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO 3 ] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G Ex models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular

  13. Water-enhanced solvation of organics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jane H. [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log γs vs xw/xs curve. From graph shape Δ(log γs) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid, propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement Δ(log γacid)/Δ(xw/xacid) = -0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was -0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.

  14. Rapid determination of benzene derivatives in water samples by trace volume solvent DLLME prior to GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Chun Peng; Wei, Chao Hai; Feng, Chun Hua [South China Univ. of Technology, Guangzhou Higher Education Mega Center (China). College of Environmental Science and Engineering; Guangdong Regular Higher Education Institutions, Guangzhou (China). Key Lab. of Environmental Protection and Eco-Remediation

    2012-05-15

    An inexpensive, simple and environmentally friendly method based on dispersive liquid liquid microextraction (DLLME) for rapid determination of benzene derivatives in water samples was proposed. A significant improvement of DLLME procedure was achieved. Trace volume ethyl acetate (60 {mu}L) was exploited as dispersion solvent instead of common ones such as methanol and acetone, the volume of which was more than 0.5 mL, and the organic solvent required in DLLME was reduced to a great extent. Only 83-{mu}L organic solvent was consumed in the whole analytic process and the preconcentration procedure was less than 10 min. The advantageous approach coupled with gas chromatograph-flame ionization detector was proposed for the rapid determination of benzene, toluene, ethylbenzene and xylene isomers in water samples. Results showed that the proposed approach was an efficient method for rapid determination of benzene derivatives in aqueous samples. (orig.)

  15. Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.

    2012-01-01

    In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...... relies on determining the water content of the bulk phase and uses a combination of Kirkwood−Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents...

  16. Novel ordered structures in the mixture of water/organic solvent/salts investigated by neutron scattering

    International Nuclear Information System (INIS)

    Sadakane, Koichiro

    2013-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of water/organic solvent was investigated by visual inspection, optical microscope, and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. Furthermore, an ordered phase with multilamellar (onion) structures was confirmed in an off-critical mixture of D 2 O and 3-methylpyridine containing 85 mM of a NaBPh 4 although no surfactants or polymers are contained. (author)

  17. Measurement of the quantity of water in organic solvents by infrared absorption an measurement of the dielectric constants

    International Nuclear Information System (INIS)

    Desnoyer, M.

    1959-06-01

    Some chemical methods for the analysis of the quantity of water in solvents are first described, their object being the determination of the maximum error for cases where the water content is less than 1 per cent. - The first part of the work consists in describing infrared spectrometry as applied to the analysis of water in carbon tetrachloride, chloroform aniline, acetone and dioxane. A method based on isotopic exchange between heavy and light water is used on the one hand for determining the solubility of water in carbon tetrachloride and on the other hand for establishing standard solutions (sensitivity of the method). - In the second part the dielectric constant of water solvent solutions is measured. A table is presented giving the precision obtained by the two principal methods. These are comparable and further than that the appearance of the spectra suggests an interpretation of the anomalies observed in calibration curves obtained by the dielectric constant method. (author) [fr

  18. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-01-01

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  19. Application and results of whole-body autoradiography in distribution studies of organic solvents.

    Science.gov (United States)

    Bergman, K

    1983-01-01

    With the growing concern for the health hazards of occupational exposure to toxic substances attention has been focused on the organic solvents, which are associated with both deleterious nervous system effects and specific tissue injuries. Relatively little is known about the distribution of organic solvents and their metabolites in the living organism. Knowledge of the specific tissue localizations and retention of solvents and solvent metabolites is of great value in revealing and understanding the sites and mechanisms of organic solvent toxicity. Whole-body autoradiography has been modified and applied to distribution studies of benzene, toluene, m-xylene, styrene, methylene chloride, chloroform, carbon tetrachloride, trichloroethylene and carbon disulfide. The high volatility of these substances has led to the development of cryo-techniques. Whole-body autoradiographic techniques applicable to the study of volatile substances are reviewed. The localizations of nonvolatile solvent metabolites and firmly bound metabolites have also been examined. The obtained results are discussed in relation to toxic effects and evaluated by comparison with other techniques used in distribution studies of organic solvents and their metabolites.

  20. Determination and correlation of solubility and solution thermodynamics of oxiracetam in three (alcohol + water) binary solvents

    International Nuclear Information System (INIS)

    Li, Kangli; Du, Shichao; Wu, Songgu; Cai, Dongchen; Wang, Jinxu; Zhang, Dejiang; Zhao, Kaifei; Yang, Peng; Yu, Bo; Guo, Baisong; Li, Daixi; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of racemic oxiracetam in three binary solvents were determined. • The experimental solubility of racemic oxiracetam were correlated by four models. • The dissolution thermodynamic properties of racemic oxiracetam were calculated. - Abstract: In this paper, we proposed a static analysis method to experimentally determine the (solid + liquid) equilibrium of racemic oxiracetam in (methanol + water), (ethanol + water) and (isopropanol + water) binary solvents with alcohol mole fraction ranging from 0.30 to 0.90 at atmosphere pressure (p = 0.1 MPa). For the experiments, the temperatures range from (283.15 to 308.15) K. The results showed that the solubility of oxiracetam increased with the increasing temperature, while decreased with the increasing organic solvent fraction in all three tested binary solvent systems. The modified Apelblat model, the CNIBS/Redlich–Kister model, the combined version of Jouyban–Acree model and the NRTL model were employed to correlate the measured solubility values, respectively. Additionally, some of the thermodynamic properties which can help to evaluate its dissolution behavior were obtained based on the NRTL model.

  1. Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers

    KAUST Repository

    Kim, Hyeongjun

    2012-01-10

    Conjugated polymers, in general, are unstable when exposed to air, solvent, or thermal treatment, and these challenges limit their practical applications. Therefore, it is of great importance to develop new materials or methodologies that can enable organic electronics with air stability, solvent resistance, and thermal stability. Herein, we have developed a simple but powerful approach to achieve solvent-resistant and thermally stable organic electronic devices with a remarkably improved air stability, by introducing an azide cross-linkable group into a conjugated polymer. To demonstrate this concept, we have synthesized polythiophene with azide groups attached to end of the alkyl chain (P3HT-azide). Photo-cross-linking of P3HT-azide copolymers dramatically improves the solvent resistance of the active layer without disrupting the molecular ordering and charge transport. This is the first demonstration of solvent-resistant organic transistors. Furthermore, the bulk-heterojunction organic photovoltaics (BHJ OPVs) containing P3HT-azide copolymers show an average efficiency higher than 3.3% after 40 h annealing at an elevated temperature of 150 °C, which represents one of the most thermally stable OPV devices reported to date. This enhanced stability is due to an in situ compatibilizer that forms at the P3HT/PCBM interface and suppresses macrophase separation. Our approach paves a way toward organic electronics with robust and stable operations. © 2011 American Chemical Society.

  2. Miscible fluid displacement: an answer to increasing oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, N R; Rivera, R J

    1976-01-01

    This study presents the state of the art on miscible and miscible-type processes. It is well known that when these processes are applied under ideal laboratory conditions, the oil recovery obtained from linear cores approaches 100% of the total oil contained in the porous structure which is contacted by the displacing fluids. In the past few years, a worldwide shortage of crude oil supplies produced an increased interest in new oil recovery methods. Because of this situation, the oil industry turned its eyes back toward the miscible processes. This study discusses the following miscible fluid displacement processes: (1) high-pressure dry gas displacement; (2) enriched gas displacement; (3) GLP slug flooding; and (4) carbon dioxide displacement. In addition to the processes aforementioned, this work presents the main features of the micellar solution flooding process. (17 refs.)

  3. Ammonolysis-induced solvent removal: a facile approach for solidifying emulsion droplets into PLGA microspheres.

    Science.gov (United States)

    Kim, Jayoung; Hong, Dasom; Chung, Younglim; Sah, Hongkee

    2007-12-01

    An ammonolysis-based microencapsulation technique useful for the preparation of biodegradable microspheres was described in this study. A dispersed phase consisting of poly- d, l-lactide- co-glycolide, progesterone, and methyl chloroacetate was emulsified in an aqueous phase. Upon addition of ammonia solution, the emulsion droplets were quickly transformed into poly- d, l-lactide- co-glycolide microspheres laden with progesterone. Rapid solvent removal was accompanied by ammonolysis. The chemical reaction converted water-immiscible methyl chloroacetate to water-miscible chloroacetamide and methanol. Chloroacetamide formation was proved by (1)H NMR and ESI-MS studies. Thermogravimetric analysis showed that the microspheres contained only small amounts of residual methyl chloroacetate. Incorporation efficiencies of progesterone ranged from 64.3 +/- 1.1 to 72.8 +/- 0.3%, depending upon microsphere formulations. X-ray powder diffractometry analysis substantiated that no polymorphic transition of progesterone occurred during microencapsulation. To evaluate the feasibility of this new method against the commonly used microencapsulation method, microspheres were also prepared by a typical dichloromethane-based solvent evaporation process. The important attributes of microspheres prepared from both methods were characterized for comparison. The new ammonolysis-based microencapsulation process showed interesting features distinct from those of the solvent evaporation process. The microencapsulation process reported in this study might be applicable in loading pharmaceuticals into various polymeric microspheres.

  4. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    International Nuclear Information System (INIS)

    Hoai, Nguyen To; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-01-01

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  5. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    Energy Technology Data Exchange (ETDEWEB)

    Hoai, Nguyen To, E-mail: hoaito@pvu.edu.vn; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-02-15

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  6. Some aspects of synergistic extraction of actinides and lanthanides from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Shukla, J.P.; Subramanian, M.S.

    1981-01-01

    Various aspects of the synergistic extraction and separation of actinides and lanthanides from mixed aqueous-organic solutions (polar media) have been reviewed. Notable recent developments as well as its current status in solvent extraction systems where the aqueous acidic phase contains an organic solvent which is completely miscible with water, are presented briefly. In general, extraction increases in the presence of an organic component. The less polar the additive, the higher is the tendency to form neutral metal complexes which ultimately brings about an increase in the extraction. In a polar media, synergism has mostly been observed, though antagonism is not uncommon. An attempt has been made to classify the factors that play an important role in polar phase extractions. Also, their influence particularly on the extractability of actinides and lanthanides is discussed. The discussion is limited to the factors affecting the extraction equilibria, effect of dielectric constant of the polar medium, solvation of the extracting agent and to the composition and stability of the metal complex in the organic phase. Hydroxyl (OHsup(-)) bearing organic additives, e.g. alcohols, and solvents not containing the hydroxyl group such as acetone, dimethylsulphoxide, tetrahydrofuran, amides and acetonitrile etc. are the two major classes of organic additives considered in these studies. Generally, synergistic effect in extraction of the ion-association (TBP, TOPO, sulphoxides etc.) or anion exchange (amines etc.) type is relatively more pronounced compared to other extractions. A tabular summary concerning extraction of actinides and lanthanides from polar media is appended for ready reference. (author)

  7. Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure.

    Science.gov (United States)

    Paule, A; Roubeix, V; Swerhone, G D W; Roy, J; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L; Lawrence, J R

    2016-03-01

    Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L(-1) of alachlor and 25 mg L(-1) of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L(-1), whereas at 10 μg L(-1), it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested

  8. Thermodynamics of the amalgam cells {l_brace}Cs-amalgam|CsX (m)|AgX|Ag{r_brace} (X=Cl, Br, I) and primary medium effects in (methanol+water) (acetonitrile+water), and (1,4-dioxane+water) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Falciola, Luigi [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy)]. E-mail: luigi.falciola@unimi.it; Longoni, Giorgio [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy); Mussini, Patrizia R. [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy)]. E-mail: patrizia.mussini@unimi.it; Mussini, Torquato [Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan (Italy)]. E-mail: torquato.mussini@unimi.it

    2006-06-15

    The potential difference E of the amalgam cell {l_brace}Cs{sub x}Hg{sub 1-x}|CsX (m)|AgX|Ag{r_brace} (X=Cl, Br, I) has been measured as a function of the mole fraction x{sub Cs} of Cs metal in amalgams and of the molality m of CsX in (methanol+water) (acetonitrile+water), and (1,4-dioxane+water) solvent mixtures containing up to 0.75 mass fraction of the organic component, at the temperature 298.15K. The respective standard molal potential differences E{sub m}{sup o} have been determined together with the relevant activity coefficients {gamma}{sub +}/- as functions of the CsX molality. The found E{sub m}{sup o} values show a parabolic decrease with increasing proportion of the organic component in the solvent mixture. Analysis of the relevant primary medium effects upon CsX shows that the CsX transfer from the standard state in water to the standard state in the (aqueous+organic) mixture is always unfavoured, and the acetonitrile is the least unfavoured co-solvent studied. Analysis of the primary medium effect upon CsI in terms of Feakins and French's theory leads to a primary hydration number close to zero, which is consistent with the results of supplementary EXAFS experiments on Cs{sup +} and I{sup -} in (acetonitrile+water) solvent mixtures.

  9. Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane

    Science.gov (United States)

    2003-01-01

    This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.

  10. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.

    Science.gov (United States)

    Zhang, Ke; Pei, Zhijian; Wang, Donghai

    2016-01-01

    Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Method for production of fuel oils and diesel motor oils free of sediments and with unlimited miscibility

    Energy Technology Data Exchange (ETDEWEB)

    1942-01-13

    A method is described for the production of fuel and diesel oils free of sediments and with unlimited miscibility by their recovery from substances poor in hydrogen, such as tars of fossil carbon, from lignite, from peat, from schist oils, from wood, or tar oils of corresponding extracts, poorly hydrogenated carbohydrates and the like, characterized by the fact that these substances are being subjected without mixing with selective solvents to a chemical purification and then immediately subjected to a redistillation and the obtained distillates being cut with hydrogen-rich oils to obtain normal diesel oils.

  12. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  13. Treatment of waste water miscible cutting fluids in automobile manufacturing; Jidosha kogyo ni okeru suiyosei sessakuyuzai no haieki shori

    Energy Technology Data Exchange (ETDEWEB)

    Ono, H. [Yushiro Chemical Industry Co. Ltd., Tokyo (Japan)

    1995-09-01

    Water-soluble cutting fluids are able to be used for several months to several years if the proper periodical management is carried out. However, the used solution should be treated as waste water when the function-recovery thereof becomes remarkable difficult. On this occasion, the treated solution (drainage) ought to meet the environmental standards prescribed for the purpose of protecting globe environment. Many cases in Japan are that the strict rules are set by each urban and rural prefectures addition to the government ordinance. For carrying out the treatment of waste water efficiently, it is necessary to construct the treating system by mastering the characteristics of waste water and selecting the most suitable one from numerous treating methods. In this paper, after the description on the water-polluting substances and drainage standards, the general treating method of waste water miscible cutting fluids is described. Finally, the concrete cases with respect to the treatment of waste water treatment in automobile manufacturing factories are introduced. 5 refs., 5 figs., 5 tabs.

  14. Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends

    International Nuclear Information System (INIS)

    He, Yi-Song; Zeng, Jian-Bing; Li, Shao-Long; Wang, Yu-Zhong

    2012-01-01

    Graphical abstract: Crystallization rate of PBS in the blends decreased first and then increased with increase in PES content, and that of PES increased steadily with increase in PBS content. The rich component formed a continuous phase and the other formed a dispersed phase of the blend. Crystal structures of PBS and PES were almost unchanged after blending with each other. Highlights: ► PBS/PES blend systems are partially miscible. ► Blending did not change the crystallization mechanisms of PBS and PES not affects the crystallization rates. ► The rich component formed the continuous phase while the poor component formed the dispersed phase of the blends. ► Crystal structures of PBS and PES were almost unchanged after blending with each other. - Abstract: Biodegradable blend of poly(butylene succinate) (PBS) and poly(ethylene succinate) (PES) was prepared by solution blending and casting method with chloroform as a mutual solvent. Miscibility of the blends was investigated by differential scanning calorimetry (DSC). The results indicated that PBS and PES were partially miscible. Crystallization kinetics, crystalline morphology and crystal structure of the blends were studied by DSC, polarized optical microscope (POM), and wide-angle X-ray diffraction (WAXD), respectively. Nonisothermal and isothermal crystallization kinetics suggested that the crystallizability of PBS in the blends decreased first and then increased with increase in PES content, and that of PES increased steadily with increase in PBS content. POM observation illustrated that the rich component formed a continuous phase and the other formed a dispersed phase. The results of WAXD indicated that the crystal structures of PBS and PES were almost unchanged before and after blending, since the positions of characteristic diffraction peaks of both components remain almost unchanged.

  15. Mechanism of the extraction of nitric acid and water by organic solutions of tertiary alkyl-amines

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-06-01

    The micellar aggregation of tri-alkyl-ammonium nitrates in low polarity organic solvents has been verified by viscosity, conductivity and sedimentation velocity measurements. The aggregation depends upon the polarity of solvent, the length of the alkyl radicals and the organic concentration of the various constituents (tri-alkyl-ammonium nitrate, tri-alkyl-amine, nitric acid, water). The amine salification law has been established and the excess nitric acid and water solubilities in the organic solutions have been measured. Nitric acid and water are slightly more soluble in micellar organic solutions than in molecular organic solutions. A description of excess nitric acid containing tri-alkyl-ammonium nitrate solutions is proposed. (author) [fr

  16. DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    TATIANE DE AQUINO

    2016-03-01

    Full Text Available The aim of this study was to evaluate potential DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents, mainly xylene. Peripheral blood and buccal cells samples were collected from 18 technicians occupationally exposed to organic solvents and 11 non-exposed individuals. The technicians were sampled at two moments: Monday and Friday. DNA damage and cytotoxicity were evaluated using the Comet Assay and the Buccal Micronucleus Cytome assay. Fifteen subjects (83.5% of the exposed group to solvents complained about some symptom probably related to contact with vapours of organic solvents. DNA damage in the exposed group to solvents was nearly 2-fold higher on Friday than on Monday, and in both moments the individuals of this group showed higher levels of DNA damage in relation to controls. No statistical difference was detected in buccal cell micronucleus frequency between the laboratory technicians and the control group. However, in the analysis performed on Friday, technicians presented higher frequency (about 3-fold of karyolytic and apoptotic-like cells (karyorrhectic and pyknotic in relation to control group. Considering the damage frequency and the working time, a positive correlation was found in the exposed group to solvents (r=0.468; p=0.05. The results suggest that pathology laboratory workers inappropriately exposed to organic solvents have increased levels of DNA damage.

  17. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  18. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  19. Mapping the surface of Escherichia coli peptide deformylase by NMR with organic solvents.

    Science.gov (United States)

    Byerly, Douglas W; McElroy, Craig A; Foster, Mark P

    2002-07-01

    Identifying potential ligand binding sites on a protein surface is an important first step for targeted structure-based drug discovery. While performing control experiments with Escherichia coli peptide deformylase (PDF), we noted that the organic solvents used to solubilize some ligands perturbed many of the same resonances in PDF as the small molecule inhibitors. To further explore this observation, we recorded (15)N HSQC spectra of E. coli peptide deformylase (PDF) in the presence of trace quantities of several simple organic solvents (acetone, DMSO, ethanol, isopropanol) and identified their sites of interaction from local perturbation of amide chemical shifts. Analysis of the protein surface structure revealed that the ligand-induced shift perturbations map to the active site and one additional surface pocket. The correlation between sites of solvent and inhibitor binding highlights the utility of organic solvents to rapidly and effectively validate and characterize binding sites on proteins prior to designing a drug discovery screen. Further, the solvent-induced perturbations have implications for the use of organic solvents to dissolve candidate ligands in NMR-based screens.

  20. Retro-Diels-Alder reaction in aqueous solution : Toward a better understanding of organic reactivity in water

    NARCIS (Netherlands)

    Wijnen, J.W.; Engberts, Jan B.F.N.

    1997-01-01

    The retro-Diels-Alder (RDA) reaction of anthracenedione 1a proceeds considerably faster in aqueous solutions than in organic solvents. Addition of organic solvents to water retards the reaction, whereas glucose induces a modest acceleration. SDS micelles induce a considerable retardation, but even

  1. Silica Gel-Mediated Organic Reactions under Organic Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Satoaki Onitsuka

    2012-09-01

    Full Text Available Silica gel was found to be an excellent medium for some useful organic transformations under organic solvent-free conditions, such as (1 the Friedel-Crafts-type nitration of arenes using commercial aqueous 69% nitric acid alone at room temperature, (2 one-pot Wittig-type olefination of aldehydes with activated organic halides in the presence of tributyl- or triphenylphosphine and Hunig’s base, and (3 the Morita-Baylis-Hillman reaction of aldehydes with methyl acrylate. After the reactions, the desired products were easily obtained in good to excellent yields through simple manipulation.

  2. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    Science.gov (United States)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  3. Absorption and emission behaviour of trans-p-coumaric acid in aqueous solutions and some organic solvents

    International Nuclear Information System (INIS)

    Putschoegl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans-p-coumaric acid (trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form (p-CAH 2 ) and the single anionic form (p-CAH - ) at low pH (pK na ∼ 4.9), and between the single anionic and the double anionic form (p-CA 2- ) at high pH (pK aa ∼ 9.35). In the organic solvents studied trans-p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans-p-coumaric acid in aqueous solution is φ F ∼ 1.4 x 10 -4 for the neutral and the single anionic form, while it is φ F ∼ 1.3 x 10 -3 for the double anionic form. For trans-p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 x 10 -5 (acetonitrile) to 1.5 x 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2- , solvent-assisted intra-molecular charge-transfer or ππ* to nπ* transfer and internal conversion for p-CAH 2 and p-CAH - ). The solvent dependence of the first ππ* electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted

  4. Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent

    Science.gov (United States)

    Kang, Sung-Won; Kim, Hye-Min; Rahman, M. Shafiur; Kim, Ah-Na; Yang, Han-Sul

    2017-01-01

    Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO2) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO2 (DBLSC-CO2) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO2 samples had significantly higher (pSC-CO2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents. PMID:28316468

  5. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    International Nuclear Information System (INIS)

    Park, Youngjune; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa; Petit, Camille

    2015-01-01

    CO 2 capture by amine scrubbing, which has a high CO 2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO 2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO 2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO 2 capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO 2 capture solvents, which are often anhydrous, have been developed as the third-generation CO 2 capture solvents. These novel classes of liquid materials include ionic liquids, CO 2 -triggered switchable solvents (i.e., CO 2 -binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO 2 capture. Particular attention is given to the mechanisms of CO 2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO 2 capture media.

  6. Miscibility evolution of polycarbonate/polystyrene blends during compounding

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Almdal, Kristoffer; Johannsen, Ib

    2002-01-01

    The miscibility evolution of polycarbonate/polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, remelt blending in a twin-screw extruder and third melt blending in an injection molding machine, was investigated...... polymer in the other. The observed solubility strongly depends on blend composition and blending method. The T-g measurements showed maximum mutual solubility around 50/50 composition. The miscibility of PC/PS blended after the third stage (melt injection molding) was higher than that after the first...... by measuring their glass transition temperatures (T-g) and their specific heat increment (DeltaC(p)). Differential scanning calorimetry (DSC) was used to examine nine blend compositions. Shifts in glass transition temperature (T-g) of the two phases in melt-mixed PC/PS blends suggest partial miscibility of one...

  7. Impaired colour vision in workers exposed to organic solvents: A systematic review.

    Science.gov (United States)

    Betancur-Sánchez, A M; Vásquez-Trespalacios, E M; Sardi-Correa, C

    2017-01-01

    To evaluate recent evidence concerning the relationship between the exposure to organic solvents and the impairment of colour vision. A bibliographic search was conducted for scientific papers published in the last 15 years, in the LILACS, PubMed, Science Direct, EBSCO, and Cochrane databases that included observational studies assessing the relationship between impairment in colour vision and exposure to organic solvents. Eleven studies were selected that were performed on an economically active population and used the Lanthony D-15 desaturated test (D-15d), measured the exposure to organic solvents, and included unexposed controls. It was found that there is a statistically significant relationship between the exposure to organic solvents and the presence of an impairment in colour vision. The results support the hypothesis that exposure to organic solvents could induce acquired dyschromatopsia. The evaluation of colour vision with the D-15d test is simple and sensitive for diagnosis. More studies need to be conducted on this subject in order to better understand the relationship between impaired colour vision and more severe side effects caused by this exposure. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.

    Science.gov (United States)

    Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X

    2014-04-01

    The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.

  9. Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes

    KAUST Repository

    Chisca, Stefan

    2015-01-01

    The preparation of crosslinked membranes with a zwitterionic structure based on a facile reaction between a newly synthesized copolyazole with free OH groups and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) is reported. The new OH-functionalized copolyazole is soluble in common organic solvents, such as tetrahydrofuran (THF), dimethylsulfoxide (DMSO), N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) and can be easily processed by phase inversion. After crosslinking with GPTMS, the membranes acquire high solvent resistance. We show the membrane performance and the influence of the crosslinking reaction conditions on the thermal stability, surface polarity, pore morphology, and solvent resistance. By using UV-spectroscopy we monitored the solvent resistance of the membranes in four aggressive solvents (THF, DMSO, DMF and NMP) for 30 days. After this time, only minor changes (less than 2%) were detected for membranes subjected to a crosslinking reaction for 6 hours or longer. Our data suggest that the novel crosslinked membranes can be used for industrial applications in wide harsh environments in the presence of organic solvents.

  10. Revisiting the effects of organic solvents on the thermal reduction of graphite oxide

    International Nuclear Information System (INIS)

    Barroso-Bujans, Fabienne; Fierro, José Luis G.; Alegría, Angel; Colmenero, Juan

    2011-01-01

    Highlights: ► Retention of organic solvent on graphite oxide interlayer space. ► Decreasing exfoliation temperature. ► Close link between structure and thermal behavior of solvent treated graphite oxide. ► Restacking inhibition of thermally reduced graphite oxide sheets. ► Changes in kinetic mechanisms of thermal reduction. - Abstract: Treatment of graphite oxide (GO) with organic solvents via sorption from either liquid or gas phase, and subsequent desorption, induces profound changes in the layered GO structure: loss of stacking order, retention of trace amounts of solvents and decreasing decomposition temperature. This study presents new evidences of the effect of organic solvents on the thermal reduction of GO by means of thermogravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. The results reveal a relative higher decrease of the oxygen amounts in solvent-treated GO as compared to untreated GO and the restacking inhibition of the thermally reduced GO sheets upon slow heating. The kinetic experiments evidence changes occurring in the reduction mechanisms of the solvent-treated GO, which support the close link between GO structure and thermal properties.

  11. Application of non-aqueous solvents to batteries. I Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc-bromine batteries

    Science.gov (United States)

    Singh, P.; White, K.; Parker, A. J.

    1983-11-01

    The properties of bromine/propionitrile solution are investigated with a view to its use as an electrolyte in zinc-bromine batteries which use circulating electrolyte. The solution, which forms a two-phase system with water, has higher conductivity than the oils formed by complexation of bromine with organic salts such as N,N-methoxymethyl methylpiperidinium bromide and N,N-ethyl methylmorpholinium bromide. The activity of bromine in the aqueous phase of the bromine-propionitrile/water, two-phase system is very low; thus, coulombic efficiencies greater than 85 percent are achieved. Zinc-bromine batteries containing this solvent system show good charge/discharge characteristics.

  12. Study of acid-base properties in various water-salt and water-organic solvent mixtures; Etude de proprietes acides-bases dans divers melanges eau-sels et eau-solvants organiques

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-02-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H{sup +} + B {r_reversible} HB{sup +} in salt-water mixtures and found a relation between the pK{sub A} value, the solubility of the base and water activity. The reaction HO{sup -} + H{sup +} {r_reversible} H{sub 2}O has been investigated and a relation been found between pK{sub i} values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [French] Nous avons envisage l'etude des reactions acides-bases dans des melanges eau-sels MX et des melanges d'eau et de solvants organiques. Les uns et les autres ont ete choisis de facon a ce que la basicite du solvant ou celle de l'anion X{sup -} soit negligeable devant celle de l'eau dans les melanges consideres. Dans un premier temps nous avons etudie dans les melanges eau-sels MX les equilibres H{sup +} + B {r_reversible} HB{sup +} et HA {r_reversible} H{sup +} + A{sup -}. On montre que connaissant la valeur de la solubilite de la base B et de l'acide HA dans le melange eau-sel considere et dans l'eau pure et celle de l'activite de l'eau dans le melange, il est possible de prevoir la valeur de la constante de l'equilibre acide-base etudiee. Dans un deuxieme temps nous avons cherche a generaliser ces resultats, lorsque l'on remplace le sel MX dans le melange avec l'eau par un solvant organique. De meme que precedemment, nous avons compare les constantes d'equilibre du type HB

  13. An Improved CO2-Crude Oil Minimum Miscibility Pressure Correlation

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2015-01-01

    Full Text Available Minimum miscibility pressure (MMP, which plays an important role in miscible flooding, is a key parameter in determining whether crude oil and gas are completely miscible. On the basis of 210 groups of CO2-crude oil system minimum miscibility pressure data, an improved CO2-crude oil system minimum miscibility pressure correlation was built by modified conjugate gradient method and global optimizing method. The new correlation is a uniform empirical correlation to calculate the MMP for both thin oil and heavy oil and is expressed as a function of reservoir temperature, C7+ molecular weight of crude oil, and mole fractions of volatile components (CH4 and N2 and intermediate components (CO2, H2S, and C2~C6 of crude oil. Compared to the eleven most popular and relatively high-accuracy CO2-oil system MMP correlations in the previous literature by other nine groups of CO2-oil MMP experimental data, which have not been used to develop the new correlation, it is found that the new empirical correlation provides the best reproduction of the nine groups of CO2-oil MMP experimental data with a percentage average absolute relative error (%AARE of 8% and a percentage maximum absolute relative error (%MARE of 21%, respectively.

  14. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection pr...

  15. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    Science.gov (United States)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  16. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    YOUNGJUNE ePARK

    2015-10-01

    Full Text Available CO2 capture by amine scrubbing, which has a high CO2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO2 capture solvents including high volatility and corrosiveness of the amine solutions, as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO2 capture solvents, which are often anhydrous, have been developed as the third-generation CO2 capture solvents. These novel classes of liquid materials include: Ionic Liquids (ILs, CO2-triggered switchable solvents (i.e., CO2 Binding Organic Liquids (CO2BOLs, Reversible Ionic Liquids (RevILs, and Nanoparticle Organic Hybrid Materials (NOHMs. This paper provides a review of these various anhydrous solvents and their potential for CO2 capture. Particular attention is given to the mechanisms of CO2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO2 capture media.

  17. Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

    International Nuclear Information System (INIS)

    Ciocirlan, Oana; Croitoru, Oana; Iulian, Olga

    2016-01-01

    Highlights: • Viscosities of four binary mixtures of [Emim][BF4] with organic solvents. • Viscosity models based on Eyring’s theory. • Excess functions calculated. • Data for binaries new in the literature, except for system with DMSO. - Abstract: This paper reports experimental values of dynamic viscosity for four binary systems of 1-ethyl-3-methylimidazolium tetrafluoroborate, [Emim][BF4], with dimethyl sulfoxide (DMSO), acetonitrile (ACN), ethylene glycol (EG) and 1,4-dioxane over the temperature ranges from 293.15 K to 353.15 K at p = 0.1 MPa. All binary mixtures were completely miscible over the entire range of mole fraction, except the system with 1,4-dioxane. The viscosity results have been correlated by the one parameter Grunberg–Nissan and Fang and He equations and the two-parameter McAllister, Eyring-UNIQUAC, Eyring-NRTL and Eyring-Wilson models and the results were compared. Additionally, the viscosity deviations, Δη, and the excess Gibbs energy of activation for viscous flow, G"∗"E, were calculated and fitted to the Redlich–Kister equation. The results show that all Δη values are negative over the whole composition range and the G"∗"E values are positive, except for the system with EG. The results of the excess functions are discussed in terms of molecular interactions.

  18. Interaction and miscibility study of fumarate-based macromers with chitosan

    International Nuclear Information System (INIS)

    Hashemi Doulabi, Azadehsadat; Mirzadeh, Hamid; Imani, Mohammad

    2013-01-01

    This work is aimed to prepare Chitosan/Poly(ethylene glycol fumarate) (Ch/PEGF) blend films and to determine blend miscibility of the two polymers as a function of molecular interactions between Ch and PEGF. The blend films are prepared in various ratios (0/100 to 100/0) by the conventional solution-casting method. Interactions occurring in the blends are investigated and probed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). FTIR and XRD analyses reveal the existence of newly-formed hydrogen bond interactions between Ch and PEGF. The influence of Ch/PEGF blend ratio on thermal properties of the blend systems is discussed especially considering thermal stability. The results indicate that both melting point and crystallinity of PEGF component in the blends depend on the composition of the blends. The obtained results of FTIR, DSC, and XRD analyses suggest that the partially protonated amine groups of Ch interacts with the hydroxyl groups of PEGF and thus partial miscibility are occurred. The results are confirmed with polarized microscopy observations. It is shown that although weak hydrogen bonding exists between the polymers functional groups; the blends are partially miscible. Highlights: ► Miscibility of Ch/PEGF blends is evaluated as a function of molecular interactions. ► We explore the relationship between blend ratio of films and miscibility behavior. ► Chitosan chains can affect and disturb original crystalline structures of PEGF. ► Thermal stability of the blend films is discussed. ► These analyses suggest the blends are partially miscible

  19. Self-microemulsifying drug delivery system and nanoemulsion for enhancing aqueous miscibility of Alpinia galanga oil

    DEFF Research Database (Denmark)

    Khumpirapang, Nattakanwadee; Pikulkaew, Surachai; Müllertz, Anette

    2017-01-01

    Alpinia galanga oil (AGO) possesses various activities but low aqueous solubility limits its application particularly in aquatic animals. AGO has powerful activity on fish anesthesia. Ethanol used for enhancing water miscible of AGO always shows severe side effects on fish. The present study expl...

  20. Method for Selection of Solvents for Promotion of Organic Reactions

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Jiménez-González, Concepción; Constable, David J.C.

    2005-01-01

    is to produce, for a given reaction, a short list of chemicals that could be considered as potential solvents, to evaluate their performance in the reacting system, and, based on this, to rank them according to a scoring system. Several examples of application are given to illustrate the main features and steps......A method to select appropriate green solvents for the promotion of a class of organic reactions has been developed. The method combines knowledge from industrial practice and physical insights with computer-aided property estimation tools for selection/design of solvents. In particular, it employs...... estimates of thermodynamic properties to generate a knowledge base of reaction, solvent and environment related properties that directly or indirectly influence the rate and/or conversion of a given reaction. Solvents are selected using a rules-based procedure where the estimated reaction-solvent properties...

  1. High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.

    Science.gov (United States)

    Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo

    2017-01-17

    Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Haematological and biochemical pattern in occupational organic solvent poisoning and exposure

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L M; Rasmussen, J M

    1982-12-01

    A haematological and biochemical investigation was undertaken in 122 consecutive male patients with suspected organic solvent poisoning due to exposure to a mixture of organic solvents such as turpentine, toluene and xylene. Sixty-four healthy solvent exposed and 91 healthy non-exposed male volunteers were used as controls. The only statistically significant differences were that in the patients (B)-leucocytes and S-creatinine were lower than in the controls. (B)-monocytes were higher in all exposed groups than in the controls. S-creatine kinase was higher in patients actually exposed at the examination time, than in all other groups. It is concluded that there was no characteristic haematological and biochemical pattern that could be of value in the individual diagnosis of organic solvent poisoning. The patients and the controls were seen as out-patients. In all groups studied, more than 10% of the results of reticulocytes, leucocytes, sedimentaition rate, orosomucoid and creatine kinase exceeded the upper level of the reference interval, which is based on in-patients. New reference intervals for these 5 analyses, valid for ambulantly examined subjects, should be worked out.

  3. Cerebrospinal fluid cells and proteins in patients occupationally exposed to organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Juntunen, J; Taskinen, E; Luisto, M; Iivanainen, M; Nurminen, M

    1982-06-01

    Cerebrospinal fluid (CSF) cells and proteins were determined for 33 patients exposed to industrial organic solvents. A lymphoid reaction, i.e., a pathologically elevated number or percentage of enlarged lymphoid cells was observed in one-third of the patients, more often in patients with chronic intoxication (40%) than in those currently exposed to organic solvents (32%). An almost significant decrease of small lymphocytes in the CSF was observed among patients who had a past history of chronic solvent intoxication but no recent exposure. No cytological evidence of tissue destruction was found. Signs of slight blood--CSF barrier damage occurred in 5 (23%) of the currently exposed patients, but intrathecal IgG synthesis was not observed. Increased cellular activity in the CSF was also accentuated in principal component analysis. The results suggest slight nonspecific immunoactivation in the central nervous system of subjects exposed to organic solvents.

  4. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    Directory of Open Access Journals (Sweden)

    Bożena Szermer-Olearnik

    Full Text Available Lipopolysaccharide (LPS, endotoxin, pyrogen constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol. During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3 and 10(5 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3-10(5 EU/10(9 PFU (plaque forming units down to an average of 2.8 EU/10(9 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli and F8 (P. aeruginosa.

  5. Spin-crossover in [Fe(3-bpp)2][BF4]2 in different solvents--a dramatic stabilisation of the low-spin state in water.

    Science.gov (United States)

    Barrett, Simon A; Kilner, Colin A; Halcrow, Malcolm A

    2011-12-07

    The temperature of spin-crossover in [Fe(3-bpp)(2)][BF(4)](2) (3-bpp = 2,6-di{pyrazol-3-yl}pyridine) tends to increase in associating solvents. In particular, T(½) shifts to 60-70 K higher temperature in water compared to organic solvents.

  6. Effects of capillarity and heterogeneity on flow of organic liquid in soil

    NARCIS (Netherlands)

    Wipfler, E.L.

    2003-01-01

    Contamination of groundwater by organic liquids, such as gasoline, fuel oils and chlorinated hydrocarbons, forms a serious treat to subsurface water resources. These liquids have a low miscibility with water and move as a discrete liquid phase. A small part of the liquid may dissolve in water and

  7. Remediation of Contaminated Soils by Solvent Flushing

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Jessup, Ron E.; Rao, P. Suresh C.; Wood, A. Lynn

    1994-01-01

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the

  8. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  9. Renal effects of chronic exposure to organic solvents. A clinical controlled trial

    Energy Technology Data Exchange (ETDEWEB)

    Krusell, L.; Nielsen, H.K.; Baelum, J.; Lundqvist, G.; Omland, O.; Vaeth, M.; Husted, S.E.; Mogensen, C.E.; Geday, E.

    1985-01-01

    Chronic effects of organic solvents on renal function were measured by creatinine clearances and urinary excretion rates of beta 2-microglobulin and albumin. Forty-three male printing trade workers occupationally exposed to different organic solvents for 9-25 years were compared with 43 age-matched male controls. No differences were found either in creatinine clearances or average basal levels of beta 2-microglobulin and albumin excretion rates, whereas a positive relation could be demonstrated between alcohol consumption on the day before the trial and urinary excretion rate of albumin. This investigation did not reveal any adverse renal effects of moderate chronic exposure to organic solvents in a group of active trade workers.

  10. Renal effects of chronic exposure to organic solvents. A clinical controlled trial

    DEFF Research Database (Denmark)

    Krusell, Lars Romer; Nielsen, H K; Bælum, Jesper

    1985-01-01

    Chronic effects of organic solvents on renal function were measured by creatinine clearances and urinary excretion rates of beta 2-microglobulin and albumin. Forty-three male printing trade workers occupationally exposed to different organic solvents for 9-25 years were compared with 43 age......-matched male controls. No differences were found either in creatinine clearances or average basal levels of beta 2-microglobulin and albumin excretion rates, whereas a positive relation could be demonstrated between alcohol consumption on the day before the trial and urinary excretion rate of albumin....... This investigation did not reveal any adverse renal effects of moderate chronic exposure to organic solvents in a group of active trade workers....

  11. Switchover of reactions of solvated electrons with nitrate ions and ammonium ions in propanol-water solvents

    International Nuclear Information System (INIS)

    Kang, T.B.; Freeman, G.R.

    1993-01-01

    The reaction rate constants of e s - with ammonium nitrate (∼0.1 mol m -3 ) in 1-propanol-water and 2-propanol-water binary solvents correspond to [e s - + (NO 3 - ) s ] reaction in the water-rich solvents, and to [e s - + (NH 4 + ) s ] reaction in alcohol-rich solvents. The overall rate constant is smaller in solvents with 40-99 mol% water, with a minimum at 70 mol% water. The Arrhenius temperature coefficient is 26 kJ mol -1 in each pure propanol solvent, increases to 29 kJ mol -1 at 40 mol% water, then decreases to 17 kJ mol -1 in pure water solvent. The high reaction rates in the single component solvents, alcohol or water, are limited mainly by solvent processes related to shear viscosity (diffusion) and dielectric relaxation (dipole reorientation). Rate constants reported for concentrated solutions (50-1000 mol m -3 ) of ammonium and nitrate salts in methanol have been quantitatively reinterpreted in terms of the ion atmosphere model. 28 refs., 5 figs., 2 tabs

  12. Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure.

    Science.gov (United States)

    Stancu, Mihaela Marilena

    2016-12-01

    Serratia marcescens strain IBB Po15 (KT315653) which possesses serratiopeptidase (ser) gene (KT894207) exhibited good solvent tolerance. During the exposure of S. marcescens IBB Po15 cells to 5 % organic solvents, n-decane was less toxic for this bacterium, compared with n-hexane, cyclohexane, ethylbenzene, toluene, and styrene. The exposure of the S. marcescens IBB Po15 cells to n-hexane, cyclohexane, ethylbenzene, toluene, and styrene induced the formation of large clusters, while in control and n-decane-exposed cells, only organization into small clusters was observed. The data obtained suggested that S. marcescens IBB Po15 cells produced some secondary metabolites (i.e., surfactant serrawettin, red pigment prodigiosin) which are well known as valuable molecules due to their large applications. The exposure of the bacterial cells to organic solvents induced secondary metabolites profile modifications. However, S. marcescens IBB Po15 possesses only alkB1, todM, rhlAB, pswP, mpr, and ser genes, the unspecific amplification of other fragments being acquired also when the primers for alkM1, xylM, ndoM, and C23DO genes were used. Modifications of DNA patterns were not depicted in S. marcescens IBB Po15 cells exposed to organic solvents.

  13. Solvent Flux Method (SFM): A Case Study of Water Access to Candida antarctica Lipase B.

    Science.gov (United States)

    Benson, Sven P; Pleiss, Jürgen

    2014-11-11

    The solvent flux method (SFM) was developed to comprehensively characterize the influx of solvent molecules from the solvent environment into the active site of a protein in the framework of molecular dynamics simulations. This was achieved by introducing a solvent concentration gradient as well as partially reorienting and rescaling the velocity vector of all solvent molecules contained within a spherical volume enclosing the protein, thus inducing an accelerated solvent influx toward the active site. In addition to the detection of solvent access pathway within the protein structure, it is hereby possible to identify potential amino acid positions relevant to solvent-related enzyme engineering with high statistical significance. The method is particularly aimed at improving the reverse hydrolysis reaction rates in nonaqueous media. Candida antarctica lipase B (CALB) binds to a triglyceride-water interface with its substrate entrance channel oriented toward the hydrophobic substrate interface. The lipase-triglyceride-water system served as a model system for SFM to evaluate the influx of water molecules to the active site. As a proof of principle for SFM, a previously known water access pathway in CALB was identified as the primary water channel. In addition, a secondary water channel and two pathways for water access which contribute to water leakage between the protein and the triglyceride-water interface were identified.

  14. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  15. Miscibility and Speciation in the Water/carbon Dioxide System

    Science.gov (United States)

    Abramson, E.; Bollengier, O.; Brown, J. M.

    2017-12-01

    We have been exploring fluid-fluid solubilities and speciation in mixed systems of CO2-H2O. Fluid-fluid immiscibility extends to the highest pressures and temperatures yet explored (7 GPa, 700K). In this region, commonly used COH fluid models agree neither with the data nor among themselves. The range of immiscibility is extended by addition of NaCl, but miscibility limits determined in preliminary experiments are not as expected from extrapolation of lower pressure (linked to an observed change in speciation as CO2(aq) reacts with water. The identity of the newly formed species is, as of the writing of this abstract, unknown, but presumed to be either H2CO3 or HCO3-. A reasonable match between the observed equilibria and an application of HKF theory suggests that the new species is, indeed, HCO3-, but with a Raman frequency shifted from that found in the dilute aqueous solution. Application of HKF theory to the CO2(f)-CO2(aq) equilibrium suffers from an incompatibility of the usual formulation of the theory with known molar volumes of CO2(f) at higher pressures. On the basis of these studies we conclude that models of CO2-H2O fluids must take into account major changes in speciation, and that simple equations-of-state, of a few fitted parameters, will not afford an adequate description of such fluids. "First principles" models, tested against real data, seem more likely to yield the desired results. This statement extends as well to the calculation of the dielectric constants of these mixed fluids, the basis of ionic solution chemistry. Further, semi-empirical formulations of solution thermodynamics, which function well at pressures of kbars, ought to be re-worked for use over larger pressure ranges.

  16. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  17. Dispersion of carbon nanotubes and polymer nanocomposite fabrication using trifluoroacetic acid as a co-solvent

    International Nuclear Information System (INIS)

    Chen Hui; Muthuraman, Harish; Stokes, Paul; Zou Jianhua; Liu Xiong; Wang, Jinhai; Huo Qun; Khondaker, Saiful I; Zhai Lei

    2007-01-01

    We herein report the dispersion of multi-walled carbon nanotubes (MWCNTs) using trifluoroacetic acid (TFA) as a co-solvent. TFA is a strong but volatile acid which is miscible with many commonly used organic solvents. Our study demonstrates that MWCNTs can be effectively purified and readily dispersed in a range of organic solvents including dimethyl formamide (DMF), tetrahydrofuran (THF), and dichloromethane when mixed with 10 vol.% trifluoroacetic acid (TFA). X-ray photoelectron spectroscopic analysis revealed that the chemical structure of the TFA-treated MWCNTs remained intact without oxidation. The dispersed carbon nanotubes in TFA/THF solution were mixed with poly(methyl methacrylate) (PMMA) to fabricate polymer nanocomposites. A good dispersion of nanotubes in solution and in polymer matrices was observed and confirmed by SEM, optical microscopy, and light transmittance study. Low percolation thresholds of electrical conductivity were observed from the fabricated MWCNT/PMMA composite films. Further enhancement in the dispersion of MWCNTs was achieved by adding a conjugated conducting polymer, poly(3-hexylthiophene) (P3HT), to the dispersion, wherein TFA also serves as a doping agent to the conducting polymer. The ternary nanocomposite MWCNT/P3HT/PMMA exhibited an extremely low percolation threshold of less than 0.006 wt% of MWCNT content. This low percolation threshold is attributed to a good dispersion of MWCNTs and enhanced conductivity of the nanocomposites by conjugated conducting polymer

  18. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  19. Understanding organic reactions in water : from hydrophobic encounters to surfactant aggregates

    NARCIS (Netherlands)

    Engberts, J.B.F.N.; Blandamer, M.J.

    2001-01-01

    A crucial factor in realising a green chemical process in solution involves the choice of a safe, non-toxic and cheap solvent. Water is the obvious choice. Despite solubility problems, considerable interest has developed recently in organic chemistry in water. This interest also results from the

  20. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  1. Absorption and emission behaviour of trans-p-coumaric acid in aqueous solutions and some organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Putschoegl, M.; Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany)], E-mail: alfons.penzkofer@physik.uni-regensburg.de

    2008-01-22

    The absorption and fluorescence behaviour of trans-p-coumaric acid (trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form (p-CAH{sub 2}) and the single anionic form (p-CAH{sup -}) at low pH (pK{sub na} {approx} 4.9), and between the single anionic and the double anionic form (p-CA{sup 2-}) at high pH (pK{sub aa} {approx} 9.35). In the organic solvents studied trans-p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans-p-coumaric acid in aqueous solution is {phi}{sub F} {approx} 1.4 x 10{sup -4} for the neutral and the single anionic form, while it is {phi}{sub F} {approx} 1.3 x 10{sup -3} for the double anionic form. For trans-p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 x 10{sup -5} (acetonitrile) to 1.5 x 10{sup -4} (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm{sup -1} Stokes shifted in aqueous solution, and 5400-8200 cm{sup -1} Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA{sup 2-}, solvent-assisted intra-molecular charge-transfer or {pi}{pi}* to n{pi}* transfer and internal conversion for p-CAH{sub 2} and p-CAH{sup -}). The solvent dependence of the first {pi}{pi}* electronic transition frequency and of the fluorescence Stokes shift of p-CAH{sub 2} is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  2. Evaluation of the Process of Solvent Vapor Annealing on Organic Thin Films

    KAUST Repository

    Ren, Yi

    2011-01-01

    Solvent vapor annealing has recently emerged as an intriguing, room-temperature, and highly versatile alternative to thermal annealing. The chemically selective interaction between solvents and organic semiconductors opens new opportunities

  3. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    Science.gov (United States)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  4. Phosphorus and uranium recovery process from phosphated rocks

    Energy Technology Data Exchange (ETDEWEB)

    Sze, M C.Y.; Long, R H

    1981-01-30

    Improvement of uranium recovery in phosphate rocks by treatment with nitric acid avoiding the formation of a precipitate including a part of the uranium. The separation of uranium from phosphoric acid is obtained by liquid-liquid extraction using dialkyl posphoric acid with at least 10 carbon atoms and a phosphoryl alkyl alkoxy compound with at least 10 carbon atoms and a non water miscible organic solvent.

  5. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation

    Science.gov (United States)

    Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Nair, R. R.

    2017-12-01

    Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation. However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents, a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10-20 μm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to ~10 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports. The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies.

  6. Recent Advances in Anhydrous Solvents for CO{sub 2} Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjune [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lin, Kun-Yi Andrew [Department of Environmental Engineering, National Chung Hsing University, Taichung City (China); Park, Ah-Hyung Alissa, E-mail: ap2622@columbia.edu [Department of Earth and Environmental Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, NY (United States); Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, NY (United States); Petit, Camille, E-mail: ap2622@columbia.edu [Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-10-01

    CO{sub 2} capture by amine scrubbing, which has a high CO{sub 2} capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO{sub 2} capture from flue gases. The findings from these demonstrations will significantly advance the field of CO{sub 2} capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO{sub 2} capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO{sub 2} capture solvents, which are often anhydrous, have been developed as the third-generation CO{sub 2} capture solvents. These novel classes of liquid materials include ionic liquids, CO{sub 2}-triggered switchable solvents (i.e., CO{sub 2}-binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO{sub 2} capture. Particular attention is given to the mechanisms of CO{sub 2} absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO{sub 2} capture media.

  7. Bioproduction of vanillin using an organic solvent-tolerant Brevibacillus agri 13.

    Science.gov (United States)

    Wangrangsimagul, Nuttawat; Klinsakul, Kunticha; Vangnai, Alisa S; Wongkongkatep, Jirarut; Inprakhon, Pranee; Honda, Kohsuke; Ohtake, Hisao; Kato, Junichi; Pongtharangkul, Thunyarat

    2012-01-01

    Nowadays, majority of vanillin supplied to the world market is chemically synthesized from a petroleum-based raw material, raising a concern among the consumers regarding the product safety. In this study, an organic solvent-tolerant Brevibacillus agri 13 previously reported for a strong predilectic property was utilized as a whole-cell biocatalyst for bioproduction of vanillin from isoeugenol (IG). B. agri 13 is the first biocatalyst reported for bioproduction of vanillin at a temperature as high as 45°C. Both pH and temperature were found to affect vanillin production significantly. An extreme level of organic solvent tolerance of B. agri 13 allowed us to utilize it in a biphasic system using organic solvents generally considered as highly toxic to most bacteria. With an addition of butyl acetate at 30% (v/v) as an organic second phase, toxicity of IG exerted onto the biocatalyst was reduced dramatically while faster and more efficient vanillin production was obtained (1.7 g/L after 48 h with 27.8% molar conversion).

  8. The Cytotoxicity Study of Carboxymethyl Starch (CMS) of Sago Starch (Metro xylon sago) by Brine Shrimp Lethality Test (Artemia salina nauplii)

    International Nuclear Information System (INIS)

    Ibrahim Ijang; Fazliana Mohd Saaya; Zainon Othman

    2014-01-01

    CMS can be produced by substitution of the hydroxyl groups with sodium monochloroacetate in the presence of strong alkali. Carboxy methylation can be performed in water as a solvent or in a water-miscible organic solvent containing a small amount of water such as ethanol, isopropanol, methanol or toluene. The use of organic solvent will preserve the final product in the granular form and the side product can be washed out easily but some of them may be having potential toxicity and carcinogenic effect. In this study, CMS was investigated the level of toxicity by using brine shrimp lethality (BSLT). Brine shrimp test method was used to screen CMS for their biological activity. The screening results showed that the LC50, of CMS is more than 100 mg/ ml dose concentration. In conclusion, CMS is not cytotoxicity to Artemia salina nauplii and BSLT method is simple, inexpensive and convenient assay for the detection of cytotoxic compound. (author)

  9. Organic solvent exposure and depressive symptoms among licensed pesticide applicators in the Agricultural Health Study.

    Science.gov (United States)

    Siegel, Miriam; Starks, Sarah E; Sanderson, Wayne T; Kamel, Freya; Hoppin, Jane A; Gerr, Fred

    2017-11-01

    Although organic solvents are often used in agricultural operations, neurotoxic effects of solvent exposure have not been extensively studied among farmers. The current analysis examined associations between questionnaire-based metrics of organic solvent exposure and depressive symptoms among farmers. Results from 692 male Agricultural Health Study participants were analyzed. Solvent type and exposure duration were assessed by questionnaire. An "ever-use" variable and years of use categories were constructed for exposure to gasoline, paint/lacquer thinner, petroleum distillates, and any solvent. Depressive symptoms were ascertained with the Center for Epidemiologic Studies Depression Scale (CES-D); scores were analyzed separately as continuous (0-60) and dichotomous (distillates, and short duration of petroleum distillate exposure and continuous CES-D score (p < 0.05). Although nearly all associations were positive, fewer statistically significant associations were observed between metrics of solvent exposure and the dichotomized CES-D variable. Solvent exposures were associated with depressive symptoms among farmers. Efforts to limit exposure to organic solvents may reduce the risk of depressive symptoms among farmers.

  10. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Large Appliances Pt. 63, Subpt. NNNN, Table 3 Table 3 to Subpart NNNN of Part 63—Default Organic HAP.../solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  11. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  12. EFFECT OF SOLVENTS IN WATER ON ELECTROCATALYTIC DECHLORINATION OF 2-CL BP AT A PALLADIUM MODIFIED GRANULAR-GRAPHITE ELECTRODE

    Science.gov (United States)

    Remediation of soils and sediments contaminated by polychlorinated biphenyls (PCBs) usually involves use of organic solvents because PCBs have very limited solubility in water. The resulting liquids require further treatment to degrade these toxic contaminants. Catalytic and elec...

  13. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  14. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  15. Miscibility, crystallization and mechanical properties of biodegradable blends of poly(L-lactic acid) and poly(butylene succinate-b-ethylene succinate) multiblock copolymer

    International Nuclear Information System (INIS)

    Jiao, Ling; Huang, Cai-Li; Zeng, Jian-Bing; Wang, Yu-Zhong; Wang, Xiu-Li

    2012-01-01

    Highlights: ► The blend of PLLA and PBES showed limited miscibility. ► The crystallization rate of PLLA was accelerated by blending with PBES. ► The crystal structures of PLLA and PBES did not change. - Abstract: Poly(L-lactic acid) (PLLA) is regarded as one of the most promising biobased and biodegradable polymers. However, its application was restricted due to the brittle nature. In the present study, PLLA was blended with a novel biodegradable flexible multiblock copolymer, poly(butylene succinate-b-ethylene succinate) (PBES) to produce new biodegradable materials. PLLA/PBES blends with different composition were prepared by solution blending and casting method with chloroform as a mutual solvent. Miscibility, crystallization behavior, and mechanical properties of the blends were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and tensile tests. The results indicated that PLLA and PBES showed limited miscibility in the amorphous phase. The crystallization rate of PLLA was accelerated with the increase of PBES in the blends while the crystallization mechanism did not change. The results of tensile tests suggest that the blends showed longer elongation at break than neat PLLA. The elongation at break of PLLA was obtained to be 10%, and those of PLLA/PBES 80/20, 60/40, 40/60 and 20/80 were 29, 110, 442, and 455%, respectively.

  16. Production of thermostable and organic solvent-tolerant alkaline ...

    African Journals Online (AJOL)

    An alkaliphilic bacterium producing organic solvent-tolerant and thermostable alkaline protease was isolated from poultry litter site and identified as Bacillus coagulans PSB-07. Protease production under different submerged fermentation conditions were investigated with the aim of optimizing yield of enzyme. B. coagulans ...

  17. Molecular transport behaviour of organic solvents through halloysite ...

    Indian Academy of Sciences (India)

    Micro and Nano Materials Laboratory, Department of Chemistry, Institute of Technical ... The transport behaviour of three organic solvents (benzene, toluene and xylene) through halloysite nan- ... ena play important roles in different areas of engineering and ... their blends by an equilibrium swelling method has been.

  18. Measurement and correlation of solubility of ciclesonide in seven pure organic solvents

    International Nuclear Information System (INIS)

    Zhou, Lina; Yin, Qiuxiang; Guo, Zhiqiang; Lu, Haijiao; Liu, Mingyan; Chen, Wei; Hou, Baohong

    2017-01-01

    Highlights: • The solubility of ciclesonide in seven pure organic solvents was determined by gravimetric method. • The solubility order was interpreted by virtue of density function theory (DFT). • The experimental solubility of ciclesonide was correlated by four thermodynamic models. • Mixing thermodynamic properties of ciclesonide were calculated and discussed. - Abstract: The solubility of ciclesonide in seven organic solvents (ethanol, 2-propanol, 1-propanol, 1-butanol, acetonitrile, toluene and ethyl acetate) in the temperature range from 278.15 K to 313.15 K was measured by gravimetrical method under atmospheric pressure. The results indicate that the solubility of ciclesonide increases with elevating temperature in all investigated solvents. The solubility order in different solvents was interpreted through comparing interaction force between solute and solvent molecules by virtue of density function theory (DFT). Thermodynamic equations including the modified Apelblat equation, λh equation, Wilson equation and NRTL equation are all suitable to correlate the solubility results. Based on the Wilson equation, the thermodynamic parameters from the mixing process are calculated, and the results indicate the mixing process of ciclesonide in the selected pure solvents is spontaneous and entropy-driven.

  19. Reference value standards and primary standards for pH measurements in D2O and aqueous-organic solvent mixtures: new accessions and assessments

    International Nuclear Information System (INIS)

    Mussini, P.R.; Mussini, T.; Rondinini, S.

    1997-01-01

    Recommended Reference Value Standards based on the potassium hydro-genphthalate buffer at various temperatures are reported for pH measurements in various binary solvent mixtures of water with eight organic solvents: methanol, ethanol, 2-propanol, 1,2-ethanediol, 2-methoxyethanol (''methylcellosolve''), acetonitrile, 1,4-dioxane, and dimethyl sulfoxide, together with Reference Value Standard based on the potassium deuterium phthalate buffer for pD measurements in D 2 O. In addition are reported Primary Standards for pH based on numerous buffers in various binary solvent mixtures of water with methanol, ethanol, and dimethyl sulfoxide, together with Primary Standards for pD in D 2 O based on the citrate, phosphate and carbonate buffers. (author)

  20. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    Science.gov (United States)

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  1. Steam and solvent injection as an advanced recovering method for heavy oil reservoirs; Injecao de vapor e solvente como um metodo de recuperacao avancada em reservatorios de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Edney Rafael V.P.; Rodrigues, Marcos Allyson F.; Barbosa, Janaina Medeiros D.; Barillas, Jennys Lourdes M.; Dutra Junior, Tarcilio V.; Mata, Wilson da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was driven contemplating the effects of some operational parameters (distance between wells, injection fluids rate, kind of solvent and injected solvent volume) on the accumulated production of oil and recovery factor. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled. (author)

  2. Purification and characterization of an extracellular halophilic and organic solvent-tolerant amylopullulanase from a haloarchaeon, Halorubrum sp. strain Ha25.

    Directory of Open Access Journals (Sweden)

    Mostafa Fazeli

    2013-01-01

    Full Text Available Introduction: Halophiles, especially haloarchaea are one of the most important groups of extremophiles. Halophilic hydrolases have been studied worldwide and have been considered for biotechnology and industrial technologies. This study is the first report in amylopullulanase production in halophilic microorganisms.Materials and methods: A halophilic archaeon, Halorubrum sp. strain Ha25, produced extracellular halophilic organic solvent-tolerant amylopullulanase. The enzyme was purified using ethanol precipitation and anion exchange chromatography method. Molecular mass of purified enzyme was determined by SDS–PAGE method. After purification, the enzyme was characterized. To study the effects of organic solvents in the stability of the enzyme, the enzyme solution was incubated in the presence of various organic compounds and then, residual enzyme activity was measured. Mode of action of the enzyme was determined by thin-layer chromatography.Results: Molecular weight of the purified enzyme was estimated to be 140 kDa by SDS–PAGE method. Optimum temperature for amylolitic and pullulytic activities was 50 °C. Optimum pH for amylolitic activity was 7.0 and for pullulytic activity was 7.5. This enzyme was active over a wide range of concentrations (0-4.5 M of NaCl. The effect of organic solvents on the amylolitic and pullulytic activities showed that this enzyme was more stable in the presence of non-polar organic solvents than polar solvents. The enzyme solely hydrolyzed pullulan and soluble starch to glucose.Discussion and conclusion: Halorubrum sp. strain Ha25 produces thermophilic and extremely halophilic amylopullulanase. The catalytic function under multi extreme condition of high temperature, high salinity, and low water activity might possess biotechnological and commercial values such as treatment waste solutions with starch residues, high salt content and solvents.

  3. Analysis of organic solvents and liquid mixtures using a fiber-tip evaporation sensor

    Science.gov (United States)

    Preter, Eyal; Donlagic, Denis; Artel, Vlada; Katims, Rachel A.; Sukenik, Chaim N.; Zadok, Avi

    2014-05-01

    The instantaneous size and rate of evaporation of pendant liquid droplets placed on the cleaved facet of a standard fiber are reconstructed based on reflected optical power. Using the evaporation dynamics, the relative contents of ethanol in ethanol-water binary mixtures are assessed with 1% precision and different blends of methanol in gasoline are properly recognized. The latter application, in particular, is significant for the use of alternative fuels in the automotive sector. Also, ten organic solvents are identified based on their evaporation from a fiber facet coated with a hydrophobic, selfassembled monolayer.

  4. Evaluation of Dimethylformamide (DMF) as an Organic Modifier in ...

    African Journals Online (AJOL)

    ... (DMF) as an organic modifier in hydrophobicity index (Rm) determination. Method: We quantitatively evaluated the problem of partial miscibility of phases associated with the reversed phase thin layer chromatographic (RPTLC) system, using liquid paraffin as stationary phase and acetone/water mixtures as mobile phase.

  5. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents.

    Science.gov (United States)

    Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo

    2018-06-01

    Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.

  7. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2018-01-01

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring

  8. Chronic Organic Solvent Exposure Changes Visual Tracking in Men and Women

    Directory of Open Access Journals (Sweden)

    Ana R. de Oliveira

    2017-11-01

    Full Text Available Organic solvents can change CNS sensory and motor function. Eye-movement analyses can be important tools when investigating the neurotoxic changes that result from chronic organic solvent exposure. The current research measured the eye-movement patterns of men and women with and without histories of chronic organic solvent exposure. A total of 44 volunteers between 18 and 41 years old participated in this study; 22 were men (11 exposed and 11 controls, and 22 were women (11 exposed and 11 controls. Eye movement was evaluated using a 250-Hz High-Speed Video Eye Tracker Toolbox (Cambridge Research Systems via an image of a maze. Specific body indices of exposed and non-exposed men and women were measured with an Inbody 720 to determine whether the differences in eye-movement patterns were associated with body composition. The data were analyzed using IBM SPSS Statistics version 20.0.0. The results indicated that exposed adults showed significantly more fixations (t = 3.82; p = 0.001; r = 0.51 and longer fixations (t = 4.27; p = 0.001, r = 0.54 than their non-exposed counterparts. Comparisons within men (e.g., exposed and non-exposed showed significant differences in the number of fixations (t = 2.21; p = 0.04; r = 0.20 and duration of fixations (t = 3.29; p = 0.001; r = 0.35. The same was true for exposed vs. non-exposed women, who showed significant differences in the number of fixations (t = 3.10; p = 0.001; r = 0.32 and fixation durations (t = 2.76; p = 0.01; r = 0.28. However, the results did not show significant differences between exposed women and men in the number and duration of fixations. No correlations were found between eye-movement pattern and body composition measures (p > 0.05. These results suggest that chronic organic solvent exposure affects eye movements, regardless of sex and body composition, and that eye tracking contributes to the investigation of the visual information processing disorders acquired by workers exposed to

  9. Chronic Organic Solvent Exposure Changes Visual Tracking in Men and Women.

    Science.gov (United States)

    de Oliveira, Ana R; Campos Neto, Armindo de Arruda; Bezerra de Medeiros, Paloma C; de Andrade, Michael J O; Dos Santos, Natanael A

    2017-01-01

    Organic solvents can change CNS sensory and motor function. Eye-movement analyses can be important tools when investigating the neurotoxic changes that result from chronic organic solvent exposure. The current research measured the eye-movement patterns of men and women with and without histories of chronic organic solvent exposure. A total of 44 volunteers between 18 and 41 years old participated in this study; 22 were men (11 exposed and 11 controls), and 22 were women (11 exposed and 11 controls). Eye movement was evaluated using a 250-Hz High-Speed Video Eye Tracker Toolbox (Cambridge Research Systems) via an image of a maze. Specific body indices of exposed and non-exposed men and women were measured with an Inbody 720 to determine whether the differences in eye-movement patterns were associated with body composition. The data were analyzed using IBM SPSS Statistics version 20.0.0. The results indicated that exposed adults showed significantly more fixations ( t = 3.82; p = 0.001; r = 0.51) and longer fixations ( t = 4.27; p = 0.001, r = 0.54) than their non-exposed counterparts. Comparisons within men (e.g., exposed and non-exposed) showed significant differences in the number of fixations ( t = 2.21; p = 0.04; r = 0.20) and duration of fixations ( t = 3.29; p = 0.001; r = 0.35). The same was true for exposed vs. non-exposed women, who showed significant differences in the number of fixations ( t = 3.10; p = 0.001; r = 0.32) and fixation durations ( t = 2.76; p = 0.01; r = 0.28). However, the results did not show significant differences between exposed women and men in the number and duration of fixations. No correlations were found between eye-movement pattern and body composition measures ( p > 0.05). These results suggest that chronic organic solvent exposure affects eye movements, regardless of sex and body composition, and that eye tracking contributes to the investigation of the visual information processing disorders acquired by workers exposed to

  10. Understanding dissolution behavior of 193nm photoresists in organic solvent developers

    Science.gov (United States)

    Lee, Seung-Hyun; Park, Jong Keun; Cardolaccia, Thomas; Sun, Jibin; Andes, Cecily; O'Connell, Kathleen; Barclay, George G.

    2012-03-01

    Herein, we investigate the dissolution behavior of 193-nm chemically amplified resist in different organic solvents at a mechanistic level. We previously reported the effect of solvent developers on the negative tone development (NTD) process in both dry and immersion lithography, and demonstrated various resist performance parameters such as photospeed, critical dimension uniformity, and dissolution rate contrast are strongly affected by chemical nature of the organic developer. We further pursued the investigation by examining the dependence of resist dissolution behavior on their solubility properties using Hansen Solubility Parameter (HSP). The effects of monomer structure, and resist composition, and the effects of different developer chemistry on dissolution behaviors were evaluated by using laser interferometry and quartz crystal microbalance. We have found that dissolution behaviors of methacrylate based resists are significantly different in different organic solvent developers such as OSDTM-1000 Developer* and n-butyl acetate (nBA), affecting their resist performance. This study reveals that understanding the resist dissolution behavior helps to design robust NTD materials for higher resolution imaging.

  11. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    Directory of Open Access Journals (Sweden)

    Talita Baumgratz Cachapuz CHIMELI

    2014-07-01

    Full Text Available Objective: To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake and nanoleakage of adhesive systems. Material and Methods: Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness were produced (N=48 using the adhesives: Clearfil S3 Bond (CS3/Kuraray, Clearfil SE Bond - control group (CSE/Kuraray, Optibond Solo Plus (OS/Kerr and Scotchbond Universal Adhesive (SBU/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group, and then photoactivated for 80 s (550 mW/cm2. After desiccation, the specimens were weighed and stored in distilled water (N=12 or mineral oil (N=12 to evaluate the water diffusion over a 7-day period. Net water uptake (% was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%. The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results: Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05. Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control presented significantly lower net uptake (5.4%. The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions: Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  12. Parâmetros reacionais para a síntese enzimática do butirato de butila em solventes orgânicos Reactional parameters for enzymatic synthesis of butyl butyrate in organic solvent

    Directory of Open Access Journals (Sweden)

    Heizir F. CASTRO

    1997-12-01

    Full Text Available A síntese orgânica catalisada por enzimas envolve um mecanismo complexo dependente do tipo de substrato, enzima, solvente orgânico e teor de água no meio reacional. Neste trabalho foi estudado a influência de alguns desses parâmetros no rendimento da esterificação do butanol com ácido butírico, utilizando uma preparação enzimática comercial de lipase. A polaridade e natureza do solvente, bem como a razão molar entre o butanol e ácido butírico, foram considerados os fatores que mais influenciaram o desenvolvimento dessa síntese enzimática.The organic synthesis catalyzed by enzymes is a complex function of substrate concentration, water concentration in the liquid phase, enzyme and organic solvent properties. In this work the influence of some parameters on the esterification of butanol with butyric acid was investigated, using a commercial lipase preparation. The polarity and nature of the solvent and also the substrate mole ratios played an important role in the performance of this enzymatic synthesis.

  13. Equilibrium data on ethanol-water-solvent ternaries

    Directory of Open Access Journals (Sweden)

    I. Kirbaslar

    2000-06-01

    Full Text Available Experimental liquid-liquid equilibria of water-ethanol-1-nonanol and water-ethanol-1-decanol systems were investigated at 303.16± 0.20 K. The reliability of the experimental tie-line data was ascertained by using Othmer-Tobias and Hand plots. Distribution coefficients (Di and separation factors (S were evaluated for the immiscibility region. It is concluded that the solvents with high boiling point, 1-nonanol and 1-decanol, are suitable separating agents for dilute aqueous ethyl alcohol solutions.

  14. Interaction of organic solvent with a subbituminous coal below pyrolysis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, D.; Grens, E.A.

    1978-06-01

    The interactions of a subbituminous coal with certain binary organic solvent mixtures have been studied at 250/sup 0/C. Mixtures of pyridine, quinoline, piperidine, tetrahydroquinoline, and ethylenediamine with either toluene or tetralin were contacted with coal in a successive batch, stirred reactor, the extractions being carried to near completion. Two distinct behaviors of extraction yield as a function of composition have been identified. In the majority of the solvent mixtures the extraction yield increases linearly with increasing concentration of the more active solvent. When the active solvent is ethylenediamine, however, the extraction yield increases rapidly when small concentrations of ethylenediamine are used but then levels out close to its maximum value in a 50 to 50 mix. This behavior is an indication that, except in the case of ethylenediamine, the activity of solvent mixtures is a function of bulk solution properties.

  15. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Science.gov (United States)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2017-08-08

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  16. Chemistry in production of heavy water and industrial solvents

    International Nuclear Information System (INIS)

    Thomas, P.G.

    2015-01-01

    Industries are the temples of modern science built on the robust foundation of science and technology. The genesis of giant chemical industries is from small laboratories where the scientific thoughts are fused and transformed into innovative technologies Heavy water production is an energy intensive giant chemical industry where various hazardous and flammable chemicals are handled, extreme operating conditions are maintained and various complex chemical reactions are involved. Chemistry is the back bone to all chemical industrial activities and plays a lead role in heavy water production also. Heavy Water Board has now mastered the technology of design, construction, operation and maintenance of Heavy Water plants as well as fine tuning of the process make it more cost effective and environment friendly. Heavy Water Board has ventured into diversified activities intimately connected with our three stages of Nuclear Power Programme. Process development for the production of nuclear grade solvents for the front end and back end of our nuclear fuel cycle is one area where we have made significant contributions. Heavy Water Board has validated, modified and fine-tuned the synthesis routes for TBP, D2EHPA, TOPO, TAPO TIAP, DNPPA, D2EHPA-II, DHOA etc and these solvents were accepted by end users. Exclusive campaigns were carried out in laboratory scale, bench scale and pilot plant scale before scaling up to industrial scale. The process chemistry is understood very well and chemical parameters were monitored in every step of the synthesis. It is a continual improvement cycle where fine tuning is carried out for best quality and yield of product at lowest cost. In this presentation, an attempt is made to highlight the role of chemistry in the production of Heavy Water and industrial solvents

  17. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    Science.gov (United States)

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  18. Thermodynamic properties of L-Theanine in different solvents

    International Nuclear Information System (INIS)

    Zhou, Fuli; Hou, Baohong; Tao, Xiaolong; Hu, Xiaoxue; Huang, Qiaoyin; Zhang, Zaixiang; Wang, Yongli; Hao, Hongxun

    2017-01-01

    Highlights: • The solubility data of L-Theanine in different solvents were measured by using an equilibrium method. • Several models were used to correlate the experimental solubility data. • The mixing thermodynamic properties were calculated. - Abstract: The solubility data of L-Theanine in pure water and three kinds of water + organic solvent mxitures were measured in temperature ranges from (278.15 to 13.15) K by using an equilibrium method. The results show that the solubility of L-Theanine increases with the increasing of temperature in all selected solvents. The modified Apelblat equation and the λ-h model were applied to correlate the solubility data in pure water, while the modified Apelblat equation, the λ-h model, the NRTL model and the Jouyban–Acree model were applied to correlate the solubility data in binary solvent mixtures. Furthermore, the mixing thermodynamic properties of L-Theanine in different solvents were also calculated based on the NRTL model and experimental solubility data.

  19. Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents

    Science.gov (United States)

    Wang, Yuru; Wang, Tianren; Chen, Xi; Xu, Yang; Li, Huanrong

    2018-04-01

    Herein, we prepared a Mn(II)-coordinated carbon dots (CDs) with fluorescence and MRI (magnetic resonance imaging) bimodal properties by a one-pot solvothermal method and separated via silica column chromatography. The quantum yield of the CDs increased greatly from 2.27% to 6.75% with increase of Mn(II) doping, meanwhile the CDs exhibited a higher MR activity (7.28 mM-1s-1) than that of commercial Gd-DTPA (4.63 mM-1s-1). In addition, white light emitting CDs were obtained by mixing the different types of CDs. Notably, these CDs exhibited different fluorescence emissions in different organic solvents and could be used to discriminate organic solvents based on the polarity and protonation of the solvents.

  20. Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2013-04-01

    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Characteristics of peaks of inhalation exposure to organic solvents

    NARCIS (Netherlands)

    Preller, L.; Burstyn, I.; Pater, N. de; Kromhout, H.

    2004-01-01

    Objectives: To determine which exposure metrics are sufficient to characterize 'peak' inhalation exposure to organic solvents (OS) during spraying operations. Methods: Personal exposure measurements (n = 27; duration 5-159 min) were collected during application of paints, primers, resins and glues

  2. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    Science.gov (United States)

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mixed organic solvents induce renal injury in rats.

    Science.gov (United States)

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  4. Mixed organic solvents induce renal injury in rats.

    Directory of Open Access Journals (Sweden)

    Weisong Qin

    Full Text Available To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16 and 25% (4/16, respectively. Urinary N-Acetyl-β-(D-Glucosaminidase (NAG activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM. Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  5. Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Samantha A. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Appel, Aaron M. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Linehan, John C. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Wiedner, Eric S. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA

    2017-10-23

    A critical scientific challenge for utilization of CO2 is the development of catalyst systems that do not depend upon expensive or environmentally unfriendly reagents, such as precious metals, strong organic bases, and organic solvents. We have used thermodynamic insights to predict and demonstrate that the HCoI(dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strong organic base was eliminated by performing catalysis in water due to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity. The research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  6. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery.

    Science.gov (United States)

    Tang, Wei-Lun; Tang, Wei-Hsin; Szeitz, Andras; Kulkarni, Jayesh; Cullis, Pieter; Li, Shyh-Dar

    2018-06-01

    The solvent-assisted active loading technology (SALT) was developed for encapsulating a water insoluble weak base into the liposomal core in the presence of 5% DMSO. In this study, we further examined the effect of various water miscible solvents in promoting active loading of other types of drugs into liposomes. To achieve complete drug loading, the amount of solvent required must result in complete drug solubilization and membrane permeability enhancement, but must be below the threshold that induces liposomal aggregation or causes bilayer disruption. We then used the SALT to load gambogic acid (GA, an insoluble model drug that shows promising anticancer effect) into liposomes, and optimized the loading gradient and lipid composition to prepare a stable formulation (Lipo-GA) that displayed >95% drug retention after incubation with serum for 3 days. Lipo-GA contained a high drug-to-lipid ratio of 1/5 (w/w) with a mean particle size of ∼75 nm. It also displayed a prolonged circulation half-life (1.5 h vs. 18.6 h) and enhanced antitumor activity in two syngeneic mice models compared to free GA. Particularly, complete tumor regression was observed in the EMT6 tumor model for 14 d with significant inhibition of multiple oncogenes including HIF-1α, VEGF-A, STAT3, BCL-2, and NF-κB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Can green solvents be alternatives for thermal stabilization of collagen?

    Science.gov (United States)

    Mehta, Ami; Rao, J Raghava; Fathima, Nishter Nishad

    2014-08-01

    "Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water. Therefore, for adopting green solvents in leather making, it is necessary to evaluate its influence on type I collagen, the major protein present in the skin matrix. The thermal stability of collagen from rat tail tendon fiber (RTT) treated with seven green solvents namely, ethanol, ethyl lactate, ethyl acetate, propylene carbonate, propylene glycol, polyethylene glycol-200 and heptane was determined using differential scanning calorimetry (DSC). Crosslinking efficiency of basic chromium sulfate and wattle on RTT in green solvents was determined. DSC thermograms show increase in thermal stability of RTT collagen against heat with green solvents (>78°C) compared to water (63°C). In the presence of crosslinkers, RTT demonstrated thermal stability >100°C in some green solvents, resulting in increased intermolecular forces between collagen, solvent and crosslinkers. The significant improvement in thermal stability of collagen potentiates the capability of green solvents as an alternative for water. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Staining of proteins in gels with Coomassie G-250 without organic solvent and acetic acid.

    Science.gov (United States)

    Lawrence, Ann-Marie; Besir, H Uuml Seyin

    2009-08-14

    In classical protein staining protocols using Coomassie Brilliant Blue (CBB), solutions with high contents of toxic and flammable organic solvents (Methanol, Ethanol or 2-Propanol) and acetic acid are used for fixation, staining and destaining of proteins in a gel after SDS-PAGE. To speed up the procedure, heating the staining solution in the microwave oven for a short time is frequently used. This usually results in evaporation of toxic or hazardous Methanol, Ethanol or 2-Propanol and a strong smell of acetic acid in the lab which should be avoided due to safety considerations. In a protocol originally published in two patent applications by E.M. Wondrak (US2001046709 (A1), US6319720 (B1)), an alternative composition of the staining solution is described in which no organic solvent or acid is used. The CBB is dissolved in bidistilled water (60-80 mg of CBB G-250 per liter) and 35 mM HCl is added as the only other compound in the staining solution. The CBB staining of the gel is done after SDS-PAGE and thorough washing of the gel in bidistilled water. By heating the gel during the washing and staining steps, the process can be finished faster and no toxic or hazardous compounds are evaporating. The staining of proteins occurs already within 1 minute after heating the gel in staining solution and is fully developed after 15-30 min with a slightly blue background that is destained completely by prolonged washing of the stained gel in bidistilled water, without affecting the stained protein bands.

  9. The liquid metastable miscibility gap in Cu-based systems

    DEFF Research Database (Denmark)

    Curiotto, S.; Greco, R.; Pryds, Nini

    2007-01-01

    Some Cu-based alloys, like Cu–Co, Cu–Fe and Cu–Co–Fe, display a liquid metastable miscibility gap. When the melt is undercooled below a certain temperature depending on the alloy composition, they present a separation in two liquid phases, followed by coagulation before dendritic solidification....... In order to predict the phase equilibria and the mechanisms of microstructure formation, a determination of the metastable monotectics in the phase diagrams is essential. This paper focuses on the up-to-date findings on the Cu–Co, Cu–Fe and Cu–Co–Fe metastable miscibility gap in the liquid phase...

  10. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    DEFF Research Database (Denmark)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30....... The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0-24 h and Cmax, but similar Tmax as compared...

  11. Organic Synthesis under Solvent-free Condition. An Environmentally ...

    Indian Academy of Sciences (India)

    Though it is a common practice to run the organic reactions in solvent media, the ... this concept is simple. That is, the ... to vigorous research activity and reinvestigation of known reac- tions to achieve ... experimental procedure, work up technique and saving in labour. These would be ... This is true not only of the crystals of ...

  12. A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography.

    Science.gov (United States)

    Sarafraz-Yazdi, A; Mofazzeli, F; Es'haghi, Z

    2009-07-15

    A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L(-1)) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 microL), then back-extracted into the 6 mL acidified aqueous solution (acceptor phase, HCl 0.5 mol L(-1)) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 microL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L(-1) NaOH with 10% NaCl; organic phase: 20 microL of toluene; acceptor phase: 6 microL of 0.5 mol L(-1) HCl and 600 mmol L(-1) 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 microg L(-1) (R>0.9991), and also the limits of detection were in the range of 0.01-0.1 micro gL(-1). The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.

  13. Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water

    Directory of Open Access Journals (Sweden)

    Svetlana Sushkova

    2015-12-01

    Full Text Available A dynamic subcritical water extraction method of benzo[a]pyrene from soils is under consideration. The optimum conditions for benzo[a]pyrene extraction from soil are described including the soil treatment by subcritical water at 250 °C and 100 atm for 30 min. The effectiveness of developed method was determined using the matrix spiking recovery technique. A comparative analysis was made to evaluate the results of benzo[a]pyrene extraction from soils using the subcritical water and organic solvents. The advantages of the subcritical water extraction involve the use of ecologically friendly solvent, a shorter time for the analysis and a higher amount of benzo[a]pyrene extracted from soil (96 %. The influence of subcritical water extraction on soil properties was measured the investigation of the processes occurring within soil under the influence the high temperature and pressure. Under appropriate conditions of the experiment there is the destruction of the soil organic matter while the composition of the soil mineral fraction remains practically unchanged.

  14. Antifeedant Activty Of Different Organic Solvent Crude Extracts Of ...

    African Journals Online (AJOL)

    The antifeedant activity of different organic solvents (acetone, carbon tetrachloride, chloroform, diethyl ether and ethyl alcohol) crude extracts of latex of Euphorbia hirta (family Euphobiaceae) against Limicolaria aurora was investigated, and compared with a control, using pawpaw, (Carica papaya) as bait, at a concentration ...

  15. A Novel Mechanism for Chemical Sensing Based on Solvent-Fluorophore-Substrate Interaction: Highly Selective Alcohol and Water Sensor with Large Fluorescence Signal Contrast.

    Science.gov (United States)

    Chung, Kyeongwoon; Yang, Da Seul; Jung, Jaehun; Seo, Deokwon; Kwon, Min Sang; Kim, Jinsang

    2016-10-06

    Differentiation of solvents having similar physicochemical properties, such as ethanol and methanol, is an important issue of interest. However, without performing chemical analyses, discrimination between methanol and ethanol is highly challenging due to their similarity in chemical structure as well as properties. Here, we present a novel type of alcohol and water sensor based on the subtle differences in interaction among solvent analytes, fluorescent organic molecules, and a mesoporous silica gel substrate. A gradual change in the chemical structure of the fluorescent diketopyrrolopyrrole (DPP) derivatives alters their interaction with the substrate and solvent analyte, which creates a distinct intermolecular aggregation of the DPP derivatives on the silica gel substrate depending on the solvent environment and produces a change in the fluorescence color and intensity as a sensory signal. The devised sensor device, which is fabricated with simple drop-casting of the DPP derivative solutions onto a silica gel substrate, exhibited a completely reversible fluorescence signal change with large fluorescence signal contrast, which allows selective solvent detection by simple optical observation with the naked eye under UV light. Superior selectivity of the alcohol and water sensor system, which can clearly distinguish among ethanol, methanol, ethylene glycol, and water, is demonstrated.

  16. Enhancement of Palmarumycin C12 and C13 Production by the Endophytic Fungus Berkleasmium sp. Dzf12 in an Aqueous-Organic Solvent System

    OpenAIRE

    Mou, Yan; Xu, Dan; Mao, Ziling; Dong, Xuejiao; Lin, Fengke; Wang, Ali; Lai, Daowan; Zhou, Ligang; Xie, Bingyan

    2015-01-01

    The endophytic fungus Berkleasmium sp. Dzf12, isolated from Dioscorea zingiberensis, was found to produce palmarumycins C12 and C13 which possess a great variety of biological activities. Seven biocompatible water-immiscible organic solvents including n-dodecane, n-hexadecane, 1-hexadecene, liquid paraffin, dibutyl phthalate, butyl oleate and oleic acid were evaluated to improve palmarumycins C12 and C13 production in suspension culture of Berkleasmium sp. Dzf12. Among the chosen solvents bot...

  17. The disposal of radioactive solvent waste

    International Nuclear Information System (INIS)

    Dean, B.; Baker, W.T.

    1976-01-01

    As the use of radioisotope techniques increases, laboratories are faced with the problem of disposing of considerable quantities of organic solvent and aqueous liquid wastes. Incineration or collection by a waste contractor both raise problems. Since most of the radiochemicals are preferentially water soluble, an apparatus for washing the radiochemicals out into water and discharging into the normal drainage system in a high diluted form is described. Despite the disadvantages (low efficiency, high water usuage, loss of solvent in presence of surface active agents, precipitation of phosphors from dioxan based liquids) it is felt that the method has some merit if a suitably improved apparatus can be designed at reasonable cost. (U.K.)

  18. Lithium isotope effects in cation exchange chromatography of lithium lactate in water-dimethyl sulfoxide and water-acetone mixed solvent media

    International Nuclear Information System (INIS)

    Oi, Takao; Kondoh, Akiko; Ohno, Etsuko; Hosoe, Morikazu

    1993-01-01

    Lithium isotope separation by ion exchange displacement chromatography of lithium lactate in water-dimethyl sulfoxide (DMSO) and water-acetone mixed solvent media at 25 C was explored. In both the water-DMSO and water-acetone system, the single stage isotope separation factor (S) was a convex function of the mixing ratio of the solvents in the external solution phase; S had its maximum value of 1.00254 at water: DMSO=25:75 v/v and 1.00182 at water: acetone=75:25 v/v. Strong correlations of S with solvent partitions between the solution and the exchanger phases were found in both systems, which was qualitatively explainable by considering the lithium isotope distributions between the two phases based on the fundamental lithium isotope effects and the relative affinities of water, DMSO and acetone towards the lithium ion. (orig.)

  19. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    Science.gov (United States)

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (padhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  20. Hydrophobic deep eutectic solvents as water-immiscible extractants

    NARCIS (Netherlands)

    Osch, van D.J.G.P.; Zubeir, L.F.; Bruinhorst, van den A.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Hydrophobic deep eutectic solvents (DESs) are presented for the first time. They consist of decanoic acid and various quaternary ammonium salts. The effect of the alkyl chains on the hydrophobicity and the equilibrium of the two-phase DES–water system were investigated. These new DESs were

  1. Photostability of solutions of rare earth chelates in organic solvents and polymers

    International Nuclear Information System (INIS)

    Karasev, V.E.; Mirochnik, A.G.; Lysun, T.V.; Vovna, V.I.

    1990-01-01

    Consideration is given to results of comparative study of photochemical properties of rare erath chelate complexes (adducts of rare earth β-diketonates with triphenylphosphine oxide, hexamethylphosphotriamide, phenanthroline) in organic solvents and polymers. Effect of excitation conditions, composition, solvent, nature of ligand and rare earth ion on photolysis rate was investigated. 9 refs.; 2 figs.; 4 tabs

  2. P300 brain potential among workers exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    Bente E. Moen

    2009-10-01

    Full Text Available  SUMMARYThe P300 component of the auditory event-related brain potential was examined in a group of 11workers exposed to low levels of organic solvents in a paint factory and 11 unexposed controls beforeand after 3 weeks of summer vacation. The P300 latency time was found to be prolonged among theexposed workers compared to the reference group before the summer vacation, and to be significantlylonger before the vacation than after in the exposed group.The P300 component was also examined in a group of 85 seamen from chemical tankers, experiencingpeak exposures to organic solvents. They were compared to a reference group of unexposedseamen. Comparing these two groups, no difference was found in the P300 latency time. No relationshipbetween the P300 latency time and exposure was found in a multiple regression analysis, includingthe variables age, alcohol consumption, smoking and cerebral concussions.The study indicates the occurrence of an acute biological effect in the nervous system related toorganic solvent exposure, expressed by prolonged P300 latency time. This was found at very lowexposure levels and should be studied further.

  3. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    Science.gov (United States)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  4. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2016-01-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic

  5. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    Science.gov (United States)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  6. Conformation and Catalytic Properties Studies of Candida rugosa Lip7 via Enantioselective Esterification of Ibuprofen in Organic Solvents and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-01-01

    Full Text Available Enantioselective esterification of ibuprofen was conducted to evaluate the enzyme activity and ees of lipase from Candida rugosa (CRL7 in ten conventional organic solvents and three ionic liquids. Different alcohols were tested for selecting the most suitable acyl acceptor due to the fact that the structure of alcohols (branch and length of carbon chains; location of –OH functional group could affect the enzyme activity and ees. The results of alcohol and solvent selection revealed that 1-isooctanol and isooctane were the best substrate and reaction medium, respectively, because of the highest enzyme activity and ees. Compared with the control, conformational studies via FT-IR indicate that the variations of CRL7’s secondary structure elements are probably responsible for the differences of enzyme activity and ees in the organic solvents and ionic liquids. Moreover, the effects of reaction parameters, such as molar ratio, water content, temperature, and reaction time, in the selected reaction medium, were also examined.

  7. Natural deep eutectic solvents as new potential media for green technology

    International Nuclear Information System (INIS)

    Dai, Yuntao; Spronsen, Jaap van; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-01-01

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  8. Natural deep eutectic solvents as new potential media for green technology

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yuntao [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Spronsen, Jaap van; Witkamp, Geert-Jan [Laboratory for Process Equipment, Delft University of Technology, Delft (Netherlands); Verpoorte, Robert [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Choi, Young Hae, E-mail: y.choi@chem.leidenuniv.nl [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands)

    2013-03-05

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  9. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  10. Non-Hodgkin's lymphoma risk derived from exposure to organic solvents: a review of epidemiologic studies

    Directory of Open Access Journals (Sweden)

    Rêgo Marco Antônio V.

    1998-01-01

    Full Text Available The rate of non-Hodgkin's lymphomas (NHL has increased around the world during the last decades. Apart from the role of the human immunodeficiency virus (HIV infection in the development of NHL, exposure to chemical agents like phenoxyacetic pesticides, hair dyes, metal fumes and organic solvents are suspected to be involved. The present review evaluates the results of studies that directly or indirectly searched for an association between solvent exposure and NHL. The selected studies comprised those published from 1979 to 1997, designed to investigate risk factors for NHL, whether specifically looking for solvent exposure or for general risks in which solvent exposure could be included. In 25 of the 45 reviewed studies (55.5%, fifty-four statistically significant associations between NHL and solvent exposure related occupations or industries were reported. Statistical significance was more frequently shown in studies where solvent exposure was more accurately defined. In eighteen of such studies, 13 (72.2% defined or suggested organic solvents as possible risk factors for NHL.

  11. Non-Hodgkin's lymphoma risk derived from exposure to organic solvents: a review of epidemiologic studies

    Directory of Open Access Journals (Sweden)

    Marco Antônio V. Rêgo

    Full Text Available The rate of non-Hodgkin's lymphomas (NHL has increased around the world during the last decades. Apart from the role of the human immunodeficiency virus (HIV infection in the development of NHL, exposure to chemical agents like phenoxyacetic pesticides, hair dyes, metal fumes and organic solvents are suspected to be involved. The present review evaluates the results of studies that directly or indirectly searched for an association between solvent exposure and NHL. The selected studies comprised those published from 1979 to 1997, designed to investigate risk factors for NHL, whether specifically looking for solvent exposure or for general risks in which solvent exposure could be included. In 25 of the 45 reviewed studies (55.5%, fifty-four statistically significant associations between NHL and solvent exposure related occupations or industries were reported. Statistical significance was more frequently shown in studies where solvent exposure was more accurately defined. In eighteen of such studies, 13 (72.2% defined or suggested organic solvents as possible risk factors for NHL.

  12. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content data for solvent...

  13. Entanglement in miscible blends

    Science.gov (United States)

    Watanabe, Hiroshi

    2010-03-01

    The entanglement length Le of polymer chains (corresponding to the entanglement molecular weight Me) is not an intrinsic material parameter but changes with the interaction with surrounding chains. For miscible blends of cis-polyisoprene (PI) and poly(tert-butyl styrene) (PtBS), changes of Le on blending was examined. It turned out that the Le averaged over the number fractions of the Kuhn segments of the components (PI and PtBS) satisfactorily describes the viscoelastic behavior of pseudo-monodisperse blends in which the terminal relaxation time is the same for PI and PtBS.

  14. Singlet oxygen reactivity in water-rich solvent mixtures

    Directory of Open Access Journals (Sweden)

    Cristina Sousa

    2008-01-01

    Full Text Available The 3-methylindole (3MI oxygenation sensitized by psoralen (PSO has been investigated in 100%, 20% and 5% O2-saturated water/dioxane (H2O/Dx mixtures. The lowering of the ¹O2* chemical rate when water (k chem∆3MI = 1.4 × 109 M-1 s-1 is replaced by deuterated water (k chem∆3MI = 1.9 × 108 M-1 s-1 suggests that hydrogen abstraction is involved in the rate determining step. A high dependence of the chemical rate constant on water concentration in H2O/Dx mixtures was found showing that water molecules are absolutely essential for the success of the 3MI substrate oxidation by ¹O2* in water-rich solvent mixtures.

  15. Enzymatic Synthesis of Esculin Ester in Ionic Liquids Buffered with Organic Solvents

    DEFF Research Database (Denmark)

    Hu, Yifan; Guo, Zheng; Lue, Bena-Marie

    2009-01-01

    The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model...... in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf2N](-) > [PF6](-) > [BF4](-) > [CF3SO3](-) > [C4F9SO3](-) > [TAF...

  16. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Hevia, Eva; Capriati, Vito

    2018-06-19

    There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is surely stimulating in the perspective of the development of a sustainable organometallic chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A; Putschew, A; Jekel, M [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  18. The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase

    International Nuclear Information System (INIS)

    Kuper, Jochen; Tee, Kang Lan; Wilmanns, Matthias; Roccatano, Danilo; Schwaneberg, Ulrich; Wong, Tuck Seng

    2012-01-01

    Active-site Phe87 of cytochrome P450 BM3 protects the haem from DMSO molecule, thereby conferring higher organic co-solvent tolerance. Understanding the effects of organic co-solvents on protein structure and function is pivotal to engineering enzymes for biotransformation in non-aqueous solvents. The effects of DMSO on the catalytic activity of cytochrome P450 BM3 have previously been investigated and the importance of Phe87 in its organic co-solvent tolerance was identified. To probe the DMSO inactivation mechanism and the functional role of Phe87 in modulating the organic co-solvent tolerance of P450 BM3, the haem domain (Thr1–Leu455) of the F87A variant was cocrystallized in the presence of 14%(v/v) and 28%(v/v) DMSO. At both DMSO concentrations the protein retained the canonical structure of the P450 haem domain without any sign of partial or global unfolding. Interestingly, a DMSO molecule was found in the active site of both structures, with its O atom pointing towards the haem iron. The orientation of the DMSO molecule indicated a dynamic coordination process that was in competition with the active-site water molecule. The ability of the DMSO molecule to coordinate the haem iron is plausibly the main reason why P450 BM3 is inactivated at elevated DMSO concentrations. The data allowed an interesting comparison with the wild-type structures reported previously. A DMSO molecule was found when the wild-type protein was placed in 28%(v/v) DMSO, in which the DMSO molecule coordinated the haem iron directly via its S atom. Intriguingly, no DMSO molecule was observed at 14%(v/v) DMSO for the wild-type structure. These results suggested that the bulky phenyl side chain of Phe87 protects the haem from being accessed by the DMSO molecule and explains the higher tolerance of the wild-type enzyme towards organic co-solvents compared with its F87A variant

  19. Low Operational Stability of Enzymes in Dry Organic Solvents: Changes in the Active Site Might Affect Catalysis

    Directory of Open Access Journals (Sweden)

    Gabriel Barletta

    2012-02-01

    Full Text Available The potential of enzyme catalysis in organic solvents for synthetic applications has been overshadowed by the fact that their catalytic properties are affected by organic solvents. In addition, it has recently been shown that an enzyme’s initial activity diminishes considerably after prolonged exposure to organic media. Studies geared towards understanding this last drawback have yielded unclear results. In the present work we decided to use electron paramagnetic resonance spectroscopy (EPR to study the motion of an active site spin label (a nitroxide free radical during 96 h of exposure of the serine protease subtilisin Carlsberg to four different organic solvents. Our EPR data shows a typical two component spectra that was quantified by the ratio of the anisotropic and isotropic signals. The isotropic component, associated with a mobile nitroxide free radical, increases during prolonged exposure to all solvents used in the study. The maximum increase (of 43% was observed in 1,4-dioxane. Based on these and previous studies we suggest that prolonged exposure of the enzyme to these solvents provokes a cascade of events that could induce substrates to adopt different binding conformations. This is the first EPR study of the motion of an active-site spin label during prolonged exposure of an enzyme to organic solvents ever reported.

  20. Effect of organic solvents on dissolution process of mechano-chemically activated molybdenum by inorganic acid solutions

    International Nuclear Information System (INIS)

    Shevtsova, I.Ya.; Chernyak, A.S.; Khal'zov, A.A.

    1992-01-01

    The process of chemical dissolution of mechanochemically activated and nonactivated molybdenite by inorganic acid solutions in certain organic solvents of different nature was considered. It is shown that the highest extraction of molybdenum in solution is achieved in the presence of nitric acid. The dissociation constant of the acid used in the given organic solvent does not affect molybdenite solubility. When dissolving molybdenite by solutions of nitric acid in carbonic acids, alcohols and esters, the solubility of the concentrate depends on the length of hydrocarbon chain of the organic solvent and dispersion degree of mineral source material

  1. The effect of organic solvents on one-bottle adhesives' bond strength to enamel and dentin.

    Science.gov (United States)

    Reis, André Figueiredo; Oliveira, Marcelo Tavares; Giannini, Marcelo; De Goes, Mário Fernando; Rueggeberg, Frederick A

    2003-01-01

    This study evaluated the microtensile bond strength (pTBS) of ethanol/water- and acetone-based, one-bottle adhesive systems to enamel (E) and dentin (D) in the presence (P) or absence (A) of their respective solvents. Thirty-two freshly extracted third molars were flattened with 600-grit SiC paper and restored with Single Bond (SB) or Prime&Bond 2.1 (PB) according to the manufacturers' instructions and after full solvent elimination. The molars were divided into eight test groups (n = 4): G1-SB-E-P, G2-SB-E-A, G3-PBE-P, G4-PB-E-A, G5-SB-D-P, G6-SB-D-A, G7-PB-D-P and G8-PB-D-A. After applying the adhesive resins, composite crowns of approximately 8 mm were built up with TPH Spectrum composite. After 24-hour water storage, the specimens were serially sectioned bucco-lingually to obtain 0.8 mm slabs that were trimmed to an hourglass shape, approximately 0.8 mm2 at the bonded interface. The specimens were tested in tension using a universal testing machine (0.5 mm/minute). The results were statistically analyzed by ANOVA and Tukey test. The frequency of fracture mode was compared using the Kruskal-Wallis test. There were no statistically significant differences in mean bond strength among the groups restored with or without solvent for enamel. However, the results were significantly different for the dentin groups (MPa): G5-26.2 +/- 8.6a; G7-23.6 +/- 11.3ab; G6-12.8 +/- 2.1bc; G8-6.2 +/- 3.1c. SEM examination indicated that the dentin group failure modes were significantly different from the enamel groups. The results suggest that the presence of organic solvents does not influence microTBS to enamel. However, microTBS to dentin was significantly affected by the absence of solvents in the adhesive system.

  2. Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie

    2017-03-01

    Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.

  3. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  4. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS Fabrication of Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Xiaobo Dong

    2018-05-01

    Full Text Available Organic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylacetamide (DMAc, have been traditionally used to fabricate polymeric membranes. These solvents may have a negative impact on the environment and human health; therefore, using renewable solvents derived from biomass is of great interest to make membrane fabrication sustainable. Methyl-5-(dimethylamino-2-methyl-5-oxopentanoate (Rhodiasolv PolarClean is a bio-derived, biodegradable, nonflammable and nonvolatile solvent. Polysulfone is a commonly used polymer to fabricate membranes due to its thermal stability, strong mechanical strength and good chemical resistance. From cloud point curves, PolarClean showed potential to be a solvent for polysulfone. Membranes prepared with PolarClean were investigated in terms of their morphology, porosity, water permeability and protein rejection, and were compared to membranes prepared with traditional solvents. The pores of polysulfone/PolarClean membranes were sponge-like, and the membranes displayed higher water flux values (176.0 ± 8.8 LMH along with slightly higher solute rejection (99.0 ± 0.51%. On the other hand, PSf/DMAc membrane pores were finger-like with lower water flux (63.1 ± 12.4 LMH and slightly lower solute rejection (96 ± 2.00% when compared to PSf/PolarClean membranes.

  5. Solvent Effects on Cesium Complexation with Crown Ethers from Liquid to Supercritical Fluids

    International Nuclear Information System (INIS)

    Wai, Chien M.; Rustenholtz, Anne; Wang, Shaofen; Lee, Su-Chen; Herman, Jamie; Porter, Richard A.

    2004-01-01

    Nuclear magnetic resonance (NMR) techniques were used to study crown ether-water interactions in solvents of low dielectric constants such as chloroform and carbon tetrachloride. Water forms a 1:1 complex with a number of crown ethers including 12-crown-4, 15-crown-5, 18-crown-6, dicyclohexano-18=crown-6, dicyclohexano-24-crown 8, and dibenzl-24-crown-8 in chloroform. Among these crown ethers, the 18-crown-6-H2 complex has the largest equilibrium constant (K=545) and 97% of the crown is complexed to water in chloroform. Addition of carbon tetrachloride to chloroform lowers the equilibrium constants of the crown-water complexes. The partition coefficients of crown ethers (D=crown in water/crown in solvent) between water and organic solvent also vary with solvent composition

  6. Ratiometric Fluorescence Sensing and Real-Time Detection of Water in Organic Solvents with One-Pot Synthesis of Ru@MIL-101(Al)-NH2.

    Science.gov (United States)

    Yin, Hua-Qing; Yang, Ji-Chun; Yin, Xue-Bo

    2017-12-19

    Ratiometric fluorescence detection attracts much attention because of its decreased environmental influence and easy-to-differentiate color and intensity change. Herein, a guest-encapsulation metal-organic framework (MOF), Ru@MIL-NH 2 , is prepared with 2-aminoterephthalic acid, AlCl 3 , and Ru(bpy) 3 2+ by a simple one-pot method for ratiometric fluorescence sensing of water in organic solvents. The rational selection of the excitation wavelength provides dual emission at 465 and 615 nm from Ru@MIL-NH 2 under a single excitation of 300 nm. High sensitivity, low detection limit (0.02% v/v), wide response range (0-100%), and fast response (less than 1 min) are obtained for ratiometric fluorescence sensing of water under single excitation with Ru@MIL-NH 2 as the probe. Moreover, the result of water content is independent of the concentration of Ru@MIL-NH 2 as the merit of ratiometric fluorescence detection. The response mechanism reveals that the protonation of the nitrogen atom of the MIL-NH 2 , the π-conjugation system, and the stable fluorescence of Ru(bpy) 3 2+ achieve the ratiometric fluorescence. The analysis of real spirit samples confirms the proposed method. A test strip is prepared with Ru@MIL-NH 2 for convenient use. We believe that such turn-on ratiometric host-guest MOFs and the rational selection of excitation wavelength will offer guidance for ratiometric fluorescence detection with wide applications.

  7. Emulsification kinetics during quasi-miscible flow in dead-end pores

    Science.gov (United States)

    Broens, M.; Unsal, E.

    2018-03-01

    Microemulsions have found applications as carriers for the transport of solutes through various porous media. They are commonly pre-prepared in bulk form, and then injected into the medium. The preparation is done by actively mixing the surfactant, water and oil, and then allowing the mixture to stagnate until equilibrium is reached. The resulting microemulsion characteristics of the surfactant/oil/water system are studied at equilibrium conditions, and perfect mixing is assumed. But in applications like subsurface remediation and enhanced oil recovery, microemulsion formation may occur in the pore space. Surfactant solutions are injected into the ground to solubilize and/or mobilize the non-aqueous phase liquids (NAPLs) by in-situ emulsification. Flow dynamics and emulsification kinetics are coupled, which also contributes to in-situ mixing. In this study, we investigated the nature of such coupling for a quasi-miscible fluid system in a conductive channel with dead-end extensions. A microfluidic setup was used, where an aqueous solution of an anionic, internal olefin sulfonate 20-24 (IOS) surfactant was injected into n-decane saturated glass micromodel. The oil phase was coloured using a solvatochromatic dye allowing for direct visualization of the aqueous and oil phases as well as their microemulsions under fluorescent light. Presence of both conductive and stagnant dead-end channels in a single pore system made it possible to isolate different transport mechanisms from each other but also allowed to study the transitions from one to the other. In the conductive channel, the surfactant was carried with flow, and emulsification was controlled by the localized flow dynamics. In the stagnant zones, the driving force of the mass transfer was driven by the chemical concentration gradient. Some of the equilibrium phase behaviour characteristics of the surfactant/oil/water system were recognisable during the quasi-miscible displacement. However, the equilibrium tests

  8. Effect of reduced use of organic solvents on disability pension in painters.

    Science.gov (United States)

    Järvholm, Bengt; Burdorf, Alex

    2017-11-01

    To investigate whether the decreased use of paints based on organic solvents has caused a decreased risk for neuropsychiatric disorders in painters by studying their incidence in disability pensions. The incidence of disability pension in Swedish painters who had participated in health examinations between 1971 and 1993 was studied through linkage with Swedish registers of disability pension over 1971-2010 and compared with the incidence in other construction workers as woodworkers, concrete workers and platers. When phasing out began in the 1970s, about 40% of paints were based on organic solvents and it had decreased to 4% in 1990s. The analysis was adjusted for age, time period, body mass index and smoking. The painters (n=23 065) had an increased risk of disability pension due to neurological diagnosis (n=285, relative risk (RR) 1.92, 95% CI 1.67 to 2.20) and psychiatric diagnosis (n=632, RR=1.61, 95 % CI 1.42 to 1.82). For neurological disorders there was a time trend with a continuously decreasing risk from 1980 onwards, but there was no such trend for psychiatric disorders. High exposure to organic solvents increased the risk for disability pension in neurological disorders, and the risk decreased when the use of organic solvents decreased. The painters also had an increased risk of disability pension due to psychiatric disorders, but the causes have to be further investigated. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Asymptotic solutions of miscible displacements in geometries of large aspect ratio

    International Nuclear Information System (INIS)

    Yang, Z.; Yortsos, Y.C.

    1997-01-01

    Asymptotic solutions are developed for miscible displacements at Stokes flow conditions between parallel plates or in a cylindrical capillary, at large values of the geometric aspect ratio. The single integro-differential equation obtained is solved numerically for different values of the Pacute eclet number and the viscosity ratio. At large values of the latter, the solution consists of a symmetric finger propagating in the middle of the gap or the capillary. Constraints on conventional convection-dispersion-equation approach for studying miscible instabilities in planar Hele endash Shaw cells are obtained. The asymptotic formalism is next used to derive emdash in the limit of zero diffusion emdash a hyperbolic equation for the cross-sectionally averaged concentration, the solution of which is obtained by analytical means. This solution is valid as long as sharp shock fronts do not form. The results are compared with recent numerical simulations of the full problem and experiments of miscible displacement in a narrow capillary. copyright 1997 American Institute of Physics

  10. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    Science.gov (United States)

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  12. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    Science.gov (United States)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  13. Effects of organic solvent, water activity, and salt hydrate pair on the sn-1,3 selectivity and activity of whole-cell lipase from Aspergillus niger GZUF36.

    Science.gov (United States)

    Li, Cuiqin; Zhang, Fuhao; Gao, Zexin; He, Laping; Zeng, Xuefeng; Zhu, Qiujin; Yu, Lijuan

    2018-01-01

    We previously screened a whole-cell lipase EC 3.1.1.3 from the novel strain Aspergillus niger GZUF36, which exhibited 1,3-selectivity in the synthesis of 1,3-diacylglycerol via glycerolysis. However, the mechanism of lipase selectively in catalyzing the sn-1,3 position remains ambiguous. This work was performed to investigate the 1,3-selective mechanism of lipase using glycerolysis to synthesize 1,3-diacylglycerol (1,3-DG) as a model reaction by changing solvent(s) and water activity (a w ), and addition of salt hydrate pair. The measured diacylglycerol yield was also used to examine lipase activity. Results indicated that not only organic solvent and a w have strong effect on the sn-1,3 selectivity, but also ions of salt hydrate pair also affected selectivity. Lipase conformation was altered by hydrophobic interactions of the solvent, a w , or ions of salt hydrate, resulting in distinct sn-1,3 selectivity of the lipase. The salt hydrate pair changed the lipase conformation and selectivity not only by a w but also by static interactions, which was rarely reported. These parameters also affected lipase activity. The lipase displayed the highest selectivity (about 88%) and activity in solvents of t-butanol and n-hexane (1:29, v/v) at a w 0.43. The results demonstrated that the sn-1,3 selectivity and activity of the lipase from A. niger GZUF36 may be improved by control of some crucial factors. This work laid a foundation for the application of lipase in the synthesis of 1,3-DG and other structural and functional lipids.

  14. Experimental study of extent and rate of gravity drainage of oil from matrix into fractures in presence of miscible and immiscible CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, K.; Torabi, F. [Regina Univ., SK (Canada)

    2007-07-01

    The use of miscible carbon dioxide (CO{sub 2}) injection to improve oil recovery in naturally fractured reservoirs was discussed. The main production mechanism in fractured reservoirs is gravity drainage. The performance of this process is a function of a series of parameters such as fracture-matrix geometry, size, and matrix-fracture flow interaction. Both viscosity and density of oil and injected CO{sub 2} play important roles in the case of miscible CO{sub 2}. This paper presented the results of an experimental study of the effect of injecting CO{sub 2} into fractured media and its influence on the performance of gravity drainage and ultimate oil production. Both miscible and immiscible schemes for CO{sub 2} were examined in this study. In order to simulate a matrix with surrounding fractures, a steel holder was specifically designed to allow for an open space around a core of 30 cm long and 5 cm in diameter. CO{sub 2} and normal decane were used as solvent and oil, respectively. All experiments were conducted at constant temperature of 35 degrees C, and six series of experiments were carried out at 250, 500, 750, 1000, 1250, and 1500 psi. The produced oil was collected and measured continuously under the pressure and temperature conditions of the experiments. It was shown that injecting CO{sub 2} at higher pressures substantially improves the recovery factor of gravity drainage mechanism in fractured media. The injection of CO{sub 2} in fractures at pressures below minimum miscibility pressures (MMP) can recover up to 19 per cent of oil in-place (OIP). However, at miscible conditions, oil recovery can increase to more than 50 per cent of OIP. At a pressure much above MMP of CO{sub 2}, ultimate recovery may decrease due to the presence of denser fluid in fractures, which could prevent flow of fluid from matrix into fractures. It was concluded that CO{sub 2} injection in fractured reservoir may be a viable option for combined CO{sub 2} EOR and storage projects

  15. Temporal variation of VOC emission from solvent and water based wood stains

    Science.gov (United States)

    de Gennaro, Gianluigi; Loiotile, Annamaria Demarinis; Fracchiolla, Roberta; Palmisani, Jolanda; Saracino, Maria Rosaria; Tutino, Maria

    2015-08-01

    Solvent- and water-based wood stains were monitored using a small test emission chamber in order to characterize their emission profiles in terms of Total and individual VOCs. The study of concentration-time profiles of individual VOCs enabled to identify the compounds emitted at higher concentration for each type of stain, to examine their decay curve and finally to estimate the concentration in a reference room. The solvent-based wood stain was characterized by the highest Total VOCs emission level (5.7 mg/m3) that decreased over time more slowly than those related to water-based ones. The same finding was observed for the main detected compounds: Benzene, Toluene, Ethylbenzene, Xylenes, Styrene, alpha-Pinene and Camphene. On the other hand, the highest level of Limonene was emitted by a water-based wood stain. However, the concentration-time profile showed that water-based product was characterized by a remarkable reduction of the time of maximum and minimum emission: Limonene concentration reached the minimum concentration in about half the time compared to the solvent-based product. According to AgBB evaluation scheme, only one of the investigated water-based wood stains can be classified as a low-emitting product whose use may not determine any potential adverse effect on human health.

  16. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  17. Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2012-01-01

    Full Text Available Introduction: Organic solvent-tolerant bacteria are relatively novel extermophilic microorganisms, which can produce organic tolerant protease with capacity of being used in industrial biotechnology for producing high-value compounds. Therefore, finding of these bacteria has drawn much researchers attention nowadays. Materials and Methods: In this project, samples were collected from a hot spring, located in Jiroft. Samples were incubated in medium supplemented with cyclohexane and toluene for 3 days. Screening of protease producing bacteria was performed on the specific media, SKM (Skim milk agar, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Protease activity was considered in different temperatures, pH and organic solvents.Results: Sequence alignment and phylogenetic tree results showed that this bacteria was closely related to Bacillus niacini, with 97% homology. Enzymatic studies showed that, this enzyme was active at a wide range of temperatures, 20-90 °C and it,s optimal activity was in 60 °C. In addition, maximum protease activity was obtained in the 8-9 range of pH, and optimal stability was also at pH 9.0. Protease activity in the presence of methanol, toluene, isopropanol, cyclohexane and DMF ‏showed that, remaining activity was at least 80% compared to the control (without organic solvent Discussion and Conclusion: Thermopilic capacity, being active in alkaline protease and high protease stability in the presence of organic solvents all herald a remarkable application for using in different industries.

  18. The effects of crown ethers on the activity of enzymes in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David; Vulfson, Evgeny N.; Halling, Peter J.; Holland, Herbert L.

    2001-01-01

    Currently, the applicability of enzymes in synthetic organic chemistry is well recognized. The field of enzyme-catalyzed organic synthesis has been further boosted by the recognition that enzymes can operate in organic solvents. The use of nonaqueous media for enzymatic conversions offers a number

  19. Comparison of the Behaviour of Polymers in Supercritical Fluids and Organic Solvents Via Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Melnichenko, Y.B.; Kiran, E.; Heath, K.D.; Salaniwal, S.; Cochran, H.D.; Stamm, M.; Van Hook, W.A.; Wignall, G.D.

    1999-01-01

    Small-angle neutron scattering has been used to study the effect of temperature and pressure on the phase behavior of semidilute solutions of polymers dissolved in organic and supercritical solvents. Above the theta temperature (To), these systems exhibit a ''good solvent'' domain, where the molecules expand beyond the unperturbed dimensions in both organic solvents and in COZ. However, this transition can be made to occur at a critical ''theta pressure'' (PO) in CO2 and this represents a new concept in the physics of polymer-solvent systems. For T < To, and P < Po, the system enters the ''poor solvent'' domain where diverging concentration fluctuations prevent the chains from collapsing and allow them to maintain their unperturbed dimensions

  20. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by mass...

  1. Gas chromatographic analysis of extractive solvent in reprocessing plants

    International Nuclear Information System (INIS)

    Marlet, B.

    1984-01-01

    Operation of a reprocessing plant using the Purex process is recalled and analytical controls for optimum performance are specified. The aim of this thesis is the development of analytical methods using gas chromatography required to follow the evolution of the extraction solvent during spent fuel reprocessing. The solvent at different concentrations, is analysed along the reprocessing lines in organic or aqueous phases. Solvent degradation interferes with extraction and decomposition products are analysed. The solvent becomes less and less efficient, also it is distilled and quality is checked. Traces of solvent should also be checked in waste water. Analysis are made as simple as possible to facilitate handling of radioactive samples [fr

  2. The salting-out of molibdoferrats(II from aqueous solutions by the organic solvents

    Directory of Open Access Journals (Sweden)

    Mykola V. Nikolenko

    2016-12-01

    Full Text Available The aim of this work was to develop a method for producing of molybdoferrate(II precipitates by salting-out them from aqueous solutions by means of organic solvents. Dependence of the composition of molybdoferrate(II precipitates on the pH of the reaction solutions was studied. Experiments on salting-out of molybdoferrate(II with various organic solvents were carried out. As a result it was found that the best reagent for the molybdoferrate(II salting-out is acetone. By its use, lowest quantity of the ammonium sulfate impurities was obtained. It is also of importance that by using of acetone the process of regeneration by distillation of the reaction solutions is characterized by the lowest energy consumption. A functional relationship between the solubility of molybdoferrates(II and dielectric constant of the medium was established. By increasing the dielectric constant of the solvent solubility of molybdoferrates(II rapidly increases. The linearized dependence ln(lnS–ln(1/e was proposed to predict the solubility of molybdoferrates(II in various aqueous-organic solutions.

  3. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    Science.gov (United States)

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  4. Effect of Contemporary Exposure to Mixed Organic Solvents and Occupational Noise on Hearing Thresholds of Workers

    Directory of Open Access Journals (Sweden)

    Attarchi Mir Saeid

    2010-03-01

    Full Text Available Background: Mixed organic solvent exposure, as well as noise, has a wide spread in different industries. In recent years it has been propounded that simultaneous exposure to mixed organic solvents and occupational noise can establish a hearing loss that is more severe than hearing loss due to exposure to each of them separately.Materials & Methods: A descriptive- analytic study was conducted during 2008 in an automobile industry on 441 employees in three different groups. First group were assembly workers that only exposed to noise. The second group included employees in new painting saloon that exposed not only to noise but also to permissible levels of mixed organic solvents and the third group were employees in old painting saloon that exposed to noise and mixed organic solvents in more than threshold limit value (TLV level. The prevalence of hearing loss was compared between three groups on the basis of model 1 (mean hearing threshold in frequencies 0.5, 1 and 2 KHz more than 25dB and model 2 (mean hearing threshold in frequencies 3, 4, 6 and 8 KHz more than 25dB. Results: According to model 2, in workers exposed to noise in addition to mixed organic solvents, the rate of hearing loss, was significantly higher than workers exposed to noise alone (P<0.05, even after adjusting for confounding variables using logistic regression analysis (OR= 4.12 , P<0.001.Conclusion: In workers with simultaneous exposure to mixed organic solvents and noise, special attention must be paid to accurate accomplishment of hearing conservation programs including doing audiometric exams in shorter periods and take advantage of hearing protection devices with higher noise reduction rate (NRR.

  5. studies on solvent extraction of free hydrogen cyanide from river water

    African Journals Online (AJOL)

    A method for free and strongly complexed cyanide measurement in river water was developed. Recovery tests from solution with and without river water, using various solvent combinations and background control were investigated to obtain an accurate and precise extraction method for the measurement of hydrogen ...

  6. Measurements and correlation of viscosities and conductivities for the mixtures of ethylammonium nitrate with organic solvents

    International Nuclear Information System (INIS)

    Litaeim, Yousra; Zarrougi, Ramzi; Dhahbi, Mahmoud

    2009-01-01

    Room temperature ionic liquids (IL) as a new class of organic molten salts have been considered as an alternative of traditional organic solvents (OS). The physico-chemical transport properties of mixtures IL/OS were investigated and described by ion-ion, ion solvent and solvent-solvent interactions. Ethylammonium nitrate (EAN) was studied in presence of two types of organic solvents: the dimethyl carbonate (DMC) and the formamide (FA). The variation of the viscosity with salt concentration and temperature shows that EAN ions behave as a structure breaker for the DMC. However, no effect was recorded in the case of FA. Concentrated electrolyte solutions behave as very structured media and checked a theory of pseudo-lattice. The existence of a conductivity maximum indicates two competing effects; the increasing number of charge carriers and the higher viscosity of the electrolyte as the salt concentration was raised. The use of the Walden product to investigate ionic interactions of EAN with both solvents was discussed. A study of the effect of temperature on the conductivity and viscosity reveals that both systems (EAN/DMC and EAN/FA) obey an Arrhenius low. The activation energies for the tow transport process (Ea,L and Ea,h) as a function of the salt concentration were evaluated.

  7. Cochlear condition and olivocochlear system of gas station attendants exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    Tochetto, Tania Maria

    2012-01-01

    Full Text Available Introduction: Organic solvents have been increasingly studied due to its ototoxic action. Objective: Evaluate the conditions of outer hair cells and olivocochlear system in individuals exposed to organic solvents. Method: This is a prospective study. 78 gas station attendants exposed to organic solvents had been evaluated from three gas stations from Santa Maria city, Rio Grande do Sul (RS. After applying the inclusion criteria, the sample was constituted by 24 individuals. The procedures used on the evaluation were audiological anamnesis, Transient otoacoustic emissions (TEOAES and research for the suppressive effect of TEOAES. A group control (GC compounded by 23 individuals was compared to individuals exposed and non-exposed individuals. The data collection has been done in the room of Speech Therapy of Workers Health Reference Center of Santa Maria. Results: The TEOAES presence was major in the left ear in both groups; the average relation of TEOAES signal/noise in both ears was greater in GE; the TEOAES suppressive effect in the right ear was higher in the individual of GE (62,5% and in the left ear was superior in GC (86,96%, with statistically significant difference. The median sign/noise ratio of TEOAES, according to the frequency range, it was higher in GC in three frequencies ranges in the right ear and one in the left ear. Conclusion: It was not found signs of alteration on the outer hair cells neither on the olivocochlear medial system in the individuals exposed to organic solvents.

  8. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid–liquid microextraction coupled with flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Anthemidis, Aristidis N.; Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D.

    2012-01-01

    Highlights: ► A dispersive liquid–liquid micro extraction method for lead and copper determination. ► A micro-volume transportation system for extractant solvent lighter than water. ► Analysis of natural water samples. - Abstract: A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L −1 and 3.3% for lead and 0.12 μg L −1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  9. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Tykarska, M.; Hamplová, Věra; Kurp, K.

    2016-01-01

    Roč. 89, č. 9 (2016), s. 885-893 ISSN 0141-1594 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : miscibility study * binary mixture * polar smectic phase * lactic acid derivative * miscibility study * phase diagram * self-assembling behaviour Subject RIV: JJ - Other Materials Impact factor: 1.060, year: 2016

  10. Volumetric Properties of the Ionic Liquid, 1-Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T = 298.15K

    Science.gov (United States)

    Shekaari, Hemayat; Zafarani-Moattar, Mohammed Taghi

    2008-04-01

    Apparent molar volumes, V_φ , and compressibilities, kappa _φ , of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) have been determined from precise density and speed-of-sound measurements in organic solvents, methanol (MeOH), acetonitrile (MeCN), tetrahydrofuran (THF), N, N-dimethylacetamide (DMA), and dimethylsulfoxide (DMSO) in the dilute region of the ionic liquid. Corresponding values at infinite dilution are estimated by the Redlich-Mayer and Pitzer equations. The results have been interpreted by the interaction of the [BMIm][BF4] in the organic solvents. Results show that the structure and dielectric constant of the organic solvents play an important role for the ion-solvent interactions in these mixtures. It was found that the strength of interaction between [BMIm][BF4] with the studied organic solvents has the order DMSO > DMA > MeOH > MeCN > THF.

  11. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    Science.gov (United States)

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  12. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  13. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles

    Directory of Open Access Journals (Sweden)

    Fukumori Yoshinobu

    2011-08-01

    Full Text Available Abstract Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids.

  14. Part I: the effect of long-term exposure to organic solvents on memory: a cross sectional study.

    Science.gov (United States)

    Ratzon, N Z; Vakil, E; Derazne, E; Sculsky, M

    1998-01-01

    This study focuses on a wide range of different aspects of memory functions trying to ascertain a possible profile of memory changes, which take place following long-term exposure to organic solvents. The research design was cross-sectional. Study population included 31 industrial painters who were exposed at work to organic solvents and 31 unexposed workers. Workers after long-term exposure to organic solvents showed significant decline in memory as indicated in all three standard memory tests (i.e. Wechsler Memory Scale - Revised, Benton Revised Visual Retention Test, and Rey Auditory Verbal Learning Test). The results of Rey Auditory Verbal Learning Test showed a negative correlation with exposure index indicating that the more intensive and longer the time of exposure was, the more impaired is the verbal memory. It was also found that the affect of age on memory was stronger among workers after long-term exposure to organic solvents compared to the unexposed workers.

  15. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic...

  17. Characterisation of aggregation of tributylphosphate molecules in organic solvent

    International Nuclear Information System (INIS)

    Mandin, C.; Martinet, L.; Zemb, Th.; Berthon, L.; Madic, Ch.

    2000-01-01

    This report presents a structural study of the aggregates formed with the organic phases of the extractant tri-n-butyl phosphate, used in the industrial PUREX process (Plutonium and Uranium Extraction; liquid-liquid solvent extraction) for the treatment of high radioactive waste. Combined Small Angle X-ray Scattering and Small Angle Neutron Scattering show that organic TBP solutions (in equilibrium with acid solutions) are organised in oligomeric aggregates. The influence of various parameters such as HNO 3 or TBP concentrations, diluent or acid natures, does not seem to modify the aggregate shape and size, whereas the interactions are modified. Moreover the aggregates disappear under high temperatures, whereas the attractive interactions between them increase at low temperatures. The 'drop weight' method gives the critical micellar concentration values of TBP in case of H 2 O or HNO 3 extractions (H 2 O: 0.48 M; HNO 3 2M: 0.65 M; at 21 deg C). Furthermore, the measures at different acid concentrations show that the c.m.c. varies with the acidity. The more acid the aqueous phase is, the smaller is the entropy in the system because of the numerous negative charges, i.e. the harder the micellization occurs, so the higher the c.m.c. value is. The sticky sphere model proposed by Baxter, can be used to model successfully small reverse micelles of the organic TBP phases. The aggregation number would be 4±1 (water extraction) and 5±1(HNO 3 2M extraction). These values are also given by vapor pressure measurements. (authors)

  18. A new approach to solvent extraction: Electronic pulses shatter water droplets

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Researchers in the Chemical Technology Division of Oak Ridge National Laboratory (ORNL) have invented a device that represents a significant improvement in the area of solvent extraction, which is a widely used technique to recover valuable materials from a liquid stream. Known as the Emulsion Phase Contactor (EPC), the technology uses a pulsed electrical field to enhance recovery of chemicals (either valuable products or pollutants) that are dissolved in water. Because of its higher efficiency, the recovery method can be accomplished in much smaller vessels than those used in conventional solvent extractors, which use mechanical processes to recover chemicals. When water droplets carrying the substance to be extracted are introduced into the EPC, they are shattered by electronic pulses that produce water particles in the 1- to 5-micron size range. These water particles are up to 100 times smaller than those created by mechanical agitation. These tiny particles produce a much greater surface area than can be achieved using chemical agitators, enabling the chemical solvent to extract more material from the water base. In addition, the EPC uses much less power than mechanical methods and has no moving parts; therefore, servicing requirements for the extraction apparatus are expected to be significantly reduced. ORNL researchers initially tested the technology at a very small scale, and evaluated its capabilities in extracting high-value substances such as isotopes, pharmaceuticals, and precious metals. Further work has indicated that the EPC can be applied on a much larger scale to handle more common chemical substances

  19. Characterization of microenvironment polarity and solvent accessibility of polysilsesquioxane xerogels by the fluorescent probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Shea, K.J.; Zhu, H.D. [Univ., of California, Irvine, CA (United States). Dept. of Chemistry; Loy, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Poly (1, 4 bis(triethoxysilyl)benzene) (PTESB), a representative of a new type of organic-inorganic hybrid polysilsesquioxane material, was characterized by fluorescence spectroscopy for both microenvironmental polarity and solvent accessibility. A dansyl fluorescent molecule was incorporated into the bulk as well as onto the surface of both PTESB and silica materials. Information about the microenvironment polarity and accessibility of PTESB to various organic solvents was determined and compared to that of silica gel. This study found that both the bulk and surface of PTESB are less polar than that of the silica material. The silica material is accessible to polar solvents and water, while YMB is accessible to polar solvents but not to water. The hydrophobicity of PTESB differentiates these new materials from silica gel.

  20. Miscibility, chain packing, and hydration of 1-palmitoyl-2-oleoyl phosphatidylcholine and other lipids in surface phases.

    Science.gov (United States)

    Smaby, J M; Brockman, H L

    1985-11-01

    The miscibility of 1-palmitoyl-2-oleoyl phosphatidylcholine with triolein, 1,2-diolein, 1,3-diolein, 1(3)-monoolein, oleyl alcohol, methyl oleate, oleic acid, and oleyl cyanide (18:1 lipids) was studied at the argon-water interface. The isothermal phase diagrams for the mixtures at 24 degrees were characterized by two compositional regions. At the limit of miscibility with lower mol fractions of 18:1 lipid, the surface pressure was composition-independent, but above a mixture-specific stoichiometry, surface pressure at the limit of miscibility was composition-dependent. From the two-dimensional phase rule, it was determined that at low mol fractions of 18:1 lipids, the surface consisted of phospholipid and a preferred packing array or complex of phospholipid and 18:1 lipid, whereas, above the stoichiometry of the complex, the surface phase consisted of complex and excess 18:1 lipids. In both regions of the phase diagram, mixing along the phase boundary was apparently ideal allowing application of an equation of state described earlier (J. M. Smaby and H. L. Brockman, 1984, Biochemistry, 23:3312-3316). From such analysis, apparent partial molecular areas and hydrations for phospholipid, complex, and 18:1 lipid were obtained. Comparison of these calculated parameters for the complexed and uncomplexed states shows that the aliphatic moieties behave independently of polar head group. The transition of each 18:1 chain to the complexed state involves the loss of about one interfacial water molecule and its corresponding area. For 18:1 lipids with more than one chain another two water molecules per additional chain are present in both states but contribute little to molecular area. In contrast to 18:1 lipids, the phospholipid area and hydration change little upon complexation. The uniformity of chain packing and hydration behavior among 18:1 lipid species contrasts with complex stoichiometries that vary from 0.04 to 0.65. This suggests that the stoichiometry of the

  1. Characterizing DNA condensation and conformational changes in organic solvents.

    Directory of Open Access Journals (Sweden)

    Fuyou Ke

    Full Text Available Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF at low concentration via laser light scattering (LLS, TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8-10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems.

  2. SCOPE OF VARIOUS SOLVENTS AND THEIR EFFECTS ON SOLVOTHERMAL SYNTHESIS OF Ni-BTC

    Directory of Open Access Journals (Sweden)

    Farrukh Israr

    2016-07-01

    Full Text Available Ni-BTC (BTC = 1,3,5-benzene tricarboxylate metal organic framework (MOF was synthesized using different solvent conditions. Solvent mixtures of water/N,N-dimethylformamide (DMF, water/ethanol, and water/ethanol/DMF were used for the reactions with or without a variety of bases at 160 ºC for 48 hours. Even with same green crystals, prepared MOFs show all different BET surface areas and different XRD patterns. The highest BET surface area of the crystals was 850 m2/g obtained from water/DMF solvent with NH4OH as a base. The measured surface areas of the crystals follows the order of Ni-BTC(water/DMF-NH4OH > Ni-BTC(water/DMF-TMA > Ni-BTC(water/DMF > Ni-BTC(water/DMF-Pyridine> Ni-BTC(water/ethanol> Ni-BTC(water/DMF-aniline> Ni-BTC(water/DMF-NaOH.

  3. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the.... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1...

  4. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1...

  5. Liquid-liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature

    International Nuclear Information System (INIS)

    Wang Silu; Jacquemin, Johan; Husson, Pascale; Hardacre, Christopher; Costa Gomes, Margarida F.

    2009-01-01

    The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([C 1 C 4 Im][BF 4 ]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C 1 C 2 Im][EtSO 4 ])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 1 C 2 Im][NTf 2 ]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 1 C 4 Im][NTf 2 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([C 1 C 4 Im][PF 6 ]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C 1 C 4 Pyrro][NTf 2 ]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N 4111 ][NTf 2 ])) were chosen. Small excess volumes (less than 0.5 cm 3 . mol -1 at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[C 1 C 2 Im][EtSO 4 ] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases.

  6. (Liquid + liquid) equilibrium data of (water + phosphoric acid + solvents) systems at T = (308.2 and 318.2) K

    International Nuclear Information System (INIS)

    Ghanadzadeh Gilani, H.; Ghanadzadeh Gilani, A.; Shekarsaraee, S.; Uslu, H.

    2012-01-01

    Highlights: ► Phase equilibria of the (water + PA + solvents) systems were investigated. ► Experimental LLE data were correlated with NRTL and UNIQUAC models. ► Distribution coefficients and separation factors were evaluated. - Abstract: Ternary equilibrium data for the mixtures of {water + phosphoric acid + organic solvent (cyclohexane, methylcyclohexane, and toluene)} were determined at T = (308.2 and 318.2) K and atmospheric pressure. Solubility data were determined by the cloud-point titration method. In order to obtain the tie-line data, the concentration of each phase was determined by acidimetric titration, the Karl–Fischer technique, and refractive index measurements. The experimental tie-line data were correlated using the UNIQUAC and NRTL models. The reliability of the experimental data was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions. The Katritzky LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems.

  7. Polarographic behaviour of uranium (VI) in tributyl phosphate organic solutions

    International Nuclear Information System (INIS)

    Degueldre, C.A.; Meklati, M.

    1984-01-01

    U(VI) determination by D.C. and differential pulse polarography was studied in the organic solutions derived from tributyl phosphate - diluent extracts (after separation from nitric acid media) along with a selected aprotic solvent (i.e.: propylene carbonate and N,N-dimethylacetamide). Miscibility of the TBP-diluent (e.g. cyclohexane, n-hexane, kerosene, n-dodecane) phase with nitric acid as supporting electrolyte, either by addition or already present in the extract was larger in DMA than in PC. In the DMA organic mixture, U(VI) exhibited a DPP peak due to a one electron step, with Esub(p)=-0.4 V (position connected with H 2 O and HNO 3 concentrations). This peak which was proportionnel to the U(VI) concentration from 5x10 -6 to 10 -3 M can be used to determinate directly hexavalent uranium in the industrial organic extraction phases TBP-diluent. (orig.)

  8. Extractability of Lanthanoids(III) into Solvents Contributing to Environmental Protection

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Hara, M.

    1999-01-01

    To perform effective mutual separation of lanthanoids(III) by solvent extraction with avoiding several problems caused by diffusion of organic solvents into air and into water , into commercial available mixed solvents, aliphatic and aromatic solvents consisting of carbon number of 9 to 12, which have high flash points, the extraction of lanthanoid(III) thiocyanates with trioctylphosphine oxide has been measured and the equilibrium constants have been determined across lanthanoid series. Then the extraction constants were compared with those of single solvents, hexane and benzene , widely being used as solvents for liquid-liquid extraction. The extraction constants obtained for the aliphatic mixed solvents are very similar to those for hexane across lanthanoid series. The variation of the constants for aromatic mixed solvents is also similar to that for benzene. The pattern of the variation of the distribution ratio under a constant condition across the series is similar to each other, either using the aliphatic solvents or using aromatic ones, except for in the middle of the series. Accordingly, the use of the high molecular weight mixed aromatic solvents would be recommendable as organic solvents in the mutual separation of lanthanoids from the point of view of safety for fire and health for the people handling the extraction

  9. Man-made organic compounds in source water of nine community water systems that withdraw from streams, 2002-05

    Science.gov (United States)

    Kingsbury, James A.; Delzer, Gregory C.; Hamilton, Pixie A.

    2008-01-01

    Initial findings from a national study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterize the occurrence of about 250 anthropogenic organic compounds in source water (defined as water collected at a surface-water intake prior to water treatment) at nine community water systems in nine States in the Nation. The organic compounds analyzed in this study are primarily man-made and include pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. The study also describes and compares the occurrence of selected compounds detected in source water with their occurrence in finished water, which is defined as water that has passed through treatment processes but prior to distribution. This fact sheet summarizes major findings and implications of the study and serves as a companion product to two USGS reports that present more detailed and technical information for the nine systems studied during 2002-05 (Carter and others, 2007; Kingsbury and others, 2008).

  10. Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays

    DEFF Research Database (Denmark)

    Wiggers, Henrik; Cheleski, J; Zottis, A

    2007-01-01

    .0% for MeOH and up to 7.5% for DMSO. The results show that when GAPDH is assayed in the presence of DMSO (5%, v/v) using the ITC experiment, the enzyme exhibits approximately twofold higher activity than that of GAPDH with no cosolvent added. When MeOH (5%, v/v) is the cosolvent, the GAPDH activity......In drug discovery programs, dimethyl sulfoxide (DMSO) is a standard solvent widely used in biochemical assays. Despite the extensive use and study of enzymes in the presence of organic solvents, for some enzymes the effect of organic solvent is unknown. Macromolecular targets may be affected...... by the presence of different solvents in such a way that conformational changes perturb their active site structure accompanied by dramatic variations in activity when performing biochemical screenings. To address this issue, in this work we studied the effects of two organic solvents, DMSO and methanol (Me...

  11. Case history of a successful CO{sub 2} miscible gas WAG injection project

    Energy Technology Data Exchange (ETDEWEB)

    Harpole, Ken

    1998-07-01

    A successful fieldwide CO{sub 2} miscible gas injection project has been underway at the East Vacuum Grayburg San Andres Unit (EVGSAU) in eastern New Mexico, USA since 1985. This presentation follows the evolution of CO{sub 2} miscible gas WAG injection operations at EVGSAU and discusses some of the significant changes in reservoir strategy management which have been implemented over the past 13 years. These changes parallel the evolution in the industry's understanding of and experience with CO{sub 2} miscible gs injection processes. The operating problems and reservoir management challenges encountered at East Vacuum - injection performance, sweep efficiency, effective management of WAG operations, rapidly changing requirements for handling produced gas, and maintaining efficient utilization of injected CO{sub 2} - reflect the kinds of challenges typically encountered in managing a large CO{sub 2} injection project. 1 fig., 1 tab.

  12. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  13. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  14. Adsorbents for radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Ichinose, Shigeo; Kiribayashi, Takehiko.

    1986-01-01

    Purpose: To enable to settle radioactive solvents such as tributyl phosphate (TBP) and n-dodecane as they are without using hydrophobicizing agent such as quaternary ammonium salts. Constitution: The adsorbents are prepared by replacing interlaminer ions of swelling-type synthetic mica with alkaline earth metals or metal ions. For instance, synthetic micas introduced with Zr 4+ or Ca 2+ between the layers provide quite different functions from those of starting materials due to the properties of ions introduced between the layers. That is, they provide an intense affinity to organic phosphates such as TBP and transform into material showing a property of adsorbing and absorbing them. Particularly, the fixing nature to the phosphor content constituting TBP is significantly increased. (Horiuchi, T.)

  15. A chromatographic determination of water in non-aqueous phases of solvent extraction systems

    International Nuclear Information System (INIS)

    Lyle, S.J.; Smith, D.B.

    1975-01-01

    The disadvantages of the Karl Fischer method for the determination of water in the non-aqueous phases of solvent extraction systems are pointed out, and a gas chromatographic method is described which is claimed to be potentially capable of overcoming these disadvantages. The method, as described, was developed to satisfy conditions relevant to measurement of the transfer rate of water from an aqueous phase into tri-n-butylphosphate in toluene, but it can be used for water determination in other solvent extraction systems. The apparatus used is described in detail. The concentration of water in water-saturated TBP was found to be 3.56 mol/litre, compared with a value of 3.55 obtained by Karl Fischer titration and previous literature values of 3.59 and 3.57. Measurements of water content in benzene solutions of long chain alkylamines were also sucessfully carried out. (U.K.)

  16. Levels of lead in solvent and water-based paints manufactured in Pakistan

    International Nuclear Information System (INIS)

    Ikram, M.; Rauf, M.A.; Chotona, G.A.; Bukhari, N.

    2000-01-01

    The levels of lead in eight popular brands of solvent- and water-based paint manufactured locally in Pakistan are reported. The analysis was done using the flame Atomic Absorption Spectrophotometric method. The lead concentration was found to vary from 3.3 mg/kg to 13179 in different solvent-based brands, whereas the concentration of the metal was in the range of 1768 to less than 0.5mg/kg in water based paints. The lead concentrations were especially high in oil based green (maximum value of 13170 mg/kg) and yellow paints (maximum value of 84940 mg/kg). The corresponding higher concentration were observed in case of emerald (maximum value of 1768 mg/kg) and gray (maximum value of 542 mg/kg) paints in the water-based category. (author)

  17. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    Directory of Open Access Journals (Sweden)

    Jonathan Maiangwa

    2017-05-01

    Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent

  18. Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks.

    Science.gov (United States)

    Baidya, Avijit; Ganayee, Mohd Azhardin; Jakka Ravindran, Swathy; Tam, Kam Chiu; Das, Sarit Kumar; Ras, Robin H A; Pradeep, Thalappil

    2017-11-28

    In view of a great demand for paper-based technologies, nonwettable fibrous substrates with excellent durability have drawn much attention in recent years. In this context, the use of cellulose nanofibers (CNFs), the smallest unit of cellulosic substrates (5-20 nm wide and 500 nm to several microns in length), to design waterproof paper can be an economical and smart approach. In this study, an eco-friendly and facile methodology to develop a multifunctional waterproof paper via the fabrication of fluoroalkyl functionalized CNFs in the aqueous medium is presented. This strategy avoids the need for organic solvents, thereby minimizing cost as well as reducing safety and environmental concerns. Besides, it widens the applicability of such materials as nanocellulose-based aqueous coatings on hard and soft substrates including paper, in large areas. Water droplets showed a contact angle of 160° (±2°) over these surfaces and rolled off easily. While native CNFs are extremely hydrophilic and can be dispersed in water easily, these waterborne fluorinated CNFs allow the fabrication of a superhydrophobic film that does not redisperse upon submersion in water. Incorporated chemical functionalities provide excellent durability toward mechanochemical damages of relevance to daily use such as knife scratch, sand abrasion, spillage of organic solvents, etc. Mechanical flexibility of the chemically modified CNF composed paper remains intact despite its enhanced mechanical strength, without additives. Superhydrophobicity induced excellent microbial resistance of the waterproof paper which expands its utility in various paper-based technologies. This includes waterproof electronics, currency, books, etc., where the integrity of the fibers, as demonstrated here, is a much-needed criterion.

  19. Effect of exposure to a mixture of organic solvents on hearing thresholds in petrochemical industry workers.

    Science.gov (United States)

    Loukzadeh, Ziba; Shojaoddiny-Ardekani, Ahmad; Mehrparvar, Amir Houshang; Yazdi, Zohreh; Mollasadeghi, Abolfazl

    2014-10-01

    Hearing loss is one of the most common occupational diseases. In most workplaces, workers are exposed to noise and solvents simultaneously, so the potential risk of hearing loss due to solvents may be attributed to noise. In this study we aimed to assess the effect of exposure to mixed aromatic solvents on hearing in the absence of exposure to hazardous noise. In a cross-sectional study, 99 workers from the petrochemical industry with exposure to a mixture of organic solvents whose noise exposure was lower than 85 dBA were compared with 100 un-exposed controls. After measuring sound pressure level and mean concentration of each solvent in the workplace, pure-tone-audiometry was performed and the two groups were compared in terms of high-frequency and low-frequency hearing loss. T-tests and Chi-square tests were used to compare the two groups. The mean hearing threshold at all frequencies among petrochemical workers was normal (below 25 dB). We did not observe any significant association between solvent exposure and high-frequency or low-frequency hearing loss. This study showed that temporary exposure (less than 4 years) to a mixture of organic solvents, without exposure to noise, does not affect workers' hearing threshold in audiometry tests.

  20. Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

    Directory of Open Access Journals (Sweden)

    Cugnata Noelia Melina

    2017-06-01

    Full Text Available American Foulbrood (AFB is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera. Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC of a substance. In this regard, the fact that most natural products, due to their lipophilic nature, must be dissolved in organic solvents or their aqueous mixtures is an issue of major concern because the organic solvent becomes part of the dilution in the incubation medium, and therefore, can interfere with bacterial viability depending on its nature and concentration. A systematic study was carried out to determine by the broth microdilution method the MIC and the maximum non inhibitory concentration (MNIC against P. larvae of the most common organic solvents used to extract or dissolve natural products, i.e. ethanol, methanol, acetonitrile, n-butanol, dimethylsulfoxide, and acidified hydromethanolic solutions. From the MIC and MNIC for each organic solvent, recommended maximum concentrations in contact with P. larvae were established: DMSO 5% (v/v, acetonitrile 7.5% (v/v, ethanol 7.5% (v/v, methanol 12% (v/v, n-butanol 1% (v/v, and methanol-water-acetic acid (1.25:98.71:0.04, v/v/v.

  1. Remediation of soils, sediments and sludges by extraction with organic solvents

    NARCIS (Netherlands)

    Noordkamp, E.R.

    1999-01-01

    Remediation of contaminated soils, sediments and sludges by extraction with organic solvents is still in the initial stages of development. So far hardly any scientific research has been carried out into this approach. Therefore, the main objective of the present investigation was to study

  2. Reduction of organic solvent emission by industrial use of electron-beam curable coatings

    International Nuclear Information System (INIS)

    Haering, E.

    1982-01-01

    Most industrial finishing processes operate by the use of liquid organic coating materials drying by solvent evaporation and subsequent chemical crosslinking reactions, in many cases also releasing cleavage products. These organic emissions contribute to air pollution and therefore many countries have issued restrictions in order to protect the environment. Complementary to other modern methods for reducing this problem, radiation chemistry enables an approach by radical chain polymerization which can be induced by exposure to electron radiation. This procedure is known as electron-beam curing of coatings or the EBC process. It utilizes well-developed accelerator equipment with voltages of 150 to 400kV at a minimum energy consumption. There is no necessity to use irradiation facilities based on the decay of radioisotopes. Free radical polymerization requires unsaturated resins as pain binders and polymerizable liquid compounds (monomers) as reactive diluents. Their crosslinking yields a high molecular network, the coating, without any emission of organic solvents or cleavage products. Moreover, the radiochemical formation of the paint film occurs extremely rapidly. The technical application of EBC coatings began by coating automotive plastic parts; a little later the finishing of wood products gained more industrial use as a non-polluting and energy-saving coating technology. Application methods in coating plastic foils in combination with vacuum metallizing and the production of decorative laminating papers for furniture followed. In 1981 new EBC pilot lines were installed for curing top coats on PVC foil and also for the coating of prefinished steel wheels for automobiles. In comparison with conventional solvent-based methods the industrial EBC process results in a nearly complete reduction of organic solvent emission avoiding air pollution and saving valuable petrochemical raw materials. This paper reviews the development of EBC during the last decade. (author)

  3. Construction of isotherms in solvent extraction of copper

    Directory of Open Access Journals (Sweden)

    Cvetkovski Vladimir B.

    2009-01-01

    Full Text Available The aim of this work is construction of equilibrium isotherms in solvent extraction. Technological parameters have been predicted for treatment of mine water by solvent extraction and electrowining. Two stages of extractions and one stage of stripping have been predicted for copper recovery by analyzing the equilibrium isotherms. The process was performed on mine water with 2,5 g/dm3 Cu2+, 3 g/dm Fe2+, pH 1,8, using 9 vol% LIX 984N in kerosene (organic solvent, with 95 and 98% stages efficiencies, respectively. This course produced an advanced electrolyte solution, suitable for electrowining and cathodic copper recovery, containing 51 g/dm3 Cu2+ and 160g/dm3 H2SO4 from a 30 g/dm3 Cu and 190 g/dm3 H2SO4.

  4. Oxidative Desulfurization of Gasoline by Ionic Liquids Coupled with Extraction by Organic Solvents

    OpenAIRE

    Abro, Rashid; Gao, Shurong; Chen, Xiaochun; Yu, Guangren; Abdeltawab, Ahmed A.; Al-Deyab, Salem S.

    2016-01-01

    In this work, desulfurization of real fluidized catalytic cracking (FCC) gasoline was investigated in dual steps; first in oxidative desulfurization (ODS) using imidazolium and pyrrolidonium based Brønsted acidic ionic liquids (ILs) as solvent and catalyst and hydrogen peroxide as oxidant. In second step, extractive desulfurization took place using organic solvents of furfural, furfural alcohol and ethylene glycol. Variety of factors such as temperature, time, mass ratio of oil/ILs and regene...

  5. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    Science.gov (United States)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  6. Thermal decomposition of organic solvent with nitric acid in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Tadao; Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Miyata, Sadaichirou

    1995-02-01

    Since a thermal decomposition of organic solvent containing TBP (tributyl phosphate) with nitric acid and heavy metal nitrates is an exothermic reaction, it is possible to cause an explosive decomposition of TBP-complex materials formed by a nitration between the solvent and nitric acid, if the solvent involving TBP-complex is heated upto a thermal limit in an evaporator to concentrate a fuel liquid solution from the extraction process in the reprocessing plant. In JAERI, the demonstration test for explosive decomposition of TBP-complex by the nitration was performed to elucidate the safety margin of the evaporator in the event of hypothetical explosion under auspices of the Science and Technology Agency. The demonstration test was carried out by heating TBP/n-dodecane solvent mixed with nitric acid and uranium nitrate. In the test, the thermal decomposition behavior of the solvent was examined, and also a kinematic reaction constant and a heat formation of the TBP-complex decomposition were measured by the test. In the paper, a safety analysis of a model evaporator was conducted during accidental conditions under the explosive decomposition of the solvent. (author).

  7. Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available A microporous metal-organic framework (MOF, cobalt-based zeolitic imidazolate framework-67 (ZIF-67, was synthesized by the combination of solvent-free hand-mill and microwave irradiation, without any organic solvent and within 30 minutes. The hand-milling process can mix the reactants well by the virtue of high moisture/water absorption capacity of reactants. In addition, the outstanding electromagnetic wave absorption capability of cobalt leads to efficient conversion to MOF structures before carbonization. The obtained ZIF-67 possesses high surface area and micropore volume.

  8. Standardization of solvent extraction procedure for determination of uranium in sea water

    International Nuclear Information System (INIS)

    Maity, Sukanta; Dusane, C.B.; Sahu, S.K.; Pandit, G.G.

    2014-01-01

    Marine ecosystem is becoming polluted by heavy metals and naturally occurring radionuclides due to rapid industrialization and human activities. Many contaminants such as heavy metals and naturally occurring radionuclides though occur at extremely low concentration in sea water, are accumulated by marine organisms and concentrations in their body tissue can be hundreds of times greater than sea water. As human being consume different marine organisms like biota, can lead potential health problem to human being. Uranium is a naturally occurring radioactive element which is important for nuclear technology. However, mineral resources for uranium are limited. Seawater is a major source of uranium. The total estimated quantity of uranium in seawater is around four and a half billion tones. Thus, the oceans have the potential to become the most eco-friendly and long sustainable resource for uranium. A number of countries in the world are in search of techniques to recover uranium from seawater economically. For this purpose and also for the environmental monitoring, the determination of uranium in seawater is very much important. Seawater contains very high concentrations of salts and its uranium content is very low. Accordingly, the separation and preconcentration of uranium is usually involved in the analytical procedures used for the determination of uranium in seawater. In the present study solvent extraction procedure was adopted for the determination of uranium in sea water collected from different locations across Thane Creek area, Mumbai, India

  9. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  10. Noise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Background Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. Methods We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. Results In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. Conclusion This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks. PMID:24870407

  11. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Science.gov (United States)

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs. PMID:28347035

  12. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-05-01

    Full Text Available The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807, with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  13. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  14. Potential Mississippi oil recovery and economic impact from CO2 miscible flooding

    International Nuclear Information System (INIS)

    Moring, J.A.; Rogers, R.E.

    1991-01-01

    Maturing of Mississippi oil reservoirs has resulted in a steady decline in crude oil production in the state. This paper reports that, to evaluate the potential of enhanced recovery processes, particularly in the use of the state's large CO 2 reserves, for arresting this trend, the subject study was performed. A computer data base of over 1315 Mississippi reservoirs was established. All reservoirs were screened for applicability of the carbon dioxide miscible process. With models developed by the National Petroleum Council and DOE, incremental oil that could be produced from the carbon dioxide miscible process was calculated. Under selected economic conditions, carbon dioxide miscible flooding with utilization of carbon dioxide from the state's Norphlet formation (3-7 tcf reserves of high-purity CO 2 ) could produce 120 million barrels of incremental oil in Mississippi. Incremental state revenues as a consequence of this production were calculated to be $45 million of severance taxes, $50 million of corporate income taxes, and $60 million of royalty payments, expressed as present values

  15. Psychophysical Evaluation of Achromatic and Chromatic Vision of Workers Chronically Exposed to Organic Solvents

    International Nuclear Information System (INIS)

    Lacerda, E.M.D.B.; Lima, M.G.; Silveira, L.C.D.S.; Rodrigues, A.R.; Teixeira, C.E.C.; De Lima, L.J.B.; Silveira, L.C.D.S.; Ventura, D.F.; Ventura, D.F.

    2012-01-01

    The purpose of this paper was to evaluate achromatic and chromatic vision of workers chronically exposed to organic solvents through psychophysical methods. Thirty-one gas station workers (31.5 ± 8.4 years old) were evaluated. Psychophysical tests were achromatic tests (Snellen chart, spatial and temporal contrast sensitivity, and visual perimetry) and chromatic tests (Ishihara's test, color discrimination ellipses, and Farnsworth-Munsell 100 hue test FM100). Spatial contrast sensitivities of exposed workers were lower than the control at spatial frequencies of 20 and 30 cpd whilst the temporal contrast sensitivity was preserved. Visual field losses were found in 10-30 degrees of eccentricity in the solvent exposed workers. The exposed workers group had higher error values of FM100 and wider color discrimination ellipses area compared to the controls. Workers occupationally exposed to organic solvents had abnormal visual functions, mainly color vision losses and visual field constriction

  16. Dynamics of miscible displacements in round tubes

    Energy Technology Data Exchange (ETDEWEB)

    Meiburg, E.; Maxworthy, T.; Chen, C.Y. [Univ. of Southern California, Los Angeles, CA (United States); Petitjeans, P. [Ecole Superieure de Physique et de Chimie Industrielles, Paris (France)

    1995-12-31

    A combined experimental and numerical investigation of miscible two-phase flow in a capillary tube is reported. The fraction of fluid left behind on the wall is obtained as a function of the Peclet, Atwood, and Froude numbers. Scaling arguments are presented for two distinct flow regimes, dominated by diffusion and convection, respectively. In the latter one, an effective surface tension value can be estimated.

  17. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    Science.gov (United States)

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  18. Chromatographic lipophilicity determination using large volume injections of the solvents non-miscible with the mobile phase.

    Science.gov (United States)

    Sârbu, Costel; Naşcu-Briciu, Rodica Domnica; Casoni, Dorina; Kot-Wasik, Agata; Wasik, Andrzej; Namieśnik, Jacek

    2012-11-30

    A new perspective in the lipophilicity evaluation through RP-HPLC is permitted by analysis of the retention factor (k) obtained by injecting large volumes of test samples prepared in solvents immiscible with mobile phase. The experiment is carried out on representative groups of compounds with increased toxicity (mycotoxins and alkaloids) and amines with important biological activity (naturally occurring monoamine compounds and related drugs), which are covering a large interval of lipophilicity. The stock solution of each compound was prepared in hexane and the used mobile phases were mixtures of methanol or acetonitrile and water, in suited volume ratio. The injected volume was between 10 and 100 μL, while the used stationary phases were RP-18 and RP-8. On both reverse stationary phases the retention factors were linearly decreasing while the injection volume was increasing. In all cases, the linear models were highly statistically significant. On the basis of the obtained results new lipophilicity indices were purposed and discussed. The developed lipophilicity indices and the computationally expressed ones are correlated at a high level of statistical significance. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto

    2016-01-01

    A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    International Nuclear Information System (INIS)

    Rydberg, J.

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs

  1. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  2. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    International Nuclear Information System (INIS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-01-01

    Roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1 -state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  3. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    Science.gov (United States)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  4. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2009-03-30

    Roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S{sub 1}-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  5. Effect of Exposure to a Mixture of Organic Solvents on Hearing Thresholds in Petrochemical Industry Workers

    Directory of Open Access Journals (Sweden)

    Ziba Loukzadeh

    2014-10-01

    Full Text Available Introduction: Hearing loss is one of the most common occupational diseases. In most workplaces, workers are exposed to noise and solvents simultaneously, so the potential risk of hearing loss due to solvents may be attributed to noise.  In this study we aimed to assess the effect of exposure to mixed aromatic solvents on hearing in the absence of exposure to hazardous noise.   Materials and Methods: In a cross-sectional study, 99 workers from the petrochemical industry with exposure to a mixture of organic solvents whose noise exposure was lower than 85 dBA were compared with 100 un-exposed controls. After measuring sound pressure level and mean concentration of each solvent in the workplace, pure-tone-audiometry was performed and the two groups were compared in terms of high-frequency and low-frequency hearing loss. T-tests and Chi-square tests were used to compare the two groups.   Results: The mean hearing threshold at all frequencies among petrochemical workers was normal (below 25 dB. We did not observe any significant association between solvent exposure and high-frequency or low-frequency hearing loss.   Conclusion:  This study showed that temporary exposure (less than 4 years to a mixture of organic solvents, without exposure to noise, does not affect workers’ hearing threshold in audiometry tests.

  6. Influence of organic solvent treatment on elasticoluminescent property of europium-doped strontium aluminates

    International Nuclear Information System (INIS)

    Fujio, Yuki; Xu, Chao-Nan; Terasaki, Nao; Ueno, Naohiro

    2014-01-01

    The influence of an organic solvent treatment on elasticoluminescent (ELS) characteristics of mechanoluminescent (ML) sensor using the composite film consisting of an ELS material and epoxy resin was investigated. We used strontium aluminate doped with a small amount of europium (SrAl 2 O 4 :Eu, SAOE) as an ELS material in this study. After evaluating the ELS characteristics of the fabricated ML sensors using SAOE treated with/without various organic solvents, SAOE treated with methanol and ethanol showed lower ELS intensities than that of untreated SAOE. In contrast, the ELS response curves against strain for the ML sensors using SAOE treated with acetone and toluene, overlapped with that of untreated SAOE. From the characterization of SAOE treated with alcohols, such as methanol and ethanol, we can hypothesize that poor ELS characteristics is due to the degradation of the SAOE grain surfaces by the hydrolyze reaction of SAOE with hydroxyl group of alcohol. Thus, on the basis of the obtained results, we can conclude that the selection of organic solvent used in the preparation of SAOE film is of considerable importance in the development of ML sensor with a highly-reliable ELS characteristic. -- Highlights: • Influence of organic solution treatment on the sensing characteristics of a mechanoluminescent (ML) sensor using SrAl 2 O 4 :Eu has been investigated. • An alcohol treatment of SAOE powder has considerable effect on its ML characteristic. • There is almost no influence of acetone and toluene treatments on ML characteristics

  7. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2013-01-01

    The effect of acetone, acetonitrile, dimethyl sulfoxide (DMSO), ethanol and methanol on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria has been studied. All the organic solvents inhibited the oxidative phosphorylation in a concentration dependent manner, but with differences...... in potencies. Among the tested organic solvents, acetonitrile and acetone were more potent than ethanol, methanol, and DMSO. There was no significant difference in oxidative phosphorylation, compared to controls, when the concentrations of acetone was below 1% (v/v), of acetonitrile below 2% (v/v), of DMSO...... below 10% (v/v), of ethanol below 5% or of methanol below 2%, respectively. There was complete inhibition of oxidative phosphorylation at 50% (v/v) of acetone, acetonitrile and ethanol. But in the case of DMSO and methanol there were some residual activities observed at the 50% concentration level. DMSO...

  8. Scale-up of miscible flood processes for heterogeneous reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1996-04-01

    Results of a wide-ranging investigation of the scaling of gas injection processes are reported. The research examines how the physical mechanisms at work during a gas injection project interact to determine process performance. In particular, the authors examine: the interactions of equilibrium phase behavior and two-phase flow that determine local displacement efficiency and minimum miscibility pressure, the combined effects of viscous fingering, gravity segregation and heterogeneity that control sweep efficiency in 2- and 3-dimensional porous media, the use of streamtube/streamline methods to create very efficient simulation technique for multiphase compositional displacements, the scaling of viscous, capillary and gravity forces for heterogeneous reservoirs, and the effects of the thin films and spreading behavior on three-phase flow. The following key results are documented: rigorous procedures for determination of minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for miscibility have been developed for multicomponent systems; the complex dependence of MMP`s for nitrogen/methane floods on oil and injection gas composition observed experimentally is explained for the first time; the presence of layer-like heterogeneities strongly influences the interplay of gravity segregation and viscous fingering, as viscous fingers adapt to preferential flow paths and low permeability layers restrict vertical flow; streamtube/streamline simulation techniques are demonstrated for a variety of injection processes in 2 and 3 dimensions; quantitative scaling estimates for the transitions from capillary-dominated to gravity-dominated to viscous-dominated flows are reported; experimental results are given that demonstrate that high pressure CO{sub 2} can be used to generate low IFT gravity drainage in fractured reservoirs if fractures are suitably connected; and the effect of wetting and spreading behavior on three-phase flow is described. 209 refs.

  9. Obtaining uranium and/or vanadium values from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vojkovic, M

    1982-04-22

    A process for the recovery of at least one of uranium and vanadium from an aqueous liquor is claimed. It comprises: (a) treating the liquor with a low molecular weight completely water-miscible solvent selected from the group consisting of methanol, iso-propyl alcohol or acetone to form at least two phases; (b) separating the phases; (c) recovering the solvent from the first phase as the azeotropic solvent/water mixture by simple, non-fractional distillation and recycling the mixture to step (a); and (d) recovering metal values from a second one of the phases.

  10. Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng; Perry, Robert J.; Wood, Benjamin R.; Spiry, Irina; Freeman, Charles J.; Heldebrant, David J.

    2017-04-12

    This paper investigates the CO2 and N2 O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO2 and N2 O at representative lean (0.04 mol CO2/mol alkalinity), middle (0.13 mol CO2 /mol alkalinity) and rich (0.46 mol CO2 /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N2 O at (0.08-0.09 mol CO2 /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO2 flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO2 and N2 O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO2 were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO2 in GAP-1/TEG is linked to the physical solubility of CO2 , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO2 capture in water-lean solvents.

  11. Estimation of the nucleation kinetics for the anti-solvent crystallisation of paracetamol in methanol/water solutions

    Science.gov (United States)

    Ó'Ciardhá, Clifford T.; Frawley, Patrick J.; Mitchell, Niall A.

    2011-08-01

    In this work the primary nucleation kinetics have been estimated for the anti-solvent crystallisation of paracetamol in methanol-water solutions from metastable zone widths (MSZW) and induction times at 25 °C. Laser back-scattering via a focused beam reflectance Measurement (FBRM ®) is utilised to detect the onset of nucleation. The theoretical approach of Kubota was employed to estimate the nucleation kinetics, which accounts for the sensitivity of the nucleation detection technique. This approach is expanded in this work to analyse the induction time for an anti-solvent crystallisation process. Solvent composition is known to have a significant impact on the measured induction times and MSZW. The induction time in this paper was measured from 40% to 70% mass water and the MSZW is measured from 40% to 60% mass water. The primary focus of the paper was to gauge the extent of how solvent composition affects nucleation kinetics so that this effect may be incorporated into a population balance model. Furthermore, the effects of solvent composition on the estimated nucleation rates are investigated. The primary nucleation rates were found to decrease with dynamic solvent composition, with the extent of their reduction linked to the gradient of the solubility curve. Finally, both MSZW and induction time methods have been found to produce similar estimates for the nucleation parameters.

  12. Optimization Study for Butanol Extraction from Butanol-Water Using Fatty Acid Methyl Ester (FAME) as Solvent

    International Nuclear Information System (INIS)

    Nurul Izzati Ab Rahim; Mohd Irfan Hatim Mohamed Dzahir; Wan Nurul Hidayah Wan Othman

    2015-01-01

    The oil crisis, warned the humanity's depends on oil was not sustainable and recently, there are plenty of renewable resources had been developed. Much attention has been given to the solvent extraction process to separate butanol from butanol-water mixture using fatty acid methyl ester (FAME) as a solvent. In this respect, the use of FAME as a green solvent which are locally available has greater potential for butanol extraction process. Therefore, an experimental work has been carried out to study its feasibility as a potential solvent. A single stage extraction process as performed to evaluate the ability to achieve optimal extract butanol. The extraction process was carried out to evaluate the distribution coefficient of butanol with the effects of other parameters such as reaction temperature (50-70 degree Celsius) and butanol-water mixture to solvent ratio (1:1, 1:1.5, 1:2). The constant parameter is the stirring speed (300 rpm). Response Surface Methodology (RSM) in conjunction with the Central Composition Design (CCD) as employed to statistically evaluate and optimize the butanol extraction process. It was found that the distribution coefficient has achieved an optimum level of 1.92 % at the following conditions: (i) butanol-water mixtures to solvent ratio (1:1.48) and (ii) reaction temperature (62.75 degree Celsius). (author)

  13. Nanoencapsulation of OPAA With Mesoporous Materials for Chemical Agent Decontamination in Organic Solvents

    National Research Council Canada - National Science Library

    Ong, K. K; Dong, H; Wei, Y; Cheng, T-c; Yin, R

    2003-01-01

    .... The enzyme activity in different matrices was evaluated in various organic solvents. Significant activities were retained in most of these matrices, particularly in the presence of acetone and dimethyl formamide...

  14. Application of non-aqueous solvents to batteries

    Science.gov (United States)

    Singh, P.

    1984-02-01

    The successful application of organic and aquo-organic solvents in lithium batteries and in zinc bromine batteries is discussed. Results are presented for a comparison of propylene carbonate and 50 percent propylene carbonate/acetonitrile for lithium intercalation cells at 25 C 1 M LiAsF6 as electrolyte and discharge at 2 mA/sq cm. Higher cathode utilization and energy efficiencies are achieved in PC/AN. It was found that the self-discharge problem of the zinc/bromine battery may be overcome by dissolving bromine and bromide salt in water-immiscible dipolar aprotic solvent-proprionitrile (PN). Cells using this PN/H2O two-phase system have an energy efficiency above 75 percent and coulombic efficiency above 85 percent.

  15. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Directory of Open Access Journals (Sweden)

    Yoon-Hyeong Choi

    Full Text Available BACKGROUND: Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. METHODS: We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents and subject-specific health outcomes (e.g., audiometric examination were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA (i.e., means of 2, 3, and 4 kHz were computed. RESULTS: In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. CONCLUSION: This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  16. Effects of Organic Solvents on Indigo Formation by Pseudomonas sp. strain ST-200 Grown with High Levels of Indole.

    Science.gov (United States)

    Doukyu, N; Arai, T; Aono, R

    1998-01-01

    The indole tolerance level of Pseudomonas sp. strain ST-200 was 0.25 mg/ml. The level was raised to 4 mg/ml when diphenylmethane was added to the medium to 20% by volume. ST-200 grown in this two-phase culture system containing indole (1 mg/ml) and diphenylmethane (0.2 ml/ml) produced a water-soluble yellow pigment, isatic acid, and two water-insoluble and diphenylmethane-soluble pigments, blue indigo and purple indirubin. The amounts of the water-insoluble pigments corresponded to 0.5% (indigo) and 0.2% (indirubin) of the indole added to the medium. Of the conditions tried, indigo and indirubin were formed only when ST-200 was grown in the two-phase system overlaid with organic solvents with appropriate polarity.

  17. Thermodynamics of solvent interaction with the metal-organic framework MOF-5.

    Science.gov (United States)

    Akimbekov, Zamirbek; Wu, Di; Brozek, Carl K; Dincă, Mircea; Navrotsky, Alexandra

    2016-01-14

    The inclusion of solvent in metal-organic framework (MOF) materials is a highly specific form of guest-host interaction. In this work, the energetics of solvent MOF-5 interactions has been investigated by solution calorimetry in 5 M sodium hydroxide (NaOH) at room temperature. Solution calorimetric measurement of enthalpy of formation (ΔH(f)) of Zn4O(C8H4O4)3·C3H7NO (MOF-5·DMF) and Zn4O(C8H4O4)3·0.60C5H11NO (MOF-5·0.60DEF) from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H2BDC), N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF) gives values of 16.69 ± 1.21 and 45.90 ± 1.46 kJ (mol Zn4O)(-1), respectively. The enthalpies of interaction (ΔH(int)) for DMF and DEF with MOF-5 are -82.78 ± 4.84 kJ (mol DMF)(-1) and -89.28 ± 3.05 kJ (mol DEF)(-1), respectively. These exothermic interaction energies suggest that, at low guest loading, Lewis base solvents interact more strongly with electron accepting Zn4O clusters in the MOF than at high solvent loading. These data provide a quantitative thermodynamic basis to investigate transmetallation and solvent assisted linker exchange (SALE) methods and to synthesize new MOFs.

  18. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  19. Stability of Miscible Displacements Across Stratified Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, Maryam; Yortsos, Yanis C.

    2000-09-11

    This report studied macro-scale heterogeneity effects. Reflecting on their importance, current simulation practices of flow and displacement in porous media were invariably based on heterogeneous permeability fields. Here, it was focused on a specific aspect of such problems, namely the stability of miscible displacements in stratified porous media, where the displacement is perpendicular to the direction of stratification.

  20. Structure of self-organized diblock copolymer solutions in partially miscible solvents

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Tuzar, Zdeněk; Kadlec, Petr; Nallet, F.; da Silveira, N. P.

    2010-01-01

    Roč. 12, č. 12 (2010), s. 2944-2949 ISSN 1463-9076 R&D Projects: GA ČR GESON/06/E005 Institutional research plan: CEZ:AV0Z40500505 Keywords : small-angle neutron scattering * body-centered-cubic phase * shear Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.454, year: 2010

  1. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil.

    Science.gov (United States)

    Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz

    2018-10-15

    Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds

    Science.gov (United States)

    Zhang, Shao-Lin; Zhang, Zhijun; Yang, Woo-Chul

    2016-01-01

    Despite the great progress in the theory and experimental verification we made in past decade, the practical application of graphene is still hindered by the lack of efficient, economical, scalable, ease-processing exfoliation method. Herein, we propose a facile, low-cost, and efficient liquid-phase exfoliation process using low boiling-temperature solvent mixture to fabricate few-layer graphene in large scale. The Hansen solubility parameter theory was applied to help optimize the composition of solvent mixture. Aqueous-based ternary-solvent mixture, for the first time, was adapted to exfoliate graphene. We demonstrate that the exfoliation efficiency using ternary-solvent mixture surpasses that from binary-solvent approach. The final product concentration after optimization was over 260 μg/ml. The concentrated graphene dispersion was used to fabricate gas sensor for detecting volatile organic gases. Taking advantage of large surface area, large number of adsorption sites, and well-preserved basal plane, the mass-produced graphene nanosheets exhibited promising sensing potential toward ethanol and methanol vapors.

  3. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    Science.gov (United States)

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  4. Biodegradable Nanoparticles Made of Amino-Acid-Based Ester Polymers: Preparation, Characterization, and In Vitro Biocompatibility Study

    Directory of Open Access Journals (Sweden)

    Temur Kantaria

    2016-12-01

    Full Text Available A systematic study of fabricating nanoparticles (NPs by cost-effective polymer deposition/solvent displacement (nanoprecipitation method has been carried out. Five amino acid based biodegradable (AABB ester polymers (four neutral and one cationic, four organic solvents miscible with water, and eight surfactants were tested for the fabrication of the goal NPs. Depending on the nature of the AABB polymers, organic solvents and surfactants, as well as on the fabrication conditions, the size (Mean Particle Diameter of the NPs could be tuned within 42 ÷ 398 nm, the zeta-potential within 12.5 ÷ +28 mV. The stability (resuspendability of the NPs upon storage (at room temperature and refrigerated was tested as well. In Vitro biocompatibility study of the NPs was performed with four different stable cell lines: A549, HeLa (human; RAW264.7, Hepa 1-6 (murine. Comparing the NPs parameters, their stability upon storage, and the data of biological examinations the best were found: As the AABB polymer, a poly(ester amide composed of l-leucine, 1,6-hexanediol and sebacic acid–8L6, as a solvent (organic phase—DMSO, and as a surfactant, Tween 20.

  5. Thin porphyrin composite membranes with enhanced organic solvent transport

    KAUST Repository

    Phuoc, Duong

    2018-05-01

    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block. Hybrid polyamide films are formed by interfacial polymerization of 5,10,15,20-(tetra-4-aminophenyl)porphyrin/m-phenylene diamine (MPD) mixtures with trimesoyl chloride. Porphyrin is a non-planar molecule, containing a heterocyclic tetrapyrrole unit. Its incorporation into a polyamide film leads to higher free volume than that of a standard polyamide film. Polyamide films derived from porphyrin and MPD amines with a fixed total amine concentration of 1wt% and various porphyrin/MPD ratios were fabricated and characterized. The porphyrin/MPD polyamide film was complexed with Cu(II), due to the binding capacity of porphyrin to metal ions. By coupling scanning transmission electron microscopy (STEM) with electron energy-loss spectroscopy (EELS), Cu mapping was obtained, revealing the distribution of porphyrin in the interfacial polymerized layer. By using porphyrin as amine-functionalized monomer a membrane with thin selective skin and enhanced solvent transport is obtained, with good dye selectivity in the nanofiltration range. For instance, an ultra-fast hexane permeance, 40-fold increased, was confirmed when using 0.5/0.5 porphyrin/MPD mixtures, instead of only MPD as amine monomer. A rejection of 94.2% Brilliant Blue R (826g/mol) in methanol was measured.

  6. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno

    2017-05-30

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic solvents. We report for the first time porous polymeric membranes manufactured from poly(oxindolebiphenylylene) (POXI), a polymer with thermal stability as high as 500 °C in oxidative conditions. The membranes were prepared by solution casting and phase inversion by immersion in water. The asymmetric porous morphology was characterized by scanning electronic microscopy. The pristine membranes are stable in alcohols, acetone, acetonitrile and hexane, as well as in aqueous solutions with pH between 0 and 14. The membrane stability was extended for application in other organic solvents by crosslinking, using various dibromides, and the efficiency of the different crosslinkers was evaluated by thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). POXI crosslinked membranes are stable up to 329 °C in oxidative conditions and showed organic solvent resistance in polar aprotic solvents with 99% rejection of Red Direct 80 in DMF at 70 °C. With this development, the application of polymeric membranes could be extended to high temperature and harsh environments, fields currently dominated by ceramic membranes.

  7. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    Science.gov (United States)

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (pHDPE as barriers in the field.

  8. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  9. Role of α-Helical Structure in Organic Solvent-Activated Homodimer of Elastase Strain K

    Directory of Open Access Journals (Sweden)

    Chee Fah Wong

    2011-09-01

    Full Text Available Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3 was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.

  10. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  11. Role of Thickness Confinement on Relaxations of the Fast Component in a Miscible A/B Blend

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sharma, Ravi P. [University of Michigan; Dong, Ban Xuan [University of Michigan

    2018-01-18

    Spatial compositional heterogeneity strongly influences the dynamics of the A and B components of bulk miscible blends. Its effects are especially apparent in mixtures, such as poly(vinyl methyl ether) (PVME)/polystyrene (PS), where there exist significant disparities between the component glass transition temperatures (Tgs) and relaxation times. The relaxation processes characterized by distinct temperature dependencies and relaxation rates manifest different local compositional environments for temperatures above and below the glass transition temperature of the miscible blend. This same behavior is shown to exist in miscible PS/PVME films as thin as 100 nm. Moreover, in thin films, the characteristic segmental relaxation times t of the PVME component of miscible PVME/PS blends confined between aluminum (Al) substrates decrease with increasing molecular weight M of the PS component. These relaxation rates are film thickness dependent, in films up to a few hundred nanometers in thickness. This is in remarkable contrast to homopolymer films, where thickness confinement effects are apparent only on length scales on the order of nanometers. These surprisingly large length scales and M dependence are associated with the preferential interfacial enrichment - wetting layer formation - of the PVME component at the external Al interfaces, which alters the local spatial blend composition within the interior of the film. The implications are that the dynamics of miscible thin film blends are dictated in part by component Tg differences, disparities in component relaxation rates, component-substrate interactions, and chain lengths (entropy of mixing).

  12. Fluid characterization for miscible EOR projects and CO2 sequestration

    DEFF Research Database (Denmark)

    Jessen, Kristian; Stenby, Erling Halfdan

    2007-01-01

    Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO, sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid...... in the data reduction and demonstrate that for some gas/oil systems, swelling tests do not contribute to a more accurate prediction of multicontact miscibility. Finally, we report on the impact that use of EOS models based on different characterization procedures can have on recovery predictions from dynamic...... and the injected fluid(s). The mixtures that form when gas displaces oil in a porous medium will, in many cases, differ significantly from compositions created in swelling tests and other standard pressure/volume/temperature (PVT) experiments. Multicontact experiments (e.g., slimtube displacements) are often used...

  13. Biodegradation of chlorinated solvents in a water unsaturated topsoil

    DEFF Research Database (Denmark)

    Borch, T.; Ambus, P.; Laturnus, F.

    2003-01-01

    In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl3), 1,1,1-trichloroethane (CH3CCl3), tetrachloromethane (CCl4), trichloroethene (C2HCl3) and tetrachloroethene (C2Cl4) was studied in anoxic laboratory....... The headspace concentrations of all the chlorinated solvents except CH3CCl3 were significantly (P less than or equal to 0.05) lower after 41 days in biologically active batches as compared to sterile batches. For the compounds with significantly decreasing headspace concentrations, the decline was the least...... experiments designed to simulate denitrifying conditions in water unsanstrated by measuring the release of N-15 in N-2 to the headspace from added N-15 labeled nitrate. The degradation of chlorinated aliphatic compounds was followed by measuring their concentrations in the headspace above the soil...

  14. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    Science.gov (United States)

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  15. Existence of a miscibility gap in the U-Nd-O ternary system and its relationship with the HBS of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Dottavio, Giannina

    2014-01-01

    Today, the most used nuclear fuel in pressurized water reactors operating in French power plants is uranium dioxide UO 2 . Under irradiation, this ceramic undergoes many modifications, a very interesting one is the incorporation of fission products (Nd,Ce,Eu..) in the crystallographic structure of the fuel. In this thesis, we focused on the modifications of the crystallographic structures of the fuel caused by fission product incorporation. In order to achieve this objective, we conceived a plan formed by steps of increasing complexity and involving two types of materials: non irradiated nuclear fuel (U 1-y Nd y )O 2 (neodymium is the most abundant cationic fission product), and highly irradiated UO 2 fuels. Firstly, we have studied the evolution of crystallographic structure of a sample (U 1-y Nd y )O 2 during an annealing treatment. The results allowed us to confirm a previous hypothesis formulated in the group suggesting that Nd is not totally soluble in UO 2 , as traditionally considered. Instead of that, there is a miscibility gap in the ternary system U-Nd-O. Afterwards, we have characterized this miscibility gap, determining its tie-lines by means of two approaches: a) experimentally, by means of XRD measurements, to estimate the chemical composition of both phases in the biphasic samples, b) theoretically, by means of the thermodynamic assessment of the phase diagram U-Nd-O by the CALPHAD method, including for the assessment the tie-lines previously calculated for our samples, in order to determine the tie-lines for all composition and temperatures of this miscibility gap. We have also distinguished many others systems (U,L)O 2 (U,L,L')O 2 , in which 'L' means lanthanides or actinides existing in the irradiated fuel, that exhibit a miscibility gap. As a consequence, we formulated the hypothesis that a miscibility gap could also exist in the irradiated fuel, which could be, consequently, considered as a pseudo phase diagram U-PF-O (PF

  16. Conformational and bioactivity analysis of insulin: freeze-drying TBA/water co-solvent system in the presence of surfactant and sugar.

    Science.gov (United States)

    Zhang, Yong; Deng, Yingjie; Wang, Xueli; Xu, Jinghua; Li, Zhengqiang

    2009-04-17

    Despite the extensive research into the freeze-drying of aqueous solutions of proteins, it remains unknown whether proteins can survive the lyophilization process in a water-organic co-solvent system and how the process and additives affect the structural stability and activity of the proteins. In the present study, a conformational analysis of insulin in the absence/presence of bile salt and trehalose was carried out, before and after freeze-drying of a tert-butyl alcohol (TBA)/water co-solvent system at volume ratios of TBA to water ranging from 50/50 to 0/100. The study involved the use of ultraviolet derivative and fluorescence spectroscopy, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Also the bioactivity of insulin was evaluated in vivo using the streptozotocin (STZ)-induced diabetic mice as an animal model. Initial investigations indicate that the extent of the structural change of insulin depends significantly both on the TBA content and on the concentration of additives, such as sodium deoxycholate, prior to lyophilization. This could be accounted for by the phase behavior properties of the TBA/water co-solvent system, surface denaturation together with the selective and/or forced dispersion of insulin during phase separation. Lyophilized insulin in the presence of bile salt and trehalose retained more of its bioactivity and native-like structure in the solid state compared with that in the absence of additives at various TBA/water ratios, although in all cases there was a major and reversible rearrangement of secondary structure after rehydration, except for insulin at 50% TBA (v/v). Furthermore, both lyophilization in non-eutectic systems and less structural changes in the formulation process lead to more bioactivity.

  17. Electroenzymatic Reactions With Oxygen on Laccase-Modified Electrodes in Anhydrous (Pure) Organic Solvent

    DEFF Research Database (Denmark)

    Yarapolov, A.; Shleev, S.; Zaitseva, E.

    2007-01-01

    in two different ways: (i) by studying the electroreduction of oxygen in anhydrous DMSO via a direct electron transfer mechanism without proton donors and (ii) by doing the same experiments in the presence of laccase substrates, which display in pure organic solvents both the properties of electron......The electroenzymatic reactions of Trametes hirsuta laccase in the pure organic solvent dimethyl sulfoxide (DMSO) have been investigated within the framework for potential use as a catalytic reaction scheme for oxygen reduction. The bioelectrochemical characteristics of laccase were investigated...... donors as well as the properties of weak acids. The results obtained with laccase in anhydrous DMSO were compared with those obtained previously in aqueous buffer. It was shown that in the absence of proton donors under oxygenated conditions, formation of superoxide anion radicals is prevented at bare...

  18. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    Science.gov (United States)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  19. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  20. Thermodynamics of the second-stage dissociation of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures

    International Nuclear Information System (INIS)

    Taha, Mohamed; Fazary, Ahmed E.

    2005-01-01

    The second stage dissociation constant pK 2 of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) has been determined in aqueous solution at different ionic strengths and different temperatures, using pH-metric technique. The thermodynamic quantities (ΔG 0 , ΔH 0 , and ΔS 0 ) have been studied and discussed. Evaluation of the effect of organic solvent of the medium on the dissociation processes have also been reported and discussed. The organic solvents used were methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone and dioxane. The pK 2 for the ionization in water +10, +20, +30, +40 and +50 wt% dioxane has been determined at five different temperatures from T = (288.15 to 308.15) K at intervals of 5 K. The thermodynamic quantities were calculated. The implications of the results with regard to specific (solute + solvent) interactions (particularly stabilization of zwitterionic species) are also discussed

  1. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation Evaluación del potencial de dos peróxidas para su aplicación en biorremedación de compuestos orgánicos recalcitrantes

    Directory of Open Access Journals (Sweden)

    Torres Rodrigo

    2001-12-01

    Full Text Available This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR. These peroxidases were obtained from different sources (microbial and vegetable and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyrene and anthracene, organic-nitrogenated compounds (diphenylamine, monoaromatic phenolic molecules (guayacol and dyes (methyl orange and ABTS. The reaction systems were composed of mono-phase water mixtures and organic miscible solvent (methanol, ethanol, isopropanol, acetonitrile, tetrahydrofuran, dimethyl sulfoxide and dimethyl formamide, on which both peroxidases' catalytic activity was evaluated. The two enzymes' catalytic activity was observed on the evaluated substrates in most of these assays. However, PPR did not show biocatalytic oxidation for methyl orange dye and some PAHs. This enzyme did show the best tolerance to the evaluated solvents. Its catalytic activity was appreciably enhanced when low hydrophobic solvents were used. The kcat was calculated from this experimental data (as kinetic parameter leading to each enzyme's biocatalytic performance on substrates being compared.El presente trabajo demuestra el promisorio futuro que presentan las enzimas cloroperoxidasa del hongo Caldariomyces fumago (CPO y la peroxidasa de palma real (Roystonea regia, PPR, dos peroxidasas de diferente fuente (microbiana y vegetal, usadas como biocatalizadores para aplicación en biorremediación de compuestos orgánicos recalcitrantes. Para este estudio, se evaluó la actividad catalítica tipo peroxidasa, en sistemas de fase orgánica, de cada una de las enzimas empleando diferentes compuestos modelos tales como: PAH's (pireno y antraceno, órgano nitrogenados

  2. Determination of basicity of neutral organic phosphorus extractants in nonpolar solvents by the 31P NMR method

    International Nuclear Information System (INIS)

    Yakshin, V.V.; Meshcheryakov, N.M.; Il'in, E.G.; Ignatov, M.E.; Laskorin, B.N.

    1984-01-01

    The variant of the NMR method application is developed for quantitative description of acidic-basic properties of neutral organic phosphorus extractants, R 3 P--O (NPE), in non-polar organic solvents. For the NPE basicity determination the dependence of the chemical shift value in NMR 31 P spectra of 0.1 M NPE solutions in the dodecane on sulfuric acid acitivity in aqueous phase at 0-12 M acidity is studied. The linear equation relating NPE basicity and electronic structure of these compounds expressed through the sum: of Kabachnik reaction constants is derived. Linear dependences between the NPE basicity value in dodecane and NPE basicity in nitromethane as well as enthalpies of complexes formation with charge transport with standard acid-iodine in heptane, enthalpies of hydrogen complexes formation with phenol and water have been found

  3. Effect of water-methanol mixed solvents on the ultrasonic relaxation of cadmium acetate

    International Nuclear Information System (INIS)

    Sree Rama Murthy, J.; Ramachandra Rao, B.

    1976-01-01

    Measurements of ultrasonic absorption have been made by pulse technique in 1 M solutions of cadmium acetate with water-methanol mixed solvents. Results are analysed by assuming a single relaxation mechanism. The characteristic frequency of relaxation is found to decrease with increasing composition of methanol in the solvent. It is proposed that the mechanism of relaxation may be perturbation of chemical equilibrium between complex CdAc + ions and Cd ++ , Ac - species by soundwaves. (author)

  4. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    Unknown

    obviously difficult to scale up. In this context ... eco-friendly features such as, (i) no solvent is required to conduct the ... water soluble, addition of reaction mixture after com- ..... Yield: 855 mg (89%; viscous liquid). 3.4 Ethyl .... Jung M E 1993 Comprehensive organic synthesis ... Leshcheva I F and Bundel Y G 1997 Mendeleev.

  5. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  6. Spectroscopic studies of organic-inorganic composite film cured by low energy electron beam

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd; Ibrahim Abdullah; Eda Yuhana Ariffin

    2009-01-01

    Liquid epoxidized natural rubber acrylate (LENRA) film was reinforced with silica particles formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethyl orthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reactions was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. The compounds that contain silica were crosslinked by electron beam. Structural properties studies were carried out by Fourier Transform Infrared Spectrometer (FTIR). It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. Morphology study by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at any concentrations of TEOS. (author)

  7. The radioactive organic wastewater treatment of INER

    International Nuclear Information System (INIS)

    Shen Chinchang; Chen Chaorui; Chung Jenchren

    2014-01-01

    The treatment strategy of radioactive organic wastewater was to separate it at first, then to treat it step by step by the characteristics of liquid layer. The waste liquid has separated into three layers, the organic layer, aqueous layer and the bottom gel mastic by natural sedimentation. The organic layer has occupied 23% of the total volume, the intermediate aqueous layer occupied 75% of the total volume, the bottom mastic was about 2% of the total. The aqueous layer of organic waste was with Total Organic Carbon (TOC) 20,000ppm. The combustion test shows good treatment performance and all samples can be decomposed completely by incineration. The experiment of incineration has passed the test more than 200 batches and 3000L low-level radioactive organic aqueous solution. The process goes smoothly and gas emission values far below the regulatory limit. Each kilogram of polymer absorber can absorb 45 kg aqueous solution to form a solid combustible material and can be decomposed by incineration. Organic waste solvents were diesel miscible and similar calorific value and small viscosity. It can be used as an incinerator auxiliary fuel of radioactive incinerator. The method testing has begun in this year. It has expected to save diesel fuel consumption of incineration, and well solved such kind waste liquid. (author)

  8. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    Science.gov (United States)

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  9. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    Directory of Open Access Journals (Sweden)

    Cassandra Breil

    2017-03-01

    Full Text Available Bligh and Dyer (B & D or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS, we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29 and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  10. Novel Paradigm Supercapacitors V: Significance of Organic Polar Solvents and Salt Identities

    Science.gov (United States)

    2017-06-01

    146 E. DISCUSSION OF VARIABLES ..........................................................146 1. Viscosity and Density...146 Table 77. Kinematic Viscosity and Density of Water and Tested Solvents...surface area per unit mass, or unit volume [22]. Examples of this material include carbon, conductive clays , some metal and oxides and graphene. These

  11. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    International Nuclear Information System (INIS)

    Gilchrist, Elizabeth S.; Nesterenko, Pavel N.; Smith, Norman W.; Barron, Leon P.

    2015-01-01

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks

  12. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Elizabeth S. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Nesterenko, Pavel N. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001 (Australia); Smith, Norman W. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Barron, Leon P., E-mail: leon.barron@kcl.ac.uk [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom)

    2015-03-20

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  13. New techniques for analysis of organic pollutants in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kissinger, L.D.

    1979-01-01

    An abstractor packing prepared by coating Chromosorb G AW/DMCS with copper(II) chloride was effective for removal of amines from gas-chromatographic streams, but it did not affect the chromatographic behavior of nonamine compounds. By using pre-columns packed with the abstractor packing, solventless chromatograms were obtained for samples in pyridine. A method was developed for determining haloforms in drinking water by sorption of the haloforms on columns packed with acetylated XAD-2. A pre-column of the abstractor packing was used to remove the pyridine solvent from the samples containing the haloforms concentrated from waters. Detection limits for the four chloro-, bromo- haloforms in a 100-ml water sample using an electron capture detector were below 1 ppB. Addition of ascorbic acid to chlorinated waters was effective for stopping the production of haloforms. Design of the inlet allowed samples to be introduced to the capillary column in a Tracor model 550 gas chromatograph with or without splitting of the carrier-gas stream. An exit splitter was implemented that carried the effluent from the capillary column to two detectors. The capillary-column system was applied to the analysis of trace components in complex mixtures. Small columns packed with Florisil were used to fractionate mixtures of organic compounds by gravity-flow liquid chromatography. Three fractions of organic compounds were collected from the Florisil columns. The recovery and elution behavior of many organic compounds was investigated. Organic compounds from fifteen waters were fractionated on Florisil.

  14. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization and ......ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co...

  15. Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization

    NARCIS (Netherlands)

    Leemann, M.; Leemann, M.; Eigenberger, G.; Strathmann, H.

    1996-01-01

    Vapour permeation is a potentially suitable technology for the recovery of organic solvents from waste air streams. New solvent stable capillary membrane modules that are currently emerging on the market provide large membrane areas for an acceptable price and enhance the competitiveness of this

  16. Microextraction Techniques Coupled to Liquid Chromatography with Mass Spectrometry for the Determination of Organic Micropollutants in Environmental Water Samples

    Directory of Open Access Journals (Sweden)

    Mª Esther Torres Padrón

    2014-07-01

    Full Text Available Until recently, sample preparation was carried out using traditional techniques, such as liquid–liquid extraction (LLE, that use large volumes of organic solvents. Solid-phase extraction (SPE uses much less solvent than LLE, although the volume can still be significant. These preparation methods are expensive, time-consuming and environmentally unfriendly. Recently, a great effort has been made to develop new analytical methodologies able to perform direct analyses using miniaturised equipment, thereby achieving high enrichment factors, minimising solvent consumption and reducing waste. These microextraction techniques improve the performance during sample preparation, particularly in complex water environmental samples, such as wastewaters, surface and ground waters, tap waters, sea and river waters. Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS and time-of-flight mass spectrometric (TOF/MS techniques can be used when analysing a broad range of organic micropollutants. Before separating and detecting these compounds in environmental samples, the target analytes must be extracted and pre-concentrated to make them detectable. In this work, we review the most recent applications of microextraction preparation techniques in different water environmental matrices to determine organic micropollutants: solid-phase microextraction SPME, in-tube solid-phase microextraction (IT-SPME, stir bar sorptive extraction (SBSE and liquid-phase microextraction (LPME. Several groups of compounds are considered organic micropollutants because these are being released continuously into the environment. Many of these compounds are considered emerging contaminants. These analytes are generally compounds that are not covered by the existing regulations and are now detected more frequently in different environmental compartments. Pharmaceuticals, surfactants, personal care products and other chemicals are considered micropollutants. These

  17. The parametars of liver functional status in the wood industry workers exposed to organic solvent volatile compounds

    Directory of Open Access Journals (Sweden)

    S. Sivić

    2005-08-01

    Full Text Available A retrospective-prospective controlled research was conducted in order to determine changes of the liver functionsin the workers exposed to a mixture of organic solvents, whose concentrations did not exceed limits set for the working environment. One hundred and twenty five workers of the„Krivaja“wood factory were involved in this research, 66 of whom had been exposed during their working hours to a mixture of organic solvents for two years and even longer. Average age of workers was 40 +/-15. Another group comprised 59 workers of the same sex, similar age and anthropomorphic characteristics, but they had not been exposed to the mixture of organic solvents (controlled group. The mixture of acetone, xylene, toluene, butyl acetate and isobutanol was found in the air of the working environment. The workers with existing liver diseases, chronic alcoholics, diabetics and those who had recently been exposed to a trauma or surgery, were excluded from the research. The participants’ blood samples were tested for the concentration of aspartate aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, total proteins and albumins. The Student’s t-test has shown that there was no significant difference between the controlled and exposed groups for albumin, aminotransferase and bilirubin values, but there was a highly significant difference in the total protein concentrations between thet wogroups.Since there is a correlation between blood concentration and duration of exposure to the mixture of organic solvents, it has been found that correlation coefficient of the bilirubin,aminotransferase and albumin was not significant,however,therewasa considerable positive correlation for total proteins of plasma. Based on the results of the research it could be concludedthat there was no indicative cumulative impact of the mixture of organic solvents to the liver functions.

  18. Supramolecular solvent-based extraction of benzimidazolic fungicides from natural waters prior to their liquid chromatographic/fluorimetric determination.

    Science.gov (United States)

    Moral, Antonia; Sicilia, María Dolores; Rubio, Soledad

    2009-05-01

    A supramolecular solvent made up of vesicles of decanoic acid in the nano- and microscale regimes dispersed in a continuous aqueous phase is proposed for the extraction/preconcentration of benzimidazolic fungicides (BFs) from river and underground water samples prior to their determination by liquid chromatography (LC)/fluorimetry. The solvent is produced from the coacervation of decanoic acid aqueous vesicles by the action of tetrabutylammonium (Bu(4)N(+)). Carbendazim (CB), thiabendazole (TB) and fuberidazole (FB) are extracted on the basis of hydrophobic and pi-cation interactions and the formation of hydrogen bonds. The extraction provides high preconcentration factors (160 for CB and 190 for TB and FB), requires a short time (the procedure takes less than 20 min and several samples can be simultaneously processed) and a low sample volume (20 mL), and avoids the use of toxic organic solvents. Because of the absence of matrix interferences and the low viscosity of the extracts, these can be directly injected into the chromatographic system without the need of cleaning-up or diluting them. Recoveries are not influenced by the presence of salt concentrations up to 1 M. The proposed method provides detection limits for the determination of CB, TB and FB in natural waters of 32, 4 and 0.1 ng L(-1), respectively, and a precision, expressed as relative standard deviation (n=11) of 5.5% for CB (100 ng L(-1)), 4.0% for TB (80 ng L(-1)) and 2.5% for FB (30 ng L(-1)). Recoveries obtained by applying this approach to the analysis of river and underground water samples fortified at the ng L(-1) level are in the intervals 75-83, 95-102 and 97-101% for CB, TB and FB, respectively.

  19. Carbon dioxide for enhanced oil recovery in Canada

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.; Manbybura, F.; Sparks, N.

    1985-01-01

    This paper examines the potential for carbon dioxide as a major miscible solvent in Canada and describes Shell Canada's carbon dioxide exploration efforts over the last few years. Enhanced oil recovery, specifically miscible flooding, has been recognized as a technically and economically feasible method for adding reserves and productive capacity to Canada's light and medium oil. The fiscal regime has been altered by both the federal and provincial governments to encourage miscible flooding development. As a result many projects have been initiated with others being evaluated and designed. This paper analyzes the history and the direction of miscible flooding in the United States, where carbon dioxide is becoming the predominant miscible solvent. The potential for future use of carbon dioxide in Canada is specifically addressed: potential oil recovery solvent supply, and economics. Shell's carbon dioxide exploration play currently underway is also discussed.

  20. Real-time ESI-MS of enzymatic conversion: impact of organic solvents and multiplexing.

    Science.gov (United States)

    Scheerle, Romy K; Grassmann, Johanna; Letzel, Thomas

    2012-01-01

    Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.

  1. Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection

    Directory of Open Access Journals (Sweden)

    Ayaka Sato

    2018-03-01

    Full Text Available Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.

  2. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride)/acrylic rubber/clay nanocomposite hybrid.

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  3. "Chemistry in a spinneret" to fabricate hollow fibers for organic solvent filtration

    NARCIS (Netherlands)

    Dutczak, S.M.; Tanardi, Cheryl; Kopec, K.K.; Wessling, Matthias; Stamatialis, Dimitrios

    2012-01-01

    Organic solvent filtration (OSF) is a very efficient separation technique with high potential in many branches of industry. Currently the choice of the commercial membranes is limited only to a few flat sheet membranes and spiral wound modules. It is generally known that a membrane in hollow fiber

  4. USING PHASE DIAGRAMS TO PREDICT THE PERFORMANCE OF COSOLVENT FLOODS FOR NAPL REMEDIATION

    Science.gov (United States)

    Cosolvent flooding using water miscible solvents such as alcohols has been proposed as an in-situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR ...

  5. Photochemical reactions of brominated diphenylethers in organic solvents and adsorbed on silicon dioxide in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Palm, W.U.; Kopetzky, R.; Sossinka, W.; Ruck, W. [Univ. of Lueneburg, Environmental Chemistry, Lueneburg (Germany); Zetzsch, C. [Univ. of Bayreuth, Atmos. Chem. Research, Bayreuth, and Fraunhofer-Inst. of Toxicology and Experimental Medicine, Hannover (Germany)

    2004-09-15

    Polybrominated diphenylethers (BDEs) are in use as flame retardants worldwide and are found as xenobiotics in environmental samples. Photolysis by sunlight, one of the potential abiotic degradation pathways, is found to be rapid in laboratory experiments, especially for deca-BDE, the most prominent BDE as compared to commercial penta- and octa-BDEs. Due to the extremely low water solubility of BDEs, these experiments were mostly performed in organic solvents so far, and a few in environmental matrices (sand and soil) and on dry and hydrated quartz glass. However, detailed UV absorption spectra of deca-BDE and debrominated BDEs in the relevant wavelength range above 300 nm have become available only recently, besides the UV maxima of a number of synthesized congeners at shorter wavelengths and an exploratory study from our laboratory. Other important parameters to assess the abiotic degradation in the environment, such as OH-rate constants and photolytic quantum yields of BDEs are not available. Furthermore, analysis of BDEs was mostly performed by GC-MS, and the capability of HPLC with a diode array detector (DAD) has not yet been exploited. This study presents kinetic results on the photolysis of BDEs in tetrahydrofuran (THF) with detailed photolytic pathways for a tetra-BDE (2,2'4,4'-BDE), a hexa-BDE (2,2'4,4',5,5'-BDE) and deca-BDE. Employing HPLC with a diode array detector (DAD) as analytical tool, quantum yields of BDEs with N{sub Br} = 1-10 are determined. Furthermore, the formation of brominated dibenzofurans (BDFs) was investigated. Since the environmental relevance of photolysis experiments in organic solvents is questionable, first results on photolysis of deca-BDE adsorbed on silicon dioxide particles, suspended in water, are presented.

  6. Psychiatric symptomatology in persons with organic solvent exposure.

    Science.gov (United States)

    Morrow, L A; Kamis, H; Hodgson, M J

    1993-02-01

    This study investigated psychiatric symptomatology, self-concept, locus of control, and daily events in persons with a history of exposure to mixtures of organic solvents. Exposed subjects were more likely than controls to report depression, anxiety, fatigue, confusion, and somatic concerns, which in turn were associated with certain exposure-related variables (e.g., cacosmia). There were no differences between the groups in self-concept, locus of control, or ratings of daily hassles and uplifts. Exposed persons may be able to accurately identify what they perceive as changes that are due to the exposure (e.g., anxiety) without attributing these specific adverse outcomes to dispositional variables.

  7. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  8. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  9. Thermodynamics of the second-stage dissociation of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohamed [Department of Chemistry, Faculty of Science, Cairo University, Beni-Suef Branch, Beni-Suef (Egypt)]. E-mail: mtaha978@yahoo.com; Fazary, Ahmed E. [Department of Chemistry, Faculty of Science, Cairo University, Beni-Suef Branch, Beni-Suef (Egypt)

    2005-01-01

    The second stage dissociation constant pK{sub 2} of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) has been determined in aqueous solution at different ionic strengths and different temperatures, using pH-metric technique. The thermodynamic quantities ({delta}G{sup 0}, {delta}H{sup 0}, and {delta}S{sup 0}) have been studied and discussed. Evaluation of the effect of organic solvent of the medium on the dissociation processes have also been reported and discussed. The organic solvents used were methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone and dioxane. The pK{sub 2} for the ionization in water +10, +20, +30, +40 and +50 wt% dioxane has been determined at five different temperatures from T = (288.15 to 308.15) K at intervals of 5 K. The thermodynamic quantities were calculated. The implications of the results with regard to specific (solute + solvent) interactions (particularly stabilization of zwitterionic species) are also discussed.

  10. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  11. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  12. [Analysis of organic solvent poisonings occurring in Japan from 1995 to 2006].

    Science.gov (United States)

    Maki, Syou; Nawata, Hideki; Ogawa, Yasutaka

    2011-01-01

    Statistical analyses based on incidence rate were carried out for organic solvent poisonings occurring in Japan. We used the published data of "Typical cases of occupational diseases" and "Current situation of occupational disease occurrence" in the "Industrial Hygiene Guidebook (Roudoueisei no Shiori)". The number of workers as a population of occupational solvent handlers was obtained from the Ministry of Health, Labour and Welfare, Japan. The annual incidences of solvent poisoning from 1995 to 2006, poisoning, death-by-poisoning, and secondary poisoning were 3.3-5.4, 0.0-0.83, and 0.0-0.34 cases/(100,000 solvent handlers × yr), respectively. Annual incidence classified by manufacturing, construction, and other services were 2.5, 52.0, and 6.1, respectively. Manufacturing showed a small increase from 1999 to 2003, and stopped increasing after 2004. Construction had a peak in 2000. Other services notably decreased from 14.4 in 1999 to 2.5 in 2006. The monthly distribution of the number of poisoning cases was prominent in January. Annual incidences of poisoning, death-by-poisoning, and secondary poisoning were 3.9, 0.5, 0.2 for toluene, 3.5, 0.5, 0.3 for xylene, and 16.4, 4.7, 2.3 for trichloroethylene, respectively. The annual incidences classified by industry and solvents showed no change for manufacturing, whereas that for construction notably decreased from 88.6 in 2000 to 12.0 in 2006.

  13. Evaluation of miscible and immiscible CO2 injection in one of the Iranian oil fields

    Directory of Open Access Journals (Sweden)

    Aref Hashemi Fath

    2014-09-01

    Full Text Available Carbon dioxide (CO2 flooding is one of the most important methods for enhanced oil recovery (EOR because it not only increases oil recovery efficiency but also causes a reduction of greenhouse gas emissions. It is a very complex system, involving phase behavior that could increase the recovery of oil by means of swelling, evaporation and decreasing viscosity of the oil. In this study, a reservoir modeling approach was used to evaluate immiscible and miscible CO2 flooding in a fractured oil field. To reduce simulation time, we grouped fluid components into 10 pseudo-components. The 3-parameter, Peng–Robinson Equation of State (EOS was used to match PVT experimental data by using the PVTi software. A one-dimensional slim-tube model was defined using ECLIPSE 300 software to determine the minimum miscibility pressure (MMP for injection of CO2. We used FloGrid software for making a reservoir static model and the reservoir model was calibrated using manual and assisted history matching methods. Then various scenarios of natural depletion, immiscible and miscible CO2 injection have been simulated by ECLIPSE 300 software and then the simulation results of scenarios have been compared. Investigation of simulation results shows that the oil recovery factor in miscible CO2 injection scenario is more than other methods.

  14. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    Science.gov (United States)

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  15. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Garcin, I.

    1989-01-01

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process [fr

  16. Miscibility phase diagram of ring-polymer blends: A topological effect.

    Science.gov (United States)

    Sakaue, Takahiro; Nakajima, Chihiro H

    2016-04-01

    The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor.

  17. Dispersions of Goethite Nanorods in Aprotic Polar Solvents

    Directory of Open Access Journals (Sweden)

    Delphine Coursault

    2017-10-01

    Full Text Available Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation. For many examples of these colloidal suspensions, the solvent is water, which hinders most electro-optic applications. Here, for goethite (α-FeOOH nanorod dispersions, we show that water can be replaced by polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylsulfoxide (DMSO, without loss of colloidal stability. By polarized-light microscopy, small-angle X-ray scattering and electro-optic measurements, we found that the nematic phase, with its field-response properties, is retained. Moreover, a strong Kerr effect was also observed with isotropic goethite suspensions in these polar aprotic solvents. Furthermore, we found no significant difference in the behavior of both the nematic and isotropic phases between the aqueous and non-aqueous dispersions. Our work shows that goethite nanorod suspensions in polar aprotic solvents, suitable for electro-optic applications, can easily be produced and that they keep all their outstanding properties. It also suggests that this solvent replacement method could be extended to the aqueous colloidal suspensions of other kinds of charged anisotropic nanoparticles.

  18. Miscibility of ethyl cellulose/copolyamide6/66/1010 blends by viscometry and refractive index method

    Science.gov (United States)

    Zhang, Xiuzhen; Shen, Yuhua; Xie, Anjian; Gao, Sulian; Xing, Zhiying

    2011-04-01

    The miscibility of ethyl cellulose (EC)/copolyamide6/66/1010 (PA-130) in formic acid is studied by viscometry and refractive index techniques at 25°C. Using viscosity data, the criteria Δ b, Δ b', Δ[η]m, interaction parameter μ, β and thermodynamic parameter α are calculated. These investigations indicate that blend of EC/PA-130 is miscible when the ethyl cellulose content is more than 50 wt % in the blend. Further the result was also confirmed by refractive index measurements.

  19. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  20. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  1. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    Science.gov (United States)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  2. Morphological classification of mesoporous silicas synthesized in a binary water-ether solvent system

    NARCIS (Netherlands)

    Cai, Qiang; Geng, Yi; Zhao, Xiang; Cui, Kai; Sun, Qianyao; Chen, Xihua; Feng, Qingling; Li, Hengde; Vrieling, Engel G.

    2008-01-01

    Using diethyl ether as a co-solvent, a non-stable interface of biphasic oil-water system (the so-called oil-water two-phase (OWTP) system) was employed in the preparation of mesostructured silicas with diversified particle morphologies. By adjusting the molar ratios of H2O:C2H5OC2H5:NH3 center dot

  3. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    Science.gov (United States)

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  4. Influence of Miscibility Phenomenon on Crystalline Polymorph Transition in Poly(Vinylidene Fluoride)/Acrylic Rubber/Clay Nanocomposite Hybrid

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules. PMID:24551141

  5. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride/acrylic rubber/clay nanocomposite hybrid.

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Abolhasani

    Full Text Available In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride (PVDF and acrylic rubber(ACM was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  6. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2009-04-01

    Full Text Available Abstract Background Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia. Results A thermostable organic solvent-tolerant protease producer had been identified as Bacillus subtilis strain Rand, based on the 16S rRNA analysis conducted, as well as the morphological characteristics and biochemical properties. The production of the thermostable organic solvent-tolerant protease was optimized by varying various physical culture conditions. Inoculation with 5.0% (v/v of (AB600 = 0.5 inoculum size, in a culture medium (pH 7.0 and incubated for 24 h at 37°C with 200 rpm shaking, was the best culture condition which resulted in the maximum growth and production of protease (444.7 U/ml; 4042.4 U/mg. The Rand protease was not only stable in the presence of organic solvents, but it also exhibited a higher activity than in the absence of organic solvent, except for pyridine which inhibited the protease activity. The enzyme retained 100, 99 and 80% of its initial activity, after the heat treatment for 30 min at 50, 55, and 60°C, respectively. Conclusion Strain Rand has been found to be able to secrete extra-cellular thermostable organic solvent-tolerant protease into the culture medium. The protease exhibited a remarkable stability towards temperature and organic

  7. Temperature Induced Solubility Transitions of Various Poly(2-oxazolines in Ethanol-Water Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Hanneke M. L. Lambermont-Thijs

    2010-08-01

    Full Text Available The solution behavior of a series of poly(2-oxazolines with different side chains, namely methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, phenyl and benzyl, are reported in ethanol-water solvent mixtures based on turbidimetry investigations. The LCST transitions of poly(2-oxazolines with propyl side chains and the UCST transitions of the poly(2-oxazolines with more hydrophobic side chains are discussed in relation to the ethanol-water solvent composition and structure. The poly(2-alkyl-2-oxazolines with side chains longer than propyl only dissolved during the first heating run, which is discussed and correlated to the melting transition of the polymers.

  8. Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Sklarew, D.S.

    1997-09-01

    The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids

  9. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana

    2018-02-26

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring bio-polyphenol morin. For the manufacture of this type of OSN membrane a crosslinked PAN support was coated by interfacial polymerization using morin as the monomer of the aqueous phase and terephtaloyl chloride as the monomer of the organic phase. These membranes showed an exceptional performance and resistance to NMP by having a a permeance of 0.3L/m2 h bar in NMP with a rejection of 96% of Brilliant Blue dye which has a molecular weight of 825.97g/mol, making these membranes attractive for harsh industrial separation processes due to their ease of manufacture, low cost, and excellent performance.

  10. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    Science.gov (United States)

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    Science.gov (United States)

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    Science.gov (United States)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  13. Purification and Characterization of Organic Solvent and Detergent Tolerant Lipase from Thermotolerant Bacillus sp. RN2

    Directory of Open Access Journals (Sweden)

    Tadahiko Kajiwara

    2010-09-01

    Full Text Available The aim of this study was to characterize the organic solvent and detergent tolerant properties of recombinant lipase isolated from thermotolerant Bacillus sp. RN2 (Lip-SBRN2. The isolation of the lipase-coding gene was achieved by the use of inverse and direct PCR. The complete DNA sequencing of the gene revealed that the lip-SBRN2 gene contains 576 nucleotides which corresponded to 192 deduced amino acids. The purified enzyme was homogeneous with the estimated molecular mass of 19 kDa as determined by SDS-PAGE and gel filtration. The Lip-SBRN2 was stable in a pH range of 9–11 and temperature range of 45–60 °C. The enzyme was a non metallo-monomeric protein and was active against pNP-caprylate (C8 and pNP-laurate (C12 and coconut oil. The Lip-SBRN2 exhibited a high level of activity in the presence of 108% benzene, 102.4% diethylether and 112% SDS. It is anticipated that the organic solvent and detergent tolerant enzyme secreted by Bacillus sp. RN2 will be applicable as catalysts for reaction in the presence of organic solvents and detergents.

  14. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  15. Kerogen chemistry 5. Anhydride formation in, solvent swelling of, and loss of organics on demineralization of Kimmeridge shales

    International Nuclear Information System (INIS)

    Larsen, John W.; Flores, Carlos Islas

    2008-01-01

    The results of three short and related, but experimentally independent, studies of 4 Kimmeridge shales and their kerogens are reported. Differential scanning calorimeter (DSC) studies of the kerogens reveal that three of the four show evidence of anhydride formation when heated at 20 C/min between 50 C and 180 C. There is no regular rank dependence of anhydride formation. After solvent swelling in tetrahydrofuran (THF), extracted organics were isolated from the THF and the recovered kerogens were swollen a second time in fresh THF. The second solvent swelling ratios were slightly larger than the first because the presence of the extracts in the original THF lowers solvent activity thus reducing swelling. The shales were demineralized in the usual way except that methylene chloride was added to dissolve any organics that were liberated from the rock as a consequence of mineral dissolution. Small amounts of organics were found in the methylene chloride supporting Price and Clayton's conclusion that organics are expelled from the kerogen and are present in lacunae in the minerals. (author)

  16. Explosive treatment of Illinois No.6 coal with a mixed solvent of water and cyclohexanol; Mizu-cyclohexanol kongo yozai ni yoru Illinois tan no bakusai shori

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Takada, H.; Asami, K.; Yano, M. [Osaka City University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Coal was treated at high temperature under high pressure in the binary system mixed solvent of water and organic solvent, and the solvent treated coal was liquefied. When the treated coal was treated again by the explosive method in which high temperature and pressure were released immediately, the oil yield was higher than that by the normal method in which high temperature and pressure were reduced gradually to room temperature and atmospheric pressure. In this study, an explosive treatment unit with increased scale of sample amount was newly fabricated. Illinois No.6 coal was treated by the explosive method in a mixed solvent of water and cyclohexanol using this unit. Changes in shape on the surface, specific surface area, and functional groups were analyzed. The explosively treated coal contained more amount of low boiling point components than the normally treated coal. It was suggested that the oil yield of explosively treated coal increased due to the liquefaction of these components during the successive hydrogenation process. For the explosively treated coal, micro pores were fractured by the rapid change in the volume of solvent molecules, and the specific surface area was smaller than that of the normally treated coal. When the treatment temperature was increased from 300{degree}C to 350{degree}C, specific surface areas of both the treated coals increased. 2 refs., 3 figs., 2 tabs.

  17. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    KAUST Repository

    Cao, Siqin

    2017-12-22

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  18. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    KAUST Repository

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2017-01-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  19. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    Science.gov (United States)

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2018-04-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  20. Removal of VOCs from groundwater using membrane-assisted solvent extraction

    International Nuclear Information System (INIS)

    Hutter, J.C.; Vandegrift, G.F.; Nunez, L.; Redfield, D.H.

    1992-01-01

    A membrane-assisted solvent extraction (MASX) system coupled to a membrane-assisted distillation stripping (MADS) system for use in decontaminating groundwater is discussed. Volatile organic compounds (VOCs) are extracted in the MASX using a sunflower oil solvent. In the MADS, VOCs are stripped from the sunflower oil, and the oil is recycled to the MASX. Thermodynamic data for the sunflower oil-water-VOCs system were experimentally collected. Published membrane-mass transfer results along with these data were used to design the MASX and MADS modules

  1. Water-Based Pressure-Sensitive Paints

    Science.gov (United States)

    Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.

    2006-01-01

    Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).

  2. Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

    Science.gov (United States)

    Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank

    2018-05-21

    Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O

  3. Solvent fluctuations and nuclear quantum effects modulate the molecular hyperpolarizability of water

    Science.gov (United States)

    Liang, Chungwen; Tocci, Gabriele; Wilkins, David M.; Grisafi, Andrea; Roke, Sylvie; Ceriotti, Michele

    2017-07-01

    Second-harmonic scattering (SHS) experiments provide a unique approach to probe noncentrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells, and tissue. A central assumption made in analyzing SHS experiments is that each molecule scatters light according to a constant molecular hyperpolarizability tensor β(2 ). Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant β(2 ). We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the nonlinear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: In particular, isotopic differences between H2O and D2O could explain recent SHS observations. Finally, we show that a machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a step towards quantitative modeling of SHS experiments.

  4. Preferential solvation of ions in mixed solvents. 6: Univalent anions in aqueous organic solvents according to the inverse Kirkwood-Buff integral (IKBI) approach

    International Nuclear Information System (INIS)

    Marcus, Yizhak

    2007-01-01

    The inverse Kirkwood-Buff integral (IKBI) approach is applied to the preferential solvation of F - , Cl - , Br - , I - , and ClO 4 - in aqueous mixtures of the co-solvents (S) methanol (MeOH), ethanol (EtOH), t-butanol (t-BuOH), 1,2-ethanediol (EG), glycerol (Gly), acetone (Me 2 CO), acetonitrile (MeCN), formamide (FA), N,N-dimethylformamide (DMF), N,N,N',N',N'',N''-hexamethyl phosphoric triamide (HMPT), and dimethylsulfoxide (DMSO), as far as the relevant data exist in the literature. Fluoride anions are selectively solvated by the water up to large mole fractions (x S ≥ 0.4) of S = EtOH, t-BuOH, Me 2 CO, MeCN, and DMF, and up to lower contents (x S ∼ 0.1) of MeOH, EG, FA, and DMSO. The other anions are preferentially solvated by water to diminishing extent as their sizes become larger, and the largest ones show some preference for S in water-rich mixtures of MeOH and FA, whereas in aqueous Gly even chloride is preferentially solvated by the Gly. The competition between the co-solvent and the anion for the hydrogen bonds that water molecules donate is the main cause for the observed preferential solvation behaviour

  5. Physico-chemical properties of Pd nanoparticles produced by Pulsed Laser Ablation in different organic solvents

    International Nuclear Information System (INIS)

    Cristoforetti, Gabriele; Pitzalis, Emanuela; Spiniello, Roberto; Ishak, Randa; Giammanco, Francesco; Muniz-Miranda, Maurizio; Caporali, Stefano

    2012-01-01

    Palladium nanoparticles are arousing an increasing interest because of their strong activity in heterogeneous catalysis in a wide range of reactions. Driven by the interest of producing Pd nanoparticles to be deposited for catalysis over hydrophobic supports, we investigated their synthesis via Pulsed Laser Ablation in Liquid in several organic solvents, as acetone, ethanol, 2-propanol, toluene, n-hexane. The colloids were produced by using a Nd:YAG ns laser and without the addition of surfactant agents. The morphology, composition, stability and oxidation state of the obtained nanoparticles were investigated by TEM-EDS analysis, UV-vis spectroscopy, X-ray Photoelectron Spectroscopy and micro-Raman spectroscopy. The results evidence that the nature of the solvent influences both the yield and the physico-chemical properties of the produced nanoparticles. While in acetone and alcohols spheroidal, non aggregated and stable particles are obtained, in case of toluene and n-hexane few unstable particles surrounded by a gel-like material are produced. Raman/XPS measurements suggest the presence of amorphous or graphitic carbon onto crystalline Pd nanoparticles, which could have hindered their growth and determined the observed smaller sizes if compared to nanoparticles produced in water. The stability of Pd colloids obtained in acetone and alcohols was attributed to adsorbed anions like enolates or alcoholates; non polar solvents like toluene and n-hexane, unable to give rise to adsorbed anionic species, cannot provide any stabilization to the palladium nanoparticles. XPS analyses also evidenced a partial oxidation of particles surface, with a ratio Pd 2+ :Pd 0 of 1:2.5 and 1:4 in acetone and ethanol, respectively.

  6. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    Science.gov (United States)

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  7. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  8. [Characterization of severe acute occupational poisoning accidents related to organic solvents in China between 1989 and 2003].

    Science.gov (United States)

    Wang, Huan-Qiang; Li, Tao; Zhang, Min; Wang, Hong-Fei; Chen, Shu-Yang; Du, Xie-Yi; Wang, Dan; Zhang, Shuang; Qin, Jian

    2006-12-01

    To analyze severe acute occupational poisoning accidents related to organic solvents reported in China between 1989 and 2003, and to study the characteristics of severe acute occupational poisoning accidents and provide scientific evidences for prevention and control strategies. The data from the national occupational poisoning case reporting system were analyzed with descriptive methods. (1) There were 58 severe acute occupational poisoning accidents related to organic solvents for 15 years with 393 workers poisoned and 48 workers died. The total poisoning rate was 51.2%, and the total mortality was 12.2%. The average poisoning age was (30.9 +/- 8.8) years old and the average death age was (30.6 +/- 12.0) years old. (2) There were 11 types of chemicals that caused these poisoning accidents, and most of the accidents were caused by benzene and homologs. (3) Most of the accidents occurred in manufacture, chemical industry, construction industry, transportation and storage industry, service and commerce. The risk was higher in some jobs than in others, such as paint spraying and cleanout. The poisoning accidents occurred more frequently from April to July each year. (4) The main causes of the accidents were poor ventilation (23.6%), lack of personal protection equipment (21.2%), lack of safety education (19.2%), and lack of safety work practice (15.8%) etc. The ventilation at the workplace involved in organic solvents should be maintained and the skin contacting directly with the organic solvents should be avoided, and it is encouraged to replace the poison with the nontoxic or lower toxic chemicals.

  9. Crystallization of perovskite film using ambient moisture and water as co-solvent for efficient planar perovskite solar cell (Conference Presentation)

    Science.gov (United States)

    Dubey, Ashish; Reza, Khan M.; Gaml, Eman; Adhikari, Nirmal; Qiao, Qiquan

    2016-09-01

    Smooth, compact and defect free morphology of perovskite is highly desired for enhanced device performance. Several routes such as thermal annealing, use of solvent mixtures, growth under controlled humidity has been adopted to obtain crystalline, smooth and defect free perovskite film. Herein we showed direct use of water (H2O) as co-solvent in precursor solution and have optimized the water content required to obtain smooth and dense film. Varying concentration of water was used in precursor solution of CH3NH3I and PbI2 mixed in γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO). Perovskite films were crystallized using toluene assisted solvent engineering method using GBL:DMSO:H2O as solvent mixture. The amount of water was varied from 1% to 25%, which resulted in change in film morphology and perovskite crystallinity. It was concluded that an appropriate amount of water is required to assist the crystallization process to obtain smooth pin-hole free morphology. The change in morphology led to improved fill factor in the device, with highest efficiency 14%, which was significantly higher than devices made from perovskite film without adding water. We also showed that addition of up to 25% by volume of water does not significantly change the device performance.

  10. Ternary and binary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + water between 298 and 343 K

    International Nuclear Information System (INIS)

    Männistö, Mikael; Pokki, Juha-Pekka; Fournis, Ludivine; Alopaeus, Ville

    2017-01-01

    Highlights: • Novel LLE of 2-methyltetrahydrofuran or cyclopentyl methyl ether + furfural + water. • High performance solvents for liquid-liquid extraction exhibited. • Modelled with UNIQUAC-HOC activity coefficient model. • Comparison to other industrial solvents with distribution coefficient and selectivity. - Abstract: The suitability of two solvents for the extraction of furfural from aqueous streams is assessed through novel ternary and binary liquid-liquid equilibria data for mixtures of solvent (2-methyltetrahydrofuran or cyclopentyl methyl ether) + furfural + water. The measured data are reported along with regressed binary interaction parameters for UNIQUAC-HOC activity coefficient model and further analyzed through distribution coefficients and selectivity for furfural. Out of the two solvents, cyclopentyl methyl ether presents a very high selectivity along with good distribution coefficient in the entire temperature range.

  11. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    International Nuclear Information System (INIS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-01-01

    Highlights: ► Hydroxyapatite (HAp) nanoparticles stabilized polymer melt-in-water emulsions without any molecular surfactants. ► Interaction between polymer and HAp played a crucial role. ► HAp-coated polymer particles were obtained from the emulsions without any organic solvents. - Abstract: Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(ε-caprolactone) (PCL) or poly(L-lactide-co-ε-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer–water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  12. SOLUTION THERMODYNAMICS OF TRICLOSAN AND TRICLOCARBAN IN SOME VOLATILE ORGANIC SOLVENTS

    OpenAIRE

    DELGADO, Daniel R.; R. HOLGUIN, Andres; MARTÍNEZ, Fleming

    2012-01-01

    Thermodynamic functions of Gibbs energy, enthalpy, and entropy for the solution processes of the antimicrobial drugs Triclosan and Triclocarban in five volatile organic solvents were calculated from solubility values at temperatures from 293.15 to 313.15 K. Triclosan and Triclocarban solubility was determined in acetone, acetonitrile (AcCN), ethyl acetate (AcOEt), methanol (MetOH), and cyclohexane (CH). The excess of Gibbs energy and the activity coefficients of the solutes were also calculat...

  13. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B. [Supercritical fluids and membranes Laboratory, CEA Valrho, BP 17171, 30207 Bagnols/Ceze Cedex (France)

    2008-07-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  14. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B.

    2008-01-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  15. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    Science.gov (United States)

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  16. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    Energy Technology Data Exchange (ETDEWEB)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  17. Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations

    Science.gov (United States)

    Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian

    2017-11-01

    We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.

  18. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants

    Directory of Open Access Journals (Sweden)

    Maria Doppler

    2016-06-01

    Full Text Available The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v, with and without the addition of 0.1% (v/v formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem and 57% (ear of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone.

  19. Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents

    International Nuclear Information System (INIS)

    Chan, Ya Yun; Yue, Yanni; Li, Yongxin; Webster, Richard D.

    2013-01-01

    Graphical abstract: - Highlights: • Bisphenol A undergoes a chemically irreversible voltammetric oxidation process. • Chemical oxidation was performed to overcome adsorption effects that cause electrode fouling. • A new product was isolated from chemical oxidation with 4 mol equiv. of the one-electron oxidant, NO + . • The oxidative mechanism was proposed to be a four-electron/two-proton process. - Abstract: The electrochemical behavior of bisphenol A (BPA) was examined using cyclic voltammetry, bulk electrolysis and chemical oxidation in aprotic organic solvents. It was found that BPA undergoes a chemically irreversible voltammetric oxidation process to form compounds that cannot be electrochemically converted back to the starting materials on the voltammetric timescale. To overcome the effects of electrode fouling during controlled potential electrolysis experiments, NO + was used as a one-electron chemical oxidant. A new product, hydroxylated bisdienone was isolated from the chemical oxidation of BPA with 4 mol equiv of NO + SbF 6 − in low water content CH 3 CN. The structure of the cation intermediate species was deduced and it was proposed that BPA is oxidized in a four-electron/two-proton process to form a relatively unstable dication which reacts quickly in the presence of water in acetonitrile (in a mechanism that is similar to phenols in general). However, as the water content of the solvent increased it was found that the chemical oxidation mechanism produced a nitration product in high yield. The findings from this study provide useful insights into the reactions that can occur during oxidative metabolism of BPA and highlight the possibility of the role of a bisdienone cation as a reactive metabolite in biological systems

  20. Evidence for organic complexed copper in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Slowey, J F; Jeffrey, L M; Hood, D W

    1967-04-22

    A few attempts have been made to characterize the chemical components contributing to the copper content of seawater. About 0.3 mu/liter of particulate copper in 2 stations in the English Channel and 15 mu/liter of ultrafilterable (10 mu) but non-dialyzable copper in a sample from Texas Bay has been reported. Also the evidence has been shown for copper in the organic form in waters of the Florida Current. The occasional presence of non- dialyzable copper for many samples from the Gulf of Mexico suggests that strongly complexed copper-organic compounds are present in seawater. This communication presents evidence for such complexes that are extractable into a nonpolar solvent in the absence of any added chelating agent. Preliminary results have shown that the copper- organic complex isolated by chloroform extraction occurs in the eighth fraction of the Hirsch and Ahrens lipid separation method using silica gel chromatography. This would indicate that copper complex is associated with the phospholipid, amino lipid, or porphyrin fraction of the lipids.